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Abstract

This paper presents several novel generalization
bounds for the problem of learning kernels based
on a combinatorial analysis of the Rademacher
complexity of the corresponding hypothesis sets.
Our bound for learning kernels with a convex
combination ofp base kernels usingL1 regular-
ization admits only a

√
log p dependency on the

number of kernels, which istight and consider-
ably more favorable than the previous best bound
given for the same problem. We also give a novel
bound for learning with a non-negative combina-
tion of p base kernels with anL2 regularization
whose dependency onp is alsotight and only in
p1/4. We present similar results forLq regular-
ization with other values ofq, and outline the rel-
evance of our proof techniques to the analysis of
the complexity of the class of linear functions.
Experiments with a large number of kernels fur-
ther validate the behavior of the generalization
error as a function ofp predicted by our bounds.

1. Introduction

Kernel methods are widely used in statistical learning
(Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini,
2004). Positive definite symmetric (PDS) kernels implic-
itly specify an inner product in a Hilbert space where large-
margin techniques are used for learning and estimation.
They can be combined with algorithms such as support vec-
tor machines (SVMs) (Boser et al., 1992; Cortes & Vapnik,
1995; Vapnik, 1998) or other kernel-based algorithms to
form powerful learning techniques.
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But the choice of the kernel, which is critical to the success
of these algorithms, is typically left to the user. Rather than
requesting the user to commit to a specific kernel, which
may not be optimal, especially if the user’s prior knowledge
about the task is poor, learning kernel methods require the
user only to supply a family of kernels. The learning algo-
rithm then selects both the specific kernel out of that family,
and the hypothesis defined based on that kernel.

There is a large body of literature dealing with vari-
ous aspects of the problem of learning kernels, includ-
ing theoretical questions, optimization problems related
to this problem, and experimental results (Lanckriet et al.,
2004; Argyriou et al., 2005; 2006; Srebro & Ben-David,
2006; Lewis et al., 2006; Zien & Ong, 2007; Bach, 2008;
Cortes et al., 2009a; Ying & Campbell, 2009). Some of
this previous work considers families of Gaussian ker-
nels (Micchelli & Pontil, 2005) or hyperkernels (Ong et al.,
2005). Non-linear combinations of kernels have also
been recently considered byBach(2008) andCortes et al.
(2009b). But, the most common family of kernels ex-
amined is that of non-negative or convex combinations of
some fixed kernels constrained by a trace condition, which
can be viewed as anL1 regularization (Lanckriet et al.,
2004), or by anL2 regularization (Cortes et al., 2009a).

This paper presents several novel generalization bounds
for the problem of learning kernels with the family
of non-negative combinations of base kernels with
an L1 or L2 constraint, orLq constraints with some
other values ofq. One of the first learning bounds
given by Lanckriet et al. (2004) for the family of
convex combinations ofp base kernels with anL1

constraint has the following form:R(h) ≤ R̂ρ(h) +

O
(

1√
m

√
maxp

k=1 Tr(Kk)maxp
i=1(‖Kk‖/ Tr(Kk))/ρ2

)
,

where R(h) is the generalization error of a hypothesis
h, R̂ρ(h) is the fraction of training points with margin
less thanρ, and Kk is the kernel matrix associated
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to the kth base kernel. This bound and a similar one
by Bousquet & Herrmann(2002) were both shown by
Srebro & Ben-David(2006) to be always larger than one.
Another bound byLanckriet et al.(2004) for the family
of linear or non-convex combinations of kernels was also
shown, by the same authors, to be always larger than one.

But Lanckriet et al.(2004) also presented a multiplica-
tive bound for convex combinations of base kernels with
an L1 constraint that is of the formR(h) ≤ R̂ρ(h) +

O
(√

p/ρ2

m

)
. This bound converges and can perhaps be

viewed as the first informative generalization bound for
this family of kernels. However, the dependence of this
bound on the number of kernelsp is multiplicative which
therefore does not encourage the use of too many base ker-
nels. Srebro & Ben-David(2006) presented a generaliza-
tion bound based on the pseudo-dimension of the family of
kernels that significantly improved on this bound. Their

bound has the formR(h) ≤ R̂ρ(h) + Õ
(√

p+R2/ρ2

m

)
,

where the notatioñO(·) hides logarithmic terms and where
R2 is an upper bound onKk(x, x) for all points x and
base kernelsKk, k ∈ [1, p]. Thus, disregarding logarith-
mic terms, their bound is only additive inp. Their analysis
also applies to other families of kernels.Ying & Campbell
(2009) also gave generalization bounds for learning ker-
nels based on the notion of Rademacher chaos complex-
ity and the pseudo-dimension of the family of kernels
used. For a pseudo-dimension ofp as in the case of a
convex combination ofp base kernels, their bound is in
O(
√

p (R2/ρ2)(log(m)/m)) and is thus multiplicative in
p. It seems to be weaker than the bound ofLanckriet et al.
(2004) and that ofSrebro & Ben-David(2006) for such
kernel families.

We present new generalization bounds for the family of
convex combinations of base kernels and anL1 constraint
that have only a logarithmic dependency onp. Our learn-
ing bounds are based on a combinatorial analysis of the
Rademacher complexity of the hypothesis set considered

and have the form:R(h) ≤ R̂ρ(h) + O
(√

(log p)R2/ρ2

m

)
.

Our bound is simpler, contains no other extra logarithmic
term, and its

√
log p dependency istight. Thus, this rep-

resents a substantial improvement over the previous best
bounds for this problem. Our bound is also valid for a very
large number of kernels, in particular forp≫m, while the
previous bounds were not informative in that case.

We note thatKoltchinskii & Yuan (2008) also presented a
bound with logarithmic dependence onp in the context of
the study of large ensembles of kernel machines. However,
their analysis is specific to the family of kernel-based reg-
ularization algorithms and requires the loss function to be
strongly convex, which rules out for example the binary

classification loss function. Also, both the statement of the
result and the proof seem to be considerably more compli-
cated than ours.

We also give a novel bound for learning with a non-negative
combination ofp base kernels with anL2 regularization
whose dependency onp is alsotight and only inp1/4. We
present similar results forLq regularization with other val-
ues ofq.

The next section (Section2) defines the family of ker-
nels and hypothesis sets we examine. Section3 presents
a bound on the Rademacher complexity of the class of con-
vex combinations of base kernels with anL1 constraint and
a generalization bound for binary classification directly de-
rived from that result. Similarly, Section4 presents first a
bound on the Rademacher complexity, then a generaliza-
tion bound forLq regularization for some other values of
q > 1. We make a number of comparisons with existing
bounds and conclude by discussing the relevance of our
proof techniques to the analysis of the complexity of the
class of linear functions (Section5).

2. Preliminaries

Let X denote the input space. For any kernel functionK,
we denote byΦK : x 7→ HK the feature mapping fromX
to the reproducing kernel Hilbert spaceHK induced byK.
Most learning kernel algorithms are based on a hypothesis
Hq

p set derived from a non-negative combinations of a fixed
set ofp≥ 1 kernelsK1, . . . , Kp with the mixture weights
obeying anLq constraint:

Hq
p =
{
x 7→w ·ΦK(x) : K =

p∑

k=1

µkKk, µ∈∆q , ‖w‖≤1
}
,

with ∆q = {µ : µ ≥ 0,
∑p

k=1 µq
k = 1}. Linear combina-

tions with possibly negative mixture weights have also been
considered in the literature, e.g., (Lanckriet et al., 2004),
with the additional requirement that the combined kernel
be PDS.

We bound, for different values ofq, includingq = 1 and
q = 2, the empirical Rademacher complexitŷRS(Hq

p) of
these families for an arbitrary sampleS of sizem, which
immediately yields a generalization bound for learning ker-
nels based on these families of hypotheses.

For a fixed sampleS = (x1, . . . , xm), the empirical Rade-
macher complexity ofH is defined by

R̂S(H) =
1

m
E
σ

[
sup
h∈H

m∑

i=1

σih(xi)
]
,

where the expectation is taken overσ = (σ1, . . . , σm)⊤

whereσi ∈{−1, +1}, i ∈ [1, m], are independent uniform
random variables.
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For any kernel functionK, we denote byK =
[K(xi, xj)] ∈ R

m×m its kernel matrix associated to the
sampleS. Let wS =

∑m
i=1 αiΦK(xi) be the orthogonal

projection ofw on HS = span(ΦK(x1), . . . ,ΦK(xm)).
Then,w can be written asw = wS +w

⊥, with wS ·w⊥ =
0. Thus,‖w‖2 = ‖wS‖2 + ‖w⊥‖2, which, in view of
‖w‖ ≤ 1 implies‖wS‖2 ≤ 1. Since‖wS‖2 = α

⊤
Kα,

this implies

α
⊤
Kα ≤ 1. (1)

Observe also that for allx ∈ S,

h(x) = w ·ΦK(x)=wS ·ΦK(x)=

m∑

i=1

αiK(xi, x). (2)

Conversely, any function
∑m

i=1 αiK(xi, ·) with α
⊤
Kα ≤

1 is clearly an element ofH1
p .

Proposition 1. Let q, r≥1 with 1
q + 1

r =1. For any sample
S of sizem, the empirical Rademacher complexity of the
hypothesis setHq

p can be expressed as

R̂S(Hq
p ) =

1

m
E
σ

[√
‖uσ‖r

]

with uσ = (σ⊤
K1σ, . . . , σ⊤

Kpσ)⊤.

Proof. Fix a sampleS = (x1, . . . , xm), and denote by
Mq = {µ ≥ 0: ‖µ‖q = 1} and byA = {α : α

⊤
Kα ≤

1}. Then, in view of (1) and (2), the Rademacher complex-
ity R̂S(Hq

p ) can be expressed as follows:

R̂S(Hq
p) =

1

m
E
σ

[
sup

h∈Hq
p

m∑

i=1

σih(xi)
]

=
1

m
E
σ

[
sup

µ∈Mq,α∈A

m∑

i,j=1

σiαjK(xi, xj)
]

=
1

m
E
σ

[
sup

µ∈Mq,α∈A
σ

⊤
Kα

]
.

Now, by the Cauchy-Schwarz inequality, the supremum
sup

α∈A σ
⊤
Kα is reached forK1/2

α collinear with
K

1/2
σ, which givessup

α∈A σ
⊤
Kα =

√
σ⊤Kσ. Thus,

R̂S(Hq
p ) =

1

m
E
σ

[
sup

µ∈Mq

√
σ⊤Kσ

]

=
1

m
E
σ

[
sup

µ∈Mq

√
µ · uσ

]
.

By the definition of the dual norm,sup
µ∈Mq

µ · uσ =

‖uσ‖r, which givesR̂S(Hq
p) = 1

m Eσ

[√
‖uσ‖r

]
.

3. Rademacher complexity bound forH1

p

Our bounds on the empirical Rademacher complexity of
the familiesH1

p or Hq
p for q = 2 or other values ofq relies

on the following result, which we prove using a combina-
torial argument (see appendix).

Lemma 1. LetK be the kernel matrix of a kernel function
K associated to a sampleS. Then, for any integerr, the
following inequality holds:

E
σ

[
(σ⊤

Kσ)r
]
≤
(
η0r Tr[K]

)r

,

whereη0 = 23
22 .

This result can be viewed as a Khintchine-Kahane type in-
equality. In fact, it might be possible to benefit from the
best constants for the vectorial version of this inequalityto
further improve the constant of the lemma. We will discuss
this connection and its benefits in a longer version of this
paper. Forr = 1, the result holds withη0 replaced with
1 as seen in classical derivations for the estimation of the
Rademacher complexity of linear classes.

Theorem 1. For any sampleS of sizem, the empirical
Rademacher complexity of the hypothesis setH1

p can be
bounded as follows:

∀r ∈ N, r ≥ 1, R̂S(H1
p ) ≤

√
η0r‖u‖r

m
,

whereu = (Tr[K1], . . . , Tr[Kp])
⊤ andη0 = 23

22 .

Proof. By Proposition1, R̂S(H1
p ) = 1

m Eσ

[√
‖uσ‖∞

]
.

Since for anyr≥1, ‖uσ‖∞ ≤ ‖uσ‖r, we can upper bound
the Rademacher complexity as follows:

R̂S(H1
p ) ≤ 1

m
E
σ

[√
‖uσ‖r

]

=
1

m
E
σ

[[ p∑

k=1

(σ⊤
Kkσ)r

] 1

2r
]

≤ 1

m

[
E
σ

[ p∑

k=1

(σ⊤
Kkσ)r

]] 1

2r

(Jensen’s inequality)

=
1

m

[ p∑

k=1

E
σ

[
(σ⊤

Kkσ)r
]] 1

2r

.

Assume thatr≥1 is an integer, then, by Lemma1, for any
k ∈ [1, p], we have

E
σ

[
(σ⊤

Kkσ)r
]
≤
(
η0r Tr[Kk]

)r

.

Using these inequalities gives

R̂S(H1
p ) ≤ 1

m

[ p∑

k=1

(
η0r Tr[Kk]

)r] 1

2r

=

√
η0r‖u‖r

m
,

and concludes the proof.
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Theorem 2. Let p>1 and assume thatKk(x, x)≤R2 for
all x∈X andk∈ [1, p]. Then, for any sampleS of sizem,
the Rademacher complexity of the hypothesis setH1

p can
be bounded as follows:

R̂S(H1
p ) ≤

√
η0e⌈log p⌉R2

m
.

Proof. SinceKk(x, x) ≤ R2 for all x ∈ X andk ∈ [1, p],
Tr[Kk] ≤ mR2 for all k ∈ [1, p]. Thus, by Theorem1,
for any integerr > 1, the Rademacher complexity can be
bounded as follows

R̂S(H1
p ) ≤ 1

m

[
p

(
η0rmR2

)r] 1

2r

=

√
η0rp

1

r R2

m
.

Forp > 1, the functionr 7→ p1/rr reaches its minimum at

r0 = log p, which givesR̂S(H1
p ) ≤

√
η0e⌈log p⌉R2

m .

Note that more generally, without assumingKk(x, x) ≤
R2 for all k and allx, the same proof yields the following
result:

R̂S(H1
p ) ≤

√
η0e⌈log p⌉‖u‖∞

m
.

Remarkably, the bound of the theorem has a very mild de-
pendence onp. The theorem can be used to derive gener-
alization bounds for learning kernels in classification, re-
gression, and other tasks. We briefly illustrate its appli-
cation to binary classification where the labelsy are in
{−1, +1}. Let R(h) denote the generalization error of
h ∈ H1

p , that isR(h)=Pr[yh(x)<0]. For a training sam-
pleS = ((x1, y1), . . . , (xm, ym)) and anyρ>0, define the
ρ-empirical margin losŝRρ(h) as follows:

R̂ρ(h) =
1

m

m∑

i=1

min
(
1, [1 − yih(xi)/ρ]+

)
.

Note thatR̂ρ(h) is always upper bounded by the fraction
of the training points with margin less thanρ:

R̂ρ(h) ≤ 1

m

m∑

i=1

1yih(xi)<ρ.

The following gives a margin-based generalization bound
for the hypothesis setH1

p .

Corollary 1. Fix ρ>0. Then, for any integerr>1, for any
δ>0, with probability at least1−δ, for anyh∈H1

p ,

R(h) ≤ R̂ρ(h) +
2
√

η0r‖u‖r

mρ
+ 3

√
log 2

δ

2m
.

with u = (Tr[K1], . . . , Tr[Kp])
⊤ andη0 = 23

22 .
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[Srebro & Ben−David, 2006]
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Figure 1.Plots of the bound ofSrebro & Ben-David (2006)
(dashed lines) and our new bounds (solid lines) as a functionof
the sample sizem for δ = .01 andρ/R = .2. For these values
andm ≤ 15×106, the bound of Srebro and Ben-David is always
above 1, it is of course converging for sufficiently largem. The
plots forp = 10 andp = m1/3 roughly coincide in the case of
the bound ofSrebro & Ben-David(2006), which makes the first
one not visible.

If additionally,Kk(x, x) ≤ R2 for all x∈X andk∈ [1, p],
then, forp>1,

R(h) ≤ R̂ρ(h) + 2

√
η0e⌈log p⌉R2/ρ2

m
+ 3

√
log 2

δ

2m
.

Proof. With our definition of the Rademacher complexity,
for anyδ > 0, with probability at least1− δ, the following
bound holds for anyh ∈ H1

p (Koltchinskii & Panchenko,
2002; Bartlett & Mendelson, 2002):

R(h) ≤ R̂ρ(h) +
2

ρ
R̂S(H1

p ) + 3

√
log 2

δ

2m
.

Plugging in the bound on the empirical Rademacher com-
plexity given by Theorem1 and Theorem2 yields the state-
ment of the corollary.

The bound of the Corollary can be straightforwardly ex-
tended to hold uniformly over all choices ofρ, using stan-
dard techniques introduced byKoltchinskii & Panchenko
(2002), at the price of the additional termlog log

2
(4R/ρ)

m on
the right-hand side.

The corollary gives a generalization bound for learning ker-
nels withH1

p that is in

O

(√
(log p) R2/ρ2

m

)
.

In comparison, the best previous bound for learning kernels
with convex combinations given bySrebro & Ben-David
(2006) derived using the pseudo-dimension has a stronger
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Figure 2.Variation of the empirical test error andR(h) as a func-
tion of the number of kernels, forR(h) given by (a) Corollary1
for L1 regularization; (b) Corollary2 for L2 regularization. For
these experiments,m=36,000, ρ/R= .2, andδ= .01.

dependency with respect top and is more complex:

O

(√

8
2+p log 128em3R2

ρ2p +256R2

ρ2 log ρem
8R log 128mR2

ρ2

m

)
.

This bound is also not informative forp > m. Figure1
compares the bound onR(h)−R̂ρ(h) obtained using this
expression by Srebro and Ben-David with the new bound
of Corollary 1, as a function of the sample sizem. The
comparison is made for different values ofp, a normalized
margin ofρ/R = .2 and the confidence parameter set to
δ = .01. Plots for different values ofρ/R are quite simi-
lar. As shown by the figure, larger values ofp can signif-
icantly affect the bound of Srebro and Ben-David leading
to quasi-flat plots forp > m4/5. In comparison, the plots
for our new bound show only a mild variation withp even
for relatively large values such asp ∼ m. Note also that,
while the bound of Srebro and Ben-David does converge
and becomes informative, its values, even forp = 10, are
still above 1 for fairly large values ofm. The new bound,
in contrast, strongly encourages considering large numbers
of base kernels in learning kernels. It was brought to our at-
tention by an ICML reviewer that a bound similar to that of
Theorem2, with somewhat less favorable constants and for
the expected value, was recently derived byKakade et al.
(2010) using a strong-convexity/smoothness argument.

Lower bound The
√

log p dependency of our generaliza-
tion bound with respect top cannot be improved upon. This
can be seen by arguments in connection with the VC di-
mension lower bounds. Consider the case where the in-
put space isX={-1, +1}p and where the feature mapping
of each base kernelKk, k ∈ [1, p], is simply the canoni-
cal projectionx 7→ +xk or x 7→ −xk, wherexk is the
kth component ofx ∈ X . Thus, Hp

1 then contains the
hypothesis setJp = {x 7→ sxk : k ∈ [1, p], s ∈ {-1, +1}}
whose VC dimension is inΩ(log p). For ρ = 1 and
h ∈ Jp, for any xi ∈ X , yih(xi) < ρ is equivalent to
yih(xi) < 0. Thus, the empirical margin losŝRρ(h) coin-
cides with the standard empirical errorR̂(h) for h∈Jp and

a margin bound withρ = 1 implies a standard generaliza-
tion bound with the same complexity term. By the classi-
cal VC dimension lower bounds (Devroye & Lugosi, 1995;
Anthony & Bartlett, 1999), that complexity term must be at
least inΩ

(√
VCDim(Jp)/m

)
=Ω(

√
log p/m). A related

simple example showing this lower bound was also sug-
gested to us by N. Srebro.

We have also tested experimentally the behavior of the
test error as a function ofp and compared it to that of
the theoretical bound given by Corollary1 by learning
with a large number of kernelsp ∈ [200, 800], a sample
size ofm = 36,000, and a normalized margin ofρ/R =
.2. These results are for rank-1 base kernels generated
from individual features of the MNIST dataset (http://yann.
lecun.com/exdb/mnist/). The magnitude of each kernel
weight is chosen proportionally to the correlation of the
corresponding feature with the training labels. The results
show that the behavior of the test error as a function ofp
matches the one predicted by our bound, see Figure2(a).

4. Rademacher complexity bound forHq

p

This section presents bounds on the Rademacher complex-
ity of the hypothesis setsHq

p for various values ofq > 1,
includingq=2.

Theorem 3. Letq, r≥1 with 1
q+

1
r =1 and assume thatr is

an integer. Then, for any sampleS of sizem, the empirical
Rademacher complexity of the hypothesis setHq

p can be
bounded as follows:

R̂S(Hq
p ) ≤

√
η0r‖u‖r

m
,

whereu = (Tr[K1], . . . , Tr[Kp])
⊤ andη0 = 23

22 .

Proof. By Proposition1, R̂S(Hq
p ) = 1

m Eσ

[√
‖uσ‖r

]
.

with uσ = (σ⊤
K1σ, . . . , σ⊤

Kpσ)⊤. The rest of the
proof is identical to that of Theorem1: using Jensen’s in-
equality and Lemma1, which applies becauser is an inte-
ger, we obtain similarly

R̂S(Hq
p) ≤ 1

m

[ p∑

k=1

(
η0r Tr[Kk]

)r] 1

2r

.

In particular, forq=r=2, the theorem implies

R̂S(H2
p ) ≤

√
2η0‖u‖2

m
.

Theorem 4. Let q, r≥1 with 1
q + 1

r =1 and assume thatr

is an integer. Letp>1 and assume thatKk(x, x)≤R2 for
all x∈X andk∈ [1, p]. Then, for any sampleS of sizem,
the Rademacher complexity of the hypothesis setHq

p can
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be bounded as follows:

R̂S(Hq
p ) ≤

√
η0rp

1

r R2

m
.

Proof. SinceKk(x, x) ≤ R2 for all x ∈ X andk ∈ [1, p],
Tr[Kk]≤mR2 for all k ∈ [1, p]. Thus, by Theorem3, the
Rademacher complexity can be bounded as follows

R̂S(Hq
p) ≤ 1

m

[
p

(
η0rmR2

)r] 1

2r

=

√
η0rp

1

r R2

m
.

The bound of the theorem has only a mild dependence
( 2r
√·) on the number of kernelsp. In particular, forq =

r=2, under the assumptions of the theorem,

R̂S(H2
p ) ≤

√
2η0

√
pR2

m
,

and the dependence is inO(p1/4).

Proceeding as in theL1 case leads to the following margin
bound in binary classification.

Corollary 2. Letq, r≥1 with 1
q+

1
r =1 and assume thatr is

an integer. Fixρ>0. Then, for anyδ >0, with probability
at least1−δ, for anyh∈Hq

p ,

R(h) ≤ R̂ρ(h) +
2
√

η0r‖u‖r

mρ
+ 3

√
log 2

δ

2m
.

with u = (Tr[K1], . . . , Tr[Kp])
⊤ andη0 = 23

22 .

If additionally,Kk(x, x) ≤ R2 for all x∈X andk∈ [1, p],
then, forp>1,

R(h) ≤ R̂ρ(h) + 2p
1

2r

√
η0rR2/ρ2

m
+ 3

√
log 2

δ

2m
.

In particular, forq = r=2, the generalization bound of the
corollary becomes

R(h) ≤ R̂ρ(h) + 2p
1

4

√
2η0R2/ρ2

m
+ 3

√
log 2

δ

2m
.

Figure 3 shows a comparison of theL2 regularization
bound of this corollary with theL1 regularization bound of
Corollary1. As can be seen from the plots, the two bounds
are very close for smaller values ofp. For larger values
(p ∼ m), the difference becomes significant. The bound
for L2 regularization is converging for these values but at a
slower rate ofO

( R/ρ
m1/4

)
.

As with theL1 bound we also tested experimentally the
behavior of the test error as a function ofp and compared
it to that of the theoretical bound given by Corollary2 by
learning with a large number of kernels. Again, our results
show that the behavior of the test error as a function ofp
matches the one predicted by our bound, see Figure2(b).
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Figure 3.Comparison of theL1 regularization bound of Corol-
lary 1 and theL2 regularization bound of Corollary2 (dotted
lines) as a function of the sample sizem for δ= .01 andρ/R= .2.
Forp=20, theL1 andL2 bounds roughly coincide.

Lower bound Thep1/(2r) dependency of the generaliza-
tion bound of Corollary2 cannot be improved. In particu-
lar, thep1/4 dependency is tight for the hypothesis setH2

p .
This is clear since in particular when allp kernel functions
are equal,

∑p
k=1 µkKk = (

∑p
k=1 µk)K1 ≤ p1/rK1. Hq

p

then coincides with the set of functions inHq
1 each multi-

plied byp1/(2r).

5. Proof techniques

Our proof techniques are somewhat general and apply sim-
ilarly to other problems. In particular, they can be used as
alternative methods to derive bounds on the Rademacher
complexity of linear functions classes, such as those given
by Kakade et al.(2009), using strong convexity. In fact, in
some cases, they can lead to similar bounds but with tighter
constants. The following theorem illustrates that in the case
of linear functions constrained by the norm‖ · ‖q.

Theorem 5. Let q, r≥ 1 with 1
q + 1

r =1, r an even integer
such thatr ≥ 2. Let X = {x : ‖x‖r ≤ X}, and letF
be the class of linear functions overX defined byF =
{x 7→ w · x : ‖w‖q ≤ W}, then, for any sampleS =
(x1, . . . , xm), the following bound holds for the empirical
Rademacher complexity of this class:

R̂S(F) ≤ XW

√
η0r

2m
.

Clearly, this immediately yields the same bound on the
Rademacher complexityRm(F) = ES [R̂S(F)]. The
bound given byKakade et al.(2009)[Section 3.1] in this

case isRm(F)≤XW
√

r−1
m . Sinceη0r/2≤ r−1, for an

even integerr>2, our bound is always tighter.

Proof. The proof is similar to and uses that of Theorem1.
By the definition of the dual norms, the following holds:

R̂S(F)=
1

m
E
σ

[
sup

‖w‖q≤W

m∑

i=1

σiw ·xi

]
=

W

m
E
σ

[∥∥∥
m∑

i=1

σixi

∥∥∥
r

]
.
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By Jensen’s inequality,

E
σ

∥∥∥
m∑

i=1

σixi

∥∥∥
r
≤
[
E
σ

∥∥∥
m∑

i=1

σixi

∥∥∥
r

r

] 1

r

=
[
E
σ

N∑

j=1

[ m∑

i=1

σixij

]r] 1

r

,

where we denote byN the dimension of the space and by
xij thejth coordinate ofxi. Now, we can bound the term

Eσ

[[∑m
i=1 σixij

]r]
using Lemma1 and obtain:

E
σ

[[ m∑

i=1

σixij

]r]
=E

σ

[[ m∑

i,l=1

σiσlxijxlj

] r
2

]
≤
[η0r

2

m∑

i=1

x2
ij

]r
2

.

Thus,

R̂S(F) ≤ W

m

(η0r

2

)1/2
[ N∑

j=1

( m∑

i=1

x2
ij

)r/2
] 1

r

= W

√
η0r

2m

[ N∑

j=1

( 1

m

m∑

i=1

x2
ij

)r/2
] 1

r

.

Sincer ≥ 2, by Jensen’s inequality,
(

1
m

∑m
i=1 x2

ij

)r/2

≤
1
m

∑m
i=1 xr

ij . Thus,

R̂S(F) ≤ W

√
η0r

2m

[ N∑

j=1

1

m

m∑

i=1

xr
ij

] 1

r

= W

√
η0r

2m

[
1

m

m∑

i=1

‖xi‖r
r

] 1

r

≤ W

√
η0r

2m
X.

6. Conclusion

We presented several new generalization bounds for the
problem of learning kernels with non-negative combina-
tions of base kernels and outlined the relevance of our proof
techniques to the analysis of the complexity of the class of
linear functions. Our bounds are simpler and significantly
improve over previous bounds. Their behavior matches
empirical observations with a large number of base ker-
nels. Their very mild dependency on the number of kernels
suggests the use of a large number of kernels for this prob-
lem. Recent experiments byCortes et al.(2009a; 2010) in
regression using a large number of kernels seems to corrob-
orate this idea. Much needs to be done however to combine
these theoretical findings with the somewhat disappointing
performance observed in practice in most learning kernel
experiments.
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A. Bound on Multinomial Coefficients

In the proof of Lemma1, we need to upper bound the ratio(
2r′

2t1,...,2tm

)
/
(

r′

t1,...,tm

)
. The following rough but straight-

forward inequality is sufficient to derive a bound on the
Rademacher complexity with somewhat less favorable con-
stants:

(
2r′

2t1,...,2tm

)
=

(2r′)!

(2t1)! · · · (2tm)!
≤ (2r′)!

(t1)! · · · (tm)!

≤ (2r′)r′ · r′!
(t1)! · · · (tm)!

= (2r′)r′( r′

t1,...,tm

)
.

To further improve this result, the next lemma uses
Stirling’s approximation valid for alln ≥ 1: n! =√

2πn
(

n
e

)n

eλn , with 1
12n+1 <λn < 1

12n .

Lemma 2. For all r′ > 0 andt1, . . . , tm, it holds that:

(
2r′

2t1,...,2tm

)
≤
(
(1 + 1

22 )r′
)r′(

r′

t1,...,tm

)
.

Proof. By Stirling’s formula,

(2r′)!

r′!
=

√
2
(2r′

e

)2r′(r′

e

)−r′

eλ
2r′−λr′ (3)

=
√

2 22r′
(r′

e

)r′

eλ
2r′−λr′ =

√
2
(4r′

e

)r′

eλ
2r′−λr′ .

Similarly, for anyti ≥ 1, we can write

ti!

(2ti)!
=

1√
2

( e

4ti

)ti

eλti
−λ2ti ≤ 1√

2

(e

4

)ti

eλti
−λ2ti .

Using
∑m

i=1 ti =
∑

ti≥1 ti = r′, we obtain:

∏

ti≥1

ti!

(2ti)!
≤ 1√

2

(e

4

)r′

e
P

ti≥1
(λti

−λ2ti
). (4)

In view of Eqn3 and4, the following inequality holds:

(
2r′

2t1,...,2tm

)
/
(

r′

t1,...,tm

)
≤ (r′)r′

eλ
2r′−λr′+

P

ti≥1
(λti

−λ2ti
).

We now derive an upper bound on the terms appearing in
the exponent. Using the inequalities imposed onλti and
λ2ti and the fact that the sum oftis isr′ leads to:
∑

ti≥1

λti−λ2ti ≤
∑

ti≥1

1

12ti
− 1

24ti + 1
=
∑

ti≥1

12ti + 1

12ti[24ti + 1]

≤
∑

ti≥1

1 + 1
12

24ti + 1
≤
∑

ti≥1

13
12

25
≤ 13r′

300
,

andλ2r′−λr′ ≤ 1
24r′ − 1

12r′+1 ≤0. The inequalitye13/300 <
1 + 1/22 then yields the statement of the lemma.

B. Proof of Lemma 1

Proof. Sincer is an integer, we can write:

E
σ

[
(σ⊤

Kσ)r
]

= E
σ

[( m∑

i,j=1

σiσjKk(xi, xj)
)r]

=
∑

1≤i1,...,ir≤m
1≤j1,...,jr≤m

E
σ

[
r∏

s=1

σisσjs

]
r∏

s=1

Kk(xis , xjs)

≤
∑

1≤i1,...,ir≤m
1≤j1,...,jr≤m

∣∣∣∣∣Eσ

[
r∏

s=1

σisσjs

]∣∣∣∣∣

r∏

s=1

|Kk(xis , xjs)|

≤
∑

1≤i1,...,ir≤m
1≤j1,...,jr≤m

∣∣∣∣∣Eσ

[
r∏

s=1

σisσjs

]∣∣∣∣∣

r∏

s=1

√
Kk(xis , xis)Kk(xjs , xjs) (Cauchy-Schwarz)

=
∑

s1+...+sm=2r

(
2r

s1,...,sm

)∣∣E
σ

[σs1

1 · · ·σsm
m ]
∣∣

m∏

i=1

√
Kk(xi, xi)si .

Since E[σi] = 0 for all i and since the Rademacher
variables are independent, we can writeE[σi1 . . . σil

] =
E[σi1 ] · · ·E[σil

] = 0 for any l distinct variables

σi1 , . . . , σil
. Thus,Eσ

[
σs1

1 · · ·σsm
1

]
=0 unless allsis are

even, in which caseEσ

[
σs1

1 · · ·σsm
m

]
=1. It follows that:

E
σ

[
(σ⊤

Kσ)r
]
≤

∑

2t1+...+2tm=2r

(
2r

2t1,...,2tm

) m∏

i=1

Kk(xi, xi)
ti .

By Lemma2, each multinomial coefficient
(

2r
2t1,...,2tm

)
can

be bounded by(η0r)
r
(

r
t1,...,tm

)
, whereη0 = 23

22 . This gives

E
σ

[
(σ⊤

Kσ)r
]
≤ (η0r)

r
∑

t1+...+tm=r

(
r

t1,...,tm

) m∏

i=1

Kk(xi, xi)
ti

= (η0r)
r(Tr[K])r =

(
η0r Tr[K]

)r

,

which is the statement of the lemma.


