
Invited Applications Paper

Detecting Large-Scale System Problems by Mining Console Logs

Wei Xu xuw@cs.berkeley.edu

EECS Department, UC Berkeley

Ling Huang ling.huang@intel.com

Intel Labs Berkeley

Armando Fox fox@cs.berkeley.edu

EECS Department, UC Berkeley

David Patterson pattrsn@cs.berkeley.edu

EECS Department, UC Berkeley

Michael I. Jordan jordan@cs.berkeley.edu

EECS and Statistics Department, UC Berkeley

Abstract

Surprisingly, console logs rarely help opera-
tors detect problems in large-scale datacen-
ter services, for they often consist of the vo-
luminous intermixing of messages from many
software components written by independent
developers. We propose a general method-
ology to mine this rich source of informa-
tion to automatically detect system runtime
problems. We use a combination of program
analysis and information retrieval techniques
to transform free-text console logs into nu-
merical features, which captures sequences of
events in the system. We then analyze these
features using machine learning to detect op-
erational problems. We also show how to dis-
till the results of our analysis to an operator-
friendly one-page decision tree showing the
critical messages associated with the detected
problems. In addition, we extend our meth-
ods to online problem detection where the se-
quences of events are continuously generated
as data streams.

1. Introduction

Today’s large-scale Internet services run in large server
clusters in data centers and cloud computing environ-

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

ments. These system architectures enable highly scal-
able Internet services at a relatively low cost. How-
ever, detecting and diagnosing problems in such sys-
tems bring new challenges for both system develop-
ers and operators. One significant problem is that as
the system scales, the amount of information opera-
tors need to process goes far beyond the level that can
be handled manually, and thus there is a huge demand
for automatic processing of monitoring data.

Much work has been done on automatic problem de-
tection and diagnosis in such systems. Researchers
and operators have been using all kinds of mon-
itoring data, from the simplest numerical metrics
such as resource utilization counts (Lakhina et al.,
2004; Cohen et al., 2005; Bodik et al., 2010) to sys-
tem events (Hellerstein et al., 2002; Ma & Hellerstein,
2001) to more detailed tracing such as execu-
tion paths (Chen et al., 2002; Chen & Brewer, 2004).
However, console logs, the debugging information built
into almost every piece of software, are rarely studied
by either operators or the research community.

Since the dawn of programming, developers have used
everything from printf to complex logging and moni-
toring libraries (Fonseca et al., 2007; Gulcu, 2002) to
record program variable values, trace execution, report
runtime statistics, and even printing out full-sentence
messages designed to be read by a human—usually
by the developer. However, modern large-scale ser-
vices usually combine large open-source components
authored by hundreds of developers, and the peo-
ple scouring the logs—part integrator, part developer,

Detecting Problems by Mining Console Logs

part operator, and charged with fixing the problem—
are usually not the people who chose what to log or
why. Furthermore, even in well-tested code, many op-
erational problems are dependent on the deployment
and runtime environment and cannot be easily re-
produced by the developer. Thus, it is unavoidable
that people other than the original developers need to
source logs from time to time when diagnosing prob-
lems. Our goal is to provide them with better tools to
extract value from the console logs.

As logs are too large to examine manually and too
unstructured to analyze automatically, operators typi-
cally create ad hoc scripts to search for keywords such
as “error” or “critical,” but this has been shown to
be insufficient for determining problems (Jiang et al.,
2009; Oliner & Stearley, 2007). Rule-based process-
ing (Prewett, 2003) is an improvement, but the opera-
tors’ lack of detailed knowledge about specific compo-
nents and their interactions makes it difficult to write
rules that pick out the most relevant sets of events for
problem detection. Instead of asking users to search,
we provide tools to automatically find “interesting”
log messages. Our goal is to find the “needles in the
haystack” that might indicate operational problems,
without any manual input.

Related work. There are two widely used models of
console logs: as a collection of English terms (Stearley,
2004; Vaarandi, 2004; Splunk, 2008) or as a single
sequence of repeating events (Hellerstein et al., 2002;
Ma & Hellerstein, 2001; Yamanishi & Maruyama,
2005; Lim et al., 2008). These methods, however, do
not perform well in large-scale systems with multiple
independent processes that generate interleaved
logs. We instead model console logs as a number of
interleaving execution traces by pre-grouping relevant
messages. This grouping process makes it possible to
obtain useful results with simple, efficient machine
learning algorithms. More similar to our method are
the path-based problem detection approaches such as
Pinpoint (Chen & Brewer, 2004; Fonseca et al., 2007),
but these methods have required custom structured
traces.

We also improve existing log parsing methods,
which rely on repeating textual patterns in his-
torical logs (Vaarandi, 2003; Fisher et al., 2008;
Makanju et al., 2009). These methods work well on
messages types that occur many times in the log, but
they cannot handle rare message types that are likely
to be related to the runtime problems. In our ap-
proach, we combine log parsing with source code anal-
ysis to get accurate message type extraction, even for
rarely seen message types.

Beyond console logs, machine learning techniques
have been widely used to help computer system
or network operations. Much work has been
done for profiling end-hosts and networks (Xu et al.,
2005; Karagiannis et al., 2007), detecting anoma-
lous events and other intrusions (Lakhina et al.,
2004; Ye et al., 2007), finding root causes for op-
erational problems (Cohen et al., 2005; Bodik et al.,
2010), predicting performance and resource utiliza-
tion (Ganapathi et al., 2009), as well as pinpointing
application bugs (Li et al., 2004; Zheng et al., 2006)
and configuration problems (Wang et al., 2004). Our
work is different from these techniques mainly because
they analyze aggregate data while we detect anomalies
from sequences of individual operations.

Our Contributions. We propose a general frame-
work that is based on using a combination of program
analysis, information retrieval and machine learning
techniques to build a fully automatic problem detec-
tion system using console log information. Specifically,
our contributions include: (1) a general methodology
for automated console log processing, (2) online prob-
lem detection with message sequences, and (3) system
implementation and evaluation on real world systems.

This paper summarizes the highlights of our log mining
techniques, and readers may refer to Xu et al. (2009b)
and Xu et al. (2009a) for more details.

2. Key Insights

Important information is buried in the millions of lines
of free-text console logs. To analyze logs automati-
cally, we need to create high quality features, the nu-
merical representation of log information that is under-
standable by machine learning algorithms. The fol-
lowing four key insights lead to our solution to this
problem.

Insight 1: Source code is the “schema” of logs.

Although console logs appear in free text form, they
are in fact quite structured because they are gener-
ated entirely from a relatively small set of log printing
statements in source code. Consider the simple con-
sole log excerpt and the source code that generated
it in Figure 1. Intuitively, it is easier to recover the
log’s hidden “schema” using the source code informa-
tion (especially for a machine). Our method leverages
source code analysis to recover the inherent structure
of logs.

The most significant advantage of our approach is that
we are able to accurately parse all possible log mes-
sages, even the ones rarely seen in actual logs. In ad-

Detecting Problems by Mining Console Logs

starting: xact 325 is COMMITTING
starting: xact 346 is ABORTING

1 CLog.info("starting: " + txn);
2 Class Transaction {
3 public String toString() {
4 return "xact " + this.tid +
5 " is " + this.state;
6 }
7 }

Figure 1. Top: two lines from a simple console log. Bot-
tom: Java code that could produce these lines.

dition, we are able to eliminate most of the heuristics
and guesses for log parsing used by existing solutions.

Insight 2: Common log structures lead to use-

ful features. A person usually reads the log mes-
sages in Figure 1 as a constant part (starting: xact

... is) and multiple variable parts (325/326 and
COMMITTING/ABORTING). We call the constant part the
message type and the variable part the message vari-
able.

Message types—marked by constant strings in a log
message—are essential for analyzing console logs and
have been widely used in earlier work (Lim et al.,
2008). In our analysis, we use the constant strings
solely as markers for the message types, completely
ignoring their semantics as English words, which are
known to be ambiguous (Oliner & Stearley, 2007).

Message variables carry crucial information as well.
In contrast to prior work that focuses on numerical
variables (Lim et al., 2008; Oliner & Stearley, 2007;
Yamanishi & Maruyama, 2005), we identified two im-
portant types of message variables for problem detec-
tion by studying logs from many systems and by in-
terviewing Internet service developers / operators who
heavily use console logs: identifiers and state variables.

Identifiers are variables used to identify an object ma-
nipulated by the program (e.g., the transaction ids 325
and 346 in Figure 1), while state variables are labels
that enumerate a set of possible states an object could
have in program (e.g., COMMITTING and ABORTING in Fig-
ure 1). Table 1 provides additional examples of such
variables. We can determine whether a given variable
is an identifier or a state variable pragmatically based
on its frequency in console logs. Intuitively, state vari-
ables have a small number of distinct values while iden-
tifiers take a large number of distinct values; for a de-
tailed discussion see Xu et al. (2009b).

Our accurate log parsing allows us to use structured
information such as message types and variables to au-

Table 1. State variables and identifiers
Variable Examples Distinct

values

Identifiers transaction id in Darkstar;
block id in Hadoop FS;
cache key in Apache server;
task id in map-reduce.

many

State
Vars

Transaction stages in Dark-
star;
Server names in Hadoop;
HTTP status code (200, 404);
POSIX process return values.

few

tomatically create features that capture information
conveyed in logs. To our knowledge, this is the first
work extracting information at this fine level of gran-
ularity from console logs for problem detection.

Insight 3: Message sequences are important in

problem detection. When log messages are grouped
properly into message sequences, there is a strong and
stable correlation among messages within the same
group. For example, messages containing a certain file
name are likely to be highly correlated because they
are likely to come from logically related execution steps
in the program.

A message sequence is often a better indicator of prob-
lems than individual messages. Many anomalies are
only indicated by incomplete message sequences. For
example, if a write operation to a file fails silently (per-
haps because the developers do not handle the error
correctly), no single error message is likely to indicate
the failure. By correlating messages about the same
file, however, we can detect such cases by observing
that the expected “closing file” message is missing.

Previous work grouped messages by time windows
only, and the detection accuracy suffers from noise
in the correlation (Jiang et al., 2009; Stearley, 2004;
Yamanishi & Maruyama, 2005). In contrast, we cre-
ate message groups based on more accurate informa-
tion, such as the message variables described above.
In this way, the correlation is much stronger and more
readily encoded so that the abnormal correlations also
become easier to detect.

Insight 4: Logs contain strong patterns with

lots of noise. Our last but important observation in
production console logs is that the normal patterns—
whether in terms of frequent individual messages or
frequent message sequences—are very obvious. This is
because in production systems, most of the operations
are normal, and generate normal log sequences. This
observation enables us to use simple machine learning
algorithms, such as frequent pattern mining and Prin-

Detecting Problems by Mining Console Logs

cipal Component Analysis (PCA), for problem detec-
tion.

On the other hand, due to the console log generation
and collection process, much noise is introduced. The
two most notable kinds of noise are the random inter-
leaving of messages from multiple threads or processes
as well as the inaccuracy of message ordering. Our
grouping methods help reduce this noise, but the de-
tection algorithm still needs to tolerate the noise. We
introduce our method of combining frequent pattern
mining and PCA detection in Section 4.

Case Studies. We studied source code and logs from
a total of 29 different systems. Twenty-five of them are
widely deployed open source systems, one is a research
prototype, one is a proprietary web application’s Flash
client, and there are three production systems from
real Internet services. Though they are distinct in
functionality, developed using different languages by
different developers at different times, cover several
popular programming languages, including C, C++,
Java, Python and ActionScript3, these logs have many
common properties. 27 of the 29 systems use free text
logs, and our source-code-analysis-based log parsing
applies to all of them. In these systems, we found that
about 1%-5% of code lines are logging calls in most of
the systems. It is almost impossible to maintain log-
parsing rules manually with such a large number of
distinct logger calls, which highlights our advantage of
discovering message types automatically from source
code. On average, a log message reports a single vari-
able. However, there are many messages that report no
variables, while other messages can report 10 or more.
Also, we can find at least one state variables or iden-
tifiers in 28 of the 29 systems in the survey (22 have
both), confirming our assumption of their prevalence.

3. Methodology Overview

Figure 2 shows the four steps in our general framework
for mining console logs.

Step 1: Log parsing. We first convert a log mes-
sage from unstructured text to a data structure that
shows the message type and a list of message variables
in (name, value) pairs. We get all possible log mes-
sage template strings from either the source code or
program binaries and match these templates to each
log message to recover its structure (that is, message
type and variables).

Our log parsing method consists of two steps: the
static source code analysis and the runtime log parsing.
The static source analysis step not only extracts all log

printing statements from the source code, but also tries
to infer types of variables contained in the log mes-
sages. Thus we can discover the message format even
with the complex type hierarchies in modern object-
oriented languages. The runtime log parsing step uses
information retrieval techniques to “search” through
all possible strings extracted from template for best-
matching “schemas” for each log message. The process
is stateless, so it is easy to parallelize and implement
in a data stream processor in the online setting.

We implemented source code analyzers for Java, C,
C++ and Python. In the cases where source code
is not readily available or too hard to manage, we
can achieve similar results by directly extracting log
message template from program binaries. Our experi-
ments show that we can achieve high parsing accuracy
in a variety of real-world systems. Xu et al. (2009b)
provides more details.

There are systems that use structured tracing only,
such as BerkeleyDB (Java edition). In this case, be-
cause logs are already structured, we can skip this
first step and directly apply our feature creation and
anomaly detection methods.

Step 2: Feature creation. Next, we construct fea-
ture vectors from the extracted information by choos-
ing appropriate variables and grouping related mes-
sages. We focus on two widely applicable features:
the message count vectors constructed from identifiers,
and the state ratio vectors constructed from state vari-
ables1.

We briefly summarize the construction of message
count vectors; readers may refer to Xu et al. (2009b)
for further details. We observe that all log messages
reporting the same identifier convey a single piece of
information about the identifier. By grouping these
messages, we get the message count vector, which is
similar to an execution path (Fonseca et al., 2007).
To form the message count vector, we first automati-
cally discover identifiers, then group together messages
with the same identifier values, and create a vector per
group. Each dimension of the vector corresponds to a
different message type, and the value of the dimension
tells how many messages of that type appear in the
message group.

The structure of this feature is analogous to the bag of
words model in information retrieval: the “document”
is the message group, the dimensions of the vector con-
sist of the union of all useful message types across all

1Our method provides flexibility for generating other
types of features, including application-specific ones that
incorporate operators’ domain knowledge.

Detecting Problems by Mining Console Logs

��������� ��	�
�� ��
��
������������� ��	�
�� �� ����������	�������� ��	�
�� �� ���������
�� !" #$%& '("�)��*+, ���*
��, �����*
��
������)��*�, ���*
��, �����* �����������)��*
, ���*
��, �����*��������� - - -- . -- - - . -

/� 01$23%1 4%1$2 '!(5�6(!7$89:12142 '!(; �< '&3$8'=$2 '!(
>?@@AB? CDEFG H?IGDJ@KGAG? LAGMD H?IGDJ
��
�������������������������N�����
�� �����O) ����	����PQRSPQTSPQUSKDEJI? CDV?LAW CDF@DX? YDB KGJEIGEJ?V YDB��������� ��	� Z[\] �� Z[\]>?@@AB? G?^_XAG?`��� �����������	����Z]abc��[��d�Ze��������f g ������	�]hi ��	����� ����
jG GM^? WMFVDW -..

Figure 2. Overview of console log analysis work flow.

groups (analogous to all possible “terms”), and the
value of a dimension is the number of appearances of
the corresponding message types in a group (corre-
sponding to “term frequency”).

Step 3: Machine learning. Next, we apply ma-
chine learning methods to analyze feature vectors. In
this work, we focus on using anomaly detection tech-
niques to classify each feature vector as normal or ab-
normal. We find that the Principal Component Analy-
sis (PCA)-based anomaly detection method works very
well in our setting (Dunia & Qin, 1997). This method
is an unsupervised learning algorithm, in which all pa-
rameters can be either chosen automatically or tuned
easily, eliminating the need for prior input from the
operators. In an online setting, we added an ex-
tra filtering step, which uses a frequent-pattern-based
method to eliminate the vast majority of normal mes-
sages quickly. Combining these two methods, we can
achieve an online detection with both small latency
and high accuracy.

Notice that the anomaly detection algorithm we chose
is not intrinsic to our approach, and different al-
gorithms utilizing different features could be readily
“plugged in” to our framework.

Step 4: Visualization. Finally, in order to let sys-
tem integrators and operators better understand the
PCA anomaly detection results, we visualize results
in a decision tree (Witten & Frank, 2000), which pro-
vides a more detailed explanation of how the problems
are detected, in a form that resembles the event pro-
cessing rules (Hansen & Atkins, 1993) with which sys-
tem integrators and operators are familiar. Xu et al.
(2009b) provides details about the decision tree con-
structed.

The four steps discussed above can either work as a
coherent system, or be applied individually to certain
data sets as required. For example, on tracing data
that are already structured, we can directly apply the

feature extraction step without parsing. Users can also
add log parsers for specific programming languages,
create application specific features, apply good ma-
chine learning algorithms for problem detection, etc.

4. Online Detection

Recall that the message count vectors are created on
message groups: We group messages by identifiers,
and obtain results similar to an event trace of oper-
ations on the program object that the identifier repre-
sents. Therefore, effective online detection on message
count vectors requires striking a balance between ac-
curacy and time to detection (determined only by how
long the algorithm has to wait before making a deci-
sion). At one extreme, if we wait to see the entire trace
before attempting any detection, our results should be
as accurate as the offline detection but with excessive
time to detection. At the other extreme, if we try to
make a decision as soon as a single event appears, we
lose the ability to perform anomaly detection based on
sequences (a group of related events), yet our experi-
ence shows that analyzing message sequences instead
of the individual events is key to accurate detection,
as we discussed in Section 2.

We manage this trade-off by designing a two-stage de-
tection method (Xu et al., 2009a). As depicted in Fig-
ure 3, we use a pattern-based filtering to do fast and
accurate detection of “normal” events, which consists
the majority of all events in logs; for the events that
do not match the pattern, we train a PCA model and
use the model to decide whether the non-matching se-
quences are normal.

The first stage uses frequent pattern mining to capture
the most common (i.e., normal) session, that is, those
traces with a high support level. The patterns include
both frequent-event set and session duration informa-
tion. As we discussed in Section 2, when a system is
under normal operation the majority of operations go
through a few normal paths. Using frequent event pat-

Detecting Problems by Mining Console Logs�������� �������	
��
� ��������� ���
������������ ������ ��	�	���� ��������	���	��� ������������ � !"�#$�%� &����"% '�(�)* +,� �"+%�
����� - ./0 �%12�,3)���4� +1%
���5 ��� 	�����

Figure 3. Overview of the two stage online detection systems. The width of arrows qualitatively represents the amount
of events going into each stage. The first stage of frequent pattern based filtering is able to handle most normal events.

terns, we can determine as soon as a normal sequence
successfully completes; by estimating a duration dis-
tribution for each pattern, we can timeout sequences
that do not complete in expected latency with high
probability.

However, frequent pattern mining is not enough by
itself. Random noise (e.g., due to defects in console
logs, such as overlapping or incorrect ordering) can
be eliminated from patterns only because they do not
have enough support. If we reduce the minimal sup-
port level, more noise will be introduced to the pat-
terns, reducing the quality of the patterns. To solve
the dilemma, we added a second stage, which applies
PCA-based anomaly detection to non-pattern events
that make it through the first stage.

In each stage, we build a model based on archived his-
tory and update it periodically with new data, and use
it for online detection. Both model estimation and on-
line detection involves domain-specific considerations
about console logs.

Our experiments shows that in one of our data sets,
the first stage filters over 84% of events, making the
detection on these normal events fast. Note also that
quick filtering of normal events also saves the amount
of memory needed for implementing the detector.

5. Result Highlights

To be succinct yet reveal important issues in console
log mining, we focus further discussion on two rep-
resentative systems: the Darkstar online game server
and the Hadoop File System (HDFS). Both of these
systems handle persistence, an important yet compli-
cated function in large-scale Internet services. How-
ever, they are different in nature. Darkstar focuses
on small, time-sensitive transactions, while HDFS is a
file system designed for storing large files and batch
processing. Darkstar and Hadoop are both written in

Table 2. Data sets used in evaluation. Nodes=Number of
nodes in the experiments.

System Nodes Messages Log Size

Darkstar 1 1,640,985 266 MB
Hadoop (HDFS) 203 24,396,061 2412 MB

Java, and represent two major open source contrib-
utors (Sun and Apache, respectively) with different
coding and logging styles. All log data are collected
from unmodified off-the-shelf systems “as is,” without
any modification to the program itself.

For HDFS and Darkstar data, we collected logs from
systems running on Amazon’s Elastic Compute Cloud
(EC2) and we also used EC2 to analyze these logs.
Table 2 summarizes the log data sets we used. The
Darkstar example revealed a behavior that strongly
depended on the deployment environment, which led
to problems when migrating from traditional server
farms to clouds. In particular, we found that Dark-
star did not gracefully handle performance variations
that are common in the cloud-computing environment.
By analyzing console logs, we found the reason for this
problem: excessive transaction aborts and retries when
transactions time out due to resource contentions. The
cause can only be discovered by analyzing console logs
and discovering the patterns of normal states of trans-
actions. Xu et al. (2009b) provides details about the
experiment.

Satisfied with Darkstar results and to further evalu-
ate our method, we analyzed HDFS logs, which are
much more complex. We collected HDFS logs from a
Hadoop cluster running on over 200 EC2 nodes, yield-
ing 24 million lines of logs during a two-day period.
We successfully extracted log segments indicating run-
time performance problems that have been confirmed
by Hadoop developers.

Detecting Problems by Mining Console Logs

Table 3. Precision and recalls of both online and offline de-
tection. Notice that as detailed in Xu et al. (2009a), the
online detection precision is lowered by a number of am-
biguous cases.

Experiments Precision Recall

Online 86% 100%
Offline 91% 99.3%

We achieved highly accurate detection results both
with the offline and online algorithms. The online
method has an even higher recall than the offline
method. The reason is that for online detection, we
segment an event trace into several sessions based on
time duration, and base the detection on individual
sessions rather than whole traces. Thus, the data
sent to the detector is free of noise resulting from
application-dependent interleaving of multiple inde-
pendent sessions. The detailed evaluation based on
Hadoop file system is presented in Xu et al. (2009b)
and Xu et al. (2009a).

6. Conclusions and Future Work

We propose a general approach to problem detection
via the analysis of console logs, the built-in monitoring
information in most software systems. Using source
code as a reference to understand the structure of con-
sole logs, we are able to parse logs accurately. The ac-
curacy in log parsing allows us to extract the identifiers
and state variables, which are widely found in logs yet
are usually ignored due to difficulties in log parsing.
Using parsed logs, we are able to construct powerful
features capturing both global states and individual
operation sequences. We eliminated many complexi-
ties and forms of noise, which would otherwise present
severe challenges to the machine learning algorithms,
during feature construction (e.g., by grouping relevant
events using identifiers). Thus, simple algorithms such
as PCA yield promising anomaly detection results. In
order to detect abnormal sequences in an online set-
ting, we adopted a two-stage approach which uses fre-
quent pattern to filter out normal events while using
PCA detection to detect the anomalies.

Our work has opened up many new opportunities to
turn built-in console logs into a powerful monitoring
system for problem detection, and suggests a variety
of future directions that can be explored, including: 1)
analyze logs from multiple layers or subsystems of the
entire application stack in order to understand the in-
teractions among these components; 2) bring the hu-
man operators into the debugging loop by allowing

operators to give feedback to the detector and incor-
porate domain knowledge to refine the detection; 3)
combine console log information with other structured
traces, such as performance counters, resource utiliza-
tion, etc.; 4) apply more robust learning algorithms
to handle defective logs, for example logs containing
missing or corrupted messages.

Our current work does not make any change to the log
generation code in the program. But we can also aim
to improve current console log generation frameworks
to allow more dynamic and fine granularity control
of individual message types. With such a framework,
we can do real-time control of console log generation,
which will enable us to further reduce the overhead of
generating unnecessary logs, while making sure the in-
teresting and important messages are kept in the logs.

Acknowledgement

This research is supported in part by gifts from
Sun Microsystems, Google, Microsoft, Amazon Web
Services, Cisco Systems, Cloudera, eBay, Facebook,
Fujitsu, Hewlett-Packard, Intel, Network Appliance,
SAP, VMWare and Yahoo! and by matching funds
from the State of California’s MICRO program (grants
06-152, 07-010, 06-148, 07-012, 06-146, 07-009, 06-
147, 07-013, 06-149, 06-150, and 07-008), the National
Science Foundation (grant #CNS-0509559), and the
University of California Industry/University Coopera-
tive Research Program (UC Discovery) grant COM07-
10240. We also thank Prof. Johannes Fuernkranz and
the program committee for inviting us to present this
work at ICML.

References

Bodik, P, Goldszmidt, M., Fox, A., Woodard, D. B.,
and Andersen, H. Fingerprinting the datacenter:
Automated classification of performance crises. In
Proceedings of EuroSys’10, Paris, France, 2010.

Chen, M. Y. and Brewer, E. A. Path-based failure and
evolution management. In Proceedings of NSDI’04,
San Francisco, CA, 2004.

Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., and
Brewer, E. Pinpoint: Problem determination in
large, dynamic internet services. In Proceedings of
DSN’02, Washington, DC, 2002.

Cohen, I., Zhang, S., Goldszmidt, M., Symons, J.,
Kelly, T., and Fox, A. Capturing, indexing, cluster-
ing, and retrieving system history. In Proceedings of
ACM SOSP’05, Brighton, UK, 2005.

Detecting Problems by Mining Console Logs

Dunia, R. and Qin, S. J. Multi-dimensional fault di-
agnosis using a subspace approach. In Proceedings
of American Control Conference (ACC’97), 1997.

Fisher, K., Walker, D., Zhu, K. Q., and White, P.
From dirt to shovels: fully automatic tool generation
from ad hoc data. In Proceedings of POPL’08, San
Francisco, CA, 2008.

Fonseca, R., Porter, G., Katz, R. H., Shenker, S.,
and Stoica, I. Xtrace: A pervasive network tracing
framework. In In Prococeedings of NSDI’07, Cam-
bridge, MA, 2007.

Ganapathi, A., Kuno, H., Dayal, U., Wiener, J. L.,
Fox, A., Jordan, M., and Patterson, D. Predicting
multiple performance metrics for queries: Better de-
cisions enabled by machine learning. In Proceedings
of ICDE’09, Shanghai, China, 2009.

Gulcu, C. Short introduction to log4j, March 2002.
http://logging.apache.org/log4j.

Hansen, S. E. and Atkins, E. T. Automated system
monitoring and notification with Swatch. In Pro-
ceedings of LISA’93, Monterey, CA, 1993.

Hellerstein, J., Ma, S., and Perng, C. Discovering ac-
tionable patterns in event data. IBM Sys. Jour, 41
(3), 2002.

Jiang, W., Hu, C., Pasupathy, S., Kanevsky, A., Li,
Z., and Zhou, Y. Understanding customer problem
troubleshooting from storage system logs. In Proc-
cedings of FAST’09, San Francisco, California, 2009.

Karagiannis, T., Papagiannaki, K., Taft, N., and
Faloutsos, M. Profiling the end hos. In Proceed-
ings of Passive and Active Measurement Workshop
(PAM’07), Belgium, 2007.

Lakhina, A., Crovella, M., and Diot, C. Diagnosing
network-wide traffic anomalies. In Proceedings of
ACM SIGCOMM, Portland, OR, 2004.

Li, Z., Lu, S., Myagmar, S., and Zhou, Y. Cp-miner:
A tool for finding copy-paste and related bugs in
operating system code. In Proceedings of OSDI’04,
San Francisco, CA, 2004.

Lim, C., Singh, N., and Yajnik, S. A log mining ap-
proach to failure analysis of enterprise telephony sys-
tems. In Proceedings of DSN’08, June 2008.

Ma, S. and Hellerstein, J. L. Mining partially periodic
event patterns with unknown periods. In Proceed-
ings of ICDE’01, Washington, DC, 2001.

Makanju, A. A.O., Zincir-Heywood, A. N., and Milios,
E. E. Clustering event logs using iterative partition-
ing. In Proceedings of KDD ’09, Paris, France, 2009.

Oliner, A. and Stearley, J. What supercomputers
say: A study of five system logs. In Proceedings
of DSN’07, 2007.

Prewett, J. E. Analyzing cluster log files using log-
surfer. In Proceedings of Annual Conf. on Linux
Clusters, 2003.

Splunk. Splunk user guide. Splunk Inc., Sept 2008.

Stearley, J. Towards informatic analysis of syslogs. In
Proceedings of IEEE CLUSTER, Washington, DC,
2004.

Vaarandi, R. A data clustering algorithm for min-
ing patterns from event logs. Proceedings of IEEE
IPOM’03, 2003.

Vaarandi, R. A breadth-first algorithm for mining fre-
quent patterns from event logs. In INTELLCOMM,
volume 3283. Springer, 2004.

Wang, H. J., Platt, J. C., Chen, Y., Zhang, R., and
Wang, Y. Automatic misconfiguration troubleshoot-
ing with peerpressure. In Proceedings of OSDI’04,
San Francisco, CA, 2004.

Witten, I. H. and Frank, E. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. M. Kaufmann, 2000.

Xu, K., Zhang, Z., and Bhattacharyya, S. Profiling in-
ternet backbonetraffic: Behavior models and appli-
cations. In Proceedings of ACM SIGCOMM, 2005.

Xu, W., Huang, L., Fox, A., Patterson, D., and Jor-
dan, M. Online system problem detection by mining
patterns of console logs. In Proceedings of ICDM’09,
Miami, FL, 2009a.

Xu, W., Huang, L., Fox, A., Patterson, D., and Jor-
dan, M. Large-scale system problems detection by
mining console logs. In Proceedings of SOSP’09, Big
Sky, MT, 2009b.

Yamanishi, K. and Maruyama, Y. Dynamic syslog
mining for network failure monitoring. In Proceed-
ings of ACM KDD’05, Chicago, IL, 2005.

Ye, Y., Wang, D., Li, T., and Ye, D. IMDS: Intelligent
malware detection system. In Proceedings of ACM
KDD’07, 2007.

Zheng, A. X., Jordan, M. I., Liblit, B., Naik, M., and
Aiken, A. Statistical debugging: Simultaneous iso-
lation of multiple bugs. In Proceedings of ICML’06,
2006.

