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Abstract

This paper presents several novel generalization
bounds for the problem of learning kernels based
on a combinatorial analysis of the Rademacher
complexity of the corresponding hypothesis sets.
Our bound for learning kernels with a convex
combination ofp base kernels usingy; regular-
ization admits only a/log p dependency on the
number of kernels, which igght and consider-
ably more favorable than the previous best bound
given for the same problem. We also give a novel
bound for learning with a non-negative combina-
tion of p base kernels with a5 regularization
whose dependency gnis alsotight and only in
p'/*. We present similar results fdr, regular-
ization with other values af, and outline the rel-
evance of our proof techniques to the analysis of
the complexity of the class of linear functions.
Experiments with a large number of kernels fur-
ther validate the behavior of the generalization
error as a function gf predicted by our bounds.

But the choice of the kernel, which is critical to the success
of these algorithms, is typically left to the user. Ratherth
requesting the user to commit to a specific kernel, which
may not be optimal, especially if the user’s prior knowledge
about the task is poor, learning kernel methods require the
user only to supply a family of kernels. The learning algo-
rithm then selects both the specific kernel out of that family
and the hypothesis defined based on that kernel.

There is a large body of literature dealing with vari-
ous aspects of the problem of learning kernels, includ-
ing theoretical questions, optimization problems related
to this problem, and experimental resultsickriet et al.
2004 Argyriou et al, 2005 2006 Srebro & Ben-David
20086 Lewis et al, 2006 Zien & Ong 2007 Bach 2008
Cortes et al. 2009a Ying & Campbell 2009. Some of
this previous work considers families of Gaussian ker-
nels (Micchelli & Pontil, 2005 or hyperkernels@ng et al,
2005. Non-linear combinations of kernels have also
been recently considered Bach (2009 andCortes et al.
(20098. But, the most common family of kernels ex-
amined is that of non-negative or convex combinations of
some fixed kernels constrained by a trace condition, which
can be viewed as aih; regularization anckriet et al.

1. Introduction 2004, or by anL, regularization Cortes et al.20093.

This paper presents several novel generalization bounds
for the problem of learning kernels with the family
of non-negative combinations of base kernels with

Kernel methods are widely used in statistical learning
(Scholkopf & Smola 2002 Shawe-Taylor & Cristianini
2009. Positive definite symmetric (PDS) kernels implic- X X i
itly specify an inner productin a Hilbert space where large-21 L1 0 Lo constraint, orL, constraints with some
margin techniques are used for learning and estimatiorPther values ofg.  One of the first learning bounds
They can be combined with algorithms such as supportvedVen by Lanckrietetal. (2009 for the family of
tor machines (SVMs)Roser et al.1992 Cortes & Vapnik ~ COnvex combinations ofp base kemels with anl,
1995 Vapnik 1999 or other kernel-based algorithms to constraint has the following form:R(h) < R,(h) +
form powerful learning techniques. O (o V/maxj_, Tr(Ky) maxi_, ([Kx|l/ Te(Kx))/p?),
where R(h) is the generalization error of a hypothesis

Appearing inProceedings of the7'" International Conference h, ﬁp(h) is the fraction of training points with margin

on Machine LearningHaifa, Israel, 2010. Copyright 2010 by the less thanp, and Kj, is the kernel matrix associated
author(s)/owner(s). !
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to the kth base kernel. This bound and a similar oneclassification loss function. Also, both the statement ef th
by Bousquet & Herrmann2002 were both shown by result and the proof seem to be considerably more compli-
Srebro & Ben-David2006 to be always larger than one. cated than ours.
Anc_;ther bound byl.anckriet et_ aI.(_ZOOAD for the family We also give a novel bound for learning with a non-negative
of linear or non-convex combinations of kernels was also A . .
combination ofp base kernels with at., regularization
shown, by the same authors, to be always larger than one, : . !
whose dependency gnis alsotight and only inp*/=. We
But Lanckrietet al.(2004 also presented a multiplica- present similar results fat, regularization with other val-
tive bound for convex combinations of base kernels withues ofq.

an L, constraint that is of the formfi(h) < R,(h) + The next section (SectioB) defines the family of ker-

O( %). This bound converges and can perhaps benels and hypothesis sets we examine. Sedigmesents

viewed as the first informative generalization bound fora bound on the Rademacher complexity of the class of con-

this family of kernels. However, the dependence of thisvex combinations of base kernels with Anconstraint and

bound on the number of kerneisis multiplicative which ~ a generalization bound for binary classification directy d

therefore does not encourage the use of too many base keived from that result. Similarly, Sectiofpresents first a

nels. Srebro & Ben-David2006 presented a generaliza- bound on the Rademacher complexity, then a generaliza-

tion bound based on the pseudo-dimension of the family ofion bound forL, regularization for some other values of

kernels that significantly improved on this bound. Theirq > 1. We make a number of comparisons with existing
< P ~( [p+R2/p? bounds anq conclude by d|scqssmg the relevance of our

bound has the foinR(h) < B,(h) + O( m ) proof techniques to the analysis of the complexity of the

where the notatio(-) hides logarithmic terms and where class of linear functions (Sectid).

R? is an upper bound o (x, z) for all pointsz and

be}se kernels’{{c, ke [1,.p]. Thus, .d_lsrggardw)g Iogamh— 2. Preliminaries

mic terms, their bound is only additive jn Their analysis

also applies to other families of kerneding & Campbell  Let X denote the input space. For any kernel function

(2009 also gave generalization bounds for learning ker-we denote by® - : = — Hj the feature mapping fromy

nels based on the notion of Rademacher chaos complexe the reproducing kernel Hilbert spakl, induced byk .

ity and the pseudo-dimension of the family of kernels Most learning kernel algorithms are based on a hypothesis

used. For a pseudo-dimension pfas in the case of a H¢ setderived from a non-negative combinations of a fixed

convex combination op base kernels, their bound is in set ofp > 1 kernelsKj, . .., K, with the mixture weights

O(y/p (R?/p?)(log(m)/m)) and is thus multiplicative in obeying an’,, constraint:

p. It seems to be weaker than the bound.ahckriet et al.

(2009 and that ofSrebro & Ben-David(2006 for such

kernel families.

P
Hl= {z>w @k (z): K:ZMkKka HEA,, |lw|[<1},
k=1
We present new generalization bounds for the family ofiih A — {w: p>0,57_ u? =1}. Linear combina-
q — -HZY =1 = 4y

convex combinations of base kernels and/arconstraint  jons with possibly negative mixture weights have also been
that have only a logarithmic dependencyjnOur learn-  ongjdered in the literature, e.gLanckriet et al, 2004,

ing bounds are based on a combinatorial analysis of thg;ith the additional requirement that the combined kernel
Rademacher complexity of the hypothesis set considerege pps.

; o) / (ogp)R?/p?
and have the formf(h) < R,(h) + O( m ) We bound, for different values af, includingg = 1 and

Our bound is simpler, contains no other extra logarithmic, _ 5 the empirical Rademacher complexiBys (H?) of
. . . ’ p
term, and itsy/log p dependency isight. Thus, this rep-  these families for an arbitrary sampseof sizem, which

resents a substantial improvement over the previous beg{mediately yields a generalization bound for learning ker
bounds for this problem. Our bound is also valid for a verype|s hased on these families of hypotheses.

large number of kernels, in particular fors>m, while the

previous bounds were not informative in that case. For a fixed sampl& = (x1,.. .,z ), the empirical Rade-
o macher complexity o is defined by
We note thaKoltchinskii & Yuan (2008 also presented a

bound with logarithmic dependence prin the context of o~ 1 ) -

the study of large ensembles of kernel machines. However, Rs(H) = m E {;22 Z Gih(xi)} ’

their analysis is specific to the family of kernel-based reg- =

ularization algorithms and requires the loss function to bevhere the expectation is taken over= (o1,...,0m,)"

strongly convex, which rules out for example the binarywhereo; € {—1,+1},i € [1,m], are independent uniform
random variables.
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For any kernel functionk, we denote byK
[K (z;,z;)] € R™*™ its kernel matrix associated to the
sampleS. Letwg => """, a;®x(x;) be the orthogonal
projection ofw on Hg = span(®x(x1),..., Pr(xm)).
Then,w can be written asv = wg+w*, withwg-wt =

0. Thus,|w|? = [ws||? + |[w]|]?, which, in view of
|w| < 1implies|ws||> < 1. Since|ws|?> = a'Ka,
this implies

a Ka < 1.

1)

Observe also that for all € S,
hiz) =w - ®k(x)=wg - @K(x):ZaiK(xi,x). (2)
=1
Conversely, any functiop_;" | «; K (z;, -) with o' Kax <

1is clearly an element off ).

Proposition 1. Letg, > 1 with l+% =1. For any sample

3. Rademacher complexity bound forH )

Our bounds on the empirical Rademacher complexity of
the familiesH; or H{ for g=2 or other values of relies

on the following result, which we prove using a combina-
torial argument (see appendix).

Lemma 1. LetK be the kernel matrix of a kernel function
K associated to a sampl€. Then, for any integer, the
following inequality holds:

E {(UTKU)T} < (7701" Tr[K])T,

o

23

whereny = 3.

This result can be viewed as a Khintchine-Kahane type in-
equality. In fact, it might be possible to benefit from the
best constants for the vectorial version of this inequadity
further improve the constant of the lemma. We will discuss
this connection and its benefits in a longer version of this
paper. Forr = 1, the result holds withy, replaced with

S of sizem, the empirical Rademacher complexity of the1 as seen in classical derivations for the estimation of the

hypothesis sel/;! can be expressed as

5 1
Rs(H) = —B[V]uo],]

withu, = (0 "Kyo,...,0 'K,o)T.

Proof. Fix a sampleS = (z1,...,z,,), and denote by
My ={pn>0:|pl, =1}and byAd = {a: a'Ka <
1}. Then, in view of () and @), the Rademacher complex-
ity ﬁS(Hg) can be expressed as follows:

~ 1 . r m
o) = 1 St
P i=1

1 _ m
sup U-a-K(x»,:v»)}
LpeMy,acA Z Y v

i,j=1

sup O'TKOé:| .

LpuEM A

Now, by the Cauchy-Schwarz inequality, the supremum

Supae 0 Ka is reached forK!'/2a collinear with
K!/2¢, which givessup,c 4 0 ' Ka = Vo TKo. Thus,

P 1
Rs(HI) = — sup Vo TKo
P moLuem
1
= —E[ sup \/,u-u[,]
moluemM,

By the definition of the dual NOMMBUpP e pq, M * Vo =
|t |, which givesiks (HY) = L Eo [/[[us,]. O

Rademacher complexity of linear classes.

Theorem 1. For any sampleS of sizem, the empirical
Rademacher complexity of the hypothesisﬂgtcan be
bounded as follows:

vreNr>1, S < Yol
m

23

22"

Proof. By Propositionl, Rs(H}) = L E, [v/[us][o)-
Since forany > 1, ||us |00 < ||ug ||, we can upper bound

the Rademacher complexity as follows:

whereu = (Tr[K4], ..., Tr[K,]) " andny =

IN

IN

_ } ” (Jensen’s inequalily

S

(ko]

Assume that > 1 is an integer, then, by Lemniafor any
k € [1,p], we have

T

[(JTK;QU)T} < (7701" Tr[Kk]) )

Using these inequalities gives

Fis(t1}) < L[ 3 (mr i) | = Ll

m
k=1

and concludes the proof.

E

o

O
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Theorem 2. Letp > 1 and assume thak;,(z, =) < R? for
all x€ X andk €1, p|. Then, for any sampl§ of sizem,
the Rademacher complexity of the hypothesisfq}etan
be bounded as follows:

noellog p| R?
T

Proof. Since Ky (z,z) < R? for all z € X andk € [1,p],
Tr[Ky] < mR? for all k € [1,p]. Thus, by Theoren,
for any integerr > 1, the Rademacher complexity can be
bounded as follows

rq 1

1 2r s 2

Fo(Hl) < L [p(no,,mRz) } _ | orpr B2
m m

p

Forp > 1, the function- ~— p'/7r reaches its minimum at
= [ ivesi 1 [log p] R2
ro = log p, which givesis(H,) < \/@ .

Note that more generally, without assumifg, (=, z) <
R? for all k£ and allz, the same proof yields the following
result:
noe[log pl|uf[o

- .

100
l [Srebro & Ben-David, 2006]
1
109 %

Bound

7| [Our bound, 2010]

0 5
m in Millions

Figure 1.Plots of the bound ofSrebro & Ben-David (2006
(dashed lines) and our new bounds (solid lines) as a function
the sample sizen for § = .01 andp/R = .2. For these values
andm < 15 x 10°, the bound of Srebro and Ben-David is always
above 1, it is of course converging for sufficiently lange The
plots forp = 10 andp = m*/? roughly coincide in the case of
the bound ofSrebro & Ben-David2006, which makes the first
one not visible.

If additionally, K, (z, x)
then, forp>1,

< R%*forall xe X andk €1, p),

log %
2m

R(h) < Ry(h) + 2%@ .

Remarkably, the bound of the theorem has a very mild de-
pendence op. The theorem can be used to derive generproof. With our definition of the Rademacher complexity,

alization bounds for learning kernels in classification, re
gression, and other tasks. We briefly illustrate its appli-
cation to binary classification where the labglsare in
{-1,+1}. Let R(h) denote the generalization error of
h e H;, that isR(h) =Pr[yh(x) < 0]. For a training sam-
pleS = ((z1,91),-- ., (Tm,ym)) and anyp > 0, define the
p-empirical margin Iossﬁp(h) as follows:

E HllIl

Note thatf%p(h) is always upper bounded by the fraction
of the training points with margin less than

1 m
) < EZ h(zs)<p-

The following gives a margin-based generalization boun
for the hypothesis sef ).

Corollary 1. Fix p>0. Then, for any integer> 1, for any
d >0, with probability at leasfl — ¢, for anyhc H!,

L= yih(e:)/el,)

~ 24/nor|ul|, log 5
h) < h .
R(h) < R,(h) + > +3 B
withu = (Tr[K4], ..., Tr[K,]) " andn = E

for anyo > 0, with probability at least — 4, the following
bound holds for any, € H1 (Koltchinskii & Panchenkp
2002 Bartlett & Mendelsonzooz

log %

R(h) < R,(h) + = ms( ) +3

2m
Plugging in the bound on the empirical Rademacher com-

plexity given by Theorem and Theoren2 yields the state-
ment of the corollary. O

The bound of the Corollary can be straightforwardly ex-
tended to hold uniformly over all choices pf using stan-
dard techniques introduced Hgoltchinskii & Panchenko
(2002, at the price of the additional ter gl°g37§4R/p) on
the right-hand side.

dThe corollary gives a generalization bound for learning ker

nels withH; thatis in

m

o( (log p) Rz/pz) _
In comparison, the best previous bound for learning kernels

with convex combinations given bgrebro & Ben-David
(2006 derived using the pseudo-dimension has a stronger
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Experimental Validation Experimental Validation

a margin bound wittp = 1 implies a standard generaliza-

" * . tion bound with the same complexity term. By the classi-
Y L S cal VC dimension lower bound®gvroye & Lugosi 1995
L R A Y Anthony & Bartlett 1999, that complexity term must be at
least inQ(/VCDim(J?)/m) =Q(y/logp/m). A related
o \_g — 1N simple example showing this lower bound was also sug-
200 400 > 600 800 200 400 > 600 800 gested to us by N Srebro
(a) L1 Bound (b)L2 Bound

We have also tested experimentally the behavior of the
Figure 2 Variation of the empirical test error aféi(h) as afunc-  test error as a function gf and compared it to that of
tion of the number of kernels, fak (%) given by (a) Corollaryl  the theoretical bound given by Corollaty by learning
for L, regularization; (b) Corollarg for Lo regularization. For  jith a large number of kernels € [200,800], a sample
these experiments = 36,000, p/ R=.2, andé=.01. size of m = 36,000, and a normalized margin ¢f/ R =

.2. These results are for rank-1 base kernels generated
dependency with respect tcand is more complex: from individual featu_res of the MNIST_dataset (http:/lyann
lecun.com/exdb/mnist/). The magnitude of each kernel

(\/ 2+ plog l%f;ngz +256%2 log £ log 128m R2 ) weight is chosen proportionally to the correlation of the

SR o’ corresponding feature with the training labels. The rasult
show that the behavior of the test error as a functiop of
matches the one predicted by our bound, see Figl@e

m

This bound is also not informative for > m. Figurel
compares the bound aR(h) — R,(h) obtained using this .
expression by Srebro and Ben-David with the new bound}- Rademacher complexity bound forf7
of Corollary 1, as a function of the sample size. The
comparison is made for different valuesygfa normalized
margin of p/R = .2 and the confidence parameter set to
d = .01. Plots for different values of/R are quite simi- _ )
lar. As shown by the figure, larger valuesjotan signif-  Theorem 3. Letq, r > 1 with 2+, =1 and assume thatis
icantly affect the bound of Srebro and Ben-David leading@n integer. Then, for any sampteof sizem, the empirical
to quasi-flat plots fop > m*/>. In comparison, the plots Rademacher complexity of the hypothesisEgtcan be
for our new bound show only a mild variation witheven ~ bounded as follows:

for relatively large values such as~ m. Note also that,

while the bound of Srebro and Ben-David does converge Rs(HY) < nor||ull-
and becomes informative, its values, evenjct 10, are b m

§t||| above 1 for fairly large values oh._ Th_e new bound, whereu = (Tr[K,], .., Tr[K,)) ™ andn, — 2.

in contrast, strongly encourages considering large nusnber 22

of base kernels in learning kernels. It was brought to our at- . ~

tention by an ICML reviewer that a bound similar to that of PT00f By Propositionl, Rs (1) = w Bo (Vo]
Theoren®, with somewhat less favorable constants and foith us = (0 'Kio,...,0 "K,o)". The rest of the
the expected value, was recently derivediakade et al. proof is identical to that of Theoreth using Jensen’s in-

(2010 using a strong-convexity/smoothness argument. ~ €quality and Lemma, which applies becauseis an inte-
ger, we obtain similarly

This section presents bounds on the Rademacher complex-
ity of the hypothesis set#/;! for various values of > 1,
includingg=2.

)

Lower bound The+/logp dependency of our generaliza- » )
tion bound with respect tpcannot be improved upon. This ?%s(HS) < 1 [Z (nor Tr[Kk])T} = 0
can be seen by arguments in connection with the VC di- mti—

mension lower bounds. Consider the case where the in-

put space ist={-1, +1}* and where the feature mapping |, particular, forg—r —
of each base kerndky, k €[1,p], is simply the canoni-

cal projectionx — +xj Or x — —uxy, Wherexy is the R /o T~

kth component ofx € X. Thus, H” then contains the Rs(Hy) < v2molallz

hypothesis set’? = {x — sxy: k € [1,p],s € {-1,+1}}

whose VC dimension is if)(logp). Forp = 1 and  Theorem 4. Letg,r > 1 with %4—% =1 and assume that
h e Jv, foranyxz; € X, y;h(z;) < pis equivalent to s an integer. Lep > 1 and assume thaky,(z, z) < R? for
yih(z;) <0. Thus, the empirical margin los,(h) coin-  all z € & andk € [1, p]. Then, for any samplé of sizem,
cides with the standard empirical erd(h) for e J? and  the Rademacher complexity of the hypothesisiggtan

2, the theorem implies

m
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be bounded as follows:

1
~ rpr R2
Re(HY) < || L fn .

Proof. SinceKy(z,z) < R? forall x € X andk € [1,p),
Tr[Ky] <mR? for all k € [1,p]. Thus, by Theorer3, the

Rademacher complexity can be bounded as follows ‘ \ T T
0 5 10 15

rq L 1
~ 1 2r r R2 m in Million
Rs(HT) < — [p (nonRQ) } =4/ 77707’}; .o Milions

Figure 3.Comparison of thel; regularization bound of Corol-
The bound of the theorem has only a mild dependencéary 1 and theL. regularization bound of Corollarg (dotted
(%/7) on the number of kernels. In particular, forqg = lines) as a function of the sample s'vzeforé:_.()l_ andp/R=.2.
r=2, under the assumptions of the theorem, Forp=20, the L; and L. bounds roughly coincide.

~ 2 R2 .
Rs(H) </ M, Lower bound Thep'/(?") dependency of the generaliza-
_ m tion bound of Corollary2 cannot be improved. In particu-
and the dependence isdn(p'/*). lar, thep'/* dependency is tight for the hypothesis 8£}.

This is clear since in particular when alkernel functions
are eqU?"ZZ:l pu Ay, = (> h=1 Mk)Kl < p'/"Ki. Hy
then coincides with the set of functions i each multi-
plied byp!/(7).

Proceeding as in the; case leads to the following margin
bound in binary classification.

Corollary 2. Letgq, r>1 with 4 +— =1and assume thatis
an integer. Fixp>0. Then, for any5> 0, with probability

at leastl —¢, foranyh e HY, .
5. Proof techniques

2 all OT”“ "” 34/ 1Og s Our proof techniques are somewhat general and apply sim-

ilarly to other problems. In particular, they can be used as
withu = (Tr[K4], ..., Tr[K, ]) andn, = 23 alternative methods to derive bounds on the Rademacher
complexity of linear functions classes, such as those given
by Kakade et al(2009, using strong convexity. In fact, in
some cases, they can lead to similar bounds but with tighter

R R2/ 2 log 2 constants. The following theoremiillustrates that in theeca
R(h) < R,(h)+ 2p2‘17\/ MOV 34/ % of linear functions constrained by the nofim||,.
" " Theorem 5. Letg, r > 1 with %4—% =1, r an even integer
In particular, forg=r =2, the generalization bound of the such thatr > 2. LetX = {z: ||z||, < X}, and letF

:U>

R(h) <

If additionally, K (x,z) < R*forall z€ X andke 1, 7],
then, forp>1,

corollary becomes be the class of linear functions over defined byF =
5 {x — w-x:|w|, < W}, then, for any sampl& =
= 1 [2noR?/p? log 5 (z1,...,2m,), the following bound holds for the empirical
< . ) ) m /s . .
Ri(h) < Ry(h) + 2p* m +3 2m Rademacher complexity of this class:
Figure 3 shows a comparison of thé, regularization Rg(F) < XW, /1"
bound of this corollary with thé.; regularization bound of 2m

Corollaryl. As can be seen from the plots, the two bounds
are very close for smaller values pf For larger values Clearly, this immediately yields the same bound on the
(p ~ m), the difference becomes significant. The boundRademacher complexitf,, (£) = ES[%S(}-)]' The

for L, regularization is converging for these values but at 820Und given byKakade et aI (2009[Section 3.1] in this
slower rate 0D (244 R/p ) case iR, (F) < XW /==L, Sincenor/2 <r—1, for an

mi/4 )" . . .
As with the L; bound we also tested experimentally the even integer > 2, our bound is always tighter.

behavior of the test error as a functionpand compared  proof. The proof is similar to and uses that of Theorém

it to that of the theoretical bound given by Coroll&py By the definition of the dual norms, the following holds:
learning with a large number of kernels. Again, our results }

show that the behavior of the test error as a functiop of @S(]:)_lE[ sup Z oW - x]—E ﬂ’ Z TiX;
matches the one predicted by our bound, see Fig{me me Ll sw i B
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A. Bound on Multinomial Coefficients

In the proof of Lemmad, we need to upper bound the ratio o
(%,2’“ 2tm)/(t17r/7t ) The following rough but straight-
forward mequallty is sufficient to derive a bound on the _
Rademacher complexity with somewhat less favorable con-

stants:

’
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(2r")! -

(2t1)! - (2tm)! — (t1)!- -
2r)" -l o

S'éﬁ?ff&;ji=(2r> (.0

2tm) =

To further improve this result,
Stirling’s approximation valid for alln > 1. n! =

\/27771(%) An with o0 +1 <A< 75— 12n

Lemma 2. Forall ' > 0 andtq,...,t,,, it holds that:

’

(2t1,.2.7j:2t7n) S ((1 + %)T/)T (tl,.’,.«.,tm)'

Proof. By Stirling’s formula,
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Similarly, for any¢; > 1, we can write

I O B
(2t;)! 2 \4t; T V24

Usingy ", ti = -, > ti = r', we obtain:
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In view of Eqn3 and4, the following inequality holds:
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Learning bounds for sup

the next lemma uses

We now derive an upper bound on the terms appearing in

the exponent. Using the inequalities imposedipnand
A2, and the fact that the sum q-fs isr’ leads to:

12t; + 1
Ay, — A CYTE
t; ti— 2t1— 12t 24t+1 Zl?t 24; + 1]
13
Z 1+12 ZE<E
24t; + 1 —t,>1 25 ~ 300

517 — 51 < 0. The inequality:'#/300 <
1+ 1/22 then yields the statement of the lemma. O
B. Proof of Lemma 1

Proof. Sincer is an integer, we can write:
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S14...+8m =27 i=1

Since E[o;] = 0 for all i and since the Rademacher
variables are independent, we can witgr;, ...o;,] =
Eloi,]---E[o;,] = 0 for any [ distinct variables

Tiys---,04. Thus,Eq [afl ---af’”} =0unless alls;s are

even, in which casg&, [afl . -afnm] =1. It follows that:
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7 21t 2 =21 i=1

By Lemma2, each multinomial coefﬁmer(t%
be bounded bynor)" (,, ", ), wheren =

) can
ﬁ. This gives

B0 Koy | < tor)” Y (70 ) TT Kl )®
t14...+tm=r =1
= (o) (K] = (or K] )
which is the statement of the lemma. O



