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Abstract

Existing approaches to analyzing the asymp-
totics of graph Laplacians typically assume
a well-behaved kernel function with smooth-
ness assumptions. We remove the smooth-
ness assumption and generalize the analysis
of graph Laplacians to include previously un-
studied graphs including kNN graphs. We
also introduce a kernel-free framework to
analyze graph constructions with shrinking
neighborhoods in general and apply it to an-
alyze locally linear embedding (LLE). We
also describe how, for a given limit opera-
tor, desirable properties such as a convergent
spectrum and sparseness can be achieved by
choosing the appropriate graph construction.

1. Introduction

Graph Laplacians have become a core technol-
ogy throughout machine learning. In particular,
they have appeared in clustering (Kannan et al.,
2004; von Luxburg et al., 2008), dimensionality reduc-
tion (Belkin & Niyogi, 2003; Nadler et al., 2006), and
semi-supervised learning (Zhu, 2008).

While graph Laplacians are but one member of a
broad class of methods that use local neighborhood
graphs to model high-dimensional data lying on a low-
dimensional manifold, they are distinguished by their
appealing mathematical properties, notably: (1) the
graph Laplacian is the infinitesimal generator for a
random walk on the graph, and (2) it is a discrete
approximation to a weighted Laplace-Beltrami oper-
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ator on a manifold, an operator which has numerous
geometric properties and induces a smoothness func-
tional. These mathematical properties have served as
a foundation for the development of a growing the-
oretical literature that has analyzed learning proce-
dures based on the graph Laplacian. To review briefly,
Bousquet et al. (2003) proved an early result for the
convergence of the unnormalized graph Laplacian to
a smoothness functional that depends on the squared
density p2. Belkin & Niyogi (2005) demonstrated the
pointwise convergence of the empirical unnormalized
Laplacian to the Laplace-Beltrami operator on a com-
pact manifold with uniform density. Lafon (2004) and
Nadler et al. (2006) established a connection between
graph Laplacians and the infinitesimal generator of a
diffusion process. They further showed that one may
use the degree operator to control the effect of the den-
sity. Hein et al. (2005) combined and generalized these
results for weak and pointwise (strong) convergence
under weaker assumptions, as well as providing rates
for the unnormalized, normalized, and random walk
Laplacians. They also make explicit the connections
to the weighted Laplace-Beltrami operator. Singer
(2006) obtained improved convergence rates for a uni-
form density. Giné & Koltchinskii (2005) established
a uniform convergence result and functional central
limit theorem to extend the pointwise convergence re-
sults. von Luxburg et al. (2008) and Belkin & Niyogi
(2006) presented convergence results for the eigenvec-
tors of graph Laplacians in the fixed and shrinking
bandwidth cases respectively.

Although this burgeoning literature has provided
many useful insights, several gaps remain between the-
ory and practice. Most notably, in constructing the
neighborhood graphs underlying the graph Laplacian,
several choices must be made, including the choice of
algorithm for constructing the graph, with k-nearest-
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neighbor (kNN) and kernel functions providing the
main alternatives, as well as the choice of parameters
(k, kernel bandwidth, normalization weights). These
choices can lead to the graph Laplacian generating fun-
damentally different random walks and approximating
different weighted Laplace-Beltrami operators. The
existing theory has focused on one specific choice in
which graphs are generated with smooth kernels with
shrinking bandwidths. But a variety of other choices
are often made in practice, including kNN graphs, r-
neighborhood graphs, and the “self-tuning” graphs of
Zelnik-Manor & Perona (2004). Surprisingly, few of
the existing convergence results apply to these choices
(see Maier et al. (2008) for an exception).

This paper provides a general theoretical framework
for analyzing graph Laplacians and operators that be-
have like Laplacians. Our point of view differs from
that found in the existing literature; specifically, our
point of departure is a stochastic process framework
that utilizes the characterization of diffusion processes
via drift and diffusion terms. This yields a general
kernel-free framework for analyzing graph Laplacians
with shrinking neighborhoods. We use it to extend
the pointwise results of Hein et al. (2007) to cover
non-smooth kernels and introduce location-dependent
bandwidths. Applying these tools we are able to iden-
tify the asymptotic limit for a variety of graphs con-
structions including kNN, r-neighborhood, and “self-
tuning” graphs. We are also able to provide an analysis
for Locally Linear Embedding (Roweis & Saul, 2000).

A practical motivation for our interest in graph Lapla-
cians based on kNN graphs is that these can be signif-
icantly sparser than those constructed using kernels,
even if they have the same limit. Our framework al-
lows us to establish this limiting equivalence. On the
other hand, we can also exhibit cases in which kNN
graphs converge to a different limit than graphs con-
structed from kernels, thereby explaining some cases
where kNN graphs perform poorly. Moreover, our
framework allows us to generate new algorithms: in
particular, by using location-dependent bandwidths
we obtain a class of operators that have nice spectral
convergence properties that parallel those of the nor-
malized Laplacian in von Luxburg et al. (2008), but
which converge to a different class of limits.

2. The Framework

Our work exploits the connections among diffusion
processes, elliptic operators (in particular the weighted
Laplace-Beltrami operator), and stochastic differential
equations (SDEs). This builds upon the diffusion pro-
cess viewpoint in Nadler et al. (2006). Critically, we

make the connection to the drift and diffusion terms of
a diffusion process. This allows us to present a kernel-
free framework for analysis of graph Laplacians as well
as giving a better intuitive understanding of the limit
diffusion process.

We first give a brief overview of these connections and
present our general framework for the asymptotic anal-
ysis of graph Laplacians as well as providing some rel-
evant background material. We then introduce our
assumptions and derive our main results on the limit
operator for a wide range of graph construction meth-
ods. We use these to calculate asymptotic limits for
some specific graph constructions.

2.1. Relevant Differential Geometry

Assume M is a smooth m-dimensional manifold em-
bedded in R

b, the extrinsic coordinate system. To
identify the asymptotic infinitesimal generator of a
diffusion process on this manifold, we will derive the
drift and diffusion terms in normal coordinates at each
point. We refer the reader to Boothby (1986) for an
exact definition of normal coordinates. For our pur-
poses it suffices to note that the normal coordinates are
coordinates in R

m that behave roughly as if a neigh-
borhood of x was projected onto the tangent plane at
x. To link the extrinsic coordinates of a point y in a
neighborhood of x and normal coordinates s, we have
the relation

y − x = Hxs + Lx(ssT ) + O(
∥

∥s3
∥

∥), (1)

where Hx is a linear isomorphism between the nor-
mal coordinates in Rm and the m-dimensional tangent
plane Tx at x. Lx is a linear operator describing the
curvature of the manifold and takes m × m positive
semidefinite matrices into the space orthogonal to the
tangent plane, T⊥

x . More advanced readers will note
that this statement is Gauss’ lemma and Hx and Lx

are related to the first and second fundamental forms.

We are most interested in limits involving the operator
defined below:

Definition 1 (Weighted Laplace-Beltrami operator).
Given a smooth manifold M, the weighted Laplace-
Beltrami operator with respect to the density q is the

second-order differential operator ∆q := ∆M − ∇qT

q ∇
where ∆M := div ◦ ∇ is the unweighted Laplace-

Beltrami operator. For functions f ∈ C∞(M) with

support contained in the interior of the manifold, it

induces a smoothness functional by the relationship

〈f,∆qf〉L(q) = ‖∇f‖
2
L2(q)

. (2)
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2.2. Equivalence of Limiting Characterizations

We now establish the connections among elliptic op-
erators, diffusions, SDEs, and graph Laplacians. We
first show that elliptic operators define diffusion pro-
cesses and SDEs and vice versa. An elliptic operator
G is a second-order differential operator of the form

Gf(x) =
∑

ij

aij(x)
∂2f(x)

∂xi∂xj
+
∑

i

bi(x)
∂f(x)

∂xi
+c(x)f(x),

where the m×m coefficient matrix (aij(x)) is positive
semidefinite for all x. If we use normal coordinates for
a manifold, we see that the weighted Laplace-Beltrami
operator ∆q is a special case of an elliptic operator

with (aij(x)) = I, the identity matrix, b(x) = ∇q(x)
q(x) ,

and c(x) = 0. Diffusion processes are related via a
result by Dynkin which states that, given a diffusion
process, the generator of the process is an elliptic op-
erator. The (infinitesimal) generator G of a diffusion
process Xt is defined as

Gf(x) := lim
t→0

Exf(Xt) − f(x)

t

when the limit exists and convergence is uniform over
x. Here Exf(Xt) = E(f(Xt)|X0 = x). A converse
relation holds as well. The Hille-Yosida theorem char-
acterizes when a linear operator, such as an elliptic
operator, is the generator of a stochastic process. We
refer the reader to Kallenberg (2002) for details.

A time-homogeneous stochastic differential equation
(SDE) defines a diffusion process as a solution (when
one exists) to the equation

dXt = µ(Xt)dt + σ(Xt)dWt,

where Xt is a diffusion process taking values in R
d.

The terms µ(x) and σ(x)σ(x)T are the drift and dif-

fusion terms of the process.

By Dynkin’s result, the generator G of this process is
an elliptic operator and a simple calculation shows the
operator is

Gf(x) =
1

2

∑

ij

(

σ(x)σ(x)T
)

ij

∂2f(x)

∂xi∂xj
+
∑

i

µi(x)
∂f(x)

∂xi
.

All that remains then is to connect diffusion processes
in continuous space to graph Laplacians on a finite set
of points. Diffusion approximation theorems provide
this connection. We state one version of such a theo-
rem, which may be derived from Theorems 1.2.4, 1.6.3,
and 7.4.2 in Ethier & Kurtz (1986).

Theorem 2 (Diffusion Approximation). Let µ(x) and

σ(x)σ(x)T be drift and diffusion terms for a diffusion

process defined on a compact set S ⊂ R
b, and let G be

the corresponding infinitesimal generator. Let {Y
(n)
t }t

be Markov chains with transition matrices Pn on state

spaces {xi}
n
i=1 for all n, and let cn ↑ ∞ define a se-

quence of scalings. Put

µ̂n(xi) =cnE(Y
(n)
1 − xi|Y

(n)
0 = xi)

σ̂n(xi)σ̂n(xi)
T =cnVar(Y

(n)
1 |Y

(n)
0 = xi).

Let f ∈ C3(S). If for all ǫ > 0

sup
i≤n

‖µ̂n(xi) − µ(xi)‖∞ → 0,

sup
i≤n

∥

∥σ̂n(xi)σ̂n(xi)
T − σ(xi)σ(xi)

T
∥

∥

∞
→ 0,

cn sup
i≤n

P
(∥

∥

∥
Y

(n)
1 − xi

∥

∥

∥
> ǫ
∣

∣

∣
Y

(n)
0 = xi

)

→ 0,

then for the generators An = cn(Pn − I), we have

Anf → Gf .

We remark that though the results we have discussed
thus far are stated in the context of the extrinsic co-
ordinates R

b, we describe appropriate extensions in
terms of normal coordinates in Ting et al. (2010).

2.3. Our Assumptions

We describe here the assumptions and notation for the
rest of the paper. We will refer to the following as-
sumptions as the standard assumptions.

Assume M is a smooth m-dimensional manifold iso-
metrically embedded in R

b. We further assume
for simplicity that the manifold is compact with-
out boundary, but describe weaker conditions in
Ting et al. (2010). Unless stated explicitly otherwise,
let f be an arbitrary function in C3(M).

Assume points {xi}
∞
i=1 are sampled i.i.d. from a den-

sity p ∈ C3(M) with respect to the natural volume
element of the manifold, and assume that p is bounded
away from zero.

For brevity, we will always use x, y ∈ R
b to be points on

M expressed in extrinsic coordinates and let s ∈ R
m

denote the normal coordinates for y in a neighborhood
centered at x. Since they represent the same point,
we will also use y and s interchangeably as function
arguments; i.e., f(y) = f(s). Whenever we take a
gradient, it is with respect to the normal coordinates.

We define what we mean by convergence. When we
write gn → g where domain(gn) = Xn ⊂ M, we mean
‖gn − πng‖∞ → 0 where πng = g|Xn

is the restriction
of g to Xn. For operators Tn on functions with domain
Xn, we take Tng = Tnπng. Convergence of operators
Tn → T means Tnf → Tf for all f ∈ C3(M).
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We now introduce our assumptions on the graph con-
struction methods. Let K0 : R+ → R+ be a base ker-
nel with bounded variation and compact support. Let

hn be a sequence of bandwidth scalings and r
(n)
x (·) >

0, w
(n)
x (·) ≥ 0 be (possibly random) location depen-

dent bandwidth and weight functions that converge
to rx(·) and wx(·), respectively, and have Taylor-like
expansions for all x, y ∈ M with ‖x − y‖ < hn:

r(n)
x (y) = rx(x) + (ṙx(x) + αxsign(uT

x s)ux)T s

+ ǫ(n)
r (x, s)

w(n)
x (y) = wx(x) + ∇wx(x)T s + ǫ(n)

w (x, s)

where the approximation error is uniformly bounded:

sup
x∈M,‖s‖<hn

|ǫ
(n)
i (x, s)| = o(h2

n) for i = r, w.

We consider the limit of the random walk Laplacian
defined by as Lrw = I−D−1W where I is the identity,
W is the matrix of edge weights, and D is the diagonal
degree matrix.

2.4. Main Theorem

Our main result is stated in the following theorem.

Theorem 3. Assume the standard assumptions hold

with probability 1. If the bandwidth scalings hn satisfy

hn ↓ 0, nhd+2
n / log n → ∞, then for graphs constructed

using the kernels

Kn(x, y) = w(n)
x (y)K0

(

‖y − x‖

hnr
(n)
x (y)

)

(3)

there exists a constant ZK0,m depending only on K0

and the dimension m such that for cn = ZK0,m/hm+2,

−cnL(n)
rw f → Af,

where A is the infinitesimal generator of a diffusion

process with, in normal coordinates, drift and diffusion

terms

µs(x) = rx(x)2
(

∇p(x)

p(x)
+

∇w(x)

w(x)
+ (m + 2)

ṙx(x)

rx(x)

)

,

σs(x)σs(x)T = rx(x)2I,

where I is the m × m identity matrix.

Note that the kernel in Eq. (3) generalizes previously
analyzed graph constructions by (1) allowing for non-
smooth kernels, (2) introducing a random location-
dependent bandwidth function rx(y), and (3) consid-
ering a general random weight function wx(y).

Proof. By the diffusion approximation theorem (The-
orem 2) and since hn ↓ 0, we simply need to show
uniform convergence of the drift and diffusion terms.

We sketch the proof here and present the details in
Ting et al. (2010). First, assuming we are given the
true density p and limit weight and bandwidth func-
tions, we calculate the limits assuming K0 is an in-
dicator kernel. To generalize to kernels of bounded
variation and compact support, note that K0(x) =
∫

I(|x| < z)dη+(z)−
∫

I(|x| < z)dη−(z) for some finite
positive measures η−, η+ with compact support. The
result for general kernels then follows from Fubini’s
theorem.

The key calculation is establishing that integrating
against an indicator kernel is like integrating over a
sphere re-centered on h2

nṙx(x). Given this calculation
and by Taylor expanding the non-kernel terms, one ob-
tains the infinitesimal first and second moments and
the degree operator:

M
(n)
1 (x) =

∫

sKn(x, y)p(y)ds

= CK0,mhm+2
n rx(x)m+2

(

wx(x)
∇p(x)

m + 2
+

+p(x)
∇wx(x)

m + 2
+ wx(x)p(x)ṙx(x) + O(hn)

)

,

M
(n)
2 (x) =

CK0,m

m + 2
hm+2

n rx(x)m+2 (wx(x)p(x)I + O(hn)) ,

d(n)(x) = C ′
K0,mhm

n rx(x)m (w(x)p(x) + O(hn)) ,

for some constants CK0,m, C ′
K0,m.

Let cn = h
−(m+2)
n

(m+2)C′

K0,m

CK0,m
. Since Kn/dn de-

fine Markov transition kernels, taking the limits

µs(x) = lim
n→∞

cnM
(n)
1 (x)/d(n)(x) and σs(x)σs(x)T =

lim
n→∞

cnM
(n)
2 (x)/d(n)(x) gives the stated result.

For the covergence of the empirical quantities, we find
deterministic weight and bandwidth functions that up-
per and lower bound the moments. We may then apply
Bernstein’s inequality for i.i.d bounded random vari-
ables to obtain a.s. uniform convergence.

2.5. Unnormalized and Normalized Laplacians

While our results are for the limit of the random
walk Laplacian Lrw = I − D−1W , it is easy to gen-
eralize them to the unnormalized Laplacian Lu =
D−W = DLrw and symmetrically normalized Lapla-
cian Lnorm = I − D−1/2WD−1/2 = D1/2LrwD−1/2.
For proof details see Ting et al. (2010).

Corollary 4. Take the assumptions and definitions in

Theorem 3, so that cnL
(n)
rw f → Af . Under the same

assumptions on the bandwidth scaling, the rescaled de-

gree terms d(n)(·)/hm
n converge uniformly a.s. to a



An Analysis of the Convergence of Graph Laplacians

function d(·), and

cnL(n)
u f → d · Af a.s.

Furthermore, if d ∈ C3(M) and
nhm+4

n

log n → ∞ then

cnL(n)
normf → d1/2 · A(d−1/2f) a.s.

2.6. As weighted Laplace-Beltrami operator

Under some regularity conditions, the limit given in
the main theorem (Theorem 3) yields a weighted
Laplace-Beltrami operator. For convenience, define
γ(x) = rx(x), ω(x) = wx(x).

Corollary 5. Assume the conditions of Theorem 3

and let q = p2ωγm+2. If rx(y) = ry(x), wx(y) = wy(x)
for all x, y ∈ M and r(·)(·), w(·)(·) are twice differen-

tiable in a neighborhood of (x, x) for all x, then

−cnL(n)
u →

q

p
∆q. (4)

3. Application to Specific Graph

Constructions

To illustrate Theorem 3, we apply it to calculate
the asymptotic limits of graph Laplacians for several
widely used graph construction methods. We also ap-
ply the general diffusion theory framework to analyze
locally linear embedding.

3.1. r-Neighborhood and Kernel Graphs

In the case of the r-neighborhood graph, the base ker-
nel is the indicator function K0(x) = I(|x| < r). The
radius rx(y) is constant so ṙx(x) = 0. The drift is
given by µs(x) = ∇p(x)/p(x) and the diffusion term
is σs(x)σs(x)T = I. The limit operator is thus

1

2
∆M +

∇p(x)T

p(x)
∇ =

1

2
∆2

as expected. This analysis also holds for arbitrary ker-
nels of bounded variation. One may also introduce

the usual weight function w
(n)
x (y) = dn(x)−αdn(y)−α

to obtain limits of the form 1
2∆p(2−2α) . These limits

match those obtained by Hein et al. (2007) and Lafon
(2004) for smooth kernels.

3.2. Directed k-Nearest Neighbor Graph

kNN graphs are of particular interest since they pro-
duce very sparse graphs where the sparseness is easily
controlled. For kNN graphs, the base kernel is still
the indicator kernel, and the weight function is the

constant 1. However, the bandwidth function r
(n)
x (y)

is random and depends on x. Since the graph is di-
rected, it does not depend on y so ṙx = 0.

By the analysis in Section 3.4, rx(x) = cp−1/m(x) for
some constant c. Consequently the limit operator is
proportional to

1

p2/m
(x)

(

∆M + 2
∇pT

p
∇

)

=
1

p2/m
∆p2 .

Note that this is not a self-adjoint operator in L(p).
The symmetrization of the graph has a non-trivial ef-
fect to make the graph Laplacian self-adjoint.

3.3. Undirected k-Nearest Neighbor Graph

We consider the “OR-construction” where nodes vi

and vj are linked if vi is a kth-nearest neighbor

of vj or vice-versa. In this case hm
n r

(n)
x (y) =

max{ρn(x), ρn(y)} where ρn(x) is the distance
to the kth

n nearest neighbor of x. The limit
bandwidth function is non-differentiable, rx(y) =
max{p−1/m(x), p−1/m(y)}, but a Taylor-like expan-

sion exists with ṙx(x) = − 1
2m

∇p(x)T

p(x) . The limit op-
erator is

1

p2/m
∆p1−2/m ,

which is self-adjoint in L2(p). Surprisingly, if m = 1
then the kNN graph construction induces a drift away

from high density regions.

3.4. Conditions for kNN convergence

To complete the analysis, we must check that the con-
ditions for kNN graph constructions satisfy the as-
sumptions of the main theorem. This is a straight-
forward application of existing uniform consistency re-
sults for kNN density estimation.

Let hn =
(

kn

n

)1/m
. The condition we must verify is

sup
y∈M

∥

∥

∥
r(n)
x − rx

∥

∥

∥

∞
= O(h2

n) a.s.

We check this for the directed kNN graph, but analyses
for other kNN graphs are similar. The kNN density
estimate of Loftsgaarden & Quesenberry (1965) is

p̂n(x) =
kn

nVm(hnr
(n)
x (x))m

, (5)

where hnr
(n)
x (x) is the distance to the kth

n nearest
neighbor of x given n data points and Vm is the volume
of the m-dimensional unit sphere. Taylor-expanding
Eq. (5) shows that if ‖p̂n − p‖∞ = O(h2

n) a.s. then the
requirement on the location-dependent bandwidth for
the main theorem is satisfied.

Devroye & Wagner (1977)’s proof for the uniform con-
sistency of kNN density estimation may be easily mod-
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ified to show this. Take ǫ = (kn/n)2 in their proof.

One then sees that hn = kn/n → 0 and
nhm+2

n

log n =

k2+2/m
n

n1+2/m log n
→ ∞ are sufficient to achieve the desired

bound on the error.

3.5. “Self-Tuning” Graphs

The form of the kernel used in self-tuning graphs is

Kn(x, y) = exp

(

−‖x − y‖
2

σn(x)σn(y)

)

,

where σn(x) = ρn(x), the distance between x and the
kth nearest neighbor. The limit bandwidth function
is rx(y) =

√

p−1/m(x)p−1/m(y). Since this is twice
differentiable, Corollary 5 gives the asymptotic limit,
which is the same as for undirected kNN graphs:

p−2/m∆p1−2/m .

3.6. Locally Linear Embedding

Locally linear embedding (LLE), introduced by
Roweis & Saul (2000), has been noted to behave
like (the square of) the Laplace-Beltrami operator
(Belkin & Niyogi, 2003).

Using our kernel-free framework we will show how LLE
differs from weighted Laplace-Beltrami operators and
graph Laplacians in several ways.

The key observation is that LLE only controls for the
drift term in the extrinsic coordinates. Thus, the dif-
fusion term has freedom to vary. However, if the man-
ifold has curvature, the drift in extrinsic coordinates
constrains the diffusion term in normal coordinates.

The LLE matrix is defined as (I −W )T (I −W ) where
W is a weight matrix which minimizes reconstruction
error W = argminW ′ ‖(I − W ′)y‖

2
under the con-

straints that W ′1 = 1 and W ′
ij 6= 0 only if j is one

of the kth nearest neighbors of i. Typically k > m
and reconstruction error = 0. We will assume this and
analyze the matrix M = W − I.

Suppose LLE produces a sequence of matrices Mn =
I − Wn. The row sums of each matrix are zero.
Thus, we may decompose Mn = A+

n − A−
n where

A+
n , A−

n are infinitesimal generators for finite state
Markov processes obtained from the positive and neg-
ative weights respectively. Assume that there is some
scaling cn such that cnA+

n , cnA−
n converge to genera-

tors of diffusion processes with drifts µ+, µ− and dif-
fusion terms σ+σT

+, σ−σT
−. Set µ = µ+ − µ− and

σσT = σ+σ+ − σ−σ−.

Since reconstruction error in extrinsic coordinates is

zero, Eq. (1) shows that in normal coordinates we have

µs(x) = 0 and Lx(σs(x)σs(x)T ) = 0.

From this we see that: (1) LLE can only behave like an
unweighted Laplace-Beltrami operator since the drift
term is zero. (2) LLE is affected by the curvature of
the manifold since σs(x)σs(x)T must lie in the null
space of Lx. Furthermore, when Lx is full rank then
σs = 0 and LLE may behave unlike any elliptic op-
erator (including the Laplace-Beltrami operator). (3)
LLE has, in general, no well-defined asymptotic limit

without additional conditions on the weights, since the
diffusion term is free to vary in the null space of Lx.

We note that while the LLE framework of minimiz-
ing reconstruction error can yield ill-behaved solu-
tions, practical implementations add a regularization
term when constructing the weights. This causes the
reconstruction error to be non-zero in general and
gives unique solutions for the weights that favor equal
weights (and hence asymptotic behavior akin to that
of kNN graphs).

4. Experiments

To illustrate the theory, we show how to correct the
bad behavior of the kNN Laplacian for a synthetic data
set. We also show how our analysis can predict the
surprising behavior of LLE.

kNN Laplacian. We first consider an example which
almost all non-linear embedding techniques handle
well but where the kNN graph Laplacian performs
poorly. Figure 1 shows a 2D manifold embedded in
three dimensions and shows embeddings using dif-
ferent graph constructions. The theoretical limit of
the normalized Laplacian Lknn for a kNN graph is
Lknn = 1

p∆1, while the limit for a graph with Gaus-
sian weights is Lgauss = ∆p. The first two coor-
dinates of each point are from a truncated normal
distribution, so the density at the boundary is small
and the effect of the 1/p term is substantial. This
yields the bad behavior shown in Figure 1 (C). We
may use Eq. (5) as a pilot estimate p̂ of the density.
Choosing wx(y) =

√

p̂n(x)p̂n(y) gives a weighted kNN
graph with the same limit as the graph with Gaussian
weights. Figure 1(D) shows that this change yields
the roughly desired behavior but with fewer “holes” in
low density regions and more “holes” in high density
regions.

LLE. We consider another synthetic data set, the
toroidal helix, in which the manifold structure is easy
to recover. Figure 2(A) shows the manifold which is
clearly isomorphic to a circle, a fact picked up by the
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Figure 1. (A) shows a 2D manifold where the x and y coordinates are drawn from a truncated standard normal distribution.

(B-D) show embeddings using different graph constructions. (B) uses a normalized Gaussian kernel K(x,y)

d(x)1/2d(y)1/2 , (C)

uses a kNN graph, and (D) uses a kNN graph with edge weights
p

p̂(x)p̂(y). The bandwidth for (B) was chosen to be the
median standard deviation from taking 1 step in the kNN graph in order to have comparable sparsity.
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Figure 2. (A) shows a 1D manifold isomorphic to a circle. (B-D) show the embeddings using (B) Laplacian eigenmaps
which correctly identifies the structure, (C) LLE with regularization 1e-3, and (D) LLE with regularization 1e-6.

kNN Laplacian in Figure 2(B).

Our theory predicts that the heuristic argument that
LLE behaves like the Laplace-Beltrami operator will
not hold. Since the total dimension for the drift and
diffusion terms is two and the extrinsic coordinates
also have dimension three, that there is forced cancel-
lation of the first- and second-order differential terms
and the operator should behave like the zero operator
or include higher-order differentials. In Figure 2(C)
and (D), we see this that LLE performs poorly and
that the behavior comes closer to the zero operator
when the regularization term is smaller.

5. Remarks

Convergence rates. We note that one missing ele-
ment in our analysis is the derivation of convergence
rates. For the main theorem, we note that although
we have employed a diffusion approximation theorem
it is not in fact necessary to use such a theorem.
Since our theorem still uses a kernel (albeit one with
much weaker conditions), a virtually identical proof
can be obtained by applying a function f and Taylor-
expanding it. Thus, we believe that similar conver-
gence rates to those in Hein et al. (2007) can be ob-
tained. Also, while our convergence result is stated for
the strong operator topology, the same conditions as
in Hein should give weak operator convergence.

Eigenvalues/eigenvectors. Eigenvectors of the

Laplacian matrix are of particular interest since they
may be used as a set of harmonic basis functions or in
spectral clustering.

With our more general graph constructions we can
use the theory of compact integral operators to ob-
tain graph Laplacians that (1) have eigenvectors that
converge for fixed (non-decreasing) bandwidth scalings
and (2) converge to a limit that is different from that
of previously analyzed normalized Laplacians when the
bandwidth decreases to zero. In particular, for arbi-
trary q, g ∈ C3(M) with g bounded away from zero.
We may choose w, r such that, if hn ↓ 0 at an appro-
priate rate, we obtain limits of the form

−cnL(n)
normf → g−1/2 q

p
∆q(g

−1/2f),

with corresponding smoothness functional
〈

f, g−1/2 q

p
∆q(g

−1/2f)

〉

L2(p)

=
∥

∥

∥
∇(g−1/2f)

∥

∥

∥

2

L2(q)
,

and if hn = h1 is constant then the eigen-

vectors of L
(n)
norm converge in the sense given by

von Luxburg et al. (2008).

6. Conclusions

We have introduced a general framework that en-
ables us to analyze a wide class of graph Laplacian
constructions. Our framework reduces the problem
of graph Laplacian analysis to the calculation of a
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mean and variance (or drift and diffusion) for any
graph construction method with positive weights and
shrinking neighborhoods. Our main theorem extends
existing strong operator convergence results to non-
smooth kernels, and introduces a general location-
dependent bandwidth function. The analysis of a
location-dependent bandwidth function, in particular,
significantly extends the family of graph constructions
for which an asymptotic limit is known. This family in-
cludes the previously unstudied (but commonly used)
kNN graph constructions, unweighted r-neighborhood
graphs, and “self-tuning” graphs.

Our results also have practical significance in graph
constructions as they suggest graph constructions that
(1) produce sparser graphs than those constructed
with the usual kernel methods, despite having the
same asymptotic limit, and (2) in the fixed bandwidth
regime, produce unnormalized Laplacians or normal-
ized Laplacians that have well-behaved spectra but
converge to a different class of limit operators than pre-
viously studied normalized and unnormalized Lapla-
cians. In particular, this class of limits include those
that induce the smoothness functional ‖∇f‖

2
L2(q)

for
almost any density q. The graph constructions may
also (3) have better connectivity properties in low-
density regions.
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