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Abstract

We propose low-rank representation (LRR)
to segment data drawn from a union of mul-
tiple linear (or affine) subspaces. Given a
set of data vectors, LRR seeks the lowest-
rank representation among all the candidates
that represent all vectors as the linear com-
bination of the bases in a dictionary. Unlike
the well-known sparse representation (SR),
which computes the sparsest representation
of each data vector individually, LRR aims
at finding the lowest-rank representation of a
collection of vectors jointly. LRR better cap-
tures the global structure of data, giving a
more effective tool for robust subspace seg-
mentation from corrupted data. Both the-
oretical and experimental results show that
LRR is a promising tool for subspace segmen-
tation.

1. Introduction

In scientific data analysis and system engineering, one
usually needs a parametric model to characterize a
given set of data. To this end, linear models such
as the linear subspaces1 are possibly the most com-
mon choice, mainly because they are easy to compute
and are also often effective in real applications. So the

1There is no loss of generality in assuming that the sub-
spaces are linear, i.e., they all contain the origin. For the
affine subspaces that do not contain the origin, we can al-
ways increase the dimension of the ambient space by one
and identify each affine subspace with the linear subspace
that it spans. So we always use the term “subspace” to de-
note “linear subspace” and “affine subspace” in this work.
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subspaces have been gaining much attention in recent
years. For example, the hotly discussed matrix compe-
tition (Candès & Recht, 2009; Keshavan et al., 2009;
Candès et al., 2009) problem is essentially based on
the hypothesis that the data is drawn from a low-rank
subspace. However, a given data set is seldom well
described by a single subspace. A more reasonable
model is to consider data as lying near several sub-
spaces, leading to the challenging problem of subspace
segmentation. Here, the goal is to segment (or cluster)
data into clusters with each cluster corresponding to
a subspace. Subspace segmentation is an important
data clustering problem as it arises in numerous re-
search areas, including machine learning (Lu & Vidal,
2006), computer vision (Ho et al., 2003), image pro-
cessing (Fischler & Bolles, 1981) and system identifi-
cation.

Previous Work. According to their mechanisms
of representing the subspaces, existing works can be
roughly divided into four main categories: mixture
of Gaussian, factorization, algebraic and compressed
sensing.

In statistical learning, mixed data are typically mod-
eled as a set of independent samples drawn from a
mixture of probabilistic distributions. As a single
subspace can be well modeled by a Gaussian dis-
tribution, it is straightforward to assume that each
probabilistic distribution is Gaussian, so known as
the mixture of Gaussian model. Then the prob-
lem of segmenting the data is converted to a model
estimation problem. The estimation can be per-
formed either by using the Expectation Maximization
(EM) algorithm to find a maximum likelihood esti-
mate, as done in (Gruber & Weiss, 2004), or by iter-
atively finding a min-max estimate, as adopted by K-
subspaces (Ho et al., 2003) and Random Sample Con-
sensus (RANSAC) (Fischler & Bolles, 1981). These
methods are sensitive to the noise and outliers. So
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several efforts have been made for improving their ro-
bustness, e.g., the Median K-flats (Zhang et al., 2009)
for K-subspaces, the work of (Yang et al., 2006) for
RANSAC, and (Ma et al., 2008a; Wright et al., 2008a)
use a coding length to characterize a mixture of Gaus-
sian, which may have some robustness. Nevertheless,
the problem is still not well solved due to the optimiza-
tion difficulty, which is a bottleneck for these methods
to achieve robustness.

Factorization based methods (Costeira & Kanade,
1998; Gruber & Weiss, 2004) seek to represent the
given data matrix as a product of two matrices, so
that the support pattern of one of the factors reveals
the grouping of the points. These methods aim at
modifying popular factor analysis algorithms (often
based on alternating minimization or EM-style algo-
rithms) to produce such factorizations. Nevertheless,
these methods are sensitive to noise and outliers, and
it is not easy to modify them to be robust because
they usually need iterative optimization algorithms to
obtain the factorizations.

Generalized Principal Component Analysis (GPCA)
(Ma et al., 2008b) presents an algebraic way to model
the data drawn from a union of multiple subspaces.
By describing a subspace containing a data point by
using the gradient of a polynomial at that point, sub-
space segmentation is then equivalent to fitting the
data with polynomials. GPCA can guarantee the suc-
cess of the segmentation under certain conditions, and
it does not impose any restriction on the subspaces.
However, this method is sensitive to noise and out-
liers due to the difficulty of estimating the polynomials
from real data, which also causes the high computation
cost of GPCA. Recently, Robust Algebraic Segmenta-
tion (RAS)(Rao et al., 2010) is proposed to resolve the
robustness issue of GPCA. However, the computation
difficulty for fitting polynomials is unfathomed. So
RAS can make sense only when the data dimension is
low and the number of subspaces is small.

Recently, the work of (Rao et al., 2009) and Sparse
Subspace Clustering (SSC) (Elhamifar & Vidal, 2009)
introduced compressed sensing techniques to subspace
segmentation. SSC uses the sparsest representation
produced by `1-minimization (Wright et al., 2008b;
Eldar & Mishali, 2008) to define the affinity matrix
of an undirected graph. Then subspace segmentation
is performed by spectral clustering algorithms such as
the Normalized Cuts (NCut) (Shi & Malik, 2000). Un-
der the assumption that the subspaces are indepen-
dent, SSC shows that the sparsest representation is
also “block-sparse”. Namely, the within-cluster affini-
ties are sparse (but nonzero) and the between-cluster

affinities are all zeros. This implies that the graph
is well defined and easy to segment. However, as SR
finds the sparsest representation of each data vector
individually, there is therefore no global constraint on
its solution. So the method may be inaccurate at cap-
turing the global structures of data. This drawback
can largely depress the performance when the data is
grossly corrupted. When no extra “clean” data are
available, SR approaches may not be robust to noise
and outliers in the subspace segmentation problem 2.

Our Contributions. In this work, we propose a novel
method, called the low-rank representation (LRR), to
address the subspace segmentation problem. As a
compressed sensing technique, LRR also represents a
data vector as a linear combination of the other vec-
tors. Given a set of data vectors drawn from a union of
multiple subspaces, unlike SR, LRR finds the lowest-
rank representation of all data jointly. The lowest-
rank representation can be used to define the affinities
of an undirected graph, and then the final segmen-
tation results can be obtained by spectral clustering.
Comparing to SR, LRR is better at capturing global
structures of data. So it better fits the subspace seg-
mentation problem. When the subspaces are indepen-
dent, we prove that there is a lowest-rank representa-
tion that reveals the membership of the samples: the
within-cluster affinities are dense, and the between-
cluster affinities are all zeros. We show that this solu-
tion solves a nuclear norm minimization problem, and
give an efficient algorithm for solving this problem.
For corrupted data, since the corruption will largely
increase the rank as shown in matrix competition lec-
tures (e.g., (Candès & Recht, 2009; Keshavan et al.,
2009; Candès et al., 2009)), the lowest-rank criterion
can enforce to correct corruptions and LRR could be
robust to noise and outliers. In summary, the contri-
butions of this work include:

- We introduce a simple and efficient new subspace
segmentation algorithm that outperforms state-
of-the-art algorithms in handling corrupted data.

- Our work extends the recovery of corrupted data
from single subspace(Candès et al., 2009) to mul-
tiple subspaces. Comparing to (Eldar & Mishali,
2008), which requires the bases of subspaces to be
known to handle the corrupted data from multi-
ple subspaces, our method is autonomous, i.e., no
extra clean data is required.

2SR can be robust to noise and outliers when extra clean
data is available, e.g., a well defined dictionary as adopted
by (Wright et al., 2008b).
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2. Problem Formulation

More precisely, this paper addresses the following
problem.

Problem 2.1 Given a set of sufficiently dense data
vectors X = [x1, x2, · · · , xn] (each column is a sample)
drawn from a union of k subspaces {Si}k

i=1 of unknown
dimensions, in a D-dimensional Euclidean space, seg-
ment all data vectors into their respective subspaces.

We consider the problem under two assumptions of
increasing practicality and difficulty.

Assumption 1. The subspaces are low-rank and in-
dependent3, and the data is noiseless.

Assumption 2. A fraction of the data vectors are
corrupted by noise or contaminated by outliers, or to
be more precise, the data contains sparse and properly
bounded errors.

The independence assumption is mild, because this is
usually true especially when the subspaces are low-
rank. What is critical is that the real data may not
strictly follow subspace structures, i.e., there exist er-
rors in data. In case of there is no extra clean data
available, this problem is rather challenging. When
the clean data is sufficient to represent the subspaces
(i.e., the errors are sparse), and the errors do not “con-
fuse” different subspaces (i.e., the errors are properly
bounded), it will be shown that LRR is rather robust.

3. Subspace Segmentation via LRR

3.1. Low-Rank Representation

Consider a set of data vectors X = [x1, x2, · · · , xn]
(each column is a sample) in RD, each of which can
be represented by the linear combination of the basis
in a “dictionary” A = [a1, a2, · · · , am]:

X = AZ, (1)

where Z = [z1, z2, · · · , zn] is the coefficient matrix with
each zi being the representation of xi. The dictionary
is often overcomplete and hence there can be multiple
feasible solutions to problem (1). It has been observed
(e.g., by (Elhamifar & Vidal, 2009)) that sparse rep-
resentations using an appropriate dictionaries A may
reveal the clustering of the points xi. However, as
mentioned above, sparse representation may not cap-
ture the global structures of the data X. As we will
see, low rankness may be a more appropriate criterion.
That is, we look for a representation Z by solving the

3 The subspaces are independent if and only if∑k
i=1 Si =

⊕k
i=1 Si, where

⊕
is the direct sum.

problem

min
Z

rank(Z), (2)

s.t., X = AZ.

We call the optimal solutions Z∗ of the above prob-
lem the “lowest-rank representations” of data X with
respect to a dictionary A. The above optimization
problem is difficult to solve due to the discrete nature
of the rank function. Fortunately, as suggested by ma-
trix completion methods (e.g., (Candès & Recht, 2009;
Keshavan et al., 2009; Candès et al., 2009)) the follow-
ing convex optimization provides a good surrogate for
problem (2):

min
Z
||Z||∗, (3)

s.t., X = AZ.

Here, || · ||∗ denotes the nuclear norm (Fazel, 2002) of
a matrix, i.e., the sum of the singular values of the
matrix.

3.2. The Basic Messages

Let X = [x1, x2, · · · , xn] be a set of data vectors drawn
from a union of k subspaces {Si}k

i=1. Let {di}k
i=1 be

the unknown dimensions of the k subspaces, and Xi be
collection of ni data vectors drawn from the i-th sub-
space Si. Without loss of generality, we assume that
X = [X1, X2, · · · , Xk] (i.e., the indices have been re-
arranged to satisfy the true segmentation of the data).

In order to segment the data into their respective sub-
spaces, we need to compute an affinity matrix that en-
codes the pairwise affinities between data vectors. So
we use the data X itself as the dictionary, i.e., problem
(3) becomes

min
Z
||Z||∗, (4)

s.t., X = XZ.

Note here that there always exist feasible solutions
even when the data sampling is insufficient, because
a data vector can be used to represent itself in LRR.
To be more precise, since the solution space is I −
null(X), there always exist nontrivial solutions when
rank(X) < n. This is different from SR, which is
prone to obtain a “trivial” solution if a data vector is
used to represent itself.

Theorem 3.1 Assume that the data sampling is suf-
ficient such that ni > rank(Xi) = di. If the subspaces
are independent then there exists an optimal solution
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Z∗ to problem (4) that is block-diagonal:

Z∗ =




Z∗1 0 0 0
0 Z∗2 0 0

0 0
. . . 0

0 0 0 Z∗k




n×n

,

with Z∗i being an ni × ni matrix with rank(Z∗i ) =
di, ∀ i.

The proof is based on the following well-known lemma,
whose proof is provided in the appendix for complete-
ness:

Lemma 3.1 Let A and D be square matrices. Then
for any matrices B and C of compatible dimension,
∥∥∥∥
(

A B
C D

)∥∥∥∥
∗
≥

∥∥∥∥
(

A 0
0 D

)∥∥∥∥
∗

= ‖A‖∗ + ‖D‖∗.

The above lemma allows us to lower-bound the ob-
jective value at any solution Z by the value of the
block-diagonal restriction of Z. This leads to a simple
proof of Theorem 3.1:

Proof (of Theorem 3.1). Let Z be any optimizer to (4).
Form a block-diagonal matrix W by setting

Wij =

{
Zij , xi and xj belong to the same subspace,
0, otherwise.

Write Q = Z − W . For any matrix M , let [M ]j de-
note its j-th column. Let xj belong to the l-th subspace;
i.e., [XZ]j ∈ Sl. Then by construction [XW ]j ∈ Sl, and
[XQ]j ∈ ⊕i6=lSi. But [XQ]j = [XZ]j − [XW ]j ∈ Sl. By
independence, Sl ∩ ⊕i6=lSi = {0}, and so [XQ]j = 0.

Hence, XQ = 0, and W is feasible for (4). By Lemma 3.1,
‖Z‖∗ ≥ ‖W‖∗, and so W is optimal for (4). We can write
W as

W =




W1 0 0 0
0 W2 0 0

0 0
. . . 0

0 0 0 Wk


 ∈ R

n×n,

where Wi ∈ Rni×ni . For each i, let Pi ∈ Rni×ni be the
projection onto the null space of Xi. Then Xi(I−Pi)Wi =
XiWi = Xi. So, if we set Z∗i = (I− Pi)Wi, then

Z∗ =




Z∗1 0 0 0
0 Z∗2 0 0

0 0
. . . 0

0 0 0 Z∗k


 ∈ R

n×n

is again feasible for (4). Now, ‖Z∗‖∗ =
∑

i ‖Z∗i ‖∗ =∑
i ‖(I − Pi)Wi‖∗ ≤

∑
i ‖Wi‖∗ = ‖W‖∗, where we have

used (e.g., (Horn & Johnson, 1991) Corollary 3.5.10) to
show that ‖(I − Pi)Wi‖∗ ≤ ‖(I − Pi)‖‖Wi‖∗ ≤ ‖Wi‖∗.
Hence, Z∗ is again optimal for (4). Moreover, for each
i, rank(Z∗i ) ≤ rank(I − Pi) = di. Since Xi = XiZ

∗
i ,

rank(Z∗i ) ≥ di, and so we conclude that rank(Z∗i ) = di

for each i.
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Figure 1. Illustrating that LRR can automatically correct
the corruptions in data: (a) The data a part of which is
corrupted. (b) The optimal solution Z∗ of problem (5)
with λ = 0.05 (c) The corrected data obtained by XZ∗.

Theorem 3.1 does not guarantee that an arbitrary opti-
mal solution to problem (4) is block-diagonal. The dif-
ficulty is essentially that the minimizer is non-unique.
In theory, this could be resolved, e.g., by choosing a
minimizer to (4) of smallest Frobenius norm (which is
again a convex problem). However, in our simulations
we have observed that the solution obtained is always
block-diagonal, and so we do not pursue this here.

3.3. Robustness to Noise and Outliers

In real applications, our observations are often noisy,
or even grossly corrupted, and observations may be
missing. For small noise (e.g., Gaussian) a reasonable
strategy is simply to relax the equality constraint in
(4), similar to (Candes & Plan, 2009). If we imagine
instead that a fraction of the data vectors are grossly
corrupted, a more reasonable objective might be

min
Z,E

||Z||∗ + λ||E||2,1, (5)

s.t., X = XZ + E,

where ||E||2,1 =
∑n

j=1

√∑n
i=1([E]ij)2 is called as the

`2,1-norm, and the parameter λ > 0 is used to balance
the effects of the two parts, which could be chosen
according to properties of the two norms, or tuned
empirically. Since `2,1-norm encourages the columns
of E to be zero, the underlying assumption here is
that the corruptions are “sample-specific”, i.e., some
data vectors are corrupted and the others are clean.

After obtaining an optimal solution (Z∗, E∗), we could
recover the original data by using X−E∗ (or XZ∗). To
illustrate how the corruptions are corrected, we refer
to an example as shown in Fig.1. There are about 80
data vectors sampled from two one-dimensional sub-
spaces embedded in R3, and about 25% data vectors
are corrupted by large Gaussian errors. The results
in Fig.1 show that LRR can well handle the corrup-
tions. One message from these results is that LRR is
unlikely to cause “positive-false” to change the clean
data. So the possibly existed corruptions could be cor-
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Algorithm 1 Solving Problem (5) by Inexact ALM
Input: data matrix X, parameter λ
Initialize: Z = J = 0, E = 0, Y1 = 0, Y2 = 0, µ =
10−6, maxu = 1010, ρ = 1.1, ε = 10−8.
while not converged do

1. fix the others and update J by

J = arg min
1

µ
||J ||∗ +

1

2
||J − (Z + Y2/µ)||2F

2. fix the others and update Z by

Z = (I + XtX)−1(XtX −XtE + J + (XtY1 − Y2)/µ)

3. fix the others and update E by

E = arg min
λ

µ
||E||2,1 +

1

2
||E − (X −XZ + Y1/µ)||2F

4. update the multipliers

Y1 = Y1 + µ(X −XZ − E)

Y2 = Y2 + µ(Z − J)

5. update the parameter µ by µ = min(ρµ, maxu)
6. check the convergence conditions

||X −XZ − E||∞ < ε and ||Z − J ||∞ < ε.

end while

rected in such a way: Let’s rearrange the data vectors
into X = [Xl, Xc], where Xl is the clean data with-
out corruptions and Xc is the corrupted data. In the
case that the remainder clean data Xl is still sufficient
to represent the subspaces, and the corruptions are
properly bounded, it shall automatically correct the
corruptions so as to obtain the lowest-rank represen-
tation.

3.4. Solving the Optimization Problem

Since the problem (5) can fall back to the problem (4)
by setting the parameter λ to be relatively large, here
we just present how to solve problem (5). We first
convert it to the following equivalent problem:

min
Z,E,J

||J ||∗ + λ||E||2,1, (6)

s.t., X = XZ + E,

Z = J,

which can be solved by solving the following Aug-
mented Lagrange Multiplier (ALM) problem:

min
Z,E,J,Y1,Y2

||J ||∗ + λ||E||2,1 + (7)

tr
[
Y t

1 (X −XZ − E)
]
+ tr

[
Y t

2 (Z − J)
]
+

µ

2
(||X −XZ − E||2F + ||Z − J ||2F ),

Algorithm 2 Subspace Segmentation by LRR
Input: data matrix X, number of subspaces k
1. obtain the lowest-rank representation by solving
problem (5)
2. construct an undirected graph by using the lowest-
rank representation to define the affinity matrix of the
graph
3. use NCut to segment the vertices of the graph into k
clusters

where Y1 and Y2 are Lagrange multipliers and µ > 0 is
a penalty parameter. The above problem can by solved
by either exact or inexact ALM algorithms (Lin et al.,
2009). For efficiency, we choose the inexact ALM,
which we outline in Algorithm 1. Its convergence prop-
erties could be proved similarly as those in (Lin et al.,
2009). Notice that although steps 1 and 3 of the al-
gorithm are convex problems, they both have closed-
form solutions. Step 1 is solved via the singular value
thresholding operator (Cai et al., 2008), while Step 3
is solved via the following lemma:

Lemma 3.2 Let Q = [q1, q2, · · · , qi, · · · ] be a given
matrix and ||·||F be the Frobenius norm. If the optimal
solution of

min
W

λ||W ||2,1 +
1
2
||W −Q||2F

is W ∗, then the i-th column of W ∗ is

W ∗(:, i) =

{
||qi||−λ
||qi|| qi, if λ < ||qi||,

0, otherwise.

3.5. The Complete Segmentation Algorithm

After solving problem (5), as in (Elhamifar & Vidal,
2009), we utilize the lowest-rank representation (de-
noted by Z∗) to define the affinity matrix of an undi-
rected graph. The data vectors correspond to the
vertices and the affinity between xi and xj is com-
puted by |[Z∗]ij | + |[Z∗]ji|. We then could use the
spectral clustering algorithms such as Normalized Cuts
(Shi & Malik, 2000) to produce the final segmentation
results. Integrating LRR with spectral clustering has
some advantages. First, since LRR may fail to obtain a
block-diagonal representation in complex applications,
the spectral clustering could ensure the robustness of
the segmentation. Second, it is convenient to integrate
the lowest-rank representation with other information
by defining such an undirected graph. For example,
in some specific applications such as image segmenta-
tion, ones may want to enforce that only the neighbor
samples can be connected by edges. Algorithm 2 sum-
marizes the whole segmentation algorithm of LRR.
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Figure 2. The segmentation accuracy (averaged from 20
random trials) across the entire range of corruption for var-
ious methods. LRR (red curve) clearly outperforms both
of SR1 and SR2,1, performing nearly perfectly up to 60
percent corruptions. The parameter λ is tuned to be the
best at 20% percentage of corruption for various methods.

4. Experiments

4.1. Toy Data

For this experiment, we compare the robustness of
LRR and SR under the context of subspace segmen-
tation. For fair of comparison, we implement two ver-
sions of SR. The first one is the standard version used
by most previous methods:

SR1 : minZ,E ||Z||1 + λ||E||1, (8)
s.t., X = XZ + E, [Z]ii = 0,

where ||Z||1 =
∑n

i,j=1 |[Z]ij | is called as the `1-norm.
The second one is modified for better fitting the cor-
ruptions:

SR2,1 : minZ,E ||Z||1 + λ||E||2,1, (9)
s.t., X = XZ + E, [Z]ii = 0.

We construct 5 independent subspaces {Si}5i=1 ⊂ R100

whose bases {Ui}5i=1 are computed by Ui+1 = TUi, 1 ≤
i ≤ 4, where T is a random rotation and U1 is a ran-
dom orthogonal matrix of dimension 100×4. So, each
subspace has a dimension of 4. We sample 20 data
vectors from each subspace by Xi = UiQi, 1 ≤ i ≤ 5
with Qi being a 4× 20 iid N (0, 1) matrix. Some data
vectors are randomly chosen to corrupt, e.g., for a data
vector x chosen to corrupt, its observed vector is com-
puted by adding Gaussian noise with zero mean and
variance 0.3||x|| (||x|| mostly ranges from 0.1 to 1.7 in
this experiment).

After obtaining the coefficient matrix, we use the algo-
rithm presented in Section 3.5 to segment the data into

Table 1. Segmentation errors (%) on Hopkins155. For
LRR, the parameter is set as λ = 2.4. The parameters
of the other methods have been also tuned to be the best.

GPCA LSA RANSAC SSC LRR

Max 55.67 38.37 41.31 37.44 32.50
Mean 30.51 8.77 7.81 3.66 3.13
Std. 11.79 9.80 9.72 7.21 5.96

Figure 3. Some examples of the images of a class in Ex-
tended Yale Database B.

5 clusters and observe the segmentation accuracy 4 of
each method. Although the `2,1-norm is better than
`1-norm to fit the corruptions in this experiment, both
of SR2,1 and SR1 are significantly outperformed by our
LRR, as shown Fig.2. This illustrate the superiority
of the lowest-rank criterion. As the corruption is un-
necessary to decrease the sparsity, SR cannot handle
well the corrupted data in unsupervised environment.
Whereas, LRR is good at handling such corrupted data
as analyzed in Section 3.3.

4.2. Slightly Corrupted Data

In this section, we evaluate LRR on the Hopkins155
motion database (Tron & Vidal, 2007). The database
consists of 156 sequences each of which has 39∼550
data vectors drawn from two or three motions (a mo-
tion corresponds to a subspace). Each sequence is
a sole clustering task and so there are 156 cluster-
ing tasks in total. As the data dimension must be
bounded above by 12 (Elhamifar & Vidal, 2009), we
use a preprocessing step to project the data to be 12-
dimensional by PCA. The outliers in the data have
been manually removed and the PCA can also reduce
some noise. So it could be regarded that this database
only contains slight corruptions.

4As clustering methods cannot predict the class label
of each cluster, we use a postprocess step to assign each
cluster a label: Given ground truth classification results,
the label of a cluster is the index of the ground truth class
that contributes the maximum number of samples to the
cluster. And then we can obtain the segmentation accuracy
by computing the percentage of correctly classified data
vectors.
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Table 2. Segmentation accuracy (%) on Extended Yale
Database B. We have tuned the parameters of all methods
to the best. The parameter of LRR is set to be λ = 0.15

GPCA LSA RANSAC SSC LRR

Acc. NA 31.72 NA 37.66 62.53

X = *XZ + *E

Figure 4. Some examples of using LRR to correct the cor-
ruptions in faces. Left: The original data (X); Middle:
The corrected data (XZ∗); Right: The error (E∗).

In order to compare LRR with the state of the art,
we also list the results of GPCA, Local Subspace
Analysis (LSA) (Yan & Pollefeys, 2006), RANSAC
and SSC5. We manually tune the parameters of each
method and report their best results. Table 1 shows
that LRR significantly outperforms GPCA, LSA and
RANSAC, and also outperforms SSC. This confirms
that the lowest-rank criterion is accurate for modeling
the structures of subspaces.

4.3. Heavily Corrupted Data

We test LRR’s ability to cope with the large corrup-
tions in data, using a part of Extended Yale Database
B (Lee et al., 2005), which consists of 640 frontal face
images of 10 classes (there are 38 classes in the whole
database and we use the first 10 classes for experi-
ments). Each class contains about 64 images. We re-
size the images into 42×48 and use the raw pixel values
to form data vectors of dimension 2016. As shown in

5The Matlab code of these baselines can be downloaded
from http://www.vision.jhu.edu/data/hopkins155/.
The Matlab code of our method is available at
www.apexlab.org/apex_wiki/gcliu.

Fig.3, more than half of the data vectors have been
corrupted by “shadows” and noise. So the corruptions
in this database is heavy.

Since the computation of GPCA and RANSAC is un-
bearable on this database, we only list the results of
LSA, SSC and LRR. Table 2 shows that LRR dis-
tinctly outperforms the baselines. The advantages of
LRR mainly comes from its ability of automatically
correcting the corruptions in data, as shown in Fig.4.

5. Conclusion and Future Work

In this work we propose the low-rank representation
(LRR) to recover the lowest-rank representation of a
set of data vectors in a joint way, i.e., to recover the
lowest-rank representation of matrix data. Compar-
ing to the widely used SR, LRR is better at handling
the global structures and correcting the corruptions in
data automatically. Both theoretical and experimen-
tal results illustrate the effectiveness of LRR. However,
there remain several directions for future work:

• It will be better to learn a compact dictionary for
LRR, which is to recover the structure that generates
the data.

• The subspace segmentation should not be the only
application of LRR. For example, one may use LRR
to do supervised classification in a similar way as
(Wright et al., 2008b).

• LRR also gives a way to recover the corrupted data
drawn from multiple subspaces. The theoretical con-
ditions for the success of the recovery should be estab-
lished.

Appendix

Proof (of Lemma 3.1). It is well-known (e.g.,
(Horn & Johnson, 1991) Theorem 3.4.1) that for any M ,

‖M‖∗ = max
UtU=I
V tV =I

tr
[
U tMV

]
.

Hence,
∥∥∥∥
(

A B
C D

)∥∥∥∥
∗
≥

max
Ut

1U1=I, Ut
2U2=I

V t
1 V1=I, V t

2 V2=I

tr

[(
U t

1 0
0 U t

2

) (
A B
C D

) (
V1 0
0 V2

)]

= max
Ut

1U1=I, Ut
2U2=I

V t
1 V1=I, V t

2 V2=I

tr
[
U t

1AV1

]
+ tr

[
U t

2DV2

]

= max
Ut

1U1=I

V t
1 V1=I

tr
[
U t

1AV1

]
+ max

Ut
2U2=I

V t
2 V2=I

tr
[
U t

2DV2

]

= ‖A‖∗ + ‖D‖∗ .
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