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Abstract
We develop a new algorithm, based on EM,
for learning the Linear Dynamical System
model. Called the method of Approximated
Second-Order Statistics (ASOS) our approach
achieves dramatically superior computational
performance over standard EM through its use
of approximations, which we justify with both
intuitive explanations and rigorous convergence
results. In particular, after an inexpensive pre-
computation phase, the iterations of ASOS can
be performed in timeindependentof the length
of the training dataset.

1. Introduction

1.1. The LDS Model

The time-invariant discrete Linear Dynamical System
(LDS) is a classical and widely used model of real-valued
multivariate time-series data{yt ∈ R

Ny}T
t=1. Hidden

states{xt ∈ R
Nx}T

t=1 are generated via the time-evolution
matrixA ∈ R

Nx×Nx as:

xt+1 = Axt + εt (1)

where{εt}
T
t=1 are i.i.d. multivariate normal with mean0

and covariance matrixQ. Observationsyt are generated
from xt via the matrixC ∈ R

Ny×Nx according to:

yt = Cxt + δt (2)

where{δt}
T
t=1 are also i.i.d. multivariate normal with mean

0 and covariance matrixR. The initial state (x1) distribu-
tion is multivariate normal with meanπ1 and covariance
matrixΠ1.

The LDS is arguably the most commonly used time-series
model for real-world engineering and financial applica-
tions. This is due to its relative simplicity, its mathemat-
ically predictable behavior, the existence of many physi-
cal systems that are known to be accurately modeled by it,
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and the fact that exact inference and prediction within the
model can be done efficiently.

1.2. Learning the LDS

Learning the parameters of the LDS, sometimes called
“system identification”, is a well-studied problem. The
available algorithms fall into three broad categories: the
Prediction Error Method (PEM), Subspace Identification
(4SID) and Expectation Maximization (EM). In the PEM
approach (e.g.Ljung, 2002), a 1-step prediction-error ob-
jective is minimized via gradient-based optimization meth-
ods. Typical implementations use either gradient descent
and thus require many iterations to converge, or use 2nd-
order optimization methods but then become impractical
for large models.

EM, a broadly applied algorithm for maximum likelihood
parameter estimation for hidden-variable models, can be
applied to the LDS. The maximum likelihood objective can
be seen as the special case of the prediction error objective
(Ljung, 2002), but EM takes a different approach to PEM in
optimizing this objective making it more practical for large
models. Both PEM and EM are iterative optimization algo-
rithms where each iteration requires a pass over the entire
dataset. Since very many iterations can be required, neither
of these algorithms scale well to very long time-series.

In the 4SID approach (Overschee & Moor, 1991), the LDS
equations are re-written as large block matrix formulae,
which are used to produce an estimate of the hidden states
sequence via matrix projections (this boils down to com-
puting a large singular value decomposition), which is then
used to estimate the parameters. The block formulae gen-
erate predictions for future data-points using only thei pre-
vious ones, wherei is a meta-parameter which controls the
quality of the solution at the cost of computational perfor-
mance. By contrast, statistically optimal state estimators
(such as those used in the E-step of EM) use the entire
time-series, including both past and future observations.
4SID is not an iterative optimization algorithm like PEM
or EM and thus often tends to be faster than these methods
while avoiding the problem of bad local minima. However,
the solutions it produces, while of high quality, tend not
to be locally optimal for any particular objective function
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(such as the log-likelihood). The approach thus often advo-
cated is to run EM initialized with the solution produced by
4SID, thus avoiding bad local minima while also achiev-
ing statistical optimality (Smith & Robinson, 2000). One
disadvantage of 4SID is that standard implementations of
it have considerable space requirements that prevent them
from scaling nicely with the length of the training time-
series.

1.3. Our Contribution

This paper develops a new method for dramatically in-
creasing the efficiency of EM via an approximation scheme
which we call the method of Approximate Second-Order
Statistics (ASOS). The ASOS scheme approximates the E-
step so that it can be computed in timeindependent ofT ,
the length of the training time-series. This allows EM to be
practical for time-series of nearly unbounded size, making
it much more useful as an optimization tool to be used in
conjunction with 4SID, or even as a replacement in cases
where excessively long time-series make 4SID infeasible.
Since the 4SID and EM algorithms have been analyzed and
compared (Smith & Robinson, 2000; Smith et al., 1999),
our goal in this paper will instead be to compare “ASOS-
EM” with standard EM and show that the approximations
have only a minimal effect on the solution quality while
providing a huge computational performance gain, both in
an theoretical and practical sense.

2. EM for LDS learning

The objective function maximized during maximum likeli-
hood learning is the log probability of the observation se-
quencey given the model parameters (also known as the
log likelihood function). This can be obtained from the pre-
vious joint probability by integrating out the hidden states:
log p(y|θ) = log

∫

x
p(x, y|θ). While the gradient and Hes-

sian of this function are difficult to compute (indeed, im-
plementations of PEM often resort to finite differences), it
is relatively simple to compute the log joint probability and
its expectation giveny for a particular setting of the param-
eters. The EM algorithm, which was first applied to LDS
parameter learning byShumway & Stoffer(1982), can in-
directly optimize the log-likelihood by iteratively maximiz-
ing this later quantity, which we denoteQn(θ).

Qn(θ) ≡ Eθn
[log p(x, y|θ)|y] =

∫

p(x|y, θn) log p(x, y|θ) dx

The EM algorithm iteratively alternates between two
phases called the “E-step” and the “M-step”. For a given
estimate of the parametersθn, the E-step computes the ex-
pectations which appear in the expression forQn(θ), al-
lowing it to be easily evaluated and optimized with respect
to θ in the M-step. The M-step then computes the new pa-

rameter estimate asθn+1 = argmaxθ Qn(θ).

2.1. M-step for the LDS

As a consequence of the linear and Gaussian nature of the
LDS model, the functionQn(θ) can be written in terms
of θ and statistics that are first and second order inx and
y (and are highly non-linear inθn). With these statis-
tics computed, optimizingQn(θ) with respect toθ reduces
to a straightforward application of matrix calculus and is
similar to linear regression with an unknown covariance.
For a full specification and derivation of the M-step see
Ghahramani & Hinton(1996).

For the sake of brevity we will use the following standard
notation for the remainder of this paper:

xk
t ≡ Eθn

[ xt | y≤k ] V k
t,s ≡ Covθn

[ xt, xs | y≤k ]

ỹt ≡ yt − Eθn
[ yt | y≤t−1 ] St ≡ Covθn

[ ỹt | y≤t ]

Noting thatEθn
[xtx

′
s | y≤k ] = xk

t xk
s + V k

t,s, and using

the notation(a, b)k ≡
∑T−k

t=1
at+kb′t (wherev′ denotes the

transpose ofv) the complete list of statistics required to
compute the M-step may be written as:

(y, xT )0, (xT , xT )0 +

T
∑

t=1

V T
t,t, (xT , xT )1 +

T−1
∑

t=1

V T
t+1,t

These expressions contain both sums of covariances and
sums of products of means. For the remainder of this report
we will refer to the later sums as the “M-statistics”, which
are particular examples of “2nd-order statistics”.

2.2. E-Step for the LDS (Kalman recursions)

The Kalman recursions (seeGhahramani & Hinton, 1996)
are a set of recursive relations that define a computational
procedure for exact inference of the distribution over the
hidden statesx in the LDS model. The standard approach
for computing the M-statistics is to apply this procedure
to find xT

t for each value oft in succession and then per-
form the required sums. Doing this has time complexity
O(N3

xT ) which is the reason that the EM algorithm scales
poorly to long time-series.

3. The ASOS Approach

3.1. Overview

The key observation that motivates the ASOS approach
is that, for the purposes of the M-step, we don’t actually
care about the individual moments for eachxt, but rather
certain sums over the products of these, the M-statistics,
along with sums over covariance matrices. Thus we can
focus on the M-statistics directly and come up with approx-
imations that will make them more efficiently computable
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without having to concern ourselves with computing the
individual xT

t . To this end we will derive a set of “2nd-
order recursions” from the Kalman recursions which de-
fine a recursive scheme to compute various 2nd-order statis-
tics overyt, xt

t, andxT
t , culminating in the computation

of the M-statistics. Whereas the Kalman recursions relate
1st-order moments across different time-steps, these 2nd-
order recursions will relate 2nd-order statistics across dif-
ferent “time-lags”, where by “time-lag” we mean the value
of k in (a, b)k ≡

∑T−k

t=1
at+kbt, i.e. the difference in the

temporal-indices as they appear in the sum.

The number of distinct time-lags is equal toT , the num-
bers of time-steps (statistics with time-lag larger thanT

are equal to the 0 matrix), and so solving them exactly
would entail just as much or more computation than sim-
ply running the original Kalman recursions. Fortunately it
turns out that, at the cost of introducing some fairly liberal
approximations which have some favorable statistical and
asymptotic properties, we can evaluate the 2nd-order recur-
sionsmuchmore efficiently than the Kalman recursions. In
particular, by approximating statistics of “large” time-lag
by carefully chosen unbiased estimators we can derive a
compact system of linear equations that can be solved very
efficiently. The size of this system, and thus the cost of
solving it, turns out to be a function of the cut-off time-lag
“klim” at which we choose to approximate the 2nd-order
statistics. The resulting algorithm only depends on the val-
ues of(y, y)k ≡

∑T−k

t=1
yt+ky′

t for 0 ≤ k ≤ kkim. And
while computing these clearly requires time proportional
to T , they only need to be pre-computedoncebefore the
EM-iterations begin.

To realize this approach we need to simplify the Kalman
recursions by using a tool from LDS theory known as
“steady-state”, which we discuss next.

3.2. The steady state assumption

The Kalman recursions, in addition to computing the con-
ditional meansxT

t for each state, also compute the co-
variance matrices (e.g.V T

t,t) between hidden state vec-
tors, along with the filtering and smoothing matrices,Kt

andJt (for the precise definitions of these, we defer again
to Ghahramani & Hinton(1996)). Notably, the recursions
for these quantities donot involve the actual time-series
data. Moreover, a well-known result is that under certain
control-theoretic conditions for the model parameters these
matrices rapidly approach constant matrices ast grows, a
phenomenon known as “steady state” (e.g.Goodwin & Sin,
1984).

In particular, ast growsKt converges to a constant ma-
trix which we denoteK (without a subscript). And simi-
larly, V T

t,t, V T
t,t−1 andJt converge toΛ0, Λ1 andJ respec-

tively asmin(t, T − t) grows. Computing these matrices

reduces to solving discrete algebraic Riccati equations and
simpler Lyapunov equations, for which there are efficient
algorithms.

For simplicity we will assume that the steady-state condi-
tion applies over the entire time-series. Later we will see
how this strong assumption can be replaced with a more
realistic one that will approximate the truth to an arbitrary
precision. Under steady state the Kalman recursions for the
state means can be written compactly as:

x∗
t = Hx∗

t−1 + Kyt xT
t = JxT

t+1 + Px∗
t

where we have definedx∗
t ≡ xt

t, H ≡ A − KCA and
P ≡ I − JA. The usefulness of the switch in notation
from xt

t to x∗
t is that it allows us to use our special notation

for 2nd-order statistics(a, b)k ≡
∑T−k

t=1
at+kb′t with the

vector-listxt
t as an argument, e.g.a = x∗.

In addition to simplifying the Kalman recursions, assum-
ing steady state makes it much easier to compute the
covariance-matrix sums required by the M-step; we just
multiply the corresponding steady-state value byT or
T − 1, as the case may be. Thus to complete the E-step
it remains only to compute the M-statistics.

3.3. Recursions for the 2nd-order statistics

In this section we will give the general approach for deriv-
ing the 2nd-order recursions and then provide the complete
list. To find the equation that computes the statistic(a, b)k

we right-multiply the Kalman recursion forat+k (or if a =
y, just the trivial equationyt+k = yt+k) by the transpose of
the one forbt and then sum both sides fromt = 1 to T −k.
As a simple example, suppose we wish to find the recur-
sion for (x∗, y)k. We simply right-multiply the simplified
Kalman recursion forx∗

t+k by y′
t, sum both sides overt,

and then re-write everything using our special notation for
2nd-order statistics:

T−k
∑

t=1

x∗
t+ky′

t =

T−k
∑

t=1

(Hx∗
t+k−1y

′
t + Kyt+ky′

t)

= H

T−k
∑

t=1

x∗
t+k−1y

′
t + K

T−k
∑

t=1

yt+ky′
t

= (x∗, y)k = H((x∗, y)k−1 − x∗
T y′

T−k+1) + K(y, y)k

Complicating this idea somewhat is the fact that the
Kalman recursions forxt

t are not defined for the special
casesxt

t for t = 1 and thus we must add in an addi-
tional nuisance terma1+kb′1 to compensate. Similarly, we
must sometimes subtract an additional term from a statis-
tic before using it in the equation for a statistic of a higher
time lag since the latter is summed over a smaller range
(1...T − k instead of1...T − k + 1). The complete list
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of 2nd-order recursions, which we will call the “2nd-order
recursions”, is:

(y, x
∗)k = (y, x

∗)k+1H
′ + ((y, y)k − y1+ky

′
1)K

′ + y1+kx
∗
1

′

(x∗
, y)k = H((x∗

, y)k−1 − x
∗
T y

′
T−k+1) + K(y, y)k

(x∗
, x

∗)k = (x∗
, x

∗)k+1H
′ + ((x∗

, y)k − x
∗
1+ky

′
1)K

′ + x
∗
1+kx

∗
1

′

(x∗
, x

∗)k = H((x∗
, x

∗)k−1 − x
∗
T x

∗
T−k+1

′
) + K(y, x

∗)k

(xT
, y)k = J(xT

, y)k+1 + P ((x∗
, y)k − x

∗
T yT−k

′) + x
T

T yT−k
′

(xT
, x

∗)k = J(xT
, x

∗)k+1 + P ((x∗
, x

∗)k − x
∗
T x

∗
T−k

′
) + x

T

T x
∗
T−k

′

(xT
, x

T )k = ((xT
, x

T )k−1 − x
T

k x
T

1 )J ′ + (xT
, x

∗)kP
′

(xT
, x

T )k = J(xT
, x

T )k+1 + P ((x∗
, x

T )k − x
∗
T x

T

T−k

′
) + x

T

T x
T

T−k

′

3.4. The ASOS Approximations

Examining the 2nd-order recursion for(y, x∗)k we see that
it depends on(y, x∗)k+1. If we had access to its exact
value of (y, x∗)k+1 we could use the recursion to com-
pute(y, x∗)k exactly. But since we don’t we will have to
rely on an approximation. In particular we will approxi-
mate(y, x∗)k for some sufficiently large value ofk, which
we will denoteklim, and then use the recursion to recur-
sively compute approximate versions of each(y, x∗)k from
k = klim down tok = 0.

There are several reasons why we might expect this could
be a reasonable thing to do. Firstly, for large time-lags these
statistics express relationships between variables that are
far apart in time in the LDS model and thus likely less im-
portant than relationships between variables that are close.
Later we will show how this intuition can be made for-
mal by quantifying the approximation error and identify-
ing sufficient conditions under which it is negligible. An-
other reason that this approximation is appealing is that itis
reminiscent (although not equivalent) of one of the approx-
imations implicitly made by the 4SID algorithm, namely
that state vectors at each time-step are estimated via a non-
steady state Kalman filter startingi time-steps in the past
and initialized from0, wherei is 4SID’s “block-size” meta-
parameter. Finally, by using estimators that are unbiased
under the model we expect that the quality of the approx-
imation will become better as the model parameters con-
verge to a setting that fits the data and/or the amount of
data increases. In a later section we will give a formal re-
sult which quantifies the relative error of the approxima-
tions and establishes that it goes to zero as the amount of
data grows, under the condition that the data is generated
from the model.

The approximation we will use for(y, x∗)klim+1 is
CA

(

(x∗, x∗)klim
− x∗

T x∗
T−klim

′
)

. This seemingly arbi-
trary choice is justified by the following result:

Claim 1. If the data is generated from the model’s distri-
bution then this approximation is unbiased.

Proof. For anyk > 1 we have:

Eθn
[ yt+1x

∗
t−k

′ | y≤t ] = Eθn
[ yt+1 | y≤t ]x∗

t−k
′

= Cxt
t+1x

∗
t−k

′ = CAx∗
t x

∗
t−k

′

Then taking the expectation of both sides and using the law
of iterated expectations we get:

Eθn
[ yt+1x

∗
t−k

′ ] = Eθn
[ CAx∗

t x
∗
t−k

′ ]

Takingk = klim and summing both sides fromt = 0 to
t = T − klim we have:

Eθn [ (y, x
∗)klim+1 ] = Eθn [ CA

(

(x∗
, x

∗)klim
− x

∗
T x

∗
T−klim

′)

]

which is the claim.

In order to completely evaluate the 2nd-order recursions we
will also need similar approximations to start the recursions
for (x∗, x∗)k, (xT , y)k, (xT , x∗)k and(xT , xT )k (note that
the recursion for(x∗, y)k can be started from(x∗, y)0 =
(y, x∗)′0).

The following two approximations can be shown to be un-
biased using a proof similar to the one given above:

(xT , x∗)klim
≈ (x∗, x∗)klim

(xT , y)klim
≈ (x∗, y)klim

Together with the approximation for(y, x∗)klim+1 we will
call these the “ASOS approximations”.

Unfortunately there are no obvious candidates for unbiased
approximations of either(x∗, x∗)klim

or (xT , xT )klim
that

could be used to start the corresponding 2nd-order recur-
sions. In the next section we will show how this problem
can be circumvented by deriving two additional equations
from the Kalman recursions that will sufficiently constrain
the solution.

Finally, we need to approximate the “first-order statistics”
x∗

t andxT
t for the first and lastklim + 1 time-steps since

these appear as “nuisance terms” in the 2nd-order equations.
This can be done easily by running the steady-state Kalman
recursions on the first and last “klag” time-steps, where
klag is some constant≥ klim + 1. For the firstklag time-
steps the Kalman recursions can be initialized fromπ1. In
our experiments we usedklag = 2klim.

3.5. Solving the approximated system

Solving the 2nd-order recursions subject to the ASOS ap-
proximations is a non-trivial task. One key difficulty is
that we have no way of starting either the recursions for
(x∗, x∗)k and (y, x∗)k without first obtaining some kind
of approximation for(x∗, x∗)klim

. In this section we will
show how this difficulty can be overcome, and derive a
complete method for solving the 2nd-order recursions sub-
ject to the ASOS approximations. We will assume that the
1st-order nuisance terms have already been approximated.
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To overcome the aforementioned difficulty, we can use the
fact that there are two 2nd-order recursions for(x∗, x∗)k,
one which “increments”k and one which “decrements” so
as to derive a new equation that keepk constant, thus re-
lating (x∗, x∗)k to itself. In particular we can plug in the
fourth 2nd-order recursion for(x∗, x∗)k+1 into the third re-
cursion and simplify:

(x∗, x∗)k = H(x∗, x∗)kH ′ + ((x∗, y)k − x∗
1+ky′

1)K
′

− Hx∗
T x∗

T−k
′
H ′ + K(y, x∗)k+1H

′ + x∗
1+kx∗

1

′

Then using the same basic method we can derive a similar
equation for(xT , xT )k:

(xT , xT )k = J(xT , xT )kJ ′ + P ((x∗, xT )k − x∗
T xT

T−k

′
)

− JxT
k+1x

T
1

′
J ′ + J(xT , x∗)k+1P

′ + xT
T xT

T−k

′

We will call these two equations the “ASOS equations”.

Our basic strategy will be to exploit the self-referential na-
ture of the first ASOS equation in order to find a solution
for (x∗, x∗)klim

(takingk = klim). Complicating this idea
is the presence of additional unknown matrix quantities in
the equation and so before we can proceed we must find a
way to express these in terms of(x∗, x∗)klim

.

By repeated application of the first and second 2nd-order
recursions, followed by an application of the first ASOS
approximation,(x∗, y)klim

can be expressed as:

(x∗, y)klim
= (x∗, y)klim

† + H2klim+1(x∗, x∗)klim

′
A′C′

where(x∗, y)klim

† is the value of(x∗, y)klim
as computed

by solving these recursions starting from(x∗, x∗)klim
= 0.

This formula can be easily verified by following the depen-
dency on(x∗, x∗)klim

through said recursions.

Substituting this expression for(x∗, y)klim
and the first

ASOS approximation(y, x∗)klim+1 into the first ASOS
equation, then simplifying, gives:

(x∗
, x

∗)k = A(x∗
, x

∗)kH
′ + H

2k+1(x∗
, x

∗)k

′
A

′
C

′
K

′ + G

G ≡ −Ax
∗
T x

∗
T−k

′
H

′ +
(

(x∗
, y)k

†
− x

∗
1+ky

′
1

)

K
′ + x

∗
1+kx

∗
1

′

wherek = klim for brevity.

Since we can compute(x∗, y)klim

† by just running the
recursions under(x∗, x∗)klim

= 0, the only unknown
quantity in this equation, which we will call the “primary
equation”, is (x∗, x∗)klim

. Moreover this equation is
linear in (x∗, x∗)klim

which gives us some hope that we
can solve it. Unfortunately, it is not clear at first glance
how we can do this efficiently. This equation almost
has the form of a Sylvester equation, for which there are
well-known efficient algorithms (Bartels & Stewart, 1972),
but is slightly more complicated due to the presence of the

term H2klim+1(x∗, x∗)klim

′
A′C′K ′. The good news is

that we have developed an iterative algorithm for solving
this equation which seems to converge very quickly
in practice (for details, see the supplement available at
http://www.cs.toronto.edu/ ˜ jmartens/ASOS ).

With the solution of the primary equation we can utilize
the ASOS approximation for(y, x∗)klim+1 and recursively
compute(y, x∗)k for k = klim down to0 using the first
2nd-order recursion. Then using the fact that(x∗, y)0 =
(y, x∗)′0 we may recursively compute(x∗, y)k for k = 0 to
klim using the second 2nd-order recursions. With(x∗, y)k

computed we may then use the third 2nd-order recursion
to recursively compute(x∗, x∗)k for k = klim down to
0. Having computed(x∗, y)k also allows us to recur-
sively compute(xT , y)k via the fifth 2nd-order recursion,
starting the recursion with the ASOS approximation for
(xT , y)klim

.

Next, with (x∗, x∗)k computed fork = 0 to klim we may
use the sixth 2nd-order recursion to recursively compute
(xT , x∗)k, starting the recursion with the second ASOS
approximation (i.e. the one for(xT , x∗)klim

). Finally, we
may compute(xT , xT )0 by solving the second ASOS equa-
tion (which can be done efficiently since it has the form of
a Lyapanov equation) and use the seventh 2nd-order recur-
sion to compute(xT , xT )1 from this.

3.6. Relaxing the Steady-state Assumption

To derive the 2nd-order equations in their simple form it is
critical that the filtering and smoother matricesK, H and
P do not vary with the time-stept. Otherwise they can’t be
factored out of the sums, making it impossible to write the
recursions only in terms of 2nd-order statistics and nuisance
terms.

We know that the LDS rapidly obtains steady-state (up to
an arbitrary precision) everywhere except for some leading
and trailingi time-steps, wherei is not a function ofT and
generallyi � T . Thus we can apply the ASOS method to
approximate the statistics over this middle interval and use
the non-steady-state Kalman recursions to (approximately)
compute the statistics associated with the first and lasti

time-steps.i can be determined by monitoring convergence
of Kt to K while running the Kalman-filter, or just set at
some reasonably large fixed value.

4. Error analysis

4.1. The relationship between klim and the
approximation error

In this section we will derive a set of formulae which quan-
tify the error in the M-statistics as computed via the 2nd-
order recursions in terms of the error introducted due to the

http://www.cs.toronto.edu/~jmartens/ASOS


Learning the Linear Dynamical System with ASOS

approximations. This ends up being a linear relationship re-
lationship because the 2nd-order recursions are linear in the
2nd-order statistics. The notable feature of this relationship
is that its ‘strength’ decays exponentially asklim grows,
thus providing one justification for idea that the quality of
the approximation increases with the value ofklim.

Consider each of the three 2nd-order statistics approximated
directly by the ASOS approximations, adding(x∗, x∗)klim

to this list. We will call these the “Directly Approximated
Statistics” or the DAS. The following result helps quantify
the error in the M-statistics in terms of error in the DAS.
Note that error due to any approximation in the 1st-order
nuisance terms will be ignored in this analysis for the pur-
pose of simplicity. We will briefly address this problem at
the end of the section.

Claim 2. Given a fixed setting of the parametersθ there
exists some0 ≤ λ < 1 such that for each M-statistic the
difference between the true value and the value as approxi-
mated by the ASOS procedure can be expressed as a linear
function of the approximation error in the DAS whose op-
erator norm is bounded above bycklim

2λklim−1 for some
constantc that doesn’t depend onklim.

Proof. The proof is straightforward. λ turns out to
be the spectral radius ofH and J (they are equal).
For a detailed proof see the supplement available at
http://www.cs.toronto.edu/ ˜ jmartens/ASOS .

Note that the above result does not assume anything about
the particular approximations being used for the DAS. So
unless the approximation error of one of the DAS grows
extremely quickly withklim we can conclude that the error
in the M-statistics will decay exponentially asklim grows.
And since the expected size of any 2nd-order statistic can
be bounded, even a naive approximation of 0 for each DAS
will ensure that the associated expected error is bounded.

In practice we have found thatλ can often be significantly
less than 1, even when the spectral radius ofA is relatively
close to 1. However, as the EM algorithm progresses and
the model (as determined by the evolving parameters) be-
comes more “confident”,λ may occasionally grow large
enough thatλklim−1 won’t be very close to 0. Fortunately,
there is another result which we present in the next section
that allows us to bound the error in a manner that doesn’t
depend onλ but is instead related to the value ofT .

Having ignored the issue of approximating the the 1st-order
nuisance terms in the above analysis we will now briefly
address it. If these terms are approximated by applying the
steady-state Kalman recursions to the leading and trailing
klim + 1 time-steps, which is the approach we advocate,
and if we addxT

klim+1
andx∗

T−klim to the DAS list, then

the above claim still holds and our proof can be easily ex-
tended.

4.2. Asymptotic Behavior

In this section we will characterize the asymptotic behavior
of the ASOS approximations asT → ∞ under the condi-
tion that the data is in fact generated from the model. While
this scenario is artificial, it can nevertheless inform us about
how the approximations will behave in practice. In partic-
ular, if the model is close to describing the data, andT is
sufficiently large, then this characterization should at least
describe the real situation approximately.

We have already established in section3.4 that the ASOS
approximations are unbiased in this setting. The first ob-
jective of this section is to establish a deeper result, that
the error in the ASOS approximations converges to 0 in the
expected squared‖ · ‖2-norm (viewing the matrices as vec-
tors) as long as we scale everything by1

T
. This rescaling

is a natural thing to do because the 2nd-order statistics are
all sums over∼T elements, and thus their expected size
grows withT . Then having established this result we will
outline the proof of an important consequence, namely that
the M-step updates which use the ASOS-approximated M-
statistics will converge in probability to the exact updates
asT → ∞.

Note that since we are scaling all of the equations and
statistics by1

T
the effect of the nuisance terms in each equa-

tion will go to zero asT → ∞ and so we can ignore them
in the analysis.

Let φi be the (true) value of the error in the ith ASOS ap-
proximation, i.e. the value of the left side minus the right.
So for example,φ2 = (xT , x∗)klim

− (x∗, x∗)klim
. Then

we have the following claim which characterizes the ex-
pected size of eachφi:

Claim 3. For i = 1, 2, 3:

lim
T→∞

Eθ[ ‖
1

T
vec(φi)‖

2
2 ] = 0

Proof. The ASOS approximations were derived by finding
unbiased estimators at each time-step and then summing
over time. It turns out that the approximation errors also
have zero correlation across time which is the critical prop-
erty required to prove this result. See the supplement for
details.

Claim 4. The approximation error in1

T
-scaled 2nd-order

statistics as estimated by the ASOS procedure converges to
0 in expected squared‖ · ‖2-norm asT → ∞.

Proof. This follows from the fact that the ASOS procedure
is just an efficient method solving a large linear system

http://www.cs.toronto.edu/~jmartens/ASOS
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Table 1.Per-iteration computational complexity

EM SS-EM ASOS-EM
O(N3

xT ) O(N2
xT + N3

x i) O(N3
xklim)

whose coefficients are not a function ofT , and thus the
procedure can only “amplify” the errors due to the three
ASOS approximations by a constant factor. For a detailed
proof, see the supplement.

Claim 5. The parameter updates produced by the M-step
using the approximated M-statistics will converge to those
produced using the true M-statistics asT →∞.

Proof. For the covariance parametersR andQ the update
formula are linear in the1

T
-scaled M-statistics (forA it’s

actually a 1

T−1
scaling, but this is equivalent in the limit)

and thus converge in the expected squared‖ · ‖2-norm,
which implies convergence in probability.

For the parametersA andC we cannot prove convergence
in the expected squared‖ · ‖2-norm but we can still prove
convergence in probability. First, note that we may replace
the M-statistics in the update formula with their1

T
-scaled

counterparts since the scaling factor1

T
will be canceled

due to the matrix inversion. Second, note that convergence
in expected squared‖ · ‖2-norm of the approximate M-
statistics to the true ones implies their convergence in prob-
ability. Finally, note that the exact value of the M-statistic
which gets inverted is non-singular (it must be, since other-
wise the update formula is undefined) and thus the formula
is continuous at this point. Convergence in probability of
the update formula then follows by the Continuous Map-
ping Theorem for random variables.

5. Computational complexity

The per-iteration computational complexity for EM,
ASOS-EM (EM approximated via ASOS), and SS-EM
(EM via direct evaluation of the steady-state approximated
Kalman recursions) is given in Table1. Note that we are
assuming thatT is the dominant term, followed byNx,
thenklim, and finallyi (i is defined as in section3.6). The
key difference between the per-iteration running time of
ASOS-EM and that of EM or SS-EM is that there is no
dependency onT . The onlyT -dependent computation re-
quired for ASOS-EM is the pre-computation of(y, y)k for
0 ≤ k ≤ klim + 1 which only needs to be performed once,
before the EM iterations begin. They statistics can even
be computed online so that the complete time-series never
even needs to be stored in memory.

6. Relationship to 1st-order approximations
and 4SID

A natural question to ask is if there is some approxima-
tion for the individual mean terms (i.e.x∗

t andxT
t ∀t), that

when multiplied and summed appropriately, gives the same
estimates for the 2nd-order statistics that ASOS does. If
such an equivalence did exist then the approximated statis-
tic (xT , xT )0 would always be positive definite, which isn’t
true in general (although itwill always be symmetric).

Comparisons to 4SID can be made in terms of the approx-
imation being used. As mentioned in our previous discus-
sion of 4SID, the state estimates it (implicitly) computes for
each time-step are equivalent to the estimates which would
be produced by a non-steady-state Kalman filter that starts
i time-steps in the past. The estimates produced by ASOS
are of a different character in the sense that when they in-
clude information from the future as well as they are de-
rived from both the filtering andsmoothingKalman recur-
sions. Note however that the ASOS approximations require
the model parameters to be available (i.e. the estimate pro-
duced by the EM iteration) while the 4SID estimates do not
require any pre-existing parameter estimate, which is why
the algorithm is non-iterative.

7. Experimental Setup

Our experiments were designed to examine the trade-off
between the solution quality and speed of ASOS-EM as
a function of the meta-parameterklim, while using stan-
dard EM and SS-EM as baselines. All algorithms were im-
plemented using carefully vectorized MATLAB code and
run on an Intel 3.2GHz quad-core machine. Exact log-
likelihoods were computed every 10 iterations as each al-
gorithm ran. The runs were all initialized with the same
random initial parameters. Our implementations of ASOS-
EM and SS-EM both used the “relaxed” steady-state ap-
proximation withi fixed to 25.

We used 3 datasets in our experiments. The first was a 3-
dimensional time-series of length 6305 which consisted of
sensor readings from an industrial milk evaporator. This
is a standard dataset used in system identification and is
available on-line from the Database for the Identification of
Systems (DaISy). The second dataset consisted of the first
10 dimensions of a 49-dimensional time-series of length
15300 consisting of transformed sensor readings from a
motion capture experiment. This dataset is available on-
line from the Carnegie Mellon University Motion Capture
Database and was preprocessed as inTaylor et al.(2007).
The third dataset was from the Signal Processing Informa-
tion Base (SPIB) based at Rice University and consisted
of the first 750,000 time-steps (38 seconds) of an audio
recording taken in the noisy ‘Operations Room” of a de-
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Figure 1.NOTE: Running times are included in the figure leg-
ends in brackets. Top: Results from the evaporator dataset
with Nx = 15. Middle: Results from the mo-cap data with
Nx = 40. Bottom: Results from the destroyer operations room
audio dataset withNx = 20. NOTE: Graphs are highly zoomed
so that the differences between the algorithms may appear more
significant than they actually are.

stroyer warship.

We will present our results as a series of graphs of
log-likelihood versus iteration number, with the meta-
parameters and other important details of the experiment
given in the captions. ‘ASOS-EM-n’ is a run of ASOS-EM
with klim = n.

8. Discussion of Results

Our experiments demonstrate that ASOS-EM converges in
roughly the same number of iterations as standard EM with
the solution quality approaching that achieved by standard
EM asklim is raised, as predicted by the theory. Moreover,
the computational performance advantages of ASOS-EM
over EM and SS-EM are clearly evident in these experi-
ments, even for values ofklim where the solution quality is
virtually identical to standard EM.

We included run-times with our results only to demonstrate
that ASOS-EM can achieve real performance improve-
ments in a reasonable implementation setting (carefully

vectorized MATLAB code). Whether or not the reader
accepts them as reasonable indicators of relative perfor-
mance, the fact remains that ASOS-EM isasymptotically
faster than either SS-EM and EM per iteration since its it-
eration cost is independent ofT .

Where ASOS-EM seems to diverge from standard EM
(when it does at all) is in the later stages of convergence.
This is likely explained by the fact that, up until the end of
the optimization, the parameter estimates reflect a shorter-
term temporal dependency (as indicated by the value ofλ),
and thus the ASOS approximation is close to exact. It is
also apparent from the non-monotonic log-likelihood trend
observed in the results for ASOS-EM-5 in the first graph
that ASOS-EM cannot guarantee, in general, a decrease in
the log likelihood for each iteration.

Overall these results are very encouraging and motivate fur-
ther exploration of the ASOS method and its applications.
It remains to be seen if this approach can be extended to a
continuous-time version of the LDS, or one that uses con-
trol signal inputs.
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