
Sparse Gaussian Process Regression via `1 Penalization

Feng Yan yan12@purdue.edu

Department of Computer Science, Purdue University, West Lafayette, IN 47907 USA

Yuan (Alan) Qi alanqi@cs.purdue.edu

Departments of Computer Science and Statistics, Purdue University, West Lafayette, IN 47907 USA

Abstract

To handle massive data, a variety of sparse
Gaussian Process (GP) methods have been
proposed to reduce the computational cost.
Many of them essentially map the large
dataset into a small set of basis points. A
common approach to learn these basis points
is evidence maximization. Nevertheless, ev-
idence maximization may lead to overfitting
and cause a high computational cost. In this
paper, we propose a novel sparse GP regres-
sion approach, GPLasso, that explicitly rep-
resents the trade-off between its approxima-
tion quality and the model sparsity. GPLasso
minimizes a `1-penalized KL divergence be-
tween the exact and sparse GP posterior pro-

cesses. Optimizing this convex cost func-
tion leads to sparse GP parameters. Fur-
thermore, we use incomplete Cholesky fac-
torization to obtain low-rank matrix approx-
imations to speed up the optimization proce-
dure. Experimental results on synthetic and
real data demonstrate that, compared with
several state-of-the-art sparse GP methods
and a direct low-rank matrix approximation
method, GPLasso achieves a significantly im-
proved trade-off between prediction accuracy
and computational cost.

1. Introduction

Gaussian processes (GP) are powerful nonparametric
Bayesian approach to model unknown functions. Ex-
act learning with GP is, however, intractable for large
datasets. For linear regression, training the exact GP
model with N samples demands an O(N3) cost for in-

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

verting a N × N covariance matrix. Predicting the
mean of a new instance requires an O(N) cost.

In general, one can reduce the computational cost by
using a sparse representation of the posterior distri-
bution for the unknown function. This representa-
tion could be used to summarize training data for
Bayesian learning, or it could be passed around as a
message in order to do inference in a larger proba-
bilistic model. One successful approach is to map the
training data into a small set of basis points, and then
compute the exact posterior that results from those
points (Quiñonero Candela & Rasmussen, 2005). To
learn these basis points, a sensible approach will be to
treat them as hyperparameters and maximize the evi-
dence over them (Snelson & Ghahramani, 2006). Nev-
ertheless, maximized evidence can causes overfitting as
a type-II maximum likelihood estimation.

In this paper we present a new framework, GPLasso,
for sparse GP regression. Unlike the previous ap-
proaches, GPLasso explicitly represents the trade-off
between the approximation quality of the sparse GP
posterior process and the parameter sparsity, improv-
ing the balance between the computational cost and
prediction accuracy. Specifically, GPLasso minimizes
a convex cost function that combines the KL diver-
gence between the exact and the approximate GP pos-
terior processes and a `1 penalty over GP parame-
ters. To minimize this cost function we present an
efficient algorithm based on low-rank matrix approx-
imations (Fine et al., 2001) and Least Angle Regres-
sion (Efron et al., 2002). In summary, the main con-
tributions of this paper include the following:

• We propose GPLasso, a new framework for sparse
GP regression, which minimizes the `1-penalized
KL divergence in the infinite functional space be-
tween the exact and the approximate posterior
processes.

• We combine the LAR algorithm, a powerful vari-

Sparse Gaussian Process Regression via `1 Penalization

able selection method, with Incomplete Cholesky
Factorization (ICF) to efficiently learn the sparse
nonparametric Bayesian model. We also demon-
strate that GPLasso, although based on low-rank
matrix approximations, achieves much higher pre-
diction accuracy than the direct application of the
low-rank approximation to GP prediction.

• We provide an alternative view to GPLasso based
on a generalization of the representor theorem:
GPLasso defines a sparse kernel machine in a Re-
producing kernel Hilbert Space (RKHS).

• Experimental results demonstrate that, compared
with several state-of-the-art methods, GPLasso
achieves a significantly improved trade-off be-
tween predictive performance and computational
cost.

2. Gaussian Process regression

We denote N independent and identically distributed
samples as D = {(x1, y1), . . . , (xn, yn)}N , where xi is
a d dimensional input and yi is a scalar output. We as-
sume there is a latent function f that we are modeling
and the noisy realization of f at xi is yi.

A Gaussian process places a prior distribution over
the latent function f . Its projection at the samples
B = {xi}N defines a joint Gaussian distribution:

p(f) = N (f |m0, K)

where m0
i = m0(xi) is the mean function and Kij =

K(xi,xj)
1 is the covariance function, which encodes

the prior notion of smoothness. Traditionally the
mean function is set to zero and we follow this tra-
dition in this paper.

For regression, we use a Gaussian likelihood function

p(yi|f) = N (yi|f(xi), vy) (1)

where vy is the observation noise.

Given the Gaussian process prior over f and the data
likelihood, the posterior process is

p(f |D) ∝ GP (f |0, K)

N
∏

i=1

p(yi|f(xi)) (2)

Since the Gaussian process is grounded on the N ex-
amples, they are called the basis points.

1We abuse the notation of K to represent both the ker-
nel matrix and the kernel function.

The posterior process p(f |D) has the mean function
m(x) and covariance function V (x,x′):

m(x) = K(x, B)α (3)

V (x,x′) = K(x,x′) − K(x, B)βK(B,x′) (4)

where B represents all the input points of the training
set, and

β = (K + vyI)
−1, α = βy (5)

For the predictive process, the mean function is the
same as that of the posterior process and the covari-
ance function is the covariance function of the poste-
rior process plus the observation noise variance vy.

To calculate the variable α, we need to invert the
N × N matrix β, which takes O(N3). To make the
prediction for a new sample, we need to store all the
training data points and evaluate α and the kernel
function at every training point. For massive datasets,
therefore, it is too costly to perform the exact GP in-
ference.

3. GPLasso: `1-Penalized KL

minimization

To reduce the computational cost for GP inference,
a common strategy is to reduce the parameters of
the GP model. Instead of choosing sparse basis
points that the GP model is grounded on (as in
Snelson & Ghahramani (2006)), we directly sparsify
the variable α in the GP posterior process, so that
we can make fast predictions for new data samples.
To obtain sparse α, we perform `1-penalized KL min-
imization, which balances the approximation quality
and the sparsity level. Specifically, we propose the fol-
lowing cost function

Q(α?) = 2KL(p(f |D)||q(f)) + λ|α?|1 (6)

where |α?|1 =
∑

i |α?
i | is the `1 norm of α?. Note that

this KL divergence KL(p||q) is defined in an infinite

functional space that measures the difference between
the the exact and the sparse GP posterior processes.

The exact posterior process p(f |D) depends on α and
β as shown in (3) and (4), so does the proposed cost
function. To minimize 6, a simple approach will be to
first solve α and β and then sparsify them. But this
would be computationally expensive for large datasets.
As shown below, we actually do not need to solve them
directly to obtain the sparse α?.

According to Chapter 2 of Csató (2002), we have

2KL(p(f |D)||q(f))

=(α − α
?)T(−β

? + K
−1)−1(α − α

?)+

tr[(β? − β)(K−1 − β
?)−1] − ln|(K−1 − β)(K−1 − β

?)−1|

Sparse Gaussian Process Regression via `1 Penalization

If we set the variable β? of the sparse GP to be the
same as that of the exact GP, i.e., β? = β, the above
equation becomes

2KL(p(f |D)||q(f)) = (α − α
?)TA(α − α

?) + constant

where A = (−β + K−1)−1 and the second term is a
constant given β.

Applying the Woodbury matrix identity to A, we ob-
tain A = K + 1

vy
KK and compute Q(α?) as follows:

Q(α?) = α?T(K +
1

vy

KK)α? − 2

vy

α?TKy + λ|α?|1
(7)

The above cost function does not depends on α and β
and corresponds to a `1-penalized least square fitting
problem. Solving this problem gives the sparse α?.
The coefficient λ controls how sparse α? will be.

We can interpret GPLasso from a “pseudo-output”
(instead of “pseudo-input”) perspective. Let us define
the “pseudo-output” y? as

y? = β−1α?. (8)

Then the sparse posterior process q(f) in (6) can be
rewritten as

q(f) ∝ GP (f |0, K)

N
∏

i=1

N (y?
i |f(xi), vy). (9)

So q(f) is essentially grounded on all the data inputs,
but with the pseudo-output y?. So GPlasso is in sharp
contrast to previous sparse GP models grounded on a
small set of basis points.

For a new data sample xN+1, we can make the predic-
tion

yN+1 = K(xN+1, B)α?

where we only need to evaluate the kernel function at
the training points corresponding to nonzero elements
of α?.

Since we do not solve β? = β directly, we cannot pro-
vide the exact variance for a prediction (though for
many applications, we may not need this quantity).
Instead, we can obtain an estimate for the variance.
One approach is to use the bounding technique pro-
posed by Smola & Bartlett (2001). Another approach
is to use efficient iterative linear system solver, such as
the Conjugate Gradient, to avoid the matrix inversion
in variance computation. In practice, a reasonable
variance approximation can be obtained with only a
small number of iterations.

4. GPLasso estimation

Now we present an efficient algorithm to solve the con-
vex minimization problem (7) based on Least Angle
Regression (LAR) (Efron et al., 2002) and low-rank
matrix approximations.

4.1. Convex optimization by LAR

LAR was originally designed to solve `1-penalized lin-
ear least-square problems. To use it for our minimiza-
tion problem, we need to convert it to an equivalent
`1-penalized least-square problem. Our derivation is
similar to that of the LAR-EN algorithm for the elas-
tic net (Zou & Hastie, 2005). Let K = RT R be the
Cholesky factorization of the kernel matrix K. We
define 2N × N matrix C and 2N × 1 vector d as

C =

[

K/
√

vy

R

]

, d =

[

y/
√

vy

0

]

. (10)

Then we have the equivalent `1-penalized least-
squared problem

min
α?

‖Cα? − d‖2 + λ|α?|1 (11)

This minimization problem is equivalent to the follow-
ing

min
α?

‖Cα? − d‖2, subject to |α?|1 ≤ t (12)

where the positive constraint value t depends on λ.
LAR efficiently computes the lasso solution paths of
(12) for all t > 0, which allows us to explore the full
set of sparse solutions of α? from just one run of LAR.
It brings us the computational advantage when we can-
not decide the optimal level of the model sparsity and
want to explore various levels of sparsity.

Roughly speaking, the LAR algorithm maintains an
active set A of all the training data points and the
corresponding elements of α?. At each step, it either
includes a new point to A or deletes a point from A,
and then updates α? until the constraint in (12) is
violated. We can also track the size of A to obtain
solutions with a desired number of nonzero elements
in α?. Suppose LAR stops at the l-th step, the time
complexity is O(M3 + lN2) and the space complexity
is O(N2) (Efron et al., 2002). Now the computational
bottleneck is the Cholesky factorization, which takes
O(N3) time. The total time complexity is O(lN2 +
N3), in which we omit M3 since it is dominated by
the other terms.

4.2. Low-rank kernel matrix approximation

To reduce the cost of the Cholesky factorization, we
can use low-rank kernel matrix approximations, among

Sparse Gaussian Process Regression via `1 Penalization

which Incomplete Cholesky Factorization (ICF) is a
popular choice(Fine et al., 2001). Specifically, we ap-
proximate the kernel matrix by

K ≈ R̃T R̃, (13)

where R̃ is a r×N matrix and r � N . The rank r can
be determined by either a target computational cost
or an expected reconstruction quality of K.

We define S = R̃R̃T and let RS be the low-rank
Cholesky factor of S. Then we approximate the origi-
nal minimization problem (11 & 12) as follows:

min
α?

‖C̃α? − d̃‖2, subject to |α?|1 ≤ t (14)

C̃ =

[

RSR̃/
√

vy

R̃

]

, d̃ =

[

RSR̃y/
√

vy

0

]

, (15)

where C̃ is a 2r×N matrix and d̃ is a 2r×1 vector. The
time complexity of ICF is O(Nr2) and the space com-
plexity is O(Nr). With the ICF approximation, the
time complexity of GPLasso is O(M3 + lNr + Nr2) =
O(max{lNr, Nr2}) — where M3 is dominated by the
other terms — and the space complexity is O(Nr).
Our experimental results show that a relatively small
rank r can lead to fast GPLasso training with high pre-
diction accuracy, much higher than that of the full GP
with the direct ICF approximation. Detailed results
are given in Section 7.

5. Alternative view

We offer an alternative view of our sparse GP model in
terms of functional regularization in the Reproducing
Kernel Hilbert Space (RKHS). The Gaussian process
regression can be viewed as Regularized Least Squared
Regression (RLSR) in RKHS (Poggio & Girosi, 1990).
Let X be the sample space where xi ∈ X and H be
the RKHS on X induced by a kernel K. RLSR aims
to find a regression function f ∈ H by minimizing the
sum of squared errors plus a regularization term,

min
f∈H

∑

(xi,yi)∈D

(yi − f(xi))
2 + vy‖f‖H (16)

The predictive value of RLSR for a new instance is the
same as the predictive mean of Gaussian processes.
Moreover, the celebrated representer theorem states
that the solution of the above problem can be written
as a linear combination of the kernel functions associ-
ated with the training points. A natural question is
whether our sparse GP model has a kernel machine
counterpart and a related representer theorem or not.

We consider the subset H0 ⊂ H

H0 = {f0 ∈ H|f0(·) =

N
∑

i=1

αiK(xi, ·), αi ∈ R}

and denote the projection operator onto H0 as P0.
Define the “`1 norm” ‖f‖1 =

∑N

i=1 |αi| where P0f =
∑N

i=1 αixi, ∀f ∈ H0. An extension of the original
representer theorem involving the “`1 norm” regular-
ization term is described as follows:

Theorem 1. Given the training data D = {(xi, yi) ∈
X × R|i = 1, . . . , N}, a cost function L : X × R ×
H → R, a nondecreasing function g : R → R, and an

arbitrary function h : R → R. The risk minimization

problem

min
f∈H0

N
∑

i=1

L[(xi, yi, f(xi))] + g(‖f‖H) + h(‖f‖1) (17)

has minimizers taking the form

f(x) =

N
∑

i=1

αiK(xi,x), αi ∈ R (18)

The proof of Theorem 1 is very similar to the proof of
the original representer theorem by showing the mini-
mizer of each term in (17) lays in H0 (Schölkopf et al.,
2001). Let L be the corresponding cost function in
RLSR, g(x) = h(x) = x. Applying the theorem, we
recover an optimization problem that is equivalent to
the optimization problem of GPLasso.

Therefore we can interpret GPLasso as a kernel ma-
chine defined in a RKHS with the additional ”`1” reg-
ularizer (corresponding the `1 penalizer in GPLasso).
Since our extension of the representer theorem is gen-
eral, it also has the potential to be applied to other
kernel machines to achieve sparse solutions.

6. Related works

Many sparse GP approaches select a representative
subset of training points as basis points. For example,
Seeger & Williams (2003) proposed a greedy basis-
point selection method that efficiently chooses basis
points from training data based on an information
gain criterion. Snelson & Ghahramani (2006) removed
the restriction that basis points are selected from the
training set and used pseudo-inputs as basis points.
They chose pseudo-inputs by evidence maximiza-
tion. Quiñonero Candela & Rasmussen (2005) pro-
vided a unified framework to interpret various sparse
GP regression models. More recently, Walder et al.
(2008) generalized the pseudo-input approach to in-
clude basis-dependent length-scales for the kernel func-
tion and maximized evidence to learn the basis points

Sparse Gaussian Process Regression via `1 Penalization

and hyperparameters. For the pseudo-input ap-
proach and its generalization, the computational cost
is O(gNM2), where N is the number of training sam-
ples, M is the number of basis points, and g is the num-
ber of iterations for evidence maximization. According
to our experiments, this maximization often requires a
large number of iterations before convergence, result-
ing in a large computational cost. Furthermore, evi-
dence maximization has the risk of overfitting, which
has been observed by Titsias (2009) in the context of
sparse GP learning and by Qi et al. (2004) in the con-
text of variable selection.

Compared to the pseudo-input approach, GPLasso
is more related to the approaches proposed by
Smola & Bartlett (2001) and Keerthi & Chu (2006).
Actually if we remove the `1 penalty term, our cost
function becomes equivalent to the cost function pro-
posed by Smola & Bartlett (2001), although ours is
derived from a totally different perspective based on
the penalized KL minimization. The approaches pro-
posed by Keerthi & Chu (2006) and Smola & Bartlett
(2001) use greedy procedures to solve a difficult in-
teger programming problem for subset selection. As
a result, these approaches suffer from local optimal
solutions. By contrast, based on a convex cost func-
tion, GPLasso finds an (approximate) global optimal
solution. This results in significantly higher predic-
tion accuracy than these greedy approaches as demon-
strated in Section 7. Also, using the ICF low-rank ap-
proximation, the time complexity of GPLasso is only
O(max{lNr, Nr2}). Using a low rank r on the order
of M and letting l ≈ g (which were true in all of our
experiments), GPLasso is much more efficient than the
evidence maximization approach, which was also em-
pirically demonstrated in our experimental results.

Recently, Titsias (2009) proposed a variational method
to learn sparse GP models. This method minimizes
a KL divergence between KL(q(f , fS)||p(f , fS |y,X)),
where f is the function values evaluated on all the
training points and fS is the inducing variables eval-
uated on all the pseudo-inputs (i.e., basis points) S.
Again, a greedy approach is used to choose the basis
points to avoid the prohibitive combinatorial search.
By contrast, GPLasso minimizes the penalized KL di-
vergence KL(p(f |D)||q(f)) where f is in the infinite

functional space instead of being a finite projection at
the training points and the basis points. Furthermore,
the KL divergence used by GPLasso has a different di-
rectionality compared to that used by the variational
method, better preserving the posterior mean as dis-
cussed by Minka (2004).

7. Experiment

We evaluate the new sparse GP regression method,
GPLasso, on both synthetic and real data and com-
pare it with the pseudo-input sparse GP (SPGP)
method (Snelson & Ghahramani, 2006)2, the infor-
mation vector machine (IVM) (Seeger & Williams,
2003)3 and the kernel matching pursuit (KMP)
method (Keerthi & Chu, 2006). In our ex-
periments, we use the Gaussian kernel defined
by K(x,x′) = exp−∑

j wj(xj − x′
j)

2, where wj

represents the length-scale for the j-th dimen-
sion. We apply Automatic Relevance Determination

(ARD) (Rasmussen & Williams, 2006) to learn the hy-
perparameters {wj} on a subset of training data using
the full GP. For the full GP and SPGP, we use the
optimization code, minimize.m, 4, which implements
a conjugate gradient method. The optimization stops
when the difference of two function values in consec-
utive updates is smaller than 10−5. The prediction
accuracy for every method is measured by Root Mean

Squared Error (RMSE),

√

P

i(yi−f(xi))2

N
.

7.1. Results on synthetic data

First, we test our method on a synthetic dataset pre-
viously used by Snelson & Ghahramani (2006). This
dataset is small enough, so that we learn the kernel
hyperparameters by maximizing the evidence of the
full GP. Then we use these hyperparameters for all
the other methods to have a fair comparison.

To examine how well each sparse GP method approx-
imates the exact full GP, we compare the predictions
of each method with those of the full GP on this syn-
thetic data and compute the RMSE. Figure 1(a) shows
the approximation error of each method. To mitigate
the effect of random initializations, we randomly split
the dataset 10 times, each time with 90% of the points
as the training set and the remaining 10% as the test
set. We report the RMSE averaged over the 10 runs
for each method. For GPLasso, we set the rank of ICF
r to 30. The figure shows that GPLasso significantly
outperforms than all the other sparse GP methods.

The curve for SPGP is not smooth, since learning
pseudo-inputs by evidence maximization leads to a
nonlinear optimization problem and the solutions of-
ten get stuck in local optima. To visualize this local
optimal problem, we examine the basis points selected

2http://www.gatsby.ucl.ac.uk/~snelson/
3http://www.cs.manchester.ac.uk/~neil/ivm/
4http://www.kyb.tuebingen.mpg.de/bs/people/

carl/code/minimize/

http://www.gatsby.ucl.ac.uk/~snelson/
http://www.cs.manchester.ac.uk/~neil/ivm/

Sparse Gaussian Process Regression via `1 Penalization

10 20 30 40 50 60 70
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

|α|
0

R
M

S
E

GPLasso
SPGP
IVM
KMP

(a)

−2 0 2 4 6 8 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Training data
Full GP
GPLasso
SPGP
Bases of GPLasso
Bases of SPGP

(b)

Figure 1. Experiment results on synthetic data (a) Averaged RMSE of predictive mean for sparse GP methods compared
to full GP. GPLasso with ICF achieves higher prediction accuracy in all cases. SPGP suffers from local optimal solutions
which causes unstable prediction accuracy. (b) Predictive mean of full GP, SPGP and GPLasso with 20 basis points
(nonzero elements of α?). We use the same kernel hyperparameters learned from full GP.

by SPGP. In particular, figure 1(b) shows the loca-
tions of the learned basis points for SPGP and the
corresponding data points for the nonzero elements of
α? in GPLasso on one split of the dataset. Clearly the
training points chosen by GPLasso are well spread the
whole input space, while the basis points learned by
SPGP are concentrated in the left side of the input
space due to the local optimality of its solution. Ac-
cordingly, as shown in the figure, GPLasso gives pre-
dictions much closer to the predictions of the full GP
than SPGP. While figure 1(b) shows the results from
only one run, we repeat this experiment many times
with different random initializations and find that the
SPGP solutions often suffer from the local optimal so-
lutions on this dataset. By contrast, GPLasso con-
sistently finds a good sparse α?, resulting in accurate
predictive performance.

7.2. Results on real-world data

We test GPLasso, SPGP, IVM, and KMP on three
real-world datasets abalone, pumadyn-8nm and kin40k
5. We use a relatively large number of test data points
to obtain reliable estimates of predictive performance.
For abalone and pumadyn-8nm, the results are av-
eraged over 10 randomly splits of the dataset. For
abalone, each split has 1500 training and 2677 test
points. For pumadyn-8nm, each split has 2000 train-
ing and 6192 test points For GPLasso, the ICF rank
is set to r = 250 and r = 300 for these two datasets,
respectively.

5abalone:
http://archive.ics.uci.edu/ml/datasets/Abalone.
pumadyn-8nm and kin40k : www.cs.toronto.edu/~delve/

For kin40k, due to the long running time, we use only
one split for kin40k that contains 10000 training and
30000 test points. We do not run the full GP on the
whole dataset. For GPLasso, we set the ICF rank
r = 2000. We maximize the evidence of the full GP
model trained on a subset of the training set to learn
the model hyperparameters, and then keep them fixed
for all the sparse GP methods.

We report the average RMSE based on the predic-
tive mean and the labels of the test points for all these
methods. The standard deviations of the prediction er-
rors are very small, so that the error bars are not shown
here to avoid cluttering. Figure 2 (a)-(c) show that
GPLasso significantly outperforms IVM and KMP in
terms of prediction accuracy. With the same hyperpa-
rameters, GPLasso starts off with the prediction ac-
curacy similar to SPGP’s. As the model sparsity de-
creases, the predictive performance of both methods
converges rapidly to that of the full GP on abalone

and pumadyn-8nm. Interestingly, if we jointly learn
the basis points and the hyperparameters for SPGP,
instead of using the hyperparameters learned by the
full GP on the subset of the training data, the pre-
dictive performance of SPGP (not reported here due
to space limitations) then becomes much worse than
GPLasso. This demonstrates overfitting, which has
been discussed by Snelson & Ghahramani (2006).

Figure 2 (d)-(f) show the average training time of each
method in the logarithmic scale. All the methods are
implemented in Matlab and we carefully optimize the
code for each method to achieve the fastest running
time. With the lower computational complexity as
discussed in Section 6, GPLasso is much faster than

http://archive.ics.uci.edu/ml/datasets/Abalone
www.cs.toronto.edu/~delve/

Sparse Gaussian Process Regression via `1 Penalization

0 20 40 60 80 100 120
2

2.5

3

3.5

|α|
0

R
M

S
E

GPLasso
SPGP
IVM
KMP
Full GP

(a) abalone

50 100 150 200
0.5

1

1.5

2

2.5

3

3.5

|α|
0

R
M

S
E

(b) pumadyn-8nm

200 400 600 800 1000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

|α|
0

R
M

S
E

(c) kin40k

0 20 40 60 80 100 120
10

−2

10
−1

10
0

10
1

10
2

10
3

|α|
0

R
un

ni
ng

 ti
m

e
(s

ec
)

GPLasso
SPGP
IVM
KMP

(d) abalone

0 50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

|α|
0

R
un

ni
ng

 ti
m

e
(s

ec
)

(e) pumadyn-8nm

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

|α|
0

R
un

ni
ng

 ti
m

e
(s

ec
)

(f) kin40k

Figure 2. Prediction errors and training time on three real datasets. (a)-(c) show the mean RMSEs of both sparse GPs
and the full GP. GPLasso is competitive with (sometimes better than) SPGP and much better than IVM and KMP in
terms of prediction accuracy. (d)-(f) illustrate the training time of each method on these datasets. Note that the running
time is plotted in the logarithmic scale. While GPLasso is slower than IVM and KMP, its predictive performance is much
better than those of IVM and KMP based on the same number of data points. Furthermore, while maintaining the same
level of predictive performance, GPLasso is significantly faster than SPGP by an order of magnitude.

SPGP (by an order of magnitude) in the training time.
Although IVM and KMP are even faster, they trade
predictive performance for speed. GPLasso keeps the
comparable predictive performance as SPGP, but with
much less computational time.

Low-rank kernel matrix approximation, e.g., ICFs, can
be used directly as a tool to reduce the GP train-
ing time and it will be as efficient as GPLasso given
the same low rank r. Therefore, a natural question
is if that will lead to predictive performance similar
to GPLasso. Figure 3 answers this question by com-
paring the prediction accuracy of the full GP with
ICF approximation and GPLasso. We fix the num-
ber of nonzero elements in α? and keep r the same
for the low-rank approximation of both the full GP
and GPLasso. GPLasso achieves much higher predic-
tion accuracy than the direct application of ICF to the
full GP model, especially when the ICF ranks are low.
This sharp difference reveals the great advantage of
the posterior approximation in GPLasso.

8. Discussion

In this work we have used ICF to reduce the com-
putational cost. The Nyström method is an alter-
native to ICF for low-rank kernel matrix approxima-
tions (Williams & Seeger, 2001). Zhang et al. (2008)
demonstrated that an improved Nyström method can
provide much lower reconstruction error than ICF. We
expect this method can be integrated into GPLasso to
further improve its performance.

We have limited α? to the training samples. We can re-
move this limitation by minimizing the KL divergence
over a sparse α? that corresponds to pseudo-inputs,
instead of given training samples.

Acknowledgements

We would like to thank Mark Schmidt and Wei Chu for

providing the LAR code and the kernel matching pursuit

code respectively. F. Yan and Y. Qi were supported by

NSF IIS-0916443 and NSF ECCS-0941533.

Sparse Gaussian Process Regression via `1 Penalization

30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4

ICF rank

R
M

S
E

GPLasso, |α|
0
=20

Full GP with ICF
Full GP without ICF

(a) abalone

30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

ICF rank

R
M

S
E

GPLasso, |α|
0
=40

Full GP with ICF
Full GP without ICF

(b) pumadyn-8nm

Figure 3. Performance comparison between the full GP with an ICF approximation and GPLasso with with the same ICF
rank r. These two methods are tested on abalone and pumadyn-8nm. For GPLasso, while r is varying, we fix |α|0 = 20
and |α|0 = 40 for the two datasets, respectively. With a similar computational cost, GPLasso significantly outperforms
the full GP with the ICF approximation, especially when the rank of ICF is low.

References

Csató, Lehel. Gaussian Processes - Iterative Sparse

Approximations. PhD thesis, Aston University,
2002.

Efron, Bradley, Hastie, Trevor, Johnstone, Lain, and
Tibshirani, Robert. Least angle regression. Annals

of Statistics, 32, 2002.

Fine, Shai, Scheinberg, Katya, Cristianini, Nello,
Shawe-taylor, John, and Williamson, Bob. Efficient
SVM training using low-rank kernel representations.
Journal of Machine Learning Research, 2, 2001.

Keerthi, Sathiya and Chu, Wei. A matching pursuit
approach to sparse Gaussian process regression. In
Weiss, Y., Schölkopf, B., and Platt, J. (eds.), Ad-

vances in Neural Information Processing Systems

18. MIT Press, 2006.

Minka, Tom. Power EP. Technical report, Microsoft
Research, 2004.

Poggio, T. and Girosi, F. Regularization algorithms for
learning that are equivalent to multilayer networks.
Science, 247(4945), 1990.

Qi, Yuan, Minka, Thomas P., Picard, Rosalind W.,
and Ghahramani, Zoubin. Predictive automatic rel-
evance determination by expectation propagation.
In Proceedings of Twenty-first International Confer-

ence on Machine Learning, 2004.

Quiñonero Candela, J. and Rasmussen, Carl E. A uni-
fying view of sparse approximate Gaussian process
regression. Journal of Machine Learning Research,
6, 2005.

Rasmussen, Carl E. and Williams, Christopher K. I.
Gaussian Processes for Machine Learning. The MIT
Press, 2006.

Schölkopf, B., Herbrich, R., Smola, A., and
Williamson, R. A generalized representer theorem.
In COLT, 2001.

Seeger, Matthias and Williams, Christopher K. I. Fast
forward selection to speed up sparse Gaussian pro-
cess regression. In AISTATS, 2003.

Smola, Alex J. and Bartlett, Peter. Sparse greedy
Gaussian process regression. In Advances in Neu-

ral Information Processing Systems 13. MIT Press,
2001.

Snelson, Edward and Ghahramani, Zoubin. Sparse
Gaussian processes using pseudo-inputs. In Ad-

vances in Neural Information Processing Systems

18. MIT press, 2006.

Titsias, Michalis. Variational learning of inducing vari-
ables in sparse Gaussian processes. In International

confernece on AI and Statistics, 2009.

Walder, Christian, Kim, Kwang In, and Schölkopf,
Bernhard. Sparse multiscale Gaussian process re-
gression. In Proceedings of the 25th international

conference on Machine learning, 2008.

Williams, Christopher and Seeger, Matthias. Using the
Nyström method to speed up kernel machines. In
Advances in Neural Information Processing Systems

13. MIT Press, 2001.

Zhang, Kai, Tsang, Ivor W., and Kwok, James T. Im-
proved Nyström low-rank approximation and error
analysis. In ICML ’08: Proceedings of the 25th in-

ternational conference on Machine learning, 2008.

Zou, Hui and Hastie, Trevor. Regularization and vari-
able selection via the elastic net. Journal Of The

Royal Statistical Society Series B, 67(2), 2005.

