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Abstract

The importance of bringing causality into
play when designing feature selection meth-
ods is more and more acknowledged in the
machine learning community. This paper
proposes a filter approach based on infor-
mation theory which aims to prioritise di-
rect causal relationships in feature selection
problems where the ratio between the num-
ber of features and the number of samples
is high. This approach is based on the no-
tion of interaction which is shown to be
informative about the relevance of an in-
put subset as well as its causal relationship
with the target. The resulting filter, called
mIMR (min-Interaction Max-Relevance), is
compared with state-of-the-art approaches.
Classification results on 25 real microar-
ray datasets show that the incorporation of
causal aspects in the feature assessment is
beneficial both for the resulting accuracy and
stability. A toy example of causal discovery
shows the effectiveness of the filter for iden-
tifying direct causal relationships.

1. Introduction

Feature selection is the domain of machine learning
which studies data-driven methods to select, among
a set of input variables, the ones that will lead to
the most accurate predictive model (Guyon et al.,
2006). Causal inference is the domain of ar-
tificial intelligence which aims to uncover causal
relationships between variables from observational
data (Spirtes et al., 1993). The importance of bring-
ing causality into play when designing feature selec-
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tion methods has been exhaustively discussed in the
seminal paper (Guyon et al., 2007). According to the
authors, the benefits of incorporating causal discovery
in feature selection include understanding more finely
the data structure and making prediction possible un-
der manipulations and some distribution changes.

How to incorporate causal discovery issues in filter
problems where the ratio between the number of fea-
tures and the number of samples is high is still an
open issue. This is typically relevant in microarray
classification tasks where the goal is, for example, to
distinguish between tumor classes or predict the effects
of medical treatments on the basis of gene expression
profiles (Xing et al., 2001). Here, the number of input
variables, represented by the number of gene probes,
is huge (around several thousands) while the number
of samples, represented by the clinical trials, is very
limited (a few tens). In this context, the inference
of causal relationships between variables plays a ma-
jor role since more and more biologists and medical
doctors expect from data analysis not only accurate
prediction models (e.g. for prognostic purposes) but
also insights about causes of diseases (e.g. leukemia or
diabete) and appropriate therapeutic targets.

The role of information-theoretic filters in feature se-
lection has been largely discussed in the machine
learning literature. ~ Mutual information and re-
lated notions of information theory has been used
in several filter algorithms like Ranking (Duch et al.,
2003), Markov blanket filter (Koller & Sahami, 1996),
Fast Correlation Based Filter (FCBF) (Yu & Liu,
2004), Relevance Filter (Battiti, 1994; Bell & Wang,
2000), Conditional Mutual Information Maximization
(CMIM) filter (Fleuret, 2004), Minimum Redundancy
Maximum Relevance (mRMR) filter (Peng et al.,
2005) and Double Input Symmetrical Relevance
(DISR) (Meyer et al., 2008) filter.

This paper proposes an information theoretic formu-
lation of the feature selection problem which sheds
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light on the interplay between causality and infor-
mation maximization. This is done by means of
the notion of feature interaction which plays the role
of missing link between causal discovery and feature
selection. Qualitatively, feature interaction appears
when we can model the dependencies between group
of attributes only by considering them simultane-
ously (Freitas, 2001). Consider for instance two input
features x1, X2 and a target class y. It is said that x;
and x interact when the direction or magnitude of the
relationship between x; and x5 depends on the value
of y. Actually, this can be called a three-way inter-
action. Higher-order attribute interactions can be de-
fined in a similar way. A nice aspect of the information
theoretic formalism is that the interaction between at-
tributes can be formalised on the basis of the notion of
mutual information and conditional mutual informa-
tion (McGill, 1954). At the same time the interaction
between variables sheds a light on the possible causal
patterns existing between them. The role of interac-
tion in feature selection has already been discussed
in the machine learning litterature. Jakulin (Jakulin,
2005) proposes an heuristic based on interaction for
selecting attributes within the naive Bayesian classi-
fier. The authors of (Meyer et al., 2008) proposed a
filter algorithm which relies on the maximisation of
an information theoretic criterion, denoted Double In-
put Symmetrical Relevance (DISR), which implicitly
takes into account the interaction, or complementar-
ity between variables, in the choice of the features.
The paper of (Meyer et al., 2008) showed also that
the maximisation of the DISR criterion is beneficial to
the selection of the Markov blanket in a classification
task. It is however known that the Markov blanket
is a superset of the set of direct causes of a target y,
since it contains beyond direct causes, also the effects
(direct descendants) and their parents (also known as
spouses).

This paper proposes and assesses an original causal fil-
ter criterion which aims both to select a feature subset
which is maximally informative and to prioritise direct
causes. Our approach relies on the following considera-
tions. The first consideration is that the maximization
of the information of a subset of variables by forward
selection can be shown to be equivalent to a prob-
lem of min-Interaction Max-Relevancy (mIMR), where
the most informative variables are the one having both
high mutual information with the target and high neg-
ative interaction (or high complementarity) with the
others. The second consideration is that causal discov-
ery differs from conventional feature selection since not
all informative or strongly relevant variables are also
direct causes. It follows that a causal filter algorithm

should proceed by implementing a mIMR criterion but
avoid to consider variables, like effects and spouses,
which are not causally relevant. We propose here an
approach which consists in restricting the selection to
variables which have both positive relevance and neg-
ative interaction. Variables with positive interaction
(i.e. effects) are penalised and variables with null rele-
vance, even if interacting negatively (i.e. spouses), are
discarded. An additional contribution of the paper is
that the estimation of three-way interaction terms is
sped up by conditioning on the values of the output
class. The computational advantage is particularly ev-
ident in the Gaussian case, where the computational
effort is limited to the computation of few correlation
matrices of the inputs. The mIMR filter, was assessed
in terms of accuracy on a set of 25 public microar-
ray datasets and in terms of causal inference on a toy
dataset. The real data experiment shows that mIMR
outperforms most of the existing approaches, support-
ing the considerations in (Guyon et al., 2007) about
the presumed robustness of causal feature selection
methods. The causal inference experiment shows that
the mIMR strategy leads to a more accurate retrieval
of direct causes with respect to other filters.

2. Mutual information and interaction

Let us consider three random! variables x;, xs and
y where x; € AXj,xo € A5 are continuous and
vy € Y = {y1,...,yc}. The mutual informa-
tion I(x1;x2) (Cover & Thomas, 1990) measures the
amount of stochastic dependence between x; and xo
and is also called two-way interaction (Jakulin, 2005).
Note that, if x; and xo are Gaussian distributed the
following relation holds

1
I(x1;%2) = ~3 log(1 — p?) (1)
where p is the Pearson correlation coefficient.

Let us now consider the target y, too. The conditional
mutual information I(x1;x2]y) (Cover & Thomas,
1990) between x; and xs once y is given is defined

/// p(z1, 2, 9) log ——"——~— p(@1, 22ly) drydxady.
p(z1ly)p(22ly)

The conditional mutual information is null iff x; and
X9 are conditionally independent given y. The change
of dependence betwen x; and x> due to the knowledge
of y is measured by the three-way interaction infor-
mation defined in (McGill, 1954) as

— I(x1;y|x2). (2)

IBoldface denotes random variables.

I(x1;%2;y) = 1(x1;y)
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This measure quantifies the amount of mutual depen-
dence that cannot be explained by bivariate interac-
tions. When it is different from zero, we say that x,
xo and y 3-interact. A non-zero interaction can be
either negative, and in this case we say that there is a
synergy or complementarity betwen the variables, or
positive, and we say that there is redundancy. Because
of the symmetry we have

I(x1;%x2;y) = I(x15y) — I(x1;y|%x2) =

= I(x2;y) — I(x2;y[x1) = I(x1;%2) — I(x1;%2|y)
(3)

Since by (3) we derive I(x1;ylx2) = I(x1;y) —
I(x1;%2;y), it follows that by adding I(x2;y) to both
sides we obtain

I((x1,%2);y) = I(x1;y) + L(x23y) — [(X1;%X2;y) =
= I(x1;y) + I(x2;y) + I(x1;%2|y) — I(x15%2) (4)

Note that the above relationships hold also when either
X1 Or X are vectorial random variables.

2.1. Interaction and optimal feature selection

Consider a  multi-class  classification  prob-
lem (Duda & Hart, 1976) where x € X C R” is
the n-variate input and y € ) is the target variable.
Let A = {1,...,n} be the set of indices of the n
inputs. Let us formulate the feature selection problem
as the problem of finding the subset X* of v variables
such that

X* = arg

max

goms 1(Xs:) )

In other terms for a given number v of variables the
optimal feature set is the one which maximizes the in-
formation about the target. Note that this formulation
of the feature selection problem, also known as Max-
Dependency (Peng et al., 2005; Meyer et al., 2008), is
classifier-independent.

If we want to carry out the maximization (5), both an
estimation of I and a search strategy in the space of
subsets of X are required. Section 2.3 will discuss the
estimation issues. As far as the search is concerned,
according to the Cover and Van Campenhout theo-
rem (Devroye et al., 1996), to be assured of finding the
optimal feature set of size v, all feature subsets should
be assessed. Given the infeasibility of exhaustive ap-
proaches for large n, we will limit to consider here
only forward selection search approaches. Forward se-
lection starts with an empty set of variables and incre-
mentally updates the solution by adding the variable
that is expected to bring the best improvement (ac-
cording to a given criterion). The hill-climbing search

selects a subset of v < m variables in v steps by ex-
ploring only >°7_,(n — i + 1) configurations. For this
reason the forward approach is commonly adopted in
filter approaches for classification problems with high
dimensionality (Fleuret, 2004; Peng et al., 2005). If
v = 1 the optimal set returned by (5) is composed of
the most relevant variable, i.e. the one carrying the
highest mutual information to y. For v > 1, we need
to provide an incremental solution to (5) in order to
obtain, given a set of d variables, the d + 1th feature
which maximizes the increase of the dependency. We
propose an incremental step based on the relation (4).
Let Xg be the set of the d < v variables selected in
the first d steps. In a forward perspective, the optimal
variable x};,; € X — X to be added to the set Xg is
the one satisfying

Xy =arg max I(Xg;xp)y) =

x,EX—Xg

—argmax |1(Xsiy) +H(xy) 1 (Xsixey) | =
=arg max [I (xk5y) — 1 (XS§Xk§Y)} (6)

that is the wvariable minimizing the interaction
I(Xg;xk;y) with Xg and maximizing the relevance

I(xk;y).

2.2. Interaction and causal patterns

This section will discuss how the interaction measure
sheds light about the potential causal patterns exist-
ing between variables. We will limit to consider here
patterns of three variables only since, for estimation
and computational reasons, we will not consider in-
teractions of degree higher than three. According to
the definition (3), a negative interaction between x;
and xo means that the knowledge of the value y in-
creases the amount of dependence. This situation can
occur in two cases: i) the common effect configuration
(Figure 1a) (this is also known as the explaining-away
effect and ii) the spouse configuration where x; is the
common descendant of y and xo (Figure 1b).

On the contrary a positive interaction between x; and
x5 means that the knowledge of the value y decreases
the amount of dependence. This situation can occur
in four cases: 1) the common cause configuration (Fig-
ure 1c) where two dependent effects x; and x2 become
independent once the value of the common cause y is
known, ii)-iii) the brotherhood configurations where y
is a brother of x; (x2) (Figure 1d) and iv) the causal
chain configuration (Figure le) where one of the vari-
ables (e.g. x7) is the cause and the other (e.g. x3) is
the effect of y. Note that positive interaction can also
be considered as synonimous of redundancy.
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It is interesting to remark that if we are interested
to identify the set of direct causes of y, the interac-
tion term is able to disambiguate only partially the
situation. If on one side, a positive three-way in-
teraction term implies that at least one variable is
not a direct cause (Figures lcde), on the other side
negative interaction could be induced by a spouse
configuration (Figures 1b). Note that, it is well-
known that, though spouses are not causal, they be-
long to the Markov blanket set and as such they are
strongly relevant for performing an accurate predic-
tion (Tsamardinos & Aliferis, 2003). This is confirmed
by Equation (6) which shows that all variables having
negative interaction with the selected set X, (includ-
ing spouses) bring non-redundant information about
the target. How is it then possible to discriminate
spouses from direct causes? A possible solution comes
from the fact that spouses are independent of the tar-
get and as a consequence their mutual information
with y is null. A filter algorithm which aims to perform
a forward selection of direct causes should therefore
implement the minimum Interaction Maximum Rele-
vance strategy (6) but discard variables with a null
relevance (even if their interaction is negative). This
is the idea that will be implemented in our causal filter
mIMR.

Figure 1. a) Common effect pattern, b) spouse pattern c)
common cause pattern, d) brotherhood pattern and, e)
causal chain pattern .

2.3. Estimation of the interaction

For a given set Xg of selected variables, the opti-
mal forward selection step (6) requires the estimation
of the interaction term I(Xg;xy;y) = [(Xg;xk) —
I(Xg;xx|y). The high feature-to-sample ratio na-
ture of the microarray datasets demands a spe-
cific approach to the estimation of this quantity.
A large amount of litterature on microarray clas-
sification converges on the consideration that only
simple, constrained and low-variate estimation tech-
niques are robust enough to cope with the noise and
the high dimensionality of the problem (Dougherty,
2001). This is confirmed by the success of uni-
variate ranking approaches which are widely used in
explorative genomic studies despite of their evident
limitations(Saeys et al., 2007). Although the term
I(Xgs;xg;y) is multivariate what we propose here is
a biased but robust estimator based only on bivari-
ate terms. In order to design such estimator we can
take advantage of the following simplifications. Since
y is a class and takes value in a finite set of C' val-
ues {y1,...,yc}, we can write the term I(Xg;xx|y)
as follows:

/[

_p(Xs,zxly)
Xs, vk, y)dXsdrpdy =
Xs|y )" )

_ ZI Xs;Xk|y = ye)Prob{y =y} (7)

c=1

where Prob {y = y.} is the a-priori probability of the
cth class. After this transformation it appears that
the estimation of the interaction term requires the
estimation of C' 4+ 1 terms: the mutual information
I(Xg;xg) and the C conditional mutual information
terms I(Xg;xkly = ye) , ¢ = 1,...,C obtained by
controlling the value of the target. In practical terms
this boils down to estimate the terms I(Xg; xx|y = yc)
by considering only the portion of the training set for
which the target y = y.. Unfortunately each of these
terms is highly dimensional because of the term Xg.
Most of the information theoretic filters proposed in
litterature so far proposed several ways to decompose
multivariate mutual information terms in a linear com-
bination of low-variate mutual information terms. We
recall here the approximations underlying some of the
most effective state-of-the-art filter approaches:

Mazx-Relevance (Peng et al., 2005): it uses
1
I(Xsiy) ~ 5 > Ixiy)
%, €Xs

where d is the size of the set Xg.



Causal filter selection in microarray data

Conditional ~ Mutual  Information — Maximisation
(CMIM) (Fleuret, 2004): it makes the approximation

I(xk;y|Xs) = min I(xy;y[xi)
x;€Xs

Minimum Redundancy Mazimum Relevance
(mRMR) (Peng et al., 2005): it approximates
the total interaction term (i.e. the interaction term
when all the components of Xg are independent)
(Watanabe, 1960):

1
J(Xg;xp) ~ 7

Z I(x;; %K)

x; €Xg
Double Input Symmetrical Relevance
(DISR) (Meyer et al., 2008): it adopts the ap-
proximation
1
I((XS,Xk);Y)“a ;{ I((xi,%x);y)
Xi s

Similarly to what is done in DISR, we adopt a fast
approximation of I(Xg;xy) which consists in replac-
ing the multivariate term by a linear combination of
bivariate terms. The two terms of interaction are then
approximated as follows

S Ixix) (8)

xlexs

1
I(Xs;xp) ~ 1

Z I(xixply =ye)  (9)

x1€Xs

I(Xs; x|y = ye) =

This means that we restrict to consider only the inter-
action terms involving both the candidate feature and
at most one of the previously selected features.

2.4. The min-Interaction Max-Relevancy
(mIMR) filter algorithm

Let X4 = {x; € X : I(x;;y) > 0} the subset of X
containing all variables having non null mutual infor-
mation (i.e. non null relevance) with y. Once the ap-
proximations (8) and (9) are done, the forward step (6)
can be written as follows

Xip =arg  wmax  (I(xpy) = I(Xs;xi5y)] =
- argkaI)I%%)EXs |:I(Xk7Y) B a ;{ (I(XZ7Xk7Y):| -
X S
=g, g, [Ty
1 c
= Z > iy = ) —I(xi;xk»} (10)
eXg c=1

where p. = Prob{y = y.} .

The resulting algorithm, called mIMR (minimum In-
teraction Maximum Relevance), relies on four main
ideas: 1) avoid to select spouses by restricting the se-
lection to the subset of relevant variables X, ii) select
incrementally, among the set of variables X | the ones
which minimise the interaction (ml) and maximise the
relevancy (MR), ii) simplify the computation of the in-
teraction term by limiting to 3-way interactions and,
iv) speed up the three-way interaction computation by
conditioning the interaction compution on the value of
the target (i.e. restraining the training set to the set of
observations with the same output class). Note that
in causal terms the mIMR algorithm tends to select
features which are both relevant and on average take
part to common effect patterns (Figure la) with pre-
viously selected variables. In order to initialise the
mIMR algorithm (10) with a pair of direct causes, we
put

x7, x5 =arg max I((x;,Xk);y)-

X, X EX

Table 1 summarizes a set of causal patterns, involv-
ing the candidate feature x; € X, the selected fea-
ture x; € Xg and the target y and the related val-
ues of relevancy and interaction. Since mIMR max-
imizes relevance and minimize interaction it appears
that such algorithm prioritises the selection of causal
variables xj. The only case when interaction is neg-
ative but xj is not causal is discarded a-priori since
I(xk;y) = 0 = x5, ¢ X1. According to Table 1 it is
then reasonable to expect that the mIMR algorithm
proceeds by prioritizing the direct causes, penalizing
the effects (because of their positive interaction) and
neglecting the spouses.

Let us now discuss the relation between the mIMR fil-
ter and two related state-of-the-art approaches: DISR
and mRMR.

mIMR vs. DISR: the incremental step of the DISR,
algorithm is

> Ik xizy) (1)

x;€EXs

X = ar max
d+1 gx eX—Xg

In analytical terms, because of (4), if X1 coincides
with X the solution of (11) coincides with (10).
What makes a difference between mIMR and
DISR is that mIMR i) removes variables with no
mutual information with the target and ii) de-
composes the mIMR criterion into the sum of a
relevance and interaction terms. In the Gaussian
case (1), the mIMR algorithm requires the compu-
tation of the input-output correlation vector and
C 4+ 1 input correlation matrices.
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Table 1. Causal patterns, relevance and interactions terms.

CAUSAL PATTERN | I(xp;y) I(xi;Xk;y)
Xi =Y — Xk >0 <0
X; =y — Xi >0 >0
Xp — Xi =y >0 >0
Xp — Xi —y >0 >0
Xi Y — Xg >0 >0
Xp — Xi — Y 0 <0

mIMR vs. mRMR: the incremental step of the
mRMR algorithm is

* —

I(X;@;y)—é > I(XkQXi))}
x;€Xs

(12)
The mIMR algorithm differentiates from the
mRMR algorithh since it replaces the redundancy
term based on 2-way interaction with a causal
term based on 3-way interaction. The experimen-
tal setting will show that this could be important
in some situations.

3. Experiments

The experiment uses 25 public domain microarray ex-
pression (Table 22) to compare the performance of the
mIMR approach with 4 state-of-the-art filters: DISR,
mRMR, CMIM, MB and RANK. For all these filters
the bivariate mutual information terms are computed
by making the Gaussian assumption (1). Note that
this assumption is simplistic but has the merit of re-
turning a low-variance estimation of the mutual infor-
mation and of making possible the creation of X by
a statistical test on the correlation. The implementa-
tion of the MB filter is based on the sequential version
proposed in (Xing et al., 2001) and uses a linear SVM
classifier to assess the redundancy term A. A first
dimensionality reduction step is carried out by hierar-
chically clustering the variables into 1000 compressed
features obtained by averaging the probes of the same
cluster (Park et al., 2007). Table 3 reports the aver-
age balanced cross-validated misclassification error of
a set of classifiers C composed of a linear support vec-
tor machine, a random forest and a three KNN with
different number of neighbours (K = 1,3,5). The use
of more than a single classifier is expected to reduce

2For reasons of limited
reference list of the datasets is available in
a supplementary file that can be accessed in
http://www.ulb.ac.be/di/map/gbonte/Papers.html

space the complete

Table 2. Microarray data sets: name of the dataset, num-
ber N of samples, number n of features and number C' of
classes.

# Name N n C
1 Gordon 240 12533 2
2 Golub 72 7129 2
3 Alon 62 2000 2
4 Notterman 36 7457 2
5 Nutt 50 12625 2
6 Shipp T 7129 2
7 Singh 102 12600 2
8 Sorlie 76 7937 2
9 Wang 286 22283 2
10 Van’t Veer 65 24481 2
11 VandeVijver 295 24496 2
12 Sotiriou 99 7650 2
13 Pomeroy 60 7129 2
14 LYM 47 4026 2
15 Beer 96 7129 2
16 Petricoin 96 7129 2
17 Khan 83 2308 4
18 Novartis 103 1000 4
19 West 49 7129 4
20 Staunton 60 7129 9
21 Su 174 12533 11
22 Bhattacharjee 203 12600 5
23 Armstrong 72 12582 3
24 Ma, 60 22575 3
25 Hedenfalk 22 3226 3

the bias of a feature assessment based on a specific
classification strategy. An external cross-validation
scheme (Ambroise & McLachlan, 2002) is used to pre-
vent feature selection bias in our assessment. For each
step of the 10-fold cross-validation, for each selection
approach and for each classifier, once selected features
are returned, the generalization accuracy is assessed
by (i) training the classifier on the same dataset used
for feature selection and (ii) testing the trained clas-
sifier on the remaining tenth. Note that because of
the scarcity of the data and to avoid the bias related
to the selection of the feature set size, we average
the performance over all the classifiers and over all
the feature sets whose size is ranging from d = 1 to
d = 20. Table 3 reports the multi-class balanced er-
ror measure proposed in (Melvin et al., 2007) in order
to account for the unbalanced nature of the samples.
An error misclassification percentage takes the bold
notation when it is significantly different (Benjamini-
Hochberg adjusted p-value < 0.05) from the accuracy
of the mIMR strategy. Together with accuracy, an-
other important issue in the use of feature selection
techniques for microarray data is the stability of the
resulting selected set. In order to assess this prop-
erty, we consider how the selected set varies during
the different cross-validation steps. Table 4 reports a
measure of the stability of the different selection pro-
cedures obtained by averaging over all possible pairs
of cross-validation folds the percentage size of the in-
tersection of the selected features. It follows that the
higher this quantity, the higher is the stability of the
feature algorithm
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Table 3. Balanced misclassification error (ten-fold cross-
validation) averaged over the classifiers of the family C.
The bold notation stands for significantly different from
the accuracy of the mIMR strategy in terms of an adjusted
(BH criterion) p-value (pv < 0.05). The Avg line returns
the average of the balanced misclassification percentages.
The W/B line returns the number of times that the tech-
nique is worse/better than mIMR.

Data ||| mIMR || DISR | mRMR | CMIM | MB | RANK
T 2.44 2.71 2.3 2.04 5.3 2.94
5.73 6.15 5.77 6.48 | 10.76 | 5.87
3 18.34 19.4 | 19.98 | 21.59 | 22.99 | 20.55
4 6.78 6.63 7.14 7.59 | 11.39 | 7.78
5 30.53 || 28.11 | 30.33 30.2 | 27.03 | 24.94
6 17.63 || 16.21 | 17.88 16.93 | 24.08 | 17.76
7 11.51 || 10.99 | 11.34 11.27 | 15.35 | 12.59
8 35.68 || 37.04 | 36.43 | 38.75 | 40.74 | 40.67
9 44.21 || 44.89 | 45.91 | 46.32 | 45.16 | 45.66
10 29.21 28.85 | 30.98 | 32.75 | 20.33 | 27.66
11 44.69 44.52 45.28 44.24 | 46.54 | 44.83
12 149.8 51.44 | 49.68 50.67 | 51.6 | 53.37
13 49.12 49.95 49.82 47.99 | 55.78 | 50.64
14 6.65 5.7 6.01 7.21 24 6.13
15 3.75 2.88 3.7 7.4 1.3 2.75
16 0.36 0.5 0.58 0.69 4.07 2.84
17 7.95 8.49 7.52 7.67 | 12.45 | 8.68
18 8.47 16.32 | 8.03 11.71 | 35.55 | 36.98
19 57.95 || 54.13 | 59.35 | 60.48 | 58.59 | 54.77
20 67.08 || 65.32 | 67.12 | 70.08 | 77.56 | 65.44
21 34.31 || 40.11 | 34.78 | 34.98 | 48.51 | 42.95
22 16.33 || 18.54 | 15.04 | 14.37 | 30.02 | 24.78
23 6.32 6.19 6.17 7.43 | 27.62 | 8.59
24 66.14 || 67.11 | 66.86 | 66.22 | 67.15 | 66.75
25 41.65 || 45.36 | 38.76 | 37.65 | 60.93 | 38.43
Avg 25.49 || 26.27 | 25.77 | 26.18 | 31.62 | 28.43
W/B [ M 11/7 | 9/5 [ 13/3 | 19/1 | 14/6 |

The classification results show that mIMR outper-
forms the state-of-the-art informaton-theoretic filters.
The comparison with DISR shows that in several cir-
cumstances the removal of spouses may have a ben-
eficial effect in terms of accuracy. A possible inter-
pretation is that datasets where mIMR is significantly
better than DISR are datasets where the predictive
role of direct causes is strong. The comparison with
mRMR quantifies the accuracy improvement due to
the introduction of the interaction term. It is interest-
ing also to remark that the mIMR accuracy improve-
ment with respect to mRMR, CMIM and MB is ob-
tained by increasing at the same time the stability of
the selected features: as shown in Table 4 the mIMR
filter selection is 14 (resp. 20 and 21) times more sta-
ble than the one of mRMR (resp. CMIM and MB).
A final consideration raises from the fact that RANK,
though definitely less accurate than mIMR, outper-
forms the mIMR filter in stability terms. This result
should be interpreted by considering that good accu-
racy derives from a suitable trade-off between stability
(low variance) and relevancy (low bias). The incorpo-
ration of causal terms appears to be advantageous in
terms of the overall trade-off, therefore suggesting that
the mIMR gain in terms of lower bias dominates the
loss due to the increased variability of the selection.

Table 4. Stability measure in terms of percentage size of
the intersection. The Avg line returns the average of the
intersection percentage sizes. The L/H line returns the
number of times that the stability is lower/higher than
mIMR.

Name ||| mIMR || DISR | mRMR | CMIM | MB | RANK
1 62.2 59.9 61.8 17.0 25.8 65.2
2 43.6 46.1 43.6 35.1 18.8 51.5
3 63.6 68.7 67.8 56.8 27.4 65.5
4 6.0 6.5 6.0 4.3 3.8 6.9
5 28.1 28.3 28.3 25.6 13.4 31.5
6 40.1 38.2 42.2 40.7 16.5 39.1
7 68.0 67.3 69.2 62.7 28.5 67.9
8 27.4 27.3 26.4 24.0 15.6 29.0
9 17.9 18.5 16.5 15.5 32.9 21.7
10 17.2 22.8 16.4 14.7 15.7 24.9
11 24.9 29.8 23.4 21.0 11.0 32.5
12 16.3 15.8 15.7 16.8 12.7 19.2
13 16.8 15.2 16.8 15.9 10.6 13.9
14 61.5 63.4 61.4 52.8 19.3 65.4
15 71.9 72.5 73.3 46.7 28.6 75.2
16 7.3 10.9 7.4 4.6 3.2 11.1
17 58.5 64.4 58.0 52.4 28.9 61.8
18 61.8 74.9 65.4 51.0 52.8 88.3
19 25.6 35.8 26.1 27.3 14.9 46.4
20 28.3 49.4 28.6 27.9 47.5 24.5
21 50.1 62.7 48.6 50.5 39.9 40.0
22 54.3 70.9 51.1 46.7 30.5 60.5
23 39.2 40.4 38.2 32.7 42.8 41.4
24 16.6 17.5 16.2 14.6 9.8 14.2
25 4.7 5.9 4.9 4.7 6.7 6.3
Avg 36.5 10.5 36.5 317 22.3 10.2
C/H [ 6/19 | 14/11 | 20/5 | 21/4 | 6/19 |

Table 5. Average (over 200 runs) position of the two direct
classes (x1 and x5 in Figure 2) in the rankings returned by
the filters. N is the number of samples

N mIMR mRMR CMIM RANK
50 3.92 4.34 3.96 53.67
100 3.36 3.93 3.32 3.27
200 2.31 2.64 2.46 2.60
500 2.00 2.18 2.13 2.42
1500 1.95 2.16 2.19 2.42
2000 1.93 2.06 2.08 2.38

The second experiment assesses the capacity of the
mIMR filter of prioritizing the selection of the di-
rect causes in a toy example inspired to the LUCAS
dataset®. In order to reuse the continuous Gaussian
estimator used in the previous experiment, we gener-
ated a set of artificial datasets made of 11 continuous
inputs and 1 class target y where all the dependen-
cies are linear (Figure 2). We compared the rank-
ing of the two direct causes x; and x5 returned by
the mIMR, mRMR, CMIM and RANK for 6 different
sizes of datasets. Table 5 reports the average (over 200
runs) position of the two direct causes in the ranking
returned by the considered filters. Note that the low-
est values obtained with mIMR show that this filter is
the most effective one in ranking the two direct causes
in high position.

*http://www.causality.inf.ethz.ch/data/LUCAS.html
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4. Conclusions

The bioinformatics community is demanding of learn-
ing algorithms able to detect in a fast and reliable
manner subsets of informative and causal features.
An open issue is to understand whether the strive for
causal patterns is in contradiction with the objective
of maximising the generalisation accuracy. This paper
shows that the two objectives are synergetic and that
their link is represented by the notion of information
interaction. By taking into account this term it is pos-
sible to address both accuracy and causal explanation.
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Figure 2. Causal network
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