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Abstract nately, there has yet to be a demonstration that any of these
methods are effective on deep learning problems that are

We develop a Z-order optimization method known to be difficult for gradient descent.

based on the “Hessian-free” approach, and apply
it to training deep auto-encoders. Without using Much of the recent work on applying'®order methods
pre-training, we obtain results superior to those to learning has focused on making them practical for large
reported byHinton & Salakhutdino\(2006§ on datasets. Thisis usually attempted by adopting an “ori-line
the same tasks they considered. Our method is  approach akin to the one used in stochastic gradient descent
practical, easy to use, scales nicely to very large (SGD). The only demonstrated advantages of these meth-
datasets, and isn’t limited in applicability to auto- ods over SGD is that they can sometimes converge in fewer
encoders, or any specific model class. We also  training epochs and that they require less tweaking of meta-
discuss the issue of “pathological curvature” as parameters, such as learning rate schedules.

a possible explanation for the difficulty of deep-
learning and how®-order optimization, and our
method in particular, effectively deals with it.

The most important recent advance in learning for deep
networks has been the development of layer-wise unsu-
pervised pre-training methoddifiton & Salakhutdinoy
20086 Bengio et al.2007. Applying these methods before
. running SGD seems to overcome the difficulties associated
1. Introduction with deep learning. Indeed, there have been many suc-
Learning the parameters of neural networks is perhaps on(['a-eSSfUI applications of these methods to hard_qleep learn-
ing problems, such as auto-encoders and classification nets

of the most well studied problems within the field of ma- But th . ins: why d e K and
chine learning. Early work on backpropagation algorithms utthe question remains: why does pre-training work an

. . . . is i ?
showed that the gradient of the neural net learning objectlehy is it necessary? Some researchers (Ergan et al.

could be computed efficiently and used within a gradient-zom have investigated this question and proposed various

descent scheme to learn the weights of a network with mulgxpla_nations suph asa hi_gher prevalence of bad local op-
tiple layers of non-linear hidden units. Unfortunatelysth tima in the learning objectives of deep models.

technique doesn’t seem to generalize well to networks thainother explanation is that these objectives exhibit patho
have very many hidden layers (i.e. deep networks). Théogical curvature making them nearly impossible for
common experience is that gradient-descent progresses exarvature-blind methods like gradient-descent to suecess
tremely slowly on deep nets, seeming to halt altogether befully navigate. In this paper we will argue in favor of this
fore making significant progress, resulting in poor perfor-explanation and provide a solution in the form of a pow-
mance on the training set (under-fitting). erful semi-online 29-order optimization algorithm which

is practical for very large models and datasets. Using

It is well known within the optimization community that this techni ble t th der-fitt
gradient descent is unsuitable for optimizing objectives IS lechnique, we areé able 1o overcome the under-fiting

that exhibit pathological curvature™®2order optimization problem encountered Whe'? training deep auto-_er_wcoder
methods, which model the local curvature and correct fopeural nets far more effectwely_ than the pre-training +
it, have been demonstrated to be quite successful on sué e-tuning approach p_ro_pos_ed b"’”tor? & Salakhutdinov
objectives. There are even simple 2D examples such as t 00§. Being an optimization algorithm, our approach

Rosenbrock function where these methods can demonstr é)esn’t deal specifically with the problem of over-fitting,
)i

wever we show that this is only a serious issue for one of

e three deep-auto encoder problems considered by Hin-
ton & Salakhutdinov, and can be handled by the usual

methods of regularization.

considerable advantages over gradient descent. Thus it
reasonable to suspect that the deep learning problem cou
be resolved by the application of such techniques. Unfortu

Appearing inProceedings of the7'" International Conference These results also help us address the question of why

on Machine LearningHaifa, Israel, 2010. Copyright 2010 by the deep-learning is hard and why pre-training sometimes
author(s)/owner(s).
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helps. Firstly, while bad local optima do exist in deep-
networks (as they do with shallow ones) in practice they do
not seem to pose a significant threat, at least not to strong
optimizers like ours. Instead of bad local minima, the diffi-
culty associated with learning deep auto-encoders istette
explained by regions of pathological curvature in the ob-
jective function, which to $-order optimization methods
resemble bad local minima.

2. Newton’s method

In this section we review the canonic&Prder optimiza-
tion scheme, Newton’s method, and discuss its main be

Figure 1.0ptimization in a long narrow valley

nBy taking the curvature information into account (in the

ef|t§ and why they may, be Important in .th.e deep-.learnlngmrm of the Hessian), Newton’s method rescales the gradi-
setting. While Newton’s method itself is impractical on o . N
ent so it is a much more sensible direction to follow.

large models due to the quadratic relationship between the

size of the Hessian and the number of parameters in thintuitively, if the curvature is low (and positive) in a par-
model, studying it nevertheless informs us about how itgicular descent directiod, this means that the gradient of
more practical derivatives (i.e. quasi-Newton methods)he objective changes slowly alodgand sad will remain
might behave. a descent direction over a long distance. It is thus sensi-

Newton’s method, like gradient descent, is an optimizationble to choose a search directipwhich travels far along

[ ingp"d | if th fred
. S ; N d (i.e. by makingp ' d large), even if the amount of reduc-
algonthr_n W.h'Ch |ter§1t|vely updates_the parame_ﬂaESR tion in the objective associated with{given by—V f " d) is
of an objective functiorf by computing search directiops : O ; . .
: . relatively small. Similarly if the curvature associatedtwi
and updating asé + ap for somex. The central idea mo-

tivating Newton’s method is thagt can be locally approxi- d is high, then it is s_enS|bIe 10 ch00$e§o that the dis-
d - tance traveled along is smaller. Newton’s method makes
mated around eadh up to 2°-order, by the quadratic:

this intuition rigorous by computing the distance to move

1 alongd as its reduction divided by its associated curvature:
F(O+p) = a9(p) = [(0) + V/(0) 'p+ §pTBp 1) ~VfTd/d"Hd. This is precisely the point along after
, i ) ) which f is predicted by ) to start increasing.

where B = H(6) is the Hessian matrix of atd. Find-

ing a good search direction then reduces to minimizing thigNot accounting for the curvature when computing search

quadratic with respect tp. Complicating this idea is that directions can lead to many undesirable scenarios. First,

H may be indefinite so this quadratic may not have a minithe sequence of search directions might constantly move

mum, and moreover we don’t necessarily trust it as an aptoo far in directions of high curvature, causing an unstable

proximation off for large values of. Thus in practice the “bouncing” behavior that is often observed with gradient

Hessian is “damped” or re-conditioned so tBat= H 4+ AI descent and is usually remedied by decreasing the learning

for some constant > 0. rate. Second, directions of low curvature will be explored
much more slowly than they should be, a problem exacer-
2.1. Scaling and curvature bated by lowering the learning rate. And if the only direc-

tions ofsignificantdecrease irf are ones of low curvature,
An important property of Newton's method is “scale invari- the optimization may become too slow to be practical and
ance”. By this we mean that it behaves the same for angven appear to halt altogether, creating the false impmessi
linear rescaling of the parameters. To be technically preof a local minimum. It is our theory that the under-fitting
cise, if we adopt a new parameterizatiba- A6 for some  problem encountered when optimizing deep nets usthg 1
invertible matrixA, then the optimal search direction in the order techniques is mostly due to such techniques becom-
new parameterization i8 = Ap wherep is the original ing trapped in such false local minima.

optimal search direction. By contrast, the search diractio _. . . B . -
Figure 1 visualizes a “pathological curvature scenario”,

produced by gradient descent has the opposite response t N : s
linear re-parameterizationg:= A~ p. where the objective function locally resembles a long nar

row valley. At the base of the valley is a direction of low
Scale invariance is important because, without it, poorlyreduction and low curvature that needs to be followed in
scaled parameters will be much harder to optimize. It als@mrder to make progress. The smaller arrows represent the
eliminates the need to tweak learning rates for individualkteps taken by gradient descent with large and small learn-
parameters and/or anneal global learning-rates accordirnigg rates respectively, while the large arrow along the base
to arbitrary schedules. Moreover, there is an implicit fsca of the valley represents the step computed by Newton’s
ing” which varies over the entire parameter space and isnethod. What makes this scenario “pathological” is not
determined by the local curvature of the objective function the presence of merely low or high curvature directions,
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In the standard Newton’s methogy(p) is optimized by

Algorithm 1 The Hessian-free optimization method computing theN x N matrix B and then solving the sys-

L for n=1,2,.. do temBp = —Vf(9) p. This is prohibitively expensive
20 gn = Vf(9n_) when N is large, as it is with even modestly sized neural
3:  compute/adjusk by some method networks. Instead, HF optimizes(p) by exploiting two
4: define the functiorB,, (d) = H(0,)d + Ad simple ideas. The first is that for ai-dimensional vector
5 pp < CG-Minimiz&(B,, —gn) d, Hd can be easily computed using finite differences at the
6:  Ontr— On+pn cost of a single extra gradient evaluation via the identity:
7: end for
i = iy DO = VIO

but the mixture obothof them together. ) ) ) )
The second is that there is a very effective algorithm for

optimizing quadratic objectives (such agp)) which re-
quires only matrix-vector products wifB: the linear con-
For a concrete example of pathological curvature in neujugate gradient algorithm (CG). Now since in the worst
ral networks, consider the situation in which two units case CG will requireV iterations to converge (thus requir-
and b in the same layer haveearly identical incoming ing the evaluation ofV Bd-products), it is clearly imprac-
and outgoing weights and biases. lkebe a descent di- tical to wait for CG to completely converge in general. But
rection which increases the value of oneatd outgoing  fortunately, the behavior CG is such that it will make sig-
weights, say parametérwhile simultaneously decreasing nificant progress in the minimization g (p) after a much
the corresponding weight for unit say parametef, so  more practical number of iterations. Algorithhgives the
thatd, = d;x — d;%. d can be interpreted as a direction basic skeleton of the HF method.

which “differentiates” the two units. The reduction associ HE | lina b lik h N
ated withd is —V f Td = (V1); — (V) ~ 0and the cur- is appealing because unlike many other quasi-Newton

vature isd"Hd = (Hy; — Hy;) + (H;; — Hy;) ~ 040 = 0. methods it does not make any approximation to the Hes-

Gradient descent will only make progress alahghich is sian. In_d.eed,.théld products can be computed accurately

proportional to the reduction, which is very small, wherea by the finite @fferences methO('j, or other more stable 3'9.0'
Newton’s methods will move much farther, because the as['thms' HF dlffe_rs from Newton's _met_hod o_nly because itis
sociated curvature is also very small ' performing an incomplete optimization (via un-converged

CG) of gy(p) in lieu of doing a full matrix inversion.

2.2. Examples of pathological curvaturein neural nets

Another example of pathological curvature, particulazjﬁnother appealing aspect of the HF approach lies in the
to deeper nets, is the commonly observed phenomen power of the CG method. Distinct from the non-linear

where, depending on the magnitude of the initial weights ; X ) .
the gradients will either shrink towards zero or blow up asCG method (NCG) often used in machine learning, linear

they are back-propagated, making learning of the weight G. makes strong use of th? quadrat|c_ nature of the op-
before the last few layers nearly impossible. This diffigult Imization pfOb'em It SOIV‘?S n order to iteratively gener-
in learning all but the last few layers is sometimes calle te a set of “conjugate directions; (with the property

the “vanishing gradients” problem and may be slightly mit- Fhat d} Ad; = 0 for i # j)and optimize along these
igated by using heuristics to adapt the learning rates dfeacmdependently ant_j ex_actly. _In particular, the movement
parameter individually. The issue here is not so much thai’?llong each direction is preC|§e_Iy what Newton's method
the gradients become very small or very large absolutel;),"'ouuzir Se'eQ' the reducuqn divided by the curvature, i.e.
but rather that they become selative to the gradients of ~V [ d;/d; Ad;, afact which follows from the conjugacy

the weights associated with units near the end of the ne roperty. On the other hand, when applying the non-linear

Critically, the second-derivatives will shrink or blow up i G method (which is done ofi directly, notgp), the di-

an analogous way, corresponding to either very low or higHrectlons it generates won’t remain conjugate for very long,

curvature along directions which change the affected pa?Ven approximately so, and the line search is usually per-

rameters. Newton’s method thus will rescale these direc]iormed inexactly and at a relatively high expense.

tions so that they are far more reasonable to follow. Nevertheless, CG and NCG are in many ways similar and
NCG even becomes equivalent to CG when it uses an ex-
3. Hessian-free optimization act line-search and is applied to a quadratic objective (i.e

one with constant curvature). Perhaps the most important
The basis of the P-order optimization approach we de- difference is that when NCG is applied to a highly non-
velop in this paper is a technique known as Hessian{inear objectivef, the underlying curvature evolves with
free optimization (HF), aka truncated-Newton, which haseach new search direction processed, while when CG is ap-
been studied in the optimization community for decadelied to the local quadratic approximationpfi.e. ¢y), the
(e.g-Nocedal & Wright 1999, but never seriously applied curvature remains fixed. It seems likely that the later condi
within machine learning. tion would allow CG to be much more effective than NCG
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at finding directions of low reduction and curvature, as di-4.2. Computing the matrix-vector products
rections of high reduction and high curvature can be foun%hile the productHd can be computed using finite-

by the early iterations of CG and effectively “subtractedd.ﬁ thi hi biect t cal orobl
away” from consideration via the conjugate-directions de- ITerences, this approach IS subject o numerical prosiem

composition. NCG, on the other hand, must try to keep u nd also requires the computationally expensive evaluatio
with the constantly evolving curvature conditionsfgfand ?rf ”Of?"'”eaff{_”'f‘c“tons- Pegrlml;tter(lggzp t§h0\{[vr]szd tha(; ¢
therefore focus on the more immediate directions of high- €re IS an einicient procedure for computing the proauc

reduction and curvature which arise at each successive d exactly for neural networks and _several _other mOdel.S
visited position in the parameter space. uch as RNNs and Boltzmann machines. This algorithm is

like backprop as it involves a forward and backward pass,
) . ) ) is “local”, and has a similar computational cost. Moreover,
4. Making HF suitable for machine learning for standard neural nets it can also be performed without

problems the need to evaluate non-linear functions.

Our experience with using off-the-shelf implementationsIn the development of his on-line "2order method

of HF is that they simply don’t work for neural network “SMD”, Schraudolph(2002 generalized Pearlmutter’s
training, or are at least grossly impractical. In this sec-method in order to compute the produetl whereG is

tion we will describe the modifications and design choiceghe Gauss-Newton approximation to the Hessian. While
we made to the basic HF approach in order to yield an althe classical Gauss-Newton method applies only to a sum-
gorithm which is both effective and practical on the prob-0f-squared-error objective, it can be extended to neutal ne
lems we considered. Note that none of these enhancement®rks whose output units “match” their loss function (e.g.
are specific to neural networks, and should be applicable t§gistic units with cross-entropy error).

other optimization problems that are of interest to machine\yhije at first glance this might seem pointless since we

learning researchers. can already computHd with relative efficiency, there are
_ good reasons for using instead ofH. Firstly, the Gauss-
4.1. Damping Newton matrixG is guaranteed to be positive semi-definite,

The issue of damping, like with standard Newton's method €Ven when un-damped, which avoids the problem of neg-
is of vital importance to the HF approach. Unlike methods@tiVe curvature, thus guaranteeing that CG will work for
such as L-BFGS where the curvature matrix is crudely apgny.posmv.e valuedof;]. Mlzutam.&. Dreyf(ljjs(ZOIOQ argue
proximated, the exact curvature matrix implicitly avallab 29ainst usings and that recogm_zmlg almf exploiting neuga—
to the HF method allows for the identification of directions V€ curvature is important, particularly for training ma

with extremely low curvature. When such a direction is nets. Indeeq, some |mplementat|0ns of HF W'I.I perform a
found that also happens to have a reasonable large redu?:heck fc(;r_fchrectllor;s of dnﬁgatlv% Clérvatérg du(rjmg the CG
tion, CG will elect to move very far along it, and possibly "UNS and if one Is found they will abort CG and run a spe-
well outside of the region whereis a sensible approx- cialized subroutine in order to search along it. Based on
imation. The damping parametarcan be interpreted as our limited experience with such methods we feel that they
controlling how “conservative” the approximation is, es- are not particularly cost-effectlve._ Mqreover, on all oéth
sentially by adding the constahfd||? to the curvature es- learning problems we tested, usi@ginstead ofH con-
timate for each directiod. Using a fixed setting ok isnot ~ SiStently resulted in much better search directions, ewen i
viable for several reasons, but most importantly becausé't#a“ons where dnegau(\j/e curvaturfe ‘g’as not prc_aser?t. An-
the relative scale dB is constantly changing. It might also Oht ermore m(;m ane a vantagedo u | @yer:Hqgt at

be the case that the “trustworthiness” of the approximatior{ '€ @ssociated matrix-vector product algorithm @buses
varies significantly over the parameter space. about half the memory and runs nearly twice as fast.

There are advanced t_echniques, known_as Newton-Lanczosz. Handling lar ge datasets
methods, for computing the value afwhich corresponds
to a given “trust-region radius. However, we found Ingeneral, the computational cost associated with comput-
that such methods were very expensive and thus not cosiRg theBd products will grow linearly with the amount of
effective in practice and so instead we used a simpldraining data. Thus for large training datasets it may be
Levenberg-Marquardt style heuristic for adjustingdi- ~ impractical to compute these vectors as many times as is
rectly: if p < 1N — 3\ esaif p > 21X — 2) needed by CG in order to sufficiently optimizg(p). One
endif wherep is the “reduction ratio”. The reduction ratio Obvious remedy is to just truncate the dataset when comput-
is a scalar quantity which attempts to measure the accuradd the products, but this is unsatisfying. Instead we seek
of g¢ and is given by: something akin to “online learning”, where the dataset used
for each gradient evaluation is a constantly changing subse
F0+p)— f(0) of the total, i.e. a “mini-batch”.

q0(p) — q0(0) Fortunately, there is a simple way to adapt the HF as an on-
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line algorithm which we have found works well in practice, one may actually be a terrible solution for the other. On a
although some care must be taken. One might be temptesgtpical run of CG one observes that the objective function
to cycle through a sequence of mini-batches for the evalue(x) steadily decreases with each iteration (which is guar-
ation of eachBd product, but this is a bad strategy for sev- anteed by the theory), whileAdz — b||? fluctuates wildly up
eral reasons. Firstly, it is much more efficient to computeand down and only starts shrinking to O towards the very
these products if the unit activations for each training ex-end of the optimization. Moreover, the original motivation
ample can be cached and reused across evaluations, whifdr running CG within the HF method was to minimize the
would be much less viable if the set of training examplesquadraticgy(p), and not|Bp + V £(6)||2.

is constantly changing. Secondly, and more importantly,
the CG algorithm is not robust to changes in thenatrix L - L .

while it is running. The power of the CG method relies te/rlmlnabtlozn (c)ondltlon _fé)lr CG useq w;:hm HhFﬂFS bazeQd on
on the invariants it maintains across iterations, such as th.H t“;” - d” d bnle p%smo € reason 'f’t agw I “}” _d I .
conjugacy of its search directions. These will be quick}y vi !IS ct;un 3 f elow ﬁ’ , It |s|dn0t clear how to fin ;sm-
olated if the implicit definition o3 is constantly changing nar ;_)un O(rj(?t.(x) tv\?t woulc genfrgte_; reasonla be ter-
as CG iterates. Thus the mini-batch should be kept constarﬁt“na. lon cond|f|on.d iexr;}engwn € th) fsevera obvious
during each CG run, cycling only at the end of each HF it- euristics and found that the best one by far was to termi-

eration. It might also be tempting to try using very small nate the iterations once thelative per-iteration progress

mini-batches, perhaps even of size 1. This strategy, toomade in minimizingg(z) fell below some tolerance. In

is problematic since thB matrix, if defined using a very Sggtéﬁﬁéir’i;’vsea:ifﬂﬁate CG at iteratiarif the following
small mini-batch, will not contain enough useful curvature '

information to produce a good search direction. N ,
P g . ) i>k and ¢(x;) <0 and Hlwi) = #zi-k)
The strategy we found that works best is to use relatively d(ws)

large mini-batches, the optimal size of which grows as herek d . h . . . h
the optimization progresses. And while the optimal mini- Wherék determines how many iterations into the past we

batch size may be a function of the size of the model (wéOOK In order to compute an estimate of _th(_e current per-
don’t have enough data to make a determination) it criti-teration reduction rate.. Choosing > 1 is in ge_neral
cally doesn’t seem to bear any relation to the total datasd{€cessary because, while the average per-iteration reduc-
size. In our experiments, while we used mini-batches td'on in ¢ tends to decrease over time, it also displays a
compute thé3d products, the gradients and log-likelihoods considerable amount Of. variance ar!d thus we need_ to av-
were computed using the entire dataset. The rationale fgfrage over many iterations to obtain a rellablg estimate.
this is quite simple: each HF iteration involves a run of CG " @l Of our experiments we sét = max(10,0.17) and
which may require hundreds ®&d evaluations butonly 1 € — 0'0005' thus averaging over a progressively larger in-
gradient evaluation. Thus it is cost-effective to obtain atervgl ast grows. Not_e thatp can.l_)e computed from the
much higher quality estimate of the gradient. And it shouldCC itérates at essentially no additional cost.

be noted that unlike SGD which performs tens of thousandsn practice this approach will cause CG to terminate in very
of iterations, the number of iterations performed by our HFfew iterations when\ is large (which makegy(p) easy

Thus it is in our opinion surprising that the commonly used

< ke

approach rarely exceeds 200. to optimize) which is the typical scenario during the early
stages of optimization. In later stages(p) begins to ex-
4.4. Termination conditionsfor CG hibit pathological curvature (as long asis decayed ap-

ropriately), which reflects the actual propertiesfothus

Implementations of HF generally employ a convergenceyiing it harder to optimize. In these situations our ter-

test for the CG runs of the formiBp + Vf(#)[l> < « mination condition will permit CG to run much longer, re-

where thhe tcEI:((asran_ci‘le IS c_hoser] high enl;)ughfs_,o as to sulting in a much more expensive HF iteration. But this is
ehnsu_re that ( I W|Aterm|n|ate 'rr: a number o |tgrat|onsthe price that seemingly must be paid in order to properly
that is practical. popular choice seems to be=  cencate for the true curvaturefin

1
min(L, |V£(0)]13)]|Vf(8)|2, which is supported by some - . S
theor2etical conv2ergence results. In this section we will ar Heuristics which attempt to significantly reduce the num-

gue why this type of convergence test is bad and proposger of Iiteratirc]ms by ter_minatri1ng CG ea_lrly (and we tried
one which we have found works much better in practice. several, such as stopping w .ﬂﬁ +p) |_nc_rea_ses), pro-
vide a speed boost early on in the optimization, but con-

While CG is usually thought of as an algorithm for finding a sistently seem to result in worse long-term outcomes, both
least-squares solution to the linear systém= b, itisnot  in terms of generalization error and overall rate of reduc-
actually optimizing the squared error objectjiiéz — b]|2. tion in f. A possible explanation for this is that shorter
Instead, it optimizes the quadrati€z) = £2" Az —b'z,  CG runs are more “greedy” and do not pursue as many
and is invoked within HF implementations by settiAg= low-curvature directions, which seem to be of vital impor-
B andb = —V f(#). While ¢(z) and|| Az — b||* have the  tance, both for reducing generalization error and for avoid
same global minimizer, a good but sub-optimal solution foring extreme-curvature scenarios such as unit saturatidn an
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poor differentiation between units. described in the previous sub-section) shawtlbe back-
tracked in this manner. The likely explanation for this ef-
4.5. Sharing information acrossiterations fect is that directions which are followed too stronglypin

) ) ) due to bad curvature information from an unrepresentative
A simple enhancementto the HF algorithm which we foundmjnj-patch, or\ being too small, will be “corrected” by the

improves its performance by an order of magnitude is to Us@iext run of CG, since it will use a different mini-batch and
the search directiop,, , found by CG in the previous HF  hossibly a largei to computeB.

iteration as the starting point for CG in the current one.
There are intuitively appealing reasons why_; might
make a good initialization. Indeed, the valuesBiand

V f(0) for a given HF iteration should be “similar” in some Preconditioning is a technique used to accelerate CG.
sense to their values at the previous iteration, and thus thié does this by performing a linear change of variables
optimization problem solved by CG is also similar to thez = Cz for some matrixC, and then optimizing
previous one, making the previous solution a potentiallythe transformed quadratic objective given Wj;) =
good starting point. 13TC-TAC ¢ — (C~'b)Ti. ¢ may have more forgiv-

In typical implementations of HF, the CG runs are initial- INg curvature properties than the originaldepending on
ized with the zero vector, and doing this has the nice propthe value of the matrix”. To use preconditioned CG one
erty that the initial value ofs will be non-positive (0 in  SPecifiesd = C'TC, with the understanding that it must
fact). This in turn ensures that the search direction proPe easy to solvé/y = x for arbitraryz.. Preconditioning
duced by CG will always provide a reductiondp, evenif IS somewhat of an application specific art, and we experi-
CG is terminated after the firstiteration. In general, if @G i Mmented with many possible choices. One that we found to
initialized with a non-zero vector, the initial value ¢fcan b€ particularly effective was the diagonal matrix:

be greater than zero, and we have indeed found this to be

the case when using, ;. However, judging an initializa- M- ldiag <

4.7. Preconditioning CG

«

tion merely by itsp value may be misleading, and we found
that runs initialized fronmp,,_; rather than O consistently

yielded better reductions ipy, evenwhem(p,,—1) > 0. A" \here #; is the value of the objective associated with
possible explanation for this finding is that 1 is "wrong”  training-casei, ® denotes the element-wise product and
within the new quadratic objective mostly along the votatil e exponent is chosen to be less than 1 in order to sup-
high-curvature directions, which are quickly and easiky di press “extreme” values (we used 0.75 in our experiments).
covered and “corrected” by CG, thus leaving the harder-toThe inner sum has the nice interpretation of being the di-
find low-curvature directions, which tend to be more stableagona| of the empirical Fisher information matrix, which
over the parameter space, and thus more likely to remaipy similar in some ways to theé matrix. Unfortunately,

=1

D
> Vi) e V.fxo)) + A

descent directions between iterations of HF. it is impractical to use the diagonal 6f itself, since the
_ _ _ obvious algorithm has a cost similar f6 backprop opera-
4.6. CG iteration backtracking tions, wherey is the size of the output layer, which is large

éor auto-encoders (although typically not for classifioati

While each successive iteration of CG improves the valu hets)

of p with respect to the P-order modelgy (p), these im-
provements are not necessarily reflected in the value of

f(6 +p). In particular, ifgy(p) is untrustworthy due to the 5. Random initialization

damping parametex being set too low or the current mini- . s -
batch being too small or unrepresentative, then running c¢&2Ur HF approach, like almost any deterministic optimiza-
past a certain number of iterations can actually be harmfultion scheme, is not completely immune to *bad” initializa-
In fact, the dependency of the directions generated by CG°NS: ?Ithough it does tend to be far more robust to these
on the “quality” of B should almost certainly increase CG than T'-order methods. For example, it cannot break sym-
iterates, as the basis from which CG generates directiort@etry between two units in the same layer that are initial-

(called the Krylov basis) expands to include matrix-vector'2€d With identical weights. However, as discussed in sec-
products with increasingly large powersif tion 2.2 it has a far better chance thafdrder methods of

_ doing so if the weights ameearlyidentical.
By storing the current solution fgr at iteration[~7] of

CG for eachj (wherey > 1 is a constant; 1.3 in our ex-
periments), we can “backtrack” along them after CG ha
terminated, reducing as long as thé~’~!]th iterate of
CG yields a lower value of (z + p) than the[7th. How-
ever, we have observed experimentally that, for best perfo
mance, the value gf used to initialize the next CG run (as

In our initial investigations we tried a variety of random
dnitialization schemes. The better ones, which were more
careful about avoiding issues like saturation, seemed to
allow the runs of CG to terminate after fewer iterations,
mostly likely because these initializations resulted irreno
favorable local curvature properties. The best random ini-
tialization scheme we found was one of our own design,
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“sparse initialization”. In this scheme we hard limit the Table 1.Experimental parameters

number of non-zero incoming connection weights to each e — e e
. . . . {

e e oL e eses CURVEs a0 so00| 7ar-sopati- 100 5025
N . A - MNIST 60000 | 7500 784-1000-500-250-30

both highly differentiated as well as unsaturated, avgdin —FACES 103500 5175 625-2000-1000-500-3

the problem in dense initializations where the connectio

weights must all be scaled very small in order to preven

saturation, leading to poor differentiation between units

D

Ehe primary reason for abandoning gradient-descent as an
optimization method in the first place. Moreover, it can
be shown that in the batch case, the updates computed by
6. Related work on 2"%-order optimization SMD lie in the same Krylov subspace as those computed
by an equal number of CG iterations, and that CG finds the

LeCun et al.(19989 have proposed several diagonal ap'optimal solution ofzs(p) within this subspace.

proximations of thed andG matrices for multi-layer neu-
ral nets. While these are easy to invert, update and stordhese 2%-order methods, plus others we haven't discussed,
the diagonal approximation may be overly simplistic sincehave only been validated on shallow nets and/or toy prob-
it neglects the very important interaction between paramelems. And none of them have been shown to be fundamen-
ters. For example, in the “nearly identical units” scenariotally more effective thansk-order optimization methods on
considered in sectioR.2, a diagonal approximation would deep learning problems.

not be able to recognize the “differentiating direction” as

being one of low curvature. 7. Experiments

. neh . )
Am_an et al.(2000 have proposed & s_bordefr. learning aI_ We present the results from a series of experiments
gorithm for neural nets based on an empirical approxima-

4 . . . : . . designed to test the effectiveness of our HF ap-
tion of the Fisher information matrix (which can be defined .

S A proach on the deep auto-encoder problems considered by
for a neural net by casting it as a probabilistic model).

Since Schraudolph’s approach for computiid may be H|nt(_)n ‘Ig‘ Shalakhutd|n0\é(2|006h(abbr. H%S). we e}dop';
generalized to compuféd, we were thus able to evaluate precisely the same model architectures, datasets, logs fun
the possibility of using? as an alternative t6 within our tions and training/test partitions that they did, so as to en

HF approach. The resulting algorithm wasn't able to makeSUre that our results can be directly compared with theirs.
significant progress on the deep auto-encoder problems weach dataset consists of a collection of small grey-scale
considered, possibly indicating tHatdoesn’t contain suffi- images of various objects such as hand-written digits and
cient curvature information to overcome the problems assofaces. Tablel summarizes the datasets and associated ex-
ciated with deep-learning. A more theoretical observatiorperimental parameters, whesze gives the size of the
which supports the use @ overF in neural nets is that training set,K gives the size of minibatches used, and
the ranks of andG are D and D L respectively, wheré encoder dims gives the encoder network architecture. In
is the size of the training set ardis the size of the output each case, the decoder architecture is the mirror image of
layer. Another observation is th&t will converge to the the encoder, yielding a “symmetric autoencoder”. This
Hessian as the error of the net approaches zero, a propersymmetry is required in order to be able to apply H&S's
not shared by pre-training approach. Note that CURVES is the synthetic

Building on the work ofPearimutte (1994, Schraudolph curves dataset from H&S's paper and FACES is the aug-

(2002 proposed M-order method called “Stochastic mented Olivetti face dataset.
Meta-descent” (SMD) which uses an on-linf€-drder ap-  We implemented our approach using the GPU-computing
proximation tof and optimizes it via updates gowhich ~ MATLAB package Jacket. We also re-implemented, us-
are also computed on-line. This method differs from HFing Jacket, the precise approach considered by H&S, us-
in several important ways, but most critically in the way it ing their provided code as a basis, and then re-ran their
optimizesp. The update scheme used by SMD is a form ofexperiments usingnany more training epochs than they
preconditioned gradient-descent given by: did, and for far longer than we ran our HF approach on
o 4 My rn =V (0,)+B the same models. With these extended runs we were able
Pnt1 = Pn " e " Pr to obtain slightly better results than they reported forbot
where M is a diagonal pre-conditioning matrix chosen to the CURVES and MNIST experiments. Unfortunately, we
approximate3. Using the previously discussed method for were not able to reproduce their results for the FACES
computingBd products, SMD is able to compute these up-dataset, as each net we pre-trained had very high gen-
dates efficiently. However, using gradient-descent imsteaeralization error, even before fine-tuning. We ran each
of CG to optimizegy (p), even with a good diagonal precon- method until it either seemed to converge, or started to
ditioner, is an approach likely to fail becaugép) will ex- overfit (which happened for MNIST and FACES, but not
hibit the same pathological curvature as the objectivefuncCURVES). We found that since our method was much bet-
tion f that it approximates. And pathological curvature waster at fitting the training data, it was thus more prone to
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Table 2.Results (training and test errors) — — —pT+NCG ||
RAND+HF
PT + NCG | RAND+HF PT+HF ] |-~ PT+HF

CURVES 0.74,0.82 0.11,0.20] 0.10,0.21 _
MNIST 2.31,2.72 1.64,2.78| 1.63, 2.46 %
MNIST* 2.07,2.61 1.75,2.55| 1.60, 2.28
FACES -, 124 55.4,139 RS
FACES* 60.6, 122 1

overfitting, and so we ran additional experiments where we
introduced ari; prior on the connection weights.

time in seconds (log-scale)

) ) Figure 2.Error (train and test) vs. computation time on CURVES
Table 2 summarizes our results, wheRT+NCG is the

pre-training + non-linear CG fine-tuning approach of H&S, Based on these results we can h ;
. ) o ypothesize that the way pre-
RAND+HF is our Hessian-free method initialized ran- training helps $-order optimization algorithms overcome

?Omlya andPT+tHF |§”c])ur app:)roach. |n|t|§1l|zed r;’v'tht pref'ththe under-fitting problem is by placing the parameters in a
rained parameters. The numbers given in €ach entry o |eegi0n less affected by issues of pathological curvature in

table are the average sum of squared reconstruction erro Se objective, such as those discussed in se@i@nThis

on the training-set and the test-set. The *'s indicate tha ould also explain why our HF approach optimizes faster

anl, prior was used, with strengttD—* on MNIST and f :
5 S rom pre-trained parameters, as more favorable local cur-
107" on FACES. Error numbers for FACES which involve vature conditions allow the CG runs to make more rapid

pre-training are missing due to our failure to reproduce th L

. . : rogress when optimizi .
results of H&S on that dataset (instead we just give the test 9 P ng (p)
error number they reported). Finally, while these early results are very encouraging,
clearly further research is warranted in order to address

tions on the CURVES dataset. Pre-training time is include hse hmo\?vnz]'l:]éﬁrﬁgrneg Sﬁﬁ;ﬂﬁ?z: 2 a(; eaerylasi é;gr?hgf rgh ;T’(;:VC
where applicable. T_hls plot is not meant to be a deﬂmtweones and is this power fully exploited by current pre-
performance analysis, but merely a demonstration that O%aini,ng/fine—tuning schemes?

method is indeed quite efficient.

Figure2 demonstrates the performance of our implementa
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