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Abstract

In this paper, we propose an Active Learning
(AL) framework for the Multi-Task Adap-
tive Filtering (MTAF) problem. Specifically,
we explore AL approaches to rapidly im-
prove an MTAF system, based on Dirichlet
Process priors, with minimal user/task-level
feedback. The proposed AL approaches se-
lect instances for delivery with a two-fold ob-
jective: 1) Improve future task-specific sys-
tem performance based on feedback received
on delivered instances for that task, 2) Im-
prove the future overall system performance,
thereby benefiting other tasks in the system,
based on feedback received on delivered in-
stances for a particular task. Current AL ap-
proaches focus only on the first objective. For
satisfying both goals, we define a new scoring
function called Utility Gain to estimate the
perceived improvements in task-specific and
global models. In our experiments on stan-
dard benchmark datasets, we observed that
global AL approaches that additionally take
into account the potential benefit of feedback
to other tasks in the system performed better
than the task-specific approach that focused
only the benefit of the current task.

1. Introduction

Adaptive Filtering (AF) (Robertson et al., 2001) sys-
tems monitor a stream of documents to filter out doc-
uments that are relevant to the particular task or user.
For example, a stock analyst would like to filter out all
the news about stocks in his portfolio, while a technol-
ogy entrepreneur might be interested in news about
latest technology startups. Each of these users can
be considered a task from the AF system’s perspec-
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tive. AF systems model user interests based on the
initial information request (e.g. a query) presented
by the user, and the subsequent relevance feedback
provided by the user for the results presented to the
user. For example, one popular AF approach involves
the use of Logistic Regression classifier (Jaakkola &
Jordan, 1996) to classify documents into relevant and
non-relevant categories for that particular user. The
relevance feedback received from the user is used to
supplement the training data to retrain the classifier
for future predictions.

Most research in AF systems has focused on learning
each task independently of other tasks. In this paper,
we will refer to such approaches as Single-Task AF
(STAF) approaches. In the initial stages of learning,
when the feedback from each user is limited, these ap-
proaches suffer from data sparsity, leading to weaker
models, and consequently poorer performance. Multi-
task learning methods have shown significant success
in mitigating this per-task data sparsity problem by
sharing information across multiple tasks. For exam-
ple, to learn the interest-model of a particular stock
analyst, it could be useful to identify common im-
portant features for portfolio tracking based on the
feedback received from other stock analysts. Irrespec-
tive of their portfolios, all stock analysts are usually
interested in common news regarding corporate an-
nouncements, balance sheets, government regulations,
and day-to-day stock market indicators pertinent to
their stocks. In this paper, we will refer to such ap-
proaches, which leverage information from multiple
tasks, as Multi-Task Adaptive Filtering (MTAF) ap-
proaches.

The future performance of an AF system relies on the
feedback received on delivered items. If the system
myopically focuses on delivering only (perceived) rele-
vant documents (better immediate performance), the
feedback received on these documents may not lead to
the best learnt task models (in the future), thereby
limiting the usefulness of such feedback for future pre-
dictions. In this paper, we present an Active Learn-
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ing (AL) framework for MTAF that additionally takes
into account the perceived benefit of feedback on items
before making a delivery. In the MTAF setting, the
AL system has a three-fold objective: 1) Provide rele-
vant documents, 2) Feedback provided on a delivered
document should maximally improve the task-specific
performance in the future, 3) Feedback provided on
a delivered document, should maximally improve the
overall system (multiple tasks) in the future. The cur-
rent AL approaches focuses only on the second objec-
tive, thereby narrowly focusing on task-specific perfor-
mance improvements. In this paper, for satisfying the
goal 1, we chose the Multi-Task Logistic Regression
with Dirichlet Process priors (Blei & Jordan, 2006;
Xue et al., 2007) for facilitating information sharing
across tasks. For goals 2 and 3, we propose a novel AL
framework based on a new scoring function called Util-
ity Gain. This scoring function is inspired by the pop-
ular empirical risk minimization approaches in Active
Learning (Melville et al., 2005). However, the current
empirical risk minimization approaches only focus on
minimizing the risk of one task, while we develop vari-
ants that selectively focus on one task, global model,
or all tasks, as required during the various phases of
learning. Consequently, our framework chooses in-
stances that might lead to maximal (expected) gain
in performance of the system (task-specific or global)
for future predictions.

2. Adaptive Filtering Preliminaries

2.1. Single-Task Adaptive Filtering

We briefly describe a popular representative STAF ap-
proach based on the Logistic Regression (LR) classi-
fier. The LR classifier estimates relevance of a doc-
ument using the sigmoid function σ(x) = 1

1+e−x as
follows:

P (y = 1|x,w) = σ(wTx) =
1

1 + e−wTx
(1)

In the above equation, x is a feature vector represent-
ing a document, and w is the weight vector of regres-
sion coefficients. w is usually fit by maximum like-
lihood estimation on the available relevant and non-
relevant training documents D for the task.

In this paper, for consistency among approaches, we
will be focusing on the Bayesian Logistic Regression
variant. In the Bayesian setting, the parameters w
are usually drawn from a diffuse Gaussian prior dis-
tribution w ∼ N (µ,Σ), to ensure regularization. For
a fully Bayesian treatment, instead of using a point
estimate of the parameters w, one may integrate over
the posterior distribution of w to obtain a Bayesian

Table 1. Important notation used in this paper.

Symbol Description

M Total number of tasks
m ∈ {1, . . . ,M} A task
Nm Total number of instances for task m
d Dimensionality of feature space
xm,n ∈ Rd The n’th data instance for task m
ym,n ∈ {0, 1} The label of instance xm,n

wm ∈ Rd LR parameters for task m
k ∈ {1, . . . ,∞} A group or cluster
w∗k ∈ Rd LR parameters of the k’th group
φm,k ∈ [0, 1] Group k mixing proportion for task m

estimate of P (y = 1|x,D)

P (y = 1|x,D) =

∫
w

P (y = 1|x,w)P (w|D)dw (2)

2.2. Utility of Adaptive Filtering

In the Adaptive Filtering setting, the performance of
a system is usually measured in terms of the utility of
documents delivered by that system. For example, in
the TREC Filtering track, one popular utility metric
is T9U = ψ1R+ψ0N , where R and N are the number
of delivered results the user considered relevant and
non-relevant respectively. ψ1 and ψ0 are the benefit
achieved and loss incurred, by the user due to reading
the relevant and non-relevant documents respectively.
For TREC-9, ψ1 = 2 and ψ0 = −1.

From the system perspective, the expected utility of
delivering a document can be computed as:

U(x|D) =
∑

y∈{0,1}

ψyP (y|x,D) (3)

Instances with U(x) > t are delivered, where t is the
dissemination threshold learnt via cross-validation or
set to 0 (Zhang et al., 2003). In this paper, we focus
on the T9U utility metric to guage the system perfor-
mance, but the ideas are general and maybe extended
to other evaluation metrics as well.

3. Our approach

3.1. Multi-Task Adaptive Filtering

Owing to the success of Logistic Regression (LR) clas-
sifiers in Adaptive Filtering, we choose a multi-task ap-
proach based on LR classifiers. Our chosen approach
is depicted graphically in Figure 1. Table 1 lists the
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Figure 1. Graphical model representation of multi-task
adaptive filtering based on Dirichlet Processes.

notation used in this paper. This approach is based
on the Mutli-Task classification approach developed
by (Xue et al., 2007). A similar approach, consisting
of Support Vector Machines for individual tasks, has
been used for content-enhanced collaborative filtering
by (Yu et al., 2004). We summarize the generative
process of the model in Algorithm 1. The approach
clusters/groups related tasks by drawing the parame-
ters for the related tasks from a mixture of Gaussians
(as evident from the line 12 of the Algorithm 1). In-
tuitively, related tasks will share information by get-
ting grouped into the same cluster(s). For example,
features that are indicators of interests of a football
fanatic (e.g. teams, scoreboards, win/loss decisions)
may be inferred from the relevance judgments avail-
able from other sports enthusiasts. The grouping of
related tasks ensures that unrelated tasks (e.g. stock-
portfolio tracking vs sports-news filtering) do not con-
taminate, as such contamination might lead to poorer
understanding of the individual tasks.

As the optimal number of groups is unknown apriori,
a Dirichlet Process model is inferred over the tasks to
discover the optimal number of groups pertinent to the
tasks. The Dirichlet Process is essentially a mixture
model with potentially infininte components. The ac-
tual number of components participating in the for-
mation of the tasks is based on the parameter α, also
known as the innovation parameter. Larger values of α
lead to more participating components and vice-versa.
The optimal value of α (and other parameters) can be
inferred from the data using variational inference (Xue
et al., 2007).

Algorithm 1 MTAF Generative Process

1: Fixed diffuse hyperpriors: τ10, τ20, β0, γ10, γ20

2: Draw λj ∼ Gamma(γ10, γ20),∀j = 1, . . . , d
3: Let Λ be a diagonal matrix with elements λj ,∀j
4: Draw µ ∼ N (0, (β0Λ)−1)
5: Let Σ = Λ−1

6: Draw α ∼ Gamma(τ10, τ20)
7: Draw vk ∼ Beta(1, α),∀k = 1, . . . ,∞
8: Draw w∗k ∼ N (µ,Σ),∀k = 1, . . . ,∞
9: Let πk = vk

∏k−1
i=1 (1− vi),∀k

10: for m = 1 to M do
11: Draw φm ∼Multinomial(1;π1, . . . , π∞)
12: Let wm =

∑∞
k=1(w∗k)φm,k

13: Draw ym,n ∼ Binomial(1, σ(wT
mxm,n)),∀n =

1, . . . , Nm

14: end for

With the knowledge of the inferred parameters for a
task m, the decision function for a new instance xm,•
follows the distribution:

P (ym,• = 1|xm,•,wm) =

K∑
k=1

φm,kσ(w∗k
Txm,•) (4)

Again, like in Equation 2, for a fully Bayesian treat-
ment, we integrate over the posterior distribution of
w∗k, instead of using a point estimate:

P (ym,• = 1|xm,•,wm) =

K∑
k=1

φm,k

∫
σ(w∗k

Txm,•)P (w∗k|µ,Σ, D)dw∗k (5)

The above integral does not have an analytical solu-
tion. (Xue et al., 2007) suggest the use of an approxi-
mate form of the integral based on (MacKay, 1992).
Combining Equation 5 and Equation 3, one can com-
pute the expected utility U(xm,•) of delivering the doc-
ument xm,•. A passive MTAF approach will deliver
the document if U(xm,•) > t, where t is a dissemina-
tion threshold, usually set to zero, or maybe learned
via cross-validation. We call this approach passive, be-
cause in choosing to deliver xm,•, the system did not
foresee the benefit of getting the feedback on that doc-
ument. Consequently, the user effort in providing feed-
back on this item may go wasted as it may not result
in better results (for the user) in the future. We rem-
edy this situation in the next section by proposing our
Active Learning framework for the MTAF approach.
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3.2. Active Learning for Adaptive Filtering

In a classification setting, an AL approach typically
selects instances that (if labeled) are expected to im-
prove the classification performance the most. Along
similar lines, in the MTAF setting, an AL approach
could estimate the perceived benefit of delivering an
item in three different ways. Firstly, does the deliv-
ered item xm,• lead to improved performance on that
task m in the future (based on feedback received on
xm,•). Secondly, will the feedback on delivered item
xm,• lead to improvements in the global model (e.g.
α, µ,Σ)? Finally, does feedback on the delivered item
xm,• lead to improvements in other tasks in the sys-
tem? We propose an Active Learning solution for each
of these objectives in the following sections.

3.2.1. Local Active Learning

In this section, we discuss an AL approach that scores
instances based on the perceived future benefit of de-
livering these instances to the current task m. Con-
sequently, we first define our notion of future benefit
LUGm(xm,•) of delivering an instance to the task m.

LUGm(xm,•|D) =

LSPm(D ∪ (xm,•, ym,•))− LSPm(D) (6)

In the above equation, LSPm(D′) denotes the ex-
pected system performance on task m when trained on
any data D′. Intuitively, the benefit of delivering an
instance xm,• is estimated as the improvement in the
task-specific performance (for task m), if the feedback
of that instance (xm,•, ym,•) was added to the train-
ing set D. In Equation 6, the system doesn’t know
the true label ym,• for the instance xm,•. As a result,
we rephrase the equation as an expectation over the
possible labels.

LUGm(xm,•) =
∑

y∈{0,1}

P (y|xm,•, D)LSPm(D ∪ (xm,•, y))

− LSPm(D) (7)

For the case of Adaptive Filtering, we define the sys-
tem performance in terms of the expected utility of
all potential instances the system will monitor. Con-
sequently, LUGm is the localized utility gain of task
m.

LSPm(D′) =

∫
ΩLUm (xm,◦)

p(xm,◦)LUm(xm,◦|D′)dxm,◦

(8)

In Equation, 8, there are two important points to note.
Firstly, the integral sums over p(xm,◦), i.e. the task-

specific population. It should be noted that each task
in the system may have it’s own sample population
from which documents are being monitored/filtered.
For example, a stock analyst may subscribe to news
feeds from business magazines, while a sports enthu-
siast may subscribe to news feeds from sports maga-
zines, leading to different p(xm,◦) for these two tasks.
(Ofcourse, the sports enthusiast is not interested in all
sports news being served, but only those that match
her interests. It is the goal of the AF system to iden-
tify those interests and filter the relevant news from
the subscribed feed. Hence the system performance is
evaluated over the sample population of the subscribed
feed.). In this Equation, the domain of the integral is
defined as ΩLUm

(xm,◦) = {xm,◦ : LUm(xm,◦|D′) > 0}.
This means that the future system performance will
only be calculated based on the instances that will be
delivered; undelivered instances will be ignored from
the system performance calculation due to the nature
of the T9U utility function.

The second subtle point in Equation 8, is the lo-
calized nature of the utility function LUm(xm,◦|D′).
For computing the expected future system perfor-
mance Sm(D ∪ (xm,•, ym,•)), we compute the utitl-
ity LUm(xm,◦|D ∪ (xm,•, ym,•)) based only on the up-
dated local model wm of the task m. This means,
we do not consider the effect of updating the global
parameters α, µ,Σ after observing the new training
instance (xm,•, ym,•). If wm is the current (trained
on D) local model, we can use the Bayes’ rule to ob-
tain the posterior distribution P (wm|xm,•, ym,•). We
use the variational approximation method suggested
by (Jaakkola & Jordan, 1996) to obtain the poste-
rior. With the knowledge of the posterior distribution
P (wm|xm,•, ym,•), the localized expected utility can
then be defined as:

LUm(xm,◦|D ∪ (xm,•, ym,•)) =∫
wm

∑
y∈{0,1}

ψyP (y|xm,◦,wm)P (wm|xm,•, ym,•)dwm

(9)

In the Adaptive Filtering setting, the system will then
choose to deliver items that provide immediate utility
Um(xm,•|D), or are potentially beneficial in improving
the system in future iterations, as estimated by ex-
pected future utility LUGm(xm,•|D). We express the
joint objective as a linear combination:

LALm(xm,•|D) = Um(xm,•|D) + δLLUGm(xm,•|D)
(10)

Here, δL is the weightage given to the AL component
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of the system. We discuss the nature of this weight
in Section 3.2.5. Owing to the localized focus of this
approach on the perceived improvement of the cur-
rent task, we call this approach Local Active Learning
(LAL). We expect LAL to perform well if the global
model, consisting of α, µ,Σ, is already strong, and thus
does not need to be updated. Thus, LAL is expected
to be effective on new tasks that are added to an al-
ready well-performing MTAF system. We deal with
the case of the improving the global model in the next
section.

3.2.2. Global Active Learning

As mentioned in the previous section, LAL does not
foresee the updates/improvements in the global model
consisting of Θ = {α, µ,Σ}. Global AL (GAL) fixes
this by updating the global model for computing the
expected utility gain in Equation 7. It should be noted
that, just like LAL, the goal of GAL is still to improve
the future performance of task m (the task to which
the system plans to deliver instance xm,•), albeit based
on improvements in the global model. Consequently,
we define the estimation of the global utility function
GUm(xm,◦|D ∪ (xm,•, ym,•)). This is a modification of
localized utility LUm(xm,◦|D ∪ (xm,•, ym,•)) in equa-
tion 9.

GUm(xm,◦|D ∪ (xm,•, ym,•))

=

∫
Θ

∑
y∈{0,1}

ψyP (y|xm,◦,Θ)

P (Θ|xm,•, ym,•)dΘ

=

∫
Θ

∑
y∈{0,1}

∫
wm

ψyP (y|xm,◦,wm)

P (wm|Θ)(P (Θ|xm,•, ym,•)dwmdΘ
(11)

It is important to note that the posterior model global
P (Θ|(xm,•, ym,•) has been trained on additional avail-
able feedback from the task m only. This is because,
we are computing the expected global future utility if
the instance is delivered to task m, that is if the feed-
back is received from task m. Replacing local utility
LU in Equation 8 with expected future global utility
GU , we get the globalized system performance GSPm

of task m.

GSPm(D′) =

∫
ΩGUm (xm,◦)

p(xm,◦)GUm(xm,◦|D′)dxm,◦

(12)
Substituting the globalized system performance GSPm

from Equation 12 into Equation 7, we get the global-

ized utility gain

GUGm(xm,•) =
∑

y∈{0,1}

P (y|xm,•, D)GSPm(D ∪ (xm,•, y))

− GSPm(D) (13)

Finally, substituting the globalized utility gain GUGm
into Equation 14, we get the scoring function for the
Global Active Learning GAL approach.

GALm(xm,•|D) = Um(xm,•|D) + δGGUGm(xm,•|D)
(14)

3.2.3. Benevolent Active Learning

So far, LAL and GAL have focused on improved per-
formance of the task m to which the system plans to
deliver the instance xm,•. But it is not clear if the
feedback on that instance will lead to improvements
in other tasks. To achieve this goal, we devise another
AL score, called Benevolent AL, as the system tries
to deliver instances to task m that might lead to im-
provements in other tasks. In this context, we revise
the definition of GSPm to BSPm, which sums over
the performance of each task in the system, based on
the feedback received on the instance xm,• delivered
to task m.

BSPm(D′) =

M∑
m′=1

∫
ΩGUm (xm′,◦)

p(xm′,◦)GUm(xm′,◦|D′)dxm′,◦

(15)

It is important to note that inside the summation for
each task m′, the instances xm′,◦ are being sampled
from the distribution p(xm′,◦) of incoming documents
for that particular task m′. This stems from the fact
that the distribution of incoming instances P (xm) may
be different for different tasks, as discussed earlier.
Based on BSPm, for clarity and completeness, we pro-
vide the Equations of the corresponding utility gain
BUGm and AL scores BALm.

BUGm(xm,•) =∑
y∈{0,1}

P (y|xm,•, D)BSPm(D ∪ (xm,•, y))− BSPm(D)

(16)

BALm(xm,•|D) = Um(xm,•|D) + δBBUGm(xm,•|D)
(17)
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3.2.4. Analysis of LAL, GAL, and BAL

In Table 2, we summarize the major ideas from pro-
posed AL approaches. Each approach focuses on
improvements in different parameters of the model,
thereby leading to different consequences. The LAL
approach focuses on improving its own task. Such
approach can be expected to perform well when the
global model is already strong, and less susceptible to
drastic change based on feedback on a new instance.
The GAL approach restimates the global model, but
in the process computes the future utility only based
on the current task. This selfish strategy of modifying
the global model without foreseeing the effect on other
tasks in the system can be detrimental to the over-
all performance of the model, making this approach
undesirable. The BAL approach updates the global
model, but at the same time studies the effect of the
update on the utility gain of other tasks in the sys-
tem, thereby ensuring that the global model doesn’t
get biased towards a particular task. Consequently,
we expect BAL to perform superior to other methods
in the initial stages of AF when global model is weak.

Table 2. A comparative summary of AL approaches. The
first column lists the AL score to decide delivery of instance
xm,• to task m. The second column lists the parameters
that will be (potentially) improved (for better future util-
ity) if the system retrains on the feedback received on the
instance delivered based on the corresponding AL score

Delivery criteria Potentially improved parameters

based on feedback

LALm wm

GALm wm, α, µ,Σ

BALm α, µ,Σ,wm′ , ∀m′ ∈ {1, . . . ,M}

3.2.5. Combined AL for MTAF

Based on the discussion in the previous section, each of
the above methods can be combined to come up with
a meta-AL system for AF that tries to satisfy multi-
ple objectives at different phases of learning. We use
weighted linear combination of the individual utility
gain scores to come up with the Meta AL score

MALm(xm,•|D) = Um(xm,•|D) + δLLUGm(xm,•|D)

+ δGGUGm(xm,•|D) + δBBUGm(xm,•|D) (18)

The weight parameters δL, δG and δB should vary with
the quality of the model, local as well as global. A

stronger global model means lower δG. Similarly, δB
should decrease so that the tasks can then focus on im-
proving locally, thereby maintaining a higher value of
δL. We test these hypotheses empirically in Section 4.3

4. Experiments

4.1. Datasets

We chose to use 2 datasets that are popular in
the TREC filtering community, namely, RCV1 (84
categories, 810,000 documents) (Lewis et al., 2004)
and 20 Newsgroups (20 categories, 18,846 docu-
ments) (Joachims, 1997). For both datasets, we mod-
eled each category as a task. For experiments on both
datasets, we start AF with only one known relevant
document per task. It should be noted that RCV1
is a multi-labeled dataset, meaning each document
belongs to multiple classes/tasks, thereby indicating
some level of overlap/relatedness among tasks (e.g.
tasks sharing the same documents). 20 Newsgroups is
not multi-labeled and each document belongs to only
one class. However, it is known that the categories
can be grouped into 6 groups based on subject matter,
namely, comp.*, rec.*, sci.*, talk.*, misc.* and others.
Thus, the relatedness of tasks is in the feature-space,
as documents are not shared among tasks. For exam-
ple, the feature computer is a strong indicator of the
tasks in comp.* group. We chose this dataset to see if
the MTAF approaches are able to discover these hid-
den groups of related categories, even if the documents
are not shared among tasks.

4.2. Methods

Primarily, we are interested in comparing the four Ac-
tive Learning approaches LAL, GAL, BAL and MAL
in the MTAF setting to see which approach rapidly
improves utility, and how they perform in the various
phases of filtering. We also wish to compare these 4 ap-
proaches to the passive version that decides to deliver
an instance without taking any future utility gain into
account. (i.e. delivery criteria is Um(xm,•|D) > 0).

4.2.1. STAF baselines

(Zhang et al., 2003) devised a strategy called ex-
ploration and exploitation to perform Active Adap-
tive Filtering, and our AL framework is inspired by
their work. The exploitation component is a passive
AF strategy that delivers an item if Um(xm,•|D) > 0.
The exploration component is an Active Learning com-
ponent based on a metric called Utility Divergence,
similar to the Utility Gain score developed in this
paper. Utility Divergence, however, doesn’t com-
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pute the actual gain in utility of the system based
on feedback on the instance. It instead computes
the difference between the expected utility of a hy-
pothetical true model Θ∗ and the model based on
expected feedback Θ|(xm,•, ym,•) and instances are
scored based on their potential to reduce the gap be-
tween utility of the true model and utility of the cur-
rent model. In our results, we will refer to these ap-
proaches as STAF-passive (only exploitation), STAF-
active-UD (exploitation and exploration using Utility
Divergence score).

4.2.2. A note on implementation

The various methods were implemented in MATLAB.
For integrating over the posterior distribution of a vari-
able (e.g. w∗k), we used the Metropolis Hastings algo-
rithm. Specifically, we draw several (S) samples from
the posterior of the corresponding distribution of the
variable, and averaged over the various outputs to ob-
tain a probabilistic integral, similar to the approach
described in (Zhang et al., 2003). For example, to
implement Equation 3, we sample S samples from the
posterior distribution P (w|D) and the integration was
implemented as:

U(x|D) =
1

S

S∑
s=1

∑
y∈{0,1}

ψyP (y|x,w(s)) (19)

In this specific case, the posterior distribution
was derived by using the Laplace approximation
method (Xue et al., 2007). Other posterior distribu-
tions for the MTAF case were based on the derivations
available in (Xue et al., 2007). For integrating over
P (x), the samples were drawn from the data stream
observed so far, consisting of delivered and undelivered
items, to get a non-parametric estimate of P (x).

4.3. Experimental Results and Discussion

First we compare the MTAF approaches (MTAF-
Passive, LAL, GAL, BAL, and MAL) to test the hy-
potheses we made in Section 3.2.4. Figure 2 shows the
trends (in terms of T9U utility) on the RCV1 dataset.
AL approaches are typically most effective in the initial
phases of filtering and so the Figure 2 shows perfor-
mance upto the filtering of the first 5000 instances on
the RCV1 dataset. The results validate our hypoth-
esis that the LAL approach performs quite poorly in
the initial stages of filtering, when the global model
itself is quite weak. It can also be observed that BAL
approach, that tries to improve the overall utility of
all the tasks in the system performs the best initially.
This is because improved utility of all tasks reflects in

an stronger global model. LAL improves at a faster
pace once the learnt global model is stronger (due to
learning from more feedback). The GAL approach,
that tries to improve the global model, without foresee-
ing improvements (or degradation) in other task per-
forms inferior to the LAL approach. We believe that
the GAL approach sometimes makes wrong decisions
about instance selection, by selecting those instances
that will lead to improvement in one task, but mostly
degrade other tasks (because the utility gain in tasks is
not taken into account). We found that setting δG = 0
in Equation 18, i.e. ignoring the GUGm component
corresponding to GAL, in the MAL approach led to
better performance of MAL. Consequently, the MAL
approach, which combines the strengths of the LAL
and the BAL approaches, outperforms all the other
approaches.

Figure 2. Comparison of the MTAF AL approaches on the
RCV1 dataset (similar trends for 20 Newsgroups)

Next, we compare representative MTAF approaches
(MTAF-passive and MTAF-MAL) to the STAF ap-
proaches to study the benefit of using a multi-tasking
setup. We also compare the AL scoring functions: our
Utility Gain (UG) criteria and the Utility Divergence
(UD) criteria proposed in (Zhang et al., 2003). We
call these variants of the STAF-active approach STAF-
active-UG and STAF-active-UD respectively. In Fig-
ure 3, we observe that the MTAF approaches, active as
well as passive, outperform their STAF counterparts.
It can be observed that our best performing approach,
MAL (T9U = 423), has a performance improvement
of more than 20 percent over that of STAF-active-UD
(T9U=348). A paired t-test shows strong statistically
significant evidence (p-value = 0.0002) for the supe-
riority of our approach over the current state-of-art
STAF-active-UD. We also observe that the starting
utility of the MTAF approaches is higher, due to in-
formation sharing between tasks, to overcome the per-
task data sparsity problem in the STAF approaches.
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Regarding the AL score, we observe that the perfor-
mance of UG and UD is quite similar for STAF-active.
Empirically, it seems that the goal of UD (reduce the
gap between the utility of a hypothetical true model
and the learnt model) is quite similar to the goal of
UG (increase the future utility of the learnt model the
most).

Figure 3. Comparison of MTAF and STAF approaches on
the 20 Newsgroups dataset (similar trends for RCV1)

5. Conclusion and Future Work

In this paper, we have explored various Active Learn-
ing approaches to the Multi-Task Adaptive Filtering.
To score the benefit of delivering an instance, we devel-
oped a new metric called Utility Gain that estimates
the improvement in system performance (in terms of
utility) if the system is re-trained on the feedback re-
ceived for the delivered instance. In the MTAF set-
ting, we compare the effect of selfish (local) AL ap-
proaches (that focus on improvements in one task) to
a benevolent AL approach (that evaluates the bene-
fit of labeling an instance across many tasks). Our
empirical analysis demonstrates the superior perfor-
mance of the benevolent approach in the initial phase
of filtering, when the global model of the MTAF sys-
tem is weak, while a more rapid improvement in the
performance of the selfish approaches in later stages,
when the global model is strong (i.e. global model may
not benefit much from AL). We also demonstrate that
a combined approach, called meta-AL, that combines
the strengths of local and benevolent AL approaches,
is superior to the individual approaches.

There are several areas for exploration in the future.
The sampling approaches presented in this work can
be infeasible in a large-scale adaptive filtering system
with millions of tasks. In such an environment, it is
necessary to first segregate the tasks so that each of the
smaller AF systems can handle their respective tasks.

It is also necessary to derive analytic solutions to the
sampling strategies described here to come up with
closed-form/quicker expected future utility evaluation
schemes. Another challenge is the problem of spam. In
a practical MTAF system, how does the MTAF system
protect its genuine users/tasks from other malicious
users. In a benevolent AL approach the feedback from
the malicious users is potentially harmful to the sys-
tem, and consequently to the genuine users. So how
does a Benevolent AL approach safeguard againt ma-
licious use?
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