| nvited Applications Paper

Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search
Advertising in Microsoft’s Bing Search Engine

Thore Graepel

Joaquin Quifionero Candela
Thomas Borchert

Ralf Herbrich

THOREG@MICROSOFT.COM
JOAQUINC@MICROSOFT.COM
TBORCHER@MICROSOFT.COM
RHERB @M ICROSOFT.COM

Microsoft Reseach Ltd., 7 JJ Thomson Averue, Cambridge CB3 OFB, UK

Abstract

We descibe a new Bayesian click-through rate
(CTR) prediction algorithm used for Sponsored
Seach in Microsoft’s Bing seach engine. The
algorithm is basedon a probit regesson model
that maps discreteor red-valuedinput fedures to
probabilities. It maintains Gausdan beliefs over
weights of the model and performs Gawssan
online updates derived from approximate
message pass$ng. Scalaliity of the algorithm is
ersured through a principled weight pruning
procedure ard an approximate parallel
implementation. We discuss the challenges
anising from evaluating and tuning the predctor
as part of the complex system of sporsored
seach where the predctions made by the
algorithm dedde about future training sample
compasition. Finally, we show experimental
resuts from the prodiction system and compare
to a cdibrated Naive Bayes dgorithm.

1. Introduction

Sponsored seach remains one of the most profitable
business models on the web today. It accounts for the
overwhelming majority of income for the three major
seach ergines Google, Yahoo ard Bing, ard generates
reverue of atleast25 billi on dallars' per yea ard rising.
All three major players use keyword aictions to allocae
display space alongside the algorithmic seach reailts
basedon a pay-per-click model in which advertisers are
charged only if their advertisemerts are clicked by a user.
In this mechanism it is necessary for the search engine to
estimatethe click-throughrate (CTR) of availabe ads for
a given seach query to detemine the bestallocation of
display space and appropriate payments (Edelman,
Ostovsky, & Schwarz, 2007). As a consequerce, the tak

Appeaing in Proceelings of the 27th Intemational Conference
on Madine Leaning, Haifa, Israel, 2010.Copyright 2010 byT.
Graepel, J. Quifionero Candela, T. Borchert and R. Herbrich.

! Source: eMarketer, April 2009

of CTR predction is absolutely crucial to Sponsored
Seach advertising because it impads user experience,
profitahbility of advertising ard seach ergine revenue.

Reaogrising the importance of CTR estimation for online
advertising, management at Bing/adCenter deddedto run
a competition to ertice pegle aadoss the compary to
dewelop the most accurate and scdable CTR predctor.
The algorithm descibed in this pulication tied for first
place in the first competition and won the subsequernt
competition based on predction aaccuracy. As a
consequence, it was chosen to repace Bing’s previous
CTR predction algorithm, a trarsition that was completed
in the summer of 2009

The paper makes three major contributions. First, it
describes the Sponsored Seach application scenario, the
key role of CTR predction in general, ard the particular
constraints derived from the task including accuracy,
cdibration, scdability, dynamics, and exploration.
Secad, it descibes a new Bayesian online leaming
algorithm for binary predction, subsequently referred to
as adPredictor. The algorithm is basedon a gereralised
linea model with a probit (cumulative Gausdan) link
function, a fadorising Gausgan belief distribution on the
fedure weights, and cdculates the approximate paosterior
using message passng, providing simple, closed-form
upcdate equations with auomatic feaure-wise leaming
rate adapation. Third, we discuss the techniques we
employed to make adPredctor work in Bing’s production
environment, now driving 100% Sponsored Seach traffic
with 0(10%° — 10'!) adimpressions per yea.

The paper is structured as follows. In Secton 2 we
descibe in detail how the task of CTR predction fits into
the framework of keyword auctions and which constraints
and challerges arise from the application domain of
Sponsored Seach. In Sedion 3 we descibe the online
Bayesian Probit Regesson algorithm (adPredctor) in
detail ard provide aderivation of the update equations
basedon approximate message passng in a fador graph.
In Sectim 4 we discuss how the algorithm operatesat
web scade, using accuracgy controlled pruning and an
implemertation of parallel training. In Sedion 5 we
discuss how predctions affed the compasition of future

training data, and the problem of tradng off exploration
ard exploitation. Before we conclude in Sectilm 7 we
provide experimental resuts from the live system
comparing adPredctor’s predction accuracy with that of
acdibratedNaive Bayes classifier.

2. Sponsoral Search and CTR Prediction

The Sponsored Search advertising model exploits two key
aspeds of web seach. First, the query users enter into a
seach erngine parly rewveds their intert ard can help
idertify appropriate ads to be displayed to the users.
Secand, by clicking on ads users can proceed diredly to
the advertisers’ web pages and the business value thus
gererated can easly be attributed to the web seach
ergine. The lectue nates for the Introduction to
Computational Advertising at Starford (Broder &
Josifovski, 2009 provide anexcdlent introdiction.

2.1. Keyword Auction

In pradice, the keyword auctions work as follows
(Edelman, Ostrovsky, & Schwarz, 2007). For a given
product or service advertisers identify suitable keywords
likely to be typed by users interestedin their offering. For
eah of those keywords the advertisers provide a bid
indicating the amourt of money they would be willi ng to
pay for a click. When a user types a query, the seach
erngine matchesthe keywords of all the advertisers against
the query and deddes which advertisers are eligible to
patticipate in an auction for having their ad displayed.
The seach ergine neals to allocate the availabe ad
positions to the ads in the auction and needs to detemine
aporopriate payments. This is achieved by a mecdhanism
referedto as aGeneralized Second Price (GSP) Auction.

Let us refer to the bid of advertiser i as b; ard the
probability of click (CTR) of advettiser i at the top
display position asp;. The allocaion of ads to display
positions is detemined by their so-cdled rark score p; b;,
which can be intempreted as expeded reverue for adi if
displayed in the top position®. The indicesi are chosen
according to that rarking, such that for all ads i we have:
pib; = pis1bis1- The payments c; in a GSP auction are
designedto awoid dynamic bidding behavour because the
charge per impression for adi depers on the value per
impresson of adi + 1 suchthatc; = b; 1pi41/p;-

It can be seen that the estimated click-through rate p;
plays a crucial role in detemining both allocaion ard
payments, and that it will have acrucial effed on the user
experience, the advertiser value and the general hedth
and income of the ad marketpace.

2 The cdculation o the rank score may aso involve other
criteria sich as relevance of the ad landing pege etc.

2.2. Input Feaures

We referto anad shown to a particular user in a particular
pace view asan ad impresson. One of the key questions
is the availahlity of suitable input feaures or predctor
valiables that allow aacurate CTR predction for a given
impresson (Richardson, Dominowska, & Ragno, 2007).
Thesecan generally be grouped into three categories: Ad
featuresinclude bid phrasesad title, adtext, landing page
URL, landing pace itself®, ard a hierarchy of advertiser,
account, campaign, ad group and ad Query features
include the seach keywords, possble algorithmic query
exparsion, cleaning and stemming. Context features
include display location, geagraphic location, time, user
dataand seach history.

Of course, these are only the basefeaureswhich serve as
the building blocks for more complex feaures modelling
the interadiion between ad, query and context. Thesemore
complex feaures can, eg., be constructed by taking the
Cartesin product of basefedures. As in most machine
leaming problems, constructing amd seleding good
feauresis one of the core challenges. For the leaming
algorithm one of the realting challenges is the
requiremert to be abe to hardle discrete feauresof very
different cardinalities, eg., a two-valued feaure such as
gerder and a billi on-valued feature such asuser ID.

2.3. Domain-Spedfic Challenges

2.3.1. EVALUATION

An importart quesion is how to evaluate a predctor
within the context of a given application domain. Broady
speaking, the performarce of a predctor can be evaluated
in isolation or as @ of the larger system.

To evaluate a predctor in isolation, the machine leaming
community has deweloped a number of reasonalde
measures such asthe log-likelihood of testdataunder the
model or the areaunder the reeiver-operatar (RO) curve
(AUC). In the experimental sedion we will use these
measures to evaluate adPredctor in comparison to
cdibrated Naive Bayes. However, it is clea that these
measures can only ad asa proxy for the performance of
the predctor in the larger system.

Ultimately, the predctor is part of a larger system that
sevesa purpose differert from predcting user behaviour,
namely the seledion of ads. The ad seledion system must
be designed to balarce the utilities of differert players
patticipating in the trarsaction: advettisers, users, ard the
seach engine. Thesethreetypesof players have different,
even contradctory objedives. Advertisers are interested
in maximising their retun on invegment at high volume.
Users would like to see maximally relevant ads that help

% The use only gets to see the landing page once the click has
been made. Over time, however, its qudity can impad the
perception o the advertise and rence CTR.

them pursue their intent. The search engine would like to
maxi mise revenue ard growth.

Intemally, these conflicting goals are mapped to differert
key performarce indicatas (KPIs) that are used to tune
the ad seledion system. However, these KPIs are
influenced by a large number of other subsystems such as
fraud detedion, query exparsion, keyword-query
matding, etc. Furthemore, there are a large number of
parametess influencing the KPIs including resewe prices
ard rark-score parametess. Sg, while the ultimatetest of a
CTR predctor lies in its performance as part of the ad
seledion system, in a moduar architectue it is often best
to idertify isolated performance measures asproxies for
in-system performance.

2.3.2. DYNAMICSAND EXPLORATION

The Web itself and the behavour of pegple on the webis
by no means static and it i s therefre necessary to devise a
dynamic CTR predctor which is ade to tradk charges in
CTR over time. Such changes can be the realt of
seasonal varation, gradual charges in taste or interest,
chargesin web contert, econamic conditions etc. Online
algorithms are patticularly suitedto the task because they
can adap to the dynamics of the impresson-click
sequerce. Batch leaming algorithms can be trained on
windows shifted over the time series.

While the predction of CTR is es@ntially an inference
problem, the performance of the ad seledion system will
be measured in termms of the dedsions made. Moreover,
since the CTR estimates of the CTR predctor are usedto
seled ads for display through the keyword auction, the
output of the CTR predctor effedively detemines he ads
presenm in its future training sample. Hence the ad
seledion mechanism must somehow address the
exploration/exploitation trade-off (Sutton & Barto, 1998):
Gredaly ad seledion according to CTR will reslt in a
locdly optimal seledion padlicy that ignoresthe long-tem
berefits of exploring the full ad inventory.

2.3.3. COMPUTATIONAL COST AND SCALE

The dlobal business of Sponsored Seach has vast
propations (Broder & Josifovski, 2009. There are
milli ons of different ads that need to be stored curated
updated ard indexed There are billi ons of users whose
behavour needs to be tradked in aacordance with their
privacy prefererces. Many 10s of millions of ad
impressons per hou neal to be served with accetable
respnse timesbelow 100ms per request and many more
are evaluated In addition, with each requed requiring
considerable CPU time and data residng in RAM, thereis
asignificant cost asociated with runring the business

For the taskof CTR predction this means that we require
a fast, parallelisade leaming algorithm that yields a
predctor with low computational costs. The training
algorithm needs to be ale to hardle feauresthat can take

potertially hillions of different values,and it must be able
to hardle highly correlatad input feaures as might be
presen in the nodes of the ad hierarchy (advettiser,
account, campaign, etc) Furthemmore, the predction
algorithm itself needs to have a bounded memory
footprint in RAM to be abe to run continuowsly in the
prodiction system.

3. Online Bayesan Probit Regression

The new algorithm preserted here is a gereral Bayesian
online leaming algorithm for the predction of binary
outcomes. However, in the context of this paper, we wil |
use terminology related to the taskof CTR predction.

3.1. Task and Notation

We aim to leam a mapping X — [0,1] where X derotes
the set of ad impressons as represetted by their fegure
desciptions, and the interval [0,1] represetts the set of
posdgble CTRs (probahilities of click). In this application,
we consider the case of impressons that are descibed by
N discrete multi-valued fedures, with fedure i€
{1, ..., N} taking M; different values.To simplify notation
we represent that collection of feaures for a given
impresson in tems of a sparse binary fedure vedor
x:= (x, ... x})T where each vedor x; represetts a binary
1-in-N encdaling of the correspndng discrete fedure
value such that each vedor x; has exadly one element
with value 1 ard the remaining values 0, i.e. for all
i€efl,..,N}wehaweyx;; € {0,1} ard

M;

Xi1
xi:=< : >, in,j=1)
xi,Mi j=1

For notational converience, we will dencte the outcome
or label click/nonclick by y € {—1,+1} where —1
represens anon-click, and +1 represens aclick.

3.2. Probability M odel and Factor Graph

Our starting point is a generalised linea model with a
probit link function. The sanpling distribution of this
model is given by.

T
p(y|x,w):=a><y ;”))

Here () :=['_N(s;0,1)ds is the standardized
cumulative Gaussan dersity (probit function) which
seves asthe inverse link function mapping the output of
the linea model in [—oo,] to [0,1]. The parameter 8
scdes he steepessof the inverse link function.

In order to arrive at a Bayesian online leaming algorithm
we postulate a fadorising Gaussan prior distribution over
the weights of the model:

Figure 1: Factor graph model of Bayesian probit regression
with message flow. Only active weights are shown.

N M
pw) = 1_[HN(Wi,j;Hi,j' at’y) 3)
=1 j=1
Given the sampling distribution p(y|x, w) and the prior
p(w) it remains to calculate the posterior.

p(wlx, y) < p(y|x,w) - p(w) 4)

The exact posterior over weights w can neither be
represented compactly nor calculated in closed form. We
therefore resort to approximate message passing. In order
to bring out the full factorial structure of the likelihood,
we introduce two latent variables s,t, and consider the
equivalent joint density function p(y,t,s,w|x) which
factorises as

p(y1t)-p(t]s) plslx,w)-pw) (5
This distribution can be understood in terms of the
following generative process, which is also reflected in
the factor graph in Figure 1.

e Factors f;: Sample weights w from the Gaussian
prior p(w).

¢ Factor g: Calculate the score s for X as the inner
product w” x, such that p(s|x, w): = §(s = wx).

¢ Factor h: Add zero-mean Gaussian noise to obtain t
from s, such that p(t|s): = N (t; s, B2).

e Factor q: Determine y by a threshold on the noisy
score t at zero, such that p(y|t): = §(y = sign(t)).

3.3. Inference

The factor graph in Figure 1 allows us to break down the
computation of the posterior over weights w into local

computations referred to as messages (Kschischang, Frey,
& Loeliger, 2001). In fact, since the exact posterior
calculation is intractable, we maintain an approximation
of the posterior in the same family of distributions as the
prior (3). The approximate message passing algorithm
used is expectation propagation (Minka, 2001) in the
mode of assumed Gaussian density filtering.

There are two inference tasks corresponding to two types
of marginal distributions to be computed on the factor
graph in Figure 1.

e Given training example (x,y) and prior p(w), infer
the new posterior p(w|x,y) (upward messages).

¢ Given posterior p(w|x, y) and feature vector x infer
predictive distribution p(y|x) (downward messages).

We represent the Gaussian beliefs over weights w by
sparse vectors only storing values different from the prior.

T
¢ A vector of means N := (“1,1' e uN,MN)

. T
e A vector of variances 62 = (0%,1, e G%rMN) .

We will not provide a detailed derivation of the inference
equations because adPredictor can be seen as a special
case of the TrueSkill™ rating algorithm for games
(Herbrich, Minka, & Graepel, 2007). The input feature
vector in adPredictor corresponds to a team of players,
with each active weight in adPredictor corresponding to
the skill of a player in the team. Inference on the weights
in adPredictor is equivalent to inference on the player
skills in TrueSkill after a hypothetical match against a
team with known skill of zero. Given the factor graph in
Figure 1 together with Table 1 in the above paper the
update equations can be derived.

3.3.1. UPDATE EQUATIONS FOR ONLINE LEARNING

The update equations represent a mapping from prior to
posterior parameter values based on input-output
pairs (u,6%,x,y) = (f,5%). In terms of Figure 1, the
calculation can viewed as following the message passing
schedule towards the weights w. We define the total
variance for a given input x as

2% = p? + x"g? (6)
The update for the posterior parameters is given by:

. O—i?j y-x'u
Hij = Hij +YX;) VTS 7

o y-x'u
~2 2 L]
O—i,j «— O—i’j’ [1—9(1’] ’2_2’W< 3 >]. (8)

The functions v and w (see also Figure 2) are given by

N(t;0,1)
v = oD
About these update equations. i) The amount of change
depends on how “surprising” the observation is. For
example, in the regime y- xTu < 0 the function v(-)
grows almost linearly. ii) The amount of change is
proportional to the variance 651- relative to all other active
weight beliefs. Hence afj /2 is a weight-specific learning
rate and weights with low variance act as an “anchor”. iii)
Every observation leads to a reduction in variance, and
positive examples increase the means of active weights
whereas negative examples decreases them.

w(t) =v() - [v@®) +t]. ©)

These update equations lead to a natural online learning
algorithm in which the parameters of the prior weight
distribution (g, 6%) are initialised to reflect any prior
information (such as historical average CTR). For the first
training example (x,y), the posterior parameters (i, %)
are calculated. After that, the previously obtained
posterior is used as the prior for the next update, i.e.,

u < ji and 0% < &%,

3.3.2. PREDICTIVE DISTRIBUTION

The prediction equation represents a mapping from a set
of posterior parameters and an input x to a predictive
distribution over y, (i, 6%,x) = p(¥). In terms of Figure
1, the calculation can viewed as following the message
passing schedule towards the factor ¢ which encompasses
the label y. Alternatively, given equations (2) and (3) the
predictive distribution can be derived as the integral:

p(ylx) = f f pOlx,w) - pw) dw. (10)

This can be solved exactly and in closed form to give:
y-x'p
r(ylx) Z(I)(T) Y

Comparing this expression to the sampling distribution
(2) shows that the additional variance from the posterior
over the active weights has the effect of pushing the
predictive probability towards 0.5, and hence to increase
its binary entropy. In the limiting case of zero variance on
the weights, the sampling distribution (2) is recovered.

3.3.3.

So far the model assumes a stationary data
distribution p(y|x) and hence in the limit of infinitely
many observations the variances ¢? would converge
towards zero and learning would come to a halt. We have
investigated models of dynamics that can account for
changes in the environment.

DyNAMICS

The simplest approach uses the idea of a Kalman filter
with covariance 21 per unit time on the weight vectors

~
w0

--v(t)
—w(t)

v(t) and w(t)

Figure 2: Plot of learning step size functions v(-) (for the mean
update) and w(-) (for the variance update). The function w is the
negative first derivative of v.

leading to an effective dynamics correction at each time
step according to

The dynamics model above is unsatisfactory in that the
variance of the posterior of a weight that is rarely active
can grow larger than the prior variance. As a consequence
the corresponding feature can become a “dark horse” and
can receive very large updates if it becomes active for a
surprising training example.

We devised an alternative model of dynamics which
converges back to the prior rather than to the uniform
distribution in the limit of zero data and infinite time. It is
based on the idea of gradually forgetting the influence for
past data D = (xy,¥), ..., (xp, y7). In the IID case, the
posterior distribution p(w|D) is the product of the prior
p(w) and the product of likelihood
terms [T7_; p((x;, y,|W). Suppose now that per unit time
the likelihood of the data seen so far is subjected to a
noise process with parameter £ << 1 decreasing its
influence on the posterior:

T 1-¢
pwiD) o [[pGoyw)| pw. 03
In the case of Gaussian message passing it is possible to
store the prior p(w) in terms of its parameters p,, 63 and
recover the approximate likelihood from the approximate
posterior using Bayes’ rule, yielding the following
dynamics corrections:

2 2
O—O . .O'. .
6 = R (14)
- (1- G)Uo,i,j + €0

Wi j Ho,ij

~ 2 o] oL
fli; =67 (1—6)7+6 7| (15)

i,j 0,,j

In the limit of zero data and infinite time, this dynamics
converges back towards the prior.

0.000012 -
0.000010 A ® SB-5
® sB-4
0.000008 - @® SB-3 ®
g ML-4
s ® SB-2
& 0.000006 - ® <51
8 i ® ML-3
0.000004 - ® ML2
0.000002 A ® ML-1
0.000000 . ‘ . ‘
3 -1 1 3 5

Mean

Figure 3: Scatter plot of the means and variances of the display
position feature bag. ML refers to mainline, SB to sidebar (also
known as right rail).

Computationally, the dynamics updates for both cases can
be delayed and applied cumulatively at the next data-
driven update of the respective weight component.

4. Web Scale Implementation

4.1. Model Size and Pruning

In order for a large scale predictive model to be deployed
in practice it is necessary to limit its memory footprint.
Due to the sparse encoding of features, adPredictor’s
complexity (and hence memory footprint) very much
depends on the support of the input distribution. For
example a user ID feature might allow for, say, six billion
different values, but the number of weights that differ
from the prior would only correspond to those user IDs
that have actually been observed in the training sample,
and it is only those weights that require explicit memory.

Due to the heavy-tailed nature of the distribution of items
observed on the web such as users, queries, ads etc., the
model’s complexity grows with the number of training
examples used. On the one hand it is necessary to track
each newly discovered feature value in case it will
reappear frequently. On the other hand, many of those
values will only re-occur very rarely and the model
should thus not waste memory on them. We have
therefore devised a pruning criterion that allows model
compression without losing much prediction accuracy.

The criterion for pruning a particular weight (i.e.,
resetting its parameters to the prior) is based on the
influence that weight has on the prediction of a
completely unknown input x, with that feature value on.
We assume that the prior parameters are constant within
feature bags but may differ across, Vj: (Ho,i,jta()z,i,j) =
(Ho,i‘ffg,i)- Then the pruning criterion is given by the
Kullback-Leibler divergence between two Bernoulli
variables with success probabilities corresponding to the

10 -
09 -
08 -
07 -

806 -

505 -

S04 - .

03 1 Lo

0.1 + - P
0‘0 . % '- t. * . ; ; e .
-10 -5 0 5 10
Mean

Figure 4: Scatter plot of means and variances of weights for user
ID feature bag. The peak of the triangle represents the prior.

predictions using the prior and posterior weight
distributions, respectively. For weight w,, ; we have:

KL <1>< Y1 Mo > q>< Vi Ho,i + My >
B*+ X105 B* + Xk 06; + 0
In other words, if changing the weight parameters from

posterior to prior does not make a noticeable difference,
the weight can be pruned.

4.2. Parallel Training

The process of prediction is inherently parallelisable: load
the model parameters on the set of machines and predict
in parallel. Training is more problematic because the
adPredictor algorithm is inherently an online learning
algorithm where learning from the next example builds on
what has been learnt from the previous examples.

Nonetheless, an elegant parallel version of the learning
algorithm can be devised based on the message passing
formulation from the previous section. We consider the
case of data-parallelism (Chu, et al., 2007) where training
examples can be distributed across compute nodes.
Clearly, off-the-shelf parallelisation using locks on shared
memory will be inefficient for low-cardinality features
that will be active in many training examples.

The idea is to construct a new distributed factor graph that
is formally equivalent to the full factor graph that includes
all the training examples as factors connected to the
weights, i.e., replicating the structure below the weights in
Figure 1 for each training example. The online learning
algorithm from Section 3 can be viewed as a particular
message passing schedule in this graph where each
training example is taken in turn, receiving one message
from the prior and sending one message back towards the
weights. The new distributed factor graph has replicated
weight variables on each compute node, which are
connected to a master instance of the weight variables.

The parallel version of the algorithm can now be viewed
as a message passing schedule on this new, distributed

factor graph. The simplest instance sends down the prior
message from the head node to the compute nodes, each
of which runs the online learning algorithm from Section
3, then sends messages back from its weight variables to
the master weight variables, which accumulate the results
from all the compute nodes.

5. Closing the Loop

One of the most intriguing aspects of integrating a CTR
prediction algorithm into a complex ad delivery system is
the dynamic feedback loop thus created: The algorithm’s
predictions influence the selection of ads to be shown and
hence determine the future composition of the training
sample for the algorithm. This appears to be a rather
general phenomenon, and a similar phenomenon has been
described in (Herbrich, Minka, & Graepel, 2007) for the
TrueSkill rating system.

One problem caused by this feedback loop is that
prediction becomes harder if the algorithm predicts
successfully and leads to the selection of ads with higher
CTR: Typical CTRs are below 50% and hence increasing
CTR leads to higher source entropy (17), an effect which
could lead to the misconception that the performance of
the algorithm is degrading over time.

The second problem is the trade-off between exploration
and exploitation. In order to be able to estimate the CTR
of a new ad, it is necessary to present the ad to users and
observe their click/non-click response. At the same time it
is in the interest of everyone involved to show high-CTR
ads to the user based on what is already known. The
exploration problem can be addressed by exploiting the
fact that adPredictor maintains uncertainty about the
weights w, and hence about the CTR of any particular ad
impression x. Instead of always feeding the expected
CTR to the ad auction, the system can sample from the
posterior weight distribution p(w|D) when evaluating the
prediction using (2), an idea that goes back to Thompson
(Thompson, 1933). This has the effect of bubbling up ads
about whose CTR the system has a high degree of
uncertainty left.

6. Numerical Results

6.1. Posterior Weight Parameters

In order to illustrate the kind of results obtained from
training on the production system, consider scatter plots
of posterior weight parameters.

Figure 3 shows a scatter plot for the display position
feature which takes nine different values. Each dot
represents the posterior mean and variance of one of the
feature weights. The mainline (ML) weights have higher
means than the right-rail or sidebar (SB) weights as would
be expected from the page layout. Also, the variances for

O Naive Bayes @ adPredictor

E 00
o
Y . o000 808 anpu o <
- YT A oot 1
@ 0% . Lo° 100%
o 00
~.0.100 o
(-3 L e0°
G 00"
=}
a.0.010 0
D
w
0.001
Pred. CTR

Figure 5: Calibration plot of Naive Bayes (NB) and adPredictor
before calibration. NB is ill-calibrated by orders of magnitude
for small CTR.

the positions that are more frequently observed and have
higher CTR on average are lower.

Figure 4 shows a scatter plot for a feature representing
user ID. This is an extremely high cardinality feature and
as a consequence, the residual variance is much higher.
Note that the top of the triangle laid out by the dots
corresponds to the weight prior. Dots further down and
out correspond to feature values that have been frequently
observed and have therefore moved away from the prior.
Extreme outliers to the right can be considered bots.

6.2. Comparison with Naive Bayes

We now present an evaluation of the predictive
performance of adPredictor. We focus on a natural
alternative for web-scale classification: the Naive Bayes
(NB) classifier (Hand & Yu, 2001). The training for NB is
extremely light-weight and only requires counting feature
values conditional on the label, a process that can easily
be parallelised. However, NB makes the strong
assumption that the feature values are independent of each
other given the label and hence tends to be non-calibrated.
We therefore used isotonic regression (Zadrozny & Elkan,
2001) to calibrate NB. We evaluate the algorithms along
three dimensions: prediction accuracy, calibration, and
ranking. The training sample consists of a stream of ad
impressions together with a click/non-click label extracted
from 14 days of production data. The subsequent day is
split into two subsamples, one of which is used for the
calibration using isotonic regression, the other half is used
for testing. We cannot disclose the exact feature set used
to represent the impressions, but refer the reader to the
general discussion of features in Subsection 2.2.

The empirical cross entropy or log-score is given by

T
1
CE =2 yilog + (1= y)log(l =p). (16
t=1
We measure the prediction accuracy in terms of relative
information gain (RIG) on a test set. Given the empirical
CTR of the data, p:=Yi_,y:/T we define the
information gain as IG := CE + H(p) where H is the
entropy defined by

H({p) = —-(plogp+ (1 —=p)log(l —p)). (17)

60%

50% [Naive Bayes

40% m adPredictor

30%

20%

10% |

0% Ill.--- II lI---ih}\h\.r.n.-...-lif.‘_mk,m,-
0% 100%

Probability Of Click

Figure 6: Histogram over impressions of predicted probabilities
for calibrated Naive Bayes and adPredictor. Clearly adPredictor
makes more spread-out and hence more informative predictions.

We define the relative information gain as the
ratio RIG = 1G/H(p) . Since H(p) is the maximally
attainable value of /G it quantifies the information gain
relative to the source entropy.

To quantify the quality of the ranking that results from
ordering the test examples according to the predicted
probability, we also compare the algorithms’ areas under
the RO curve (AUC).

Algorithm RIG AUC

adPredictor 61.24% 95.6%
adPredictor (calibrated) 61.35% 95.6%
Naive Bayes -41.54% | 89.4%
Naive Bayes (calibrated) 33.86% 89.3%

It can be seen that in terms of RIG, adPredictor has a clear
edge on NB, which performs worse than the grand
average CTR predictor, but can gain if calibrated. In
terms of AUC, adPredictor is clearly superior to NB, and
calibration does not make a difference.

Results for the calibration of adPredictor and Naive Bayes
can be seen in Figure 5 and Figure 6. Impressions have
been grouped according to predicted CTR and the vertical
axis shows the ratio of empirical versus predicted CTR on
a log scale with bubble size indicating number of
impressions. Figure 5 shows how un-calibrated NB is in
comparison to adPredictor. After calibration by isotonic
regression, it can be seen in the histogram of Figure 6
that adPredictor—with its prediction spread out further—
makes much more informative predictions than NB.

7. Conclusions and Future Work

We presented adPredictor, a simple, powerful Bayesian
online learning algorithm used for CTR prediction in
Bing’s Sponsored Search advertising. We are currently
exploring its use for related tasks within Bing including
organic search, display and contextual advertising, based
on other target signals such as conversion. We are also
investigating the use of alternative models, such as the
feature-based collaborative filtering method Matchbox
(Stern, Herbrich, & Graepel, 2009) for personalisation.

Acknowledgements

We would like to thank Guy Dassa, Ewa Dominowska,
Oleg Isakov, Deepak Pawar, Siddhartha Sinha, Jill
Goldschneider, Patrice Simard, and many others in
adCenter without whom this work would not have been
possible. We would also like to thank Onno Zoeter, Tom
Minka, Anton Schwaighofer and David Stern.

References

Agarwal, D., & Chen, B.-C. (2009). Regression based
Latent Factor Models. ACM SIGKDD Conference on
Knowledge Discovery and Data Mining.

Broder, A., & Josifovski, V. (2009). Lecture Introduction
to Computational Advertising. Stanford University,
Computer Science. Online Lecture Notes.

Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G.,
Ng, A. Y., et al. (2007). Map-Reduce for Machine
Learning on Multicore. Neural Information
Processing Systems (NIPS) 19 .

Edelman, B., Ostrovsky, M., & Schwarz, M. (2007).
Internet Advertising and the Generalized Second Price
Auction: Selling Billions of Dollars Worth of
Keywords. American Econ. Rev., 97(1), 242-259.

Hand, D. J., & Yu, K. (2001). Idiot's Bayes - Not so
stupid after all? International Statistical Review,
69(3), 385-398.

Herbrich, R., Minka, T., & Graepel, T. (2007). TrueSkill:
A Bayesian Skill Rating System. Advances in Neural
Information Processing Systems 20 (pp. 569-576). The
MIT Press.

Kschischang, F., Frey, B. J., & Loeliger, H.-A. (2001).
Factor Graphs and the Sum-Product Algorithm. IEEE
Transactions on Information Theory, 47, 498--519.

Minka, T. (2001). A family of algorithms for approximate
Bayesian inference. PhD thesis, MIT, CSAIL.

Richardson, M., Dominowska, E., & Ragno, R. (2007).
Predicting Clicks: Estimating the Click-Through Rate
for New Ads. World Wide Web (WWW) conference,
(pp. 521-529).

Stern, D., Herbrich, R., & Graepel, T. (2009). Matchbox:
Large Scale Bayesian Online Recommendations.
World Wide Web (WWW) conference.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
Learning - An Introduction. MIT Press.

Thompson, W. R. (1933). On the likelihood that one
unknown exceeds another in view of the evidence of
two samples. Biometrika, 25, 285-294.

Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated
probability estimates from decision trees and naive

Bayes classifiers. [International Conference on
Machine Learning (ICML), (pp. 609-616).

