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Preface: General Chair

I am honored that the North American Chapter of the Association of Computational Linguistics
(NAACL) has given me the opportunity, as General Conference Chair, to continue the NAACL HLT
tradition of covering topics from all areas of Human Language Technology, which makes it possible
for researchers to discuss algorithms and applications that cut across the fields of natural language
processing (NLP), speech processing, and information retrieval (IR).

I have been very fortunate to work with a terrific group of Technical Program Co-Chairs: Michael
Collins (NLP), Shri Narayanan (speech), Douglas W. Oard (IR), and Lucy Vanderwende (NLP). This
year the technical program emphasizes the breadth and interdisciplinary nature of human language
processing research. The plenary talks will stretch our thinking about how language is used by
considering the application of language to vision in one case, and language as it relates to food
in another. There are two special sessions with themes that cut across multiple sub-areas of HLT:
Large Scale Language Processing and Speech Information Retrieval. We also recognize the increasing
importance of industry in our field with a lunchtime panel discussion on the Next Big Applications in
Industry, with thanks to Bill Dolan for organizing and moderating the discussion. Finally, we have a
breadth of excellent technical papers in lecture and poster sessions, thanks to the efforts of our Senior
Program Committee members, the many reviewers on the Program Committee who helped us keep to
our schedule, and the Paper Awards Committee. Together they have done a great job in putting together
an interesting technical program. It has also been a pleasure to work with Local Organizers Martha
Palmer and Jim Martin, who have done a terrific job in hosting a meeting that shows us Colorado’s
character as well as offering a great technical program. I hope you enjoy your stay in beautiful Boulder,
as you are learning about new ideas and networking with valued colleagues.

The tradition of NAACL HLT is that it incorporates many events, including tutorials and workshops
that have expanded in scope such that they are almost as big as the main conference. As a result, many
other people have played important roles in making the overall conference a success and representative
of the breadth of HLT. Specifically, I thank Matthew Stone, Gokhan Tur and Diana Inkpen for their
work as Publicity Chairs; Christy Doran and Eric Ringger for their work as Publications Chairs; Fred
Popowich and Michael Johnston for serving as Demo Chairs; Tutorial Chairs Ciprian Chelba, Paul
Kantor and Brian Roark for bringing us an outstanding slate of tutorials; Workshop Chairs Nizar Habash
and Mark Hasegawa-Johnson for their efforts in choosing and supporting the 12 workshops that extend
our program by two days; and the Student Co-Chairs of the Doctoral Consortium organizers Svetlana
Stenchikova, Ulrich Germann and Chirag Shah working with faculty advisors Carolyn Rosé and Anoop
Sarkar. Thanks also to Nicolas Nicolov for his efforts as NAACL HLT Sponsorship Chair, working
in coordination with Sponsorship Chairs from other ACL regions. Of course, we greatly appreciate
the support of our sponsors: Rosetta Stone, CNGL, Microsoft Research, Google, AT&T, Language
Weaver, J.D. Power, IBM Research, the Linguistic Data Consortium, the Human Language Technology
Center of Excellence at the Johns Hopkins University, and the Computational Language and Education
Research Center at the University of Colorado at Boulder.
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In organizing this conference, we have had a lot of support from the NAACL Board and the HLT
Advisory Board. I would particularly like to thank Owen Rambow, Jennifer Chu-carroll, Chris Manning
and Graeme Hirst for their help and advice. Last, but certainly not least, we are indebted to Priscilla
Rasmussen for her expertise and support in running the conference.

Mari Ostendorf, University of Washington
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Preface: Program Chairs

We welcome you to NAACL HLT 2009! The NAACL HLT program continues to include high-quality
work in the areas of computational linguistics, information retrieval, and speech technology. This year,
260 full papers were submitted, of which 75 papers were accepted (giving a 29% acceptance rate); and
178 short papers were submitted, of which 71 were accepted (giving a 40% acceptance rate).

Two best paper awards were given at the conference, to “Unsupervised Morphological Segmentation
with Log-Linear Models”, by Hoifung Poon, Colin Cherry and Kristina Toutanova (this paper also
received the best student paper award), and “11,001 New Features for Statistical Machine Translation”,
by David Chiang, Kevin Knight and Wei Wang. The senior program committee members for the
conference nominated an initial set of papers that were candidates for the awards; the final decisions
were then made by a committee chaired by Candace Sidner, and with Hal Daume III, Roland Kuhn,
Ryan McDonald, and Mark Steedman as its other members. We would like to congratulate the authors,
and thank the committee for their work in choosing these papers.

NAACL HLT 2009 consists of oral presentations of all full papers, oral or poster presentations of short
papers, and tutorials and software demonstrations. We are delighted to have two keynote speakers:
Antonio Torralba, with a talk “Understanding Visual Scenes”, and Dan Jurafsky, with a talk “The
Language of Food”. In addition, we have a panel on emerging application areas in computational
linguistics, chaired by Bill Dolan.

We would like to thank the authors for submitting a remarkable set of papers to the conference. The
review process was organized through a two-tier system, with eighteen senior program committee (SPC)
members, and 352 reviewers. The SPC members managed the review process for both the full and short
paper submissions: each full paper received at least three reviews, and each short paper received at least
two reviews. We are thoroughly indebted to the reviewers for all their work, and to the SPC members for
the long hours they spent in evaluating the submissions. In addition, we would like to thank Rich Gerber
and the START team for their help with the system that managed paper submissions and reviews; the
local arrangement chairs, James Martin and Martha Palmer, for their help with organizing the program;
and the publication chairs, Christy Doran and Eric Ringger, for putting together these proceedings.
Finally, we are incredibly grateful to the general chair, Mari Ostendorf, for the invaluable advice and
support that she provided throughout every step of the process.

We hope that you enjoy the conference!

Michael Collins, Massachusetts Institute of Technology
Shri Narayanan, University of Southern California
Douglas W. Oard, University of Maryland

Lucy Vanderwende, Microsoft Research
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Antonio Torralba

Break
Session 1A: Semantics

Subjectivity Recognition on Word Senses via Semi-supervised Mincuts
Fangzhong Su and Katja Markert

Integrating Knowledge for Subjectivity Sense Labeling
Yaw Gyamfi, Janyce Wiebe, Rada Mihalcea and Cem Akkaya

A Study on Similarity and Relatedness Using Distributional and WordNet-based Ap-
proaches

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pasca and Aitor
Soroa

A Fully Unsupervised Word Sense Disambiguation Method Using Dependency Knowledge
Ping Chen, Wei Ding, Chris Bowes and David Brown

Session 1B: Multilingual Processing / Morphology and Phonology

Learning Phoneme Mappings for Transliteration without Parallel Data
Sujith Ravi and Kevin Knight

A Corpus-Based Approach for the Prediction of Language Impairment in Monolingual
English and Spanish-English Bilingual Children
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Improved Reconstruction of Protolanguage Word Forms
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10:40-11:05

11:05-11:30

11:30-11:55

11:55-12:20

10:40-11:10

11:15-11:45

11:50-12:20

12:20-2:00

Session 1C: Syntax and Parsing

Shared Logistic Normal Distributions for Soft Parameter Tying in Unsupervised Grammar
Induction
Shay Cohen and Noah A. Smith

Adding More Languages Improves Unsupervised Multilingual Part-of-Speech Tagging: a
Bayesian Non-Parametric Approach
Benjamin Snyder, Tahira Naseem, Jacob Eisenstein and Regina Barzilay

Efficiently Parsable Extensions to Tree-Local Multicomponent TAG
Rebecca Nesson and Stuart Shieber

Improving Unsupervised Dependency Parsing with Richer Contexts and Smoothing
William P. Headden III, Mark Johnson and David McClosky

Student Research Workshop Session 1:

Note: all student research workshop papers are located in the Companion volume of the
proceedings

Classifier Combination Techniques Applied to Coreference Resolution
Smita Vemulapalli, Xiaogiang Luo, John F. Pitrelli and Imed Zitouni

Solving the "Who’s Mark Johnson Puzzle”: Information Extraction Based Cross Docu-
ment Coreference
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Giles

Exploring Topic Continuation Follow-up Questions using Machine Learning
Manuel Kirschner and Raffaella Bernardi

Lunch Break
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2:30-2:45

2:45-3:00
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2:15-2:30

2:30-2:45

2:45-3:00

Session 2A: Short Paper Presentations: Machine Translation
Note: all short papers are located in the Companion volume of the proceedings

Cohesive Constraints in A Beam Search Phrase-based Decoder
Nguyen Bach, Stephan Vogel and Colin Cherry

Revisiting Optimal Decoding for IBM Machine Translation Model 4
James Clarke and Sebastian Riedel

Efficient Extraction of Oracle-best Translations from Hypergraphs
Zhifei Li and Sanjeev Khudanpur

Semantic Roles for SMT: A Hybrid Two-Pass Model
Dekai Wu and Pascale Fung

Comparison of Extended Lexicon Models in Search and Rescoring for SMT
Sasa Hasan and Hermann Ney

Simplex Armijo Downhill Algorithm for Optimizing Statistical Machine Translation Sys-
tem Parameters

Bing Zhao and Shengyuan Chen

Session 2B: Short Paper Presentations: Information Retrieval / Information Extrac-
tion / Sentiment

Note: all short papers are located in the Companion volume of the proceedings

Translation Corpus Source and Size in Bilingual Retrieval
Paul McNamee, James Mayfield and Charles Nicholas

Large-scale Computation of Distributional Similarities for Queries
Enrique Alfonseca, Keith Hall and Silvana Hartmann

Text Categorization from Category Name via Lexical Reference
Libby Barak, Ido Dagan and Eyal Shnarch

ldentifying Types of Claims in Online Customer Reviews
Shilpa Arora, Mahesh Joshi and Carolyn Rose
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TESLA: A Tool for Annotating Geospatial Language Corpora
Nate Blaylock, Bradley Swain and James Allen

Session 2C: Short Paper Presentations: Dialog / Speech / Semantics

Note: all short papers are located in the Companion volume of the proceedings

Modeling Dialogue Structure with Adjacency Pair Analysis and Hidden Markov Models
Kristy Elizabeth Boyer, Robert Phillips, Eun Young Ha, Michael Wallis, Mladen Vouk and
James Lester

Towards Natural Language Understanding of Partial Speech Recognition Results in Dia-
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Kenji Sagae, Gwen Christian, David DeVault and David Traum

Spherical Discriminant Analysis in Semi-supervised Speaker Clustering
Hao Tang, Stephen Chu and Thomas Huang
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Web and Corpus Methods for Malay Count Classifier Prediction
Jeremy Nicholson and Timothy Baldwin

XXVi



Monday, June 1, 2009 (continued)

2:00-2:30

2:35-3:05

3:30-4:00

4:00-4:25

4:25-4:50

4:50-5:15

5:15-5:40

4:00-4:25

4:25-4:50

4:50-5:15

Student Research Workshop Session 2

Note: all student research workshop papers are located in the Companion volume of the
proceedings

Sentence Realisation from Bag of Words with Dependency Constraints
Karthik Gali and Sriram Venkatapathy

Using Language Modeling to Select Useful Annotation Data
Dmitriy Dligach and Martha Palmer

Break
Session 3A: Machine Translation

Context-Dependent Alignment Models for Statistical Machine Translation
Jamie Brunning, Adria de Gispert and William Byrne

Graph-based Learning for Statistical Machine Translation
Andrei Alexandrescu and Katrin Kirchhoff

Intersecting Multilingual Data for Faster and Better Statistical Translations
Yu Chen, Martin Kay and Andreas Eisele

No Presentation
Session 3B: Semantics

Without a "doubt’? Unsupervised Discovery of Downward-Entailing Operators
Cristian Danescu-Niculescu-Mizil, Lillian Lee and Richard Ducott

The Role of Implicit Argumentation in Nominal SRL
Matthew Gerber, Joyce Chai and Adam Meyers

Jointly Identifying Predicates, Arguments and Senses using Markov Logic
Ivan Meza-Ruiz and Sebastian Riedel
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4:35-5:05
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Structured Generative Models for Unsupervised Named-Entity Clustering
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Session 3C: Information Retrieval

Hierarchical Dirichlet Trees for Information Retrieval
Gholamreza Haffari and Yee Whye Teh

Phrase-Based Query Degradation Modeling for Vocabulary-Independent Ranked Utter-

ance Retrieval
J. Scott Olsson and Douglas W. Oard

Japanese Query Alteration Based on Lexical Semantic Similarity
Masato Hagiwara and Hisami Suzuki

Context-based Message Expansion for Disentanglement of Interleaved Text Conversations
Lidan Wang and Douglas W. Oard

Student Research Workshop Session 3

Note: all student research workshop papers are located in the Companion volume of the
proceedings

Pronunciation Modeling in Spelling Correction for Writers of English as a Foreign Lan-
guage
Adriane Boyd

Building a Semantic Lexicon of English Nouns via Bootstrapping
Ting Qian, Benjamin Van Durme and Lenhart Schubert

Multiple Word Alignment with Profile Hidden Markov Models
Aditya Bhargava and Grzegorz Kondrak

Poster and Demo Session

Note: all short papers and demo abstracts are located in the Companion volume of the
proceedings

Minimum Bayes Risk Combination of Translation Hypotheses from Alternative Morpho-

logical Decompositions
Adri de Gispert, Sami Virpioja, Mikko Kurimo and William Byrne
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Generating Synthetic Children’s Acoustic Models from Adult Models
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ity

Kun Yu and Junichi Tsujii

Domain Adaptation with Artificial Data for Semantic Parsing of Speech
Lonneke van der Plas, James Henderson and Paola Merlo
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Faster MT Decoding Through Pervasive Laziness
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Name Perplexity
Octavian Popescu
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Classifying Factored Genres with Part-of-Speech Histograms
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Improving SCL Model for Sentiment-Transfer Learning
Songbo Tan and Xueqi Cheng

MICA: A Probabilistic Dependency Parser Based on Tree Insertion Grammars (Applica-
tion Note)

Srinivas Bangalore, Pierre Boullier, Alexis Nasr, Owen Rambow and Benot Sagot

Lexical and Syntactic Adaptation and Their Impact in Deployed Spoken Dialog Systems
Svetlana Stoyanchev and Amanda Stent

Analysing Recognition Errors in Unlimited-Vocabulary Speech Recognition
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Volha Petukhova and Harry Bunt

Improving Coreference Resolution by Using Conversational Metadata
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Yong Zhao and Xiaodong He

Language Specific Issue and Feature Exploration in Chinese Event Extraction
Zheng Chen and Heng Ji

Improving A Simple Bigram HMM Part-of-Speech Tagger by Latent Annotation and Self-
Training

Zhonggiang Huang, Vladimir Eidelman and Mary Harper

Student Research Workshop Poster Session
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proceedings
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Using Emotion to Gain Rapport in a Spoken Dialog System
Jaime Acosta

Interactive Annotation Learning with Indirect Feature Voting
Shilpa Arora and Eric Nyberg
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Loss-Sensitive Discriminative Training of Machine Transliteration Models
Kedar Bellare, Koby Crammer and Dayne Freitag

Syntactic Tree-based Relation Extraction Using a Generalization of Collins and Duffy
Convolution Tree Kernel
Mahdy Khayyamian, Seyed Abolghasem Mirroshandel and Hassan Abolhassani

Towards Building a Competitive Opinion Summarization System: Challenges and Keys
Elena Lloret, Alexandra Balahur, Manuel Palomar and Andres Montoyo

Domain-Independent Shallow Sentence Ordering
Thade Nahnsen

Towards Unsupervised Recognition of Dialogue Acts
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10:50-11:15

11:15-11:40

Plenary Session
Paper Awards

Unsupervised Morphological Segmentation with Log-Linear Models
Hoifung Poon, Colin Cherry and Kristina Toutanova

11,001 New Features for Statistical Machine Translation
David Chiang, Kevin Knight and Wei Wang

Break
Session 4A: Machine Translation

Efficient Parsing for Transducer Grammars
John DeNero, Mohit Bansal, Adam Pauls and Dan Klein

Preference Grammars: Softening Syntactic Constraints to Improve Statistical Machine
Translation

Ashish Venugopal, Andreas Zollmann, Noah A. Smith and Stephan Vogel

Using a Dependency Parser to Improve SMT for Subject-Object-Verb Languages
Peng Xu, Jaecho Kang, Michael Ringgaard and Franz Och

Learning Bilingual Linguistic Reordering Model for Statistical Machine Translation
Han-Bin Chen, Jian-Cheng Wu and Jason S. Chang

Session 4B: Sentiment Analysis / Information Extraction

May All Your Wishes Come True: A Study of Wishes and How to Recognize Them
Andrew B. Goldberg, Nathanael Fillmore, David Andrzejewski, Zhiting Xu, Bryan Gibson
and Xiaojin Zhu

Predicting Risk from Financial Reports with Regression
Shimon Kogan, Dimitry Levin, Bryan R. Routledge, Jacob S. Sagi and Noah A. Smith

Domain Adaptation with Latent Semantic Association for Named Entity Recognition
Honglei Guo, Huijia Zhu, Zhili Guo, Xiaoxun Zhang, Xian Wu and Zhong Su

Semi-Automatic Entity Set Refinement
Vishnu Vyas and Patrick Pantel
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2:00-2:15

2:15-2:30

2:30-2:45

2:45-3:00

3:00-3:15

3:15-3:30

Session 4C: Machine Learning / Morphology and Phonology

Unsupervised Constraint Driven Learning For Transliteration Discovery
Ming-Wei Chang, Dan Goldwasser, Dan Roth and Yuancheng Tu

On the Syllabification of Phonemes
Susan Bartlett, Grzegorz Kondrak and Colin Cherry

Improving nonparameteric Bayesian inference: experiments on unsupervised word seg-
mentation with adaptor grammars

Mark Johnson and Sharon Goldwater

No Presentation

Lunch Break

Session SA: Short Paper Presentations: Machine Translation / Generation / Seman-
tics

Note: all short papers are located in the Companion volume of the proceedings
Statistical Post-Editing of a Rule-Based Machine Translation System
Antonio-L. Lagarda, Vicent Alabau, Francisco Casacuberta, Roberto Silva and Enrique

Daz-de-Liao

On the Importance of Pivot Language Selection for Statistical Machine Translation
Michael Paul, Hirofumi Yamamoto, Eiichiro Sumita and Satoshi Nakamura

Tree Linearization in English: Improving Language Model Based Approaches
Katja Filippova and Michael Strube

Determining the position of adverbial phrases in English
Huayan Zhong and Amanda Stent

Estimating and Exploiting the Entropy of Sense Distributions
Peng Jin, Diana McCarthy, Rob Koeling and John Carroll

Semantic classification with WordNet Kernels
Diarmuid Saghdha
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Session 5B: Short Paper Presentations: Machine Learning / Syntax
Note: all short papers are located in the Companion volume of the proceedings

2:00-2:15 Sentence Boundary Detection and the Problem with the U.S.
Dan Gillick

2:15-2:30 Quadratic Features and Deep Architectures for Chunking
Joseph Turian, James Bergstra and Yoshua Bengio

2:30-2:45 Active Zipfian Sampling for Statistical Parser Training
Onur Cobanoglu

2:45-3:00 Combining Constituent Parsers
Victoria Fossum and Kevin Knight

3:00-3:15 Recognising the Predicate-argument Structure of Tagalog
Meladel Mistica and Timothy Baldwin

3:15-3:30 Reverse Revision and Linear Tree Combination for Dependency Parsing
Giuseppe Attardi and Felice Dell’ Orletta

Session 5C: Short Paper Presentations: SPECIAL SESSION - Speech Indexing and
Retrieval

Note: all short papers are located in the Companion volume of the proceedings
2:00-2:15 Introduction to the Special Session on Speech Indexing and Retrieval
2:15-2:30 Anchored Speech Recognition for Question Answering
Sibel Yaman, Gokan Tur, Dimitra Vergyri, Dilek Hakkani-Tur, Mary Harper and Wen

Wang

2:30-2:45 Score Distribution Based Term Specific Thresholding for Spoken Term Detection
Dogan Can and Murat Saraclar

2:45-3:00 Automatic Chinese Abbreviation Generation Using Conditional Random Field
Dong Yang, Yi-Cheng Pan and Sadaoki Furui
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3:30-4:00

4:00-4:25

4:25-4:50

4:50-5:15

4:00-4:25

4:25-4:50
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Fast decoding for open vocabulary spoken term detection
Bhuvana Ramabhadran, Abhinav Sethy, Jonathan Mamou, Brian Kingsbury and Upendra
Chaudhari

Tightly coupling Speech Recognition and Search
Taniya Mishra and Srinivas Bangalore

Break
Session 6A: Syntax and Parsing

Joint Parsing and Named Entity Recognition
Jenny Rose Finkel and Christopher D. Manning

Minimal-length linearizations for mildly context-sensitive dependency trees
Y. Albert Park and Roger Levy

Positive Results for Parsing with a Bounded Stack using a Model-Based Right-Corner
Transform
William Schuler

Session 6B: Discourse and Summarization

Hierarchical Text Segmentation from Multi-Scale Lexical Cohesion
Jacob FEisenstein

Exploring Content Models for Multi-Document Summarization
Aria Haghighi and Lucy Vanderwende

Global Models of Document Structure using Latent Permutations
Harr Chen, S.R.K. Branavan, Regina Barzilay and David R. Karger
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Session 6C: Spoken Language Systems

4:00-4:25 Assessing and Improving the Performance of Speech Recognition for Incremental Systems
Timo Baumann, Michaela Atterer and David Schlangen

4:25-4:50 Geo-Centric Language Models for Local Business Voice Search
Amanda Stent, Ilija Zeljkovic, Diamantino Caseiro and Jay Wilpon

4:50-5:15 Improving the Arabic Pronunciation Dictionary for Phone and Word Recognition with
Linguistically-Based Pronunciation Rules
Fadi Biadsy, Nizar Habash and Julia Hirschberg

Wednesday, June 3, 2009
Plenary Session

9:00-10:10  Invited Talk: Ketchup, Espresso, and Chocolate Chip Cookies: Travels in the Language of
Food
Dan Jurafsky

10:10-10:40  Break
Session 7A: Machine Translation

10:40-11:05  Using a maximum entropy model to build segmentation lattices for MT
Chris Dyer

11:05-11:30  Active Learning for Statistical Phrase-based Machine Translation
Gholamreza Haffari, Maxim Roy and Anoop Sarkar

11:30-11:55  Semi-Supervised Lexicon Mining from Parenthetical Expressions in Monolingual Web
Pages
Xianchao Wu, Naoaki Okazaki and Jun’ichi Tsujii

11:55-12:20  Hierarchical Phrase-Based Translation with Weighted Finite State Transducers

Gonzalo Iglesias, Adria de Gispert, Eduardo R. Banga and William Byrne

XXX Vil



Wednesday, June 3, 2009 (continued)

10:40-11:05
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11:30-11:55

11:55-12:20

10:40-11:05

11:05-11:30

11:30-11:55

11:55-12:20

12:20-1:40

12:40-1:40

1:40-2:30

Session 7B: Speech Recognition and Language Modeling
Improved pronunciation features for construct-driven assessment of non-native sponta-
neous speech

Lei Chen, Klaus Zechner and Xiaoming Xi

Performance Prediction for Exponential Language Models
Stanley Chen

Tied-Mixture Language Modeling in Continuous Space
Ruhi Sarikaya, Mohamed Afify and Brian Kingsbury

Shrinking Exponential Language Models
Stanley Chen

Session 7C: Sentiment Analysis

Predicting Response to Political Blog Posts with Topic Models
Tae Yano, William W. Cohen and Noah A. Smith

An Iterative Reinforcement Approach for Fine-Grained Opinion Mining
Weifu Du and Songbo Tan

For a few dollars less: Identifying review pages sans human labels
Luciano Barbosa, Ravi Kumar, Bo Pang and Andrew Tomkins

More than Words: Syntactic Packaging and Implicit Sentiment
Stephan Greene and Philip Resnik

Lunch Break

Panel Discussion: Emerging Application Areas in Computational Linguistics

Chaired by Bill Dolan, Microsoft

Panelists: Jill Burstein, Educational Testing Service; Joel Tetreault, Educational Testing
Service; Patrick Pantel, Yahoo; Andy Hickl, Language Computer Corporation + Swingly

NAACL Business Meeting
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2:55-3:20
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2:30-2:55

2:55-3:20

3:20-3:45

2:30-2:55

2:55-3:20

3:20-3:45

3:45-4:15

Session 8A: Large-scale NLP

Streaming for large scale NLP: Language Modeling
Amit Goyal, Hal Daume III and Suresh Venkatasubramanian

The Effect of Corpus Size on Case Frame Acquisition for Discourse Analysis
Ryohei Sasano, Daisuke Kawahara and Sadao Kurohashi

Semantic-based Estimation of Term Informativeness
Kirill Kireyev

Session 8B: Syntax and Parsing

Optimal Reduction of Rule Length in Linear Context-Free Rewriting Systems
Carlos Gémez-Rodriguez, Marco Kuhlmann, Giorgio Satta and David Weir

Inducing Compact but Accurate Tree-Substitution Grammars
Trevor Cohn, Sharon Goldwater and Phil Blunsom

Hierarchical Search for Parsing
Adam Pauls and Dan Klein

Session 8C: Discourse and Summarization

An effective Discourse Parser that uses Rich Linguistic Information
Rajen Subba and Barbara Di Eugenio

Graph-Cut-Based Anaphoricity Determination for Coreference Resolution
Vincent Ng

Using Citations to Generate surveys of Scientific Paradigms
Saif Mohammad, Bonnie Dorr, Melissa Egan, Ahmed Hassan, Pradeep Muthukrishan,

Vahed Qazvinian, Dragomir Radev and David Zajic

Break
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4:40-5:05

5:05-5:30

4:15-4:40

4:40-5:05

5:05-5:30

4:15-4:40

4:40-5:05

5:05-5:30

Session 9A: Machine Learning

Non-Parametric Bayesian Areal Linguistics
Hal Daume III

Hierarchical Bayesian Domain Adaptation
Jenny Rose Finkel and Christopher D. Manning

Online EM for Unsupervised Models
Percy Liang and Dan Klein

Session 9B: Dialog Systems

Unsupervised Approaches for Automatic Keyword Extraction Using Meeting Transcripts
Feifan Liu, Deana Pennell, Fei Liu and Yang Liu

A Finite-State Turn-Taking Model for Spoken Dialog Systems
Antoine Raux and Maxine Eskenazi

Extracting Social Meaning: Identifying Interactional Style in Spoken Conversation
Dan Jurafsky, Rajesh Ranganath and Dan McFarland

Session 9C: Syntax and Parsing

Linear Complexity Context-Free Parsing Pipelines via Chart Constraints
Brian Roark and Kristy Hollingshead

Improved Syntactic Models for Parsing Speech with Repairs
Tim Miller

A model of local coherence effects in human sentence processing as consequences of up-

dates from bottom-up prior to posterior beliefs
Klinton Bicknell and Roger Levy
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Subjectivity Recognition on Word Senses via Semi-supervised Mincuts

Fangzhong Su
School of Computing
University of Leeds
fzsu@comp.leeds.ac.uk

Abstract

We supplement WordNet entries with infor-
mation on the subjectivity of its word senses.
Supervised classifiers that operate on word
sense definitions in the same way that text
classifiers operate on web or newspaper texts
need large amounts of training data. The re-
sulting data sparseness problem is aggravated
by the fact that dictionary definitions are very
short. We propose a semi-supervised mini-
mum cut framework that makes use of both
WordNet definitions and its relation structure.
The experimental results show that it outper-
forms supervised minimum cut as well as stan-
dard supervised, non-graph classification, re-
ducing the error rate by 40%. In addition, the
semi-supervised approach achieves the same
results as the supervised framework with less
than 20% of the training data.

1 Introduction

There is considerable academic and commercial in-
terest in processing subjective content in text, where
subjective content refers to any expression of a pri-
vate state such as an opinion or belief (Wiebe et
al., 2005). Important strands of work include the
identification of subjective content and the determi-
nation of its polarity, i.e. whether a favourable or
unfavourable opinion is expressed.

Automatic identification of subjective content of-
ten relies on word indicators, such as unigrams
(Pang et al., 2002) or predetermined sentiment lex-
ica (Wilson et al., 2005). Thus, the word positive
in the sentence “This deal is a positive development
for our company.” gives a strong indication that

1

Katja Markert
School of Computing
University of Leeds
markert@comp.leeds.ac.uk

the sentence contains a favourable opinion. How-
ever, such word-based indicators can be misleading
for two reasons. First, contextual indicators such as
irony and negation can reverse subjectivity or po-
larity indications (Polanyi and Zaenen, 2004). Sec-
ond, different word senses of a single word can ac-
tually be of different subjectivity or polarity. A typ-
ical subjectivity-ambiguous word, i.e. a word that
has at least one subjective and at least one objec-
tive sense, is positive, as shown by the two example
senses given below.!

(1) positive, electropositive—having a positive electric
charge;“protons are positive” (objective)
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(2) plus, positive—involving advantage or good; “a
plus (or positive) factor” (subjective)

We concentrate on this latter problem by automat-
ically creating lists of subjective senses, instead
of subjective words, via adding subjectivity labels
for senses to electronic lexica, using the exam-
ple of WordNet. This is important as the prob-
lem of subjectivity-ambiguity is frequent: We (Su
and Markert, 2008) find that over 30% of words
in our dataset are subjectivity-ambiguous. Informa-
tion on subjectivity of senses can also improve other
tasks such as word sense disambiguation (Wiebe
and Mihalcea, 2006). Moreover, Andreevskaia and
Bergler (2006) show that the performance of auto-
matic annotation of subjectivity at the word level can
be hurt by the presence of subjectivity-ambiguous
words in the training sets they use.

! All examples in this paper are from WordNet 2.0.

Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 1-9,
Boulder, Colorado, June 2009. (©)2009 Association for Computational Linguistics



We propose a semi-supervised approach based on
minimum cut in a lexical relation graph to assign
subjectivity (subjective/objective) labels to word
senses.” Our algorithm outperforms supervised min-
imum cuts and standard supervised, non-graph clas-
sification algorithms (like SVM), reducing the error
rate by up to 40%. In addition, the semi-supervised
approach achieves the same results as the supervised
framework with less than 20% of the training data.
Our approach also outperforms prior approaches to
the subjectivity recognition of word senses and per-
forms well across two different data sets.

The remainder of this paper is organized as fol-
lows. Section 2 discusses previous work. Section 3
describes our proposed semi-supervised minimum
cut framework in detail. Section 4 presents the ex-
perimental results and evaluation, followed by con-
clusions and future work in Section 5.

2 Related Work

There has been a large and diverse body of research
in opinion mining, with most research at the text
(Pang et al., 2002; Pang and Lee, 2004; Popescu and
Etzioni, 2005; Ounis et al., 2006), sentence (Kim
and Hovy, 2005; Kudo and Matsumoto, 2004; Riloff
et al., 2003; Yu and Hatzivassiloglou, 2003) or word
(Hatzivassiloglou and McKeown, 1997; Turney and
Littman, 2003; Kim and Hovy, 2004; Takamura et
al., 2005; Andreevskaia and Bergler, 2006; Kaji and
Kitsuregawa, 2007) level. An up-to-date overview is
given in Pang and Lee (2008).

Graph-based algorithms for classification into
subjective/objective or positive/negative language
units have been mostly used at the sentence and
document level (Pang and Lee, 2004; Agarwal and
Bhattacharyya, 2005; Thomas et al., 2006), instead
of aiming at dictionary annotation as we do. We
also cannot use prior graph construction methods
for the document level (such as physical proxim-
ity of sentences, used in Pang and Lee (2004)) at
the word sense level. At the word level Taka-
mura et al. (2005) use a semi-supervised spin model
for word polarity determination, where the graph

21t can be argued that subjectivity labels are maybe rather
more graded than the clear-cut binary distinction we assign.
However, in Su and Markert (2008a) as well as Wiebe and Mi-
halcea (2006) we find that human can assign the binary distinc-
tion to word senses with a high level of reliability.

is constructed using a variety of information such
as gloss co-occurrences and WordNet links. Apart
from using a different graph-based model from ours,
they assume that subjectivity recognition has already
been achieved prior to polarity recognition and test
against word lists containing subjective words only.
However, Kim and Hovy (2004) and Andreevskaia
and Bergler (2006) show that subjectivity recogni-
tion might be the harder problem with lower human
agreement and automatic performance. In addition,
we deal with classification at the word sense level,
treating also subjectivity-ambiguous words, which
goes beyond the work in Takamura et al. (2005).

Word Sense Level: There are three prior ap-
proaches addressing word sense subjectivity or po-
larity classification. Esuli and Sebastiani (2006) de-
termine the polarity (positive/negative/objective) of
word senses in WordNet. However, there is no eval-
uation as to the accuracy of their approach. They
then extend their work (Esuli and Sebastiani, 2007)
by applying the Page Rank algorithm to rank the
WordNet senses in terms of how strongly a sense
possesses a given semantic property (e.g., positive
or negative). Apart from us tackling subjectivity
instead of polarity, their Page Rank graph is also
constructed focusing on WordNet glosses (linking
glosses containing the same words), whereas we
concentrate on the use of WordNet relations.

Both Wiebe and Mihalcea (2006) and our prior
work (Su and Markert, 2008) present an annota-
tion scheme for word sense subjectivity and algo-
rithms for automatic classification. Wiebe and Mi-
halcea (2006) use an algorithm relying on distribu-
tional similarity and an independent, large manually
annotated opinion corpus (MPQA) (Wiebe et al.,
2005). One of the disadvantages of their algorithm is
that it is restricted to senses that have distributionally
similar words in the MPQA corpus, excluding 23%
of their test data from automatic classification. Su
and Markert (2008) present supervised classifiers,
which rely mostly on WordNet glosses and do not
effectively exploit WordNet’s relation structure.

3 Semi-Supervised Mincuts

3.1 Minimum Cuts: The Main Idea

Binary classification with minimum cuts (Mincuts)
in graphs is based on the idea that similar items



should be grouped in the same cut. All items in the
training/test data are seen as vertices in a graph with
undirected weighted edges between them specifying
how strong the similarity/association between two
vertices is. We use minimum s-t cuts: the graph con-
tains two particular vertices s (source, corresponds
to subjective) and ¢ (sink, corresponds to objective)
and each vertex u is connected to s and ¢ via a
weighted edge that can express how likely u is to
be classified as s or ¢ in isolation.

Binary classification of the vertices is equivalent
to splitting the graph into two disconnected subsets
of all vertices, S and 7" with s € Sand t € T.
This corresponds to removing a set of edges from
the graph. As similar items should be in the same
part of the split, the best split is one which removes
edges with low weights. In other words, a minimum
cut problem is to find a partition of the graph which
minimizes the following formula, where w(u, v) ex-
presses the weight of an edge between two vertices.

W(S,T)= > wlu,v)

ueSweT

Globally optimal minimum cuts can be found in
polynomial time and near-linear running time in
practice, using the maximum flow algorithm (Pang
and Lee, 2004; Cormen et al., 2002).

3.2 Why might Semi-supervised Minimum
Cuts Work?

We propose semi-supervised mincuts for subjectiv-
ity recognition on senses for several reasons.

First, our problem satisfies two major conditions
necessary for using minimum cuts. It is a bi-
nary classification problem (subjective vs. objective
senses) as is needed to divide the graph into two
components. Our dataset also lends itself naturally
to s-t Mincuts as we have two different views on the
data. Thus, the edges of a vertex (=sense) to the
source/sink can be seen as the probability of a sense
being subjective or objective without taking similar-
ity to other senses into account, for example via con-
sidering only the sense gloss. In contrast, the edges
between two senses can incorporate the WordNet re-
lation hierarchy, which is a good source of similar-
ity for our problem as many WordNet relations are
subjectivity-preserving, i.e. if two senses are con-
nected via such a relation they are likely to be both
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subjective or both objective.> An example here is

the antonym relation, where two antonyms such as
good—morally admirable and evil, wicked—morally
bad or wrong are both subjective.

Second, Mincuts can be easily expanded into
a semi-supervised framework (Blum and Chawla,
2001). This is essential as the existing labeled
datasets for our problem are small. In addition,
glosses are short, leading to sparse high dimensional
vectors in standard feature representations. Also,
WordNet connections between different parts of the
WordNet hierarchy can also be sparse, leading to
relatively isolated senses in a graph in a supervised
framework. Semi-supervised Mincuts allow us to
import unlabeled data that can serve as bridges to
isolated components. More importantly, as the unla-
beled data can be chosen to be related to the labeled
and test data, they might help pull test data to the
right cuts (categories).

3.3 Formulation of Semi-supervised Mincuts

The formulation of our semi-supervised Mincut for
sense subjectivity classification involves the follow-
ing steps, which we later describe in more detail.

1. We define two vertices s (source) and ¢ (sink),
which correspond to the “subjective” and “ob-
jective” category, respectively. Following the
definition in Blum and Chawla (2001), we call
the vertices s and t classification vertices, and
all other vertices (labeled, test, and unlabeled
data) example vertices. Each example vertex
corresponds to one WordNet sense and is con-
nected to both s and ¢ via a weighted edge. The
latter guarantees that the graph is connected.

2. For the test and unlabeled examples, we see
the edges to the classification vertices as the
probability of them being subjective/objective
disregarding other example vertices. We use a
supervised classifier to set these edge weights.
For the labeled training examples, they are con-
nected by edges with a high constant weight to
the classification vertices that they belong to.

3. WordNet relations are used to construct the
edges between two example vertices. Such

3See Kamps et al. (2004) for an early indication of such
properties for some WordNet relations.



edges can exist between any pair of example
vertices, for example between two unlabeled
examples.

4. After graph construction we then employ a
maximum-flow algorithm to find the minimum
s-t cuts of the graph. The cut in which the
source vertex s lies is classified as “subjective”,
and the cut in which the sink vertex ¢ lies is “ob-
jective”.

We now describe the above steps in more detail.

Selection of unlabeled data: Random selection
of unlabeled data might hurt the performance of
Mincuts, as they might not be related to any sense in
our training/test data (denoted by A). Thus a basic
principle is that the selected unlabeled senses should
be related to the training/test data by WordNet rela-
tions. We therefore simply scan each sense in A, and
collect all senses related to it via one of the WordNet
relations in Table 1. All such senses that are not in
A are collected in the unlabeled data set.

Weighting of edges to the classification ver-
tices: The edge weight to s and ¢ represents how
likely it is that an example vertex is initially put in
the cut in which s (subjective) or ¢ (objective) lies.
For unlabeled and test vertices, we use a supervised
classifier (SVM*) with the labeled data as training
data to assign the edge weights. The SVM is also
used as a baseline and its features are described in
Section 4.3. As we do not wish the Mincut to re-
verse labels of the labeled training data, we assign a
high constant weight of 5 to the edge between a la-
beled vertex and its corresponding classification ver-
tex, and a low weight of 0.01 to the edge to the other
classification vertex.

Assigning weights to WordNet relations: We
connect two vertices that are linked by one of
the ten WordNet relations in Table 1 via an edge.
Not all WordNet relations we use are subjectivity-
preserving to the same degree: for example, hy-
ponyms (such as simpleton) of objective senses
(such as person) do not have to be objective. How-
ever, we aim for high graph connectivity and we
can assign different weights to different relations

“We employ LIBSVM, available at http: //www.csie.
ntu.edu.tw/~cJjlin/libsvm/. Linear kernel and prob-
ability estimates are used in this work.

to reflect the degree to which they are subjectivity-
preserving. Therefore, we experiment with two
methods of weight assignment. Method 1 (NoSL)
assigns the same constant weight of 1.0 to all Word-
Net relations.

Method 2 (SL) reflects different degrees of pre-
serving subjectivity. To do this, we adapt an un-
supervised method of generating a large noisy set
of subjective and objective senses from our previ-
ous work (Su and Markert, 2008). This method
uses a list of subjective words (SL)’ to classify each
WordNet sense with at least two subjective words
in its gloss as subjective and all other senses as ob-
jective. We then count how often two senses re-
lated via a given relation have the same or a dif-
ferent subjectivity label. The weight is computed
by #same /(#same-+#different). Results are listed in
Table 1.

Table 1: Relation weights (Method 2)

Method #Same | #Different | Weight
Antonym 2,808 309 0.90
Similar-to 6,887 1,614 0.81
Derived-from 4,630 947 0.83
Direct-Hypernym 71,915 | 8,600 0.89
Direct-Hyponym 71,915 | 8,600 0.89
Attribute 350 109 0.76
Also-see 1,037 337 0.75
Extended-Antonym | 6,917 1,651 0.81
Domain 4,387 892 0.83
Domain-member 4,387 892 0.83

Example graph: An example graph is shown in
Figure 1. The three example vertices correspond
to the senses religious—extremely scrupulous and
conscientious, scrupulous—having scruples; aris-
ing from a sense of right and wrong; principled;
and flicker, spark, glint—a momentary flash of light
respectively. The vertex “scrupulous” is unlabeled
data derived from the vertex “religious”(a test item)
by the relation “similar-to”.

4 Experiments and Evaluation

4.1 Datasets

We conduct the experiments on two different gold
standard datasets. One is the Micro-WNOp corpus,

SAvailable at http: //www.cs.pitt.edu/mpga



Figure 1: Graph of Word Senses

which is representative of the part-of-speech distri-
bution in WordNet ®. Tt includes 298 words with
703 objective and 358 subjective WordNet senses.
The second one is the dataset created by Wiebe
and Mihalcea (2006).” It only contains noun and
verb senses, and includes 60 words with 236 ob-
jective and 92 subjective WordNet senses. As the
Micro-WNOp set is larger and also contains adjec-
tive and adverb senses, we describe our results in
more detail on that corpus in the Section 4.3 and
4.4. In Section 4.5, we shortly discuss results on
Wiebe&Mihalcea’s dataset.

4.2 Baseline and Evaluation

We compare to a baseline that assigns the most
frequent category objective to all senses, which
achieves an accuracy of 66.3% and 72.0% on Micro-
WNOp and Wiebe&Mihalcea’s dataset respectively.
We use the McNemar test at the significance level of
5% for significance statements. All evaluations are
carried out by 10-fold cross-validation.

4.3 Standard Supervised Learning

We use an SVM classifier to compare our proposed
semi-supervised Mincut approach to a reasonable

SAvailable at http://www.comp.leeds.ac.uk/
markert/data. This dataset was first used with a different
annotation scheme in Esuli and Sebastiani (2007) and we also
used it in Su and Markert (2008).

7 Available at http://www.cs.pitt.edu/~wiebe/
pubs/papers/goldstandard.total.acl06.

baseline.® Three different feature types are used.

Lexical Features (L): a bag-of-words representa-
tion of the sense glosses with stop word filtering.

Relation Features (R): First, we use two features
for each of the ten WordNet relations in Table 1, de-
scribing how many relations of that type the sense
has to senses in the subjective or objective part of the
training set, respectively. This provides a non-graph
summary of subjectivity-preserving links. Second,
we manually collected a small set (denoted by
SubjSet) of seven subjective verb and noun senses
which are close to the root in WordNet’s hypernym
tree. A typical example element of SubjSet is psy-
chological feature —a feature of the mental life of a
living organism, which indicates subjectivity for its
hyponyms such as hope — the general feeling that
some desire will be fulfilled. A binary feature de-
scribes whether a noun/verb sense is a hyponym of
an element of SubjSet.

Monosemous Feature (M): for each sense, we
scan if a monosemous word is part of its synset. If
so, we further check if the monosemous word is col-
lected in the subjective word list (SL). The intuition
is that if a monosemous word is subjective, obvi-
ously its (single) sense is subjective. For example,
the sense uncompromising, inflexible—not making
concessions is subjective, as “uncompromising” is
a monosemous word and also in SL.

We experiment with different combinations of
features and the results are listed in Table 2, prefixed
by “SVM”. All combinations perform significantly
better than the more frequent category baseline and
similarly to the supervised Naive Bayes classifier
(see S&M in Table 2) we used in Su and Mark-
ert (2008). However, improvements by adding more
features remain small.

In addition, we compare to a supervised classifier
(see Lesk in Table 2) that just assigns each sense
the subjectivity label of its most similar sense in
the training data, using Lesk’s similarity measure
from Pedersen’s WordNet similarity package’. We
use Lesk as it is one of the few measures applicable
across all parts-of-speech.

8This SVM is also used to provide the edge weights to the
classification vertices in the Mincut approach.

°Available athttp: //www.d.umn.edu/~tpederse/
similarity.html.



Table 2: Results of SVM and Mincuts with different settings of feature

Method Subjective Objective Accuracy
Precision | Recall | F-score | Precision [ Recall [ F-score
Baseline N/A 0 N/A 66.3% 100% | 79.7% 66.3%
S&M 66.2% 64.5% | 65.3% 82.2% 83.2% | 82.7% 76.9%
Lesk 65.6% 50.3% | 56.9% 77.5% 86.6% | 81.8% 74.4%
SVM-L 69.6% 37.7% | 48.9% 74.3% 91.6% | 82.0% 73.4%
L-SL 82.0% 43.3% | 56.7% 76.7% 95.2% | 85.0% 77.7%
L-NoSL 80.8% 43.6% | 56.6% 76.7% 94.7% | 84.8% 77.5%
SVM-LM 68.9% 422% | 52.3% 75.4% 90.3% | 82.2% 74.1%
LM-SL 83.2% 44.4% | 57.9% 77.1% 95.4% | 85.3% 78.2%
LM-NoSL 83.6% 44.1% | 57.8% 77.1% 95.6% | 85.3% 78.2%
SVM-LR 68.4% 453% | 54.5% 76.2% 89.3% | 82.3% 74.5%
LR-SL 82.7% 65.4% | 73.0% 84.1% 93.0% | 88.3% 83.7%
LR-NoSL 82.4% 65.4% | 72.9% 84.0% 92.9% | 88.2% 83.6%
SVM-LRM | 69.8% 47.2% | 56.3% 76.9% 89.6% | 82.8% 75.3%
LRM-SL 85.5% 65.6% | 74.2% | 84.4% 94.3% | 89.1% | 84.6%
LRM-NoSL | 84.6% 65.9% | 74.1% 84.4% 93.9% | 88.9% 84.4%

'L, R and M correspond to the lexical, relation and monosemous features respectively.
2 SVM-L corresponds to using lexical features only for the SVM classifier. Likewise, SVM-
LRM corresponds to using a combination for lexical, relation, and monosemous features

for the SVM classifier.

3 L-SL corresponds to the Mincut that uses only lexical features for the SVM classifier,
and subjective list (SL) to infer the weight of WordNet relations. Likewise, LM-NoSL
corresponds to the Mincut algorithm that uses lexical and monosemous features for the
SVM, and predefined constants for WordNet relations (without subjective list).

4.4 Semi-supervised Graph Mincuts

Using our formulation in Section 3.3, we import
3,220 senses linked by the ten WordNet relations to
any senses in Micro-WNOp as unlabeled data. We
construct edge weights to classification vertices us-
ing the SVM discussed above and use WordNet re-
lations for links between example vertices, weighted
by either constants (NoSL) or via the method illus-
trated in Table 1 (SL). The results are also summa-
rized in Table 2. Semi-supervised Mincuts always
significantly outperform the corresponding SVM
classifiers, regardless of whether the subjectivity list
is used for setting edge weights. We can also see
that we achieve good results without using any other
knowledge sources (setting LR-NoSL).

The example in Figure 1 explains why semi-
supervised Mincuts outperforms the supervised ap-
proach. The vertex “religious” is initially assigned
the subjective/objective probabilities 0.24/0.76 by
the SVM classifier, leading to a wrong classification.
However, in our graph-based Mincut framework, the
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vertex “religious” might link to other vertices (for
example, it links to the vertex “scrupulous” in the
unlabeled data by the relation ‘“similar-to”). The
mincut algorithm will put vertices “religious” and
“scrupulous” in the same cut (subjective category) as
this results in the least cost 0.93 (ignoring the cost of
assigning the unrelated sense of “flicker””). In other
words, the edges between the vertices are likely to
correct some initially wrong classification and pull
the vertices into the right cuts.

In the following we will analyze the best mini-
mum cut algorithm LRM-SL in more detail. We
measure its accuracy for each part-of-speech in the
Micro-WNOp dataset. The number of noun, adjec-
tive, adverb and verb senses in Micro-WNOp is 484,
265, 31 and 281, respectively. The result is listed
in Table 3. The significantly better performance of
semi-supervised mincuts holds across all parts-of-
speech but the small set of adverbs, where there is
no significant difference between the baseline, SVM
and the Mincut algorithm.



Table 3: Accuracy for Different Part-Of-Speech

Method | Noun | Adjective | Adverb | Verb

Baseline | 76.9% | 61.1% 77.4% | 72.6%
SVM 81.4% | 63.4% 839% | 75.1%
Mincut | 88.6% | 78.9% 77.4% | 84.0%

We will now investigate how LRM-SL performs
with different sizes of labeled and unlabeled data.
All learning curves are generated via averaging 10
learning curves from 10-fold cross-validation.
Performance with different sizes of labeled data:
we randomly generate subsets of labeled data A,
As... A,, and guarantee that A; C As... C A,.
Results for the best SVM (LRM) and the best min-
imum cut (LRM-SL) are listed in Table 4, and the
corresponding learning curve is shown in Figure 2.
As can be seen, the semi-supervised Mincuts is
consistently better than SVM. Moreover, the semi-
supervised Mincut with only 200 labeled data items
performs even better than SVM with 954 training
items (78.9% vs 75.3%), showing that our semi-
supervised framework allows for a training data re-
duction of more than 80%.

Table 4: Accuracy with different sizes of labeled data
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Figure 2: Learning curve with different sizes of labeled
data

The results are listed in Table 5 and Table 6 re-
spectively. The corresponding learning curves are
shown in Figure 3. We see that performance im-
proves with the increase of unlabeled data. In addi-
tion, the curves seem to converge when the size of
unlabeled data is larger than 3,000. From the results
in Tabel 5 one can also see that hyponymy is the re-
lation accounting for the largest increase.

Table 6: Accuracy with different sizes of unlabeled data

# labeled data | SVM | Mincuts
100 69.1% | 72.2%
200 72.6% | 78.9%
400 74.4% | 82.7%
600 75.5% | 83.7%
800 76.0% | 84.1%
900 75.6% | 84.8%
954 (all) 75.3% | 84.6%

(random selection)

# unlabeled data | Accuracy
0 75.9%
200 76.5%
500 78.6%
1000 80.2%
2000 82.8%
3000 84.0%
3220 84.6%

Performance with different sizes of unlabeled
data: We propose two different settings.

Optionl: Use a subset of the ten relations to
generate the unlabeled data (and edges between
example vertices). For example, we first use
{antonym, similar-to} only to obtain a unlabeled
dataset Uy, then use a larger subset of the relations
like {antonym, similar-to, direct-hyponym, direct-
hypernym} to generate another unlabeled dataset
Us, and so forth. Obviously, U; is a subset of U; 1.

Option2: Use all the ten relations to generate the
unlabeled data U. We then randomly select subsets
of U, such as subset Uy, Us and Us, and guarantee
that Uy C Uy C Uz C ... U.

Furthermore, these results also show that a super-
vised mincut without unlabeled data performs only
on a par with other supervised classifiers (75.9%).
The reason is that if we exclude the unlabeled data,
there are only 67 WordNet relations/edges between
senses in the small Micro-WNOp dataset. In con-
trast, the use of unlabeled data adds more edges
(4,586) to the graph, which strongly affects the
graph cut partition (see also Figure 1).

4.5 Comparison to Prior Approaches

In our previous work (Su and Markert, 2008), we re-
port 76.9% as the best accuracy on the same Micro-



Table 5: Accuracy with different sizes of unlabeled data from WordNet relation

Relation # unlabeled data | Accuracy
{2} 0 75.3%
{similar-to} 418 79.1%
{similar-to, antonym} 514 79.5%
{similar-to, antonym, direct-hypernym, direct- | 2,721 84.4%
hyponym}

{similar-to, antonym, direct-hypernym, direct- | 3,004 84.4%
hyponym, also-see, extended-antonym }

{similar-to, antonym, direct-hypernym, direct- | 3,220 84.6%
hyponym, also-see, extended-antonym, derived-from,

attribute, domain, domain-member}
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Figure 3: Learning curve with different sizes of unlabeled
data

WNOp dataset used in the previous sections, using a
supervised Naive Bayes (S&M in Tabel 2). Our best
result from Mincuts is significantly better at 84.6%
(see LRM-SL in Table 2).

For comparison to Wiebe and Mihalcea (2006),
we use their dataset for testing, henceforth called
Wiebe (see Section 4.1 for a description). Wiebe
and Mihalcea (2006) report their results in precision
and recall curves for subjective senses, such as a pre-
cision of about 55% at a recall of 50% for subjective
senses. Their F-score for subjective senses seems to
remain relatively static at 0.52 throughout their pre-
cision/recall curve.

We run our best Mincut LRM-SL algorithm with
two different settings on Wiebe. Using Micro-
WNOp as training set and Wiebe as test set, we
achieve an accuracy of 83.2%, which is similar to the
results on the Micro-WNOp dataset. At the recall of
50% we achieve a precision of 83.6% (in compari-
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son to their precision of 55% at the same recall). Our
F-score is 0.63 (vs. 0.52).

To check whether the high performance is just due
to our larger training set, we also conduct 10-fold
cross-validation on Wiebe. The accuracy achieved
is 81.1% and the F-score 0.56 (vs. 0.52), suggesting
that our algorithm performs better. Our algorithm
can be used on all WordNet senses whereas theirs is
restricted to senses that have distributionally similar
words in the MPQA corpus (see Section 2). How-
ever, they use an unsupervised algorithm i.e. they
do not need labeled word senses, although they do
need a large, manually annotated opinion corpus.

5 Conclusion and Future Work

We propose a semi-supervised minimum cut algo-
rithm for subjectivity recognition on word senses.
The experimental results show that our proposed ap-
proach is significantly better than a standard super-
vised classification framework as well as a super-
vised Mincut. Overall, we achieve a 40% reduction
in error rates (from an error rate of about 25% to an
error rate of 15%). To achieve the results of standard
supervised approaches with our model, we need less
than 20% of their training data. In addition, we com-
pare our algorithm to previous state-of-the-art ap-
proaches, showing that our model performs better
on the same datasets.

Future work will explore other graph construc-
tion methods, such as the use of morphological re-
lations as well as thesaurus and distributional sim-
ilarity measures. We will also explore other semi-
supervised algorithms.
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Abstract challenging and have received less attention in auto-
matic subjectivity and sentiment analysis.
This paper introduces an integrative approach A common approach to building lexicons for sub-

to automatic word sense subjectivity annota-  jectivity analysis is to begin with a small set of
tion. We use features that exploit the hier-  seeds which are prototypically subjective (or posi-
archical structure and domain information in  tye/negative, in sentiment analysis), and then fol-
lexical resources such as WordNet, as well as low semantic links in WordNet-like resources. By

other types of features that measure the sim- ; h hasis has b hori | relati
ilarity of glosses and the overlap among sets ar, the emphasis has been on horizontal relations,

of semantically related words. Integrated ina  Such asynonymyndantonymy Exploiting vertical

machine learning framework, the entire set of links opens the door to taking into account the infor-
features is found to give better resultsthanany ~ mation content of ancestor concepts of senses with
individual type of feature. known and unknown subjectivity. We develop novel

features that measure the similarity of a target word
sense with a seed set of senses known to be sub-
jective, where the similarity between two concepts
is determined by the extent to which they share in-
Automatic extraction of opinions, emotions, andormation, measured by the information content as-
sentiments in textsubjectivity analysisto support sociated with their least common subsumer (LCS).
applications such as product review mining, sumfurther, particularizing the LCS features to domain
marization, question answering, and information exgreatly reduces calculation while still maintaining
traction is an active area of research in NLP. effective features.

Many approaches to opinion, sentiment, and sub- We find that our new features do lead to signif-
jectivity analysis rely on lexicons of words that mayicant improvements over methods proposed in pre-
be used to express subjectivity. However, words mayious work, and that the combination of all features
have both subjective and objective senses, which gives significantly better performance than any sin-
a source of ambiguity in subjectivity and sentimengle type of feature alone.
analysis. We show that even words judged in pre- We also ask, given that there are many approaches
vious work to be reliable clues of subjectivity haveto finding subjective words, if it would make sense
significant degrees of subjectivity sense ambiguity.for word- and sense-level approaches to work in tan-

To address this ambiguity, we present a methodem, or should we best view them as competing ap-
for automatically assigning subjectivity labels toproaches? We give evidence suggesting that first
word senses in a taxonomy, which uses new featuregentifying subjective words and then disambiguat-
and integrates more diverse types of knowledge thang their senses would be an effective approach to
in previous work. We focus on nouns, which aresubjectivity sense labeling.

1 Introduction
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There are several motivations for assigning sulnf private states attributed to a person, such as their
jectivity labels to senses. First, (Wiebe and Miimnotivations, thoughts, and speculations, in addition
halcea, 2006) provide evidence that word sense I# their positive and negative sentiments.
bels, together with contextual subjectivity analysis, Second, distinguishin§ andO instances has of-
can be exploited to improve performance in worden proven more difficult than subsequent polarity
sense disambiguation. Similarly, given subjectivityclassification. Researchers have found this at vari-
sense labels, word-sense disambiguation may potesus levels of analysis, including the manual anno-
tially help contextual subjectivity analysis. In addi-tation of phrases (Takamura et al., 2006), sentiment
tion, as lexical resources such as WordNet are devallassification of phrases (Wilson et al., 2005), sen-
oped further, subjectivity labels would provide prin-timent tagging of words (Andreevskaia and Bergler,
cipled criteria for refining word senses, as well as foR006b), and sentiment tagging of word senses (Esuli
clustering similar meanings to create more coursend Sebastiani, 2006a). Thus, effective methods for
grained sense inventories. SO classification promise to improve performance

For many opinion mining applications, polarityfor sentiment classification. In fact, researchers in
(positive, negative) is also important. The overalsentiment analysis have realized benefits by decom-
framework we envision is a layered approach: clagosing the problem int&O and polarity classifica-
sifying instances as objective or subjective, and fuition (Yu and Hatzivassiloglou, 2003; Pang and Lee,
ther classifying the subjective instances by polai2004; Wilson et al., 2005; Kim and Hovy, 2006).
ity. Decomposing the problem into subproblems ha®ne reason is that different features may be relevant
been found to be effective for opinion mining. Thisfor the two subproblems. For example, negation fea-
paper addresses the first of these subproblems. tures are more important for polarity classification

than for subjectivity classification.
2 Background Note that some of our features require vertical
links that are present in WordNet for nouns and
We adopt the definitions afubjectiveandobjective  yerbs but not for other parts of speech. Thus we ad-
from Wiebe and Mihalcea (2006) (hereaft8V).  dress nouns (leaving verbs to future work). There
Subjective expressions are words and phrases beigg other motivations for focusing on nouns. Rela-
used to express opinions, emotions, speculationgyely little work in subjectivity and sentiment anal-

etc. WM give the following examples: ysis has focused on subjective nouns. Also, a study
(Bruce and Wiebe, 1999) showed that, of the major
His alarm grew. parts of speech, nouns are the most ambiguous with
He absorbedthe information quickly. respect to the subjectivity of their instances.
UCC/Disciples leadersoundly condemned the  Turning to word senses, we adopt the definitions
Iranian President'serbal assaulton Israel. from WM. First, subjective: “Classifying a sense as
What's the catch? Smeans that, when the sense is used in a text or con-

versation, we expect it to express subjectivity; we
Polarity (also calledemantic orientatiohis also also expect the phrase or sentence containing it to
important to NLP applications in sentiment analysise subjective [WM, pp. 2-3].”
and opinion extraction. In review mining, for exam- In WM, it is noted that sentences containing ob-
ple, we want to know whether an opinion about gective senses may not be objective, as in the sen-
product is positive or negative. Even so, we believeenceWill someone shut that dadarm off? Thus,
there are strong motivations for a separate subjeobjective senses are defined as follows: “Classifying
tive/objective (S/O) classification as well. a sense a® means that, when the sense is used in a
First, expressions may be subjective but not haviext or conversation, we do not expect it to express
any particular polarity. An example given by (Wil- subjectivity and, if the phrase or sentence containing
son et al., 2005) iderome says the hospitédels it is subjective, the subjectivity is due to something
no different than a hospital in the statedn NLP  else [WM, p 3].”
application system may want to find a wide range The following subjective examples are given in
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WM: and neutrality. There is no unambiguous mapping
between the labels of WM/SM and ES, first because
His alarm grew. WM/SM use distinct classes and ES use numerical
alarm, dismay, consternation — (fear resulting from the awarer-atings and second because WM/SM distinguish be-
ness of danger) o
. . . . _ tween objective senses on the one hand and neutral
=> fear, fearfulness, fright — (an emotion experienced inan-"" " - .
ticipation of some specific pain or danger (usually accompaSUbJeCt'_Ve senses on the other, while those are both
nied by a desire to flee or fight)) neutral in the scheme used by ES.
What's thecatch? WM use an unsupervised corpus-based approach,
catch — (a hidden drawback; “it sounds good but what's thgn which subjectivity labels are assigned to word
CatCh?g ek — (i i of bei . L Senses based on a set of distributionally similar
—> drawback — (the quality of being a hindrance; *he, ¢ in 3 corpus annotated with subjective expres-
pointed out all the drawbacks to my plan”) . L
sions. SM explore methods that use existing re-
_ o o sources that do not require manually annotated data,
The following objective examples are given in WM:they also implement a supervised system for com-
parison, which we will calSMsup The other three
Thealarm went off. _ , groups start with positive and negative seed sets and
alarm, warning device, alarm system — (a device thatS|gnaIstheeX and them bv addina svnonvms and antonvms
occurrence of some undesirable event) P i y : g _y . y yms,
=> device — (an instrumentality invented for a particular pur-and traversing hquzontal Imks_ n Word_Net. AB, ES'
pose; “the device is small enough to wear on your wrist”; “sand SMsup additionally use information contained
device intended to conserve water”) in glosses; AB also use hyponyms; SMsup also uses
He sold hiscatch at the market. relation and POS features. AB perform multiple
catch, haul - (the quantity that was caught; “the catch was only{,ns of their system to assign fuzzy categories to
10 fish” . . . -
Ji izdeﬂnite quantity — (an estimated quantity) senses. ES use a semi-supervised, multiple-classifier
_ Y learning approach. In a later paper, (Esuli and Se-

bastiani, 2007), ES again use information in glosses,
WM performed an agreement study and repott, \ving a random walk ranking algorithm to a

that good agreemen£0.74) cgn be achigveq _be- raph in which synsets are linked if a member of
tween human annotators labeling the subjectivity Gk first synset appears in the gloss of the second.
senses. For a similar task, (Su and Markert, 2008) Like ES and SMsup, we use machine learning, but

also report good agreement. with more diverse sources of knowledge. Further,
several of our features are novel for the task. The
3 Related Work LCS features (Section 6.1) detect subjectivity by
Many methods have been developed for automatneasuring the similarity of a candidate word sense
cally identifying subjective dpinion, sentimentat- with a seed set. WM also use a similarity measure,
titude affect-bearing etc.) words, e.g., (Turney, but as a way to filter the output of a measure of distri-
2002; Riloff and Wiebe, 2003; Kim and Hovy, 2004;butional similarity (selecting words for a given word
Taboada et al., 2006; Takamura et al., 2006). sense), not as we do to cumulatively calculate the
Five groups have worked on subjectivity sense lasubjectivity of a word sense. Another novel aspect
beling. WM and Su and Markert (2008) (hereafteof our similarity features is that they are particular-
SM) assignSO labels to senses, while Esuli and Seized to domain, which greatly reduces calculation.
bastiani (hereaftedeS (2006a; 2007), Andreevskaia The domain subjectivity LCS features (Section 6.2)
and Bergler (hereafteAB) (2006b; 2006a), and are also novel for our task. So is augmenting seed
(Valitutti et al., 2004) assign polarity labels. sets with monosemous words, for greater coverage
WM, SM, and ES have evaluated their systemwithout requiring human intervention or sacrificing
against manually annotated word-sense data. WMpality. Note that none of our features as we specif-
annotations are described above; SM’s are similaically define them has been used in previous work;
In the scheme ES use (Cerini et al., 2007), sensesmbining them together, our approach outperforms
are assigned three scores, for positivity, negativityrevious approaches.
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4 Lexicon and Annotations then expand the set with their hyponyms, as they

L . . ... were found useful in previous work by AB (2006b;
We use the subijectivity lexicon of (Wiebe and Rlloff,2006a). This yields a subjective seed set of 645

2005) both to create a subjective seed set and tgenses. After removing the word senses that belong

create the experimental data sets. The lexicon is a
to the same synset, so that only one word sense per

list of words and phrases that have subjective usessynset is left, we ended up with 603 senses.

though only word entries are used in this paper (i.e., To create the objective seed set, two annotators

we do not address phrases at this point). Some errr]fanually annotated 800 random senses from Word-

f[ries are from manual_ly devel_oped resources, in(.:lu%et and selected for the objective seed set the ones
ing the General Inquirer, while others were dewe?hey both agreed are clearly objective. This creates

from corpora using automatic methods. S .
) - . an objective seed set of 727. Again we removed
Through manual review and empirical testing OnmuItipIe senses from the same synset leaving us with
data, (Wiebe and Riloff, 2005) divided the clues int y

strong trongsubj and weak weaksubj subjectiv- %22. The other 73 senses they annotated are added

) ) . . to the mixed data set described below. As this sam-
ity clues. Strongsubglues have subjective meanings

with high probability, andveaksubglues have sub- pling sh(.)ws', WordNet nouns are highly ;keyved to-
o ) . o ward objective senses, so finding an objective seed
jective meanings with lower probability.

. set is not difficult.
To support our experiments, we annotated the

sense%of polysemous nouns selected from the lexg  Features

icon, using WM'’s annotation scheme described in

Section 2. Due to time constraints, only some of th-1 ~Sense Subjectivity LCS Feature

data was labeled through consensus labeling by twithis feature measures the similarity of a target sense

annotators; the rest was labeled by one annotator. with members of the subjective seed set. Here, sim-
Overall, 2875 senses for 882 words were anndtarity between two senses is determined by the ex-

tated. Even though all are senses of words from thtent to which they share information, measured by

subjectivity lexicon, only 1383 (48%) of the sensesising the information content associated with their

are subjective. least common subsumer. For an intuition behind this
The words labeledtrongsubjare in fact less am- feature, consider this example. In WordNet, the hy-

biguous than those label@geaksubjn our analysis, pernym of the “strong criticism” sense aftackis

thus supporting the reliability classifications in thecriticism. Several other negative subjective senses

lexicon. 55% (1038/1924) of the sensesstitbng- are descendants afiticism, including the relevant

subjwords are subjective, while only 36% (345/951)senses ofire, thrust andrebuke Going up one

of the senses ofleaksubjvords are subjective. more level, the hypernym ariticism is the “ex-
For the analysis in Section 7.3, we form subsetgression of disapproval” meaning olfisapprova)

of the data annotated here to test performance of owhich has several additional negative subjective de-

method on different data compositions. scendants, such as the “expression of opposition and
disapproval” sense afiscouragementOur hypoth-
5 Seed Sets esis is that the cases where subjectivity is preserved

Both subjective and objective seed sets are used ifbthe hypernym structure, or where hypernyms do
define the features described below. For seeds,!@ad from subjective senses to othease the ones
large number is desirable for greater coverage, dbat have the highest least common subsumer score
though high quality is also important. We begin toVith the seed set of known subjective senses.

build our subjective seed set by adding the monose- We calculate similarity using the information-
mous strongsubjnouns of the subjectivity lexicon content based measure proposed in (Resnik, 1995),
(there are 397 of these). Since they are monos@S implemented in the WordNet::Similarity pack-

mous, they pose no problem of sense ambiguity. Wage (using the default option in which LCS values

_— . are computed over the SemCor corptisiiven a
!Available at http://www.cs.pitt.edu/mpga

2In WordNet 2.0 Shttp://search.cpan.org/dist/WordNet-Similarity/
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taxonomy such as WordNet, the information coneluded only a subjective feature to put more empha-
tent associated with a concept is determined as tisés on the subjective senses. In the future, features
likelihood of encountering that concept, defined asould be defined with respect to objectivity, as well
—log(p(C)), wherep(C) is the probability of see- as polarity and other properties of subjectivity.
ing conceptC' in a corpus. The similarity between . o
two concepts is then defined in terms of informatio-2 P0omain Subjectivity LCS Score
content as: LCSs(C1,Cs) = max[—log(p(C))], We also include a feature reflecting the subjectivity
whereC is the concept that subsumes béthand of the domain of the target sense. Domains are
C, and has the highest information content (i.e., it ig@ssigned scores as follows. For domairand seed
theleast common subsumer (LG.S) setsS:

For this feature, a score is assigned to a target
sense based on its semantic similarity to the mem- DomainLCSscore(D, S) =
bers of a seed set; in particular, the maximum suct€de pnsMemLCSscore(d, D, S)
similarity is used.

For a target senseand a seed sef, we could where:
have used the following score:

Score(t,S) = max LCS4(t, s) MemLCSscore(d, D, §) =

s€S max  LCSg(d,d;)

However, several researchers have noted that sub< N5 di#d
jectivity may be domain specific. A version of  The value of this feature for a sense is the score
WordNet exists, WordNet Domains (Gliozzo et a'-assigned to that sense’s domain.
2005), which associates each synset with one of the
domains in the Dewey Decimal library classifica6.-3 Common Related Senses

tion. After sorting our subjective seed set into differ-Thjs feature is based on the intersection between the

ent domains, we observed that over 80% of the sulet of senses related (via WordNet relations) to the

jective seed senses are concentrated in six domaigget sense and the set of senses related to members

(the rest are distributed among 35 domains). of a seed set. First, for the target sense and each
Thus, we decided to particularize the semantimember of the seed set, a set of related senses is

similarity feature to domain, such that only the subformed consisting of its synonyms, antonyms and di-

set of the seed set in the same domain as the tagct hypernyms as defined by WordNet. For a sense

get sense is used to compute the feature. This ig; R(s) is s together with its related senses.

volves much less calculation, as LCS values are cal- Then, given a target sensend a seed sef we

culated only with respect to a subset of the seed selompute an average percentage overlap as follows:

We hypothesized that this would still be an effec- ) LLGILICHI

tive feature, while being more efficient to calculate. 5, ;5 0 gy _ mES mex ((ROLIREID

This will be important when this method is applied elOverlap(t, ) =

to large resources such as the entire WordNet.
Thus, for seed sef and target sensewhich is

in domainD, the feature is defined as the following

score: 6.4 Gloss-based features

SenseLCSscore(t, D, 5) = max LOSs(t,d)  Tphege features are Lesk-style features (Lesk, 1986)

that exploit overlaps between glosses of target and

The seed set is a parameter, so we could hawgeq senses. We include two types in our work.
defined a feature reflecting similarity to the objec-

tive seed set as well. Since WordNet is alread§-4.1 Average Percentage Gloss Overlap

highly skewed toward objective noun senses, any Features

naive classifier need only guess the majority class For a sense, gloss(s) is the set of stems in the
for high accuracy for the objective senses. We ingloss of s (excluding stop words). Then, given a tar-

[S]

The value of a feature is its score. Two features
are included in the experiments below, one for each
of the subjective and objective seed sets.
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get sense and a seed s&f, we compute an average Features Acc P R F

percentage overlap as follows: All 77.3|72.8| 74.3| 735
|stoss()n0, ¢ (s yaloss ()] Standalone Ablation Results

Es max lgtoss DL Ure r(sy) gtoss (D All 77.3| 72.8| 74.3| 73.5

GlOverlap(t, $) = = 5 LCS 68.2| 69.3| 44.2| 54.0

As above,R(s) is considered for each seed sense  Gloss vector| 74.3| 71.2 | 68.5| 69.8

s, but now only the target sengés considered, not Overlaps 69.4| 75.8| 40.6| 52.9
R(t). We did this because we hypothesized that the Leave-One-Out Ablation Results

gloss can provide sufficient context for a given target Al 77.3172.81 7431 735

sense, so that the addition of related words is not [ CS 75.21 709 70.6 | 70.7

necessary. Gloss vector| 75.0 | 74.4| 61.8| 67.5

We include two features, one for each of the sub-  Qverlaps 74.8| 71.9| 73.8| 72.8
jective and objective seed sets.

Table 1: Results for the mixed corpus (2354 senses,
6.4.2 \ector Gloss Overlap Features 57.82% O))

For this feature we also consider overlaps of
stems in glosses (excluding stop words). The OVer-- \ictor of gloss wordsgsS)
laps considered are between the gloss of the tar-
get sensé and the glosses aR(s) for all s in a 8. Vector of gloss words{S)
seed set (for convenience, we will refer to these ap Experiments
seedRelationSets).

A vector of stems is created, one for each steM/e perform 10-fold cross validation experiments
(excluding stop words) that appears in a gloss din several data sets, using SMMht (Joachims,

a member ofseedRelationSets. If a stem in the 1999} under its default settings.

gloss of the target sense appears in this vector, thenBased on our random sampling of WordNet, it
the vector entry for that stem is the total count ofppears that WordNet nouns are highly skewed to-
that stem in the glosses of the target sense and @frd objective senses. (Esuli and Sebastiani, 2007)
members okeed RelationSets. argue that random sampling from WordNet would

A feature is created for each vector entry whosgield a corpus mostly consisting of objective (neu-
value is the count at that position. Thus, these fedral) senses, which would be “pretty useless as a
tures consider counts of individual stems, rather thagenchmark for testing derived lexical resources for
average proportions of overlaps, as for the previougpinion mining [p. 428].” So, they use a mixture of
type of gloss feature. subjective and objective senses in their data set.

Two vectors of features are used, one where the To create a mixed corpus for our task, we anno-
seed set is the subjective seed set, and one wherédited a second random sample from WordNet (which

is the objective seed set. is as skewed as the previously mentioned one). We
added together all of the senses of words in the lexi-
6.5 Summary con which we annotated, the leftover senses from the

In summary, we use the following features (he&¥6, selection of objective seed senses, and this new sam-
is the subjective seed set adllS is the objective ple. We removed duplicates, multiple senses from

one). the same synset, and any senses belonging to the
same synset in either of the seed sets. This resulted

1. SenseLCSscore(t, D, SS) in a corpus of 2354 senses, 993 (42.18%) of which
2. DomainLCSscore(D, SS) are subjective and 1361 (57.82%) of which are ob-
3. RelOwverlap(t, SS) jective.
4. RelOverlap(t,0S) The results with all of our features on this mixed
5. GlOverlap(t, SS) corpus are given in Row 1 of Table 1. In Table 1, the
6. GlOverlap(t,0S) “http://svmlight.joachims.org/
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first column identifies the features, which in this case Data (#senses) Acc P R F
is all of them. The next three columns show overall Mixed (2354 57.8% O) 77.3 | 72.8| 74.3 | 73.5
accuracy, and precision and recall for finding sub- Stong+weak (1132) | 77.7| 76.8| 78.9| 77.8
jective senses. The baseline accuracy for the mixe'dsﬁfgxssgéj(?ggé) ;;g ;gg ;;é ;g;
data set (guessing the more frequent class, which is
objective) is 57.82%. As the table shows, the accurable 2: Results for different data sets (all are 50% S,

racy is substantially above baseline. unless otherwise notes)

7.1 Analysis and Discussion

. . o These results provide evidence th&tSand Gloss
In this section, we seek to gain insights by perform- .
. . ) . . .vectorare better together than either of them alone.
ing ablation studies, evaluating our method on dif-
ferent data compositions, and comparing our results3  pasuits on Different Data Sets

to previous results. _ _
Several methods have been developed for identify-

7.2 Ablation Studies ing subjective words. Perhaps an effective strategy

Since there are several features, we divided theiould be to begin with a word-level subjectivity lex-
into sets for the ablation studies. The vector-oficon, and then perform subjectivity sense labeling
gloss-words features are the most similar to ond® sort the subjective from objective senses of those
used in previous work. Thus, we opted to treayvords. We also wondered about the relative effec-
them as one ablation grougBloss vector. The tiveness of our method ostrongsubjversusweak-
Overlaps group includes theRelOverlap(t, SS), Subjclues.
RelOverlap(t,08),  GlOwverlap(t,SS), and To answer these questions, we apply the full
GlOverlap(t,0S) features. Finally, theLCS model (again in 10-fold cross validation experi-
group includes theSenseLCSscore and the ments) to data sets composed of senses of polyse-
DomainLC Sscore features. mous words in the subjectivity lexicon. To support
There are two types of ablation studies. In th€omparison, all of the data sets in this section have
first, one group of features at a time is included@ 50%-50% objective/subjective distributibnThe
Those results are in the middle section of Table Tesults are presented in Table 2.
Thus, for example, the row labelé&Sin this sec- For comparison, the first row repeats the results
tion is for an experiment using only tHeCSfea- for the mixed corpus from Table 1. The second
tures. In comparison to performance when all feafow shows results for a corpus of senses of a mix-
tures are used, F-measure for heerlapsandLCS ture ofstrongsubjandweaksubjvords. The corpus
ablations is significantly different at the < .01 was created by selecting a mixturestfongsubpand
level, and, for theGloss Vectorablation, it is sig- weaksubjvords, extracting their senses and §@
nificantly different at thep = .052 level (one-tailed labels applied to them in Section 4, and then ran-
t-test). Thus, all of the features together have bettélomly removing senses of the more frequent class
performance than any single type of feature alone.until the distribution is uniform. We see that the
In the second type of ablation study, we use aNesults on this corpus are better than on the mixed
the features minus one group of features at a timgata set, even though the baseline accuracy is lower
The results are in the bottom section of Table 1and the corpus is smaller. This supports the idea
Thus, for example, the row labelédSin this sec- that an effective strategy would be to first identify
tion is for an experiment using all but theCSfea- opinion-bearing words, and then apply our method
tures. F-measures ftuCSandGloss vectoare sig- to those words to sort out their subjective and objec-
nificantly different at the» = .056 andp = .014 lev-  tive senses.
els, respectively. However, F-measure for @wer- The third row shows results foneeaksubpubset

lapsablation is not significantly differenp(= .39). —(————
As with the mixed data set, we removed from these data
®Note that, because the majority clas€Oisbaseline recall sets multiple senses from the same synset and any senses in the

(and thus F-measure) is 0. same synset in either of the seed sets.
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Method P R F data set, which is the data set used by ES, reanno-
Our method 56.8 1 66.0| 61.1 tated by SM. CV* is their supervised system and
\é\xii\?\mﬁgﬂammc gg'g ?g'g ;’é'g SL* is their best non-supervised one. Our method
2 ' ' has higher F-measure than the otHeMote that the
Table 3: Results for WM Corpus (212 senses, 76% O)focus of SM’s work is not supervised machine learn-

ing.

Method A P R F
Our Method| 81.3% | 60.3% | 63.3% | 61.8% 8 Conclusions

SM Cv* 82.4% | 70.8% | 41.1% | 52.0% _ , _ _
SM SL* 78.3% | 53.0% | 57.4% | 54.9% In this paper, we introduced an integrative approach

to automatic subjectivity word sense labeling which
Table 4: Results for SM Corpus (484 senses, 76.9% Ogombines features exploiting the hierarchical struc-
ture and domain information of WordNet, as well

of the strong+weakcorpus and the fourth shows re-2S Similarity of glosses and overlap among sets
of semantically related words. There are several

sults for astrongsubjsubset that is of the same size. Ahiany ) :
As expected, the results for theeaksubjsenses contributions. First, we learn several things. We

are lower while those for thetrongsubjsenses are found (in Section 4) that even reliable lists of sub-
higher, asveaksubglues are more ambiguous. jective (opinion-bearing) words have many objec-
tive senses. We asked if word- and sense-level ap-

7.4 Comparisons with Previous Work proaches could be used effectively in tandem, and
WM and SM add h K q found (in Section 7.3) that an effective strategy is to
an address the same task as we do. -?ﬂst identify opinion-bearing words, and then apply

corr(;p;ar_e Oltg freljults to thl(.eérst’. we app!y outr fl:Iour method to sort out their subjective and objective
mode (in 10-fold cross validation experiments) %enses. We also found (in Section 7.2) that the entire
their data set$.

set of features gives better results than any individ-
Table 3 has the WM data set results. WM ranlﬁal type of feature alone

their senses and present their results in the form of Second, several of the features are novel for

precision recall curves. The second row of Table %ur task, including those exploiting the hierarchical

shows their results a_t the rgc_all level achievet_j by OWircture of a lexical resource, domain information,
method (66%). Their precision at that level is SUbZ';lnd relations to seed sets expanded with monose-
stantially below ours. MOUS Senses

Turning to ES, to creat&/O annotations, we ap-  gina|ly, the combination of our particular features
plied the following heuristic mapping (which is alsojg eftective. For example, on senses of words from
used by SM for the purpose of comparison): any g piectivity lexicon, accuracies range from 20 to
sense for which the sum of positive and negativgg ercentage points above baseline. Further, our

scores is greater than or equal t0 0.5is S, otherwis@ mpination of features outperforms previous ap-
itis O. We then evaluate the mapped tags against trp?oaches.

gold standard of WM. The results are in Row 3 0
Table 3. Note that this mapping is not fair to SenAcknowledgments

tiwordNet, as the tasks are quite different, and wehis work was supported in part by National Sci-
do not believe any conclusions can be drawn. Wence Foundation awards #0840632 and #0840608.
include the results to eliminate the possibility thatrhe authors are grateful to Fangzhong Su and Katja
their method is as good ours on our task, despite th@arkert for making their data set available, and to

differences between the tasks. the three paper reviewers for their helpful sugges-
Table 4 has the results for the noun subset of SMigons.

"The WM data set is available at 8We performed the same type of evaluation as in SM’s paper.
http://www.cs.pitt.edu/www.cs.pitt.edu/"wiebe.  ES appliedThat is, we assign a subjectivity label to one word sense for each
their method in (2006b) to WordNet, and made the resultsynset, which is the same as applying a subjectivity label to a
available asSentiWordNeat http://sentiwordnet.isti.cnr.it/. synset as a whole as done by SM.
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Abstract

This paper presents and compares WordNet-
based and distributional similarity approaches.
The strengths and weaknesses of each ap-
proach regarding similarity and relatedness
tasks are discussed, and a combination is pre-
sented. Each of our methods independently
provide the best results in their class on the
RG and WordSim353 datasets, and a super-
vised combination of them yields the best pub-
lished results on all datasets. Finally, we pio-
neer cross-lingual similarity, showing that our
methods are easily adapted for a cross-lingual
task with minor losses.

1 Introduction

Measuring semantic similarity and relatedness be-
tween terms is an important problem in lexical se-
mantics. It has applications in many natural lan-
guage processing tasks, such as Textual Entailment,
Word Sense Disambiguation or Information Extrac-
tion, and other related areas like Information Re-
trieval. The techniques used to solve this problem
can be roughly classified into two main categories:
those relying on pre-existing knowledge resources
(thesauri, semantic networks, taxonomies or ency-
clopedias) (Alvarez and Lim, 2007; Yang and Pow-
ers, 2005; Hughes and Ramage, 2007) and those in-
ducing distributional properties of words from cor-
pora (Sahami and Heilman, 2006; Chen et al., 2006;
Bollegala et al., 2007).

In this paper, we explore both families. For the
first one we apply graph based algorithms to Word-
Net, and for the second we induce distributional
similarities collected from a 1.6 Terabyte Web cor-
pus. Previous work suggests that distributional sim-
ilarities suffer from certain limitations, which make
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them less useful than knowledge resources for se-
mantic similarity. For example, Lin (1998b) finds
similar phrases like captive-westerner which made
sense only in the context of the corpus used, and
Budanitsky and Hirst (2006) highlight other prob-
lems that stem from the imbalance and sparseness of
the corpora. Comparatively, the experiments in this
paper demonstrate that distributional similarities can
perform as well as the knowledge-based approaches,
and a combination of the two can exceed the per-
formance of results previously reported on the same
datasets. An application to cross-lingual (CL) sim-
ilarity identification is also described, with applica-
tions such as CL Information Retrieval or CL spon-
sored search. A discussion on the differences be-
tween learning similarity and relatedness scores is
provided.

The paper is structured as follows. We first
present the WordNet-based method, followed by the
distributional methods. Section 4 is devoted to the
evaluation and results on the monolingual and cross-
lingual tasks. Section 5 presents some analysis, in-
cluding learning curves for distributional methods,
the use of distributional similarity to improve Word-
Net similarity, the contrast between similarity and
relatedness, and the combination of methods. Sec-
tion 6 presents related work, and finally, Section 7
draws the conclusions and mentions future work.

2  WordNet-based method

WordNet (Fellbaum, 1998) is a lexical database of
English, which groups nouns, verbs, adjectives and
adverbs into sets of synonyms (synsets), each ex-
pressing a distinct concept. Synsets are interlinked
with conceptual-semantic and lexical relations, in-
cluding hypernymy, meronymy, causality, etc.
Given a pair of words and a graph-based repre-
sentation of WordNet, our method has basically two

Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 19-27,
Boulder, Colorado, June 2009. (©)2009 Association for Computational Linguistics



steps: We first compute the personalized PageR-
ank over WordNet separately for each of the words,
producing a probability distribution over WordNet
synsets. We then compare how similar these two dis-
crete probability distributions are by encoding them
as vectors and computing the cosine between the
vectors.

We represent WordNet as a graph G = (V, E) as
follows: graph nodes represent WordNet concepts
(synsets) and dictionary words; relations among
synsets are represented by undirected edges; and
dictionary words are linked to the synsets associated
to them by directed edges.

For each word in the pair we first compute a per-
sonalized PageRank vector of graph G (Haveliwala,
2002). Basically, personalized PageRank is com-
puted by modifying the random jump distribution
vector in the traditional PageRank equation. In our
case, we concentrate all probability mass in the tar-
get word.

Regarding PageRank implementation details, we
chose a damping value of 0.85 and finish the calcula-
tion after 30 iterations. These are default values, and
we did not optimize them. Our similarity method is
similar, but simpler, to that used by (Hughes and Ra-
mage, 2007), which report very good results on sim-
ilarity datasets. More details of our algorithm can be
found in (Agirre and Soroa, 2009). The algorithm
and needed resouces are publicly available!.

2.1 WordNet relations and versions

The WordNet versions that we use in this work are
the Multilingual Central Repository or MCR (At-
serias et al., 2004) (which includes English Word-
Net version 1.6 and wordnets for several other lan-
guages like Spanish, Italian, Catalan and Basque),
and WordNet version 3.02. We used all the rela-
tions in MCR (except cooccurrence relations and se-
lectional preference relations) and in WordNet 3.0.
Given the recent availability of the disambiguated
gloss relations for WordNet 3.0%, we also used a
version which incorporates these relations. We will
refer to the three versions as MCR16, WN30 and
WN30g, respectively. Our choice was mainly moti-
vated by the fact that MCR contains tightly aligned

"http://http://ixa2.si.ehu.es/ukb/
2 Available from http://http://wordnet.princeton.edu/
3http://wordnet.princeton.edu/glosstag
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wordnets of several languages (see below).

2.2 Cross-linguality

MCR follows the EuroWordNet design (Vossen,
1998), which specifies an InterLingual Index (ILI)
that links the concepts across wordnets of differ-
ent languages. The wordnets for other languages in
MCR use the English WordNet synset numbers as
ILIs. This design allows a decoupling of the rela-
tions between concepts (which can be taken to be
language independent) and the links from each con-
tent word to its corresponding concepts (which is
language dependent).

As our WordNet-based method uses the graph of
the concepts and relations, we can easily compute
the similarity between words from different lan-
guages. For example, consider a English-Spanish
pair like car — coche. Given that the Spanish Word-
Net is included in MCR we can use MCR as the
common knowledge-base for the relations. We can
then compute the personalized PageRank for each
of car and coche on the same underlying graph, and
then compare the similarity between both probabil-
ity distributions.

As an alternative, we also tried to use pub-
licly available mappings for wordnets (Daude et al.,
2000)* in order to create a 3.0 version of the Span-
ish WordNet. The mapping was used to link Spanish
variants to 3.0 synsets. We used the English Word-
Net 3.0, including glosses, to construct the graph.
The two Spanish WordNet versions are referred to
as MCR16 and WN30g.

3 Context-based methods

In this section, we describe the distributional meth-
ods used for calculating similarities between words,
and profiting from the use of a large Web-based cor-
pus.

This work is motivated by previous studies that
make use of search engines in order to collect co-
occurrence statistics between words. Turney (2001)
uses the number of hits returned by a Web search
engine to calculate the Pointwise Mutual Informa-
tion (PMI) between terms, as an indicator of syn-
onymy. Bollegala et al. (2007) calculate a number
of popular relatedness metrics based on page counts,

*http://www.lsi.upc.es/~nlp/tools/download-map.php.



like PMI, the Jaccard coefficient, the Simpson co-
efficient and the Dice coefficient, which are com-
bined with lexico-syntactic patterns as model fea-
tures. The model parameters are trained using Sup-
port Vector Machines (SVM) in order to later rank
pairs of words. A different approach is the one taken
by Sahami and Heilman (2006), who collect snip-
pets from the results of a search engine and repre-
sent each snippet as a vector, weighted with the tf-idf
score. The semantic similarity between two queries
is calculated as the inner product between the cen-
troids of the respective sets of vectors.

To calculate the similarity of two words w; and
ws, Ruiz-Casado et al. (2005) collect snippets con-
taining w; from a Web search engine, extract a con-
text around it, replace it with wo and check for the
existence of that modified context in the Web.

Using a search engine to calculate similarities be-
tween words has the drawback that the data used will
always be truncated. So, for example, the numbers
of hits returned by search engines nowadays are al-
ways approximate and rounded up. The systems that
rely on collecting snippets are also limited by the
maximum number of documents returned per query,
typically around a thousand. We hypothesize that
by crawling a large corpus from the Web and doing
standard corpus analysis to collect precise statistics
for the terms we should improve over other unsu-
pervised systems that are based on search engine
results, and should yield results that are competi-
tive even when compared to knowledge-based ap-
proaches.

In order to calculate the semantic similarity be-
tween the words in a set, we have used a vector space
model, with the following three variations:

In the bag-of-words approach, for each word w
in the dataset we collect every term ¢ that appears in
a window centered in w, and add them to the vector
together with its frequency.

In the context window approach, for each word
w in the dataset we collect every window W cen-
tered in w (removing the central word), and add it
to the vector together with its frequency (the total
number of times we saw window W around w in the
whole corpus). In this case, all punctuation symbols
are replaced with a special token, to unify patterns
like , the <term> said to and ’ the <term> said to.
Throughout the paper, when we mention a context
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window of size N it means N words at each side of
the phrase of interest.

In the syntactic dependency approach, we parse
the entire corpus using an implementation of an In-
ductive Dependency parser as described in Nivre
(2006). For each word w we collect a template of
the syntactic context. We consider sequences of gov-
erning words (e.g. the parent, grand-parent, etc.) as
well as collections of descendants (e.g., immediate
children, grandchildren, etc.). This information is
then encoded as a contextual template. For example,
the context template cooks <term> delicious could
be contexts for nouns such as food, meals, pasta, etc.
This captures both syntactic preferences as well as
selectional preferences. Contrary to Pado and Lap-
ata (2007), we do not use the labels of the syntactic
dependencies.

Once the vectors have been obtained, the fre-
quency for each dimension in every vector is
weighted using the other vectors as contrast set, with
the x? test, and finally the cosine similarity between
vectors is used to calculate the similarity between
each pair of terms.

Except for the syntactic dependency approach,
where closed-class words are needed by the parser,
in the other cases we have removed stopwords (pro-
nouns, prepositions, determiners and modal and
auxiliary verbs).

3.1 Corpus used

We have used a corpus of four billion documents,
crawled from the Web in August 2008. An HTML
parser is used to extract text, the language of each
document is identified, and non-English documents
are discarded. The final corpus remaining at the end
of this process contains roughly 1.6 Terawords. All
calculations are done in parallel sharding by dimen-
sion, and it is possible to calculate all pairwise sim-
ilarities of the words in the test sets very quickly
on this corpus using the MapReduce infrastructure.
A complete run takes around 15 minutes on 2,000
cores.

3.2 Cross-linguality

In order to calculate similarities in a cross-lingual
setting, where some of the words are in a language [
other than English, the following algorithm is used:



Method ‘Window size RG dataset ‘WordSim353 dataset Context RG terms and frequencies
MCRI16 0.8310.73,0.89]  0.53 (0.56) [0.45, 0.60] 11 never forget the * on his face when grin,2,smile, 10
WN30 0.7910.67,0.86]  0.56 (0.58) [0.48, 0.63] he had a giant * on his face and grin,3,smile,2
WN30g 0.83[0.73,0.89]  0.66 (0.69) [0.59, 0.71] room with a huge * on her face and grin,2,smile,6
CW 1 0.83[0.73, 0.89] 0.63 [0.57, 0.69] the state of every * will be updated every automobile,2,car,3
2 0.83 [0.74, 0.90] 0.60 [0.53, 0.66] repair or replace the * if it is stolen automobile,2,car,2
3 0.851[0.76, 0.91] 0.59[0.52, 0.65] located on the north * of the Bay of shore, 14,coast,2
4 0.89 [0.82, 0.93] 0.60 [0.53, 0.66] areas on the eastern * of the Adriatic Sea shore,3,coast,2
5 0.80[0.70, 0.88] 0.58 [0.51, 0.65] Thesaurus of Current English * The Oxford Pocket Thesaurus slave,3,boy,5,shore,3,string,2
6 0.75[0.62, 0.84] 0.58 [0.50, 0.64] wizard,4,glass,4,crane,5,smile,5
7 0.72[0.58, 0.82] 0.57[0.49, 0.63] implement,5,oracle,2,lad,2
BowW 1 0.81[0.70, 0.88] 0.64[0.57, 0.70] food,3,car,2,madhouse,3,jewel,3
2 0.80[0.69, 0.87] 0.64 [0.58, 0.70] asylum,4,tool,8 journey,6,efc.
3 0.79[0.67, 0.86] 0.64 [0.58, 0.70] be understood that the * 10 may be designed crane,3,tool,3
4 0.78 [0.66, 0.86] 0.65[0.58, 0.70] a fight between a * and a snake and bird,3,crane,5
5 0.77 [0.64, 0.85] 0.64 [0.58, 0.70]
6 0.76 [0.63, 0.85] 0.65 [0.58, 0.70]
7 0.75 [0.62, 0.84] 0.6410.58, 0.70] Table 2: Sample of context windows for the terms in the RG dataset.
Syn G1,D0 0.81[0.70, 0.88] 0.62[0.55, 0.68]
G2,D0 0.8210.72, 0.89] 0.5510.48, 0.62]
G3,D0 0.81[0.71, 0.88] 0.62 [0.56, 0.68]
G1,D1 0.8210.72, 0.89] 0.62 [0.55, 0.68] . .. .
G2DI 082[073,08] 062055, 0.68] latedness are annotated without any distinction. Sev-
G3,D1 0.82[0.72, 0.88] 0.62 [0.55, 0.68] . . . .
W #GID0 088 (081, 0.93] 0.66 059, 0.71] eral studies indicate that the human scores consis-
Syn 4; G2,D0 0.87[0.80, 0.92] 0.64 [0.57, 0.70] . . .
4,G3,D0 0.86 [0.77, 0.91] 0.63 [0.56, 0.69] tently have very high correlations with each other
4;G1,D1 0.8310.73, 0.89 0.48 [0.40, 0.56 . .
4:G2,D1 0.83 {0‘73, 0.89} 0.49 {0,40, 056} (Mlller and Charles, 1991 ) Resnlk, 1995), thus val-
4;G3,D1 0.8210.72, 0.89] 0.48 [0.40, 0.56]

Table 1: Spearman correlation results for the various WordNet-based
models and distributional models. CW=Context Windows, BoW=bag
of words, Syn=syntactic vectors. For Syn, the window size is actually
the tree-depth for the governors and descendants. For examples, G1
indicates that the contexts include the parents and D2 indicates that both
the children and grandchildren make up the contexts. The final grouping
includes both contextual windows (at width 4) and syntactic contexts in
the template vectors. Max scores are bolded.

1. Replace each non-English word in the dataset
with its 5-best translations into English using
state-of-the-art machine translation technology.

2. The vector corresponding to each Spanish word
is calculated by collecting features from all the
contexts of any of its translations.

3. Once the vectors are generated, the similarities
are calculated in the same way as before.

4 Experimental results

4.1 Gold-standard datasets

We have used two standard datasets. The first
one, RG, consists of 65 pairs of words collected by
Rubenstein and Goodenough (1965), who had them
judged by 51 human subjects in a scale from 0.0 to
4.0 according to their similarity, but ignoring any
other possible semantic relationships that might ap-
pear between the terms. The second dataset, Word-
Sim353° (Finkelstein et al., 2002) contains 353 word
pairs, each associated with an average of 13 to 16 hu-
man judgements. In this case, both similarity and re-

> Available at http://www.cs.technion.ac.il/
~gabr/resources/data/wordsim353/wordsim353.html
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idating the use of these datasets for evaluating se-
mantic similarity.

For the cross-lingual evaluation, the two datasets
were modified by translating the second word in
each pair into Spanish. Two humans translated
simultaneously both datasets, with an inter-tagger
agreement of 72% for RG and 84% for Word-
Sim353.

4.2 Results

Table 1 shows the Spearman correlation obtained on
the RG and WordSim353 datasets, including the in-
terval at 0.95 of confidence®.

Overall the distributional context-window ap-
proach performs best in the RG, reaching 0.89 corre-
lation, and both WN30g and the combination of con-
text windows and syntactic context perform best on
WordSim353. Note that the confidence intervals are
quite large in both RG and WordSim353, and few of
the pairwise differences are statistically significant.

Regarding WordNet-based approaches, the use of
the glosses and WordNet 3.0 (WN30g) yields the
best results in both datasets. While MCR16 is close
to WN30g for the RG dataset, it lags well behind
on WordSim353. This discrepancy is further ana-
lyzed is Section 5.3. Note that the performance of
WordNet in the WordSim353 dataset suffers from
unknown words. In fact, there are nine pairs which
returned null similarity for this reason. The num-

%To calculate the Spearman correlations values are trans-
formed into ranks, and we calculate the Pearson correlation on
them. The confidence intervals refer to the Pearson correlations
of the rank vectors.
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Figure 1: Effect of the size of the training corpus, for the best distributional similarity model in each dataset. Left: WordSim353 with bag-of-words,

Right: RG with context windows.

Dataset Method overall A interval

RG MCR16 0.78 -0.05 [0.66, 0.86]
WN30g 0.74 -0.09 [0.61,0.84]
Bag of words 0.68 -0.23 [0.53, 0.79]
Context windows 0.83 -0.05 [0.73, 0.89]

WS353 MCR16 0.42 (0.53) -0.11 (-0.03) [0.34,0.51]
WN30g 0.58 (0.67) -0.07 (-0.02) [0.51,0.64]
Bag of words 0.53 -0.12 [0.45,0.61]
Context windows 0.52 -0.11 [0.44, 0.59]

Table 3: Results obtained by the different methods on the Span-
ish/English cross-lingual datasets. The A column shows the perfor-
mance difference with respect to the results on the original dataset.

ber in parenthesis in Table 1 for WordSim353 shows
the results for the 344 remaining pairs. Section 5.2
shows a proposal to overcome this limitation.

The bag-of-words approach tends to group to-
gether terms that can have a similar distribution of
contextual terms. Therefore, terms that are topically
related can appear in the same textual passages and
will get high values using this model. We see this
as an explanation why this model performed better
than the context window approach for WordSim353,
where annotators were instructed to provide high
ratings to related terms. On the contrary, the con-
text window approach tends to group together words
that are exchangeable in exactly the same context,
preserving order. Table 2 illustrates a few exam-
ples of context collected. Therefore, true synonyms
and hyponyms/hyperonyms will receive high simi-
larities, whereas terms related topically or based on
any other semantic relation (e.g. movie and star) will
have lower scores. This explains why this method
performed better for the RG dataset. Section 5.3
confirms these observations.

4.3 Cross-lingual similarity

Table 3 shows the results for the English-Spanish
cross-lingual datasets. For RG, MCR16 and the
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context windows methods drop only 5 percentage
points, showing that cross-lingual similarity is feasi-
ble, and that both cross-lingual strategies are robust.

The results for WordSim353 show that WN30g is
the best for this dataset, with the rest of the meth-
ods falling over 10 percentage points relative to the
monolingual experiment. A closer look at the Word-
Net results showed that most of the drop in perfor-
mance was caused by out-of-vocabulary words, due
to the smaller vocabulary of the Spanish WordNet.
Though not totally comparable, if we compute the
correlation over pairs covered in WordNet alone, the
correlation would drop only 2 percentage points. In
the case of the distributional approaches, the fall in
performance was caused by the translations, as only
61% of the words were translated into the original
word in the English datasets.

5 Detailed analysis and system
combination

In this section we present some analysis, including
learning curves for distributional methods, the use
of distributional similarity to improve WordNet sim-
ilarity, the contrast between similarity and related-
ness, and the combination of methods.

5.1 Learning curves for distributional methods

Figure 1 shows that the correlation improves with
the size of the corpus, as expected. For the re-
sults using the WordSim353 corpus, we show the
results of the bag-of-words approach with context
size 10. Results improve from 0.5 Spearman correla-
tion up to 0.65 when increasing the corpus size three
orders of magnitude, although the effect decays at
the end, which indicates that we might not get fur-



Method
WN30
WN30g

With similar words
0.58 [0.51, 0.65]
0.68 [0.62, 0.73]

Without similar words
0.56 (0.58) [0.48, 0.63]
0.66 (0.69) [0.59, 0.71]

Table 4: Results obtained replacing unknown words with their most
similar three words (WordSim353 dataset).

Method overall Similarity Relatedness

MCR16 _ 0.53 [0.45,0.60] _ 0.65[0.56,0.72] _ 0.33 [0.21, 0.43]
WN30 0.56[0.48,0.63]  0.73[0.65,0.79]  0.38 [0.27, 0.48]
WN30g  0.66[0.59,071]  0.72[0.64,0.78]  0.56 [0.46, 0.64]
Bow 0.65[0.59, 0.71] __ 0.70[0.63,0.77] __ 0.62 [0.53, 0.69]
cw 0.60[0.53,0.66]  0.77[0.71,0.82]  0.46 [0.36, 0.55]

Table 5: Results obtained on the WordSim353 dataset and on the two
similarity and relatedness subsets.

ther gains going beyond the current size of the cor-
pus. With respect to results for the RG dataset, we
used a context-window approach with context radius
4. Here, results improve even more with data size,
probably due to the sparse data problem collecting
8-word context windows if the corpus is not large
enough. Correlation improves linearly right to the
end, where results stabilize around 0.89.

5.2 Combining both approaches: dealing with
unknown words in WordNet

Although the vocabulary of WordNet is very ex-
tensive, applications are bound to need the similar-
ity between words which are not included in Word-
Net. This is exemplified in the WordSim353 dataset,
where 9 pairs contain words which are unknown to
WordNet. In order to overcome this shortcoming,
we could use similar words instead, as provided by
the distributional thesaurus. We used the distribu-
tional thesaurus defined in Section 3, using context
windows of width 4, to provide three similar words
for each of the unknown words in WordNet. Results
improve for both WN30 and WN30g, as shown in
Table 4, attaining our best results for WordSim353.

5.3 Similarity vs. relatedness

We mentioned above that the annotation guidelines
of WordSim353 did not distinguish between simi-
lar and related pairs. As the results in Section 4
show, different techniques are more appropriate to
calculate either similarity or relatedness. In order to
study this effect, ideally, we would have two ver-
sions of the dataset, where annotators were given
precise instructions to distinguish similarity in one
case, and relatedness in the other. Given the lack
of such datasets, we devised a simpler approach in
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order to reuse the existing human judgements. We
manually split the dataset in two parts, as follows.

First, two humans classified all pairs as be-
ing synonyms of each other, antonyms, iden-
tical, hyperonym-hyponym, hyponym-hyperonym,
holonym-meronym, meronym-holonym, and none-
of-the-above. The inter-tagger agreement rate was
0.80, with a Kappa score of 0.77. This anno-
tation was used to group the pairs in three cate-
gories: similar pairs (those classified as synonyms,
antonyms, identical, or hyponym-hyperonym), re-
lated pairs (those classified as meronym-holonym,
and pairs classified as none-of-the-above, with a hu-
man average similarity greater than 5), and unrelated
pairs (those classified as none-of-the-above that had
average similarity less than or equal to 5). We then
created two new gold-standard datasets: similarity
(the union of similar and unrelated pairs), and relat-
edness (the union of related and unrelated)’.

Table 5 shows the results on the relatedness and
similarity subsets of WordSim353 for the different
methods. Regarding WordNet methods, both WN30
and WN30g perform similarly on the similarity sub-
set, but WN30g obtains the best results by far on
the relatedness data. These results are congruent
with our expectations: two words are similar if their
synsets are in close places in the WordNet hierarchy,
and two words are related if there is a connection
between them. Most of the relations in WordNet
are of hierarchical nature, and although other rela-
tions exist, they are far less numerous, thus explain-
ing the good results for both WN30 and WN30g on
similarity, but the bad results of WN30 on related-
ness. The disambiguated glosses help find connec-
tions among related concepts, and allow our method
to better model relatedness with respect to WN30.

The low results for MCR16 also deserve some
comments. Given the fact that MCR16 performed
very well on the RG dataset, it comes as a surprise
that it performs so poorly for the similarity subset
of WordSim353. In an additional evaluation, we at-
tested that MCR16 does indeed perform as well as
MCR30g on the similar pairs subset. We believe
that this deviation could be due to the method used to
construct the similarity dataset, which includes some
pairs of loosely related pairs labeled as unrelated.

7 Available at http://alfonseca.org/eng/research/wordsim353.htm]



Methods combined in the SVM RG dataset WordSim353 dataset ‘WordSim353 similarity ‘WordSim353 relatedness

‘WN30g, bag of words 0.88 [0.82, 0.93]
‘WN30g, context windows 0.90[0.84, 0.94]
‘WN30g, syntax 0.89 [0.83, 0.93]

‘WN30g, bag of words, context windows, syntax 0.96 [0.93, 0.97]

0.78 [0.73, 0.81] 0.81 [0.76, 0.86] 0.72[0.65, 0.77]
0.73 [0.68, 0.79] 0.83[0.78, 0.87] 0.64 [0.56, 0.71]
0.75 [0.70, 0.79] 0.83[0.78, 0.87] 0.67 [0.60, 0.74]
0.78 [0.73,0.82] 0.83 [0.78, 0.87] 0.71 [0.65, 0.77]

Table 6: Results using a supervised combination of several systems. Max values are bolded for each dataset.

Concerning the techniques based on distributional
similarities, the method based on context windows
provides the best results for similarity, and the bag-
of-words representation outperforms most of the
other techniques for relatedness.

5.4 Supervised combination

In order to gain an insight on which would be the up-
per bound that we could obtain when combining our
methods, we took the output of three systems (bag
of words with window size 10, context window with
size 4, and the WN30g run). Each of these outputs is
a ranking of word pairs, and we implemented an or-
acle that chooses, for each pair, the rank that is most
similar to the rank of the pair in the gold-standard.
The outputs of the oracle have a Spearman correla-
tion of 0.97 for RG and 0.92 for WordSim353, which
gives as an indication of the correlations that could
be achieved by choosing for each pair the rank out-
put by the best classifier for that pair.

The previous results motivated the use of a su-
pervised approach to combine the output of the
different systems. We created a training cor-
pus containing pairs of pairs of words from the
datasets, having as features the similarity and rank
of each pair involved as given by the differ-
ent unsupervised systems. A classifier is trained
to decide whether the first pair is more simi-
lar than the second one. For example, a train-
ing instance using two unsupervised classifiers is

0.001364, 31, 0.327515, 64, 0.084805, 57, 0.109061, 59, negative
meaning that the similarities given by the first clas-
sifier to the two pairs were 0.001364 and 0.327515
respectively, which ranked them in positions 31 and
64. The second classifier gave them similarities of
0.084805 and 0.109061 respectively, which ranked
them in positions 57 and 59. The class negative in-
dicates that in the gold-standard the first pair has a
lower score than the second pair.

We have trained a SVM to classify pairs of pairs,
and use its output to rank the entries in both datasets.
It uses a polynomial kernel with degree 4. We did
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Method Source Spearman (MC) Pearson (MC)
(Sahami et al., 2006) ‘Web snippets 0.62[0.32,0.81] 0.58[0.26, 0.78]
(Chen et al., 2006) Web snippets 0.69 [0.42, 0.84] 0.69 [0.42, 0.85]
(Wu and Palmer, 1994) WordNet 0.78 [0.59, 0.90] 0.78 [0.57, 0.89]
(Leacock et al., 1998) WordNet 0.79 [0.59, 0.90] 0.82[0.64, 0.91]
(Resnik, 1995) WordNet 0.81[0.62,0.91] 0.80 [0.60, 0.90]
(Lin, 1998a) ‘WordNet 0.820.65,0.91] 0.83[0.67,0.92]
(Bollegala et al., 2007) ‘Web snippets 0.82[0.64,0.91] 0.83[0.67, 0.92]
(Jiang and Conrath, 1997) ‘WordNet 0.83[0.67,0.92] 0.85[0.69, 0.93]
(Jarmasz, 2003) Roget’s 0.87[0.73, 0.94] 0.87[0.74, 0.94]
(Patwardhan et al., 2006) ‘WordNet n/a 0.91

(Alvarez and Lim, 2007) ‘WordNet n/a 0.91

(Yang and Powers, 2005) WordNet 0.87[0.73,0.91] 0.92[0.84, 0.96]
(Hughes et al., 2007) ‘WordNet 0.90 n/a
Personalized PageRank ‘WordNet 0.8910.77,0.94] n/a

Bag of words ‘Web corpus 0.85[0.70, 0.93] 0.84 [0.69, 0.93]
Context window ‘Web corpus 0.88 [0.76, 0.95] 0.89[0.77, 0.95]
Syntactic contexts ‘Web corpus 0.76 [0.54, 0.88] 0.74 [0.51, 0.87]
SVM Web, WN 0.92 [0.84, 0.96] 0.93 [0.85, 0.97]

Table 7: Comparison with previous approaches for MC.

not have a held-out set, so we used the standard set-
tings of Weka, without trying to modify parameters,
e.g. C. Each word pair is scored with the number
of pairs that were considered to have less similar-
ity using the SVM. The results using 10-fold cross-
validation are shown in Table 6. A combination of
all methods produces the best results reported so far
for both datasets, statistically significant for RG.

6 Related work

Contrary to the WordSim353 dataset, common prac-
tice with the RG dataset has been to perform the
evaluation with Pearson correlation. In our believe
Pearson is less informative, as the Pearson correla-
tion suffers much when the scores of two systems are
not linearly correlated, something which happens
often given due to the different nature of the tech-
niques applied. Some authors, e.g. Alvarez and Lim
(2007), use a non-linear function to map the system
outputs into new values distributed more similarly
to the values in the gold-standard. In their case, the
mapping function was exp (=*), which was chosen
empirically. Finding such a function is dependent
on the dataset used, and involves an extra step in the
similarity calculations. Alternatively, the Spearman
correlation provides an evaluation metric that is in-
dependent of such data-dependent transformations.

Most similarity researchers have published their



Word pair M&C SVM ‘Word pair M&C SVM
automobile, car 3.92 62 crane, implement 1.68 26
journey, voyage 3.84 54 brother, lad 1.66 39
gem, jewel 3.84 61 car, journey 1.16 37
boy, lad 3.76 57 monk, oracle 1.1 32
coast, shore 3.7 53 food, rooster 0.89 3
asylum, madhouse 3.61 45 coast, hill 0.87 34
magician, wizard 35 49 forest, graveyard 0.84 27
midday, noon 3.42 61 monk, slave 0.55 17
furnace, stove 3.11 50 lad, wizard 0.42 13
food, fruit 3.08 47 coast, forest 0.42 18
bird, cock 3.05 46 cord, smile 0.13 5
bird, crane 2.97 38 glass, magician 0.11 10
implement, tool 2.95 55 rooster, voyage 0.08 1
brother, monk 2.82 42 noon, string 0.08 5
Table 8: Our best results for the MC dataset.
Method Source Spearman
(Strube and Ponzetto, 2006) Wikipedia 0.19-0.48
(Jarmasz, 2003) ‘WordNet 0.33-0.35
(Jarmasz, 2003) Roget’s 0.55
(Hughes and Ramage, 2007) ‘WordNet 0.55
(Finkelstein et al., 2002) ‘Web corpus, WN 0.56
(Gabrilovich and Markovitch, 2007) ODP 0.65
(Gabrilovich and Markovitch, 2007) Wikipedia 0.75
SVM ‘Web corpus, WN 0.78

Table 9: Comparison with previous work for WordSim353.

complete results on a smaller subset of the RG
dataset containing 30 word pairs (Miller and
Charles, 1991), usually referred to as MC, making it
possible to compare different systems using differ-
ent correlation. Table 7 shows the results of related
work on MC that was available to us, including our
own. For the authors that did not provide the de-
tailed data we include only the Pearson correlation
with no confidence intervals.

Among the unsupervised methods introduced in
this paper, the context window produced the best re-
ported Spearman correlation, although the 0.95 con-
fidence intervals are too large to allow us to accept
the hypothesis that it is better than all others meth-
ods. The supervised combination produces the best
results reported so far. For the benefit of future re-
search, our results for the MC subset are displayed
in Table 8.

Comparison on the WordSim353 dataset is eas-
ier, as all researchers have used Spearman. The
figures in Table 9) show that our WordNet-based
method outperforms all previously published Word-
Net methods. We want to note that our WordNet-
based method outperforms that of Hughes and Ram-
age (2007), which uses a similar method. Although
there are some differences in the method, we think
that the main performance gain comes from the use
of the disambiguated glosses, which they did not
use. Our distributional methods also outperform all
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other corpus-based methods. The most similar ap-
proach to our distributional technique is Finkelstein
et al. (2002), who combined distributional similar-
ities from Web documents with a similarity from
WordNet. Their results are probably worse due to
the smaller data size (they used 270,000 documents)
and the differences in the calculation of the simi-
larities. The only method which outperforms our
non-supervised methods is that of (Gabrilovich and
Markovitch, 2007) when based on Wikipedia, prob-
ably because of the dense, manually distilled knowl-
edge contained in Wikipedia. All in all, our super-
vised combination gets the best published results on
this dataset.

7 Conclusions and future work

This paper has presented two state-of-the-art dis-
tributional and WordNet-based similarity measures,
with a study of several parameters, including per-
formance on similarity and relatedness data. We
show that the use of disambiguated glosses allows
for the best published results for WordNet-based
systems on the WordSim353 dataset, mainly due to
the better modeling of relatedness (as opposed to
similarity). Distributional similarities have proven
to be competitive when compared to knowledge-
based methods, with context windows being better
for similarity and bag of words for relatedness. Dis-
tributional similarity was effectively used to cover
out-of-vocabulary items in the WordNet-based mea-
sure providing our best unsupervised results. The
complementarity of our methods was exploited by
a supervised learner, producing the best results so
far for RG and WordSim353. Our results include
confidence values, which, surprisingly, were not in-
cluded in most previous work, and show that many
results over RG and WordSim353 are indistinguish-
able. The algorithm for WordNet-base similarity
and the necessary resources are publicly available®.

This work pioneers cross-lingual extension and
evaluation of both distributional and WordNet-based
measures. We have shown that closely aligned
wordnets provide a natural and effective way to
compute cross-lingual similarity with minor losses.
A simple translation strategy also yields good results
for distributional methods.

8http://ixa2.si.ehu.es/ukb/
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Abstract

Word sense disambiguation is the process of
determining which sense of a word is used
in a given context. Due to its importance in
understanding semantics of natural languages,
word sense disambiguation has been exten-
sively studied in Computational Linguistics.
However, existing methods either are brit-
tle and narrowly focus on specific topics or
words, or provide only mediocre performance
in real-world settings. Broad coverage and
disambiguation quality are critical for a word
sense disambiguation system. In this paper we
present a fully unsupervised word sense dis-
ambiguation method that requires only a dic-
tionary and unannotated text as input. Such an
automatic approach overcomes the problem of
brittleness suffered in many existing methods
and makes broad-coverage word sense dis-
ambiguation feasible in practice. We evalu-
ated our approach using SemEval 2007 Task
7 (Coarse-grained English All-words Task),
and our system significantly outperformed the
best unsupervised system participating in Se-
mEval 2007 and achieved the performance ap-
proaching top-performing supervised systems.
Although our method was only tested with
coarse-grained sense disambiguation, it can be
directly applied to fine-grained sense disam-
biguation.

1 Introduction

In many natural languages, a word can represent
multiple meanings/senses, and such a word is called
a homograph. Word sense disambiguation(WSD)
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is the process of determining which sense of a ho-
mograph is used in a given context. WSD is a
long-standing problem in Computational Linguis-
tics, and has significant impact in many real-world
applications including machine translation, informa-
tion extraction, and information retrieval. Gener-
ally, WSD methods use the context of a word for
its sense disambiguation, and the context informa-
tion can come from either annotated/unannotated
text or other knowledge resources, such as Word-
Net (Fellbaum, 1998), SemCor (SemCor, 2008),
Open Mind Word Expert (Chklovski and Mihal-
cea, 2002), eXtended WordNet (Moldovan and Rus,
2001), Wikipedia (Mihalcea, 2007), parallel corpora
(Ng, Wang, and Chan, 2003). In (Ide and Véronis,
1998) many different WSD approaches were de-
scribed. Usually, WSD techniques can be divided
into four categories (Agirre and Edmonds, 2006),

e Dictionary and knowledge based methods.
These methods use lexical knowledge bases
such as dictionaries and thesauri, and hypoth-
esize that context knowledge can be extracted
from definitions of words. For example, Lesk
disambiguated two words by finding the pair of
senses with the greatest word overlap in their
dictionary definitions (Lesk, 1986).

e Supervised methods.  Supervised methods
mainly adopt context to disambiguate words.
A supervised method includes a training phase
and a testing phase. In the training phase,
a sense-annotated training corpus is required,
from which syntactic and semantic features are
extracted to create a classifier using machine

Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 28-36,
Boulder, Colorado, June 2009. (©)2009 Association for Computational Linguistics



learning techniques, such as Support Vector
Machine (Novischi et al., 2007). In the fol-
lowing testing phase, a word is classified into
senses (Mihalcea, 2002) (Ng and Lee, 1996).
Currently supervised methods achieve the best
disambiguation quality (about 80% precision
and recall for coarse-grained WSD in the most
recent WSD evaluation conference SemEval
2007 (Navigli et al., 2007)). Nevertheless,
since training corpora are manually annotated
and expensive, supervised methods are often
brittle due to data scarcity, and it is hard to an-
notate and acquire sufficient contextual infor-
mation for every sense of a large number of
words existing in natural languages.

e Semi-supervised methods. To overcome the
knowledge acquisition bottleneck problem suf-
fered by supervised methods, these methods
make use of a small annotated corpus as seed
data in a bootstrapping process (Hearst, 1991)
(Yarowsky, 1995). A word-aligned bilingual
corpus can also serve as seed data (Ng, Wang,
and Chan, 2003).

e Unsupervised methods. These methods acquire
contextual information directly from unanno-
tated raw text, and senses can be induced from
text using some similarity measure (Lin, 1997).
However, automatically acquired information
is often noisy or even erroneous. In the most
recent SemEval 2007 (Navigli et al., 2007), the
best unsupervised systems only achieved about
70% precision and 50% recall.

Disambiguation of a limited number of words is
not hard, and necessary context information can be
carefully collected and hand-crafted to achieve high
disambiguation accuracy as shown in (Yarowsky,
1995). However, such approaches suffer a signifi-
cant performance drop in practice when domain or
vocabulary is not limited. Such a “cliff-style” per-
formance collapse is called brittleness, which is due
to insufficient knowledge and shared by many tech-
niques in Artificial Intelligence. The main challenge
of a WSD system is how to overcome the knowl-
edge acquisition bottleneck and efficiently collect
the huge amount of context knowledge. More pre-
cisely, a practical WSD need figure out how to create
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and maintain a comprehensive, dynamic, and up-to-
date context knowledge base in a highly automatic
manner. The context knowledge required in WSD
has the following properties:

1. The context knowledge need cover a large
number of words and their usage. Such a
requirement of broad coverage is not trivial
because a natural language usually contains
thousands of words, and some popular words
can have dozens of senses. For example, the
Oxford English Dictionary has approximately
301,100 main entries (Oxford, 2003), and the
average polysemy of the WordNet inventory is
6.18 (Fellbaum, 1998). Clearly acquisition of
such a huge amount of knowledge can only be
achieved with automatic techniques.

2. Natural language is not a static phenomenon.
New usage of existing words emerges, which
creates new senses. New words are created,
and some words may “die” over time. It is esti-
mated that every year around 2,500 new words
appear in English (Kister, 1992). Such dynam-
ics requires a timely maintenance and updating
of context knowledge base, which makes man-
ual collection even more impractical.

Taking into consideration the large amount and
dynamic nature of context knowledge, we only have
limited options when choosing knowledge sources
for WSD. WSD is often an unconscious process to
human beings. With a dictionary and sample sen-
tences/phrases an average educated person can cor-
rectly disambiguate most polysemous words. In-
spired by human WSD process, we choose an elec-
tronic dictionary and unannotated text samples of
word instances as context knowledge sources for
our WSD system. Both sources can be automat-
ically accessed, provide an excellent coverage of
word meanings and usage, and are actively updated
to reflect the current state of languages. In this pa-
per we present a fully unsupervised WSD system,
which only requires WordNet sense inventory and
unannotated text. In the rest of this paper, section
2 describes how to acquire and represent the con-
text knowledge for WSD. We present our WSD al-
gorithm in section 3. Our WSD system is evaluated
with SemEval-2007 Task 7 (Coarse-grained English
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Web search

HTML cleaning

‘ Sentence segmentation ‘

‘ Parsing sentences ‘

‘ Merging dependency relations ‘

Context knowledge base

Figure 1: Context Knowledge Acquisition and Represen-
tation Process

All-words Task) data set, and the experiment results
are discussed in section 4. We conclude in section 5.

2  Context Knowledge Acquisition and
Representation

Figure 1 shows an overview of our context knowl-
edge acquisition process, and collected knowledge
is saved in a local knowledge base. Here are some
details about each step.

2.1 Corpus building through Web search

The goal of this step is to collect as many as possi-
ble valid sample sentences containing the instances
of to-be-disambiguated words. Preferably these in-
stances are also diverse and cover many senses of a
word. We have considered two possible text sources,

1. Electronic text collection, e.g., Gutenberg
project (Gutenberg, 1971). Such collections of-
ten include thousands of books, which are often
written by professionals and can provide many
valid and accurate usage of a large number of
words. Nevertheless, books in these collections
are usually copyright-free and old, hence are
lack of new words or new senses of words used
in modern English.

2. Web documents. Billions of documents exist
in the World Wide Web, and millions of Web
pages are created and updated everyday. Such a
huge dynamic text collection is an ideal source
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to provide broad and up-to-date context knowl-
edge for WSD. The major concern about Web
documents is inconsistency of their quality, and
many Web pages are spam or contain erroneous
information. However, factual errors in Web
pages will not hurt the performance of WSD.
Nevertheless, the quality of context knowledge
is affected by broken sentences of poor linguis-
tic quality and invalid word usage, e.g., sen-
tences like “Colorless green ideas sleep furi-
ously” that violate commonsense knowledge.
Based on our experience these kind of errors
are negligible when using popular Web search
engines to retrieve relevant Web pages.

To start the acquisition process, words that need
to be disambiguated are compiled and saved in a
text file. Each single word is submitted to a Web
search engine as a query. Several search engines
provide API’s for research communities to auto-
matically retrieve large number of Web pages. In
our experiments we used both Google and Yahoo!
API’s to retrieve up to 1,000 Web pages for each to-
be-disambiguated word. Collected Web pages are
cleaned first, e.g., control characters and HTML tags
are removed. Then sentences are segmented simply
based on punctuation (e.g., 7, !, .). Sentences that
contain the instances of a specific word are extracted
and saved into a local repository.

2.2 Parsing

Sentences organized according to each word are
sent to a dependency parser, Minipar. Dependency
parsers have been widely used in Computational
Linguistics and natural language processing. An
evaluation with the SUSANNE corpus shows that
Minipar achieves 89% precision with respect to de-
pendency relations (Lin, 1998). After parsing sen-
tences are converted to parsing trees and saved in
files. Neither our simple sentence segmentation ap-
proach nor Minipar parsing is 100% accurate, so a
small number of invalid dependency relations may
exist in parsing trees. The impact of these erroneous
relations will be minimized in our WSD algorithm.
Comparing with tagging or chunking, parsing is rel-
atively expensive and time-consuming. However, in
our method parsing is not performed in real time
when we disambiguate words. Instead, sentences
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Figure 2: Merging two parsing trees. The number beside
each edge is the number of occurrences of this depen-
dency relation existing in the context knowledge base.

are parsed only once to extract dependency relations,
then these relations are merged and saved in a local
knowledge base for the following disambiguation.
Hence, parsing will not affect the speed of disam-
biguation at all.

2.3

After parsing, dependency relations from different
sentences are merged and saved in a context knowl-
edge base. The merging process is straightforward.
A dependency relation includes one head word/node
and one dependent word/node. Nodes from different
dependency relations are merged into one as long as
they represent the same word. An example is shown
in Figure 2, which merges the following two sen-
tences:

Merging dependency relations

“Computer programmers write software.”

“Many companies hire computer programmers.”

In a dependency relation “word; — wordy”,
word; is the head word, and words is the depen-
dent word. After merging dependency relations, we
will obtain a weighted directed graph with a word
as a node, a dependency relation as an edge, and
the number of occurrences of dependency relation as
weight of an edge. This weight indicates the strength
of semantic relevancy of head word and dependent
word. This graph will be used in the following WSD
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‘ Input the to-be-disambiguated word ‘

‘ Extract glosses of the word from WordNet ‘

Tree matching

Select the sense with the highest coherence score

Parse the
original
sentence

Knowledge base

Figure 3: WSD Procedure

process as our context knowledge base. As a fully
automatic knowledge acquisition process, it is in-
evitable to include erroneous dependency relations
in the knowledge base. However, since in a large text
collection valid dependency relations tend to repeat
far more times than invalid ones, these erroneous
edges only have minimal impact on the disambigua-
tion quality as shown in our evaluation results.

3  WSD Algorithm

Our WSD approach is based on the following in-
sight:

If a word is semantically coherent with its context,
then at least one sense of this word is semantically
coherent with its context.

Assume that the text to be disambiguated is se-
mantically valid, if we replace a word with its
glosses one by one, the correct sense should be
the one that will maximize the semantic coherence
within this word’s context. Based on this idea we
set up our WSD procedure as shown in Figure 3.
First both the original sentence that contains the
to-be-disambiguated word and the glosses of to-be-
disambiguated word are parsed. Then the parsing
tree generated from each gloss is matched with the
parsing tree of original sentence one by one. The
gloss most semantically coherent with the original
sentence will be chosen as the correct sense. How
to measure the semantic coherence is critical. Our
idea is based on the following hypotheses (assume
wordy is the to-be-disambiguated word):

e In a sentence if word; is dependent on words,
and we denote the gloss of the correct sense of
wordy as gi;, then gy; contains the most se-
mantically coherent words that are dependent



on words;

e In a sentence if a set of words DE P, are de-
pendent on word;, and we denote the gloss of
the correct sense of word; as gi;, then gq; con-
tains the most semantically coherent words that
DEP; are dependent on.

For example, we try to disambiguate “company”
in “A large company hires many computer program-
mers”, after parsing we obtain the dependency rela-
tions “hire — company” and “company — large”.
The correct sense for the word “company” should
be “an institution created to conduct business”. If
in the context knowledge base there exist the depen-
dency relations “hire — institution” or “institution
— large”, then we believe that the gloss “an institu-
tion created to conduct business” is semantically co-
herent with its context - the original sentence. The
gloss with the highest semantic coherence will be
chosen as the correct sense. Obviously, the size of
context knowledge base has a positive impact on the
disambiguation quality, which is also verified in our
experiments (see Section 4.2). Figure 4 shows our
detailed WSD algorithm. Semantic coherence score
is generated by the function T'reeMatching, and
we adopt a sentence as the context of a word.

We illustrate our WSD algorithm through an ex-
ample. Assume we try to disambiguate “company”
in the sentence “A large software company hires
many computer programmers”. ‘“company” has 9
senses as a noun in WordNet 2.1. Let’s pick the fol-
lowing two glosses to go through our WSD process.

e an institution created to conduct business
e small military unit

First we parse the original sentence and two
glosses, and get three weighted parsing trees as
shown in Figure 5. All weights are assigned to
nodes/words in these parsing trees. In the parsing
tree of the original sentence the weight of a node is
reciprocal of the distance between this node and to-
be-disambiguated node “company” (line 12 in Fig-
ure 4). In the parsing tree of a gloss the weight
of a node is reciprocal of the level of this node in
the parsing tree (line 16 in Figure 4). Assume that
our context knowledge base contains relevant depen-
dency relations shown in Figure 6.
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Input: Glosses from WordNet;
S the sentence to be disambiguated,;
(: the knowledge base generated in Section 2;

1. Input a sentence S, W = {w| w’s part of speech
is noun, verb, adjective, or adverb, w € S};

2. Parse S with a dependency parser, generate
parsing tree T's;

3. Foreachw € W {

4 Input all w’s glosses from WordNet;

5. For each gloss w; {

6 Parse w;, get a parsing tree Ty,;;

7 score = TreeMatching(T's, To;);

}

If the highest score is larger than a preset
threshold, choose the sense with the
highest score as the correct sense;

9. Otherwise, choose the first sense.

10. }

o

TreeMatching(7’s, T',;)

11. For each node ng; € Ts {

12. Assign weight wg; = ls%’ lg; is the
length between ng; and w; in T;

13. }

14. For each node n,; € Ty {

15. Load its dependent words D,,; from G;

16. Assign weight w,,; = % lwi 1S the

.
w1

level number of 1.,,; in Ty;;

17.  Foreach ng; {
18. If ng; € Dy
19. calculate connection strength s;

between ng; and 7,;;
20. score = SCore + wg; X Wi X Sji;
21. }
22.}

23. Return score;

Figure 4: WSD Algorithm

The weights in the context knowledge base are as-
signed to dependency relation edges. These weights
are normalized to [0, 1] based on the number of de-
pendency relation instances obtained in the acquisi-
tion and merging process. A large number of occur-
rences will be normalized to a high value (close to
1), and a small number of occurrences will be nor-
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malized to a low value (close to 0).

Now we load the dependent words of each word
in gloss 1 from the knowledge base (line 14, 15 in
Figure 4), and we get {small, large} for “institu-
tion” and {large, software} for “business”. In the
dependent words of “company”, “large” belongs to
the dependent word sets of “institution” and “busi-
ness”, and “software” belongs to the dependent word
set of “business”, so the coherence score of gloss 1

is calculated as (line 19, 20 in Figure 4):
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1.0x1.0x0.7+1.0x0.25x0.8+1.0x0.25x0.9
=1.125

We go through the same process with the second
gloss “small military unit”. “Large” is the only de-
pendent word of “company” appearing in the depen-
dent word set of “unit” in gloss 2, so the coherence
score of gloss 2 in the current context is:

1.0 x 1.0 x 0.8 =0.8

After comparing the coherence scores of two
glosses, we choose sense 1 of “company” as the cor-
rect sense (line 9 in Figure 4). This example illus-
trates that a strong dependency relation between a
head word and a dependent word has a powerful dis-
ambiguation capability, and disambiguation quality
is also significantly affected by the quality of dictio-
nary definitions.

In Figure 4 the T'ree M atching function matches
the dependent words of to-be-disambiguated word
(line 15 in Figure 4), and we call this matching strat-
egy as dependency matching. This strategy will not
work if a to-be-disambiguated word has no depen-
dent words at all, for example, when the word “com-
pany” in “Companies hire computer programmers”
has no dependent words. In this case, we developed
the second matching strategy, which is to match the
head words that the to-be-disambiguated word is de-
pendent on, such as matching “hire” (the head word
of “company”) in Figure 5(a). Using the dependency
relation “hire — company”, we can correctly choose
sense 1 since there is no such relation as “hire —
unit” in the knowledge base. This strategy is also
helpful when disambiguating adjectives and adverbs
since they usually only depend on other words, and
rarely any other words are dependent on them. The
third matching strategy is to consider synonyms as a
match besides the exact matching words. Synonyms
can be obtained through the synsets in WordNet.
For example, when we disambiguate “company” in
“Big companies hire many computer programmers’,
“big” can be considered as a match for “large”. We
call this matching strategy as synonym matching.
The three matching strategies can be combined and
applied together, and in Section 4.1 we show the
experiment results of 5 different matching strategy
combinations.



4 Experiments

We have evaluated our method using SemEval-2007
Task 07 (Coarse-grained English All-words Task)
test set (Navigli et al., 2007). The task organiz-
ers provide a coarse-grained sense inventory cre-
ated with SST algorithm (Navigli and Velardi, 2005),
training data, and test data. Since our method
does not need any training or special tuning, neither
coarse-grained sense inventory nor training data was
used. The test data includes: a news article about
“homeless” (including totally 951 words, 368 words
are annotated and need to be disambiguated), a re-
view of the book “Feeding Frenzy” (including to-
tally 987 words, 379 words are annotated and need
to be disambiguated), an article about some trav-
eling experience in France (including totally 1311
words, 500 words are annotated and need to be dis-
ambiguated), computer programming(including to-
tally 1326 words, 677 words are annotated and need
to be disambiguated), and a biography of the painter
Masaccio (including totally 802 words, 345 words
are annotated and need to be disambiguated). Two
authors of (Navigli et al., 2007) independently and
manually annotated part of the test set (710 word
instances), and the pairwise agreement was 93.80%.
This inter-annotator agreement is usually considered
an upper-bound for WSD systems.

We followed the WSD process described in Sec-
tion 2 and 3 using the WordNet 2.1 sense repository
that is adopted by SemEval-2007 Task 07. All exper-
iments were performed on a Pentium 2.33GHz dual
core PC with 3GB memory. Among the 2269 to-
be-disambiguated words in the five test documents,
1112 words are unique and submitted to Google
API as queries. The retrieved Web pages were
cleaned, and 1945189 relevant sentences were ex-
tracted. On average 1749 sentences were obtained
for each word. The Web page retrieval step took 3
days, and the cleaning step took 2 days. Parsing was
very time-consuming and took 11 days. The merg-
ing step took 3 days. Disambiguation of 2269 words
in the 5 test articles took 4 hours. All these steps can
be parallelized and run on multiple computers, and
the whole process will be shortened accordingly.

The overall disambiguation results are shown in
Table 1. For comparison we also listed the re-
sults of the top three systems and three unsuper-
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vised systems participating in SemEval-2007 Task
07. All of the top three systems (UoR-SSI, NUS-
PT, NUS-ML) are supervised systems, which used
annotated resources (e.g., SemCor, Defense Science
Organization Corpus) during the training phase. Our
fully unsupervised WSD system significantly out-
performs the three unsupervised systems (SUSSZ-
FR, SUSSX-C-WD, SUSSX-CR) and achieves per-
formance approaching the top-performing super-
vised WSD systems.

4.1 Impact of different matching strategies to
disambiguation quality

To test the effectiveness of different matching strate-
gies discussed in Section 3, we performed some ad-
ditional experiments. Table 2 shows the disambigua-
tion results by each individual document with the
following 5 matching strategies:

1. Dependency matching only.
2. Dependency and backward matching.
3. Dependency and synonym backward matching.

4. Dependency and synonym dependency match-
ing.

5. Dependency, backward, synonym backward,
and synonym dependency matching.

As expected combination of more matching
strategies results in higher disambiguation quality.
By analyzing the scoring details, we verified that
backward matching is especially useful to disam-
biguate adjectives and adverbs. Adjectives and ad-
verbs are often dependent words, so dependency
matching itself rarely finds any matched words.
Since synonyms are semantically equivalent, it is
reasonable that synonym matching can also improve
disambiguation performance.

4.2 TImpact of knowledge base size to
disambiguation quality

To test the impact of knowledge base size to dis-
ambiguation quality we randomly selected 1339264
sentences (about two thirds of all sentences) from
our text collection and built a smaller knowledge
base. Table 3 shows the experiment results. Overall
disambiguation quality has dropped slightly, which



System Attempted | Precision | Recall | F1

UoR-SSI 100.0 83.21 83.21 | 83.21
NUS-PT 100.0 82.50 82.50 | 82.50
NUS-ML 100.0 81.58 81.58 | 81.58
TreeMatch 100.0 73.65 73.65 | 73.65
SUSSZ-FR 72.8 71.73 52.23 | 60.44
SUSSX-C-WD | 72.8 54.54 39.71 | 45.96
SUSSX-CR 72.8 54.30 39.53 | 45.75

Table 1: Overall disambiguation scores (Our system “TreeMatch” is marked in bold)

Matching d001 d002 d003 d004 d005 Overall

strategy P R P R P R P R P R P R

1 7228 7228 | 66.23 66.23 | 63.20 63.20 | 66.47 66.47 | 56.52 56.52 | 65.14 65.14
2 70.65 70.65 | 70.98 70.98 | 65.20 65.20 | 72.23 72.23 | 58.84 58.84 | 63.18 68.18
3 79.89 79.89 | 75.20 75.20 | 69.00 69.00 | 71.94 71.94 | 64.64 64.64 | 72.01 72.01
4 80.71 80.71 | 78.10 78.10 | 72.80 72.80 | 71.05 71.05 | 67.54 67.54 | 73.65 73.65
5 80.16 80.16 | 78.10 78.10 | 69.40 69.40 | 72.82 72.82 | 66.09 66.09 | 73.12 73.12

Table 2: Disambiguation scores by article with 5 matching strategies

shows a positive correlation between the amount of
context knowledge and disambiguation quality. It is
reasonable to assume that our disambiguation per-
formance can be improved further by collecting and
incorporating more context knowledge.

Matching Overall
strategy P R
1 65.36 65.36
2 67.78 67.78
3 68.09 68.09
4 70.69 70.69
5 67.78 67.78

Table 3: Disambiguation scores by article with a smaller
knowledge base

5 Conclusion and Future Work

Broad coverage and disambiguation quality are crit-
ical for WSD techniques to be adopted in prac-
tice. This paper proposed a fully unsupervised
WSD method. We have evaluated our approach with
SemEval-2007 Task 7 (Coarse-grained English All-
words Task) data set, and we achieved F-scores ap-
proaching the top performing supervised WSD sys-
tems. By using widely available unannotated text
and a fully unsupervised disambiguation approach,
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our method may provide a viable solution to the
problem of WSD. The future work includes:

1. Continue to build the knowledge base, enlarge
the coverage and improve the system perfor-
mance. The experiment results in Section 4.2
clearly show that more word instances can im-
prove the disambiguation accuracy and recall
scores;

. WSD is often an unconscious process for hu-
man beings. It is unlikely that a reader exam-
ines all surrounding words when determining
the sense of a word, which calls for a smarter
and more selective matching strategy than what
we have tried in Section 4.1;

. Test our WSD system on fine-grained SemEval
2007 WSD task 17. Although we only evalu-
ated our approach with coarse-grained senses,
our method can be directly applied to fine-
grained WSD without any modifications.
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Abstract

We present a method for performing machine
transliteration without any parallel resources.
We frame the transliteration task as a deci-
pherment problem and show that it is possi-
ble to learn cross-language phoneme mapping
tables using only monolingual resources. We
compare various methods and evaluate their
accuracies on a standard name transliteration
task.

1 Introduction

Transliteration refers to the transport of names and
terms between languages with different writing sys-
tems and phoneme inventories. Recently there has
been a large amount of interesting work in this
area, and the literature has outgrown being citable
in its entirety. Much of this work focuses on back-
transliteration, which tries to restore a name or
term that has been transported into a foreign lan-
guage. Here, there is often only one correct target
spelling—for example, given jyon.kairu (the
name of a U.S. Senator transported to Japanese), we
must output “Jon Kyl”, not “John Kyre” or any other
variation.

There are many techniques for transliteration and
back-transliteration, and they vary along a number
of dimensions:

e phoneme substitution vs. character substitution

e heuristic vs. generative vs. discriminative mod-
els

e manual vs. automatic knowledge acquisition
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We explore the third dimension, where we see
several techniques in use:

e Manually-constructed transliteration models,
e.g., (Hermjakob et al., 2008).

e Models constructed from bilingual dictionaries
of terms and names, e.g., (Knight and Graehl,
1998; Huang et al., 2004; Haizhou et al., 2004;
Zelenko and Aone, 2006; Yoon et al., 2007;
Li et al., 2007; Karimi et al., 2007; Sherif
and Kondrak, 2007b; Goldwasser and Roth,
2008b).

e Extraction of parallel examples from bilin-
gual corpora, using bootstrap dictionaries e.g.,
(Sherif and Kondrak, 2007a; Goldwasser and
Roth, 2008a).

e Extraction of parallel examples from compara-
ble corpora, using bootstrap dictionaries, and
temporal and word co-occurrence, e.g., (Sproat
et al., 2006; Klementiev and Roth, 2008).

e Extraction of parallel examples from web
queries, using bootstrap dictionaries, e.g., (Na-
gata et al., 2001; Oh and Isahara, 2006; Kuo et
al., 2006; Wu and Chang, 2007).

e Comparing terms from different languages in
phonetic space, e.g., (Tao et al., 2006; Goldberg
and Elhadad, 2008).

In this paper, we investigate methods to acquire
transliteration mappings from non-parallel sources.
We are inspired by previous work in unsupervised
learning for natural language, e.g. (Yarowsky, 1995;
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Figure 1: Model used for back-transliteration of Japanese katakana names and terms into English. The model employs
a four-stage cascade of weighted finite-state transducers (Knight and Graehl, 1998).

Goldwater and Griffiths, 2007), and we are also in-
spired by cryptanalysis—we view a corpus of for-
eign terms as a code for English, and we attempt to
break the code.

2 Background

We follow (Knight and Graehl, 1998) in tackling
back-transliteration of Japanese katakana expres-
sions into English. Knight and Graehl (1998) devel-
oped a four-stage cascade of finite-state transducers,
shown in Figure 1.

e WFSA A - produces an English word sequence
w with probability P(w) (based on a unigram
word model).

e WFST B - generates an English phoneme se-
quence e corresponding to w with probability
P(e|w).

e WEFST C - transforms the English phoneme se-
quence into a Japanese phoneme sequence j ac-
cording to a model P(j|e).

o WEFST D - writes out the Japanese phoneme
sequence into Japanese katakana characters ac-
cording to a model P(k|j).

Using the cascade in the reverse (noisy-channel)
direction, they are able to translate new katakana
names and terms into English. They report 36% er-
ror in translating 100 U.S. Senators’ names, and they
report exceeding human transliteration performance
in the presence of optical scanning noise.

The only transducer that requires parallel training
data is WEST C. Knight and Graehl (1998) take sev-
eral thousand phoneme string pairs, automatically
align them with the EM algorithm (Dempster et
al., 1977), and construct WEST C from the aligned
phoneme pieces.

We re-implement their basic method by instanti-
ating a densely-connected version of WEST C with
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all 1-to-1 and 1-to-2 phoneme connections between
English and Japanese. Phoneme bigrams that occur
fewer than 10 times in a Japanese corpus are omit-
ted, and we omit 1-to-3 connections. This initial
WEST C model has 15320 uniformly weighted pa-
rameters. We then train the model on 3343 phoneme
string pairs from a bilingual dictionary, using the
EM algorithm. EM immediately reduces the con-
nections in the model to those actually observed in
the parallel data, and after 14 iterations, there are
only 188 connections left with P(j]|e) > 0.01. Fig-
ure 2 shows the phonemic substitution table learnt
from parallel training.

We use this trained WFST C model and apply it
to the U.S. Senator name transliteration task (which
we update to the 2008 roster). We obtain 40% er-
ror, roughly matching the performance observed in
(Knight and Graehl, 1998).

3 Task and Data

The task of this paper is to learn the mappings in
Figure 2, but without parallel data, and to test those
mappings in end-to-end transliteration. We imagine
our problem as one faced by monolingual English
speaker wandering around Japan, reading a multi-
tude of katakana signs, listening to people speak
Japanese, and eventually deciphering those signs
into English. To mis-quote Warren Weaver:

“When I look at a corpus of Japanese
katakana, I say to myself, this is really
written in English, but it has been coded
in some strange symbols. I will now pro-
ceed to decode.”

Our larger motivation is to move toward
easily-built transliteration systems for all language
pairs, regardless of parallel resources. = While
Japanese/English transliteration has its own partic-
ular features, we believe it is a reasonable starting
point.
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AA o 0.49 AY ai 0.84 EH e 0.94 HH h 0.95 L r 0.62 oYy oi 0.89 SH shy 033 v b 0.75
a 0.46 i 0.09 a 0.03 w 0.02 ru 037 oe 0.04 sh 0.31 bu 0.17
0o 0.02 a 0.03 ha 0.02 o 0.04 yu 0.17 w 0.03
aa 0.02 iy 0.01 i 0.04 sshy 0.12 a 0.02
ay 0.01 shi 0.04
ssh 0.02
e 0.01
AE a 0.93 B b 0.82 ER aa 0.8 IH i 0.89 M m 0.68 P ) 0.63 T t 0.43 W w 0.73
assh  0.02 bu 0.15 a 0.08 e 0.05 mu 0.22 pu 0.16 to 0.25 u 0.17
an 0.02 ar 0.03 in 0.01 n 0.08 ppu 0.13 tto 0.17 o 0.04
ru 0.02 a 0.01 ju 0.06 ts 0.04 i 0.02
or 0.02 tt 0.03
er 0.02 u 0.02
tsu 0.02
ch 0.02
AH a 0.6 CH tchi 027 EY ee 0.58 Iy i 0.58 N n 0.96 PAUSE pause 1.0 TH su 0.48 Y y 0.7
o 0.13 ch 0.24 e 0.15 i 0.3 nn  0.02 s 0.22 i 0.26
e 0.11 chi 023 ei 0.12 e 0.07 sh 0.16 e 0.02
i 0.07 chy 02 a 0.1 ee 0.03 to 0.04 a 0.02
u 0.06 tchy 0.02 ai 0.03 ch 0.04
tch 0.02 te 0.02
sshy 0.01 t 0.02
k 0.01 a 0.02
AO o 0.6 D d 0.54 F h 0.58 JH jy 0.35 NG n 0.62 R r 0.61 UH u 0.79 7 z 0.27
0o 0.27 do 0.27 hu 0.35 i 0.24 gu 022 a 0.27 uu 0.09 zu 025
a 0.05 ddo  0.06 hh 0.04 ji 0.21 ng 0.09 o 0.07 ua 0.04 u 0.16
on 0.03 z 0.02 hhu 0.02 jii 0.14 i 0.04 ru 0.03 dd 0.03 su 0.07
au 0.03 J 0.02 z 0.04 u 0.01 aa 0.01 ussh  0.02 i 0.06
u 0.01 u 0.01 o 0.01 o 0.02 a 0.06
a 0.01 n 0.03
i 0.03
s 0.02
o 0.02
AW au 0.69 DH =z 0.87 G g 0.66 K k 0.53 OW o 0.57 S su 0.43 UW uu 0.67 ZH jy 043
aw 0.15 zZu 0.08 gu 0.19 ku 0.2 oo 0.39 s 0.37 u 0.29 ji 0.29
ao 0.06 az 0.04 ggu 0.1 kku 0.16 ou 0.02 sh 0.08 yu 0.02 i 0.29
a 0.04 gy 0.03 kk 0.05 u 0.05
uu 0.02 g8 0.01 ky 0.02 ss 0.02
0o 0.02 ga 0.01 ki 0.01 ssh 0.01
o 0.02

Figure 2: Phonemic substitution table learnt from 3343 parallel English/Japanese phoneme string pairs. English
phonemes are in uppercase, Japanese in lowercase. Mappings with P(j|e) > 0.01 are shown.
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Figure 3: Some Japanese phoneme sequences generated from the monolingual katakana corpus using WEST D.

Our monolingual resources are:

e 43717 unique Japanese katakana sequences
collected from web newspaper data. We split
multi-word katakana phrases on the center-dot
(““”) character, and select a final corpus of
9350 unique sequences. We add monolingual
Japanese versions of the 2008 U.S. Senate ros-
ter.!

e The CMU pronunciation dictionary of English,

"We use “open” EM testing, in which unlabeled test data
is allowed to be part of unsupervised training. However, no
parallel data is allowed.
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with 112,151 entries.

e The English gigaword corpus. Knight and
Graehl (1998) already use frequently-occurring
capitalized words to build the WFSA A compo-
nent of their four-stage cascade.

We seek to use our English knowledge (derived
from 2 and 3) to decipher the Japanese katakana cor-
pus (1) into English. Figure 3 shows a portion of the
Japanese corpus, which we transform into Japanese
phoneme sequences using the monolingual resource
of WEST D. We note that the Japanese phoneme in-
ventory contains 39 unique (“‘ciphertext”) symbols,



compared to the 40 English (“plaintext”) phonemes.

Our goal is to compare and evaluate the WEST C
model learnt under two different scenarios—(a) us-
ing parallel data, and (b) using monolingual data.
For each experiment, we train only the WEFST C
model and then apply it to the name translitera-
tion task—decoding 100 U.S. Senator names from
Japanese to English using the automata shown in
Figure 1. For all experiments, we keep the rest of
the models in the cascade (WFSA A, WEST B, and
WEST D) unchanged. We evaluate on whole-name
error-rate (maximum of 100/100) as well as normal-
ized word edit distance, which gives partial credit
for getting the first or last name correct.

4 Acquiring Phoneme Mappings from
Non-Parallel Data

Our main data consists of 9350 unique Japanese
phoneme sequences, which we can consider as a sin-
gle long sequence j. As suggested by Knight et
al (2006), we explain the existence of j as the re-
sult of someone initially producing a long English
phoneme sequence e, according to P(e), then trans-
forming it into j, according to P(j|e). The probabil-
ity of our observed data P(j) can be written as:

P(j) = P(e) - P(jle)

We take P(e) to be some fixed model of mono-
lingual English phoneme production, represented
as a weighted finite-state acceptor (WFSA). P(j|e)
is implemented as the initial, uniformly-weighted
WEST C described in Section 2, with 15320 phone-
mic connections.

We next maximize P(7) by manipulating the sub-
stitution table P(j|e), aiming to produce a result
such as shown in Figure 2. We accomplish this by
composing the English phoneme model P(e) WESA
with the P(j|e) transducer. We then use the EM al-
gorithm to train just the P(j|e) parameters (inside
the composition that predicts j), and guess the val-
ues for the individual phonemic substitutions that
maximize the likelihood of the observed data P(j).?

’In our experiments, we use the Carmel finite-state trans-

ducer package (Graehl, 1997), a toolkit with an algorithm for
EM training of weighted finite-state transducers.
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We allow EM to run until the P(j) likelihood ra-
tio between subsequent training iterations reaches
0.9999, and we terminate early if 200 iterations are
reached.

Finally, we decode our test set of U.S. Senator
names. Following Knight et al (2006), we stretch
out the P(jle) model probabilities after decipher-
ment training and prior to decoding our test set, by
cubing their values.

Decipherment under the conditions of translit-
eration is substantially more difficult than solv-
ing letter-substitution ciphers (Knight et al., 2006;
Ravi and Knight, 2008; Ravi and Knight, 2009) or
phoneme-substitution ciphers (Knight and Yamada,
1999). This is because the target table contains sig-
nificant non-determinism, and because each symbol
has multiple possible fertilities, which introduces
uncertainty about the length of the target string.

4.1 Baseline P(¢) Model

Clearly, we can design P(e) in a number of ways. We
might expect that the more the system knows about
English, the better it will be able to decipher the
Japanese. Our baseline P(e) is a 2-gram phoneme
model trained on phoneme sequences from the CMU
dictionary. The second row (2a) in Figure 4 shows
results when we decipher with this fixed P(e). This
approach performs poorly and gets all the Senator
names wrong.

4.2 Consonant Parity

When training under non-parallel conditions, we
find that we would like to keep our WFST C model
small, rather than instantiating a fully-connected
model. In the supervised case, parallel training al-
lows the trained model to retain only those con-
nections which were observed from the data, and
this helps eliminate many bad connections from the
model. In the unsupervised case, there is no parallel
data available to help us make the right choices.

We therefore use prior knowledge and place a
consonant-parity constraint on the WFST C model.
Prior to EM training, we throw out any mapping
from the P(j|e) substitution model that does not
have the same number of English and Japanese con-
sonant phonemes. This is a pattern that we observe
across a range of transliteration tasks. Here are ex-



Phonemic Substitution Model

Name Transliteration Error
whole-name error  norm. edit distance

1 e — j={l-to-1, 1-t0-2 }
+ EM aligned with parallel data

40 259

2a e — j={1-to-1, 1-to-2 }
+ decipherment training with 2-gram English P(e)

100 100.0

2b  e— j={1-to-1,1-t0-2 }
+ decipherment training with 2-gram English P(e)
+ consonant-parity

98 89.8

2c e— j={1-to-1,1-t0-2 }
+ decipherment training with 3-gram English P(e)
+ consonant-parity

94 73.6

2d e—j={ltol, 102 }

+ consonant-parity

+ decipherment training with a word-based English model

71 572

2¢  e— j={1-to-1, 1-to-2 }

+ consonant-parity

bility weights

+ decipherment training with a word-based English model

+ initialize mappings having consonant matches with higher proba-

73 54.2

Figure 4: Results on name transliteration obtained when using the phonemic substitution model trained under different
scenarios—(1) parallel training data, (2a-e) using only monolingual resources.

amples of mappings where consonant parity is vio-
lated:

K => a N => e e
EH => s a EY => n

Modifying the WFST C in this way leads to bet-
ter decipherment tables and slightly better results
for the U.S. Senator task. Normalized edit distance
drops from 100 to just under 90 (row 2b in Figure 4).

4.3 Better English Models

Row 2c¢ in Figure 4 shows decipherment results
when we move to a 3-gram English phoneme model
for P(e). We notice considerable improvements in
accuracy. On the U.S. Senator task, normalized edit
distance drops from 89.8 to 73.6, and whole-name
error decreases from 98 to 94.

When we analyze the results from deciphering
with a 3-gram P(e) model, we find that many of the
Japanese phoneme test sequences are decoded into
English phoneme sequences (such as “IH K R IH
N”and “AE G M AH N”) that are not valid words.
This happens because the models we used for de-
cipherment so far have no knowledge of what con-
stitutes a globally valid English sequence. To help
the phonemic substitution model learn this infor-
mation automatically, we build a word-based P(e)
from English phoneme sequences in the CMU dic-
tionary and use this model for decipherment train-
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ing. The word-based model produces complete En-
glish phoneme sequences corresponding to 76,152
actual English words from the CMU dictionary.
The English phoneme sequences are represented as
paths through a WFSA, and all paths are weighted
equally. We represent the word-based model in com-
pact form, using determinization and minimization
techniques applicable to weighted finite-state au-
tomata. This allows us to perform efficient EM train-
ing on the cascade of P(e) and P(j|e) models. Under
this scheme, English phoneme sequences resulting
from decipherment are always analyzable into actual
words.

Row 2d in Figure 4 shows the results we ob-
tain when training our WFST C with a word-based
English phoneme model. Using the word-based
model produces the best result so far on the phone-
mic substitution task with non-parallel data. On the
U.S. Senator task, word-based decipherment outper-
forms the other methods by a large margin. It gets
23 out of 100 Senator names exactly right, with a
much lower normalized edit distance (57.2). We
have managed to achieve this performance using
only monolingual data. This also puts us within
reach of the parallel-trained system’s performance
(40% whole-name errors, and 25.9 word edit dis-
tance error) without using a single English/Japanese
pair for training.

To summarize, the quality of the English phoneme



e PGl e J PGl e PGl e 4 PGle)|e i PQle) e 7 P(jle) [e j PGl [e j  P(le)
AA a 0.37 AY ai 0.36 EH e 0.37 HH h 0.45 L r 0.3 oy a 0.27 SH shy 022 v b 0.34
o 0.25 oo 013 a 0.24 s 0.12 n 0.19 i 0.16 m 0.11 k 0.14
i 0.15 e 0.12 o 0.12 k 0.09 ru 0.15 yu 0.1 r 0.1 m 0.13
u 0.08 i 0.11 i 0.12 b 0.08 ri 0.04 oi 0.1 s 0.06 s 0.07
e 0.07 a 0.11 u 0.06 m 0.07 t 0.03 ya 0.09 p 0.06 d 0.07
oo 0.03 uu  0.05 oo 0.04 w 0.03 mu 0.02 yo 0.08 sa 0.05 r 0.04
ya 0.01 yu 0.2 yu 0.01 P 0.03 m 0.02 e 0.08 h 0.05 t 0.03
aa 0.01 u 0.02 ai 0.01 g 0.03 wa 001 o 0.06 b 0.05 h 0.02
o 0.02 ky 0.02 ta 0.01 oo 0.02 t 0.04 sh 0.01
ee 0.02 d 0.02 ra 0.01 ei 0.02 k 0.04 n 0.01
AE a 0.52 B b 0.41 ER aa 047 IH i 0.36 M m 0.3 P p 0.18 T t 0.2 wWoow 0.23
i 0.19 P 0.12 a 0.17 e 0.25 n 0.08 pu 0.08 to 0.16 r 0.2
e 0.11 k 0.09 u 0.08 a 0.15 k 0.08 n 0.05 ta 0.05 m 0.13
o 0.08 m 0.07 o 0.07 u 0.09 r 0.07 k 0.05 n 0.04 s 0.08
u 0.03 s 0.04 e 0.04 o 0.09 s 0.06 shi 0.04 ku 0.03 k 0.07
uu 0.02 g 0.04 oo 0.03 oo 0.01 h 0.05 ku 0.04 k 0.03 h 0.06
oo 0.02 t 0.03 ii 0.03 t 0.04 su 0.03 te 0.02 b 0.06
z 0.02 yu 0.02 g 0.04 pa 0.03 s 0.02 t 0.04
d 0.02 uu  0.02 b 0.04 t 0.02 r 0.02 P 0.04
chy 0.02 i 0.02 mu 0.03 ma 0.02 gu 0.02 d 0.02
AH a 0.31 CH g 0.12 EY ee 03 Iy i 0.25 N n 0.56 PAUSE pause 1.0 TH k 0.21 Y s 0.25
o 0.23 k 0.11 a 0.22 ii 0.21 ru 0.09 pu 011 k 0.18
i 0.17 b 0.09 i 0.11 a 0.15 su 0.04 ku 0.1 m 0.07
e 0.12 sh 0.07 u 0.09 aa 0.12 mu 0.02 d 0.08 g 0.06
u 0.1 s 0.07 o 0.06 u 0.07 kku 0.02 hu 0.07 p 0.05
ee 0.02 r 0.07 e 0.06 o 0.05 ku  0.02 su 005 b 0.05
oo 0.1 chy 0.07 oo 0.05 0o 0.02 hu 0.02 bu 0.04 r 0.04
aa 001 P 0.06 ei  0.04 ia 0.02 to 0.01 ko 0.03 d 0.04
m 0.06 ii 0.02 ee 0.02 ppu 0.01 ga 0.03 ur 0.03
ch 0.06 uu 0.01 e 0.02 bi 0.01 sa  0.02 ny 0.03
AO o 0.29 D d 0.16 F h 0.18 JH b 0.13 NG tto 021 R r 0.53 UH a 0.24 z to 014
a 0.26 do 015 hu 014 k 0.1 ru 0.17 n 0.07 o 0.14 zu 011
e 0.14 n 0.05 b 0.09 Jy 0.1 n 0.14 ur 0.05 e 0.11 ru 011
oo 0.12 to 0.03 shi 0.07 s 0.08 kku 0.1 ri 0.03 yu 0.1 su 0.1
i 0.08 shi  0.03 p 0.07 m 0.08 su 0.07 ru 0.02 ai 0.09 gu 0.09
u 0.05 ku 0.03 m 0.06 t 0.07 mu  0.06 d 0.02 i 0.08 mu 0.07
yu 0.03 k 0.03 r 0.04 J 0.07 ddo 0.04 t 0.01 uu  0.07 n 0.06
ee 0.01 gu  0.03 s 0.03 h 0.07 tchi  0.03 s 0.01 oo  0.07 do 0.6
b 0.03 ha 0.03 sh 0.06 ppu 0.03 m 0.01 aa 003 ji 0.02
s 0.02 bu 0.02 d 0.05 jii 0.03 k 0.01 u 0.02 chi 0.2
AW o0 02 DH h 0.13 G gu 013 K 3 0.17 OW a 0.3 S s 0.4 UW u 0.39 ZH m 0.17
au 019 r 0.12 g 0.11 n 0.1 o 0.25 n 0.11 a 0.15 P 0.16
a 0.18 b 0.09 ku 0.08 ku 0.1 0o 0.12 ru 0.05 o 0.13 t 0.15
ai 011 w 0.08 bu 0.06 kku 0.05 u 0.09 to 0.03 uu 012 h 0.13
aa 011 t 0.07 k 0.04 to 0.03 i 0.07 ku 0.03 i 0.04 d 0.1
e 0.05 p 0.07 b 0.04 su 0.03 ya 0.04 shi 0.02 yu 003 s 0.08
o 0.04 g 0.06 to 0.03 shi  0.02 e 0.04 ri 0.02 ii 0.03 b 0.07
i 0.04 iy 0.05 t 0.03 r 0.02 uu  0.02 mu 0.02 e 0.03 r 0.05
iy 0.02 d 0.05 ha 0.03 ko 0.02 ai 0.02 hu 0.02 oo  0.02 jy 003
ea 001 k 0.03 d 0.03 ka 0.02 ii 0.01 chi 0.02 ee  0.02 k 0.02

Figure 5: Phonemic substitution table learnt from non-parallel corpora.

mappings with P(j]e) > 0.01 are shown.

model used in decipherment training has a large ef-
fect on the learnt P(j|e) phonemic substitution ta-
ble (i.e., probabilities for the various phoneme map-
pings within the WFST C model), which in turn af-
fects the quality of the back-transliterated English
output produced when decoding Japanese.

Figure 5 shows the phonemic substitution table
learnt using word-based decipherment. The map-
pings are reasonable, given the lack of parallel data.
They are not entirely correct—for example, the map-
ping “S — s u” is there, but “S — §” is missing.

Sample end-to-end transliterations are illustrated
in Figure 6. The figure shows how the transliteration
results from non-parallel training improve steadily
as we use stronger decipherment techniques. We
note that in one case (LAUTENBERG), the deci-
pherment mapping table leads to a correct answer
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For each English phoneme, only the top ten

where the mapping table derived from parallel data
does not. Because parallel data is limited, it may not
contain all of the necessary mappings.

4.4 Size of Japanese Training Data

Monolingual corpora are more easily available than
parallel corpora, so we can use increasing amounts
of monolingual Japanese training data during de-
cipherment training. The table below shows that
using more Japanese training data produces bet-
ter transliteration results when deciphering with the
word-based English model.

Error on name transliteration task
whole-name error  normalized word
edit distance

69.7

57.2

Japanese training data
(# of phoneme sequences)

4,674
9,350

87
77




Nq Parallel Data Used.

Decipherment

Decipherment

Decipherment

Original Correct Answer | Parallel Phonetic
Training

AR — . SPENCER SPENCER

T—TFNA ABRAHAM ABRAHAM

=) DANIEL AKAKA DANIEL ACA KA

TR

L7253 VK WAYNE ALLARD WAYNE ALLARD

7oK

TYTR . MAX BAUCUS MAX BAUCUS

AR—H R

A7« "Xy L BOBBENNETT BOB BENNETT

Tak7 - JOSEPH BIDEN JOSEPH BIDEN

RAFY

7 - JEFF BINGAMAN  JEFF BINGAMAN

| =N AV

AV FRANK FRANK

2 —7 > /3—7  LAUTENBERG LAUTENBACH

(Method 1) (Method 2) (Method 3)
SPENCER SPACE CUOMO SPENCER
EDELMAN ABRAHAM
KOREA EAST SCHERING EAST DANIELLE ABACO
CHOICE JOHN WAYNE BYRD WAYNE ALLARD
MEESE JAMES MAX BOOKS MAX FOCUS

MY SCHERING JACK BILLING BOTH BENNING
HOUSE LABOR JAPAN BIDEN JOSEPH BIDEN

JOHN PFEIFFER JEFF BENJAMIN

JEFF BENJAMIN

SUN FLINT FRANCE

LAUTENBERG

FRANCE
LAUTENBERG

Figure 6: Results for end-to-end name transliteration. This figure shows the correct answer, the answer obtained
by training mappings on parallel data (Knight and Graehl, 1998), and various answers obtained by deciphering non-
parallel data. Method 1 uses a 2-gram P(e), Method 2 uses a 3-gram P(e), and Method 3 uses a word-based P(e).

4.5 P(j|e) Initialization

So far, the P(j|e) connections within the WFST C
model were initialized with uniform weights prior
to EM training. It is a known fact that the EM al-
gorithm does not necessarily find a global minimum
for the given objective function. If the search space
is bumpy and non-convex as is the case in our prob-
lem, EM can get stuck in any of the local minima
depending on what weights were used to initialize
the search. Different sets of initialization weights
can lead to different convergence points during EM
training, or in other words, depending on how the
P(j|e) probabilities are initialized, the final P(j|e)
substitution table learnt by EM can vary.

We can use some prior knowledge to initialize the
probability weights in our WFST C model, so as to
give EM a good starting point to work with. In-
stead of using uniform weights, in the P(j|e) model
we set higher weights for the mappings where En-
glish and Japanese sounds share common consonant
phonemes.

For example, mappings such as:

N => n N
D => d

=> an
D =>d o
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are weighted X (a constant) times higher than
other mappings such as:
N =>Db N
D =>B EY

=> r
=> a a

in the P(j|e) model. In our experiments, we set
the value X to 100.

Initializing the WEFST C in this way results in EM
learning better substitution tables and yields slightly
better results for the Senator task. Normalized edit
distance drops from 57.2 to 54.2, and the whole-
name error is also reduced from 77% to 73% (row
2e in Figure 4).

4.6 Size of English Training Data

We saw earlier (in Section 4.4) that using more
monolingual Japanese training data yields improve-
ments in decipherment results. Similarly, we hy-
pothesize that using more monolingual English data
can drive the decipherment towards better translit-
eration results. On the English side, we build dif-
ferent word-based P(e) models, each trained on dif-
ferent amounts of data (English phoneme sequences
from the CMU dictionary). The table below shows
that deciphering with a word-based English model



built from more data produces better transliteration
results.

Error on name transliteration task
whole-name error  normalized word
edit distance

542

49.3

English training data
(# of phoneme sequences)

76,152 73
97,912 66

This yields the best transliteration results on the
Senator task with non-parallel data, getting 34 out
of 100 Senator names exactly right.

4.7 Re-ranking Results Using the Web

It is possible to improve our results on the U.S. Sen-
ator task further using external monolingual re-
sources. Web counts are frequently used to auto-
matically re-rank candidate lists for various NLP
tasks (Al-Onaizan and Knight, 2002). We extract
the top 10 English candidates produced by our word-
based decipherment method for each Japanese test
name. Using a search engine, we query the entire
English name (first and last name) corresponding to
each candidate, and collect search result counts. We
then re-rank the candidates using the collected Web
counts and pick the most frequent candidate as our
choice.

For example, France Murkowski gets only 1 hit
on Google, whereas Frank Murkowski gets 135,000
hits. Re-ranking the results in this manner lowers
the whole-name error on the Senator task from 66%
to 61%, and also lowers the normalized edit dis-
tance from 49.3 to 48.8. However, we do note that
re-ranking using Web counts produces similar im-
provements in the case of parallel training as well
and lowers the whole-name error from 40% to 24%.

So, the re-ranking idea, which is simple and re-
quires only monolingual resources, seems like a nice
strategy to apply at the end of transliteration exper-
iments (during decoding), and can result in further
gains on the final transliteration performance.

5 Comparable versus Non-Parallel
Corpora

We also present decipherment results when using
comparable corpora for training the WFST C model.
We use English and Japanese phoneme sequences
derived from a parallel corpus containing 2,683
phoneme sequence pairs to construct comparable
corpora (such that for each Japanese phoneme se-
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quence, the correct back-transliterated phoneme se-
quence is present somewhere in the English data)
and apply the same decipherment strategy using a
word-based English model. The table below com-
pares the transliteration results for the U.S. Sena-
tor task, when using comparable versus non-parallel
data for decipherment training. While training on
comparable corpora does have benefits and reduces
the whole-name error to 59% on the Senator task, it
is encouraging to see that our best decipherment re-
sults using only non-parallel data comes close (66%
error).

Error on name transliteration task
whole-name error  normalized word
edit distance

English/Japanese Corpora
(# of phoneme sequences)

Comparable Corpora 59 41.8
(English = 2,608

Japanese = 2,455)

Non-Parallel Corpora 66 49.3

(English = 98,000
Japanese = 9,350)

6 Conclusion

We have presented a method for attacking machine
transliteration problems without parallel data. We
developed phonemic substitution tables trained us-
ing only monolingual resources and demonstrated
their performance in an end-to-end name translitera-
tion task. We showed that consistent improvements
in transliteration performance are possible with the
use of strong decipherment techniques, and our best
system achieves significant improvements over the
baseline system. In future work, we would like to
develop more powerful decipherment models and
techniques, and we would like to harness the infor-
mation available from a wide variety of monolingual
resources, and use it to further narrow the gap be-
tween parallel-trained and non-parallel-trained ap-
proaches.
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Abstract

In this paper we explore a learning-based ap-
proach to the problem of predicting language
impairment in children. We analyzed sponta-
neous narratives of children and extracted fea-
tures measuring different aspects of language
including morphology, speech fluency, lan-
guage productivity and vocabulary. Then, we
evaluated a learning-based approach and com-
pared its predictive accuracy against a method
based on language models. Empirical re-
sults on monolingual English-speaking chil-
dren and bilingual Spanish-English speaking
children show the learning-based approach is
a promising direction for automatic language
assessment.

1 Introduction

The question of how best to identify children with
language disorders is a topic of ongoing debate.
One common assessment approach is based on cut-
off scores from standardized, norm-referenced lan-
guage assessment tasks. Children scoring at the
lower end of the distribution, typically more than
1.25 or 1.5 Standard Deviations (SD) below the
mean, are identified as having language impair-
ment (Tomblin et al., 1997). This cutoff-based
approach has several well-documented weaknesses
that may result in both over- and under-identification
of children as language impaired (Plante and Vance,
1994). Recent studies have suggested considerable
overlap between children with language impairment
and their typically developing cohorts on many of
these tasks (e.g., (Pefia et al., 2006b; Spaulding et
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al., 2006)). In addition, scores and cutoffs on stan-
dardized tests depend on the distribution of scores
from the particular samples used in normalizing the
measure. Thus, the validity of the measure for chil-
dren whose demographic and other socioeconomic
characteristics are not well represented in the test’s
normative sample is a serious concern. Finally, most
norm-referenced tests of language ability rely heav-
ily on exposure to mainstream language and expe-
riences, and have been found to be biased against
children from families with low parental education
and socioeconomic status, as well as children from
different ethnic backgrounds (Campbell et al., 1997;
Dollaghan and Campbell, 1998).

This paper aims to develop a reliable and auto-
matic method for identifying the language status of
children. We propose the use of different lexico-
syntactic features, typically used in computational
linguistics, in combination with features inspired
by current assessment practices in the field of lan-
guage disorders to train Machine Learning (ML) al-
gorithms. The two main contributions of this pa-
per are: 1) It is one step towards developing a re-
liable and automatic approach for language status
prediction in English-speaking children; 2) It pro-
vides evidence showing that the same approach can
be adapted to predict language status in Spanish-
English bilingual children.

2 Related Work

2.1 Monolingual English-Speaking Children

Several hypotheses exist that try to explain the gram-
matical deficits of children with Language Impair-
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Boulder, Colorado, June 2009. (©)2009 Association for Computational Linguistics



ment (LI). Young children normally go through a
stage where they use non-finite forms of verbs in
grammatical contexts where finite forms are re-
quired (Wexler, 1994). This is referred as the op-
tional infinitive stage. The Extended Optional Infini-
tive (EOI) theory (Rice and Wexler, 1996) suggests
that children with LI exhibit the use of a “young”
grammar for an extended period of time, where
tense, person, and number agreement markers are
omitted.

In contrast to the EOI theory, the surface account
theory (Leonard et al., 1997) assumes that chil-
dren with LI have reduced processing capabilities.
This deficit affects the perception of low stress mor-
phemes, such as -ed, -s, be and do, resulting in an
inconsistent use of these verb morphemes.

Spontaneous narratives are considered as one of
the most ecologically valid ways to measure com-
municative competence (Botting, 2002). They rep-
resent various aspects involved in children’s every-
day communication. Typical measures for sponta-
neous language samples include Mean Length of
Utterance (MLU) in words, Number of Different
Words (NDW), and errors in grammatical morphol-
ogy. Assessment approaches compare children’s
performance on these measures against expected
performance. As mentioned in Section 1, these cut-
off based methods raise questions concerning accu-
racy and bias. Manually analyzing the narratives is
also a very time consuming task. After transcribing
the sample, clinicians need to code for the differ-
ent clinical markers and other morphosyntactic in-
formation. This can take up to several hours for each
child making it infeasible to analyze a large number
of samples.

2.2 Bilingual Spanish-English Speaking
Children

Bilingual children face even more identification
challenges due to their dual language acquisition.
They can be mistakenly labeled as LI due to: 1) the
inadequate use of translations of assessment tools;
2) an over reliance on features specific to English; 3)
a lack of appropriate expectations about how the lan-
guages of a bilingual child should develop (Bedore
and Pefia, 2008); 4) or the use of standardized
tests where the normal distribution used to compare
language performance is composed of monolingual
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children (Restrepo and Gutiérrez-Clellen, 2001).

Spanish speaking children with LI show differ-
ent clinical markers than English speaking children
with LI. As mentioned above, English speakers have
problems with verb morphology. In contrast, Span-
ish speakers have been found to have problems with
noun morphology, in particular in the use of articles
and clitics (Restrepo and Gutiérrez-Clellen, 2001;
Jacobson and Schwartz, 2002; Bedore and Leonard,
2005). Bedore and Leonard (2005) also found dif-
ferences in the error patterns of Spanish and related
languages such as Italian. Spanish-speakers tend to
both omit and substitute articles and clitics, while
the dominant errors for Italian-speakers are omis-
sions.

3 Our Approach

We use language models (LMs) in our initial inves-
tigation, and later explore more complex ML algo-
rithms to improve the results. Our ultimate goal is
to discover a highly accurate ML method that can be
used to assist clinicians in the task of LI identifica-
tion in children.

3.1 Language Models for Predicting Language
Impairment

LMs are statistical models used to estimate the prob-
ability of a given sequence of words. They have been
explored previously for clinical purposes. Roark et
al. (2007) proposed cross entropy of LMs trained
on Part-of-Speech (POS) sequences as a measure of
syntactic complexity with the aim of determining
mild cognitive impairment in adults. Solorio and
Liu (2008) evaluated LMs on a small data set in a
preliminary trial on LI prediction.

The intuition behind using LMs is that they can
identify atypical grammatical patterns and help dis-
criminate the population with potential LI from
the Typically Developing (TD) one. We use LMs
trained on POS tags rather than on words. Using
POS tags can address the data sparsity issue in LMs,
and place less emphasis on the vocabulary and more
emphasis on the syntactic patterns.

We trained two separate LMs using POS tags
from the transcripts of TD and LI children, respec-
tively. The language status of a child is predicted
using the following criterion:



d(S) _ { LI if (PPTD(S) > PPL[(S))
TD otherwise
where s represents a transcript from a child, and
PPrp(s) and PPry(s) are the perplexity values
from the TD and LI LMs, respectively. We used the
SRI Language Modeling Toolkit (Stolcke, 2002) for
training the LMs and calculating perplexities.

3.2 Machine Learning for Predicting Language
Impairment

Although LMs have been used successfully on dif-
ferent human language processing tasks, they are
typically trained and tested on language samples
larger than what is usually collected by clinicians for
the purpose of diagnosing a child with potential LI.
Clinicians make use of additional information be-
yond children’s speech, such as parent and teacher
questionnaires and test scores on different language
assessment tasks. Therefore in addition to using
LMs for children language status prediction, we ex-
plore a machine learning classification approach that
can incorporate more information for better predic-
tion. We aim to identify effective features for this
task and expect this information will help clinicians
in their assessment.

We consider various ML algorithms for the clas-
sification task, including Naive Bayes, Artificial
Neural Networks (ANNs), Support Vector Ma-
chines (SVM), and Boosting with Decision Stumps.
Weka (Witten and Frank, 1999) was used in our ex-
periments due to its known reliability and the avail-
ability of a large number of algorithms. Below we
provide a comprehensive list of features that we ex-
plored for both English and Spanish-English tran-
scripts. We group these features according to the
aspect of language they focus on. Features specific
to Spanish are discussed in Section 5.2.

1. Language productivity

(a) Mean Length of Utterance (MLU) in
words
Due to a general deficit of language abil-
ity, children with LI have been found to
produce language samples with a shorter
MLU in words because they produce
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(b)

©

grammatically simpler sentences when
compared to their TD peers.

Total number of words

This measure is widely used when build-
ing language profiles of children for diag-
nostic and treatment purposes.

Degree of support

In spontaneous samples of children’s
speech, it has been pointed out that chil-
dren with potential LI need more encour-
agement from the investigator (Wetherell
et al., 2007) than their TD peers. A sup-
port prompt can be a question like “What
happened next?’ We count the number of
utterances, or turns, of the investigator in-
terviewing the child for this feature.

2. Morphosyntactic skills

(a)

(b)

Ratio of number of raw verbs to the total
number of verbs

As mentioned previously, children with LI
omit tense markers in verbs more often
than their TD cohorts. For example:

...the boy look into the hole but didn’t
find...

Hence, we include the ratio of the number
of raw verbs to the total number of verbs
as a feature.

Subject-verb agreement

Research has shown that English-speaking
children with LI have difficulties mark-
ing subject-verb agreement (Clahsen and
Hansen, 1997; Schiitze and Wexler, 1996).
An illustration of subject-verb disagree-
ment is the following:

...and he were looking behind the rocks

As a way of capturing this information
in the machine learning setting, we con-
sider various bigrams of POS tags: noun
and verb, noun and auxiliary verb, pro-
noun and verb, and pronoun and auxiliary
verb. These features are included in a bag-
of-words fashion using individual counts.
Also, we allow a window between these
pairs to capture agreement between sub-



ject and verb that may have modifiers in
between.

(c) Number of different POS tags
This feature is the total number of differ-
ent POS tags in each transcript.

3. Vocabulary knowledge

We use the Number of Different Words (NDW)
to represent vocabulary knowledge of a child.
Although such measures can be biased against
children from different backgrounds, we expect
this possible negative effect to decrease as a re-
sult of having a richer pool of features.

. Speech fluency

Repetitions, revisions, and filled pauses have
been considered indicators of language learn-
ing difficulties (Thordardottir and Weismer,
2002; Wetherell et al., 2007). In this work
we include as features (a) the number of fillers,
such as uh, um, er; and (b) the number of disflu-
encies (abandoned words) found in each tran-
script.

. Perplexities from LMs

As mentioned in Section 3.1 we trained LMs of
order 1, 2, and 3 on POS tags extracted from
TD and LI children. We use the perplexity val-
ues from these models as features. Addition-
ally, differences in perplexity values from LI
and TD LMs for different orders are used as
features.

. Standard scores

A standard score, known as a z-score, is the dif-
ference between an observation and the mean
relative to the standard deviation. For this fea-
ture group, we first find separate distributions
for the MLU in words, NDW and total num-
ber of utterances for the TD and LI populations.
Then, for each transcript, we compute the stan-
dard scores based on each of these six distribu-
tions. This represents how well the child is per-
forming relative to the TD and LI populations.
Note that a cross validation setup was used to
obtain the distribution for the TD and LI chil-
dren for training. This is also required for the
LM features above.
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4 Experiments with Monolingual Children

4.1 The Monolingual English Data Set

Our target population for this work is children with
an age range of 3 to 6 years old. However, currently
we do not have any monolingual data sets readily
available to test our approach in this age range. In
the field of communication disorders data sharing
is not a common practice due to the sensitive con-
tent of the material in the language samples of chil-
dren, and also due to the large amount of effort and
time it takes researchers to collect, transcribe, and
code the data before they can begin their analysis.
To evaluate our approach we used a dataset from
CHILDES (MacWhinney, 2000) that includes nar-
ratives from English-speaking adolescents with and
without LI with ages ranging between 13 and 16
years old. Even though the age range is outside the
range we are interested in, we believe that this data
set can still be helpful in exploring the feasibility of
our approach as a first step.

This data set contains 99 TD adolescents and 19
adolescents who met the LI profile at one point in
the duration of the study. There are transcripts from
each child for two tasks: a story telling and a spon-
taneous personal narrative. The first task is a picture
prompted story telling task using the wordless pic-
ture book, “Frog, Where Are You?” (Mayer, 1969).
In this story telling task children first look at the
story book —to develop a story in memory— and then
are asked to narrate the story. This type of elicitation
task encourages the use of past tense constructions,
providing plenty of opportunities for extracting clin-
ical markers. In the spontaneous personal narrative
task, the child is asked to talk about a person who an-
noys him/her the most and describe the most annoy-
ing features of that person. This kind of spontaneous
personal narrative encourages the participant for the
use of third person singular forms (-s). Detailed in-
formation of this data set can be found in (Wetherell
et al., 2007).

We processed the transcripts using the CLAN
toolkit (MacWhinney, 2000). MOR and POST from
CLAN are used for morphological analysis and POS
tagging of the children’s speech. We decided to use
these analyzers since they are customized for chil-
dren’s speech.



Story telling Personal narrative
Method P(%) | R(%) | F1 (%) | P(%) | R(%) | F1 (%)
Baseline 28.57 | 10.53 15.38 33.33 | 15.79 21.43
l-gram LMs | 41.03 | 84.21 55.17 3421 | 68.42 45.61
2-gram LMs | 75.00 | 47.37 58.06 | 55.56 | 26.32 35.71
3-gram LMs | 80.00 | 21.05 33.33 87.50 | 36.84 51.85

Table 1: Evaluation of language models on the monolingual English data set.

Story telling Personal narrative
Algorithm P(%) | R(%) | F1 (%) | P(%) | R(%) | F1 (%)
Naive Bayes 3871 | 63.16 | 48.00 | 34.78 | 42.11 38.10
Bayesian Network | 58.33 | 73.68 | 65.12 | 28.57 | 42.11 34.04
SVM 7647 | 68.42 | 7222 | 47.06 | 42.11 44.44
ANNs 62.50 | 52.63 | 57.14 | 50.00 | 47.37 | 48.65
Boosting 70.59 | 63.16 | 66.67 | 69.23 | 4737 | 56.25

Table 2: Evaluation of machine learning algorithms on the monolingual English data set.

4.2 Results with Monolingual
English-Speaking Children

The performance measures we use are: precision
(P), recall (R), and F-measure (F). Here the LI cat-
egory is the positive class and the TD category is the
negative class.

Table 1 shows the results of leave-one-out-cross-
validation (LOOCV) obtained from the LM ap-
proach for the story telling and spontaneous personal
narrative tasks. It also shows results from a base-
line method that predicts language status by using
standard scores on measures that have been asso-
ciated with LI in children (Dollaghan, 2004). The
three measures we used for the baseline are: MLU
in words, NDW, and total number of utterances pro-
duced. To compute this baseline we estimate the
mean and standard deviation of these measures us-
ing LOOCYV with the TD population as our norma-
tive sample. The baseline predicts that a child has
LI if the child scores more than 1.25 SD below the
mean on at least two out of the three measures.

Although LMs yield different results for the story
telling and personal narrative tasks, they both pro-
vide consistently better results than the baseline. For
the story telling task the best results, in terms of the
F} measure, are achieved by a bigram LM (F} =
58.06%) while for the personal narrative the highest
F1 measure (51.85%) is from the trigram LM. If we
consider precision, both tasks have the same increas-
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ing pattern when increasing LM orders. However for
recall that is not the case. In the story telling task,
recall decreases at the expense of higher precision,
but for the personal narrative task, the trigram LM
reaches a better trade-off between precision and re-
call, which yields a high F; measure. We also evalu-
ated 4-gram LMs, but results did not improve, most
likely because we do not have enough data to train
higher order LMs.

The results for different ML algorithms are shown
in Table 2, obtained by using all features described
in Section 3.2. The feature based approach us-
ing ML algorithms outperformed using only LMs
on both tasks. For the story telling task, SVM
with a linear kernel achieves the best results (F] =
72.22%), while Boosting with Decision Stumps pro-
vides the best performance (F; = 56.25%) for the
personal narrative task.

4.3 Feature and Error Analysis

The ML results shown above use the entire feature
set described in Subsection 3.2. The next question
we ask is the effectiveness of different features for
this task. The datasets we are using in our evalua-
tion are very small, especially considering the num-
ber of positive instances. This prevents us from hav-
ing a separate subset of the data for parameter tun-
ing or feature selection. Therefore, we performed
additional experiments to evaluate the usefulness of
individual features. Figure 1 shows the F measures
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Figure 1: Discriminating power of different groups of
features. The numbers on the x-axis correspond to the
feature groups in Section 3.2.

when using different feature groups. The numbers
on the x-axis correspond to the feature groups de-
scribed in Section 3.2. The F} measure value for
each of the features is the highest value obtained by
running different ML algorithms for classification.

We noticed that for the story telling task, using
perplexity values from LMs (group 5) as a feature
in the ML setting outperforms the LM threshold ap-
proach by a large margin. It seems that having the
perplexity values as well as the perplexity differ-
ences from all the LMs of different orders in the ML
algorithm provides a better estimation of the target
concept.

Only the standard scores (group 6) yield a higher
F measure for the personal narrative task than the
story telling one. The majority of the features (5
out of 6 groups) provide higher F; measures for the
story telling task, which explains the significantly
better results on this task over the personal narrative
in our learning approach. This is consistent with pre-
vious work contrasting narrative genre stating that
the restrictive setting of a story retell is more reveal-
ing of language difficulties than spontaneous narra-
tives, where the subjects have more control on the
content and style (Wetherell et al., 2007).

We also performed some error analysis for some
of the transcripts that were consistently misidenti-
fied by different ML algorithms. In the story telling
task, we find that some LI transcripts are misclassi-
fied as TD because they (1) have fewer fillers, dis-
fluencies, and degree of support; (2) are similar to
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the TD transcripts, which is depicted by the perplex-
ity values for these transcripts; or (3) contain higher
MLU in words as compared to their LI peers. Some
of the reasons for classifying transcripts in the TD
category as LI are shorter MLU in words as com-
pared to other TD peers, large number of fillers, and
excessive repetitions of words and phrases unlike the
other TD children. These factors are consistent with
the effective features that we found from Figure 1.

For the personal narrative task, standar