
Multi-Class Pegasos on a Budget

Zhuang Wang ZHUANG@TEMPLE.EDU
Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122 USA

Koby Crammer KOBY@EE.TECHNION.AC.IL
Department of Electronic Engineering, The Technion, Haifa, 32000 Israel

Slobodan Vucetic VUCETIC@IST.TEMPLE.EDU
Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122 USA

Abstract

When equipped with kernel functions, online
learning algorithms are susceptible to the “curse
of kernelization” that causes unbounded growth
in the model size. To address this issue, we
present a family of budgeted online learning
algorithms for multi-class classification which
have constant space and time complexity per
update. Our approach is based on the multi-class
version of the popular Pegasos algorithm. It
keeps the number of support vectors bounded
during learning through budget maintenance. By
treating the budget maintenance as a source of
the gradient error, we prove that the gap between
the budgeted Pegasos and the optimal solution
directly depends on the average model
degradation due to budget maintenance. To
minimize the model degradation, we study
greedy multi-class budget maintenance methods
based on removal, projection, and merging of
support vectors. Empirical results show that the
proposed budgeted online algorithms achieve
accuracy comparable to non-budget multi-class
kernelized Pegasos while being extremely
computationally efficient.

1. Introduction

Online learning is an important framework in which a
potentially unlimited sequence of training examples is
presented one example at a time and can only be seen in a
single pass. This is opposed to offline learning where the
whole collection of training examples is at hand. The
objective is to learn an accurate prediction model from the

training stream. Online algorithms often update the
prediction model they maintain upon observing a new
training example. Considering the potentially high stream
rates, it becomes very important to update the model in a
computationally efficient manner.

—————
Appearing in Proceedings of the 27th International Conference on
Machine Learning, Haifa, Israel, 2010. Copyright 2010 by the
author(s)/owner(s).

The invention of the Support Vector Machines (SVMs)
(Cortes & Vapnik, 1995) inspired a lot of interest in
applying the kernel methods for online learning. A large
number of online algorithms (e.g. perceptron by
Rosenblatt (1958)) can be easily kernelized and result in
prediction models that require storage of a subset of
observed examples, called the Support Vectors (SVs).
While kernelization allows solving highly nonlinear
problems, it also introduces heavy computational burden.
The main reason is that on noisy data the number of
support vectors tends to grow without limit as the
algorithm progresses. In addition to the danger of
exceeding the physical memory, this also implies an
unlimited growth in update and prediction time. We call
this phenomenon the curse of kernelization. To solve the
problem, budgeted online algorithms have been proposed
to bound the number of SVs through budget maintenance.
In practice, the assigned budget depends on the specific
application requirements (e.g., memory limitations,
processing speed, or data throughput).

In this paper, we address the problem of online multi-
class classification on a budget. The basis of our work is
the popular SVM training algorithm Pegasos (Shalev-
Shwartz et al., 2007). Pegasos runs iteratively and
alternates between a stochastic sub-gradient descent step
and a projection step. If only a single example is used in
the stochastic sub-gradient descent step, the algorithm can
be naturally used for online learning. It was shown that
Pegasos converges toward the optimal solution of SVM as
the number of examples grows. Although in its original,
non-kernelized, form it has constant update time and
constant space, when combined with kernels Pegasos
suffers from the same computational problems as other
kernelized online algorithms.

Multi-Class Pegasos on a Budget

The main contributions of this paper are as follows. First,
we develop a multi-class version of Pegasos based on the
multi-class SVM formulation by Crammer & Singer
(2001). The resulting multi-class Pegasos has similar
algorithmic structure as its binary version. The second
contribution is a budgeted version of the kernelized multi-
class Pegasos that has constant update time and constant
space. This is achieved by controlling the number of
support vectors with one of the several budget
maintenance strategies. We analyze the properties of the
budgeted multi-class Pegasos in the framework of online
convex learning with errors in the gradients proposed by
Sutskever (2009). We show that, in the limit, the gap
between loss of the budgeted algorithm and loss of the
optimal solution is upper-bounded by the average model
degradation induced by budget maintenance. In the
absence of budget maintenance the multi-class Pegasos
inherits convergence properties of its binary predecessor.

Having shown that the quality of budgeted multi-class
Pegasos directly depends on the quality of budget
maintenance, our final contribution is exploring
computationally efficient methods to maintain a classifier
with a low budget. This problem has been subject of
much recent work. The most popular strategy consists of
removing a single support vector when the budget is
exceeded. For example, (Crammer et al., 2004) proposed
to learn budgeted perceptrons by removing the SV that
will be predicted with the largest confidence after its own
removal. Other ideas include removal of the oldest SV
(Dekel et al., 2008), a random SV (Cesa-Bianchi &
Gentile, 2006; Vucetic et al., 2009), one with the smallest
coefficient (Cheng et al., 2007), or using a validation data
set (Weston et al., 2005; Wang & Vucetic, 2009).
Recently studied alternatives to removal are projecting an
SV prior to its removal (Orabona et al., 2009) and
merging of two SVs into a new SV (Nguyen & Ho, 2005;
Wang & Vucetic, 2009). Instead of considering budget
maintenance and model update as separate steps, Wang &
Vucetic (2010) proposed to define it as a joint
optimization problem. It is worth mentioning that much
work has been done on the related problem of reduction
of trained kernel machines (Schӧlkopf et al., 1999).

In this work we consider 3 major budget maintenance
strategies: removal, projection, and merging. In case of
removal, we show that it is optimal to remove the smallest
support vector. Then, we show that optimal projection of
one SV to the remaining ones is achieved by minimizing
the accumulated loss of multiple sub-problems for each
class, which extends the results of (Csató & Opper, 2001;
Engel et al., 2002; Orabona et al., 2009) to the multi-class
setting. In case of merging, when the Gaussian kernel is
used, we show that the new SV is always on the line
connecting two merged SVs, which generalizes the result
of (Nguyen & Ho, 2005) to the multi-class setting. Both
space and update time of the budgeted Pegasos scale

quadratically with the budget size when projection is used
and linearly when merging or removal are used.

2. Budgeted Multi-class Pegasos (BPegasosM)

In this paper we focus on the problem of multi-class
online learning on a budget. We are given a sequence of
examples },,...,1),,{(NtyS tt == x where instance xt ∈

is a d-dimensional input vector and the label ty
belongs to the multi-class set . In the online
learning setting, examples arrive sequentially. The
objective of online algorithms is to incrementally learn a
function that accurately maps instances from
to one of the possible labels in Y.

dR
},...,1{ cY =

)(xf dR

2.1 Multi-class Pegasos

Our algorithm is an extension of the recently proposed
SVM training algorithm called Pegasos (Shalev-Shwartz
et al., 2007). Pegasos is an iterative algorithm which
alternates between stochastic sub-gradient descent steps
and projection steps. Pegasos can be naturally used as an
online learning algorithm when only a single example is
used in the calculation of the stochastic sub-gradient.

To develop the multi-class Pegasos, we consider the
multi-class SVM formulation by Crammer & Singer
(2001). Let us define the multi-class model as)(xf

}){(maxarg)}({maxarg)()()(xwxx Ti

Yi

i

Yi
ff

∈∈
== ,

where is the prototype of the i-th class and w)(if (i) is its
corresponding weight vector. By adding all class-specific
weight vectors, we construct as the]...[)()1(cwww =

cd × weight matrix of The predicted label of x is
the class of the weight vector that achieves the maximum
value . Under this setup, Crammer and Singer
(2001) defined the multi-class SVM objective function as

).(xf

xw Ti)()(

,)),(;(||||)(∑ =+= N
t tt yl

N
P 1

2 1
2

xwww λ (1)

where λ is the slack parameter, the norm of the weight
matrix w is calculated as

∑ ∈= Yi
i 22 ||||||||)(ww ,

and the multi-class hinge-loss function is defined as

()
).(maxarg where

,)()(,max)),(;(
)(

,

)()(

t
i

yiYit

t
y

t
r

tt

fr

ffyl

t

tt

x

xxxw

≠∈=

−+= 10
 (2)

In multi-class Pegasos, instead of the objective function
(1), we use the instantaneous objective function
upon receiving the t-th example,

)(wtP

Multi-Class Pegasos on a Budget

),(;(||||)(ttt ylP xwww += 2

2
λ . (3)

Similarly to its binary predecessor, the multi-class
Pegasos works by iteratively executing the two-step
updates. At t-th round, it first updates the current weight
wt using the sub-gradient ∇t of (3) as
where

,tttt ∇−=+ ηww 1
)/(1 tt λη = is the learning rate. The sub-gradient

matrix ∇t is defined as where
 is a column vector. If loss (2) is equal to zero

then If loss (2) is above zero, then

],...[)()(c
ttt ∇∇=∇ 1 =∇)(i

t
)()(ww tPi∇

.)()(i
t

i
t wλ=∇

⎪
⎪
⎩

⎪⎪
⎨

⎧

=+

=−

=∇

.otherwise ,

 if ,

 if ,

)(

)(

)(

)(

i
t

tt
i

t

tt
i

t
i

t ri

yi

w

xw

xw

λ

λ

λ

This step is followed by projecting the weight wt+1 into
the closed convex set }./|||| :{ λ1≤= wwC

The above two steps are summarized as

),(tttCt ∇−∏=+ ηww 1

where defines the closest point in C to u. We can
rewrite the update rule of the multi-class Pegasos as

)(uC∏

),)(()(tttttttttt βxwww +−=∇−=+ ληφηφ 11

where ||)}||/(,min{ tttt ∇−= ηλφ w11 and tβ is a row
vector, If loss (2) is equal to zero, then

otherwise,
]....[)()(c

ttt ββ 1=β
;0β =

⎪
⎩

⎪
⎨

⎧
=−
=

=
otherwise. 0,

 if ,
 if ,

)(
tt

tt
i

t ri
yi

β η
η

2.2 Kernelization

Multi-class Pegasos can learn non-linear problems when
the kernel trick is used. After introducing a nonlinear
function Φ that maps x from the input to the feature space
and replacing x with Φ(x), can be described as)(i

tw

∑ =
Φ= t

j j
i
j

i
t 1

)()()(α xw ,

where

∏∏
+==

−=
t

jk
k

t

jk
k

i
j

i
j β

1
1)(α)()(ληφ . (4)

We denote the row vector as the c class-
specific coefficients of j-th SV. From (4) it can be seen
that the example whose loss (2) is zero has all zero α
coefficients and can therefore be ignored. An input
example with positive loss has one positive and one

negative α coefficient, while the remaining α are zero. We
call such examples Support Vectors (SVs). We can
represent as the kernel expansion

]α...α[)()(c
jjj

1=α

)()(xi
tf

∑ ∈=Φ=
tIj j

i
j

Ti
t

i
t kf),(α)()()()()()(xxxwx ,

where k s the Mercer kernel induced by Φ and It is the set
of indexes of all the SVs of wt. From now on, we will
represent a model using both the w and α notation
interchangeably.

2.3 Budgeted Multi-Class Pegasos

To maintain the fixed number of SVs, the algorithm
executes a budget maintenance step whenever the number
of SVs exceeds a pre-defined budget B (i.e.) by
reducing the size of I

1| |tI + > B
t+1 by one such that wt+1 is only

spanned by B SVs. We summarize the proposed Budgeted
Multi-class Pegasos (BPegasosM) algorithm in Algorithm
1. We denote the weight degradation caused by budget
maintenance step at t-th round as Δwt, defined as the
difference between model weights before and after Line 7
of Algorithm 1.

Budget maintenance step (Line 7) is a critical design issue.
All budget maintenance strategies mentioned in the
Introduction are compatible with Algorithm 1 and can be
implemented. We will describe several budget
maintenance strategies for BPegasosM in Section 4. In the
next section we theoretically analyze how the budget
maintenance step influences performance of BPegasosM.

Algorithm 1: Budgeted multi-class Pegasos (BPegasosM)

Input: data S, kernel k, slack parameter λ , budget B;
Initialize: b = 0, ;0w =1
0. for t = 1,2,…
1. receive (xt, yt);
2. 1 (1) ;t t tη λ+ ← −w w
3. if 0)),(;(>ttt yl xw
4. ;)(tttt βxww Φ+← ++ 11 // add an SV
5. b = b+1;
6. if b > B
7. ;ttt www Δ−← ++ 11 //budget maintenance
8. b = b−1;
9. ;11 ++ ← ttt ww φ
Output: ft+1(x)

3. Analysis

We now analyze the convergence properties of
BPegasosM under the framework of online convex
programming with errors in the gradients by Sutskever
(2009), which is a variant of the classical online convex
programming framework by Zinkevich (2003). We start

Multi-Class Pegasos on a Budget

by showing that the averaged instantaneous objective of
Algorithm 1 converges toward the optimal solution and
that the gap between these two is upper-bounded by
average gradient error (i.e. weighted averaged weight
degradation) induced by budget maintenance. We first
introduce the following lemma, generalizing a result of
(Shalev-Shwartz et al., 2007). Without loss of generality
we assume that . 1||)(|| ≤Φ x

Lemma 1 The optimal solution of multi-class SVM, from
problem (1), is in a closed convex
set with radius

)(minarg* ww w P=
λ/1 .

Proof: The dual objective of the multi-class SVM
problem (1) (Crammer & Singer, 2001) is to maximize

,/ and ,},,...,{ s.t.

))((),(

)()(

)()(

)()()()(

∑

∑ ∑

∑∑ ∑

∈

= ∈

∈
= =

=≥∈∀∈∀

+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

Yi
i

j
i

j

N
j Yi

i
y

i
j

Yi

i
t

i
y

i
j

i
y

N
t

N
j jt

NYiNj

δ

δδk

j

tj

101

1

2
1

1

1 1

γγ

γ

γγ
λ

xx

 (5)

where
j

 if i = y1=)(i
yδ j and

j
δ otherwise, and

are optimization variables. Let us denote the optimal
solution for as The optimal solution of (1)
can be written as (Crammer & Singer, 2001)

0=)(i
y

)(i
jγ

)(i
jγ .)(*)(i

jγ

()∑ = Φ−= N
j j

i
j

i
y

i
j

δ1
1)()()(*)()(*)(xw γ
λ

. (6)

Since the strong duality holds, the optimal primal and
dual objectives coincide. Plugging (6) into (5) we get

1
2

1
2

1
2

1
2

+−−=

+

∑ ∑

∑

= ∈

=

N
j Yi

i
y

i
j

N
j jj

j
δ

yl
N

)(*)(*

**

)(||||

)),(;(||||

γλ

λ

w

xww
 (7)

Rearranging (7) and applying and
 we get

0≥)),(;(*
jj yl xw

0≥)(*)()(i
y

i
j j

δγ

111
11

2 ≤−−= ∑∑ ∑
== ∈

N

j
jj

N

j Yi

i
y

i
j

* yl
N

δ
j

)),(;()(|||| *)(*)(xww γλ ,

leading to the desired bound. ■

With Lemma 1, we are ready to prove the following
theorem, which is a variant of Theorem 1 in (Shalev-
Shwartz et al., 2007) under the budgeted multi-class
setting.

Theorem 1 (Bounding average instantaneous objective of
BPegasosM) Let BPegasosM (Algorithm 1) run on a
sequence of examples S. Let t be the weight
degradation due to budget maintenance (Line 7 in

Algorithm 1). Define the gradient error as tttE

wΔ

η/wΔ=
and =E Let be the optimal solution
of (1). Then, we have

./|||| NEN
t t∑ =1

*w

2
*

1 1

1 1 (1 ln())() ()
2

N N

t t t
t t

G NP P
N N Nλ

2E
λ= =

+
≤ +∑ ∑w w + ,

where 22 ++= λG . (8)

Proof: First, we write the update rule of BPegasosM by
treating as the error in the gradient, tE

)(tttCt ∂−∏=+ ηww 1 , where .ttt E+∇=∂

Let us define the relative progress toward the optimal
solution at t-th round as *w

2
1

2 |||||||| ** wwww −−−= +tttD .

Dt can be lower bounded as
* 2 * 2

* 2 * 2
1

2 2 * *

2 2 * * 2
2

|| || || () ||

|| || || ||

|| || 2 () 2 ()

2 () () || ||
2

 4 |

t t C t t t

t t t t
T T

t t t t t t t t

t t t t t t

t

D

E

G P P

η

η

η η η
λη η

η

= − − ∏ − ∂ −

≥ − − − ∂ −

= − ∂ + ∇ − + −

⎛ ⎞≥ − + − + −⎜ ⎟
⎝ ⎠

−

w w w w

w w w w

w w w w

w w w w

| || / . (9)tE λ

In ≥1 we use the fact that ||||||)(|| babaC −≤−∏ for all
Cb ∈ and a, since C is convex. In ≥2, we bound as |||| t∂

,|||||||||||||||| GE tttt ≡++=++≤+∇≤∂ 2222 λλ w

where, by using (4), we observed that is upper
bounded by

|||| tE
2 when the budget maintenance removes

an arbitrary SV with index ,'t

.)(

)/()()(||||||||

'

''
'

'

22

112

1

1

1

≤=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−==

∏

∏∏

−

=

+=

−

=

t

tj
j

t

tj
j

t

tj
jt

t

t
t t

E

φ

λ
ληφη

η
α

(10)

We also apply the property of strong convexity to bound

2/||||)()()(2*** wwwwww −+−≥−∇ ttttt
T
t PP λ ,

since Pt is λ-strongly convex function w.r.t.
(according to Lemma 1 in (Shalev-Shwartz & Singer,
2007)) and We bound

22 /|||| w

).(ww tt P∇=∇ ≤− |||| *ww t
2 / λ , since both tw and are in the closed convex
set with radius

*w
λ/1 (Lemma 1).

Dividing both sides of inequality (9) by tη2 and
rearranging we obtain

Multi-Class Pegasos on a Budget

2
* * 2 2 || ||

() () || || .
2 2 2

t t
t t t t

t

D G
P P

ηλ
η

tE
λ

− ≤ − − + +w w w w

Summing over all t we get

*

1 1 1 1

2

1 1

() () || ||
2 2

2 || ||.
2

N N N N
t

t t t t
t t t tt

N N

t t
t t

D
P P

G E

λ
η

η
λ

= = = =

= =

− ≤ − −

+ +

∑ ∑ ∑ ∑

∑ ∑

w w w w* 2

(11)

We bound the first and second terms in (11) as

(12) ||||

||||||||

||||)(||||

*

**

**

0
2

1

111

1
2
1

2
1

2
13

2
1

2

2

1

2
1

11

2

≤−−=

⎟
⎟
⎠

⎞
−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+

⎜⎜
⎝

⎛
−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

+

+
= −

=

∑

∑

ww

wwww

wwww

N
N

N
N

N

t
t

tt

N

t
t

t

tD

η

η
λ

ηη

λ
η

λ
η

In =3, the first and second components vanish after
plugging)/(1 tt λη ≡ .

Next, we bound the third term in inequality (11)
according to the divergence rate of harmonic series

))ln((1
2

1
22

2

1

2

1

2
+≤= ∑∑

==
NG

t
GG N

t

N

t
t λλ

η . (13)

Combing inequality (12) and (13) with (11) and dividing
two sides of inequality by N we get the stated bound. ■

Observe that as N grows, the second term in the right side
of bound (8) converges to zero. Therefore, the averaged
instantaneous loss of Algorithm 1 converges toward the
averaged instantaneous loss of optimal solution, and the
gap between these two is upper bounded by the averaged
gradient error .E This result directly indicates that an
optimal budget maintenance strategy is to minimizes E .

Corollary 1 (Mistake bound) Assume that the conditions
stated in Theorem 1 hold, then the number of mistakes
made by BPegasosM on the sequence S is

2
*

1

(1 ln()) 2()
2

N

t
t

G N EM P
λ

N
λ=

+
≤ + +∑ w ,

where 22 ++= λG .

Proof: Using the fact that whenever the
algorithm made the mistake, as well as the fact that the
accumulated multi-class hinge loss is less than the
accumulated instantaneous objective, we get

1)),(;(≥tt yl xw

∑∑ == ≤≤ N
t t

N
t ttt PylM 11)()),(;(wxw .

Combining with the conclusion in Theorem 1 leads to the
stated mistake bound. ■

It is easy to show that the other convergence properties of
Pegasos (Theorem 2 and 3 in (Shalev-Shwartz et al.,
2007)) are inherited by BPegasosM under the constraint of

.E If there is no budget maintenance step (i.e. 0=E),
we obtain the multi-class counterparts of Shalev-Shwartz
et al.’s theorems. We omit this part due to the lack of
space.

4. Budget Maintenance Strategies

Theorem 1 indicates that budget maintenance should
attempt to minimize the gradient error .E To minimize
E in the setting of online learning on a budget, we
propose to minimize the gradient error at each
round. From the definition of in Theorem 1,
minimizing is equivalent to minimizing weight
degradation

|||| tE
|||| tE

|||| tE
||,|| twΔ

 .||||min 2
twΔ (14)

4.1 Budget maintenance through removal

If budget maintenance removes j-th SV, =Δ tw
 .)(jj αxΦ Then, the optimal solution of (14) is removal

of SV with the smallest norm, =p
1tj I j j j+∈ Let us consider the

Gaussian kernel case where Then, as seen
from (4), the optimal removal always selects the oldest
SV and this strategy becomes similar to Forgetron (Dekel
et al., 2008).

2arg min || || (,).kα x x
1

x

p

.),(=jjk xx

4.2 Budget maintenance through projection

Let us consider budget maintenance through projecting
the p-th SV to the remaining SVs. The objective is to
update α coefficients of the remaining SVs to best
represent α coefficients of the p-th SV.

1

() () 2min || α () α () || .
t

i i
p p j j

i Y j I p+
Δ

∈ ∈ −

Φ − Δ Φ∑ ∑α
x (15)

After setting the gradient of (15) with respect to the class-
specific column vector of coefficients to zero, one
can obtain the optimal solution as

)(iαΔ

p
i
p

iYi kKα 1)()(α, −=Δ∈∀ , (16)

where 1[], ,ij tk i j I += ∀ ∈ −K is the kernel matrix, =ijk
 and 1),,(jik xx [] ,T

p pj tk j I + p= ∀ ∈ −k is the column
vector. It is worth observing that inverting K can be done
in O(B2) time using Woodbury formula (Cauwenberghs &

Multi-Class Pegasos on a Budget

Poggio, 2000). Finally, upon removal of p-th SV, αΔ are
added to α of the remaining SVs.

The remaining issue is finding the best among B+1
candidate SVs for projection. After plugging (16) into (15)
we can observe that the minimal weight degradation of
projecting equals

(
1

2 2min || || min || || ()
t

T
t p pp pp I

k
+

−

∈
Δ = −w α k K k)1

p . (17)

Considering there are B+1 SVs, evaluation of (17)
requires O(B3) time for each budget maintenance step. As
an efficient approximation, we propose a simplified
solution that always projects the smallest SV, =p

1tj I j j j+∈ Then, the computation is
reduced to O(B

2arg min || || (,).kα x x
2). We should also note that the space

requirement of projection is O(B2) needed to store the
kernel matrix and its inverse.

Unlike the recently proposed projection method for multi-
class perceptron (Orabona et al., 2009) that projects an
SV only onto the SVs assigned to the same class, our
method solves more general case by projecting an SV
onto all the remaining SVs and thus results in smaller
weight degradation.

4.3 Budget maintenance through Merging

Problem (14) can also be solved by merging two SVs to a
newly created one. The justification is as follows. For the
i-th class weight, if Φ(xm) and Φ(xn) are replaced by

())αα/()(α)(α)()()()()(i
n

i
mn

i
nm

i
m

iM +Φ+Φ= xx (assuming
) and the coefficient of 0αα)()(≠+ i

n
i

m
)(iM is set to

, then the weight remains unchanged. The
difficulty is that

)()(αα i
n

i
m +

)(iM cannot be used directly because the
pre-image of)(iM may not exist. Therefore we need to
approximate)(iM by image Φ(z) of some input space
vector z. Considering the multi-class problem, z can be
found as

∑ ∈
Φ−Yi

iM 2)(||)(||min zz . (18)

Let us assume the Gaussian kernel =)',(xxk
 is used. Problem (18) can then be

reduced to
)||'||exp(2xx−−σ

∑ ∈
ΦYi

TiM)()(max)(zz . (19)

Setting the gradient of (19) with respect to z to zero leads
to solution

,)1(nm hh xxz −+= (20)

∑ ∑

∑

∈ =

∈

−−
+

−−
+

=

Yi nmk
k

i
ki

n
i

m

Yi
m

i
mi

n
i

m

σ

σ
h

,

)(
)()(

)(
)()(

)||||exp(α
)αα(

)||||exp(α
)αα(

 where
2

2

1

1

zx

zx
.

Eq. (20) indicates that z lies on the line connecting xm and
xn. Plugging (20) into (19), merging problem is simplified
to finding

221 h
mn

Yi
i

n
i

m

i
nh

mn
Yi

i
n

i
m

i
m

h
kk ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
∑∑
∈

−

∈∈)()(

)(
)(

)()(

)(

αα
α

αα
α

max
R

. (21)

We can use any efficient line search method (e.g. golden
search) to find the optimal h. After that, the optimal z can
be calculated using (20).

After obtaining the optimal solution z, the optimal
coefficients of z for approximating

 are obtained by solving the
following optimization problem

]α...α[)()(c
zz

1=zα
)(α)(α)()(

n
i

nm
i

m xx Φ+Φ

∑ ∈ Φ−Φ+ΦYi
i

zn
i

nm
i

m
z

2)()()(||)(α)(α)(α||min zxx
α

. (22)

The optimal solution of (22) is

Yikk n
i

nm
i

m
i

z ∈∀+=),,(α),(α)α()()(*)(zxzx .

The total cost of finding the optimal merging for the n-th
and m-th SV is O(1). The remaining question is what pair
of SVs leads to the small weight degradation. The optimal
solution can be found by performing merging of all
B(B−1)/2 pairs of SVs that would require O(B2) time. To
simplify the computation, we use the same approximation
method as in projection (Section 4.2) by fixing m as the
SV with the smallest value of Thus the
computation is reduced to O(B). We should observe that
the space requirement is also O(B) because there is no
need to store the kernel matrix.

.|||| 2
mα

5. Experiments

In this section we evaluate the proposed algorithms on
several large datasets whose properties are summarized in
the first column of Table 1. Checkerboard is generated.
Letter, USPS, Covertype and Waveform are standard UCI
Repository benchmarks. Attributes in all data sets were
scaled to mean 0 and standard deviation 1. In the
experiment, we evaluated budget maintenance methods
for BPegasosM explained in Section 4. We used budgets
of B = 100 and 500 and set λ = 10-4. In particular, we
compared the proposed projection and merging methods
with the random removal method (Cesa-Bianchi &
Gentile, 2006) and the method that removes the SV with
the smallest coefficient (Cheng et al., 2007). The results
of the non-budgeted PegasosM are also reported to

Multi-Class Pegasos on a Budget

Table 1. Testing accuracy comparison. The lower script in the PegasosM column is #examples being trained before early stopped.

DATA SET
(N, DIM, |Y|)

PEGASOSM

(#SV) B PRJTRN++ BPM+RAND BPM+SMAL BPM+PROJ BPM+MRG

USPS
(7K, 256, 10)

94.2±0.3
(4.2K)

100
500

81.1±3.2
92.0±0.5

78.3±1.5
88.5±0.6

78.6±4.0
89.4±0.6

90.5±0.4
92.4±0.4

92.0±0.2
93.9±0.3

LETTER
(16K, 16, 26)

95.7±0.1
(10K)

100
500

46.3±1.8
76.6±1.1

39.9±1.8
68.1±0.8

41.7±0.7
68.5±1.1

76.3±0.9
87.3±0.6

72.0±1.3
89.5±0.3

COVERTYPE
(0.5M, 54, 7)

81.1±0.1
(41K72K)

100
500

62.5±3.1
67.3±2.9

58.1±0.7
61.6±0.7

57.5±2.4
62.3±1.1

70.1±0.6
74.9±0.2

72.0±0.2
76.8±0.2

WAVEFORM
(2M, 21, 3)

86.1±0.6
(53K140K)

100
500

80.7±0.8
83.5±0.5

79.1±1.1
82.7±0.6

79.1±2.9
82.9±1.0

85.0±0.4
86.1±0.2

85.9±0.6
86.9±0.1

CHECKERB
(10M, 2, 2)

99.2± 0.1
(63K540K)

100
500

96.9±0.4
98.2±0.3

83.6±1.0
90.3±0.4

83.9±1.1
90.9±0.5

98.2±0.3
99.0±0.2

99.5±0.1
99.8±0.0

establish an upper-bound on accuracy. Besides our
BPegasosM framework, we also evaluated the
Projectron++ algorithm (Orabona et al., 2009) which is
the state-of-the-art budgeted kernel perceptron algorithm.
In Projectron++, an SV is projected only if model
degradation is below the threshold; otherwise, budget is
increased by one SV. In our experiments, we set the
Projectron++ threshold such that the number of SVs is
equal to B of BPegasosM at the end of training. All
algorithms used Gaussian kernels whose width σ was
optimized for each combination of data set, algorithm and
budget, choosing among {20/d, 22/d, 24/d, 26/d}, where d
is data dimensionality. All the algorithms were
implemented in MATLAB and the experiments were run
on a 2.1GHz Dual-Core processor with 4G memory under
Linux.

The accuracy of different algorithms on test data are
reported in Table 1. Each result is computed using an
average of 5 repetitions on different permutations of each
data set. PegasosM was stopped after 3,000 seconds. From
Table 1 we can observe that BPegasosM with merging and
projection significantly outperformed both their removal
cousin and Projectron++. Merging resulted in somewhat
better performance than projecting.

On Waveform and Checkerboard data, BPegasosM with
merging achieved even higher accuracy than the non-
budgeted PegasosM that had to be stopped after 140K and

540K examples, respectively. On Covertype and Letter
data, the accuracy gap between budget B = 500 and non-
budgeted algorithms remained large and it can be
explained by the complexity of these problems; for
example, 60% of Covertype examples became SVs in
PegasosM and Letter has 26 class labels. In both data sets,
the accuracy clearly improved form B = 100 to 500,
which indicates that extra budget is needed for
comparable accuracy.

In Figure 1 and 2 the accuracy evolution curves are
plotted to illustrate the anytime prediction quality.
Accuracy curves of BPegasosM with merging and
projection closely followed and eventually surpassed that
of PegasosM. BPegasosM with removal did not perform
particularly well.

Figure 3 shows log-log plot of the running time vs. the
data stream length. Excluding the initial stage, the non-
budgeted PegasosM had the fastest increase in training
time, confirming the expected O(N2) runtime. On the
budget side, the runtime time of BPegasosM with merging
and projection increases linearly, with merging having
better constant, as expected (merging has constant O(B)
and projection O(B2)).

Considering accuracy, runtime, and memory expenditure,
BPegasosM with merging is the clear winner on all 5
benchmark datasets.

10
3

10
4

10
5

10
6

10
7

0.7

0.75

0.8

0.85

0.9

0.95

1

length of data sequence

ac
cu

ra
cy

10 million Checkerboard data,B=100

non-budgeted
Random
Smallest
Proj
Mrg

early stopped
after 3000s

with #SV=63K

finished
in 2900s

finished
in 800s

10
2

10
3

10
4

10
5

10
6

0.6

0.65

0.7

0.75

0.8

0.85

length of data sequence

ac
cu

ra
cy

2 million Waveform data, B=100

non-budgeted
Random
Smallest
Proj
Mrg

finished
in 1300 s

early stopped
after 3000s

with #SV=54K

finished
in 360 s

Figure 1. Accuracy evolution curve on Checkerboard Figure 2. Accuracy evolution curve on Waveform

Multi-Class Pegasos on a Budget

Figure 3. Training time curves

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

length of data sequence

tr
ai

ni
ng

 ti
m

e
(in

 s
ec

on
ds

)

2 million Waveform data

Proj,(B=100)
Proj,(B=500)
Mrg,(B=100)
Mrg,(B=500)
non-budgeted

6. Conclusion

We proposed a family of kernel-based budgeted online
algorithms for multi-class SVM training based on the
Pegasos algorithm. We obtained theoretical guarantees for
its performance that indicate that its success is clearly tied
with the model degradation due to budget maintenance.
Based on the analysis, three budget maintenance methods
were studied. We experimentally evaluated the proposed
methods in terms of accuracy and training time. The
results indicate that highly accurate multi-class kernel
classifiers can be trained on high throughput large data
streams while having very modest memory signature.

Acknowledgements
This work was supported by the U.S. National Science
Foundation Grant IIS-0546155. Koby Crammer is a
Horev Fellow, supported by the Taub Foundations.

References
Cauwenberghs, G. & Poggio, T. (2000). Incremental and

decremental support vector machine learning. NIPS, 13,
409-415.

Cesa-Bianchi, N. & Gentile, C. 2006. Tracking the best
hyperplane with a simple budget Perceptron. COLT.

Cheng, L., Vishwanathan, S. V. N., Schuurmans, D.,
Wang, S. & T. Caelli. (2007). Implicit online learning
with kernels. NIPS, 19, 249-256.

Cortes, C., & Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20, 273-297.

Crammer, K., Kandola, J. & Singer, Y. (2004). Online
classification on a budget. NIPS, 16, 225-232.

Crammer, K & Singer. Y. (2001). On the algorithmic
implementation of multiclass kernel-based vector
machines. JMLR, 2, 262-292.

Csató, L., & Opper, M. (2001). Sparse representation for
gaussian process models. NIPS, 13, 444-450.

Dekel, O., Shalev-Shwartz, S. & Singer, Y. (2008). The
forgetron: A kernel-based perceptron on a budget. SIAM
Journal on Computing, 37, 1342-1372.

Engel, Y., Mannor, S. & Meir, R. (2002). Sparse online
greedy support vector regression. ECML.

Hsu, C.-W. & Lin, C.-J. (2002). A comparisons of
methods multiclass support vector machines. IEEE
Transactions on Neural Networks, 13, 415-425.

Nguyen, D & Ho, T. (2005). An efficient method for
simplifying support vector machines. ICML, 617-624.

Orabona, F. Keshet, J. & Caputo, B. (2009). Bounded
kernel-based online learning. JMLR, 10, 2643-2666.

Rosenblatt, F. (1958). The perceptron: a probabilistic
model for information storage and organization in the
brain. Psychological Review, 65, 386-408.

Schӧkopf, B, Mika, S., Burges, C. J. C., Knirsch, P.,
Müler, K., Räsch, G. & Smola, A. J. (1999). Input space
versus feature space in kernel-based methods. IEEE
Transactions on Neural Networks, 10, 1000-1017.

Shalev-Shwartz, S., & Singer, Y. (2007). Logarithmic
regret algorithms for strongly convex repeated games
(Technical Report). The Hebrew University.

Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007).
Pegasos: primal estimated sub-gradient solver for svm.
ICML, 807-814.

Sutskever, I. (2009). A simpler unified analysis of budget
perceptrons. ICML, 985-992.

Vucetic, S, Coric, V., & Wang, Z. (2009). Compressed
Kernel Perceptrons. DCC, 153-162.

Wang, Z & Vucetic, S. (2009). Twin Vector Machines for
Online Training on a Budget. SDM.

Wang, Z & Vucetic, S. (2009). Tighter Perceptron with
Improved Dual Use of Cached Data for Model
Representation and Validation. IJCNN, 2766-2771.

Wang, Z & Vucetic, S. (2010). Online Passive-
Aggressive Algorithms on a Budget. AISTATS.

Weston, J., Bordes, A. & Bottou, L. (2005). Online (and
offline) on an even tighter budget. AISTATS, 413-420.

Zinkevich, M. (2003). Online convex programming and
generalized infinitesimal gradient ascent. ICML, 928-
935.

