Ke Chen and Shihai Wang Ke Shihai School of Computer Science, The University of Manchester, Manchester M13 9PL, U.K. Regularized Boost for Semi-supervised Learning · · Introduction ­ ­ ­ We introduce a local smoothness regularizer to semi-supervised boosting. We regularizer Regularized universal margin cost functional of boosting ~ ( F , f ) = - < C ( F ), f > -xi L UU i x j L UU ,i j Wij C (- | yi - y j |), Wij = exp( || xi - x j ||2 / 2 2 ). - Empirical data distribution encoding the local smoothness constraints ~ i C [ yi F (xi )] - i x j LUU ,i j Wij C (- | yi - y j |) ~ D(i) = , 1 i | L | + | U | . ~ { i C [ yi F (xi )] - i x j LUU ,i j Wij C (- | yi - y j |)} xi LUU Maximize ( F , f ) iis equivalent to finding a base learner to minimize s Maximize 2 f ( xi ) yi Methodology ­ D(i) ~ +2 f ( xi ) = yi i C [ yi F (xi )] - i x j LUU ,i j Wij C (- | yi - y j |) ~ ~ misclassi fication xi LUU { i C [ yi F (xi )] - i x j LUU ,i j Wij C (- | yi - y j |)} local class label incompatibility - 1. · Conclusion ­ ­ ­ Experiments in synthetic, benchmark and real data sets demonstrate its effectiveness. Input data distribution information can be incorporated via i = P(x). Input Our method can be related to graph-based semi-supervised learning algorithms. Poster ID: T29 NIPS'07