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Abstract

Pseudo-likelihood and contrastive divergence
are two well-known examples of contrastive
methods. These algorithms trade off the
probability of the correct label with the prob-
abilities of other “nearby” instantiations. In
this paper we explore more general types of
contrastive objectives, which trade off the
probability of the correct label against an
arbitrary set of other instantiations. We
prove that a large class of contrastive ob-
jectives are consistent with maximum likeli-
hood, even for finite amounts of data. This
result generalizes asymptotic consistency for
pseudo-likelihood. The proof gives signifi-
cant insight into contrastive objectives, sug-
gesting that they enforce (soft) probability-
ratio constraints between pairs of instanti-
ations. Based on this insight, we propose
Contrastive Constraint Generation (CCG),
an iterative constraint-generation style algo-
rithm that allows us to learn a log-linear
model using only MAP inference. We evalu-
ate CCG on a scene classification task, show-
ing that it significantly outperforms pseudo-
likelihood, contrastive divergence, and a well-
known margin-based method.

1. Introduction

Learning Markov random fields is difficult because
computation of the normalization term, generally re-
ferred to as the partition function Z, is intractable
for many types of networks. Recently there has
been significant interest in contrastive methods such
as pseudo-likelihood (Besag, 1975) and contrastive di-
vergence (Hinton, 2002). The main idea of these al-
gorithms is to trade off the probability of the correct
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assignment for each labeled example with the probabil-
ities of other, “nearby” assignments. This means that
these algorithms do not need to compute the partition
function Z. Unfortunately, these algorithms can suf-
fer when the distribution is highly multi-modal, with
multiple distant regions of high probability.

LeCun & Huang (2005), Smith & Eisner (2005), and
Liang & Jordan (2008) all consider the general case of
contrastive objectives, where the contrasting set can
consist of arbitrary assignments. However, previous
work has not pursued the idea of non-local contrastive
objectives. Rather than restrict the objective to con-
sidering assignments which are close to the correct la-
bel as in pseudo-likelihood and contrastive divergence,
we allow comparison to any assignment.

We prove several results which justify the use of
non-local contrastive objectives. We show that a
wide class of contrastive objectives are consistent with
maximum likelihood, even for finite data under cer-
tain conditions. This generalizes and is a consider-
ably stronger result than the asymptotic consistency of
pseudo-likelihood. A central idea of this result is that
contrastive objectives attempt to enforce probability-
ratio constraints between different assignments, based
on the structure of the objective. Among other con-
sequences, this result clearly points out cases in which
pseudo-likelihood (and other local methods) may fail.

Based on this insight, we propose Contrastive Con-
straint Generation (CCG), a constraint-generation
style algorithm that iteratively constructs a con-
trastive objective based only on a MAP-inference pro-
cedure. While similar in flavor to the max-margin
cutting plane algorithm suggested by Tsochantaridis
et al. (2005), our method has the ability to obtain
accurate probability estimates. We compare CCG
to pseudo-likelihood, contrastive divergence, and the
cutting-plane algorithm on a real-world machine vision
problem; CCG achieves a 12% error reduction over the
best of these, a statistically significant improvement.
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2. Contrastive Objectives

We consider prediction problems in which we try to
predict a discrete label variable (or set of variables)
Y given a set of features X. We are given a data
set D of m examples. The ith example di = (xi,yi)
consists of observed features xi and a correct label
yi. We use P̂ (Y|X) = |di:(xi,yi)=(X,Y)|

Ẑ(X)
to refer to

the empirical distribution observed in our data set D,
where Ẑ(X) = |di : xi = X|. We are also given a
set of R feature functions f1(X,Y), . . . , fR(X,Y); let
f(X,Y) be a vector containing all feature functions.

Given a vector of R weights θ, our model assigns

probability Pθ(Y = y|X = x) = eθT f(x,y)

Z(x) , where

Z(X = x) =
∑

y eθT f(x,y). The (log) likelihood ob-
jective is LL(θ;D) =

∑
(xi,yi) log Pθ(yi|xi).

The main idea of our approach is to define smaller
terms over subsets of Y.
Definition 1. Let Sj be some subset of values of Y.
The (conditional) contrastive probability distribution

for Sj is Pθ,j(y|x) = eθT f(x,y)

Zj(x) , where Zj is the con-

trastive partition function Zj(x) =
∑

y∈Sj
eθT f(x,y).

We refer to this distribution as contrastive because it
compares the (unnormalized) probabilities of the val-
ues of Y in Sj . One important property of this distri-
bution is that it also implicitly compares normalized

probabilities: eθT f(x,y)

Zj(x) = Pθ(y|x)P
y′∈Sj

Pθ(y′|x) due to cancel-

lation of the global partition function.
Definition 2. A contrastive sub-objective Cj(θ;D)
is a weighted maximum-likelihood objective with the
model distribution Pθ replaced by the contrastive dis-
tribution Pθ,j for some subset Sj:∑

(xi,yi):yi∈Sj

wj(xi)
(
θT f(xi,yi)− log Zj(xi)

)
.

wj(x) is a parameter of the sub-objective that deter-
mines the overall strength of the sub-objective as well
as the relative importance of each value of x.

A contrastive objective C(θ;D) is a sum of J sub-
objectives Cj , each with a different subset Sj and set
of weights wj(x). C is tractable to compute (and
optimize) if the contrastive partition functions are
tractable to compute. In some cases, we can com-
pute the contrastive partition function Zj(x) even if Sj

contains an exponential number of values, e.g., using
dynamic programming for tractable sub-structures.

We say that sub-objective Cj is active for example
(xi,yi) if yi ∈ Sj and wj(xi) > 0. The number of ac-
tive sub-objectives for a particular data set D may be
much smaller than the total number of sub-objectives.

For now, we assume that C is given. We will discuss
how to construct contrastive objectives in Section 5.

2.1. Related Learning Methods
The log-likelihood objective LL(θ;D) is a con-

trastive objective with one sub-objective C1, where S1

contains all values in Y and w1(x) = 1 for all x.

If Y is an MRF (or CRF), contrastive objectives are
a generalization of pseudo-likelihood (PL). Let yl be
the value of node l in our network, y−l be the value
of all nodes except node l, and (y−l, yl) be a combined
instantiation to y which matches yl for node l and
y−l for all other nodes. Let dom(Yl) denote the set
of possible values of Yl. For each l, for every possi-
ble instantiation y−l, we have one sub-objective Sy−l

that contains exactly the set of instantiations consis-
tent with y−l, i.e., (y−l, Yl = a) for all a ∈ dom(Yl).
All sub-objective weights wy−l

(x) are set to 1. Since
a sub-objective Cy−l

is only active for examples where
yi ∈ Sy−l

, it follows that each example participates in
n sub-objectives, where n is the number of variables
in the network. This yields the contrastive objective∑
(xi,yi)

∑
l

(
θT f(xi,yi)− log

∑
a∈dom(Yl)

eθT f(xi,(yi
−l,a))

)
,

which is the definition of pseudo-likelihood. All of the
sub-objectives in PL are local ; they only involve in-
stantiations that differ on a single node. Generalized
pseudo-likelihood (GPL) can also easily be expressed
in this framework. In GPL two or more variables are
allowed to vary. This can lead to large, potentially ex-
ponential sub-objectives. In some cases, dynamic pro-
gramming can render inference tractable within sub-
objectives. Unlike GPL, our framework allows us
to vary multiple variables at a time without including
all possible combinations of these variables, giving us
considerably more flexibility.

Another related learning method is contrastive di-
vergence (CD), which approximates the gradient of
maximum likelihood using a non-mixed Markov chain,
initialized at the label of the current example. CD is
generally defined by the update rule

∆θt =
∑

(xi,yi)

ft(xi,yi)− EP k
θ
(ft(xi,yi)),

where P k
θ is the distribution over y obtained by initial-

izing some MCMC procedure at xi and running for k
steps.1 CD cannot be expressed as a contrastive ob-
jective, because CD uses P k

θ to compute expectations
rather than Pθ. This means that the probability-ratio
matching intuitions in the next section do not hold for

1In practice, it is intractable to compute the expectation
over P k

θ exactly; instead, it is estimated through sampling.
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CD. In fact, CD does not optimize any objective. This
means that CD requires using stochastic gradient for
optimization, whereas a contrastive objective can be
optimized using a variety of methods (in this paper,
BFGS). Furthermore, similar to PL, standard imple-
mentations of CD are local: they compare the correct
label yi only to nearby values y′.

3. Theoretical Results

The main results of this section show the finite and
asymptotic consistency of contrastive objectives, un-
der suitable conditions on the model distribution Pθ

and sub-objectives Cj . The proofs of these theoretical
results also illustrate a key feature of contrastive objec-
tives: if two label values y,y′ are connected through a
series of sub-objectives, then the objective will encour-
age Pθ(y|x)

Pθ(y′|x) to match P̂ (y|x)

P̂ (y′|x)
. This will be the main

motivation for the methods we propose in Section 5
for choosing non-local sub-objectives.

3.1. Finite Consistency
Let Θ be the set of all possible parameter vectors

θ, and let PΘ denote the set of all possible models Pθ

obtainable using θ ∈ Θ. We say that PΘ can repre-
sent probability distribution P ′(Y|X) if there exists
parameters θ′ ∈ Θ such that Pθ′(Y|x) = P ′(Y|x) for
all x. Let Θ[P ′] denote the set of such θ′.

While asymptotic representability (i.e., PΘ being
able to represent P ∗(Y|X)) is a standard concept in
analysis of learning algorithms, finite representability
(PΘ being able to represent P̂ (Y|X)) is less common.
Suppose PΘ can represent P̂ (Y|X). In many cases, we
only see each X = x one time in our data set D, which
means that P̂ (Y|X) will have a point estimate on the
correct label yi for each xi. Thus, it can be a fairly
strong condition on our model class PΘ.

However, if we expand the set of allowed weight
vectors Θ to include a certain type of infinite length
weight vectors (defined by a direction in weight space),
it is possible to show that representability is actually a
weaker condition than separability, a commonly-used
condition in analysis of learning algorithms. Even
without infinite-length weight vectors, if D is separable
then we can obtain an arbitrarily close approximate to
P̂ using finite-length weight vectors. We will assume
exact representability for the remainder of this section,
but replacing with “near-exact” representability would
only slightly weaken the results (specifically, it would
add an arbitrarily small approximation factor).

Let P̂j be the contrastive observed data distribution

relative to Sj : P̂j(y|x) = |(xi,yi)=(x,y)|
Ẑj(x)

= P̂ (x,y)P
y∈Sj

P̂ (x,y)

where Ẑj(x) = |(xi,yi) : xi = x,yi ∈ Sj |.

Lemma 1. Suppose that PΘ can represent P̂ (y|x).
Then for any contrastive objective C(θ;D),

i. If θ̂ ∈ Θ[P̂ ], C(θ;D) has a global optimum at θ̂.
ii. If θ′ optimizes C(θ;D), then for any j,x such

that P̂ (x)wj(x)(
∑

y∈Sj
P̂ (y|x)) > 0, we have

Pθ′,j(y|x) = P̂j(y|x).

We omit proofs of this and subsequent results for
lack of space.

Corollary 1. Suppose that PΘ can represent P̂ (y|x)
and θ′ optimizes C(θ;D). Also suppose y1,y2 ∈ Sj,
P̂ (x) > 0, P̂ (y1|x) > 0, and wj(x) > 0. Then
Pθ′ (y2|x)
Pθ′ (y1|x) = P̂ (y2|x)

P̂ (y1|x)
.

Thus, probability ratios according to Pθ′ match
those according to P̂ within a sub-objective set.

Definition 3. We are given a set of sub-objectives
Cj with weights wj(x). For a fixed feature value x,
we say that there is a path from y1 to y2 relative to
probability distribution P (Y|x) if there is a sequence
Sjb

: b = 1, ..., k such that

i. y1 ∈ Sj1 and y2 ∈ Sjk

ii. for every pair Sjb
, Sjb+1 , there exists zb ∈ dom(Y)

s.t. zb ∈ Sjb
, zb ∈ Sjb+1 , and P (zb|x) > 0

iii. wjb
(x) > 0 for all jb

Intuitively, this definition means that it is possible
to “walk” from y1 to y2: if you are currently at value
y, you are allowed to move to any other value y′ if y
and y′ both are contained in some sub-objective set Sj

with positive weight wj(x). If P (y′|x) = 0, the walk
must stop; otherwise it can continue.

Lemma 2. Suppose that PΘ can represent P̂ (y|x) and
θ′ optimizes C(θ;D). Also, suppose that P̂ (x) > 0,
P̂ (y1|x) > 0, and there is a path from y1 to y2 relative
to P̂ (Y|x). Then Pθ′ (y2|x)

Pθ′ (y1|x) = P̂ (y2|x)

P̂ (y1|x)
.

This result follows from applying Corollary 1 to each
sub-objective along the path from y1 to y2. We now
have that the probability ratios according to Pθ′(y|x)
match those according to P̂ (y|x) for any pair of values
y1,y2 connected by a path (relative to P̂ (Y|x)).

Definition 4. For fixed x, a set of sub-objectives Sj

with weights wj(x) span Y relative to a probability dis-
tribution P (Y|x) if for every pair of values y1,y2 there
is a path from y1 to y2 relative to P (Y|x).

Note that this condition requires the total size of
our sub-objectives to be at least the cardinality of Y.

Let Θ′ be the set of θ′ that optimize C(θ;D).
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Theorem 1. Suppose that PΘ can represent P̂ (y|x).
Furthermore, suppose that for every xi (i.e., every
value of X observed in D), our sub-objectives Sj with
weights wj(xi) span Y relative to P̂ (Y|xi). Then
Θ′ = Θ[P̂ ]. That is, θ′ optimizes C(θ;D) if and only
if Pθ′(Y|xi) = P̂ (Y|xi) for all xi.

This result follows directly from Lemma 2 and the
definition of span.

The optima of the log-likelihood objective are ex-
actly Θ[P̂ ] (provided PΘ can represent P̂ (y|x)). Thus,
the optima of any contrastive objective fulfilling the
conditions of the previous theorem are exactly the
same as those of the log-likelihood objective.

3.2. Asymptotic Consistency
Asymptotic consistency also holds for certain con-

trastive objectives. If the true data distribution P ∗

is in our model class (with parameters θ∗ ∈ Θ[P ∗]),
then in the limit of infinite data, our objective will re-
cover the correct parameters provided that it spans
Y. Asymptotic representability is a considerably
weaker condition than finite representability, because
the model does not need to capture noise in the data.

Let {d1, d2, . . . } be an infinite sequence of examples
drawn i.i.d from P ∗(X,Y). We refer to the data set
composed of the first n of these as Dn, and its empir-
ical distribution as P̂ (y|x;Dn). By the strong law of
large numbers, P (limn→∞ P̂ (y|x;Dn) = P ∗(X,Y)) =
1, or in short-hand P̂ converges to P ∗ almost surely
P̂ (y|x;Dn) a.s.→ P ∗(y|x) as n →∞.

Let θ(n) be a sequence of weight vectors {θ1,θ2, . . . }
such that for all n, θn optimizes C(θ;Dn).
Theorem 2. Suppose PΘ can represent P ∗(y|x). Fur-
thermore, suppose that for every x such that P ∗(x) >
0, our sub-objectives Sj with weights wj(x) span Y rel-
ative to P ∗(Y|x). Then for any θ(n) and any x such
that P ∗(x) > 0, Pθn(Y|x) a.s.→ P ∗(Y|x) as n →∞.

The proof of this theorem follows the same lines as
finite consistency, with the additional use of the law of
large numbers. All of the intermediate lemmas hold in
the infinite data case; in particular, values y,y′ that
are connected through a series of sub-objectives have
calibrated probability ratios. Note that this theorem
does not depend on the previous one: asymptotic con-
sistency can hold even if finite consistency does not.

From this result we can derive consistency of pseudo-
likelihood for strictly positive data distributions Pθ∗

(i.e., Pθ∗(y|x) > 0 for all y,x), simply by noting that
in the limit of infinite data, the set of active PL sub-
objectives will span Y. It is also easy to see why PL
is usually not consistent with finite data (it is unlikely
to span the space), and why it may not be consistent

for non-positive data distributions (again, because it
may not span the space).

The most important practical implication from this
section is that a contrastive objective attempts to cal-
ibrate probabilities within connected components of
sub-objectives, but cannot calibrate probabilities be-
tween disconnected components. This has important
implications for the performance of PL (and other lo-
cal contrastive objectives), as we will see in Section 6.

4. Analyzing the Weights
So far we only considered whether wj(x) > 0. To

better understand the effect of the weights on the ob-
jective, we write the weights as a combination of three
terms, wj(x) = w(x)∗

∑
y P (Cj |y,x)Q(y|x), each cho-

sen by the designer of the contrastive objective.

w(x) allows the designer to reweight the relative im-
portance of terms in the objective corresponding to
different values of x. This could be useful if we be-
lieve that the empirical distribution P̂ (x) observed in
our data does not match the true (or desired) distribu-
tion over x. P (Cj |y,x) allows the designer to choose
the relative importance of different sub-objectives for
a particular value of the label variable y (and also rela-
tive to a feature value x). P (Cj |y,x) is constrained to
be a probability distribution such that P (Cj |y,x) > 0
only when y ∈ Sj . Q(y|x) is an auxiliary probabil-
ity distribution that allows the designer to choose how
important each y is to the objective.

Since P and Q are probability distributions, the sum
of all weights wj(x) for a given x is w(x). Thus, P and
Q do not affect the relative influence of different values
of x. This decomposition of the weights wj(x) is over-
parametrized; it is not hard to show that we can write
any choice of wj(x) in this form.

We now state a strong relationship between a par-
ticular contrastive objective and LL(θ;D):

Lemma 3. Let C contain a sub-objective Sjk for every
pair of instantiations yj ,yk (including singleton sub-
objectives where yj = yk). Let w(x) = |Y| for all x,
let P (Cjk|y,x) = 1

|Y| if y ∈ Cjk, 0 otherwise (i.e.,
P is uniform over sub-objectives containing y), and
Q(y|x) = Pθ0(y|x) for some fixed parameter vector
θ0. Then dC

dθ |θ0 = dLL
dθ |θ0 .

Thus, at any point θ in weight space, we can con-
struct a contrastive objective tangent to log-likelihood
at θ. As a result, we can optimize LL using an
EM-like algorithm. We initialize with weight vec-
tor θ0. During the ith Expectation step, we update
Q(y|x) = Pθi−1(y|x). During the ith Maximization
step, we fix Q and use C to compute the gradient of
log-likelihood at θi−1. We then take a step in the direc-
tion of the gradient, obtaining a new weight vector θi.
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Figure 1. Estimate of λ0 (y-axis) vs. λ1 used to generate
the data (x-axis). The plot shows median learned param-
eter value over 100 synthetic data sets, each with 1000
instances. Error bars indicate 25th and 75th percentile es-
timates. Correct λ0 = .139.

This algorithm has some similarities to an algorithm
proposed by Hoefling & Tibshirani (2009) for optimiz-
ing log-likelihood using a series of pseudo-likelihoods.
We omit further discussion for lack of space.

5. Selecting Sub-objectives

In practice we are not going to be able to span Y
with our sub-objectives. In this section, we propose
several techniques for constructing tractable objectives
and examine some of their properties.

5.1. Basic Methods
One simple way to construct sub-objectives is to

use expert knowledge to determine useful values to
compare. In pseudo-likelihood, for example, each sub-
objective corresponds to instantiations which differ on
a (particular) single variable. In generalized PL, sub-
objectives contain all instantiations which differ on a
particular subset of variables.

As a concrete example of a sub-objective which is
not possible using (generalized) PL, we consider a bi-
nary chain MRF (x is empty) with 10 nodes and two
parameters: a single bias term specifying the relative
weight of 0 vs. 1; and a single affinity term spec-
ifying how likely two neighboring nodes are to have
the same value. The log-score of an instantiation is
λ0 ∗ |yi = 1|+λ1 ∗ |yi = yi+1|. For large λ1, the instan-
tiations {000000000} and {1111111111} have much
higher probability than any other instantiations; we
expect PL to have trouble fitting λ0 in this case, since
it does not directly compare the probabilities of these
two instantiations. However, we can augment the PL
objective with an additional sub-objective containing
exactly these two values — we refer to this objective
as Simple Contrastive. Figure 1 shows the error in the
estimate of λ0 as we vary λ1. Simple Contrastive ac-

curately reconstructs λ0 for all values of λ1, while PL
does not. Contrastive objectives constructed in this
way can be quite powerful, but are somewhat difficult
to design. We omit further discussion for lack of space.

A different approach is to use the data D to guide
the selection of sub-objectives. For unconditioned
Markov networks, a simple approach is to construct
sub-objectives which compare different observed val-
ues of the label variables yi. We employed this strat-
egy for the MRF described above, augmenting PL with
a single sub-objective containing all values observed in
D. This objective is referred to as Contrastive. As
shown in Figure 1, Contrastive is also effective at re-
covering λ0, although for low values of λ1, the estimate
is slightly inaccurate.

Simple Contrastive used a static method to choose
sub-objectives: the weights wj(x) do not depend on
the examples observed in D. Contrastive used a dy-
namic method.

Lemma 4. Suppose the wj(x) do not depend on D.
Then EP∗ [dC(θ;D)

dθ |θ0 ] = dC(θ;D∗)
dθ |θ0 for all θ0, where

D∗ is a data set (of possibly infinite size) such that
P̂ (y|x;D∗) = P ∗(y|x).

This lemma shows that for a static method, we get
an unbiased estimate of the gradient at any point θ0.
Suppose that PΘ can represent P ∗(y|x). In this case,
we can apply this lemma at θ0 = θ∗ to get that the ex-
pectation D of the gradient at θ∗ is 0. Loosely speak-
ing, this means that the learned parameters for differ-
ent D sampled from P ∗ will be centered around θ∗.
Dynamic methods have no such guarantee. This bias
in the gradient is precisely the reason why Contrastive
in Figure 1 gives an inaccurate estimate for λ0 for small
values of λ1. However, since dynamic contrastive ob-
jectives are more flexible than static ones, this bias
may often be acceptable in practice.

5.2. Contrastive Constraint Generation
For many problems, the basic approaches presented

above are not sufficiently powerful. We propose a (dy-
namic) method for constructing contrastive objectives
called Contrastive Constraint Generation (CCG).

In CCG, we begin by building an initial contrastive
objective C0 containing relatively few sub-objectives.
During iteration t, we first optimize Ct−1 to obtain a
new weight vector θt. Next, for each example di, we
find one or more “interesting” instantiations based on
the current model Pθt(y|x). Finally, we construct a
new contrastive objective Ct that incorporates these
new instantiations into Ct−1. We repeat this process
until convergence (or until we decide to stop). We now
describe the details of each of these steps.

Initialization. We consider two simple initializa-
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tions: empty (no sub-objectives); and adding all sub-
objectives from Pseudo-Likelihood.

Optimization. This step is straight-forward. We
simply optimize Ct−1 using a method such as BFGS.

Finding Interesting Instantiations. We con-
sider two general methods for finding new instantia-
tions. For simplicity, we assume that only one new
instantiation is generated per round per example, re-
ferred to as yi

t.

The first general method is to use a maximum a-
posteriori (MAP) inference algorithm in order to find
the highest probability y according to Pθt(y|xi). In
practice, the MAP algorithm will be approximate,
i.e., y will not be guaranteed to actually maximize
Pθt(y|xi). We considered two methods in this paper.
The first, iterated conditional modes (ICM), proposed
by Besag (1986), is a simple greedy ascent algorithm.
At each round, a region is chosen at random; the label
of this region is then changed to the value that gives
the highest score . This is repeated until a local max-
imum is reached. The second is max-product belief
propagation (MP) (Pearl, 1988); we use the variant
known as residual belief propagation, proposed by El-
idan et al. (2006). ICM and MP are both randomly
initialized to encourage finding different local optima
from iteration to iteration. We also tried a third infer-
ence method based on dual decomposition, proposed
by Komodakis et al. (2007), but this method obtained
similar results to MP while being significantly slower;
we do not present results for dual decomposition in
this paper.

The second general method uses a sampling algo-
rithm such as Gibbs sampling to generate one or more
instantiations. Contrastive divergence takes this sec-
ond approach, with the sampling algorithm initialized
at yi and run for only a few steps. If we use this
approximate sampling procedure, we end up with an
algorithm that has many similarities with CD. The
main differences are that CCG uses Pθ to score the
instantiations while CD uses P k

θ ; and CD can only use
stochastic gradient methods for optimization.

Building a New Objective. There are many pos-
sible ways to construct a new contrastive objective in-
corporating the new instantiations; we consider one
simple option. For each example di, we construct a
sub-objective Cdi such that, at iteration t, Sdi con-
tains the correct label yi as well as yi

t′ for all t′ ≤ t
(since Sdi is a set, duplicate values are ignored). All
weights wj(x) are set to 1.

Convergence. Convergence is reached when, for
all examples, yi

t has already been seen.

6. Experimental Results

In this section, we apply CCG to a real-world ma-
chine vision problem. We use the street scenes image
data set described by Gould et al. (2009), consisting
of 715 images. Every pixel in each image is labeled
with one of 8 classes. To reduce the computational
burden and to have access to more coherent features,
we took as input the regions as predicted in Gould
et al. (2009). This limits the maximum pixel-wise
accuracy: the best-possible labeling of regions for this
data obtains pixel-wise error of 12.0% (Lower Bound
in Table 1). Our model is a CRF using intra-region
(single node) and inter-region (pairwise) features, also
taken from (Gould et al., 2009). We tested the fol-
lowing learning algorithms:

Independent (I). Only the singleton potentials are
used during training. Equivalent to logistic regression
with individual regions as training examples.

Pseudo-Likelihood (PL). See Section 2.1.

Contrastive Divergence (CD). Each iteration,
we generated a single sample for each data example di

and use it to compute a stochastic approximation to
the gradient. We used Gibbs sampling to generate the
samples, following standard practice for CD (see, for
example, (Bengio, 2009)). We tested three variants:
CD-1, CD-10, and CD-100, which generate samples
using 1, 10, and 100 round of Gibbs, respectively.2

We ran each variant for 10,000 seconds, corresponding
to 50k, 16.5k, and 2k iterations, respectively.

Max-Margin Cutting Planes (MM). This is a
constraint-generation algorithm proposed by Tsochan-
taridis et al. (2005). It uses a margin-based objec-
tive, which tries to find a weight vector θ such that
for every di, the score θT f(xi,yi) of the correct label
yi is larger than θT f(xi,y) + ∆(y,yi) for any other
y, where ∆(y,yi) is a loss function which measures
how much y and yi differ. For these experiments, we
used pixel-wise error as our loss function. The cutting
plane algorithm finds at each step the most violated
constraint, which corresponds to, for each di, finding
the y which maximizes θT f(xi,y) + ∆(y,yi); it then
adds a new constraint based on these values. To find
the most violated constraint, we tried using (appropri-
ately modified versions of) both ICM and MP, which
we refer to as ICM-MV and MP-MV. For our reported
results, we initialized with an empty constraint set; ini-
tializing with constraints corresponding to PL instan-
tiations did not improve performance. This method
has a hyper-parameter C which we chose to maximize
performance on a small subset of the test set. This
method usually converged in about 150-170 iterations.

2In one round of Gibbs sampling, each node is resam-
pled once, in random order.



Non-Local Contrastive Objectives

Table 1. Pixel-wise ICM Test Error

Learning Method Test Error Std Dev
Lower Bound .120 .005
Independent .225 .014
PL .461 .044
CD-1 .225 .016
CD-10 .219 .015
CD-100 .225 .014
MM(ICM-MV) .217 .009
MM(MP-MV) .218 .007
CCG(Gibbs-1+PL) .225 .016
CCG(Gibbs-10+PL) .218 .015
CCG(Gibbs-100+PL) .217 .015
CCG(ICM+PL) .200 .013
CCG(MP+PL) .198 .015
CCG(ICM-MV+PL) .192 .011
CCG(MP-MV+PL) .190 .013

Contrastive Constraint Generation (CCG).
Our method as described in Section 5.2. For initial-
ization, we tried empty initialization and using the PL
sub-objectives. We tried seven total ways of generat-
ing instantiations. First, we used the same sampling
procedures as the CD variants – Gibbs-1, Gibbs-10,
and Gibbs-100. Next, we used the approximate MAP
procedures ICM and MP to generate instantiations.
Finally, we used the most-violated constraint proce-
dures ICM-MV and MP-MV. We refer to, for example,
CCG with MP instantiations and empty initialization
as CCG(MP); with PL initialization, CCG(MP+PL).
The number of iterations required to reach conver-
gence varied based on the initialization and instantia-
tion method, from about 20 iterations for CCG(ICM)
to 85 with CCG(MP+PL), while for the Gibbs vari-
ants, convergence is not reached within 100 iterations
(we stopped at this point).

To evaluate the learned weights, we needed a max-
imum a-posterior (MAP) inference algorithm to pro-
duce the most likely labeling at test time. We found
that ICM consistently outperformed MP as a test-time
inference algorithm, so we only report results using
ICM for test-time inference. Results were generated
using 10-fold cross-validation on the 715 images, re-
porting pixel-wise error. Standard deviations are com-
puted based on the individual results for each fold.

Table 1 shows all tested algorithms except for CCG
with empty initialization. Based on the computed
standard deviations, a difference in error of about .01 is
statistically significant according to an unpaired t-test.
There are two important things to note in this table.
First, methods using non-local instantiations clearly
outperform methods using the more local instantia-
tions generated by Gibbs sampling (even when run for
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Figure 2. Test Error vs. Running Time (in seconds)

100 rounds). The best non-local method, CCG(MP-
MV+PL), decreases absolute error over the best local
method, CCG(Gibbs-100+PL), by 2.7%, a 12% rela-
tive reduction in error. Second, CCG significantly out-
performs the other non-local method, MM; CCG(MP-
MV+PL) reduces absolute error from MM(ICM-MV)
by 2.7% (12% relative error reduction).

CCG is the only algorithm to improve substantially
over Independent. PL more than doubles the pixel-
wise error rate. This is because labels of neighboring
regions are highly correlated — PL relies heavily on
this during training, but at test time, the neighbors
are no longer given. The strong locality of PL is a
significant disadvantage for this problem.

Initializing CCG using PL resulted in small but no-
ticeable gains when using ICM at test time (absolute
difference ranged from .004 to .007). It also signif-
icantly reduced the number of iterations required to
reach convergence. When using MP as the test-time
inference method, we get very bad results with empty
initialization (difference ranged from .145 to .295).

Each algorithm performs a differing amount of work
at each iteration, ranging from CD (least) to CCG
(most). Table 2 shows test accuracy vs. running time
for the CD variants as well as for CCG(ICM+PL). The
number of iterations pictured is 50k, 16.5k, 2k, and 6,
for CD-1, CD-10, CD-100, and CCG(ICM+PL). CD-
1 has converged, CD-10 probably has, while CD-100
has not. Despite the very small number of iterations
for CCG, it is already significantly outperforming CD
at this point. This shows that the non-local instanti-
ations generated by ICM are much more informative
than the instantiations generated by Gibbs sampling.

In fact, the difference between local and non-local
methods is even greater than this graph suggests. Af-
ter six iterations, CCG(Gibbs-1+PL), CCG(Gibbs-
10+PL), and CCG(Gibbs-100+PL) have error rates
.234, .227, and .229, vs. .205 for CCG(ICM+PL); all
have similar running times. CD-n is much faster than
CCG(Gibbs-n+PL), with comparable results at con-
vergence. The main reason for this is that batch opti-
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mization is much slower than stochastic optimization,
at least initially. In future work, we plan to implement
an SGD version of CCG and compare it to CD.

7. Discussion and Related Work
LeCun & Huang (2005) and Smith & Eisner (2005)

present frameworks for learning energy functions by
comparing scores of sets of instantiations. The latter
framework, called contrastive estimation, has the same
functional form as one of our sub-objectives. However,
Smith & Eisner (2005) primarily focus on unsupervised
learning tasks, while this work is mostly aimed at su-
pervised learning. More importantly, these two works
focus on local contrastive objectives, whereas we pro-
pose non-local contrastive objectives, which address
weakness in methods such as PL and CD.

Hyvärinen (2007) proposes an objective for learn-
ing binary Markov networks by trying to match ra-
tios of probabilities between the model and the ob-
served data. This objective minimizes squared-loss in-
stead of log-loss; the advantage of log-loss is that con-
trastive objectives are a direct generalization of both
log-likelihood and PL. Additionally, Hyvärinen (2007)
only proposes matching local probability ratios.

Recently, Gutmann & Hyvärinen (2010) proposed a
method based on learning probability ratios between
the data distribution and some hand-constructed noise
distribution. Similar to our method, it does not require
computation of the global partition function. Unlike
our method, it looks at probability ratios between dif-
ferent distributions, while our method looks at proba-
bility ratios between different instantiations.

Liang & Jordan (2008) provide an asymptotic anal-
ysis of contrastive objectives. They show that under
certain conditions, the more different assignments are
covered by the objective, the more efficient it is as
an estimator. They apply this result to compare the
efficiency of pseudo-likelihood to that of maximum-
likelihood. Their results suggest that increasing the
number of assignments covered by the contrastive ob-
jective leads to improved learning efficiency.

Max-margin-based methods, such as those proposed
by Taskar et al. (2003), also do not need to compute
the global partition function. As discussed above, the
cutting-plane algorithm proposed by Tsochantaridis
et al. (2005) is similar in spirit CCG. Like max-margin
methods, CCG can learn using only MAP inference.
The primary advantage of contrastive objectives over
margin-based methods is that they can calibrate prob-
abilities between instantiations.

Hinton et al. (2004) and Tieleman (2008) improve
CD by adding non-local contrastive terms. Like CD,
these methods do not correspond to an objective. Our

analysis gives a theoretical grounding to non-local con-
trastive learning, including a well-defined objective.
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