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Abstract and the fact that exact inference and prediction within the

We develop a new algorithm, based on EM, model can be done efficiently.
for learning the Linear Dynamical System _
model. Called the method of Approximated 1.2.Learning theLDS

Second-Order Statistics (ASOS) our approach Learning the parameters of the LDS, sometimes called

achieves dramatically superior computational  ugystem identification”, is a well-studied problem. The
performaqce over stan_dard EM thfough Its use available algorithms fall into three broad categories: the
_Of a_|o_prOX|mat|on_s, which we justify with both Prediction Error Method (PEM), Subspace ldentification
inturtive explangtlons and rigorous convergence (4SID) and Expectation Maximization (EM). In the PEM
results. I.n particular, aftgr an inexpensive pre- approach (e.dLjung, 2002, a 1-step prediction-error ob-
computation phase, the iterations of ASOS can  jqtive is minimized via gradient-based optimization meth
be perfor_med in timéndependendf the length ods. Typical implementations use either gradient descent
of the training dataset. and thus require many iterations to converge, or U$e 2
order optimization methods but then become impractical

1. Introduction for large models.

EM, a broadly applied algorithm for maximum likelihood
1.1. The LDSModel parameter estimation for hidden-variable models, can be
The time-invariant discrete Linear Dynamical Systemapplied tothe LDS. The maximum likelihood objective can
(LDS) is a classical and widely used model of real-valuedo€ seen as the special case of the prediction error objective
multivariate time-series datfy, € RMv}Z . Hidden (Ljung,2002, but EM takes a differentapproachto PEMin

states{z; € RV=1T | are generated via the time-evolution OPtimizing this objective making it more practical for larg

matrix A € RN=*N= ag: models. Both PEM and EM are iterative optimization algo-
rithms where each iteration requires a pass over the entire
Ty = Az + € (1) dataset. Since very many iterations can be required, meithe

where{e, )7, are i.i.d. multivariate normal with meah of these algorithms scale well to very long time-series.

and covariance matrik). Observations); are generated |n the 4SID approachqverschee & Moqrl991), the LDS
from z, via the matrixC' € R"»* = according to: equations are re-written as large block matrix formulae,
i = Cry + 6, @) which are u_sed to produc_:e an estim_ate of the hidden states
sequence via matrix projections (this boils down to com-
where{d,}I_, are alsoi.i.d. multivariate normal with mean puting a large singular value decomposition), which is then
0 and covariance matrik. The initial state £;) distribu-  used to estimate the parameters. The block formulae gen-
tion is multivariate normal with mean; and covariance erate predictions for future data-points using onlyithee-
matrix I1;. vious ones, whergis a meta-parameter which controls the
guality of the solution at the cost of computational perfor-
model for real-world engineering and financial applica-mance' By contrast, ;tatistically optimal state estimato.r
tions. This is due to its relative simplicity, its mathemat- (.SUCh as tho§e|u3§ad 'E tr;]e E-step dOff EM) ustga the gntlre
ically predictable behavior, the existence of many physi-zglgsiirfst’ allrrllcitue r:;[ig\]/e ?):otira?zséts)z alggjr:tehr% I?I?ervlggcl)\;]&
cal systems that are known to be accurately modeled by Itér EM and thus often tends to be faster than these methods
Appearing inProceedings of the7'" International Conference while avoiding the problem of bad local minima. However,
on Machine LearningHaifa, Israel, 2010. Copyright 2010 by the the solutions it produces, while of high quality, tend not

author(s)/owner(s). to be locally optimal for any particular objective function

The LDS is arguably the most commonly used time-serie
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(such as the log-likelihood). The approach thus often advorameter estimate &, 1 = arg maxy Q,,(0).

cated is to run EM initialized with the solution produced by

4SID, thus avoiding bad local minima while also achiev-2.1. M-step for the LDS

ing statistical optimality $mith & Robinson2000. One ) )

disadvantage of 4SID is that standard implementations of*S @ consequence of the linear and Gaussian nature of the

it have considerable space requirements that prevent thehPS model, _th_e functiorQn_(H) can be written in t_erms
from scaling nicely with the length of the training time- of ¢ and statistics that are first and second order and

series. y (and are highly non-linear if,,). With these statis-
tics computed, optimizin@,,(6) with respect t@ reduces

to a straightforward application of matrix calculus and is
similar to linear regression with an unknown covariance.
This paper develops a new method for dramatically in-For a full specification and derivation of the M-step see
creasing the efficiency of EM via an approximation schemeGhahramani & Hintor{1996.

which we call the method of Approximate Second-Orde
Statistics (ASOS). The ASOS scheme approximates the
step so that it can be computed in tinmelependent off’,
the length of the training time-series. This allows EMtobe zF = Ey [z | y<s | Vt’fs = Covyp, [ xt, s | y<k ]
practical for time-series of nearly unbounded size, making - =y — Eo, [yt | ] S, = Cove, [ 7 | ]
it much more useful as an optimization tool to be used in ge = onl Yt | Y<t—1 k onl Yt | Yst
conjunction with 4SID, or even as a replacement in cases . , bk & .
where excessively long time-series make 4SID infeasibleN N9 that o, [wez | y<i | = zz] + Vi, and using
Since the 4SID and EM algorithms have been analyzed anéhe notation(a, b), = 5=/ a,b; (wherev’ denotes the
compared $mith & Robinson 200Q Smith etal, 1999,  transpose ob) the complete list of statistics required to
our goal in this paper will instead be to compare “ASOS-compute the M-step may be written as:

EM” with standard EM and show that the approximations T T_1

have_ c_mly a minimal effect. on the solution quallity while_ (y,2")o, (T, 2")o + th”:’;, (T, 27), + Z Vt?;M
providing a huge computational performance gain, both in —

an theoretical and practical sense.

1.3. Our Contribution

éfor the sake of brevity we will use the following standard
hotation for the remainder of this paper:

t=1

These expressions contain both sums of covariances and
_ sums of products of means. For the remainder of this report
2. EM for LDSlearning we will refer to the later sums as the “M-statistics”, which

N . - . : .. are particular examples of "®order statistics”.
The objective function maximized during maximum likeli- P P

hood learning is the log probability of the observation se- _

quencey given the model parameters (also known as the2'2‘ E-Step for theL DS (K alman recursions)

log likelihood function). This can be obtained from the pre- The Kalman recursions (s&hahramani & Hinton1996
vious joint probability by integrating out the hidden s&ate are a set of recursive relations that define a computational
logp(y|0) = log [ p(x,y|0). While the gradient and Hes- procedure for exact inference of the distribution over the
sian of this function are difficult to compute (indeed, im- hidden states: in the LDS model. The standard approach
plementations of PEM often resort to finite differences), itfor computing the M-statistics is to apply this procedure
is relatively simple to compute the log joint probabilitydan  to find 27" for each value of in succession and then per-
its expectation givep for a particular setting of the param- form the required sums. Doing this has time complexity

eters. The EM algorithm, which was first applied to LDS O(N3T') which is the reason that the EM algorithm scales
parameter learning bghumway & Stoffe(1982, can in-  poorly to long time-series.
directly optimize the log-likelihood by iteratively maxim

ing this later quantity, which we deno&, (9). 3. The ASOS Approach

Q,.(0) = Ep, [log plx, 410)]y] = / p(aly. 0) log p(, y|9) da3.1. Overview

The key observation that motivates the ASOS approach
The EM algorithm iteratively alternates between twois that, for the purposes of the M-step, we don’t actually
phases called the “E-step” and the “M-step”. For a givencare about the individual moments for eagh but rather
estimate of the parametdis, the E-step computes the ex- certain sums over the products of these, the M-statistics,
pectations which appear in the expression @y(d), al-  along with sums over covariance matrices. Thus we can
lowing it to be easily evaluated and optimized with respectfocus on the M-statistics directly and come up with approx-
to ¢ in the M-step. The M-step then computes the new paimations that will make them more efficiently computable
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without having to concern ourselves with computing thereduces to solving discrete algebraic Riccati equatiods an
individual 27. To this end we will derive a set of ®d-  simpler Lyapunov equations, for which there are efficient
order recursions” from the Kalman recursions which de-algorithms.

fine a recursive scheme to compute variotfs@der statis-
tics overy,, !, andz!, culminating in the computation
of the M-statistics. Whereas the Kalman recursions relat
15order moments across different time-steps, théSe 2
order recursions will relate"-order statistics across dif-
ferent “time-lags”, where by “time-lag” we mean the value
of kin (a,b)r = 37 arrxbs, i.e. the difference in the
temporal-indices as they appear in the sum. o} = Hal_| + Ky, ol = JfftT+1 + P}

For simplicity we will assume that the steady-state condi-
tion applies over the entire time-series. Later we will see
fow this strong assumption can be replaced with a more
realistic one that will approximate the truth to an arbigrar
precision. Under steady state the Kalman recursions for the
state means can be written compactly as:

The number of distinct time-lags is equal g the num- N B
bers of time-steps (statistics with time-lag larger thian where we have defined; = 13, H = A — KCA and

are equal to the 0 matrix), and so solving them exactlyp = I — JA. The usefulness of the switch in notation

would entail just as much or more computation than simJromz; to z7 is that it allows us to use our special notation

. . ) . d ot — Tk :
ply running the original Kalman recursions. Fortunately it for 2 -(_)rdeir statisticg(a, b), = Zt:l* arxby with the
turns out that, at the cost of introducing some fairly libera Vector-listz; as an argument, e.g.= ="

approxim_ations Wh_ich have some favorable statistical angy, aqdition to simplifying the Kalman recursions, assum-

asymptotic properties, we can evaluate the@der recur- ing steady state makes it much easier to compute the
sionsmuchmore efficiently than the Kalman recursions. In coyariance-matrix sums required by the M-step; we just
particular, by approximating statistics of “large” timag| multiply the corresponding steady-state value Byor

by carefully chosen unbiased estimators we can derive & _ 1 s the case may be. Thus to complete the E-step
compact system of linear equations that can be solved very remains only to compute the M-statistics.

efficiently. The size of this system, and thus the cost of

solving it, tur.ns out to be a function of Fhe cut-off time-lag 3.3. Recursions for the 21
“kum” at which we choose to approximate thé®-drder

statistics. The resulting algorithm only depends on the valIn this section we will give the general approach for deriv-
ues of(y,y)r = Z?:lk Yerry, for 0 < k < Epim. And ing the 29%order recursions and then provide the complete
while computing these clearly requires time proportionallist. To find the equation that computes the statitich)

to T, they only need to be pre-computedcebefore the ~ We right-multiply the Kalman recursion fa#., (or if a =
EM-iterations begin. y, just the trivial equation; ., = y:+1) by the transpose of

) ) o the one fo; and then sum both sides from= 1to 7T — k.
To realize this approach we need to simplify the Kalmanag o simple example, suppose we wish to find the recur-

recursions by using a tool from LDS theory known asg;q, for (=, ). We simply right-multiply the simplified

“steady-state”, which we discuss next. Kalman recursion for}, , by y;, sum both sides ovef
and then re-write everything using our special notation for

-order statistics

3.2. The steady state assumption ond_grder statistics:
The Kalman recursions, in addition to computing the con-p_ T—k
. T *
d|t|9nal meansr; for each state, also compute the co- Zx;+ky£ = Z(th+k—1y£ + Ky ryt)
variance matrices (e.g.thFt) between hidden state vec- —; —1
tors, along with the filtering and smoothing matricés, T—k T—k
and J; (for the precise definitions of these, we defer again = = H > " a},, 1yi + K > yiiry}
to Ghahramani & Hintor(1996). Notably, the recursions =1 =1
for these quantities daot involve the actual time-series =@k = H{(«",9)k—1 — 27y7 1) + K@Y, )k

data. Moreover, a well-known result is that under certain
control-theoretic conditions for the model parameters¢he

matrices rapidly approach constant matrices geows, a Complicating this idea somewhat is the fact that the

phenomenon known as “steady state” (€godwin & Sin Kalmarl recursions for! are not defined for Fhe specia]

1984, casesr; _for t = 1 and thus we must add in an addi-
tional nuisance term;;b} to compensate. Similarly, we

In particular, ast grows K; converges to a constant ma- must sometimes subtract an additional term from a statis-

trix which we denotel (without a subscript). And simi- tic before using it in the equation for a statistic of a higher

larly, V;%,, Vi, _, and.J; converge ta\o, A; and.J respec-  time lag since the latter is summed over a smaller range

tively asmin(¢, T — ¢) grows. Computing these matrices (1...T — k instead ofl...T' — k + 1). The complete list
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of 2"9-order recursions, which we will call the "2order  Proof. For anyk > 1 we have:

recursions”, is: . .
Eo, [yewi | y<e ] = Eo, [y | y<e Joiy

*

.2 )k = (@ )kt H' 4+ (9, 9)k — yreay) K+ yieat’ = Caly a; ) = CAzjxy,)
2y = H((2", Y)k-1 — 27yr—1s1) + K(Y, vk ) . . .
o e o g T* . IR 4t Then taking the expectation of both sides and using the law
252k = (@5 2 e A (27, ) _/x”’“yl) TITT of jterated expectations we get:
2", @) = H((@", 2" )ho1 — 5@hipr) + K (y,2 )

* Iy * ok /
Vi = J(xT Yies1 + P2, y9)e — 25yr—i) +$;nyk/ Et‘)n[yt-ﬁ-lxt—k ] = EBn[CAxtxt—k ]

k ;
Ve =J@T, 21 + P((x*, 2" — aipai_))) + abay_,/Takingk = ki, and summing both sides from= 0 to
T T T TN g T v t =T — kim we have:

" Y1 —xpxy ) + (a7, 27) P

)
* _ * * _ * * !
27,07V = J@T, T + P, e ) — ot ) + oFad 2o [ ka1 ] = Bo, [CA((@, 2D, — 2707k, ) ]

which is the claim. O
34. The ASOS Approximations In order to completely evaluate th&rder recursions we
Examining the 2%-order recursion fofy, 2*); we see that  will also need similar approximations to start the recutsio
it depends on(y,z*)x+1. If we had access to its exact for (z*, "), (27, 9k, (27, 2*) and(2T, 27, (note that
value of (y,2*),11 we could use the recursion to com- the recursion foz*, y), can be started froniw*,y)y =
pute (y, z*), exactly. But since we don’t we will have to (y, z*)).
rely on an approximation. In particular we will approxi-
mate(y, 2*), for some sufficiently large value @ which
we will denotek;;,,,, and then use the recursion to recur-
sively compute approximate versions of egghc*);, from (T, x*)
k = kyim down tok = 0.

The following two approximations can be shown to be un-
biased using a proof similar to the one given above:

Ktim ™ (x*v I*)klﬂn (xTv y)kzim ~ (x*v y)kzim

) . Together with the approximation f¢y, z*)x,,,, +1 we will
There are several reasons Why we might expect this couldy)| these the “ASOS approximations”.
be areasonable thing to do. Firstly, for large time-lags¢he
statistics express relationships between variables tleat aUnfortunately there are no obvious candidates for unbiased
far apart in time in the LDS model and thus likely less im- approximations of eithefz*, z*)y,,,, or (z*, z")y,,,, that
portant than relationships between variables that arecloscould be used to start the correspondirig-@der recur-
Later we will show how this intuition can be made for- sions. In the next section we will show how this problem
mal by quantifying the approxima’[ion error and identify_ can be circumvented by deriving two additional equations
ing sufficient conditions under which it is negligible. An- from the Kalman recursions that will sufficiently constrain
other reason that this approximation is appealing is that it the solution.

reminiscent (@lthough not equivalent) of one of the approxXginajly, we need to approximate the “first-order statigtics
imations implicitly made by the 4SID algorithm, namely ot andzT for the first and lasky,,, + 1 time-steps since
that state vectors at each time-step are estimated via a nofjege appear as “nuisance terms” in tPe@der equations.

steady state Kalman filter startingime-steps in the past  Thjs can be done easily by running the steady-state Kalman
and initialized from, wherei is 4SID’s “block-size” meta-  (acursions on the first and lask;%,” time-steps, where

parameter. Finally, by using estimators that are unbiaseglag is some constant &y, + 1. For the firstk;,, time-

under the model we expect that the quality of the approxyieps the Kalman recursions can be initialized fromIn
imation will become better as the model parameters CoNg experiments we uséd,, = 2k;;
g — m

verge to a setting that fits the data and/or the amount of
data increases. In a later section we will give a formal re-
sult which quantifies the relative error of the approxima-
tions and establishes that it goes to zero as the amount &olving the 2%-order recursions subject to the ASOS ap-
data grows, under the condition that the data is generategroximations is a non-trivial task. One key difficulty is
from the model. that we have no way of starting either the recursions for
(z*,2*) and (y,z*), without first obtaining some kind

of approximation for(z*, z*),,. . In this section we will
show how this difficulty can be overcome, and derive a
complete method for solving thé®order recursions sub-
Claim 1. If the data is generated from the model’s distri- ject to the ASOS approximations. We will assume that the
bution then this approximation is unbiased. 1storder nuisance terms have already been approximated.

.5. Solving the approximated system

The approximation we will use for(y,x*)x,, +1 iS
CA((x*, 2%y, — whpah_,, ). This seemingly arbi-
trary choice is justified by the following result:
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To overcome the aforementioned difficulty, we can use theaerm H2kim*1(z* 2*), 'A’C'K’. The good news is
fact that there are two"9-order recursions fofz*, z*), that we have developed an iterative algorithm for solving
one which “incrementsk and one which “decrements” so this equation which seems to converge very quickly
as to derive a new equation that kelegonstant, thus re- in practice (for details, see the supplement available at
lating (x*, 2*) to itself. In particular we can plug in the http://www.cs.toronto.edu/ ~jmartens/ASOS ).
fourth 2'9-order recursion fofz*, *);41 into the third re-

. S With the solution of the primary equation we can utilize
cursion and simplify:

the ASOS approximation fdwy, *)y,,,, +1 and recursively
o 2V = H(z* ) H' + (25, 9)s — 2y ) K compute(y7x*)k.for k = klim.down to0 using the first
( ) ( ) ( ; Lkv1) 2"%-order recursion. Then using the fact that, ), =
(y, x*)({, we may recursively compute:*, y); fork = 0to
. H Ng_ H 1 *

Then using the same basic method we can derive a similakr“m using the second'®order recur_sgf)jns. Witk ’y).k
equation for(”, 27),.: computed we may then use the thirtf-®rder recursion

’ ' to recursively computéz*, «*); for k = ki, down to
0. Having computedz*,y), also allows us to recur-
, , sively compute(z”, y);, via the fifth 2'%-order recursion,
— Jri ] T+ (@7 ) g P+ ahad starting the recursion with the ASOS approximation for
(xT? y)klwn :
Next, with (z*, z*), computed fork = 0 to k;,, we may

Our basic strategy will be to exploit the self-referentiatn |,sa the sixth ™-order recursion to recursively compute
ture of the first ASOS equation in order to find a solution(xT )., starting the recursion with the second ASOS

for (x*, 2*),,, (takingk = k). Complicating this idea approximation (i.e. the one far”, %), ). Finally, we

is the presence of additional unknown matrix quantities i”may computézT, zT), by solving the second ASOS equa-
the equation and so before we can loroceed we must find @n (which can be done efficiently since it has the form of
way to express these in terms(of', 7),,, - a Lyapanov equation) and use the sevefifha2der recur-
By repeated application of the first and secoftr@der  Sion to computéz™, 2", from this.

recursions, followed by an application of the first ASOS
approximation(z*, y)x,,.. can be expressed as: 3.6. Relaxing the Steady-state Assumption

— Hepwp ) H' + K(y, «") H' + 2y 2y

(@7, 2T)e = J@T, 2T ) + P((a*, 2Ty, — atpab_,)

We will call these two equations the “ASOS equations”.

To derive the 2-order equations in their simple form it is
critical that the filtering and smoother matricks H and

P do not vary with the time-stefp Otherwise they can’t be
factored out of the sums, making it impossible to write the
recursions only in terms of'%-order statistics and nuisance
terms.

(‘T*a y)klim = (‘T*’ y)kumT + H2k“m+1 (x*v x*)kzim/Alcl

where(z*, y)k“mT is the value ofz*, y)y,,.. @s computed
by solving these recursions starting fréat, «*),,, = 0.
This formula can be easily verified by following the depen-
dency on(z*, z*),,,. through said recursions.

We know that the LDS rapidly obtains steady-state (up to
an arbitrary precision) everywhere except for some leading
and trailing: time-steps, whergis not a function ofl" and
generally; < T . Thus we can apply the ASOS method to

Substituting this expression fde*, y)x,,,, and the first
ASOS approximationy, *),,,.+1 into the first ASOS
equation, then simplifying, gives:

(@, &) = A, &) H' + H* (0", 2 AC'K + G approximate the statistics over this middle interval arel us
B e e ot N e the non-steady-state Kalman recursions to (approximately
G =—Azpar_y H + <(I Yk — ‘TH’Cyl) K+ 214,21 compute the statistics associated with the first andilast

time-stepsi can be determined by monitoring convergence
of K, to K while running the Kalman-filter, or just set at

Since we can Comput(—nc*,y)k”mJr by just running the some reasonably large fixed value.
recursions undefz*, z*)y,,,. = 0, the only unknown

quantity in this equation, which we will call the “primary 4, Error analysis

equation”, is (z*,x*)y,,. . Moreover this equation is

linear in (x*,2*),,, which gives us some hope that we 4.1. Therelationship between ki, and the
can solve it. Unfortunately, it is not clear at first glance approximation error

how we can do this efficiently. This equation almosty, yis section we will derive a set of formulae which quan-

has the form (.)f.a Sylve;ter equation, for which there arqify the error in the M-statistics as computed via tHg-2
weII_—kn(_)wn efficient algorl_thmsE(arteIs & Stewart1972, order recursions in terms of the error introducted due to the
but is slightly more complicated due to the presence of the

wherek = ky;,,, for brevity.
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approximations. This ends up being a linear relationship rethe above claim still holds and our proof can be easily ex-
lationship because th@®order recursions are linear in the tended.

2"d_order statistics. The notable feature of this relatiopshi

is that its ‘strength’ decays exponentially &s,, grows, 4.2, Asymptotic Behavior

thus providing one justification for idea that the quality of

the approximation increases with the valuekgf, . In this section we will characterize the asymptotic behavio

of the ASOS approximations & — oo under the condi-
Consider each of the thre&%order statistics approximated  tjon that the data is in fact generated from the model. While
directly by the ASOS approximations, addig’, 2*)x,,,,  this scenario is artificial, it can nevertheless inform ustb
to this list. We will call these the “Directly Approximated how the approximations will behave in practice. In partic-
Statistics” or the DAS. The following result helps quantify ylar, if the model is close to describing the data, dhi$

the error in the M-statistics in terms of error in the DAS. sufficiently large, then this characterization should aste
Note that error due to any approximation in thddrder describe the real situation approximate|y_

nuisance terms will be ignored in this analysis for the pur- . .
pose of simplicity. We will briefly address this problem at Y& have already established in sectd that the ASOS

the end of the section. approximations are unbiased in this setting. The first ob-
) ) ] ) jective of this section is to establish a deeper result, that
Claim 2. Given a fixed setting of the parametérshere e error in the ASOS approximations converges to 0 in the

e?<ists som® < \ < 1 such that for each M-statistic the expected squarelh ||»-norm (viewing the matrices as vec-
difference between the true value and the value as approXiyrs) as long as we scale everything %y This rescaling

mated by the ASOS procedure can be expressed as a line@f 3 natural thing to do because tH¥-prder statistics are
function of the approximation error w;the DAS whose 0p-5|| sums over~ T elements, and thus their expected size
erator norm is bounded above by;;,,,“ A1~ for some grows with7'. Then having established this result we will
constant that doesn’t depend oy, outline the proof of an important consequence, namely that
the M-step updates which use the ASOS-approximated M-
Proof. The proof is straightforward. A turns out to statistics will converge in probability to the exact update
be the spectral radius off and J (they are equal). asT — oo.
For a detailed proof see the supplement available

http://www.cs.toronto.edu/ ~jmartens/ASOS ahote that since we are scaling all of the equations and

statistics by% the effect of the nuisance terms in each equa-
tion will go to zero asl” — oo and so we can ignore them

] in the analysis.
Note that the above result does not assume anything about

the particular approximations being used for the DAS. Sd-et ¢; be the (true) value of the error in the ith ASOS ap-
unless the approximation error of one of the DAS growsproximation, i.e. the value of the left side minus the right.
extremely quickly withk;;,,, we can conclude that the error So for examplegy = («”,2%)y,,,, — (%, 2*)k,,,. Then

in the M-statistics will decay exponentially &s,,, grows. ~ We have the following claim which characterizes the ex-
And since the expected size of an§f®rder statistic can Pected size of each;:

be bounded, even a naive approximation of 0 for each DA |aim 3. Fori = 1,2, 3:

will ensure that the associated expected error is bounded.

. 1
In practice we have found thatcan often be significantly A Eg[ | T vec(¢;)[|5] =0
less than 1, even when the spectral radiud g relatively
close to 1. However, as the EM algorithm progresses an&;_l>

th del determined by th Vi A b roof. The ASOS approximations were derived by finding
€ mode (as“ N e_rm|n? y the evolving parame ers) Sinbiased estimators at each time-step and then summing
comes more “confident’\ may occasionally grow large

enouah thatki=—1 won't be verv close 1o 0. Fortunatel over time. It turns out that the approximation errors also
9 y : Y. have zero correlation across time which is the critical prop

there is another result which we p_resent in the next sect|0, rty required to prove this result. See the supplement for
that allows us to bound the error in a manner that doesn etails O

depend on\ but is instead related to the valuetf

Lo . - i imati il d
Having ignored the issue of approximating the tReotder ~ Cl&im 4. The approximation error inx-scaled 2%-order
nuisance terms in the above analysis we will now brieflyStatistics as estimated by the ASOS procedure converges to

address it. If these terms are approximated by applying th8 in expected squargl- [|;-norm asT” — oc.

steady-state Kalman recursions to the leading and trailing

kum + 1 time-steps, which is the approach we advocateProof. This follows from the fact that the ASOS procedure
and if we addzy,;;,,,, andz._, ., tothe DAS list, then s just an efficient method solving a large linear system
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. . . . .
Table 1.Per-iteration computational complexity 6. RelatlonShlp to 1%-order approximations

and 4SID

EM SS-EM | ASOS-EM
O(NZT) | O(NZT + NZi) | O(NZkiim) A natural question to ask is if there is some approxima-
tion for the individual mean terms (i.e; andz! Vt), that
when multiplied and summed appropriately, gives the same
o . estimates for the "8-order statistics that ASOS does. If
whose coefficients are not a function 6f and thus the  g,ch an equivalence did exist then the approximated statis-
procedure can only “amplify” the errors due to the threey;. (7, 27), would always be positive definite, which isn't

ASOS approximations by a constant factor. For a detailegy e in general (althoughtill always be symmetric).
proof, see the supplement. O

Comparisons to 4SID can be made in terms of the approx-
imation being used. As mentioned in our previous discus-

Claim 5. The parameter updates produced by the M-stepsion of 4SID, the state estimates it (implicitly) computes f

using the approximated M-statistics will converge to thoseeach time-step are equivalent to the estimates which would
produced using the true M-statistics &s— cc. be produced by a non-steady-state Kalman filter that starts

1 time-steps in the past. The estimates produced by ASOS
are of a different character in the sense that when they in-
clude information from the future as well as they are de-
rived from both the filtering andmoothing<alman recur-
sions. Note however that the ASOS approximations require
the model parameters to be available (i.e. the estimate pro-
duced by the EM iteration) while the 4SID estimates do not
require any pre-existing parameter estimate, which is why
For the parameterd andC we cannot prove convergence the algorithm is non-iterative.

in the expected squarefd ||2-norm but we can still prove

convergence in probability. First, note that we may replacey. Experimental Setup

the M-statistics in the update formula with thé&Fscaled

counterparts since the scaling faceérwill be canceled Our experiments were designed to examine the trade-off
due to the matrix inversion. Second, note that convergenceetween the solution quality and speed of ASOS-EM as
in expected squarefl - ||2-norm of the approximate M- a function of the meta-parametey;,,,, while using stan-
statistics to the true ones implies their convergence ibpro dard EM and SS-EM as baselines. All algorithms were im-
ability. Finally, note that the exact value of the M-statist plemented using carefully vectorized MATLAB code and
which gets inverted is non-singular (it must be, since etherrun on an Intel 3.2GHz quad-core machine. Exact log-
wise the update formulais undefined) and thus the formuldikelihoods were computed every 10 iterations as each al-
is continuous at this point. Convergence in probability ofgorithm ran. The runs were all initialized with the same
the update formula then follows by the Continuous Map-random initial parameters. Our implementations of ASOS-

Proof. For the covariance parametdisand( the update
formula are linear in the}——scaled M-statistics (forl it's
actually aﬁ scaling, but this is equivalent in the limit)
and thus converge in the expected squdted|2-norm,
which implies convergence in probability.

ping Theorem for random variables. O EM and SS-EM both used the “relaxed” steady-state ap-
proximation withi fixed to 25.
5. Computational complexity We used 3 datasets in our experiments. The first was a 3-

The per-iteration computational complexity for EM dimensional time-series of length 6305 which consisted of
- . . ' sensor readings from an industrial milk evaporator. This
ASOS-EM (EM approximated via ASOS), and SS-EM is a standard dataset used in system identification and is

(EM via direct t—_:‘value}tlor! of the steady-state approxmate(!iva"able on-line from the Database for the Identificatibn o
Kalman recursions) is given in Table Note that we are

assuming thaf” is the dominant term, followed by Systems (DalSy). The second dataset consisted of the first
thenks,,.. and finallyi (i is defined as in sectio®.§). The 10 dimensions of a 49-dimensional time-series of length

. . . ) : 15300 consisting of transformed sensor readings from a
key difference between the per-iteration running time of

ASOS-EM and that of EM or SS-EM is that there is no motion capture experiment. This dataset is available on-

dependency off'. The onlyT-dependent computation re line from the Carnegie Mellon University Motion Capture
: o § : ~ Datab d d akal t al.(2007.
quired for ASOS-EM is the pre-computation@f, y), for atabase and was preprocessed aaylor et al. (20079

. The third dataset was from the Signal Processing Informa-
0 < k < kyim + 1 which only needs to be performed once : W '9 ng

: . . o ' tion Base (SPIB) based at Rice University and consisted
before the EM iterations begin. Thestatistics can even ! ( ) ! Wersity !

. . . of the first 750,000 time-steps (38 seconds) of an audio
be computed online so that the complete time-series nev%cording taken in the noisy ‘Operations Room” of a de-
even needs to be stored in memory.
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8200 ASOS—-EM-5 (13.16675) | | vectorized MATLAB code). Whether or not the reader
8 T 7 7 ASOS-EM-10(13.9436 5) accepts them as reasonable indicators of relative perfor-
£ 3000 ASOS-EM-20 (16.6538 s)| | . . .
2 ASOS-EM-35 (210141 s) mance, the fact remains that ASOS-EMaisymptotically
2 O ASOS-EM-75(27.1616'5) faster than either SS-EM and EM per iteration since its it-
— 2800 SS-EM (56.804 s) 4 . .
2 o EM (6926135 5) — eration cost is independent 6t
@©
2 26000 - SETTTm T T s Where ASOS-EM seems to diverge from standard EM
‘ ‘ ‘ ‘ ; ;i (when it does at all) is in the later stages of convergence.
S e e s A S0 0 Thig s likely explained by the fact that, up until the end of
T T T T T asosemzo aooea o) | the optimization, the parameter estimates reflect a shorter
8 1907} - — — ASOS-EM-30 (55.623) || term temporal dependency (as indicated by the valug,of
= —+— ASOS-EM-50 (59.9489 s) . . . .
e SS-EM (215.65045) || and thus the ASOS approximation is close to exact. It is
R O EM (60184045 5) also apparent from the non-monotonic log-likelihood trend
g observed in the results for ASOS-EM-5 in the first graph
;“ 2r that ASOS-EM cannot guarantee, in general, a decrease in
-201f ‘ ‘ ‘ ‘ ‘ ; .. the log likelihood for each iteration.
0 50 100 150 200 250 300 350 400 450 . i
x 10° Overall these results are very encouraging and motivate fur
o 671} , ASOS-EM-150 (49.69425) | ther exploration of the ASOS method and its applications.
9 — — — ASOS-EM-300 (84.4925 s) H H H
£ o108l ASOS-EM-850 (214039 9) || It remains to be seen if this approach can be extended to a
= ——— ASOS-EM-1700 (409.0395 5) continuous-time version of the LDS, or one that uses con-
> —&— SS-EM (9179.0774 s) . .
8 6.706 1 trol signal inputs.
[
% 6.704
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