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Abstract

In the realm of multilabel classification
(MLC), it has become an opinio communis
that optimal predictive performance can only
be achieved by learners that explicitly take
label dependence into account. The goal of
this paper is to elaborate on this postulate
in a critical way. To this end, we formal-
ize and analyze MLC within a probabilistic
setting. Thus, it becomes possible to look
at the problem from the point of view of
risk minimization and Bayes optimal predic-
tion. Moreover, inspired by our probabilistic
setting, we propose a new method for MLC
that generalizes and outperforms another ap-
proach, called classifier chains, that was re-
cently introduced in the literature.

1. Introduction

In contrast to conventional (single-label) classification,
the setting of multilabel classification (MLC) allows an
instance to belong to several classes simultaneously.
At first sight, MLC problems can be solved in a quite
straightforward way, namely through decomposition
into several binary classification problems: One bi-
nary classifier is trained for each label and used to
predict whether, for a given query instance, this label
is present (relevant) or not. This approach is known
as binary relevance (BR) learning.

However, BR has been criticized for ignoring impor-
tant information hidden in the label space, namely
information about the interdependencies between the
labels: Since the presence or absence of the different

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

class labels has to be predicted simultaneously, it is
arguably important to exploit these dependencies. To-
day, it seems to be an opinio communis that optimal
predictive performance can only be achieved by meth-
ods that explicitly take label correlations into account.

Many papers provide empirical evidence for this con-
jecture: A new method is proposed that exploits label
correlations in one way or the other. Using a set of
benchmark data sets, this method is then shown to
outperform others in terms of different loss functions.
Without questioning the value of these contributions,
one may argue that this is not sufficient to gain a
deeper understanding of the MLC problem. There are
several reasons for this, notably the following.

First, the notion of “label correlation” is often used
in a purely intuitive manner, referring to a kind of
non-independence, but without giving a precise formal
definition. Likewise, MLC methods are often ad-hoc
extensions of existing methods. Second, many studies
report improvements on average, but without carefully
investigating under which conditions label correlations
are crucial, and when they are perhaps less impor-
tant. Third, the reasons for improvements are often
not carefully distinguished. As the performance of a
method depends on many factors, which are hard to
isolate, it is not always clear that the improvements
can be fully credited to the consideration of label cor-
relations.

The goal of this paper is to provide a formal setting
that allows for a more thorough analysis of MLC in
general and label dependence in particular (Section 2).
To this end, we distinguish two types of label depen-
dence, conditional and unconditional, and focus our
analysis on the former. We propose a probabilistic
framework that suggests to look at the problem from
the point of view of risk minimization and Bayes opti-
mal prediction. Concretely, we analyze three types of
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loss functions and, based on the results, raise the fol-
lowing conjecture: While considering conditional label
dependence can indeed be useful for certain loss func-
tions, there are others that are less likely to benefit
(Section 3).

A second important contribution of this paper is a new
method for MLC, called probabilistic classifier chains
(Section 4). It estimates the entire joint distribution of
labels and, therefore, allows us to experimentally con-
firm our theoretical claims (Section 5). This method
generalizes and provides a proper interpretation of
the recently introduced classifier chains (Read et al.,
2009). It also outperforms this algorithm, however, at
the cost of an increased computational complexity.

2. Multilabel Classification

In this section, we describe the MLC problem in
more detail and formalize it within a probabilistic set-
ting. Along the way, we introduce the notation used
throughout the paper.

Let X denote an instance space, and let L =
{λ1, λ2, . . . , λm} be a finite set of class labels. We as-
sume that an instance x ∈ X is (non-deterministically)
associated with a subset of labels L ∈ 2L; this subset is
often called the set of relevant labels, while the com-
plement L \ L is considered as irrelevant for x. We
identify a set L of relevant labels with a binary vector
y = (y1, y2, . . . , ym), in which yi = 1 ⇔ λi ∈ L. By
Y = {0, 1}m we denote the set of possible labelings.

We assume observations to be generated indepen-
dently and randomly according to a probability dis-
tribution P(X,Y) on X × Y, i.e., an observation
y = (y1, . . . , ym) is the realization of a correspond-
ing random vector Y = (Y1, Y2, . . . , Ym). We denote
by Px(Y) = P(Y |x) the conditional distribution of

Y given X = x, and by P
(i)
x (Yi) = P(i)(Yi |x) the

corresponding marginal distribution of Yi:

P(i)
x

(b) =
∑

y∈Y:yi=b

Px(y).

A multilabel classifier h is an X → Y mapping that
assigns a (predicted) label subset to each instance x ∈
X . Thus, the output of a classifier h is a vector

h(x) = (h1(x), h2(x), . . . , hm(x)).

Often, MLC is treated as a ranking problem, in which
the labels are sorted according to the degree of rel-
evance. Then, the prediction takes the form of the
ranking or scoring function:

f(x) = (f1(x), f2(x), . . . , fm(x)) (1)

such that the labels λi are simply sorted in decreasing
order according to their scores fi(x).

The problem of MLC can be stated as follows: Given
training data in the form of a finite set of observations
(x,y) ∈ X × Y, drawn independently from P(X,Y),
the goal is to learn a classifier h : X → Y that gen-
eralizes well beyond these observations in the sense of
minimizing the expected risk with respect to a specific
loss function.

Before having a more detailed look at this problem in
Section 3 below, let us note that the posterior proba-
bility distributions Px(Y) provide a convenient means
for analyzing label dependence. A distribution of this
kind informs about the probability of each label com-
bination as well as the marginals, like in this simple
example of the case m = 2:

Px(Y) 0 1 P
(1)
x (1)

0 0.4 0.0 0.4
1 0.3 0.3 0.6

P
(2)
x (1) 0.7 0.3 1

In a stochastic sense, the labels are not independent if
the joint conditional distribution is not the product of
the marginals (like in the above example):

Px(Y) 6=

m
∏

i=1

P(i)
x

(Yi), (2)

and the degree of dependence could in principle be
quantified in terms of measures like cross entropy or
KL divergence.

More specifically, we shall speak of conditional de-
pendence in the case of (2), since the probabil-
ity of Y is conditioned on the instance x. This
type of (in)dependence can be distinguished from un-
conditional (in)dependence, which looks at the un-
conditional probabilities of labels, i.e., P(Y) and
P(i)(Yi) obtained, respectively by integrating Px(Y)

and P
(i)
x (Yi) over all x. One readily verifies that con-

ditional does not imply unconditional dependence nor
the other way around.

Upon closer examination, it becomes clear that
several MLC methods, including those based on
the idea of stacking (Godbole & Sarawagi, 2004;
Cheng & Hüllermeier, 2009), seek to exploit uncon-
ditional label dependence, and so do related meth-
ods from other fields, like multivariate regression in
statistics (Breiman & Friedman, 1997). As will be-
come clear later on, however, Bayes optimal predic-
tion may require the consideration of conditional de-
pendence. In this paper, we shall therefore focus on
this type of dependence in the first place.
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3. Risk Minimization

In this section, we address the issue of optimal decision
making in light of different loss functions. In general,
we would like to find a risk-minimizing model h∗, i.e.,
a model that minimizes the expected loss over the joint
distribution P(X,Y):

R(h) = EXYL(Y,h(X)),

where L(·) is a loss function on multilabel predictions.
This model is given by

h∗ = arg min
h

EXYL(Y,h(X)) (3)

and determined in a pointwise way by the Bayes opti-
mal decisions

h∗(x) = arg min
y

EY|XL(Y,y). (4)

In the following, we consider the problem of risk mini-
mization for three different types of loss functions that
are frequently used in the context of MLC and to some
extent representative of losses used in this field.

3.1. Hamming Loss

The performance in MLC is perhaps most frequently
reported in terms of the Hamming loss, which is de-
fined as the number (or, in its normalized version, the
fraction) of labels whose relevance is incorrectly pre-
dicted:1

LH(y,h(x)) =
m

∑

i=1

Jyi 6= hi(x)K. (5)

For the Hamming loss (5), it is easy to see that the
risk minimizer (4) is obtained by

h∗
i (x) = arg max

b∈{0,1}
P(i)

x
(b). (6)

In fact, the Hamming loss is a sum of the conventional
0/1 loss functions widely used in binary classification,
so the form of the risk minimizer is not surprising.

3.2. Rank Loss

Another loss function that is commonly used in MLC
is the rank loss. Instead of comparing two label sub-
sets, this loss function compares the true label subset
with a predicted ranking (total order) of labels, as rep-
resented by the ranking function (1). In this ranking,

1For a predicate P , the expression JP K evaluates to 1 if
P is true and to 0 if P is false.

all relevant labels ideally precede all irrelevant ones,
and the rank loss simply counts the number of label
pairs violating this condition:

Lr(y, f(x))=
∑

(i,j):yi>yj

(

Jfi <fjK+
1

2
Jfi =fjK

)

. (7)

In passing, we note that there is also a normalized
variant of the rank loss, in which this number is divided
by the maximum number of possible mistakes on y,
i.e., by the number of summands in (7); this number
is given by r(m − r)/2, with r = y1 + . . . + ym the
number of relevant labels.

To minimize (7), it is enough to sort the labels by
their probability of relevance. Formally, we can show
the following result.

Theorem 3.1. A ranking function that sorts the labels
according to their probability of relevance, i.e., using
the scoring function f(·) with

fi(x) = P(i)
x

(1) , (8)

minimizes the expected rank loss (7).

Proof. The risk of a scoring vector f = f(x) can be
written as

EY |XLr(Y, f) =
∑

y∈Y

Px(y)Lr(y, f) =

=
∑

y∈Y

Px(y)
∑

yi>yj

(

Jfi < fjK +
1

2
Jfi = fjK

)

.

The two sums can be swapped, and doing so yields the
expression

∑

1≤i,j≤m

∑

y∈Y

Px(y)Jyi > yjK

(

Jfi < fjK +
1

2
Jfi = fjK

)

which in turn can be written as
∑

1≤i<j≤m

g(i, j) + g(j, i)

with

g(i, j) = Px(yi > yj)

(

Jfi < fjK +
1

2
Jfi = fjK

)

.

For each pair of labels yi, yj , the sum g(i, j)+ g(j, i) is
obviously minimized by choosing the scores fi, fj such
that fi ≤ fj if and only if Px(yi > yj) ≤ Px(yj > yi),

and since Px(yi >yj)−Px(yj >yi)=P
(i)
x (1)−P

(j)
x (1),

the condition on the right-hand side is equivalent to

P
(i)
x (1) ≤ P

(j)
x (1). Consequently, the scores (8) min-

imize the sums g(i, j) + g(j, i) simultaneously for all
label pairs and, therefore, minimize risk.
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3.3. Subset Zero-One Loss

Finally, it is of course also possible to generalize the
well-known 0/1 loss from the conventional to the mul-
tilabel setting:

Ls(y,h(x)) = Jy 6= h(x)K . (9)

This loss function is referred to as subset zero-one loss.
Admittedly, it may appear overly stringent, especially
in the case of many labels. Moreover, since making
a mistake on a single label is punished as hardly as
a mistake on all labels, it does not discriminate well
between “almost correct” and completely wrong pre-
dictions. Still, this measure is obviously interesting
with regard to dependence between labels.

The Bayes prediction for (9) is rather straight-forward.
As for any other 0/1 loss, it simply consists of predict-
ing the mode of the distribution:

h∗(x) = arg max
y∈Y

Px(y) . (10)

3.4. Consequences and Conjectures

As one of the most important consequences of the
above results we note that, according to (6) and (7),
a risk-minimizing prediction for the Hamming and the
rank loss can be obtained from the marginal distribu-

tions P
(i)
x (Yi) (i = 1, . . . ,m) alone. In other words,

it is not necessary to know the joint label distribution
Px(Y) on Y. As opposed to this, (10) shows that the
entire distribution of Y given x (or at least the mode
of this distribution) is needed to minimize the subset
zero-one loss. Let us remark, however, that for con-
ditionally independent labels, the risk minimizers for
the Hamming and the subset 0/1 loss are exactly the
same. The same holds if the probability of the mode
is greater or equal 0.5.

Now, since marginal distributions can in principle be
estimated independently of each other, without taking
conditional dependencies into consideration, we claim
that, while measures like (9) may indeed benefit from
MLC methods that are able to exploit conditional de-
pendencies, the gain, if any, will be much smaller for
measures like Hamming and rank loss.

In Section 5, we shall test this conjecture in an empiri-
cal way. Before we can do so, we need a method that is
able to estimate Bayes optimal predictions. A method
of this kind, that is, a learning algorithm producing a
model that takes an instance x as input and produces
the distribution Px(Y) as output, is proposed in the
next section.

4. Probabilistic Classifier Chains

Given a query instance x, the (conditional) probability
of each label combination y = (y1, . . . , ym) ∈ Y can be
computed using the product rule of probability:

Px(y) = Px(y1) ·

m
∏

i=2

Px(yi | y1, . . . , yi−1) (11)

Thus, to estimate the joint distribution of labels, one
possibility is to learn m functions fi(·) on an aug-
mented input space X × {0, 1}i−1, taking y1, . . . , yi−1

as additional attributes:

fi : X × {0, 1}i−1 → [0, 1]

(x, y1, . . . , yi−1) 7→ P(yi = 1 |x, y1, . . . , yi−1)

We assume here that the function fi(·) can be inter-
preted as a probabilistic classifier whose prediction is
the probability that yi = 1, or at least a reasonable
approximation thereof. Thus, (11) becomes

Px(y) = f1(x) ·

m
∏

i=2

fi(x, y1, . . . , yi−1) (12)

Given Px (and a loss function L(·) to be minimized),
an optimal prediction (4) can then be derived in an ex-
plicit way. This approach will subsequently be referred
to as the probabilistic classifier chain (PCC).

4.1. The Original Classifier Chain

Our method is inspired by the classifier chain (CC)
that was recently proposed by Read et al. (2009) as
a meta-technique for MLC. More specifically, what
they propose is the above idea of “chaining” classifiers,
albeit without any connection to probability theory.
Their approach works as follows: One classifier hi is
trained for each label similarly to our scoring function
fi. Given a new instance x to be classified, the model
h1 predicts y1, i.e., the relevance of λ1 for x, as usual.
Then, h2 predicts the relevance of λ2, taking x plus the
predicted value y1 ∈ {0, 1} as an input. Proceeding in
this way, hi predicts yi using y1, . . . , yi−1 as additional
input information.

Interestingly, the original classifier chain can be seen
as a deterministic approximation of (12), in the sense
of using {0, 1}-valued probabilities. In fact, CC is re-
covered from (12) in the special case where the fi(·)
output either 0 or 1. This results in the estimation

Px(y) = Jy = yCCK, (13)

where yCC is the label combination predicted by the
classifier chain, which pretends certainty about the es-
timation yCC .
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Needless to say, (13) will normally be a poor estima-
tion of the true distribution Px(Y). In fact, consider-
ing the idea of chaining classifiers as searching a path
in a binary tree whose leaf nodes are associated with a
labeling y ∈ Y, and with 0/1 branches for yi on level
i, CC just follows a single path in this tree in a greedy
manner. It can be seen as a “mode seeker”, hoping to
find the labeling y

∗ with highest probability. Due to
its greedy nature, however, the mode will not always
be reached.

For example, suppose that the base classifiers produce
exact probability estimates, and that CC turns a prob-
ability estimate p into the prediction Jp > 0.5K. Then,
it is easy to show that yCC = y

∗ if Px(y∗) > 0.5. If
the probability of the mode is smaller than 1/2, how-
ever, CC may fail. As a small illustration, consider
the case m = 3 and suppose that Px(0, 0, 1) = 0.4,
Px(1, 0, 1) = 0.25 and Px(1, 1, 0) = 0.35. In this
case, CC will already start incorrectly, namely with
y1 = 1, and eventually produce the suboptimal pre-
diction y = (1, 1, 0).

4.2. Complexity

The hope that PCC will produce better estimates
is clearly justified in light of these observations. Of
course, the price to pay is a much higher complexity.
In fact, while CC searches only a single path in the
aforementioned binary tree, PCC has to look at each
of the 2m paths. This limits the applicability of the
method to data sets with a small to moderate number
of labels, say, not more than about 15.

First, however, apart from the fact that complexity is
not our main concern here, one may argue that several
other methods suffer from the same problem, including
the label power-set approach (Tsoumakas & Katakis,
2007), as also graphical models estimating the joint
distribution (Ghamrawi & McCallum, 2005). Second,
there are possibilities to develop approximate inference
schemes that trade off accuracy against efficiency in a
reasonable way, lying somehow in-between the exact
inference (12) and the extremely crude approximation
(13). This can be done in different ways, for example
by pruning single labels (with provably low probability
of relevance), or by ignoring label combinations with
low probability (to minimize the subset zero-one loss,
only the most probable label combination is needed).
We can also try to factorize the high-dimensional joint
distribution into several lower-dimensional distribu-
tions, exploiting label independence whenever possi-
ble.

4.3. Chain Ensembles

Theoretically, the result of the product rule does not
depend on the order of the variables. Practically, two
different classifier chains will produce different results,
simply because they involve different classifiers learned
on different training sets. To reduce the influence of
the label order, Read et al. (2009) propose to average
the multilabel predictions of CC over a (randomly cho-
sen) set of permutations. Thus, the labels λ1, . . . , λm

are first re-ordered by a permutation π of {1, . . . ,m},
which moves the label λi from position i to position
π(i), and CC is then applied as usual. This extension
is called the ensembled classifier chain (ECC).

Of course, the same idea can be applied to our prob-
abilistic variant. In this case, it is natural to average
over the predicted distributions Px(Y) directly. We
call this approach the ensembled probabilistic classifier
chain (EPCC).

5. Experimental Results

In this section, we describe experimental studies on
two artificial data sets and twelve benchmark data
sets that we performed in order to verify our theo-
retical conjectures. The experiments are specifically
designed to show that the performance of a given clas-
sifier strongly depends on the measure used. We have
considered the three measures discussed above: Ham-
ming loss, rank loss, and the subset 0/1 loss.

We have performed 3-fold cross-validation for each
data set except the large benchmark data sets (more
than 10000 instances) for which we used the 66% split.
The results are reported as an average of these mea-
sures over test instances. Moreover, for each data
set we provide a ranking of the algorithms. For the
benchmark data, the two-step procedure suggested by
Demšar (2006) was used to test for statistically signif-
icant differences between the algorithms.

We have considered five classifiers: binary relevance
(BR), classifier chains (CC), probabilistic classifier
chains (PCC), ensembled classifier chains (ECC), en-
sembled probabilistic classifier chains (EPCC). BR is
the simplest approach that treats labels independently.
According to our theoretical considerations, this ap-
proach is well-suited for the Hamming and the rank
loss. Let us remind that CC is well-suited for the sub-
set 0/1 loss, since it approximates the mode of the
joint distribution. ECC averages over several CC pre-
dictions, however, it is rather difficult to say, what this
approach tends to estimate. The probabilistic versions
of these algorithms, PCC and EPCC, are well-suited
for all measures, since corresponding risk minimizers
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can be computed from the joint distribution estimated
by these methods.

We tried to eliminate as many as possible additional
effects that may bias the results. Since all algorithms
are meta-learners, we used logistic regression without
regularization as a base learner for all of them. This
choice is also motivated by the fact that logistic re-
gression provides (conditional) probability estimates
as predictions. CC and ECC are implemented accord-
ing to (Read et al., 2009) with minor exceptions. We
have not performed additional sampling from the data
set for training the ensemble members in ECC, and we
did not tune the threshold for predicting class labels;
we simply set it to 0.5 (as in all algorithms). Permuta-
tions of labels in all chain-based algorithms have been
generated at random. Let us underline that learning
for (E)CC and (E)PCC is the same, and the difference
concerns the prediction phase only. The ensemble size
in ECC and EPCC was set to 10.

Let us also notice that the results highly depend on
data sets used. For data sets without dependencies
among the labels or with high probability of the joint
modes (≥ 0.5), the risk minimizers for the Hamming
and the subset 0/1 loss coincide. Of course, it is hard
to estimate the nature of a data set in advance, since
even a high correlation between labels in the data set
does not mean that the joint distribution for given x

shares these dependencies and vice versa.

5.1. Artificial Data

We have used two artificial data sets with three labels.
The first one is a collection of independent problems.
In the second one, the labels are strongly dependent.
The data models used for generating these data sets
are supposed to be as simple as possible. For each data
set, we generated 10000 instances.

The independent data set was generated by uniformly
drawing instances from the square x ∈ [−0.5, 0.5]2.
The label distribution is given by the product of
the marginal distributions defined by Px(yi) =
1
/

(1 + exp(−fi(x)), where the fi are linear functions:
f1(x) = x1 + x2, f2(x) = −x1 + x2, f3(x) = x1 − x2.
The cardinality of labels (the average number of rele-
vant labels for an instance) is 1.503.

The dependent data set was generated by drawing the
instances from a univariate uniform distribution x ∈
[−0.5, 0.5]. The label distribution is given by the prod-
uct rule2: Px(Y) = Px(y1)Px(y2 | y1)Px(y3 | y1, y2),

2We have experimented with several models of depen-
dence and obtained similar results; the product rule model
is presented, since it is prominently discussed in the paper.

Table 1. Results on two artificial data sets: independent
model (top) and dependent model (down).

classifier Hamming rank subset 0/1
loss loss loss

BR 0.4178(2) 0.5527(1) 0.8108(3)
CC 0.4189(4.5) 0.5934(5) 0.8124(5)
PCC 0.4178(2) 0.5528(2.5) 0.8088(1.5)
ECC 0.4189(4.5) 0.5907(4) 0.8120(4)
EPCC 0.4178(2) 0.5528(2.5) 0.8088(1.5)

B-O 0.4179 0.5532 0.8088

BR 0.3921(3) 0.5675(2) 0.7374(5)
CC 0.4308(4) 0.6930(4) 0.6100(3)
PCC 0.3920(1.5) 0.5676(3) 0.6052(2)
ECC 0.4320(5) 0.6954(5) 0.6112(4)
EPCC 0.3920(1.5) 0.5674(1) 0.6051(1)

B-O 0.3920 0.5671 0.6057

where the probabilities are modeled by linear func-
tions in a similar way as before: f1(x) = x, f2(y1, x) =
−x− 2y1 + 1, f3(y2, y1, x) = x + 12y1 − 2y2 − 11. The
cardinality of labels for this data set is 1.314.

The results are shown in Table 5.1. In the case of
the independent data we can see that, in agreement
with our theoretical considerations, there is almost no
difference between the algorithms with respect to the
Hamming and the subset 0/1 loss. The poor perfor-
mance of CC and ECC on rank loss follows from the
fact that these methods do not estimate the marginals.
For the dependent data, we see that PCC and EPCC
adapt to the loss function. Moreover, as expected, BR
performs well for the Hamming and the rank loss. CC
and ECC are better than BR with respect to the sub-
set 0/1 loss, which is in agreement with our theoretical
results. However, we observe that both algorithms ap-
proximate the optimal prediction in a suboptimal way
and are outperformed by PCC and EPCC. It seems
that ensembling the CC classifiers does not improve
performance.

Since both models are known, we have also computed
the Bayes-optimal predictions (denoted by B-O). By
comparing the performance to B-O, one can measure
the regret, that is, the drop in performance caused by
not being well-adapted to the loss (since B-O predic-
tions are computed on a finite sample, some classifiers
may obtain slightly better results).

5.2. Benchmark Data

The second part of the experiment was performed on
a relatively large collection of 12 multilabel classifi-
cation data sets3. A summary of the data sets and

3Taken from mlkd.csd.auth.gr/multilabel.html and
www.cs.waikato.ac.nz/~jmr30/#datasets

mlkd.csd.auth.gr/multilabel.html
www.cs.waikato.ac.nz/~jmr30/#datasets
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their properties are given in Table 2. Since PCC and
EPCC are computationally complex, we have limited
the number of labels to 10. For each data set, we kept
the most frequent labels (and subsequently removed
all instances having only relevant or only irrelevant la-
bels). The reuters data set has been preprocessed as
in (Cheng & Hüllermeier, 2009).

The results are summarized in Table 3. We conducted
the Friedman test based on the average ranks in order
to verify whether the difference between algorithms are
statistically significant. For each loss function, the null
hypothesis was rejected at a significance level of 5%.
According to the post-hoc analysis based on Nemenyi
statistics, the significant difference in average ranks of
the algorithms is 1.84.

The results are in agreement with our theoretical con-
jectures and the previous experiment on artificial data.
The EPCC algorithm performs best, as it can be tai-
lored for all loss functions and benefits from averaging
over the ensemble. It seems that for those benchmark
data sets that are much larger in the feature and label
space, ensembling produces a significant improvement:
Both EPCC and ECC outperform their respective reg-
ular variant (for the Hamming and the rank loss, the
difference is significant).

We note, however, that the comparison between en-
semble and non-ensemble methods is not completely
fair. This is why we claim that BR performs well with
respect to the Hamming and the rank loss. Using a
more powerful classifier in BR, we even expect the dif-
ference to EPCC to decrease further. The worst in
this case is the CC algorithm, as it is not tailored for
these losses. In the case of the subset 0/1 loss, BR is
obviously the worst, and CC obtains better results. It
is interesting that ECC has the second lowest average
rank for the Hamming and the rank loss, which may
suggest that the averaging used in this classifier brings
the prediction closer to the marginals. However, this
method has also obtained the second lowest average
rank for the subset 0/1 loss. The interpretation of this
result is difficult, since we do not know the real de-
pendencies between labels. It seems that some of the
data sets do not contain strong dependencies or the
probability of joint modes is high (≥ 0.5), which could
partly explain the overall good performance of ECC.

6. Conclusions

We proposed a probabilistic framework of multilabel
classification and analyzed the risk minimizers of three
common loss functions. Even though most of the the-
oretical results are quite obvious, they provide some

important insights into the nature of MLC. In partic-
ular, they show that the main concern of recent contri-
butions to MLC, namely the exploitation of label de-
pendence, should be considered with diligence: First,
one has to distinguish two types of dependence, con-
ditional and unconditional, and second, the latter is
strongly related to the loss function to be minimized.

A second contribution is a new MLC method, proba-
bilistic classifier chains, that extends the recently in-
troduced CC classifier. This algorithm is able to es-
timate the entire joint distribution of the labels and,
therefore, can be tailored to any loss function. Its
drawback is the computational complexity at predic-
tion time. We therefore plan to develop approximate
inference schemes that trade off complexity against ac-
curacy of probability estimation in an optimal way.

Our analysis has also shed light on the CC classifier
itself that was lacking a sound theoretical motivation
so far. Here, we have shown that it can be seen as a
greedy approximation of the most probable label com-
bination. This interpretation enables a formal analysis
of the algorithm.
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Table 2. Data sets used in the experiment.

data set # inst. # attr. # labels cardinality data set # inst. # attr. # labels cardinality

image 2000 135 5 1.236 enron-10 1677 1001 10 2.513
scene 2407 294 6 1.074 medical-10 785 1449 10 1.195
emotions 593 72 6 1.868 slashdot-10 3279 1079 10 1.134
reuters 7119 243 7 1.241 ohsumed-10 11934 1002 10 1.461
yeast-10 2389 103 10 3.971 tmc2007-500-10 27409 500 10 1.979
mediamill-10 41583 120 10 3.175 imdb-10 86290 1001 10 1.623

Table 3. Results on 12 benchmark data sets.

BR CC PCC ECC EPCC

Hamming loss

image 0.2063 (2) 0.2279 (5) 0.2098 (3.5) 0.2098 (3.5) 0.2033 (1)
scene 0.1644 (3) 0.1780 (4.5) 0.1780 (4.5) 0.1503 (2) 0.1498 (1)
emotions 0.2395 (2) 0.2448 (5) 0.2417 (3) 0.2428 (4) 0.2372 (1)
reuters 0.0546 (3) 0.0593 (5) 0.0583 (4) 0.0520 (2) 0.0514 (1)
yeast-10 0.2602 (3) 0.2736 (5) 0.2593 (2) 0.2651 (4) 0.2583 (1)
mediamill-10 0.1628 (3) 0.1695 (5) 0.1621 (2) 0.1646 (4) 0.1619 (1)
enron-10 0.3157 (3) 0.3196 (5) 0.3193 (4) 0.3110 (1) 0.3111 (2)
medical-10 0.0648 (5) 0.0641 (4) 0.0640 (3) 0.0550 (2) 0.0547 (1)
slashdot-10 0.2230 (5) 0.1888 (4) 0.1887 (3) 0.1683 (1.5) 0.1683 (1.5)
ohsumed-10 0.1386 (3) 0.1398 (5) 0.1387 (4) 0.1356 (2) 0.1344 (1)
tmc-500-10 0.1038 (4) 0.1059 (5) 0.1029 (2) 0.1035 (3) 0.1026 (1)
imdb-10 0.1632 (3) 0.1916 (5) 0.1629 (1) 0.1806 (4) 0.1630 (2)

Ave. Rank 3.25 4.792 3 2.75 1.208

Rank loss

image 0.9510 (2) 1.0910 (5) 0.9869 (4) 0.9525 (3) 0.9439 (1)
scene 1.0262 (3) 1.1554 (5) 1.0841 (4) 0.8884 (2) 0.8855 (1)
emotions 1.4367 (3) 1.5816 (5) 1.5445 (4) 1.4332 (1) 1.4349 (2)
reuters 0.2598 (1) 0.3494 (5) 0.3144 (4) 0.2748 (3) 0.2698 (2)
yeast-10 4.4562 (1) 5.3347 (5) 4.5115 (3) 4.6346 (4) 4.4617 (2)
mediamill-10 2.1063 (3) 2.4565 (5) 2.0755 (2) 2.1631 (4) 2.0720 (1)
enron-10 6.0247 (3) 6.1410 (4) 6.1655 (5) 5.9213 (2) 5.8915 (1)
medical-10 0.7638 (5) 0.7584 (4) 0.7240 (3) 0.5096 (2) 0.4982 (1)
slashdot-10 3.0933 (4) 3.1232 (5) 3.0461 (3) 2.7585 (2) 2.7219 (1)
ohsumed-10 2.1059 (3) 2.1489 (5) 2.1067 (4) 1.9556 (2) 1.9323 (1)
tmc-500-10 0.9518 (4) 0.9742 (5) 0.9471 (3) 0.9462 (2) 0.9366 (1)
imdb-10 3.4139 (1) 3.7588 (5) 3.4424 (3) 3.4514 (4) 3.4260 (2)

Ave. Rank 2.75 4.833 3.5 2.583 1.333

Subset 0/1 loss

image 0.6900 (5) 0.6260 (4) 0.6095 (2.5) 0.6095 (2.5) 0.5890 (1)
scene 0.6448 (5) 0.5954 (4) 0.5949 (3) 0.5505 (2) 0.5123 (1)
emotions 0.8178 (5) 0.7757 (2) 0.7723 (1) 0.7976 (4) 0.7790 (3)
reuters 0.2889 (5) 0.2860 (4) 0.2843 (3) 0.2653 (2) 0.2583 (1)
yeast-10 0.8393 (5) 0.7861 (3) 0.7761 (2) 0.8049 (4) 0.7710 (1)
mediamill-10 0.7965 (5) 0.7690 (3) 0.7517 (2) 0.7698 (4) 0.7504 (1)
enron-10 0.9350 (3) 0.9416 (4.5) 0.9416 (4.5) 0.9320 (2) 0.9302 (1)
medical-10 0.4497 (5) 0.4370 (4) 0.4357 (3) 0.3885 (1) 0.3898 (2)
slashdot-10 0.8866 (5) 0.8588 (4) 0.8582 (3) 0.8112 (1) 0.8286 (2)
ohsumed-10 0.7650 (5) 0.7568 (3) 0.7575 (4) 0.7459 (1) 0.7489 (2)
tmc-500-10 0.6429 (5) 0.6364 (4) 0.6268 (2) 0.6294 (3) 0.6242 (1)
imdb-10 0.9463 (5) 0.8391 (3) 0.8239 (1) 0.8411 (4) 0.8259 (2)

Ave. Rank 4.833 3.542 2.583 2.542 1.5


