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Abstract

We consider the problem of computing the Eu-
clidean projection of a vector of length n onto
a closed convex set including the ¢; bal and
the specialized polyhedra employed in (Shalev-
Shwartz & Singer, 2006). These problems have
played building block rolesin solving several /-
norm based sparse learning problems. Existing
methods have a worst-case time complexity of
O(nlogn). In this paper, we propose to cast
both Euclidean projections as root finding prob-
lems associated with specific auxiliary functions,
which can be solved in linear time via bisec-
tion. We further make use of the special struc-
ture of the auxiliary functions, and propose an
improved bisection algorithm. Empirical stud-
ies demonstrate that the proposed algorithms are
much more efficient than the competing ones for
computing the projections.

1. Introduction

The Euclidean projection of a vector v € R™ onto a set
G C R™ isdefined as:

1
ma(v) = argmin =[x — v, @

where ||.|| is the Euclidean (¢2) norm. Since the objective
functionin (1) is strictly convex, its solutionisuniquefor a
closed and convex set G. Whenthe set G issimple, e.g., the
hyperplane, the halfspace, and the rectangle, the problem
in (1) has an analytical solution (Boyd & Vandenberghe,
2004). However, for a general closed and convex set G,
the problem in (1) does not admit an analytical solution.
For example, when G is ageneral polyhedra, (1) leadsto a
Quadratic Programming problem.

In this paper, we address the problem of computing the Eu-
clidean projection onto the following two closed and con-
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Figure 1. lllustration of the set G in the three dimension case
(p = 2,n = 3). G2 istheregion that is bounded by the following
three lines. 1) 71 = 0,72 = z; 2) T2 = 0,71 = z; and 3J)
xr = C,fl +7To=0C.

vex sets: (see Fig. 1 for anillustration of G5):

Gi = {xeR"|x|: <z}, 2
G2 = {x=(Xx) eR"XeR xeR"7|
x>0,x>0, %[ =[x <C}, (3

where ||.||; denotes the ¢; norm, and z > 0 and C' > 0
denote the radiuses of the ||.||1 balls. These two Euclidean
projections have played building block rolesin solving sev-
eral ¢;-norm based sparse learning problems (Tibshirani,
1996; Koh et a., 2007; Ng, 2004; Duchi et a., 2008;
Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2007).

The Euclidean projection onto the ¢, ball (G1) can be ap-
plied to solvethe ¢, ball constrained learning problem:

loss(x), 4

min
x:[x[1<z
where loss(.) is a given convex loss function. For exam-
ple, setting loss(.) to the least squares loss leads to the
well-known Lasso problem (Tibshirani, 1996); and setting
loss(.) to theempirical logistic lossleadsto the ¢4 ball con-
strained logistic regression problem (Koh et a., 2007).

The use of the ¢; ball constraint (or equivalently the ¢
norm regularization) results in sparse solutions and em-
pirical success in various applications (Candes & Wakin,
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2008; Donoho, 2006; Ng, 2004; Koh et a., 2007; Shalev-
Shwartz & Srebro, 2008; Tibshirani, 1996). To solve
(4) in the large-scale scenario, one may rely on the first-
order methods—those using at each iteration function val-
ues and (sub)gradients only. Well-known first-order meth-
ods include subgradient descent, gradient descent, and
Nesterov’s optimal method (Nesterov, 2003; Nemirovski,
1994). When applied to solve (4), one key building block
is the Euclidean projection onto the £, ball. Duchi et al.
(2008) proposed two algorithmsfor solving this projection.
The first algorithm is motivated by the work of (Shalev-
Shwartz & Singer, 2006; Shalev-Shwartz, 2007), and it
works by sorting the elements of the vector, and then ob-
taining the projection by thresholding. The resulting al-
gorithm has a time complexity of O(nlogn). The second
algorithm is based a modification of the randomized me-
dian finding algorithm (Cormen et al., 2001), and it has an
expected (not the worst-case) time complexity of O(n).

The Euclidean projection onto the specialized polyhedra
G was studied in (Shalev-Shwartz & Singer, 2006) in the
context of learning to rank labels from a feedback graph.
Shalev-Shwartz and Singer (2006) reformulated their pro-
posed model as a Quadratic Programming problem sub-
ject to a set of affine constraints, in which the projection
onto G+ is akey building block. To solve this projection,
Shalev-Shwartz and Singer (2006) proposed to first sort the
elements of the vectors v and v, then solve a piecewise
quadratic minimization problem, and finally obtain the so-
lution by thresholding. The resulting agorithm has atime
complexity of O(n logn).

In this paper, we proposeto cast both Euclidean projections
as root finding problems associated with specific auxiliary
functions. Based on such reformulations, we propose to
solve both problems using bisection, which has a (worst-
case) linear time complexity. We further make use of the
special structure of the auxiliary functions, and propose an
improved bisection algorithm. Empirical studies demon-
strate the efficiency of the proposed algorithmsin compar-
ison with existing agorithms.

Notation: Vectors are denoted by lower case bold face
letters, e.g., x € R”™ is an n-dimensional vector. The i-th
element of x is denoted by x;. ||.|| denotes the Euclidean
(¢2) norm, and ||.||1 denotesthe ¢; norm.

Organization: We cast both Euclidean projections as root
finding problems in Section 2, propose efficient projection
algorithms in Section 3, report empirical results in Sec-
tion 4, and conclude this paper in Section 5.

2. Reformulation as Root Finding Problems

In this section, we reformulate both Euclidean projections
as root finding problems using the L agrangian technique.

2.1. Projection onto the ¢, Ball

The problem of Euclidean projections onto the ¢, ball G,
can be formally defined as:

@, (V) = arg min
x:[x[1<z

1
SIx=vI2©)

Introducing the Lagrangian variable \ for the constraint
l|x|]1 < z, we can write the Lagrangian of (5) as

1
L, A) = g llx = VI + Allxlh = 2).

Let x* be the primal optimal point, and A* be the dual op-
timal point. The primal and dual optimal points x* and
A* should satisfy ||x*||; < z and A* > 0. Moreover, the
£1 ball constraint in (5) satisfies Slater’s condition (Boyd
& Vandenberghe, 2004, Section 5.2.3) since ||0]|; < =z.
Therefore, strong duality holds, the primal and dual optimal
values are equal, and we have the complementary slackness
condition:

N (x 1 — =) = 0. ©)

We show how to computethe primal optimal point x* when
the dual optimal point A* is known. x* isthe optimal solu-
tion to the following problem:

x* = argmin L(x, A*). @)

The problem in (7) has a unique solution, since L(.,.) is
strictly convex in the first argument. Since the variablesin
(7) are decoupled, we have

1
xq* = argmin 5(1’1 — 'Ui)Q + A*(|xl| - Z)’

which leadsto
x} = sgn(v;) max(|v;| — A*,0), (8)

(2

where sgn(¢) is the signum function: if ¢ > 0, sgn(t) = 1;
ift <0,s0n(t) = —1;andif ¢ = 0, sgn(¢) = 0.

Our methodology for solving the problem (5) is to first
solve the dual optimal point A*, with which we can obtain
the primal optimal point x* based on (8). We consider the
followingtwo cases: || v|1 < zand ||v]|y > z. Weshow in
thefollowing lemmacthat for thefirst case, we have A* = 0:

Lemmal If ||v]|; < z, then the dual optimal point \* is
zero and the primal optimal point x* isgiven by x* = v.

Proof: We first prove A* = 0 by contradiction. Assume
that A* > 0. It follows from (8) that

x*[l1 < 2,

thus \*(||x*||1 — z) # 0, which contradicts with the com-
plementary slackness condition in (6). Therefore, A\* = 0.
It followsfrom (8) that x* = v. O
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Next, we focus on the case when ||v||; > z. We show that
A* can be obtained by computing the root of an auxiliary
function, as summarized in the following theorem:

Theorem 1 If ||v||; > z, then the dual optimal point A\* is
positive, and A* is given by the unique root of

A) = Zmax(|vi| —A0)—z. 9)
i=1

Proof: We first prove that the auxiliary function f(.) hasa
unique root, and then provethat A* > 0 istheroot of f(.).

Denote the maximal absolute element in v by v ax, that is,
Umax = max; |v;|. Itisclear that for any i, max(|v;|— A, 0)
is continuous and monotonically decreasing in (—oo, +00)
with respect to ), and strictly decreasing in (—oo, |v]].
Thus, f(.) is continuous and monotonically decreasing in
(—o0, +00), and strictly decreasing in (—oo, Uimax]. From
(9), wehave f(0) > 0 (since||v|1 > 2), f(Vmax — 2) > 0,
and f(vmax) = —2z < 0. According to the Intermediate
Value Theorem, f(.) hasauniqueroot lying in the interval
[max(0, Vmax — 2); Umax)-

Next, consider the dual optimal point \*. First, we show
that \* must be positive. Otherwise, if A* = 0, we have
x* = v from (8), and ||x*||1 = ||v|1 > z, which contra-
dictswith ||x*||1 < z. It follows from the complementary
slackness condition in (6) that |x*||; = z. Following (8),
we have f(A*) = 0. O

2.2. Projection onto the Specialized Polyhedra

The Euclidean projection onto the speciaized polyhedra
G5 can beformally defined as:

1 1
reu(v) =argmin {51% -9+ glx- vl |

st. X>0,x>0,Xe=x'e<C

- (10)
wherev = (v, v),X,v,e € RP, x,v,e € R" P, and the

elementsof eand e are dl 1's.

Introducing the Lagrangian variables A, u, v and n for the
constraints x’e = x’e,Xx > 0,x > 0 andx’e < C,
respectively, we can write the Lagrangian of (10) as
= Lo 2, 1 2
L(X,X,)\,}L,V) :§||X - V” + 5”5 - X” +
AxTe—x"Te)tnx'e—-C)— u'x—vix.
Let x* = (X*,x*) bethe prima optimal point, and A*, p*,
v* and n* be the dual optimal points. It is easy to verify
that the objective function in (10) is convex and differen-
tiable, and the constraint functions are differentiable, thus
the duality gap is zero, and any pointsthat satisfy the KKT

conditions are primal and dua optimal (Boyd & Vanden-
berghe, 2004, Chapter 5.5.3).

The KKT conditionsfor (10) are given by

ff>0_*__'—>\*—77*+ufa (11)
2> 0,25 = v + A+ ], 12
>Ou7*a:*—01/ >O,1/jxj—0 (13)

> o,n*(ZE: -0) = 0725: <c, (19
=1 3

27-

ypandj=1,2,....,n—p.

s
3
|

(15)

HM

forali=1,2,...

We show in the following lemma that the KKT condi-
tions (11-15) can be simplified:

Lemma 2 The conditionsin (11-13) are equivalent to:

= A =17, 0), (16)
= max(y; + A%, ) a7)

T = max(7;
*
J

8 8l
S

Proof: First, we show that if (11-13) hold, then (16-17)
hold. If 7, — A* — n* > 0, we have T} > 0 from (11),
ur = 0from(13), andthusz; = v, —A\*—n* by using (11);
if 7, —\* —n* < 0,wehavez; = 0, becauseif z; > 0, we
have u7 > 0 from (11), and z; = 0 from (13), leading to
a contradiction. Therefore, (16) holds. Following similar
arguments, we can obtain (17).

Next, we assume (16-17) hold. By constructing u} = Z; —
(Ui = A —n*) and v} = x5 — (v; + A*), we can verify that
(12-13) hald. O

Based on Lemma 2, the KKT conditions (11-15) can be
simplified as (14-17). In the following discussions, we fo-
cus on computing the primal and dual optimal points by the
simplified KKT conditions. We define the following three
auxiliary functions:

7\ = Zmax T — \,0) — C, (18)
g\ = Zmax(yj—l—/\,())—c, (19)
gA) = g —g(N). (20)

Using similar arguments as in the proof of Theorem 1, we
obtain the following properties of these functions:

Lemma 3 Denote Upmax = max; v; and v, ,, = max; v

i
i) g(.) is continuous and monotonically decreasing in
(—00, +00), and strictly decreasing in (— oo, Umax|;
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ii) Theroot of g(.) isuniqueand liesin [Umax — C, Umax);

iii) g(.) is continuous and monotonically increasing in
(—00, +00), and strictly increasing in [—v,, ., +00);

iv) Theroot of g(.) isuniqueand liesin (—v
Cl;

V) g(.) is continuous and monotonically decreasing in
(=00, 400), and gtrictly increasing in both (—oo, Tmax]
a'nd [ —maxv +OO)

Umax’ ~Umax +

vi) g(.) has at leat one root. Moreover, if U > —
then the root of ¢(.) isuniqueand liesin (—uv

max’

max) UIII&X)

We summarize the main results of this section in the fol-
lowing theorem:

Theorem 2 Denote the unique roots of g(.) and g(.) by A
and ), respectively.
i) If X > )\, then by setting \* = )\, n* = X — )\, and

the primal points according to (16) and (17), the simplified
KKT conditions hold;

ii) If X < ), then by settingn* = 0, \* asaroot of ¢(.), and
the primal points according to (16) and (17), the simplified
KKT conditionshold. Moreover, if Upax > — then \*
is the uniqueroot of g(.); and if Timax < —,0. then A*
can be any element in [Umax, —Umax), @nd meanwhile the
primal optimal point x* is a zero vector.

max'

Proof: In both cases, (16) and (17) hold, so we only need
to verify the conditionsin (14) and (15).

We first provei). Since A and ) are the roots of g(.) and
g(.), respectively, we have g(A) = 0 and g()) = 0. Since
weset \* = dandn* = X — )\, wehave \* + 7 = ),
and g(\* + n*) = 0. It follows from (16) and (18) that
>oi— T = C. Similarly, we can verify that 377" af =
C. Therefore (15) holds. Sincen* = A — )\ > 0 due to
2>, and X" 7 = C, we verify (14).

Next, we proveii). Wefirst show that A\* € (X, \). Accord-
ing to the second property in Lemma3, we have A < & pax;
similarly, we have A > —v,,.., according to the fourth
property in Lemma 3. From the first property in Lemma 3,
g(.) is strictly decreasing in (—oo, Tmax] @ahd monotoni-
cally decreasing in (—oo, +00), thus

g(A) <g(}) =0. (21)
Similarly, from the third property in Lemma 3, we have
g(\) <gd)=0. (22)

It follows from (20), (21), and (22) that

gN) =7g(A) —g(N) >0, g(d) =7(2) — g(A) <0.

Since ¢(.) is continuous and monotonically decreasing (see
the fifth property in Lemma 3), we have \* € (X, \). Fol-
lowing the similar arguments for obtaining (21), we have
g(\*) < 0. Since we set n* = 0, we have )" 77 =
P max(7; — A%, 0) = g(A*) + C < C by using (16)
and (18). Therefore, (14) holds. It follows from (16-20)
together with g(A*) = 0 and n* = 0 that (15) holds.

From the sixth property in Lemma 3, the root of g(.) is
unique, if Tmax > —Vpax: If Tmax < —Up.. then fol-
lowing (18) and (19), we have g(\) = g(/\) = —C and
g(\) = 0,V € [Enax,—vmax] Meanwhile, from (16)
and (17), we have 7 = 3 = 0, V4, j, so that the primal
optimal point x* isazero vector O

Following Theorem 2, we propose the following procedure
for solving (10). First, we compute X and ), the unique
rootsof g(.) and g(.). If X > A\, weset \* = A and n* =
A= Xif XN < dand Tpax > — Uy WE SEE * = 0 and
compute \* as the unique root of ¢(.); and if A < )\ and
Umax < —Upae We St n* = 0 and choose any element
iN [Tmax, —Umax) & A*. Finaly, with the computed dual
optimal points, we obtain the primal optimal points from
(16) and (17).

3. Efficient Euclidean Projections

We reformulated the Euclidean projection as root finding
problems in the last section. In this section, we present
efficient algorithms for computing the roots. Specifically,
we present the bisection algorithm in Section 3.1, and an
improved bisection algorithmin Section 3.2.

3.1. Euclidean Projections by Bisection

We first propose to make use of bisection for computing
the dual optimal points. Bisection works by producing a
sequenceof intervalsof uncertainty with strictly decreasing
lengths. It is known that, for any continuous function with
aunigueroot in the interval [a, b], the number of bisection
iterationsis upper-bounded by [logg(b‘T“ﬂ ,whereb—a is
thelength of theinitial interval of uncertainty and o denotes
the pre-specified precision parameter.

When applying bisection for solving the roots of f(.), g(.),
g(.)andg(.),itcostsO(n), O(p), O(n—p) and O(n) float-
ing operations (flops) for evaluating the function values
once, respectively. From Lemma 3 and Theorems 1 and 2,
the lengths of the initialized interval are upper-bounded by
z,C, C and |Umax + U0 |, respectively, so thebisection it-
erations are upper-bounded by [log,(z/4)], [log,(C/d)],
|—10g2(0/5)—| and DOgQ('EHlaX + ymax'/é)—L reSpeCUVQIy
Oncethe dual optimal point(s) have been computed, we can
recover the primal optimal point x* from (8), (16) and (17)
in O(n) flops. Therefore, the time complexity for solving
these two Euclidean projections by bisectionis O(n).
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3.2. Euclidean Projections by mproved Bisection

Although bisection can solve the Euclidean projectionsin
linear time, it has the limitation that its efficiency is inde-
pendent of the function, and it cannot be improved even
when the function is “well-behaved”. The underlying rea-
son is that, bisection only utilizes the signs of the function
at the two boundary points, but not their values.

To improve the efficiency, one natural aternative isthein-
terpolation method (Brent, 1971) that hasabetter local con-
vergence rate than bisection. Well-known linear interpola
tion methods include Newton's method and Secant which
have locally Q-quadratic and Q-superlinear convergence
rates, respectively. However, both Newton's method and
Secant can diverge. To overcome this limitation, the safe-
guarded methods (Brent, 1971) have been proposed. The
interpolation methods such as Newton's method, Secant
and their safeguarded versions are developed for solving
the general purpose root finding problems. In this subsec-
tion, we aim at developing an efficient improved bisection
algorithm for finding the root by explicitly using the “ struc-
ture” of the auxiliary functions.

Due to similarities of these auxiliary functions, we take
f(.) as an example in the following discussions. We note
that, the two key factors that influence the efficiency of the
root finding algorithm are: (1) the cost for evaluating the
function value, and (2) the number of iterations. In what
follows, we detail how to reduce the cost for evaluating
f(X) in Section 3.2.1 and reduce the number of iterations
in Section 3.2.2.

For convenience of illustration, we denote u = |v|, that is,
u; = |v;|, with which the auxiliary function f(.) in (9) can
be written as f(\) = >, max(u; — A,0) — z. We first
reveal the convexity property of f(A). Sincemax(u;—A, 0)
isconvex for al i, the auxiliary function f(\) is convex, as
summarized in the following lemma:

Lemma4 Theauxiliary function f(\) in (9) is convex.

3.2.1. EFFICIENT EVALUATION OF f(A)

In this subsection, we aim to reduce the computational cost
for evaluating f(.). Denote

Ry = {ili € [n],u; > A},

we can write f(\) as
f\) = zn:max(ui -20)—2
i=1
= Z(W,—/\)—ZZ Z u; — A|Ry| — 2,

i€Ry i€Rx

(23)

where | R | denotes the number of elementsin R .

1(2) ()

U Uy 7 of U] U Up—0 Ugy
q [y °

I
B L
_1

Figure 2. lllustration of the auxiliary function () (left) and its
subgradient f/(\) (right).

Itiseasy to verify that f(\) isapiece-wiselinear function,
asillustrated in theleft figureof Fig. 21. Itisclear that £()\)
is not differentiableat u;, for: = 1,2, ..., n. However, as
revealed in Lemma4, f(\) is convex, and we can define
the subgradient (Nemirovski, 1994) of f(\) as

F'(A) = —|Ral. (24)

Thus, f'(\) is monotonically increasing and non-positive,
and f(A\) = 0if andonly if X > w1y = vmax. Theright
figure of Fig. 2 illustrates the subgradient f’()\), which is
also a piece-wise linear function. From (23) and (24), we
can rewrite f()\) as:

FO) = F/ (M)A + b, (25)

where

b(\) = Zui—z

1ERN

is the bias of the piece-wise linear function at A. (25) im-
pliesthat the efficient evaluation of f(\) liesin the efficient
calculation of f/(A) and b(\).

Let the current interval of uncertainty be [A1, 2], and
f'(A\2) and b(A2) have been computed. We show how to
evaluate the value of f(\) for any A € [A1, \2]. Denote
Ux = {i|A < u; < A2}, wecancompute f/(A) and b(\) as

F') = =[Ux[+ f'(%),
bA) = D ui +b(Xa),

€Uy

which showsthat we focus on those elementsin theinterval

(A1, A2] only for computing the subgradient f/(\) and the
bias b(\) for any A € [A1, A2]. Note that the number of el-
ementsin theinterval (A1, 2] decreases when theiterative
procedure proceeds (for example, the length of the interval

is decreased by afactor of 2 in each iteration of bisection),
thus reducing the computational cost for evaluating f ().

'For illustration convenience, we denote u; as the i-th order
statistic of u, i.e, U(1) > U(2) > ... > U(n)- However, in the
proposed algorithm, we do not need to sort the elementsin u.
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EONMN

1(4)>0 ()20 (is)<0 1(i2)<0

Figure 3. lllustration of the three constructed models and therela-
tionship among the roots of the models. The dashed piecewiselin-
ear line denotes f(.), and the solid line is the constructed model.

3.2.2. REDUCING THE NUMBER OF | TERATIONS

To reduce the number of iterations, we propose to employ
several models including Newton’s method and Secant to
obtain some approximate solutions for tightening the inter-
val of uncertainty. We then apply bisection to this tight-
ened interval to obtain a new interval of uncertainty. Our
method is an improved bisection algorithm, which effec-
tively integrates Newton’s method and Secant in bisection.
Our method can decrease the interval of uncertainty by a
factor strictly larger than 2 in each iteration.

Let the current interval of uncertainty be [A1, A2] (f(A1) >
0 and f(X2) < 0), and the following values have been
obtained: the subgradients f'(A;) and f’()\2), the func-
tion values f(A\1) and f(X2), and the biases b(A;) and
b(A2). We construct three models for approximating f(.)
(see Fig. 3).

The first model correspondsto the line that passes through
(A1, f(A1)) with derivative f'(A1):
Ti(A) = f(A1) + [ (M) (A = A1) (26)

The second model corresponds to the line that passes
through (A2, f(\2)) with derivative f/(A2):

To(N\) = f(X2) + f’()\z)()\ — A2). 27

When A\ # u; forany ¢, T4 (.) isthe tangent line of f(.) at
A1. Similarly, when Ao # w; for any ¢, T (.) is the tangent
lineof f(.)at Ao.

Based on the definition of /() in(24) and A1 < vpax, We
have /(A1) < 0. Therefore, the uniqueroot of 7 (.) is

A1 =AM — f(A)/f (M), (28)

which satisfies Ar; > Ay since (A1) > 0and f'(A\1) < 0.
Similarly, when f’(\2) is nonzero, the unique root of Ts(.)
can be computed as:

A2 = A2 — f(A2)/ [ (A2). (29)

Since f(.) is convex and f’(.) is the subgradient of f(.),
thelines T4 (.) and T5(.) aways underestimate f(.), i.e.,

J(Ar1) > Ti(Ar1) =0,
J(Ar2) > Ta(Ar2) = 0.

Denote
)\T = max()\Tl, )\TQ). (30)

It followsthat f(Ar) > 0,and Ay > A;. Thus, Ay formsa
tighter lower-bound of the interval of uncertainty than ) ;.

The third model is based on the line passing through the
two points (A1, f(A1)) and (A2, f(A2)):

fR2) = f(A)

S(A) = f(x2) + N —

(A= X2). (31)
Since f(A1) # f(X2) (notethat, f(A1) > 0, f(A2) < 0),
the unique root of S(.) can be written as

A2 — A1

As = A2 _f()‘Q)f()\Q) _f(Al)v

(32)

where Ag < \g, since f()\g)
convexity of f(.), we have

VS
fs) =1 (fw)—ful)

<0.

710(;5:;@1) > 0. From the

—f(A\)

M ) - f(m)AQ)

Thus, \g forms atighter upper-bound of the interval of un-
certainty than \s.

Since f(.) is monotonically decreasing, we obtain the fol-
lowing relationship among A1, A2, A, and \g (seeFig. 3):
M <Ar<Ag < )\2, (33)

where \r = Ag if andonly if f(Ar) = f(As) = 0.

With the computed tighter interval of uncertainty [Ar, As],
we can choose A used in bisection as the middle point of
Ar and \g:

A= 300+ Xs), (39

The updated interval of uncertainty is [\, Ag] if f(A) > 0,
and [Ar, A] if f(A) < 0. Thelength of interval of uncer-
tainty is decreased by afactor strictly larger than 2, since

1 1
A=Ar=Asg— A= 5()\5 — )\T) < 5(/\1 — /\2) (35)
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Table 1. lllustration of the improved bisection algorithm: each
row corresponds to an iteration; [A1, A2] denotes the current in-
terval, and |U| denotes its size; Ar is computed from the two
models 71 (.) and T5(.); As is computed from the model S(.); A
isthe middle point of Ar and \s; and the found root isin bold.

14 A AT ) As X2
10° 0 0.79907 249512 4.19116 4.19641
1242 249512 2.72716 3.24086 3.75455 4.19116
502 2.72716 285927 2.93296 300665 3.24086
88 285927 289934 200130 2090343 2.9329
T 289934 290105 290105 2.90105 2.90139

3.2.3. DISCUSSIONS

Theimproved bisection a gorithm enjoys thefollowing two
properties. (1) consistently decreasing computation cost
for evaluating f(.) with increasing iterations; and (2) fewer
iterations than bisection, benefited by the good local con-
vergence rate of Newton's method and Secant.

The improved bisection can aso allow an initial guess of
the root (denoted by ), which can help reduce the num-
ber of iterations, if it is close to our target. Let the initial-
ized interval be [A1, \2], we can easily incorporate A into
the improved bisection algorithm, by setting A1 = X if
f(Xo) > 0 and Ao = Ay otherwise. We note that, when
applying the Euclidean projections for solving problems
such as (4), the adjacent Euclidean projectionsusually have
close dua optimal points. Therefore, we can use the root
found in the previous projection as the “warm” start.

In deriving the improved bisection agorithm, we only
make use of the piecewise linear and convex “structures”
of the auxiliary function, and thus the improved bisection
isapplicableto g(.) and g(.), which enjoy these two “struc-
tures’. By some careful deductions, this improved bisec-
tion algorithm can also be extended to solve the root of
g(.). Thekey observationisthat ¢(.) isthe differenceof the
two convex and piecewise linear functions g(.) and ¢(.), so
that we can efficiently evaluate g(.) similar to f(.). More-
over, following similar ideas in Section 3.2.2, we can con-
struct models to obtain Ay and A\g to tighten the interval
of uncertainty as follows. Let [\1, \2] be the current in-
terval of uncertainty. We obtain A as the intersection of
the tangent line of g(.) a A, and the secant model of g(.)
passing through (A1, g(\1)) and (X2, g(\2)), and A5 asthe
intersection of the tangent line of ¢(.) at A, and the secant
model of g(.) passing through (A1, 7(A1)) ad (A2, G(A2)).

4. Experiments

To study the performance of the proposed projection algo-
rithms, we randomly generated the input vector v accord-
ing to two distributions: (1) normal distribution with mean
0 and standard deviation 1, and (2) uniform distribution in

theinterval [—1, 1]. Weimplement the proposed projection
algorithmsin C, and carry out the experiments on an Intel
(R) Core (TM)2 Duo 3.00GHZ processor.

An lllustrative Example We first present an example to
illustrate the improved bisection algorithm. In this experi-
ment, we compute the Euclidean projection onto the £, ball
on a problem of size n = 10°. We generate v from the
normal distribution, and set z = 100. The result is pre-
sented in Table 1. We can observe from this table that the
proposed improved hisection converges quite fast, and the
computational cost (proportional to |U|) for evaluating f(.)
decreases rapidly.
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Figure 4. Comparison of the average number of iterations over
1000 runs. v is generated from the uniform distribution in the
left figure, and from the normal distribution in the right figure.

Number of IterationsWe comparethe improved bisection
(ibis) with bisection (bis), and the modified randomized
median finding (mrmf) (Duchi et a., 2008), in terms of the
number of iterations for solving the projection onto the £,
ball. For ibis, wetry two different settings: (1) ibisl, which
does not requirean initial guess of theroot, (2) ibis2, which
employsthe“warm” start, that is, the root found by the pre-
vious problem is used as a ‘warm” start (we solved 1000
different problemsfor afixed size n). We set z = 100, and
report the resultsin Figure 4, where the average number of
iterations over 1000 runs is shown. We can observe from
these figures that: 1) the number of iterations by bisection
is around 40; 2) the number of iterations by mrmf is signif-
icantly smaller than that of bisection, which validates the
good practical behavior of the randomized median finding
algorithm; 3) the number of iterations for ibisl is within 7,
whichislessthan that required by mrmf; and 4) by employ-
ing the “warm” start technique, the number of iterationsfor
ibis2 is further reduced to about 2.

Computation Efficiency We report the total computational
time (in seconds) for solving 1000 independent projection
ontothe ¢, ball by different methodsin Tables2 and 3, from
which we can observe that, all methods scale (roughly) lin-
early with n, and ibisl is more efficient than bisection and
mrmf. With a“warm” start technique, ibis2 is much more
efficient than ibisl.

We aso compare the improved bisection agorithm with
the soft projections onto polyhedra (sopopo) proposed in
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Table 2. The total computational time (in seconds) for solving
1000 independent projections onto the ¢; ball: norma distribu-
tion with z = 10 (top half) and z = 100 (bottom half).

n 10° 10? 10° 10° 107

bis 00543 04323 4691 7835 7889
mrmf  0.0130 02720 2776 3768 380.3
ibist 0.0074 0.1276 1509 19.62 196.2
ibis2 0.0024 0.0877 1126 17.06 167.9

bis 01521 06178 4926 7852 790.3
mrmf  0.0319 02901 2766 37.84 3832
ibislT 0.0305 01843 1541 1961 1965
ibis2 0.0195 00946 1133 17.06 167.8

Table 3. The total computational time (in seconds) for solving
1000 independent projections onto the ¢; ball: uniform distribu-
tion with z = 10 (top half) and z = 100 (bottom half).

n 10° 10% 10° 10° 107

bis 01247 07511 6554 8261 8336
mrmf 0.0332 02941 2992 37.99 389.0
ibisl 0.0286 0.1698 2091 24.74 247.7
ibis2 0.0210 0.0946 1332 1746 17/3.7

bis 02030 11644 8165 86.31 8444
mrmf 0.0332 03373 3.187 3943 394.7
jbisi 0.0266 0.1859 2159 2490 2485
ibis2 0.0198 01135 1416 1748 1/54

(Shalev-Shwartz & Singer, 2006) for solving the projec-
tion onto the specialized polyhedraG 2. Theresultsare pre-
sented in Table 4. We can observe from the table that ibisl
and ibis2 are more efficient than sopopo. The experimental
results verify the efficiency of the proposed algorithms.

5. Conclusion

In this paper, we study the problem of Euclidean projec-
tions onto the ¢, ball Gy and the specialized polyhedra G s.
Our main results show that both Euclidean projections can
be formulated as root finding problems. Based on such re-
formulation, we can solve the Euclidean projectionsin (the
worst-case) linear time via bisection. We further explore
the piecewise linear and convex “structures’ of the auxil-
iary functions, and propose the improved bisection algo-
rithm. Empirical studies show that our proposed algorithms
are much more efficient that the competing ones.

We are currently investigating the ¢, ball constrained sparse
learning problems by the first-order methods, which in-
clude the proposed Euclidean projections as a key build-
ing block. We plan to extend the proposed agorithms to
efficiently solve the projection 7 (v + &) when the result
of mg(v) is known and e has sparse structure, which can
be useful in the scenario of online learning (Duchi et a.,
2008; Shalev-Shwartz, 2007). We also plan to explore ef-
ficient entropic projections (Shalev-Shwartz, 2007), which
uses the entropy instead of the Euclidean normin (1).

Table 4. The total computational time (in seconds) for solving
1000 independent projections onto the speciaized polyhedra G
(weset p =n/2 and C' = 10): normal distribution (top half) and
uniform distribution (bottom half).

n 10° 107 10° 10° 107
sopopo 0.0934 0.8401 9.574 1425 1593
ibisL  0.0274 0.1482 1774 2277 2269
jbis2  0.0200 0.0920 1.249 1850 1852
sopopo  0.1747 09077 10.07 1435 1605
ibisL 0.0288 0.1725 2.084 2473 2582
ibis2  0.0216 0.1002 1.364 1857 1914
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