
Learning Efficiently with Approximate Inference via Dual Losses

Ofer Meshi meshi@cs.huji.ac.il
David Sontag dsontag@csail.mit.edu
Tommi Jaakkola tommi@csail.mit.edu
Amir Globerson gamir@cs.huji.ac.il

Abstract

Many structured prediction tasks involve
complex models where inference is computa-
tionally intractable, but where it can be well
approximated using a linear programming
relaxation. Previous approaches for learn-
ing for structured prediction (e.g., cutting-
plane, subgradient methods, perceptron) re-
peatedly make predictions for some of the
data points. These approaches are computa-
tionally demanding because each prediction
involves solving a linear program to optimal-
ity. We present a scalable algorithm for learn-
ing for structured prediction. The main idea
is to instead solve the dual of the structured
prediction loss. We formulate the learning
task as a convex minimization over both the
weights and the dual variables corresponding
to each data point. As a result, we can be-
gin to optimize the weights even before com-
pletely solving any of the individual predic-
tion problems. We show how the dual vari-
ables can be efficiently optimized using co-
ordinate descent. Our algorithm is compet-
itive with state-of-the-art methods such as
stochastic subgradient and cutting-plane.

1. Introduction

In many prediction problems we are interested in pre-
dicting multiple labels y1, . . . , yd from an input x
rather than a single label as in multiclass prediction.
This setting is referred to as structured prediction, and
has found many applications in various domains, from
natural language processing to computational biology
(Bakir et al., 2007). A naive approach to the problem
is to predict each label yi individually, ignoring possi-
ble correlations between the labels. A better approach

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

would be to explicitly model the interactions between
the labels, which then results in the labels being jointly
predicted. Structured prediction models do this by us-
ing classifiers of the form y = arg maxŷw · f(x, ŷ),
where f(x,y) is a given function and w are weights to
be learned from data.

Much of the early work on structured prediction (Laf-
ferty et al., 2001; Taskar et al., 2004) focused on
the case where prediction (i.e., maximization over y)
could be done using efficient combinatorial algorithms
such as dynamic programming or maximum-weight
matching. However, this restricted the types of in-
teractions that these models were capable of captur-
ing to tractable structures such as tree graphs. Re-
cent work on graphical models has shown that even
when the maximization over y is not known a priori
to be tractable, linear programming (LP) relaxations
often succeed at finding the true maximum, even giv-
ing certificates of optimality (Sontag et al., 2008).
This strongly motivates learning structured prediction
models which use LP relaxations for prediction, and
indeed several recent works show that this yields em-
pirically effective results (Finley and Joachims, 2008;
Martins et al., 2009).

Learning with large scale data necessitates efficient al-
gorithms for finding the optimal weight vector w. Al-
though several such algorithms have been proposed for
structured prediction, these have primarily focused on
settings where the maximization over y is performed
using combinatorial optimization. Some examples are
structured perceptron (Collins, 2002), stochastic sub-
gradient (Ratliff et al., 2007), extra-gradient (Taskar
et al., 2006), and cutting-plane algorithms (Joachims
et al., 2009). All of these approaches require making
a prediction at every iteration. When LP relaxations
are used, this corresponds to repeatedly solving an LP
to optimality, significantly reducing the scalability of
the overall learning algorithm.

These earlier approaches have two potential sources of
inefficiency. First, it is likely not necessary to solve
the LPs to optimality to obtain an approximately cor-

Learning Efficiently with Approximate Inference via Dual Losses

rect update for the weights, particularly in the early
iterations of the algorithms. Second, these approaches
typically re-solve the LPs from scratch at each iter-
ation. However, particularly in later iterations when
there are only small changes to the weight vector, we
would like to be able to “warm start” using the previ-
ous iteration’s solution to the LP for a data point.

In this paper we introduce a novel method for learn-
ing structured prediction models using LP relaxations.
Whereas previous learning approaches involved re-
peatedly solving the computationally intensive LP
problem per data point, our new formulation replaces
the standard LP with its dual. This turns the entire
problem into a minimization over the weights w and
auxiliary dual variables δ. The latter can be updated
via a simple closed form message passing scheme that
decreases the overall objective at each iteration. We
combine these with stochastic subgradient updates on
w and thus our scheme has an online flavor similar to
Shalev-Shwartz et al. (2007).

We show empirically that avoiding the LP solution in-
deed results in much improved convergence time when
compared to previous methods. This effect becomes
more pronounced the larger the label space is, and the
method is thus expected to enhance performance on
many large scale structured prediction problems.

2. Problem Formulation

We begin by reviewing the maximum margin Markov
network formulation (M3N) (Taskar et al., 2004), and
its LP relaxation. We consider a labelled dataset
{x(m),y(m)}ni=1 containing n samples. We seek a func-
tion h(x;w) that will predict y from x. It is assumed
to be of the form

h(x;w) = arg max
y
w · f(x,y) (1)

where f(x,y), the feature vector, is given by a fixed,
known, vector-valued function of both x and y. In
what follows we assume that y is multivariate and has
d variables denoted by y1, . . . , yd. Furthermore, f is
assumed to decompose into pairwise and singleton fac-
tors on y, so that:

w · f(x,y) =
∑
ij∈E

fij(yi, yj ,x) ·wij +
∑
i

fi(yi,x) ·wi

(2)
where E is a set of edges in a graph G, and the vectors
wij ,wi are the elements of the weight vector corre-
sponding to each one of the factors (some weights may
be shared across edges).1

1We use factors of size one and two for notational con-
venience only; our approach generalizes to larger factors.

In M3N the weight vector is found by minimizing the
following regularized hinge loss:

min
w

1
2
‖w‖2 +

C

n

∑
m

`h(x(m),y(m);w) (3)

where:

`h(x(m),y(m);w) = max
y
w ·∆f (m)(y) + e(m)(y) (4)

Here e(m)(y) is the discrepancy between the true la-
belling y(m) and y, and is assumed to decompose as
e(m)(y) =

∑
i e

(m)
i (y).2 We also define ∆f (m)(y) =

f(x(m),y)− f(x(m),y(m)).

The problems in Eq. 1 and Eq. 4 involve finding an
assignment y that maximizes a function of the form∑
ij θij(yi, yj) +

∑
i θi(yi). This problem, commonly

referred to as the MAP problem in the graphical mod-
els literature, is intractable (NP hard) for general
graphs G, and tractable only in isolated cases such as
tree structured graphs. However, linear programming
(LP) relaxations are often effective as approximations,
and have been incorporated into M3N by several au-
thors, which we review further in Section 4.

In MAP-LP relaxations one replaces maximization
over y of

∑
ij θij(yi, yj) +

∑
i θi(yi) with the following

linear program:3 maxµ∈ML(G) µ·θ, whereML(G) en-
forces consistency between the pairwise distributions
µij(yi, yj):

ML(G) =

µ ≥ 0

∣∣∣∣∣∣∣∣∣

∑
yj

µij(yi, yj) = µi(yi)∑
yi

µij(yi, yj) = µj(yj)∑
yi

µi(yi) = 1

 . (5)

To introduce the LP relaxation into M3N , we use
the notation θ(f, e,w) to denote the vector of param-
eters, where the pairwise elements are θij(yi, yj) =
fij(yi, yj) ·wij and the singleton elements are θi(yi) =
fi(yi) · wi + ei(yi). We shall also use: θ(m)(w) =
θ(∆f (m), e(m),w). Finally, we will denote the single-
ton and pairwise elements of θ(m)(w) by θ(m)(yi;w)
and θ(m)(yi, yj ;w) respectively.

We then have the following approximation of the loss
`h from Eq. 4:

ˆ̀
h(x(m),y(m);w) = max

µ∈ML(G)
µ · θ(m)(w) (6)

2The loss could also be defined along the edges, but we
omit this for notational convenience.

3We use the notation µ · θ =P
ij∈E

P
yi,yj

µij(yi, yj)θij(yi, yj) +
P

i

P
yi
µi(yi)θi(yi)

Learning Efficiently with Approximate Inference via Dual Losses

It is straightforward to show that the relaxed loss ˆ̀
h

provides an upper bound on the true loss `h (Finley
and Joachims, 2008).

The final classifier is obtained by solving the maxi-
mization arg maxµ∈ML(G) µ · θ(f, 0,w) and returning
yi = arg maxŷi µi(ŷi). To summarize the above, we
are interested in solving the optimization problem:

min
w

1
2
‖w‖2 +

C

n

∑
m

max
µ∈ML(G)

µ · θ(m)(w) (7)

3. Optimization via Dual Losses

In this section we present our algorithm for solving
the optimization problem in Eq. 7. We begin by us-
ing convex duality to replace the internal maximiza-
tion in Eq. 7 with minimization of a piecewise-linear
objective. Numerous duals have been suggested for
the MAP LP relaxation problem (e.g., Globerson and
Jaakkola, 2008; Komodakis et al., 2007; Werner, 2007).
We use the formulation discussed in Werner (2007).
The dual of max

µ∈ML(G)
µ · θ is thus:

minδ
∑
i

maxyi

[
θi(yi) +

∑
k∈N(i) δki(yi)

]
+∑

ij

maxyi,yj

[
θij(yi, yj)− δij(yj)− δji(yi)

]
(8)

Denote the objective of the above dual by g(δ;θ).
Then we have that Eq. 7 equals:

min
w,δ(1),...,δ(n)

1
2
‖w‖2 +

C

n

∑
m

g(δ(m);θ(m)(w)), (9)

where we now minimize over the dual variables
δ(m) in addition to the weights w. Because the
dual always upper bounds the primal, the function
g(δ(m);θ(m)(w)) is a convex upper bound on the re-
laxed loss ˆ̀

h(x(m),y(m);w) for every value of δ(m).
This bound can be tightened by minimizing it over
δ(m). By LP duality, the minimal δ(m) value gives us
exactly ˆ̀

h(x(m),y(m);w).

The key advantage of Eq. 9 is that it removes the dif-
ficult inner maximization from Eq. 7. Moreover, Eq. 9
is jointly convex in its variables (namely w and the
δ(m)s), and furthermore is unconstrained. Thus, we
can employ a variety of minimization algorithms to it
without the need for a “black-box” solver of the max-
imization problem.

In the next three sections we describe our algorithm for
optimizing Eq. 9. Our approach has two components:
one is to decrease the objective via message passing
updates on δ, corresponding to coordinate descent on

δ. The other is stochastic subgradient updates on w
that process each example separately and are thus ide-
ally suited for large data sets.

3.1. Dual minimization via coordinate descent

Notice that, unlike the w variables, the δ(m) vari-
ables are only dependent on the mth sample in the
dual formulation Eq. 9. Block coordinate descent of
g(δ(m);θ(m)(w)) can be performed in closed form, as
has been noted by several authors (e.g., Globerson and
Jaakkola, 2008; Werner, 2007), and as we review next.

Suppose that at iteration t we have a given value of
the δ(m) variables, denoted by δ(m,t). Now assume we
fix all δ(m) variables except δ(m)

ij , δ
(m)
ji and seek the

optimal value of δ(m)
ij , δ

(m)
ji . The closed form solution

is given by:

δ
(m,t+1)
ij (yj) = − 1

2θ
(m)(yj ;w)− 1

2

∑
k∈N(j)\i δ

(m,t)
kj (yj)

+ 1
2 maxyi

[
θ(m)(yi, yj ;w)− δ(m,t)ji (yi)

]
,

(10)
and analogously for δ(m,t+1)

ji (yi). This update is com-
monly referred to as max-sum diffusion, or MSD (see
Werner, 2007, and references within).

We use a more efficient block coordinate descent step
where we simultaneously update all of the dual vari-
ables δij(yj) going into variable yj (see Globerson and
Jaakkola, 2008, for a similar update). It is equivalent
to iterating the MSD updates for the corresponding
edges until convergence, and is given by (we drop the
m superscript for brevity):

δij(yj) = − 1
1 + dj

θ(m)(yj ;w)− 1
1 + dj

γj(yj) + γij(yj)

(11)
where dj is the degree of node j in the graph and:

γij(yj) = max
yi

[
θ(m)(yi, yj ;w)− δji(yi)

]
(12)

and γj(yj) =
∑
k∈N(j) γkj(yj). The messages δij(yj)

need to be updated simultaneously for all neighbors of
j. The derivation is very similar to that in Globerson
and Jaakkola (2008) and is not repeated here. We note
that even more efficient updates can be performed,
for example by simultaneously updating all δ’s that
correspond to a tree (Sontag and Jaakkola, 2009).

Because the objective g is not strictly convex, the MSD
updates may get trapped in a sub-optimal point (Kol-
mogorov, 2006). This problem does not occur for bi-
nary variables however, as shown in e.g., Globerson
and Jaakkola (2008). One way to avoid this is to re-
place the max function in Eq. 8 with a soft-max func-

Learning Efficiently with Approximate Inference via Dual Losses

tion, namely:

max
yi

f(yi) ≤
1
K

log
∑
yi

eKf(yi) (13)

The upper bound becomes tight as K →∞. Note that
g with the soft-max is thus again a convex upper bound
on the original loss. Thus we can use g with a suffi-
ciently high K and the technical issue of non-optimal
fixed points is alleviated. It also turns out (Johnson
et al., 2007) that the MSD updates when the soft-max
is used are exactly as in Eq. 10 and Eq. 11, only with
the soft-max replacing the max function. The conver-
gence rate of such updates has recently been analyzed
in the context of LDPC codes (Burshtein, 2009). In
practice we have found that using the original max
does not sacrifice optimality, so we do not use the soft-
max in practice.

3.2. Subgradient optimization over w

The previous section showed how to update the δ(m)

variables such that the objective is decreased at ev-
ery iteration. We now turn to the update steps on
the weight vector w. One method that has proven
very useful for losses as in Eq. 9 is stochastic sub-
gradient descent (SSD) (Shalev-Shwartz et al., 2007;
Ratliff et al., 2007). In SSD, the vector w is changed
in the direction of the subgradient of g(δ(m);θ(m)(w)
for each sample m. This strategy is especially effective
for large datasets since the exact subgradient involves
summation over all the sample points.

In the Pegasos method (Shalev-Shwartz et al., 2007;
Shalev-Shwartz and Srebro, 2009), the stochastic sub-
gradient is followed by a projection on a ball of radius√
C. This is justified by the fact that the optimal w is

known to be inside this ball, and results in improved
rates of convergence. We follow the same procedure
here, since w in our case satisfies the same condi-
tion (assuming that the label loss is upper bounded
by one, which it is in our case since we use the nor-
malized Hamming loss). The key difference between
Pegasos and the method we propose is that we in-
troduce additional variables δ(m) and minimize with
respect to those as well. In the original Pegasos al-
gorithm, one views the objective as a function of w
alone, and therefore has to calculate exact subgradi-
ents w.r.t. w, which requires solving an LP problem
at every sample point. As we show in the experiments,
this can have a major effect on runtime.

3.3. The DLPW algorithm and convergence

To summarize the above two sections, we propose to
solve the structured prediction problem in Eq. 7 by

casting it as a joint minimization problem over δ(m)

and w (Eq. 9) and performing coordinate descent up-
dates on δ(m) together with stochastic subgradient up-
dates on w. The overall algorithm, which we call
DLPW for Dual Loss Primal Weights is described in
Algorithm 1. When processing the mth sample point,
the algorithm first updates its δ(m) variables by im-
proving the objective using coordinate descent updates
(Eq. 11). Each δ

(m)
ij (yj) should be updated at least

once, but in practice it is preferable to perform R
passes over the graph, where R is a small number (we
use R = 10 in our experiments).

Our scheme combines two minimization approaches:
stochastic subgradient and coordinate descent. Each
is known to converge to the global optimum if used
alone (under appropriate conditions on the objective).
Although it is not obvious that using them together
would have the same guarantees, we show in Appendix
A that the combined method will in fact converge to
the global optimum. Since the MSD updates for non-
binary yi may get trapped in suboptimal δ(m), we show
convergence for either binary yi or a soft-max with
any K (which at the limit is equivalent to the max
function).

Algorithm 1 The DLPW algorithm

Initialize: Choose w1 s.t. ‖w1‖ ≤
√
C

for t = 1 to T do
Pick a sample point m
Perform R coordinate descent iterations on all
variables δ(m,t) via the updates in Eq. 11. De-
note the new values by δ(m,t+1).
Set: wt+ 1

2
= wt − 1

t ∂wt
gm(δ(m,t+1),θ(m)(w))

Set: wt+1 = min
{

1,
√
C

‖w
t+ 1

2
‖

}
wt+ 1

2

end for

4. Previous Approaches

Most algorithmic effort in structured prediction has
focused on the case where maximization over the la-
bel space y is tractable. Key examples are when the
graph G corresponds to a tree (Taskar et al., 2004;
Collins, 2002), or where labels correspond to a com-
binatorial object such as graphs or matchings (Taskar
et al., 2006). Below we review these approaches, and
highlight their applicability to LP approximations.

In Taskar et al. (2004) the authors noted that although
the primal hinge loss involves maximizing over an ex-
ponentially large set, its dual has a simpler structure.
Specifically, for singly connected graphs G the dual in-
volves only a polynomial number of constraints. They

Learning Efficiently with Approximate Inference via Dual Losses

suggested a dual algorithm similar to the SMO algo-
rithm in Platt (1998), where the dual variables are
updated by switching probability mass between two la-
bels y1, y2. We note that this dual is different from ours
since it also involves dualizing over w. This method
can also be applied to the LP relaxation case as noted
in Taskar et al. (2004, Section 4).

Another dual approach is to use exponentiated gra-
dient steps (Collins et al., 2008). However, these are
tailored for the case when inference is tractable and
do not seem easily transferable to LP approximations.
It is also possible to adapt the perceptron update to
the LP case (Kulesza and Pereira, 2008) but this again
requires solving the LP at every iteration, and is only
exact in the separable case.

Primal methods (such as the one we propose here) op-
erate by updating w directly, and seem to have been
used more frequently for structured prediction with
LP approximations. One natural approach is to use
stochastic (or incremental) subgradient descent on the
objective in Eq. 3 (e.g., Shalev-Shwartz and Srebro,
2009; Ratliff et al., 2007). The main drawback of
this approach is that calculating the subgradient re-
quires solving the LP approximation after every sam-
ple point. This can be quite costly, and is precisely
what we avoid doing in the current paper. Another
popular primal approach is based on cutting planes
(Joachims et al., 2009; Finley and Joachims, 2008).
Here one incrementally adds constraints that corre-
spond to vertices of the LP constraints. It can be
shown that a polynomial number of constraints are
needed to achieve a given optimization accuracy, but
in practice this number may be large. The method we
present here avoids this growth in problem size.

The work closest to ours is Taskar et al. (2005), where
the dual of only the LP over µ is taken and the w is
kept intact. However, this is done only for problems
where the LP is exact (has integral vertices) and the
authors suggest solving the problem via a standard QP
solver, as opposed to the efficient coordinate descent
message passing procedure we employ here.

5. Experiments

To evaluate our proposed algorithm, we compare its
performance on multi-label classification tasks to some
of the alternative approaches discussed in Section 4.
We will show that DLPW often outperforms the other
algorithms, and that it scales well with problem size.

In this multi-label classification setting, each label yi is
a binary random variable indicating whether the i’th
label is ’on’, and these form a fully connected graph

over all label variables. Our model is equivalent to the
one used by Finley and Joachims (2008) except that
we use an overcomplete representation for feature func-
tions f (fi(yi,x) is defined for all values yi and simi-
larly for fij(yi, yj ,x)). The inputs x are vectors in Rs.
The feature fi(yi,x) is a |yi|∗s dimensional vector, i.e.,
|yi| concatenated vectors of dimension s. The value of
fi(yi,x) will be x for the vector corresponding to the
label yi and zero elsewhere. The edge feature functions
fij(yi, yj ,x) are indicator vectors, so the length of wij

is |yi|∗|yj | (4 in the binary case). We use a normalized
Hamming loss with e

(m)
i (y) = 1{y(m)

i 6= yi}/d.

We focus on three datasets of real-world domains taken
from the LIBSVM collection (Chang and Lin, 2001) in-
cluding Yeast [14 labels, 1500 training samples, 103
features in x] (Elisseeff and Weston, 2001), Scene
[6 labels, 1211 samples, 294 features] (Boutell et al.,
2004), and Reuters (subset 1 [3000 samples, 47236
features]) (Lewis et al., 2004). We use a reduction of
the Reuters dataset to the 30 most frequent labels.
For each dataset, we train a classifier using DLPW
and two other algorithms. The first is a cutting-plane
algorithm (Finley and Joachims, 2008) and the second
is the Pegasos algorithm which uses an LP solver to
obtain the approximate MAP at each iteration.4 The
results are shown in Fig. 1(a-c).

As we mentioned in Section 3.3, we limited the number
of iterations (MSD updates to all nodes) in DLPW to
R = 10. We tried a couple of other values for R in
this regime and found that these gave similar overall
performance. Generally, decreasing R results in faster
iterations, but each has a smaller improvement in the
objective. On the other hand, if we set no limit on
R and allow the MSD algorithm to converge, we get
similar performance to that of Pegasos. This makes
sense as the LP would be solved completely at each
iteration by both algorithms.

Figure 1 shows the objective of Eq. 7 as a function
of runtime for each algorithm.For the Yeast dataset
we can first see that both subgradient algorithms con-
verge to the optimum much faster than the cutting-
plane algorithm. Furthermore, we see that DLPW is
significantly more efficient than Pegasos, which solves
the primal LP at each iteration. Specifically, on this

4 Implementation details: we have im-
plemented all algorithms in C++. The
cutting-plane code is taken from svm struct
(http://svmlight.joachims.org/svm struct.html)
and adapted for the LP case. We use the GLPK library
(http://www.gnu.org/software/glpk/glpk.html) to
solve the relaxed LP in both cutting-plane and Pegasos
algorithms. We run the experiments on a Dual-Core AMD
2.6 GHz Linux machine.

Learning Efficiently with Approximate Inference via Dual Losses

(a) (b)

(c) (d)

Figure 1. Comparing quality of solution as a function of runtime for various datasets. The x-axis in each subfigure
represents the runtime in seconds while the y-axis represents the objective of Eq. 7. Each subfigure shows a line for each
of the tested algorithms. Some of the traces were truncated to show more details in the interesting range.

dataset DLPW runs 6 times faster than Pegasos and 43
times faster than cutting-plane. In the Scene dataset
we see that again the subgradient methods converge
much faster than cutting-plane, but here there is only
a small advantage for DLPW over Pegasos. This is
presumably because the graph is rather small (6 nodes
vs. 14 nodes in Yeast) so the LP solver becomes quite
efficient. Finally, for the Reuters dataset we observe
once more the improved efficiency of the subgradient
algorithms. Here DLPW takes less than half the time
to converge than Pegasos. We note that when reduc-
ing the Reuters dataset to only 10 most frequent la-
bels rather than 30 then DLPW converges only slightly
faster than Pegasos (not shown), which demonstrates
the improved scalability of our method as the graph
grows in size.

We note that for the multi-label binary models, one
could also use cut based methods which are typically
much faster than general LP solvers (e.g., see Finley
and Joachims, 2008). However, our method general-
izes to the non-binary setting where it is not clear how
to employ cut based methods for solving LPs. Indeed,
Figure 1(d) shows results for such a case. For this we
use synthetic data similar to the multi-label setting,
but with fi(yi,x) holding xi in position yi rather than
the whole vector x (x and y are assumed to be of the

same length). We run all algorithms on a fully con-
nected graph with d = 20, each yi has 4 states, and the
training set consists of 100 samples (these were gener-
ated by randomly sampling w,x and obtaining y via
iterative conditional modes). We can see that in this
setting the cutting-plane algorithm outperforms Pega-
sos, however DLPW is significantly faster than both.

6. Discussion

We have presented an algorithm for efficient scalable
optimization of structured prediction problems that
employ approximate inference. Our algorithm dualizes
the LP approximation and thus avoids the need to
completely solve it at each iteration. The dual can be
viewed as an upper bound on the hinge loss (hence the
term dual-loss) which can be tightened via auxiliary
variables δ(m). An interesting future direction would
be to further explore this notion of tunable surrogate
losses further, and study its effects on generalization.

Our empirical results show that our DLPW algorithm
improves on methods that employ LP solvers as a
black box, and that the improvement is increased as
the number of labels grow. A natural question might
be why we could not have simply used the MSD up-
dates within these solvers to replace the black-box LP.

Learning Efficiently with Approximate Inference via Dual Losses

There are two problems with this approach. First,
we would still be required to iterate the MSD to con-
vergence (since the LP needs to be solved exactly in
these methods). Second, there would be an extra step
of obtaining a primal solution from the δ(m) variables,
which requires extra work for non-binary labels.

In many structured prediction problems, part of the
instance may have special structure for which more ef-
ficient inference algorithms are known. In these cases
we can make global moves to optimize the δ(m) vari-
ables, e.g. tree block coordinate descent (Sontag and
Jaakkola, 2009). Our techniques can also be applied
to structured prediction problems other than graphical
models, such as parsing, by varying the dual decompo-
sition of the optimization problem used for prediction.

The convergence results presented here are asymp-
totic. It would be desirable to also derive rate of con-
vergence results. It is possible to show that if the δ(m)

are updated at each iteration until they minimize the
dual loss then a rate of O(1

ε) is obtained. A similar
result can be given for minimization up to a certain ac-
curacy. It thus seems likely we can obtain rate results
by employing convergence rates for the δ(m) updates.
Recent work (Burshtein, 2009) has analyzed conver-
gence for a related variant of MSD, and can probably
be used in this context.

Finally, our results are easily extended to functions
f(x, y) that involve larger cliques on y. This can be
done via generalizations of MSD type updates to this
case (e.g., the GMPLP algorithm in Globerson and
Jaakkola, 2008). Furthermore, such cliques can be in-
troduced to improve the accuracy of the LP approxi-
mation (Sontag et al., 2008). We thus expect DLPW
to allow improved prediction accuracy for a variety of
large scale structured prediction problems.

Acknowledgements

This work was supported by BSF grant 2008303. D.S. was

supported by a Google PhD Fellowship.

A. Convergence Proof

To simplify the derivation we assume we only have two
delta variables per sample point, and denote those by
δ
(m)
1 , δ

(m)
2 . All arguments generalize to δ(m) with more

variables. Our objective thus has the form:

h(w, δ) =
∑
m

hm(w, δ(m)
1 , δ

(m)
2) (14)

where h includes the L2 regularization on w. We
assume that h is strictly convex w.r.t. its variables.
Strict convexity w.r.t. the δ variables is obtained if we

use the soft-max loss (see Eq. 13) for any finite value
of K. h is strictly convex w.r.t. w because of the
L2 regularization. The proof also applies (with minor
modifications) to the case where yi are binary, since in
this case the max-sum-diffusion updates do not have
non-optimal fixed-points and the strict convexity w.r.t.
δ is then not needed in the proof.

We wish to show that our algorithm converges to the
global minimum of h(w, δ). The updates of our algo-
rithm are as follows. At iteration t choose the next
sample point m (for simplicity we shall assume that
the sample points are picked according to the same
order at every iteration. We also implicitly assume
that m is dependent on t but for brevity drop it from
the notation) and:

• Choose δ(m,t+1)
1 to minimize f(wt, δ

(m)
1 , δ

(m,t)
2)

• Choose δ(m,t+1)
2 to minimize f(wt, δ

(m,t+1)
1 , δ

(m)
2)

• Set wt+1 = wt − αt∂whm(wt, δ
(m,t+1)
1 , δ

(m,t+1)
2)

Note that the update on w may be viewed as a sub-
gradient on the function ∂whm(wt, δ

(m,t+1)
1 , δ

(m,t+1)
2)

when the latter is understood as a function of w.

Using the same derivations as in Nedic and Bertsekas
(2001, Lemma 2.1 therein) we arrive at the following
inequality, which holds at iteration t for every w:

‖wt+1 −w‖2 ≤ ‖wt −w‖2 + α2
tD

2

−2αt
[
h(wt, δ

(m,t+1))− h(w, δ(m,t+1))
]

(15)
where D is an upper bound on the norm of the sub-
gradient (which is indeed bounded by

√
C + R̂ where

R̂ is the maximum norm of a feature vector f(x,y) as
in Shalev-Shwartz et al., 2007). Specifically, the above
holds forw = w(δ(m,t+1)) = arg minw hm(w, δ(m,t+1))
(this w is unique due to the strict convexity of h(w, δ)
in w as a result of the L2 regularization). For this
w the difference in h objectives above is always non-
negative so that by Eq. 15 every iteration brings wt

closer to its optimal values for the current δ(m,t), pro-
vided that the stepsize αt is sufficiently small. We
now wish to take t → ∞ and analyze the limit point
w̄, δ̄. It can be shown via standard methods that
such a point exists. Furthermore, using similar ar-
guments to Correa and Lemaréchal (1993, Proposition
1.2) we can conclude that: h(w(δ̄), δ̄) = h(w̄, δ̄) and
thus w̄ = arg minw h(w, δ̄).

We now wish to prove that δ̄ is optimal for w̄. This is
done as in standard coordinate descent analyses (e.g.,
Bertsekas, 1995, page 274). The update of δ(m,t+1)

1 re-
quires hm(wt, δ

(m,t+1)
1 , δ

(m,t)
2) ≤ hm(wt, δ

(m)
1 , δ

(m,t)
2)

Learning Efficiently with Approximate Inference via Dual Losses

for all values of δ
(m)
1 . Taking t → ∞ we have

hm(w̄, δ̄(m)
1 , δ̄

(m)
2) ≤ hm(w̄, δ(m)

1 , δ̄
(m)
2). This implies

that the limit value δ̄
(m)
1 is optimal with respect to

all other coordinate (δ and w). We can show this
local optimality for all coordinates of δ, and by the
properties of strictly convex functions we obtain that
δ̄ = arg minδ h(w̄, δ).

Taken together, the above arguments show that w̄, δ̄
are the minimizers of h(w, δ) when one of the two
variables is fixed to either w̄ or δ̄. Strict convexity
of h then implies that w̄, δ̄ is the global optimum of
h(w, δ).

References

G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola,
B. Taskar, and S. V. N. Vishwanathan. Predicting Struc-
tured Data. The MIT Press, 2007.

D. P. Bertsekas. Nonlinear Programming. Athena Scien-
tific, Belmont, MA, 1995.

M. Boutell, J. Luo, X. Shen, and C. Brown. Learning
multi-label scene classification. Pattern Recognition, 37
(9):1757–1771, 2004.

D. Burshtein. Iterative approximate linear programming
decoding of ldpc codes with linear complexity. IEEE
Trans. on Information Theory, 55(11):4835–4859, 2009.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support
vector machines, 2001. Software available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm.

M. Collins. Discriminative training methods for hidden
markov models: theory and experiments with percep-
tron algorithms. In EMNLP, pages 1–8, 2002.

M. Collins, A. Globerson, T. Koo, X. Carreras, and
P. Bartlett. Exponentiated gradient algorithms for con-
ditional random fields and max-margin markov net-
works. JMLR, 9:1775–1822, 2008.

R. Correa and C. Lemaréchal. Convergence of some algo-
rithms for convex minimization. Math. Program., 62(2):
261–275, 1993.

A. Elisseeff and J. Weston. Kernel methods for multi-
labelled classification and categorical regression prob-
lems. In NIPS 14, pages 681–687, 2001.

T. Finley and T. Joachims. Training structural svms when
exact inference is intractable. In ICML 25, pages 304–
311, New York, NY, USA, 2008. ACM.

A. Globerson and T. Jaakkola. Fixing max-product:
Convergent message passing algorithms for MAP LP-
relaxations. In NIPS 20, pages 553–560. 2008.

T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane train-
ing of structural SVMs. Machine Learning, 77(1):27–59,
2009.

J. K. Johnson, D. Malioutov, and A. S. Willsky. La-
grangian relaxation for map estimation in graphical
models. In 45th Annual Allerton Conference on Com-
munication, Control and Computing, September 2007.

V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. IEEE Transactions on
PAMI, 28(10):1568–1583, 2006.

N. Komodakis, N. Paragios, and G. Tziritas. MRF opti-
mization via dual decomposition: Message-passing re-
visited. In ICCV, 2007.

A. Kulesza and F. Pereira. Structured learning with ap-
proximate inference. In NIPS 20, pages 785–792. 2008.

J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and la-
beling sequence data. In ICML 18, pages 282–289, 2001.

D. Lewis, , Y. Yang, T. Rose, and F. Li. RCV1: a new
benchmark collection for text categorization research.
JMLR, 5:361–397, 2004.

A. F. T. Martins, N. A. Smith, and E. P. Xing. Polyhe-
dral outer approximations with application to natural
language parsing. In ICML 26, pages 713–720, 2009.

A. Nedic and D. P. Bertsekas. Incremental subgradient
methods for nondifferentiable optimization. SIAM J. on
Optimization, 12(1):109–138, 2001.

J. C. Platt. Fast training of Support Vector Machines us-
ing sequential minimal optimization. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1998.

N. Ratliff, J. A. D. Bagnell, and M. Zinkevich. (Online)
subgradient methods for structured prediction. In AIS-
TATS, 2007.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Pri-
mal estimated sub-gradient solver for SVM. In ICML 24,
pages 807–814, New York, NY, 2007. ACM Press.

S. Shalev-Shwartz and N. Srebro. Theory and practice
of support vector machines optimization. In J. Keshet
and S. Bengio, editors, Automatic Speech and Speaker
Recognition: Large Margin and Kernel Methods. 2009.

D. Sontag and T. Jaakkola. Tree block coordinate descent
for MAP in graphical models. In AISTATS 12, 2009.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. Tightening LP relaxations for MAP using
message passing. In UAI 24, pages 503–510, 2008.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin.
Learning structured prediction models: a large margin
approach. In ICML 22, pages 896–903, 2005.

B. Taskar, C. Guestrin, and D. Koller. Max margin Markov
networks. In NIPS 16, pages 25–32. 2004.

B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured
prediction, dual extragradient and Bregman projections.
JMLR, pages 1627–1653, 2006.

T. Werner. A linear programming approach to max-sum
problem: A review. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29:1165–1179, 2007.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

