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Preface: General Chair

I am honored that the North American Chapter of the Association of Computational Linguistics
(NAACL) has given me the opportunity, as General Conference Chair, to continue the NAACL HLT
tradition of covering topics from all areas of Human Language Technology, which makes it possible
for researchers to discuss algorithms and applications that cut across the fields of natural language
processing (NLP), speech processing, and information retrieval (IR).

I have been very fortunate to work with a terrific group of Technical Program Co-Chairs: Michael
Collins (NLP), Shri Narayanan (speech), Douglas W. Oard (IR), and Lucy Vanderwende (NLP). This
year the technical program emphasizes the breadth and interdisciplinary nature of human language
processing research. The plenary talks will stretch our thinking about how language is used by
considering the application of language to vision in one case, and language as it relates to food
in another. There are two special sessions with themes that cut across multiple sub-areas of HLT:
Large Scale Language Processing and Speech Information Retrieval. We also recognize the increasing
importance of industry in our field with a lunchtime panel discussion on the Next Big Applications in
Industry, with thanks to Bill Dolan for organizing and moderating the discussion. Finally, we have a
breadth of excellent technical papers in lecture and poster sessions, thanks to the efforts of our Senior
Program Committee members, the many reviewers on the Program Committee who helped us keep to
our schedule, and the Paper Awards Committee. Together they have done a great job in putting together
an interesting technical program. It has also been a pleasure to work with Local Organizers Martha
Palmer and Jim Martin, who have done a terrific job in hosting a meeting that shows us Colorado’s
character as well as offering a great technical program. I hope you enjoy your stay in beautiful Boulder,
as you are learning about new ideas and networking with valued colleagues.

The tradition of NAACL HLT is that it incorporates many events, including tutorials and workshops
that have expanded in scope such that they are almost as big as the main conference. As a result, many
other people have played important roles in making the overall conference a success and representative
of the breadth of HLT. Specifically, I thank Matthew Stone, Gokhan Tur and Diana Inkpen for their
work as Publicity Chairs; Christy Doran and Eric Ringger for their work as Publications Chairs; Fred
Popowich and Michael Johnston for serving as Demo Chairs; Tutorial Chairs Ciprian Chelba, Paul
Kantor and Brian Roark for bringing us an outstanding slate of tutorials; Workshop Chairs Nizar Habash
and Mark Hasegawa-Johnson for their efforts in choosing and supporting the 12 workshops that extend
our program by two days; and the Student Co-Chairs of the Doctoral Consortium organizers Svetlana
Stenchikova, Ulrich Germann and Chirag Shah working with faculty advisors Carolyn Rosé and Anoop
Sarkar. Thanks also to Nicolas Nicolov for his efforts as NAACL HLT Sponsorship Chair, working
in coordination with Sponsorship Chairs from other ACL regions. Of course, we greatly appreciate
the support of our sponsors: Rosetta Stone, CNGL, Microsoft Research, Google, AT&T, Language
Weaver, J.D. Power, IBM Research, the Linguistic Data Consortium, the Human Language Technology
Center of Excellence at the Johns Hopkins University, and the Computational Language and Education
Research Center at the University of Colorado at Boulder.
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In organizing this conference, we have had a lot of support from the NAACL Board and the HLT
Advisory Board. I would particularly like to thank Owen Rambow, Jennifer Chu-carroll, Chris Manning
and Graeme Hirst for their help and advice. Last, but certainly not least, we are indebted to Priscilla
Rasmussen for her expertise and support in running the conference.

Mari Ostendorf, University of Washington
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Preface: Program Chairs

We welcome you to NAACL HLT 2009! The NAACL HLT program continues to include high-quality
work in the areas of computational linguistics, information retrieval, and speech technology. This year,
260 full papers were submitted, of which 75 papers were accepted (giving a 29% acceptance rate); and
178 short papers were submitted, of which 71 were accepted (giving a 40% acceptance rate).

Two best paper awards were given at the conference, to “Unsupervised Morphological Segmentation
with Log-Linear Models”, by Hoifung Poon, Colin Cherry and Kristina Toutanova (this paper also
received the best student paper award), and “11,001 New Features for Statistical Machine Translation”,
by David Chiang, Kevin Knight and Wei Wang. The senior program committee members for the
conference nominated an initial set of papers that were candidates for the awards; the final decisions
were then made by a committee chaired by Candace Sidner, and with Hal Daume III, Roland Kuhn,
Ryan McDonald, and Mark Steedman as its other members. We would like to congratulate the authors,
and thank the committee for their work in choosing these papers.

NAACL HLT 2009 consists of oral presentations of all full papers, oral or poster presentations of short
papers, and tutorials and software demonstrations. We are delighted to have two keynote speakers:
Antonio Torralba, with a talk “Understanding Visual Scenes”, and Dan Jurafsky, with a talk “The
Language of Food”. In addition, we have a panel on emerging application areas in computational
linguistics, chaired by Bill Dolan.

We would like to thank the authors for submitting a remarkable set of papers to the conference. The
review process was organized through a two-tier system, with eighteen senior program committee (SPC)
members, and 352 reviewers. The SPC members managed the review process for both the full and short
paper submissions: each full paper received at least three reviews, and each short paper received at least
two reviews. We are thoroughly indebted to the reviewers for all their work, and to the SPC members for
the long hours they spent in evaluating the submissions. In addition, we would like to thank Rich Gerber
and the START team for their help with the system that managed paper submissions and reviews; the
local arrangement chairs, James Martin and Martha Palmer, for their help with organizing the program;
and the publication chairs, Christy Doran and Eric Ringger, for putting together these proceedings.
Finally, we are incredibly grateful to the general chair, Mari Ostendorf, for the invaluable advice and
support that she provided throughout every step of the process.

We hope that you enjoy the conference!

Michael Collins, Massachusetts Institute of Technology
Shri Narayanan, University of Southern California
Douglas W. Oard, University of Maryland
Lucy Vanderwende, Microsoft Research
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Jamie Brunning, Adrià de Gispert and William Byrne

4:25–4:50 Graph-based Learning for Statistical Machine Translation
Andrei Alexandrescu and Katrin Kirchhoff

4:50–5:15 Intersecting Multilingual Data for Faster and Better Statistical Translations
Yu Chen, Martin Kay and Andreas Eisele

5:15–5:40 No Presentation

Session 3B: Semantics

4:00–4:25 Without a ’doubt’? Unsupervised Discovery of Downward-Entailing Operators
Cristian Danescu-Niculescu-Mizil, Lillian Lee and Richard Ducott

4:25–4:50 The Role of Implicit Argumentation in Nominal SRL
Matthew Gerber, Joyce Chai and Adam Meyers

4:50–5:15 Jointly Identifying Predicates, Arguments and Senses using Markov Logic
Ivan Meza-Ruiz and Sebastian Riedel

xxvii



Monday, June 1, 2009 (continued)

5:15–5:40 Structured Generative Models for Unsupervised Named-Entity Clustering
Micha Elsner, Eugene Charniak and Mark Johnson

Session 3C: Information Retrieval

4:00–4:25 Hierarchical Dirichlet Trees for Information Retrieval
Gholamreza Haffari and Yee Whye Teh

4:25–4:50 Phrase-Based Query Degradation Modeling for Vocabulary-Independent Ranked Utter-
ance Retrieval
J. Scott Olsson and Douglas W. Oard

4:50–5:15 Japanese Query Alteration Based on Lexical Semantic Similarity
Masato Hagiwara and Hisami Suzuki

5:15–5:40 Context-based Message Expansion for Disentanglement of Interleaved Text Conversations
Lidan Wang and Douglas W. Oard

Student Research Workshop Session 3

Note: all student research workshop papers are located in the Companion volume of the
proceedings

4:00–4:30 Pronunciation Modeling in Spelling Correction for Writers of English as a Foreign Lan-
guage
Adriane Boyd

4:35–5:05 Building a Semantic Lexicon of English Nouns via Bootstrapping
Ting Qian, Benjamin Van Durme and Lenhart Schubert

5:10–5:40 Multiple Word Alignment with Profile Hidden Markov Models
Aditya Bhargava and Grzegorz Kondrak

6:30–9:30 Poster and Demo Session

Note: all short papers and demo abstracts are located in the Companion volume of the
proceedings

Minimum Bayes Risk Combination of Translation Hypotheses from Alternative Morpho-
logical Decompositions
Adri de Gispert, Sami Virpioja, Mikko Kurimo and William Byrne

xxviii



Monday, June 1, 2009 (continued)

Generating Synthetic Children’s Acoustic Models from Adult Models
Andreas Hagen, Bryan Pellom and Kadri Hacioglu

Detecting Pitch Accents at the Word, Syllable and Vowel Level
Andrew Rosenberg and Julia Hirschberg

Shallow Semantic Parsing for Spoken Language Understanding
Bonaventura Coppola, Alessandro Moschitti and Giuseppe Riccardi

Automatic Agenda Graph Construction from Human-Human Dialogs using Clustering
Method
Cheongjae Lee, Sangkeun Jung, Kyungduk Kim and Gary Geunbae Lee

A Simple Sentence-Level Extraction Algorithm for Comparable Data
Christoph Tillmann and Jian-ming Xu

Learning Combination Features with L1 Regularization
Daisuke Okanohara and Jun’ichi Tsujii

Multi-scale Personalization for Voice Search
Daniel Bolanos, Geoffrey Zweig and Patrick Nguyen

The Importance of Sub-Utterance Prosody in Predicting Level of Certainty
Heather Pon-Barry and Stuart Shieber

Using Integer Linear Programming for Detecting Speech Disfluencies
Kallirroi Georgila

Contrastive Summarization: An Experiment with Consumer Reviews
Kevin Lerman and Ryan McDonald

Topic Identification Using Wikipedia Graph Centrality
Kino Coursey and Rada Mihalcea

Extracting Bilingual Dictionary from Comparable Corpora with Dependency Heterogene-
ity
Kun Yu and Junichi Tsujii

Domain Adaptation with Artificial Data for Semantic Parsing of Speech
Lonneke van der Plas, James Henderson and Paola Merlo

xxix



Monday, June 1, 2009 (continued)

Extending Pronunciation Lexicons via Non-phonemic Respellings
Lucian Galescu

A Speech Understanding Framework that Uses Multiple Language Models and Multiple
Understanding Models
Masaki Katsumaru, Mikio Nakano, Kazunori Komatani, Kotaro Funakoshi, Tetsuya Ogata
and Hiroshi G. Okuno

Taking into Account the Differences between Actively and Passively Acquired Data: The
Case of Active Learning with Support Vector Machines for Imbalanced Datasets
Michael Bloodgood and Vijay Shanker

Faster MT Decoding Through Pervasive Laziness
Michael Pust and Kevin Knight

Evaluating the Syntactic Transformations in Gold Standard Corpora for Statistical Sen-
tence Compression
Naman K Gupta, Sourish Chaudhuri and Carolyn P Rose

Incremental Adaptation of Speech-to-Speech Translation
Nguyen Bach, Roger Hsiao, Matthias Eck, Paisarn Charoenpornsawat, Stephan Vogel,
Tanja Schultz, Ian Lane, Alex Waibel and Alan Black

Name Perplexity
Octavian Popescu

Answer Credibility: A Language Modeling Approach to Answer Validation
Protima Banerjee and Hyoil Han

Exploiting Named Entity Classes in CCG Surface Realization
Rajakrishnan Rajkumar, Michael White and Dominic Espinosa

Search Engine Adaptation by Feedback Control Adjustment for Time-sensitive Query
Ruiqiang zhang, yi Chang, Zhaohui Zheng, Donald Metzler and Jian-yun Nie

A Local Tree Alignment-based Soft Pattern Matching Approach for Information Extraction
Seokhwan Kim, Minwoo Jeong and Gary Geunbae Lee

Classifying Factored Genres with Part-of-Speech Histograms
Sergey Feldman, Marius Marin, Julie Medero and Mari Ostendorf

Towards Effective Sentence Simplification for Automatic Processing of Biomedical Text
Siddhartha Jonnalagadda, Luis Tari, Jrg Hakenberg, Chitta Baral and Graciela Gonzalez

xxx



Monday, June 1, 2009 (continued)

Improving SCL Model for Sentiment-Transfer Learning
Songbo Tan and Xueqi Cheng

MICA: A Probabilistic Dependency Parser Based on Tree Insertion Grammars (Applica-
tion Note)
Srinivas Bangalore, Pierre Boullier, Alexis Nasr, Owen Rambow and Benot Sagot

Lexical and Syntactic Adaptation and Their Impact in Deployed Spoken Dialog Systems
Svetlana Stoyanchev and Amanda Stent

Analysing Recognition Errors in Unlimited-Vocabulary Speech Recognition
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Carlos Gómez-Rodrı́guez, Marco Kuhlmann, Giorgio Satta and David Weir

2:55–3:20 Inducing Compact but Accurate Tree-Substitution Grammars
Trevor Cohn, Sharon Goldwater and Phil Blunsom

3:20–3:45 Hierarchical Search for Parsing
Adam Pauls and Dan Klein

Session 8C: Discourse and Summarization

2:30–2:55 An effective Discourse Parser that uses Rich Linguistic Information
Rajen Subba and Barbara Di Eugenio

2:55–3:20 Graph-Cut-Based Anaphoricity Determination for Coreference Resolution
Vincent Ng

3:20–3:45 Using Citations to Generate surveys of Scientific Paradigms
Saif Mohammad, Bonnie Dorr, Melissa Egan, Ahmed Hassan, Pradeep Muthukrishan,
Vahed Qazvinian, Dragomir Radev and David Zajic

3:45–4:15 Break

xxxix



Wednesday, June 3, 2009 (continued)

Session 9A: Machine Learning

4:15–4:40 Non-Parametric Bayesian Areal Linguistics
Hal Daume III

4:40–5:05 Hierarchical Bayesian Domain Adaptation
Jenny Rose Finkel and Christopher D. Manning

5:05–5:30 Online EM for Unsupervised Models
Percy Liang and Dan Klein

Session 9B: Dialog Systems

4:15–4:40 Unsupervised Approaches for Automatic Keyword Extraction Using Meeting Transcripts
Feifan Liu, Deana Pennell, Fei Liu and Yang Liu

4:40–5:05 A Finite-State Turn-Taking Model for Spoken Dialog Systems
Antoine Raux and Maxine Eskenazi

5:05–5:30 Extracting Social Meaning: Identifying Interactional Style in Spoken Conversation
Dan Jurafsky, Rajesh Ranganath and Dan McFarland

Session 9C: Syntax and Parsing

4:15–4:40 Linear Complexity Context-Free Parsing Pipelines via Chart Constraints
Brian Roark and Kristy Hollingshead

4:40–5:05 Improved Syntactic Models for Parsing Speech with Repairs
Tim Miller

5:05–5:30 A model of local coherence effects in human sentence processing as consequences of up-
dates from bottom-up prior to posterior beliefs
Klinton Bicknell and Roger Levy

xl



Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 1–9,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Subjectivity Recognition on Word Senses via Semi-supervised Mincuts

Fangzhong Su
School of Computing
University of Leeds

fzsu@comp.leeds.ac.uk

Katja Markert
School of Computing
University of Leeds

markert@comp.leeds.ac.uk

Abstract

We supplement WordNet entries with infor-
mation on the subjectivity of its word senses.
Supervised classifiers that operate on word
sense definitions in the same way that text
classifiers operate on web or newspaper texts
need large amounts of training data. The re-
sulting data sparseness problem is aggravated
by the fact that dictionary definitions are very
short. We propose a semi-supervised mini-
mum cut framework that makes use of both
WordNet definitions and its relation structure.
The experimental results show that it outper-
forms supervised minimum cut as well as stan-
dard supervised, non-graph classification, re-
ducing the error rate by 40%. In addition, the
semi-supervised approach achieves the same
results as the supervised framework with less
than 20% of the training data.

1 Introduction

There is considerable academic and commercial in-
terest in processing subjective content in text, where
subjective content refers to any expression of a pri-
vate state such as an opinion or belief (Wiebe et
al., 2005). Important strands of work include the
identification of subjective content and the determi-
nation of its polarity, i.e. whether a favourable or
unfavourable opinion is expressed.

Automatic identification of subjective content of-
ten relies on word indicators, such as unigrams
(Pang et al., 2002) or predetermined sentiment lex-
ica (Wilson et al., 2005). Thus, the word positive
in the sentence “This deal is a positive development
for our company.” gives a strong indication that

the sentence contains a favourable opinion. How-
ever, such word-based indicators can be misleading
for two reasons. First, contextual indicators such as
irony and negation can reverse subjectivity or po-
larity indications (Polanyi and Zaenen, 2004). Sec-
ond, different word senses of a single word can ac-
tually be of different subjectivity or polarity. A typ-
ical subjectivity-ambiguous word, i.e. a word that
has at least one subjective and at least one objec-
tive sense, is positive, as shown by the two example
senses given below.1

(1) positive, electropositive—having a positive electric
charge;“protons are positive” (objective)

(2) plus, positive—involving advantage or good; “a
plus (or positive) factor” (subjective)

We concentrate on this latter problem by automat-
ically creating lists of subjective senses, instead
of subjective words, via adding subjectivity labels
for senses to electronic lexica, using the exam-
ple of WordNet. This is important as the prob-
lem of subjectivity-ambiguity is frequent: We (Su
and Markert, 2008) find that over 30% of words
in our dataset are subjectivity-ambiguous. Informa-
tion on subjectivity of senses can also improve other
tasks such as word sense disambiguation (Wiebe
and Mihalcea, 2006). Moreover, Andreevskaia and
Bergler (2006) show that the performance of auto-
matic annotation of subjectivity at the word level can
be hurt by the presence of subjectivity-ambiguous
words in the training sets they use.

1All examples in this paper are from WordNet 2.0.
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We propose a semi-supervised approach based on
minimum cut in a lexical relation graph to assign
subjectivity (subjective/objective) labels to word
senses.2 Our algorithm outperforms supervised min-
imum cuts and standard supervised, non-graph clas-
sification algorithms (like SVM), reducing the error
rate by up to 40%. In addition, the semi-supervised
approach achieves the same results as the supervised
framework with less than 20% of the training data.
Our approach also outperforms prior approaches to
the subjectivity recognition of word senses and per-
forms well across two different data sets.

The remainder of this paper is organized as fol-
lows. Section 2 discusses previous work. Section 3
describes our proposed semi-supervised minimum
cut framework in detail. Section 4 presents the ex-
perimental results and evaluation, followed by con-
clusions and future work in Section 5.

2 Related Work

There has been a large and diverse body of research
in opinion mining, with most research at the text
(Pang et al., 2002; Pang and Lee, 2004; Popescu and
Etzioni, 2005; Ounis et al., 2006), sentence (Kim
and Hovy, 2005; Kudo and Matsumoto, 2004; Riloff
et al., 2003; Yu and Hatzivassiloglou, 2003) or word
(Hatzivassiloglou and McKeown, 1997; Turney and
Littman, 2003; Kim and Hovy, 2004; Takamura et
al., 2005; Andreevskaia and Bergler, 2006; Kaji and
Kitsuregawa, 2007) level. An up-to-date overview is
given in Pang and Lee (2008).

Graph-based algorithms for classification into
subjective/objective or positive/negative language
units have been mostly used at the sentence and
document level (Pang and Lee, 2004; Agarwal and
Bhattacharyya, 2005; Thomas et al., 2006), instead
of aiming at dictionary annotation as we do. We
also cannot use prior graph construction methods
for the document level (such as physical proxim-
ity of sentences, used in Pang and Lee (2004)) at
the word sense level. At the word level Taka-
mura et al. (2005) use a semi-supervised spin model
for word polarity determination, where the graph

2It can be argued that subjectivity labels are maybe rather
more graded than the clear-cut binary distinction we assign.
However, in Su and Markert (2008a) as well as Wiebe and Mi-
halcea (2006) we find that human can assign the binary distinc-
tion to word senses with a high level of reliability.

is constructed using a variety of information such
as gloss co-occurrences and WordNet links. Apart
from using a different graph-based model from ours,
they assume that subjectivity recognition has already
been achieved prior to polarity recognition and test
against word lists containing subjective words only.
However, Kim and Hovy (2004) and Andreevskaia
and Bergler (2006) show that subjectivity recogni-
tion might be the harder problem with lower human
agreement and automatic performance. In addition,
we deal with classification at the word sense level,
treating also subjectivity-ambiguous words, which
goes beyond the work in Takamura et al. (2005).

Word Sense Level: There are three prior ap-
proaches addressing word sense subjectivity or po-
larity classification. Esuli and Sebastiani (2006) de-
termine the polarity (positive/negative/objective) of
word senses in WordNet. However, there is no eval-
uation as to the accuracy of their approach. They
then extend their work (Esuli and Sebastiani, 2007)
by applying the Page Rank algorithm to rank the
WordNet senses in terms of how strongly a sense
possesses a given semantic property (e.g., positive
or negative). Apart from us tackling subjectivity
instead of polarity, their Page Rank graph is also
constructed focusing on WordNet glosses (linking
glosses containing the same words), whereas we
concentrate on the use of WordNet relations.

Both Wiebe and Mihalcea (2006) and our prior
work (Su and Markert, 2008) present an annota-
tion scheme for word sense subjectivity and algo-
rithms for automatic classification. Wiebe and Mi-
halcea (2006) use an algorithm relying on distribu-
tional similarity and an independent, large manually
annotated opinion corpus (MPQA) (Wiebe et al.,
2005). One of the disadvantages of their algorithm is
that it is restricted to senses that have distributionally
similar words in the MPQA corpus, excluding 23%
of their test data from automatic classification. Su
and Markert (2008) present supervised classifiers,
which rely mostly on WordNet glosses and do not
effectively exploit WordNet’s relation structure.

3 Semi-Supervised Mincuts

3.1 Minimum Cuts: The Main Idea

Binary classification with minimum cuts (Mincuts)
in graphs is based on the idea that similar items
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should be grouped in the same cut. All items in the
training/test data are seen as vertices in a graph with
undirected weighted edges between them specifying
how strong the similarity/association between two
vertices is. We use minimum s-t cuts: the graph con-
tains two particular vertices s (source, corresponds
to subjective) and t (sink, corresponds to objective)
and each vertex u is connected to s and t via a
weighted edge that can express how likely u is to
be classified as s or t in isolation.

Binary classification of the vertices is equivalent
to splitting the graph into two disconnected subsets
of all vertices, S and T with s ∈ S and t ∈ T .
This corresponds to removing a set of edges from
the graph. As similar items should be in the same
part of the split, the best split is one which removes
edges with low weights. In other words, a minimum
cut problem is to find a partition of the graph which
minimizes the following formula, where w(u, v) ex-
presses the weight of an edge between two vertices.

W (S, T ) =
∑

u∈S,v∈T
w(u, v)

Globally optimal minimum cuts can be found in
polynomial time and near-linear running time in
practice, using the maximum flow algorithm (Pang
and Lee, 2004; Cormen et al., 2002).

3.2 Why might Semi-supervised Minimum
Cuts Work?

We propose semi-supervised mincuts for subjectiv-
ity recognition on senses for several reasons.

First, our problem satisfies two major conditions
necessary for using minimum cuts. It is a bi-
nary classification problem (subjective vs. objective
senses) as is needed to divide the graph into two
components. Our dataset also lends itself naturally
to s-t Mincuts as we have two different views on the
data. Thus, the edges of a vertex (=sense) to the
source/sink can be seen as the probability of a sense
being subjective or objective without taking similar-
ity to other senses into account, for example via con-
sidering only the sense gloss. In contrast, the edges
between two senses can incorporate the WordNet re-
lation hierarchy, which is a good source of similar-
ity for our problem as many WordNet relations are
subjectivity-preserving, i.e. if two senses are con-
nected via such a relation they are likely to be both

subjective or both objective.3 An example here is
the antonym relation, where two antonyms such as
good—morally admirable and evil, wicked—morally
bad or wrong are both subjective.

Second, Mincuts can be easily expanded into
a semi-supervised framework (Blum and Chawla,
2001). This is essential as the existing labeled
datasets for our problem are small. In addition,
glosses are short, leading to sparse high dimensional
vectors in standard feature representations. Also,
WordNet connections between different parts of the
WordNet hierarchy can also be sparse, leading to
relatively isolated senses in a graph in a supervised
framework. Semi-supervised Mincuts allow us to
import unlabeled data that can serve as bridges to
isolated components. More importantly, as the unla-
beled data can be chosen to be related to the labeled
and test data, they might help pull test data to the
right cuts (categories).

3.3 Formulation of Semi-supervised Mincuts

The formulation of our semi-supervised Mincut for
sense subjectivity classification involves the follow-
ing steps, which we later describe in more detail.

1. We define two vertices s (source) and t (sink),
which correspond to the “subjective” and “ob-
jective” category, respectively. Following the
definition in Blum and Chawla (2001), we call
the vertices s and t classification vertices, and
all other vertices (labeled, test, and unlabeled
data) example vertices. Each example vertex
corresponds to one WordNet sense and is con-
nected to both s and t via a weighted edge. The
latter guarantees that the graph is connected.

2. For the test and unlabeled examples, we see
the edges to the classification vertices as the
probability of them being subjective/objective
disregarding other example vertices. We use a
supervised classifier to set these edge weights.
For the labeled training examples, they are con-
nected by edges with a high constant weight to
the classification vertices that they belong to.

3. WordNet relations are used to construct the
edges between two example vertices. Such

3See Kamps et al. (2004) for an early indication of such
properties for some WordNet relations.
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edges can exist between any pair of example
vertices, for example between two unlabeled
examples.

4. After graph construction we then employ a
maximum-flow algorithm to find the minimum
s-t cuts of the graph. The cut in which the
source vertex s lies is classified as “subjective”,
and the cut in which the sink vertex t lies is “ob-
jective”.

We now describe the above steps in more detail.
Selection of unlabeled data: Random selection

of unlabeled data might hurt the performance of
Mincuts, as they might not be related to any sense in
our training/test data (denoted by A). Thus a basic
principle is that the selected unlabeled senses should
be related to the training/test data by WordNet rela-
tions. We therefore simply scan each sense inA, and
collect all senses related to it via one of the WordNet
relations in Table 1. All such senses that are not in
A are collected in the unlabeled data set.

Weighting of edges to the classification ver-
tices: The edge weight to s and t represents how
likely it is that an example vertex is initially put in
the cut in which s (subjective) or t (objective) lies.
For unlabeled and test vertices, we use a supervised
classifier (SVM4) with the labeled data as training
data to assign the edge weights. The SVM is also
used as a baseline and its features are described in
Section 4.3. As we do not wish the Mincut to re-
verse labels of the labeled training data, we assign a
high constant weight of 5 to the edge between a la-
beled vertex and its corresponding classification ver-
tex, and a low weight of 0.01 to the edge to the other
classification vertex.

Assigning weights to WordNet relations: We
connect two vertices that are linked by one of
the ten WordNet relations in Table 1 via an edge.
Not all WordNet relations we use are subjectivity-
preserving to the same degree: for example, hy-
ponyms (such as simpleton) of objective senses
(such as person) do not have to be objective. How-
ever, we aim for high graph connectivity and we
can assign different weights to different relations

4We employ LIBSVM, available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm/. Linear kernel and prob-
ability estimates are used in this work.

to reflect the degree to which they are subjectivity-
preserving. Therefore, we experiment with two
methods of weight assignment. Method 1 (NoSL)
assigns the same constant weight of 1.0 to all Word-
Net relations.

Method 2 (SL) reflects different degrees of pre-
serving subjectivity. To do this, we adapt an un-
supervised method of generating a large noisy set
of subjective and objective senses from our previ-
ous work (Su and Markert, 2008). This method
uses a list of subjective words (SL)5 to classify each
WordNet sense with at least two subjective words
in its gloss as subjective and all other senses as ob-
jective. We then count how often two senses re-
lated via a given relation have the same or a dif-
ferent subjectivity label. The weight is computed
by #same/(#same+#different). Results are listed in
Table 1.

Table 1: Relation weights (Method 2)
Method #Same #Different Weight
Antonym 2,808 309 0.90
Similar-to 6,887 1,614 0.81
Derived-from 4,630 947 0.83
Direct-Hypernym 71,915 8,600 0.89
Direct-Hyponym 71,915 8,600 0.89
Attribute 350 109 0.76
Also-see 1,037 337 0.75
Extended-Antonym 6,917 1,651 0.81
Domain 4,387 892 0.83
Domain-member 4,387 892 0.83

Example graph: An example graph is shown in
Figure 1. The three example vertices correspond
to the senses religious—extremely scrupulous and
conscientious, scrupulous—having scruples; aris-
ing from a sense of right and wrong; principled;
and flicker, spark, glint—a momentary flash of light
respectively. The vertex “scrupulous” is unlabeled
data derived from the vertex “religious”(a test item)
by the relation “similar-to”.

4 Experiments and Evaluation

4.1 Datasets

We conduct the experiments on two different gold
standard datasets. One is the Micro-WNOp corpus,

5Available at http://www.cs.pitt.edu/mpqa
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Figure 1: Graph of Word Senses

which is representative of the part-of-speech distri-
bution in WordNet 6. It includes 298 words with
703 objective and 358 subjective WordNet senses.
The second one is the dataset created by Wiebe
and Mihalcea (2006).7 It only contains noun and
verb senses, and includes 60 words with 236 ob-
jective and 92 subjective WordNet senses. As the
Micro-WNOp set is larger and also contains adjec-
tive and adverb senses, we describe our results in
more detail on that corpus in the Section 4.3 and
4.4. In Section 4.5, we shortly discuss results on
Wiebe&Mihalcea’s dataset.

4.2 Baseline and Evaluation

We compare to a baseline that assigns the most
frequent category objective to all senses, which
achieves an accuracy of 66.3% and 72.0% on Micro-
WNOp and Wiebe&Mihalcea’s dataset respectively.
We use the McNemar test at the significance level of
5% for significance statements. All evaluations are
carried out by 10-fold cross-validation.

4.3 Standard Supervised Learning

We use an SVM classifier to compare our proposed
semi-supervised Mincut approach to a reasonable

6Available at http://www.comp.leeds.ac.uk/
markert/data. This dataset was first used with a different
annotation scheme in Esuli and Sebastiani (2007) and we also
used it in Su and Markert (2008).

7Available at http://www.cs.pitt.edu/˜wiebe/
pubs/papers/goldstandard.total.acl06.

baseline.8 Three different feature types are used.
Lexical Features (L): a bag-of-words representa-

tion of the sense glosses with stop word filtering.
Relation Features (R): First, we use two features

for each of the ten WordNet relations in Table 1, de-
scribing how many relations of that type the sense
has to senses in the subjective or objective part of the
training set, respectively. This provides a non-graph
summary of subjectivity-preserving links. Second,
we manually collected a small set (denoted by
SubjSet) of seven subjective verb and noun senses
which are close to the root in WordNet’s hypernym
tree. A typical example element of SubjSet is psy-
chological feature —a feature of the mental life of a
living organism, which indicates subjectivity for its
hyponyms such as hope — the general feeling that
some desire will be fulfilled. A binary feature de-
scribes whether a noun/verb sense is a hyponym of
an element of SubjSet.

Monosemous Feature (M): for each sense, we
scan if a monosemous word is part of its synset. If
so, we further check if the monosemous word is col-
lected in the subjective word list (SL). The intuition
is that if a monosemous word is subjective, obvi-
ously its (single) sense is subjective. For example,
the sense uncompromising, inflexible—not making
concessions is subjective, as “uncompromising” is
a monosemous word and also in SL.

We experiment with different combinations of
features and the results are listed in Table 2, prefixed
by “SVM”. All combinations perform significantly
better than the more frequent category baseline and
similarly to the supervised Naive Bayes classifier
(see S&M in Table 2) we used in Su and Mark-
ert (2008). However, improvements by adding more
features remain small.

In addition, we compare to a supervised classifier
(see Lesk in Table 2) that just assigns each sense
the subjectivity label of its most similar sense in
the training data, using Lesk’s similarity measure
from Pedersen’s WordNet similarity package9. We
use Lesk as it is one of the few measures applicable
across all parts-of-speech.

8This SVM is also used to provide the edge weights to the
classification vertices in the Mincut approach.

9Available at http://www.d.umn.edu/˜tpederse/
similarity.html.
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Table 2: Results of SVM and Mincuts with different settings of feature

Method Subjective Objective Accuracy
Precision Recall F-score Precision Recall F-score

Baseline N/A 0 N/A 66.3% 100% 79.7% 66.3%
S&M 66.2% 64.5% 65.3% 82.2% 83.2% 82.7% 76.9%
Lesk 65.6% 50.3% 56.9% 77.5% 86.6% 81.8% 74.4%
SVM-L 69.6% 37.7% 48.9% 74.3% 91.6% 82.0% 73.4%
L-SL 82.0% 43.3% 56.7% 76.7% 95.2% 85.0% 77.7%
L-NoSL 80.8% 43.6% 56.6% 76.7% 94.7% 84.8% 77.5%
SVM-LM 68.9% 42.2% 52.3% 75.4% 90.3% 82.2% 74.1%
LM-SL 83.2% 44.4% 57.9% 77.1% 95.4% 85.3% 78.2%
LM-NoSL 83.6% 44.1% 57.8% 77.1% 95.6% 85.3% 78.2%
SVM-LR 68.4% 45.3% 54.5% 76.2% 89.3% 82.3% 74.5%
LR-SL 82.7% 65.4% 73.0% 84.1% 93.0% 88.3% 83.7%
LR-NoSL 82.4% 65.4% 72.9% 84.0% 92.9% 88.2% 83.6%
SVM-LRM 69.8% 47.2% 56.3% 76.9% 89.6% 82.8% 75.3%
LRM-SL 85.5% 65.6% 74.2% 84.4% 94.3% 89.1% 84.6%
LRM-NoSL 84.6% 65.9% 74.1% 84.4% 93.9% 88.9% 84.4%
1 L, R and M correspond to the lexical, relation and monosemous features respectively.
2 SVM-L corresponds to using lexical features only for the SVM classifier. Likewise, SVM-

LRM corresponds to using a combination for lexical, relation, and monosemous features
for the SVM classifier.

3 L-SL corresponds to the Mincut that uses only lexical features for the SVM classifier,
and subjective list (SL) to infer the weight of WordNet relations. Likewise, LM-NoSL
corresponds to the Mincut algorithm that uses lexical and monosemous features for the
SVM, and predefined constants for WordNet relations (without subjective list).

4.4 Semi-supervised Graph Mincuts

Using our formulation in Section 3.3, we import
3,220 senses linked by the ten WordNet relations to
any senses in Micro-WNOp as unlabeled data. We
construct edge weights to classification vertices us-
ing the SVM discussed above and use WordNet re-
lations for links between example vertices, weighted
by either constants (NoSL) or via the method illus-
trated in Table 1 (SL). The results are also summa-
rized in Table 2. Semi-supervised Mincuts always
significantly outperform the corresponding SVM
classifiers, regardless of whether the subjectivity list
is used for setting edge weights. We can also see
that we achieve good results without using any other
knowledge sources (setting LR-NoSL).

The example in Figure 1 explains why semi-
supervised Mincuts outperforms the supervised ap-
proach. The vertex “religious” is initially assigned
the subjective/objective probabilities 0.24/0.76 by
the SVM classifier, leading to a wrong classification.
However, in our graph-based Mincut framework, the

vertex “religious” might link to other vertices (for
example, it links to the vertex “scrupulous” in the
unlabeled data by the relation “similar-to”). The
mincut algorithm will put vertices “religious” and
“scrupulous” in the same cut (subjective category) as
this results in the least cost 0.93 (ignoring the cost of
assigning the unrelated sense of “flicker”). In other
words, the edges between the vertices are likely to
correct some initially wrong classification and pull
the vertices into the right cuts.

In the following we will analyze the best mini-
mum cut algorithm LRM-SL in more detail. We
measure its accuracy for each part-of-speech in the
Micro-WNOp dataset. The number of noun, adjec-
tive, adverb and verb senses in Micro-WNOp is 484,
265, 31 and 281, respectively. The result is listed
in Table 3. The significantly better performance of
semi-supervised mincuts holds across all parts-of-
speech but the small set of adverbs, where there is
no significant difference between the baseline, SVM
and the Mincut algorithm.
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Table 3: Accuracy for Different Part-Of-Speech
Method Noun Adjective Adverb Verb
Baseline 76.9% 61.1% 77.4% 72.6%
SVM 81.4% 63.4% 83.9% 75.1%
Mincut 88.6% 78.9% 77.4% 84.0%

We will now investigate how LRM-SL performs
with different sizes of labeled and unlabeled data.
All learning curves are generated via averaging 10
learning curves from 10-fold cross-validation.
Performance with different sizes of labeled data:
we randomly generate subsets of labeled data A1,
A2... An, and guarantee that A1 ⊂ A2... ⊂ An.
Results for the best SVM (LRM) and the best min-
imum cut (LRM-SL) are listed in Table 4, and the
corresponding learning curve is shown in Figure 2.
As can be seen, the semi-supervised Mincuts is
consistently better than SVM. Moreover, the semi-
supervised Mincut with only 200 labeled data items
performs even better than SVM with 954 training
items (78.9% vs 75.3%), showing that our semi-
supervised framework allows for a training data re-
duction of more than 80%.

Table 4: Accuracy with different sizes of labeled data
# labeled data SVM Mincuts
100 69.1% 72.2%
200 72.6% 78.9%
400 74.4% 82.7%
600 75.5% 83.7%
800 76.0% 84.1%
900 75.6% 84.8%
954 (all) 75.3% 84.6%

Performance with different sizes of unlabeled
data: We propose two different settings.

Option1: Use a subset of the ten relations to
generate the unlabeled data (and edges between
example vertices). For example, we first use
{antonym, similar-to} only to obtain a unlabeled
dataset U1, then use a larger subset of the relations
like {antonym, similar-to, direct-hyponym, direct-
hypernym} to generate another unlabeled dataset
U2, and so forth. Obviously, Ui is a subset of Ui+1.

Option2: Use all the ten relations to generate the
unlabeled data U . We then randomly select subsets
of U , such as subset U1, U2 and U3, and guarantee
that U1 ⊂ U2 ⊂ U3 ⊂ . . . U .
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Figure 2: Learning curve with different sizes of labeled
data

The results are listed in Table 5 and Table 6 re-
spectively. The corresponding learning curves are
shown in Figure 3. We see that performance im-
proves with the increase of unlabeled data. In addi-
tion, the curves seem to converge when the size of
unlabeled data is larger than 3,000. From the results
in Tabel 5 one can also see that hyponymy is the re-
lation accounting for the largest increase.

Table 6: Accuracy with different sizes of unlabeled data
(random selection)

# unlabeled data Accuracy
0 75.9%
200 76.5%
500 78.6%
1000 80.2%
2000 82.8%
3000 84.0%
3220 84.6%

Furthermore, these results also show that a super-
vised mincut without unlabeled data performs only
on a par with other supervised classifiers (75.9%).
The reason is that if we exclude the unlabeled data,
there are only 67 WordNet relations/edges between
senses in the small Micro-WNOp dataset. In con-
trast, the use of unlabeled data adds more edges
(4,586) to the graph, which strongly affects the
graph cut partition (see also Figure 1).

4.5 Comparison to Prior Approaches

In our previous work (Su and Markert, 2008), we re-
port 76.9% as the best accuracy on the same Micro-

7



Table 5: Accuracy with different sizes of unlabeled data from WordNet relation
Relation # unlabeled data Accuracy
{∅} 0 75.3%
{similar-to} 418 79.1%
{similar-to, antonym} 514 79.5%
{similar-to, antonym, direct-hypernym, direct-
hyponym}

2,721 84.4%

{similar-to, antonym, direct-hypernym, direct-
hyponym, also-see, extended-antonym}

3,004 84.4%

{similar-to, antonym, direct-hypernym, direct-
hyponym, also-see, extended-antonym, derived-from,
attribute, domain, domain-member}

3,220 84.6%

 75

 77

 79

 81

 83

 85

 87

 89

 0  500  1000  1500  2000  2500  3000  3500

A
cc

ur
ac

y(
%

)

Size of Unlabeled Data

Option1
Option2

Figure 3: Learning curve with different sizes of unlabeled
data

WNOp dataset used in the previous sections, using a
supervised Naive Bayes (S&M in Tabel 2). Our best
result from Mincuts is significantly better at 84.6%
(see LRM-SL in Table 2).

For comparison to Wiebe and Mihalcea (2006),
we use their dataset for testing, henceforth called
Wiebe (see Section 4.1 for a description). Wiebe
and Mihalcea (2006) report their results in precision
and recall curves for subjective senses, such as a pre-
cision of about 55% at a recall of 50% for subjective
senses. Their F-score for subjective senses seems to
remain relatively static at 0.52 throughout their pre-
cision/recall curve.

We run our best Mincut LRM-SL algorithm with
two different settings on Wiebe. Using Micro-
WNOp as training set and Wiebe as test set, we
achieve an accuracy of 83.2%, which is similar to the
results on the Micro-WNOp dataset. At the recall of
50% we achieve a precision of 83.6% (in compari-

son to their precision of 55% at the same recall). Our
F-score is 0.63 (vs. 0.52).

To check whether the high performance is just due
to our larger training set, we also conduct 10-fold
cross-validation on Wiebe. The accuracy achieved
is 81.1% and the F-score 0.56 (vs. 0.52), suggesting
that our algorithm performs better. Our algorithm
can be used on all WordNet senses whereas theirs is
restricted to senses that have distributionally similar
words in the MPQA corpus (see Section 2). How-
ever, they use an unsupervised algorithm i.e. they
do not need labeled word senses, although they do
need a large, manually annotated opinion corpus.

5 Conclusion and Future Work

We propose a semi-supervised minimum cut algo-
rithm for subjectivity recognition on word senses.
The experimental results show that our proposed ap-
proach is significantly better than a standard super-
vised classification framework as well as a super-
vised Mincut. Overall, we achieve a 40% reduction
in error rates (from an error rate of about 25% to an
error rate of 15%). To achieve the results of standard
supervised approaches with our model, we need less
than 20% of their training data. In addition, we com-
pare our algorithm to previous state-of-the-art ap-
proaches, showing that our model performs better
on the same datasets.

Future work will explore other graph construc-
tion methods, such as the use of morphological re-
lations as well as thesaurus and distributional sim-
ilarity measures. We will also explore other semi-
supervised algorithms.
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Abstract

This paper introduces an integrative approach
to automatic word sense subjectivity annota-
tion. We use features that exploit the hier-
archical structure and domain information in
lexical resources such as WordNet, as well as
other types of features that measure the sim-
ilarity of glosses and the overlap among sets
of semantically related words. Integrated in a
machine learning framework, the entire set of
features is found to give better results than any
individual type of feature.

1 Introduction

Automatic extraction of opinions, emotions, and
sentiments in text (subjectivity analysis) to support
applications such as product review mining, sum-
marization, question answering, and information ex-
traction is an active area of research in NLP.

Many approaches to opinion, sentiment, and sub-
jectivity analysis rely on lexicons of words that may
be used to express subjectivity. However, words may
have both subjective and objective senses, which is
a source of ambiguity in subjectivity and sentiment
analysis. We show that even words judged in pre-
vious work to be reliable clues of subjectivity have
significant degrees of subjectivity sense ambiguity.

To address this ambiguity, we present a method
for automatically assigning subjectivity labels to
word senses in a taxonomy, which uses new features
and integrates more diverse types of knowledge than
in previous work. We focus on nouns, which are

challenging and have received less attention in auto-
matic subjectivity and sentiment analysis.

A common approach to building lexicons for sub-
jectivity analysis is to begin with a small set of
seeds which are prototypically subjective (or posi-
tive/negative, in sentiment analysis), and then fol-
low semantic links in WordNet-like resources. By
far, the emphasis has been on horizontal relations,
such assynonymyandantonymy. Exploiting vertical
links opens the door to taking into account the infor-
mation content of ancestor concepts of senses with
known and unknown subjectivity. We develop novel
features that measure the similarity of a target word
sense with a seed set of senses known to be sub-
jective, where the similarity between two concepts
is determined by the extent to which they share in-
formation, measured by the information content as-
sociated with their least common subsumer (LCS).
Further, particularizing the LCS features to domain
greatly reduces calculation while still maintaining
effective features.

We find that our new features do lead to signif-
icant improvements over methods proposed in pre-
vious work, and that the combination of all features
gives significantly better performance than any sin-
gle type of feature alone.

We also ask, given that there are many approaches
to finding subjective words, if it would make sense
for word- and sense-level approaches to work in tan-
dem, or should we best view them as competing ap-
proaches? We give evidence suggesting that first
identifying subjective words and then disambiguat-
ing their senses would be an effective approach to
subjectivity sense labeling.
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There are several motivations for assigning sub-
jectivity labels to senses. First, (Wiebe and Mi-
halcea, 2006) provide evidence that word sense la-
bels, together with contextual subjectivity analysis,
can be exploited to improve performance in word
sense disambiguation. Similarly, given subjectivity
sense labels, word-sense disambiguation may poten-
tially help contextual subjectivity analysis. In addi-
tion, as lexical resources such as WordNet are devel-
oped further, subjectivity labels would provide prin-
cipled criteria for refining word senses, as well as for
clustering similar meanings to create more course-
grained sense inventories.

For many opinion mining applications, polarity
(positive, negative) is also important. The overall
framework we envision is a layered approach: clas-
sifying instances as objective or subjective, and fur-
ther classifying the subjective instances by polar-
ity. Decomposing the problem into subproblems has
been found to be effective for opinion mining. This
paper addresses the first of these subproblems.

2 Background

We adopt the definitions ofsubjectiveandobjective
from Wiebe and Mihalcea (2006) (hereafterWM).
Subjective expressions are words and phrases being
used to express opinions, emotions, speculations,
etc. WM give the following examples:

His alarm grew.
Heabsorbedthe information quickly.
UCC/Disciples leadersroundly condemned the
Iranian President’sverbal assaulton Israel.
What’s the catch?

Polarity (also calledsemantic orientation) is also
important to NLP applications in sentiment analysis
and opinion extraction. In review mining, for exam-
ple, we want to know whether an opinion about a
product is positive or negative. Even so, we believe
there are strong motivations for a separate subjec-
tive/objective (S/O) classification as well.

First, expressions may be subjective but not have
any particular polarity. An example given by (Wil-
son et al., 2005) isJerome says the hospitalfeels
no different than a hospital in the states.An NLP
application system may want to find a wide range

of private states attributed to a person, such as their
motivations, thoughts, and speculations, in addition
to their positive and negative sentiments.

Second, distinguishingSandO instances has of-
ten proven more difficult than subsequent polarity
classification. Researchers have found this at vari-
ous levels of analysis, including the manual anno-
tation of phrases (Takamura et al., 2006), sentiment
classification of phrases (Wilson et al., 2005), sen-
timent tagging of words (Andreevskaia and Bergler,
2006b), and sentiment tagging of word senses (Esuli
and Sebastiani, 2006a). Thus, effective methods for
S/O classification promise to improve performance
for sentiment classification. In fact, researchers in
sentiment analysis have realized benefits by decom-
posing the problem intoS/O and polarity classifica-
tion (Yu and Hatzivassiloglou, 2003; Pang and Lee,
2004; Wilson et al., 2005; Kim and Hovy, 2006).
One reason is that different features may be relevant
for the two subproblems. For example, negation fea-
tures are more important for polarity classification
than for subjectivity classification.

Note that some of our features require vertical
links that are present in WordNet for nouns and
verbs but not for other parts of speech. Thus we ad-
dress nouns (leaving verbs to future work). There
are other motivations for focusing on nouns. Rela-
tively little work in subjectivity and sentiment anal-
ysis has focused on subjective nouns. Also, a study
(Bruce and Wiebe, 1999) showed that, of the major
parts of speech, nouns are the most ambiguous with
respect to the subjectivity of their instances.

Turning to word senses, we adopt the definitions
from WM. First, subjective: “Classifying a sense as
Smeans that, when the sense is used in a text or con-
versation, we expect it to express subjectivity; we
also expect the phrase or sentence containing it to
be subjective [WM, pp. 2-3].”

In WM, it is noted that sentences containing ob-
jective senses may not be objective, as in the sen-
tenceWill someone shut that darnalarm off? Thus,
objective senses are defined as follows: “Classifying
a sense asO means that, when the sense is used in a
text or conversation, we do not expect it to express
subjectivity and, if the phrase or sentence containing
it is subjective, the subjectivity is due to something
else [WM, p 3].”

The following subjective examples are given in
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WM:

His alarm grew.
alarm, dismay, consternation – (fear resulting from the aware-
ness of danger)

=> fear, fearfulness, fright – (an emotion experienced in an-
ticipation of some specific pain or danger (usually accompa-
nied by a desire to flee or fight))

What’s thecatch?
catch – (a hidden drawback; “it sounds good but what’s the
catch?”)

=> drawback – (the quality of being a hindrance; “he
pointed out all the drawbacks to my plan”)

The following objective examples are given in WM:

Thealarm went off.
alarm, warning device, alarm system – (a device that signals the
occurrence of some undesirable event)

=> device – (an instrumentality invented for a particular pur-
pose; “the device is small enough to wear on your wrist”; “a
device intended to conserve water”)

He sold hiscatchat the market.
catch, haul – (the quantity that was caught; “the catch was only
10 fish”)

=> indefinite quantity – (an estimated quantity)

WM performed an agreement study and report
that good agreement (κ=0.74) can be achieved be-
tween human annotators labeling the subjectivity of
senses. For a similar task, (Su and Markert, 2008)
also report good agreement.

3 Related Work

Many methods have been developed for automati-
cally identifying subjective (opinion, sentiment, at-
titude, affect-bearing, etc.) words, e.g., (Turney,
2002; Riloff and Wiebe, 2003; Kim and Hovy, 2004;
Taboada et al., 2006; Takamura et al., 2006).

Five groups have worked on subjectivity sense la-
beling. WM and Su and Markert (2008) (hereafter
SM) assignS/O labels to senses, while Esuli and Se-
bastiani (hereafterES) (2006a; 2007), Andreevskaia
and Bergler (hereafterAB) (2006b; 2006a), and
(Valitutti et al., 2004) assign polarity labels.

WM, SM, and ES have evaluated their systems
against manually annotated word-sense data. WM’s
annotations are described above; SM’s are similar.
In the scheme ES use (Cerini et al., 2007), senses
are assigned three scores, for positivity, negativity,

and neutrality. There is no unambiguous mapping
between the labels of WM/SM and ES, first because
WM/SM use distinct classes and ES use numerical
ratings, and second because WM/SM distinguish be-
tween objective senses on the one hand and neutral
subjective senses on the other, while those are both
neutral in the scheme used by ES.

WM use an unsupervised corpus-based approach,
in which subjectivity labels are assigned to word
senses based on a set of distributionally similar
words in a corpus annotated with subjective expres-
sions. SM explore methods that use existing re-
sources that do not require manually annotated data;
they also implement a supervised system for com-
parison, which we will callSMsup. The other three
groups start with positive and negative seed sets and
expand them by adding synonyms and antonyms,
and traversing horizontal links in WordNet. AB, ES,
and SMsup additionally use information contained
in glosses; AB also use hyponyms; SMsup also uses
relation and POS features. AB perform multiple
runs of their system to assign fuzzy categories to
senses. ES use a semi-supervised, multiple-classifier
learning approach. In a later paper, (Esuli and Se-
bastiani, 2007), ES again use information in glosses,
applying a random walk ranking algorithm to a
graph in which synsets are linked if a member of
the first synset appears in the gloss of the second.

Like ES and SMsup, we use machine learning, but
with more diverse sources of knowledge. Further,
several of our features are novel for the task. The
LCS features (Section 6.1) detect subjectivity by
measuring the similarity of a candidate word sense
with a seed set. WM also use a similarity measure,
but as a way to filter the output of a measure of distri-
butional similarity (selecting words for a given word
sense), not as we do to cumulatively calculate the
subjectivity of a word sense. Another novel aspect
of our similarity features is that they are particular-
ized to domain, which greatly reduces calculation.
The domain subjectivity LCS features (Section 6.2)
are also novel for our task. So is augmenting seed
sets with monosemous words, for greater coverage
without requiring human intervention or sacrificing
quality. Note that none of our features as we specif-
ically define them has been used in previous work;
combining them together, our approach outperforms
previous approaches.
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4 Lexicon and Annotations

We use the subjectivity lexicon of (Wiebe and Riloff,
2005)1 both to create a subjective seed set and to
create the experimental data sets. The lexicon is a
list of words and phrases that have subjective uses,
though only word entries are used in this paper (i.e.,
we do not address phrases at this point). Some en-
tries are from manually developed resources, includ-
ing the General Inquirer, while others were derived
from corpora using automatic methods.

Through manual review and empirical testing on
data, (Wiebe and Riloff, 2005) divided the clues into
strong (strongsubj) and weak (weaksubj) subjectiv-
ity clues.Strongsubjclues have subjective meanings
with high probability, andweaksubjclues have sub-
jective meanings with lower probability.

To support our experiments, we annotated the
senses2 of polysemous nouns selected from the lex-
icon, using WM’s annotation scheme described in
Section 2. Due to time constraints, only some of the
data was labeled through consensus labeling by two
annotators; the rest was labeled by one annotator.

Overall, 2875 senses for 882 words were anno-
tated. Even though all are senses of words from the
subjectivity lexicon, only 1383 (48%) of the senses
are subjective.

The words labeledstrongsubjare in fact less am-
biguous than those labeledweaksubjin our analysis,
thus supporting the reliability classifications in the
lexicon. 55% (1038/1924) of the senses ofstrong-
subjwords are subjective, while only 36% (345/951)
of the senses ofweaksubjwords are subjective.

For the analysis in Section 7.3, we form subsets
of the data annotated here to test performance of our
method on different data compositions.

5 Seed Sets

Both subjective and objective seed sets are used to
define the features described below. For seeds, a
large number is desirable for greater coverage, al-
though high quality is also important. We begin to
build our subjective seed set by adding the monose-
mousstrongsubjnouns of the subjectivity lexicon
(there are 397 of these). Since they are monose-
mous, they pose no problem of sense ambiguity. We

1Available at http://www.cs.pitt.edu/mpqa
2In WordNet 2.0

then expand the set with their hyponyms, as they
were found useful in previous work by AB (2006b;
2006a). This yields a subjective seed set of 645
senses. After removing the word senses that belong
to the same synset, so that only one word sense per
synset is left, we ended up with 603 senses.

To create the objective seed set, two annotators
manually annotated 800 random senses from Word-
Net, and selected for the objective seed set the ones
they both agreed are clearly objective. This creates
an objective seed set of 727. Again we removed
multiple senses from the same synset leaving us with
722. The other 73 senses they annotated are added
to the mixed data set described below. As this sam-
pling shows, WordNet nouns are highly skewed to-
ward objective senses, so finding an objective seed
set is not difficult.

6 Features

6.1 Sense Subjectivity LCS Feature

This feature measures the similarity of a target sense
with members of the subjective seed set. Here, sim-
ilarity between two senses is determined by the ex-
tent to which they share information, measured by
using the information content associated with their
least common subsumer. For an intuition behind this
feature, consider this example. In WordNet, the hy-
pernym of the “strong criticism” sense ofattack is
criticism. Several other negative subjective senses
are descendants ofcriticism, including the relevant
senses offire, thrust, and rebuke. Going up one
more level, the hypernym ofcriticism is the “ex-
pression of disapproval” meaning ofdisapproval,
which has several additional negative subjective de-
scendants, such as the “expression of opposition and
disapproval” sense ofdiscouragement. Our hypoth-
esis is that the cases where subjectivity is preserved
in the hypernym structure, or where hypernyms do
lead from subjective senses to others,are the ones
that have the highest least common subsumer score
with the seed set of known subjective senses.

We calculate similarity using the information-
content based measure proposed in (Resnik, 1995),
as implemented in the WordNet::Similarity pack-
age (using the default option in which LCS values
are computed over the SemCor corpus).3 Given a

3http://search.cpan.org/dist/WordNet-Similarity/
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taxonomy such as WordNet, the information con-
tent associated with a concept is determined as the
likelihood of encountering that concept, defined as
−log(p(C)), wherep(C) is the probability of see-
ing conceptC in a corpus. The similarity between
two concepts is then defined in terms of information
content as:LCSs(C1, C2) = max[−log(p(C))],
whereC is the concept that subsumes bothC1 and
C2 and has the highest information content (i.e., it is
the least common subsumer (LCS)).

For this feature, a score is assigned to a target
sense based on its semantic similarity to the mem-
bers of a seed set; in particular, the maximum such
similarity is used.

For a target senset and a seed setS, we could
have used the following score:
Score(t, S) = max

s∈S
LCSs(t, s)

However, several researchers have noted that sub-
jectivity may be domain specific. A version of
WordNet exists, WordNet Domains (Gliozzo et al.,
2005), which associates each synset with one of the
domains in the Dewey Decimal library classifica-
tion. After sorting our subjective seed set into differ-
ent domains, we observed that over 80% of the sub-
jective seed senses are concentrated in six domains
(the rest are distributed among 35 domains).

Thus, we decided to particularize the semantic
similarity feature to domain, such that only the sub-
set of the seed set in the same domain as the tar-
get sense is used to compute the feature. This in-
volves much less calculation, as LCS values are cal-
culated only with respect to a subset of the seed set.
We hypothesized that this would still be an effec-
tive feature, while being more efficient to calculate.
This will be important when this method is applied
to large resources such as the entire WordNet.

Thus, for seed setS and target senset which is
in domainD, the feature is defined as the following
score:
SenseLCSscore(t,D, S) = max

d∈D∩S
LCSs(t, d)

The seed set is a parameter, so we could have
defined a feature reflecting similarity to the objec-
tive seed set as well. Since WordNet is already
highly skewed toward objective noun senses, any
naive classifier need only guess the majority class
for high accuracy for the objective senses. We in-

cluded only a subjective feature to put more empha-
sis on the subjective senses. In the future, features
could be defined with respect to objectivity, as well
as polarity and other properties of subjectivity.

6.2 Domain Subjectivity LCS Score

We also include a feature reflecting the subjectivity
of the domain of the target sense. Domains are
assigned scores as follows. For domainD and seed
setS:

DomainLCSscore(D,S) =
aved∈D∩SMemLCSscore(d,D, S)

where:

MemLCSscore(d,D, S) =
max

di∈D∩S,di 6=d
LCSs(d, di)

The value of this feature for a sense is the score
assigned to that sense’s domain.

6.3 Common Related Senses

This feature is based on the intersection between the
set of senses related (via WordNet relations) to the
target sense and the set of senses related to members
of a seed set. First, for the target sense and each
member of the seed set, a set of related senses is
formed consisting of its synonyms, antonyms and di-
rect hypernyms as defined by WordNet. For a sense
s,R(s) is s together with its related senses.

Then, given a target senset and a seed setS we
compute an average percentage overlap as follows:

RelOverlap(t, S) =

∑
si∈S

|R(t)∩R(si)|
max (|R(t)|,|R(si)|)

|S|
The value of a feature is its score. Two features

are included in the experiments below, one for each
of the subjective and objective seed sets.

6.4 Gloss-based features

These features are Lesk-style features (Lesk, 1986)
that exploit overlaps between glosses of target and
seed senses. We include two types in our work.

6.4.1 Average Percentage Gloss Overlap
Features

For a senses, gloss(s) is the set of stems in the
gloss of s (excluding stop words). Then, given a tar-
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get senset and a seed setS, we compute an average
percentage overlap as follows:

GlOverlap(t, S) =

∑
si∈S

|gloss(t)∩∪r∈R(si)
gloss(r)|

max (|gloss(t)|,|∪r∈R(si)
gloss(r)|)

|S|

As above,R(s) is considered for each seed sense
s, but now only the target senset is considered, not
R(t). We did this because we hypothesized that the
gloss can provide sufficient context for a given target
sense, so that the addition of related words is not
necessary.

We include two features, one for each of the sub-
jective and objective seed sets.

6.4.2 Vector Gloss Overlap Features

For this feature we also consider overlaps of
stems in glosses (excluding stop words). The over-
laps considered are between the gloss of the tar-
get senset and the glosses ofR(s) for all s in a
seed set (for convenience, we will refer to these as
seedRelationSets).

A vector of stems is created, one for each stem
(excluding stop words) that appears in a gloss of
a member ofseedRelationSets. If a stem in the
gloss of the target sense appears in this vector, then
the vector entry for that stem is the total count of
that stem in the glosses of the target sense and all
members ofseedRelationSets.

A feature is created for each vector entry whose
value is the count at that position. Thus, these fea-
tures consider counts of individual stems, rather than
average proportions of overlaps, as for the previous
type of gloss feature.

Two vectors of features are used, one where the
seed set is the subjective seed set, and one where it
is the objective seed set.

6.5 Summary

In summary, we use the following features (here,SS
is the subjective seed set andOS is the objective
one).

1. SenseLCSscore(t,D, SS)
2. DomainLCSscore(D,SS)
3. RelOverlap(t, SS)
4. RelOverlap(t, OS)
5. GlOverlap(t, SS)
6. GlOverlap(t, OS)

Features Acc P R F
All 77.3 72.8 74.3 73.5

Standalone Ablation Results
All 77.3 72.8 74.3 73.5
LCS 68.2 69.3 44.2 54.0
Gloss vector 74.3 71.2 68.5 69.8
Overlaps 69.4 75.8 40.6 52.9

Leave-One-Out Ablation Results
All 77.3 72.8 74.3 73.5
LCS 75.2 70.9 70.6 70.7
Gloss vector 75.0 74.4 61.8 67.5
Overlaps 74.8 71.9 73.8 72.8

Table 1: Results for the mixed corpus (2354 senses,
57.82% O))

7. Vector of gloss words (SS)

8. Vector of gloss words (OS)

7 Experiments

We perform 10-fold cross validation experiments
on several data sets, using SVMlight (Joachims,
1999)4 under its default settings.

Based on our random sampling of WordNet, it
appears that WordNet nouns are highly skewed to-
ward objective senses. (Esuli and Sebastiani, 2007)
argue that random sampling from WordNet would
yield a corpus mostly consisting of objective (neu-
tral) senses, which would be “pretty useless as a
benchmark for testing derived lexical resources for
opinion mining [p. 428].” So, they use a mixture of
subjective and objective senses in their data set.

To create a mixed corpus for our task, we anno-
tated a second random sample from WordNet (which
is as skewed as the previously mentioned one). We
added together all of the senses of words in the lexi-
con which we annotated, the leftover senses from the
selection of objective seed senses, and this new sam-
ple. We removed duplicates, multiple senses from
the same synset, and any senses belonging to the
same synset in either of the seed sets. This resulted
in a corpus of 2354 senses, 993 (42.18%) of which
are subjective and 1361 (57.82%) of which are ob-
jective.

The results with all of our features on this mixed
corpus are given in Row 1 of Table 1. In Table 1, the

4http://svmlight.joachims.org/
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first column identifies the features, which in this case
is all of them. The next three columns show overall
accuracy, and precision and recall for finding sub-
jective senses. The baseline accuracy for the mixed
data set (guessing the more frequent class, which is
objective) is 57.82%. As the table shows, the accu-
racy is substantially above baseline.5

7.1 Analysis and Discussion

In this section, we seek to gain insights by perform-
ing ablation studies, evaluating our method on dif-
ferent data compositions, and comparing our results
to previous results.

7.2 Ablation Studies

Since there are several features, we divided them
into sets for the ablation studies. The vector-of-
gloss-words features are the most similar to ones
used in previous work. Thus, we opted to treat
them as one ablation group (Gloss vector). The
Overlaps group includes theRelOverlap(t, SS),
RelOverlap(t, OS), GlOverlap(t, SS), and
GlOverlap(t, OS) features. Finally, theLCS
group includes theSenseLCSscore and the
DomainLCSscore features.

There are two types of ablation studies. In the
first, one group of features at a time is included.
Those results are in the middle section of Table 1.
Thus, for example, the row labeledLCSin this sec-
tion is for an experiment using only theLCS fea-
tures. In comparison to performance when all fea-
tures are used, F-measure for theOverlapsandLCS
ablations is significantly different at thep < .01
level, and, for theGloss Vectorablation, it is sig-
nificantly different at thep = .052 level (one-tailed
t-test). Thus, all of the features together have better
performance than any single type of feature alone.

In the second type of ablation study, we use all
the features minus one group of features at a time.
The results are in the bottom section of Table 1.
Thus, for example, the row labeledLCSin this sec-
tion is for an experiment using all but theLCSfea-
tures. F-measures forLCSandGloss vectorare sig-
nificantly different at thep = .056 andp = .014 lev-
els, respectively. However, F-measure for theOver-
lapsablation is not significantly different (p = .39).

5Note that, because the majority class isO, baseline recall
(and thus F-measure) is 0.

Data (#senses) Acc P R F
mixed (2354 57.8% O) 77.3 72.8 74.3 73.5
strong+weak (1132) 77.7 76.8 78.9 77.8
weaksubj (566) 71.3 70.3 71.1 70.7
strongsubj (566) 78.6 78.8 78.6 78.7

Table 2: Results for different data sets (all are 50% S,
unless otherwise notes)

These results provide evidence thatLCSandGloss
vectorare better together than either of them alone.

7.3 Results on Different Data Sets

Several methods have been developed for identify-
ing subjective words. Perhaps an effective strategy
would be to begin with a word-level subjectivity lex-
icon, and then perform subjectivity sense labeling
to sort the subjective from objective senses of those
words. We also wondered about the relative effec-
tiveness of our method onstrongsubjversusweak-
subjclues.

To answer these questions, we apply the full
model (again in 10-fold cross validation experi-
ments) to data sets composed of senses of polyse-
mous words in the subjectivity lexicon. To support
comparison, all of the data sets in this section have
a 50%-50% objective/subjective distribution.6 The
results are presented in Table 2.

For comparison, the first row repeats the results
for the mixed corpus from Table 1. The second
row shows results for a corpus of senses of a mix-
ture ofstrongsubjandweaksubjwords. The corpus
was created by selecting a mixture ofstrongsubjand
weaksubjwords, extracting their senses and theS/O
labels applied to them in Section 4, and then ran-
domly removing senses of the more frequent class
until the distribution is uniform. We see that the
results on this corpus are better than on the mixed
data set, even though the baseline accuracy is lower
and the corpus is smaller. This supports the idea
that an effective strategy would be to first identify
opinion-bearing words, and then apply our method
to those words to sort out their subjective and objec-
tive senses.

The third row shows results for aweaksubjsubset

6As with the mixed data set, we removed from these data
sets multiple senses from the same synset and any senses in the
same synset in either of the seed sets.
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Method P R F
Our method 56.8 66.0 61.1
WM, 60% recall 44.0 66.0 52.8
SentiWordNet mapping 60.0 17.3 26.8

Table 3: Results for WM Corpus (212 senses, 76% O)

Method A P R F
Our Method 81.3% 60.3% 63.3% 61.8%
SM CV* 82.4% 70.8% 41.1% 52.0%
SM SL* 78.3% 53.0% 57.4% 54.9%

Table 4: Results for SM Corpus (484 senses, 76.9% O)

of thestrong+weakcorpus and the fourth shows re-
sults for astrongsubjsubset that is of the same size.
As expected, the results for theweaksubjsenses
are lower while those for thestrongsubjsenses are
higher, asweaksubjclues are more ambiguous.

7.4 Comparisons with Previous Work

WM and SM address the same task as we do. To
compare our results to theirs, we apply our full
model (in 10-fold cross validation experiments) to
their data sets.7

Table 3 has the WM data set results. WM rank
their senses and present their results in the form of
precision recall curves. The second row of Table 3
shows their results at the recall level achieved by our
method (66%). Their precision at that level is sub-
stantially below ours.

Turning to ES, to createS/O annotations, we ap-
plied the following heuristic mapping (which is also
used by SM for the purpose of comparison): any
sense for which the sum of positive and negative
scores is greater than or equal to 0.5 is S, otherwise
it is O. We then evaluate the mapped tags against the
gold standard of WM. The results are in Row 3 of
Table 3. Note that this mapping is not fair to Sen-
tiWordNet, as the tasks are quite different, and we
do not believe any conclusions can be drawn. We
include the results to eliminate the possibility that
their method is as good ours on our task, despite the
differences between the tasks.

Table 4 has the results for the noun subset of SM’s

7The WM data set is available at
http://www.cs.pitt.edu/www.cs.pitt.edu/˜wiebe. ES applied
their method in (2006b) to WordNet, and made the results
available asSentiWordNetat http://sentiwordnet.isti.cnr.it/.

data set, which is the data set used by ES, reanno-
tated by SM. CV* is their supervised system and
SL* is their best non-supervised one. Our method
has higher F-measure than the others.8 Note that the
focus of SM’s work is not supervised machine learn-
ing.

8 Conclusions

In this paper, we introduced an integrative approach
to automatic subjectivity word sense labeling which
combines features exploiting the hierarchical struc-
ture and domain information of WordNet, as well
as similarity of glosses and overlap among sets
of semantically related words. There are several
contributions. First, we learn several things. We
found (in Section 4) that even reliable lists of sub-
jective (opinion-bearing) words have many objec-
tive senses. We asked if word- and sense-level ap-
proaches could be used effectively in tandem, and
found (in Section 7.3) that an effective strategy is to
first identify opinion-bearing words, and then apply
our method to sort out their subjective and objective
senses. We also found (in Section 7.2) that the entire
set of features gives better results than any individ-
ual type of feature alone.

Second, several of the features are novel for
our task, including those exploiting the hierarchical
structure of a lexical resource, domain information,
and relations to seed sets expanded with monose-
mous senses.

Finally, the combination of our particular features
is effective. For example, on senses of words from
a subjectivity lexicon, accuracies range from 20 to
29 percentage points above baseline. Further, our
combination of features outperforms previous ap-
proaches.

Acknowledgments
This work was supported in part by National Sci-
ence Foundation awards #0840632 and #0840608.
The authors are grateful to Fangzhong Su and Katja
Markert for making their data set available, and to
the three paper reviewers for their helpful sugges-
tions.

8We performed the same type of evaluation as in SM’s paper.
That is, we assign a subjectivity label to one word sense for each
synset, which is the same as applying a subjectivity label to a
synset as a whole as done by SM.

17



References

Alina Andreevskaia and Sabine Bergler. 2006a. Mining
wordnet for a fuzzy sentiment: Sentiment tag extrac-
tion from wordnet glosses. InProceedings of the 11rd
Conference of the European Chapter of the Associa-
tion for Computational Linguistics.

Alina Andreevskaia and Sabine Bergler. 2006b. Sen-
timent tag extraction from wordnet glosses. InPro-
ceedings of 5th International Conference on Language
Resources and Evaluation.

Rebecca Bruce and Janyce Wiebe. 1999. Recognizing
subjectivity: A case study of manual tagging.Natural
Language Engineering, 5(2):187–205.

S. Cerini, V. Campagnoni, A. Demontis, M. Formentelli,
and C. Gandini. 2007. Micro-wnop: A gold standard
for the evaluation of automatically compiled lexical re-
sources for opinion mining. InLanguage resources
and linguistic theory: Typology, second language ac-
quisition, English linguistics. Milano.

Andrea Esuli and Fabrizio Sebastiani. 2006a. Determin-
ing term subjectivity and term orientation for opinion
mining. In 11th Meeting of the European Chapter of
the Association for Computational Linguistics.

Andrea Esuli and Fabrizio Sebastiani. 2006b. Senti-
WordNet: A publicly available lexical resource for
opinion mining. InProceedings of the 5th Conference
on Language Resources and Evaluation, Genova, IT.

Andrea Esuli and Fabrizio Sebastiani. 2007. PageRank-
ing wordnet synsets: An application to opinion min-
ing. In Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages 424–
431, Prague, Czech Republic, June.

A. Gliozzo, C. Strapparava, E. d’Avanzo, and
B. Magnini. 2005. Automatic acquisition of
domain specific lexicons. Tech. report, IRST, Italy.

T. Joachims. 1999. Making large-scale SVM learning
practical. In B. Scholkopf, C. Burgess, and A. Smola,
editors,Advances in Kernel Methods – Support Vector
Learning, Cambridge, MA. MIT-Press.

Soo-Min Kim and Eduard Hovy. 2004. Determining the
sentiment of opinions. InProceedings of the Twentieth
International Conference on Computational Linguis-
tics, pages 1267–1373, Geneva, Switzerland.

Soo-Min Kim and Eduard Hovy. 2006. Identifying
and analyzing judgment opinions. InProceedings of
Empirical Methods in Natural Language Processing,
pages 200–207, New York.

M.E. Lesk. 1986. Automatic sense disambiguation us-
ing machine readable dictionaries: How to tell a pine
cone from an ice cream cone. InProceedings of the
SIGDOC Conference 1986, Toronto, June.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization

based on minimum cuts. InProceedings of the Annual
Meeting of the Association for Computational Linguis-
tics , pages 271–278, Barcelona, ES. Association for
Computational Linguistics.

Philip Resnik. 1995. Using information content to eval-
uate semantic similarity in a taxonomy. InProc. Inter-
national Joint Conference on Artificial Intelligence.

E. Riloff and J. Wiebe. 2003. Learning extraction pat-
terns for subjective expressions. InConference on
Empirical Methods in Natural Language Processing,
pages 105–112.

Fangzhong Su and Katja Markert. 2008. From word
to sense: a case study of subjectivity recognition. In
Proceedings of the 22nd International Conference on
Computational Linguistics, Manchester.

M. Taboada, C. Anthony, and K. Voll. 2006. Methods
for creating semantic orientation databases. InPro-
ceedings of 5th International Conference on Language
Resources and Evaluation.

Hiroya Takamura, Takashi Inui, and Manabu Okumura.
2006. Latent variable models for semantic orienta-
tions of phrases. InProceedings of the 11th Meeting
of the European Chapter of the Association for Com-
putational Linguistics, Trento, Italy.

P. Turney. 2002. Thumbs up or thumbs down? semantic
orientation applied to unsupervised classification of re-
views. InProceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pages
417–424, Philadelphia.

Alessandro Valitutti, Carlo Strapparava, and Oliviero
Stock. 2004. Developing affective lexical resources.
PsychNology Journal, 2(1):61–83.

J. Wiebe and R. Mihalcea. 2006. Word sense and subjec-
tivity. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics, Sydney, Aus-
tralia.

Janyce Wiebe and Ellen Riloff. 2005. Creating sub-
jective and objective sentence classifiers from unan-
notated texts. InProceedings of the 6th International
Conference on Intelligent Text Processing and Com-
putational Linguistics, pages 486–497, Mexico City,
Mexico.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. InProceedings of the Human Lan-
guage Technologies Conference/Conference on Empir-
ical Methods in Natural Language Processing, pages
347–354, Vancouver, Canada.

Hong Yu and Vasileios Hatzivassiloglou. 2003. Towards
answering opinion questions: Separating facts from
opinions and identifying the polarity of opinion sen-
tences. InConference on Empirical Methods in Nat-
ural Language Processing, pages 129–136, Sapporo,
Japan.

18



Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 19–27,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

A Study on Similarity and Relatedness
Using Distributional and WordNet-based Approaches

Eneko Agirre† Enrique Alfonseca‡ Keith Hall‡ Jana Kravalova‡§ Marius Paşca‡ Aitor Soroa†
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Abstract

This paper presents and compares WordNet-
based and distributional similarity approaches.
The strengths and weaknesses of each ap-
proach regarding similarity and relatedness
tasks are discussed, and a combination is pre-
sented. Each of our methods independently
provide the best results in their class on the
RG and WordSim353 datasets, and a super-
vised combination of them yields the best pub-
lished results on all datasets. Finally, we pio-
neer cross-lingual similarity, showing that our
methods are easily adapted for a cross-lingual
task with minor losses.

1 Introduction

Measuring semantic similarity and relatedness be-
tween terms is an important problem in lexical se-
mantics. It has applications in many natural lan-
guage processing tasks, such as Textual Entailment,
Word Sense Disambiguation or Information Extrac-
tion, and other related areas like Information Re-
trieval. The techniques used to solve this problem
can be roughly classified into two main categories:
those relying on pre-existing knowledge resources
(thesauri, semantic networks, taxonomies or ency-
clopedias) (Alvarez and Lim, 2007; Yang and Pow-
ers, 2005; Hughes and Ramage, 2007) and those in-
ducing distributional properties of words from cor-
pora (Sahami and Heilman, 2006; Chen et al., 2006;
Bollegala et al., 2007).

In this paper, we explore both families. For the
first one we apply graph based algorithms to Word-
Net, and for the second we induce distributional
similarities collected from a 1.6 Terabyte Web cor-
pus. Previous work suggests that distributional sim-
ilarities suffer from certain limitations, which make

them less useful than knowledge resources for se-
mantic similarity. For example, Lin (1998b) finds
similar phrases like captive-westerner which made
sense only in the context of the corpus used, and
Budanitsky and Hirst (2006) highlight other prob-
lems that stem from the imbalance and sparseness of
the corpora. Comparatively, the experiments in this
paper demonstrate that distributional similarities can
perform as well as the knowledge-based approaches,
and a combination of the two can exceed the per-
formance of results previously reported on the same
datasets. An application to cross-lingual (CL) sim-
ilarity identification is also described, with applica-
tions such as CL Information Retrieval or CL spon-
sored search. A discussion on the differences be-
tween learning similarity and relatedness scores is
provided.

The paper is structured as follows. We first
present the WordNet-based method, followed by the
distributional methods. Section 4 is devoted to the
evaluation and results on the monolingual and cross-
lingual tasks. Section 5 presents some analysis, in-
cluding learning curves for distributional methods,
the use of distributional similarity to improve Word-
Net similarity, the contrast between similarity and
relatedness, and the combination of methods. Sec-
tion 6 presents related work, and finally, Section 7
draws the conclusions and mentions future work.

2 WordNet-based method

WordNet (Fellbaum, 1998) is a lexical database of
English, which groups nouns, verbs, adjectives and
adverbs into sets of synonyms (synsets), each ex-
pressing a distinct concept. Synsets are interlinked
with conceptual-semantic and lexical relations, in-
cluding hypernymy, meronymy, causality, etc.

Given a pair of words and a graph-based repre-
sentation of WordNet, our method has basically two
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steps: We first compute the personalized PageR-
ank over WordNet separately for each of the words,
producing a probability distribution over WordNet
synsets. We then compare how similar these two dis-
crete probability distributions are by encoding them
as vectors and computing the cosine between the
vectors.

We represent WordNet as a graph G = (V,E) as
follows: graph nodes represent WordNet concepts
(synsets) and dictionary words; relations among
synsets are represented by undirected edges; and
dictionary words are linked to the synsets associated
to them by directed edges.

For each word in the pair we first compute a per-
sonalized PageRank vector of graph G (Haveliwala,
2002). Basically, personalized PageRank is com-
puted by modifying the random jump distribution
vector in the traditional PageRank equation. In our
case, we concentrate all probability mass in the tar-
get word.

Regarding PageRank implementation details, we
chose a damping value of 0.85 and finish the calcula-
tion after 30 iterations. These are default values, and
we did not optimize them. Our similarity method is
similar, but simpler, to that used by (Hughes and Ra-
mage, 2007), which report very good results on sim-
ilarity datasets. More details of our algorithm can be
found in (Agirre and Soroa, 2009). The algorithm
and needed resouces are publicly available1.

2.1 WordNet relations and versions
The WordNet versions that we use in this work are
the Multilingual Central Repository or MCR (At-
serias et al., 2004) (which includes English Word-
Net version 1.6 and wordnets for several other lan-
guages like Spanish, Italian, Catalan and Basque),
and WordNet version 3.02. We used all the rela-
tions in MCR (except cooccurrence relations and se-
lectional preference relations) and in WordNet 3.0.
Given the recent availability of the disambiguated
gloss relations for WordNet 3.03, we also used a
version which incorporates these relations. We will
refer to the three versions as MCR16, WN30 and
WN30g, respectively. Our choice was mainly moti-
vated by the fact that MCR contains tightly aligned

1http://http://ixa2.si.ehu.es/ukb/
2Available from http://http://wordnet.princeton.edu/
3http://wordnet.princeton.edu/glosstag

wordnets of several languages (see below).

2.2 Cross-linguality

MCR follows the EuroWordNet design (Vossen,
1998), which specifies an InterLingual Index (ILI)
that links the concepts across wordnets of differ-
ent languages. The wordnets for other languages in
MCR use the English WordNet synset numbers as
ILIs. This design allows a decoupling of the rela-
tions between concepts (which can be taken to be
language independent) and the links from each con-
tent word to its corresponding concepts (which is
language dependent).

As our WordNet-based method uses the graph of
the concepts and relations, we can easily compute
the similarity between words from different lan-
guages. For example, consider a English-Spanish
pair like car – coche. Given that the Spanish Word-
Net is included in MCR we can use MCR as the
common knowledge-base for the relations. We can
then compute the personalized PageRank for each
of car and coche on the same underlying graph, and
then compare the similarity between both probabil-
ity distributions.

As an alternative, we also tried to use pub-
licly available mappings for wordnets (Daude et al.,
2000)4 in order to create a 3.0 version of the Span-
ish WordNet. The mapping was used to link Spanish
variants to 3.0 synsets. We used the English Word-
Net 3.0, including glosses, to construct the graph.
The two Spanish WordNet versions are referred to
as MCR16 and WN30g.

3 Context-based methods

In this section, we describe the distributional meth-
ods used for calculating similarities between words,
and profiting from the use of a large Web-based cor-
pus.

This work is motivated by previous studies that
make use of search engines in order to collect co-
occurrence statistics between words. Turney (2001)
uses the number of hits returned by a Web search
engine to calculate the Pointwise Mutual Informa-
tion (PMI) between terms, as an indicator of syn-
onymy. Bollegala et al. (2007) calculate a number
of popular relatedness metrics based on page counts,

4http://www.lsi.upc.es/∼nlp/tools/download-map.php.
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like PMI, the Jaccard coefficient, the Simpson co-
efficient and the Dice coefficient, which are com-
bined with lexico-syntactic patterns as model fea-
tures. The model parameters are trained using Sup-
port Vector Machines (SVM) in order to later rank
pairs of words. A different approach is the one taken
by Sahami and Heilman (2006), who collect snip-
pets from the results of a search engine and repre-
sent each snippet as a vector, weighted with the tf·idf
score. The semantic similarity between two queries
is calculated as the inner product between the cen-
troids of the respective sets of vectors.

To calculate the similarity of two words w1 and
w2, Ruiz-Casado et al. (2005) collect snippets con-
taining w1 from a Web search engine, extract a con-
text around it, replace it with w2 and check for the
existence of that modified context in the Web.

Using a search engine to calculate similarities be-
tween words has the drawback that the data used will
always be truncated. So, for example, the numbers
of hits returned by search engines nowadays are al-
ways approximate and rounded up. The systems that
rely on collecting snippets are also limited by the
maximum number of documents returned per query,
typically around a thousand. We hypothesize that
by crawling a large corpus from the Web and doing
standard corpus analysis to collect precise statistics
for the terms we should improve over other unsu-
pervised systems that are based on search engine
results, and should yield results that are competi-
tive even when compared to knowledge-based ap-
proaches.

In order to calculate the semantic similarity be-
tween the words in a set, we have used a vector space
model, with the following three variations:

In the bag-of-words approach, for each word w
in the dataset we collect every term t that appears in
a window centered in w, and add them to the vector
together with its frequency.

In the context window approach, for each word
w in the dataset we collect every window W cen-
tered in w (removing the central word), and add it
to the vector together with its frequency (the total
number of times we saw windowW around w in the
whole corpus). In this case, all punctuation symbols
are replaced with a special token, to unify patterns
like , the <term> said to and ’ the <term> said to.
Throughout the paper, when we mention a context

window of size N it means N words at each side of
the phrase of interest.

In the syntactic dependency approach, we parse
the entire corpus using an implementation of an In-
ductive Dependency parser as described in Nivre
(2006). For each word w we collect a template of
the syntactic context. We consider sequences of gov-
erning words (e.g. the parent, grand-parent, etc.) as
well as collections of descendants (e.g., immediate
children, grandchildren, etc.). This information is
then encoded as a contextual template. For example,
the context template cooks <term> delicious could
be contexts for nouns such as food, meals, pasta, etc.
This captures both syntactic preferences as well as
selectional preferences. Contrary to Pado and Lap-
ata (2007), we do not use the labels of the syntactic
dependencies.

Once the vectors have been obtained, the fre-
quency for each dimension in every vector is
weighted using the other vectors as contrast set, with
the χ2 test, and finally the cosine similarity between
vectors is used to calculate the similarity between
each pair of terms.

Except for the syntactic dependency approach,
where closed-class words are needed by the parser,
in the other cases we have removed stopwords (pro-
nouns, prepositions, determiners and modal and
auxiliary verbs).

3.1 Corpus used

We have used a corpus of four billion documents,
crawled from the Web in August 2008. An HTML
parser is used to extract text, the language of each
document is identified, and non-English documents
are discarded. The final corpus remaining at the end
of this process contains roughly 1.6 Terawords. All
calculations are done in parallel sharding by dimen-
sion, and it is possible to calculate all pairwise sim-
ilarities of the words in the test sets very quickly
on this corpus using the MapReduce infrastructure.
A complete run takes around 15 minutes on 2,000
cores.

3.2 Cross-linguality

In order to calculate similarities in a cross-lingual
setting, where some of the words are in a language l
other than English, the following algorithm is used:
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Method Window size RG dataset WordSim353 dataset
MCR16 0.83 [0.73, 0.89] 0.53 (0.56) [0.45, 0.60]
WN30 0.79 [0.67, 0.86] 0.56 (0.58) [0.48, 0.63]
WN30g 0.83 [0.73, 0.89] 0.66 (0.69) [0.59, 0.71]
CW 1 0.83 [0.73, 0.89] 0.63 [0.57, 0.69]

2 0.83 [0.74, 0.90] 0.60 [0.53, 0.66]
3 0.85 [0.76, 0.91] 0.59 [0.52, 0.65]
4 0.89 [0.82, 0.93] 0.60 [0.53, 0.66]
5 0.80 [0.70, 0.88] 0.58 [0.51, 0.65]
6 0.75 [0.62, 0.84] 0.58 [0.50, 0.64]
7 0.72 [0.58, 0.82] 0.57 [0.49, 0.63]

BoW 1 0.81 [0.70, 0.88] 0.64 [0.57, 0.70]
2 0.80 [0.69, 0.87] 0.64 [0.58, 0.70]
3 0.79 [0.67, 0.86] 0.64 [0.58, 0.70]
4 0.78 [0.66, 0.86] 0.65 [0.58, 0.70]
5 0.77 [0.64, 0.85] 0.64 [0.58, 0.70]
6 0.76 [0.63, 0.85] 0.65 [0.58, 0.70]
7 0.75 [0.62, 0.84] 0.64 [0.58, 0.70]

Syn G1,D0 0.81 [0.70, 0.88] 0.62 [0.55, 0.68]
G2,D0 0.82 [0.72, 0.89] 0.55 [0.48, 0.62]
G3,D0 0.81 [0.71, 0.88] 0.62 [0.56, 0.68]
G1,D1 0.82 [0.72, 0.89] 0.62 [0.55, 0.68]
G2,D1 0.82 [0.73, 0.89] 0.62 [0.55, 0.68]
G3,D1 0.82 [0.72, 0.88] 0.62 [0.55, 0.68]

CW+ 4; G1,D0 0.88 [0.81, 0.93] 0.66 [0.59, 0.71]
Syn 4; G2,D0 0.87 [0.80, 0.92] 0.64 [0.57, 0.70]

4; G3,D0 0.86 [0.77, 0.91] 0.63 [0.56, 0.69]
4; G1,D1 0.83 [0.73, 0.89] 0.48 [0.40, 0.56]
4; G2,D1 0.83 [0.73, 0.89] 0.49 [0.40, 0.56]
4; G3,D1 0.82 [0.72, 0.89] 0.48 [0.40, 0.56]

Table 1: Spearman correlation results for the various WordNet-based
models and distributional models. CW=Context Windows, BoW=bag
of words, Syn=syntactic vectors. For Syn, the window size is actually
the tree-depth for the governors and descendants. For examples, G1
indicates that the contexts include the parents and D2 indicates that both
the children and grandchildren make up the contexts. The final grouping
includes both contextual windows (at width 4) and syntactic contexts in
the template vectors. Max scores are bolded.

1. Replace each non-English word in the dataset
with its 5-best translations into English using
state-of-the-art machine translation technology.

2. The vector corresponding to each Spanish word
is calculated by collecting features from all the
contexts of any of its translations.

3. Once the vectors are generated, the similarities
are calculated in the same way as before.

4 Experimental results

4.1 Gold-standard datasets

We have used two standard datasets. The first
one, RG, consists of 65 pairs of words collected by
Rubenstein and Goodenough (1965), who had them
judged by 51 human subjects in a scale from 0.0 to
4.0 according to their similarity, but ignoring any
other possible semantic relationships that might ap-
pear between the terms. The second dataset, Word-
Sim3535 (Finkelstein et al., 2002) contains 353 word
pairs, each associated with an average of 13 to 16 hu-
man judgements. In this case, both similarity and re-

5Available at http://www.cs.technion.ac.il/
∼gabr/resources/data/wordsim353/wordsim353.html

Context RG terms and frequencies
ll never forget the * on his face when grin,2,smile,10
he had a giant * on his face and grin,3,smile,2
room with a huge * on her face and grin,2,smile,6
the state of every * will be updated every automobile,2,car,3
repair or replace the * if it is stolen automobile,2,car,2
located on the north * of the Bay of shore,14,coast,2
areas on the eastern * of the Adriatic Sea shore,3,coast,2
Thesaurus of Current English * The Oxford Pocket Thesaurus slave,3,boy,5,shore,3,string,2

wizard,4,glass,4,crane,5,smile,5
implement,5,oracle,2,lad,2
food,3,car,2,madhouse,3,jewel,3
asylum,4,tool,8,journey,6,etc.

be understood that the * 10 may be designed crane,3,tool,3
a fight between a * and a snake and bird,3,crane,5

Table 2: Sample of context windows for the terms in the RG dataset.

latedness are annotated without any distinction. Sev-
eral studies indicate that the human scores consis-
tently have very high correlations with each other
(Miller and Charles, 1991; Resnik, 1995), thus val-
idating the use of these datasets for evaluating se-
mantic similarity.

For the cross-lingual evaluation, the two datasets
were modified by translating the second word in
each pair into Spanish. Two humans translated
simultaneously both datasets, with an inter-tagger
agreement of 72% for RG and 84% for Word-
Sim353.

4.2 Results

Table 1 shows the Spearman correlation obtained on
the RG and WordSim353 datasets, including the in-
terval at 0.95 of confidence6.

Overall the distributional context-window ap-
proach performs best in the RG, reaching 0.89 corre-
lation, and both WN30g and the combination of con-
text windows and syntactic context perform best on
WordSim353. Note that the confidence intervals are
quite large in both RG and WordSim353, and few of
the pairwise differences are statistically significant.

Regarding WordNet-based approaches, the use of
the glosses and WordNet 3.0 (WN30g) yields the
best results in both datasets. While MCR16 is close
to WN30g for the RG dataset, it lags well behind
on WordSim353. This discrepancy is further ana-
lyzed is Section 5.3. Note that the performance of
WordNet in the WordSim353 dataset suffers from
unknown words. In fact, there are nine pairs which
returned null similarity for this reason. The num-

6To calculate the Spearman correlations values are trans-
formed into ranks, and we calculate the Pearson correlation on
them. The confidence intervals refer to the Pearson correlations
of the rank vectors.
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Figure 1: Effect of the size of the training corpus, for the best distributional similarity model in each dataset. Left: WordSim353 with bag-of-words,
Right: RG with context windows.

Dataset Method overall ∆ interval
RG MCR16 0.78 -0.05 [0.66, 0.86]

WN30g 0.74 -0.09 [0.61, 0.84]
Bag of words 0.68 -0.23 [0.53, 0.79]
Context windows 0.83 -0.05 [0.73, 0.89]

WS353 MCR16 0.42 (0.53) -0.11 (-0.03) [0.34, 0.51]
WN30g 0.58 (0.67) -0.07 (-0.02) [0.51, 0.64]
Bag of words 0.53 -0.12 [0.45, 0.61]
Context windows 0.52 -0.11 [0.44, 0.59]

Table 3: Results obtained by the different methods on the Span-
ish/English cross-lingual datasets. The ∆ column shows the perfor-
mance difference with respect to the results on the original dataset.

ber in parenthesis in Table 1 for WordSim353 shows
the results for the 344 remaining pairs. Section 5.2
shows a proposal to overcome this limitation.

The bag-of-words approach tends to group to-
gether terms that can have a similar distribution of
contextual terms. Therefore, terms that are topically
related can appear in the same textual passages and
will get high values using this model. We see this
as an explanation why this model performed better
than the context window approach for WordSim353,
where annotators were instructed to provide high
ratings to related terms. On the contrary, the con-
text window approach tends to group together words
that are exchangeable in exactly the same context,
preserving order. Table 2 illustrates a few exam-
ples of context collected. Therefore, true synonyms
and hyponyms/hyperonyms will receive high simi-
larities, whereas terms related topically or based on
any other semantic relation (e.g. movie and star) will
have lower scores. This explains why this method
performed better for the RG dataset. Section 5.3
confirms these observations.

4.3 Cross-lingual similarity

Table 3 shows the results for the English-Spanish
cross-lingual datasets. For RG, MCR16 and the

context windows methods drop only 5 percentage
points, showing that cross-lingual similarity is feasi-
ble, and that both cross-lingual strategies are robust.

The results for WordSim353 show that WN30g is
the best for this dataset, with the rest of the meth-
ods falling over 10 percentage points relative to the
monolingual experiment. A closer look at the Word-
Net results showed that most of the drop in perfor-
mance was caused by out-of-vocabulary words, due
to the smaller vocabulary of the Spanish WordNet.
Though not totally comparable, if we compute the
correlation over pairs covered in WordNet alone, the
correlation would drop only 2 percentage points. In
the case of the distributional approaches, the fall in
performance was caused by the translations, as only
61% of the words were translated into the original
word in the English datasets.

5 Detailed analysis and system
combination

In this section we present some analysis, including
learning curves for distributional methods, the use
of distributional similarity to improve WordNet sim-
ilarity, the contrast between similarity and related-
ness, and the combination of methods.

5.1 Learning curves for distributional methods

Figure 1 shows that the correlation improves with
the size of the corpus, as expected. For the re-
sults using the WordSim353 corpus, we show the
results of the bag-of-words approach with context
size 10. Results improve from 0.5 Spearman correla-
tion up to 0.65 when increasing the corpus size three
orders of magnitude, although the effect decays at
the end, which indicates that we might not get fur-
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Method Without similar words With similar words
WN30 0.56 (0.58) [0.48, 0.63] 0.58 [0.51, 0.65]
WN30g 0.66 (0.69) [0.59, 0.71] 0.68 [0.62, 0.73]

Table 4: Results obtained replacing unknown words with their most
similar three words (WordSim353 dataset).

Method overall Similarity Relatedness
MCR16 0.53 [0.45, 0.60] 0.65 [0.56, 0.72] 0.33 [0.21, 0.43]
WN30 0.56 [0.48, 0.63] 0.73 [0.65, 0.79] 0.38 [0.27, 0.48]
WN30g 0.66 [0.59, 0.71] 0.72 [0.64, 0.78] 0.56 [0.46, 0.64]
BoW 0.65 [0.59, 0.71] 0.70 [0.63, 0.77] 0.62 [0.53, 0.69]
CW 0.60 [0.53, 0.66] 0.77 [0.71, 0.82] 0.46 [0.36, 0.55]

Table 5: Results obtained on the WordSim353 dataset and on the two
similarity and relatedness subsets.

ther gains going beyond the current size of the cor-
pus. With respect to results for the RG dataset, we
used a context-window approach with context radius
4. Here, results improve even more with data size,
probably due to the sparse data problem collecting
8-word context windows if the corpus is not large
enough. Correlation improves linearly right to the
end, where results stabilize around 0.89.

5.2 Combining both approaches: dealing with
unknown words in WordNet

Although the vocabulary of WordNet is very ex-
tensive, applications are bound to need the similar-
ity between words which are not included in Word-
Net. This is exemplified in the WordSim353 dataset,
where 9 pairs contain words which are unknown to
WordNet. In order to overcome this shortcoming,
we could use similar words instead, as provided by
the distributional thesaurus. We used the distribu-
tional thesaurus defined in Section 3, using context
windows of width 4, to provide three similar words
for each of the unknown words in WordNet. Results
improve for both WN30 and WN30g, as shown in
Table 4, attaining our best results for WordSim353.

5.3 Similarity vs. relatedness

We mentioned above that the annotation guidelines
of WordSim353 did not distinguish between simi-
lar and related pairs. As the results in Section 4
show, different techniques are more appropriate to
calculate either similarity or relatedness. In order to
study this effect, ideally, we would have two ver-
sions of the dataset, where annotators were given
precise instructions to distinguish similarity in one
case, and relatedness in the other. Given the lack
of such datasets, we devised a simpler approach in

order to reuse the existing human judgements. We
manually split the dataset in two parts, as follows.

First, two humans classified all pairs as be-
ing synonyms of each other, antonyms, iden-
tical, hyperonym-hyponym, hyponym-hyperonym,
holonym-meronym, meronym-holonym, and none-
of-the-above. The inter-tagger agreement rate was
0.80, with a Kappa score of 0.77. This anno-
tation was used to group the pairs in three cate-
gories: similar pairs (those classified as synonyms,
antonyms, identical, or hyponym-hyperonym), re-
lated pairs (those classified as meronym-holonym,
and pairs classified as none-of-the-above, with a hu-
man average similarity greater than 5), and unrelated
pairs (those classified as none-of-the-above that had
average similarity less than or equal to 5). We then
created two new gold-standard datasets: similarity
(the union of similar and unrelated pairs), and relat-
edness (the union of related and unrelated)7.

Table 5 shows the results on the relatedness and
similarity subsets of WordSim353 for the different
methods. Regarding WordNet methods, both WN30
and WN30g perform similarly on the similarity sub-
set, but WN30g obtains the best results by far on
the relatedness data. These results are congruent
with our expectations: two words are similar if their
synsets are in close places in the WordNet hierarchy,
and two words are related if there is a connection
between them. Most of the relations in WordNet
are of hierarchical nature, and although other rela-
tions exist, they are far less numerous, thus explain-
ing the good results for both WN30 and WN30g on
similarity, but the bad results of WN30 on related-
ness. The disambiguated glosses help find connec-
tions among related concepts, and allow our method
to better model relatedness with respect to WN30.

The low results for MCR16 also deserve some
comments. Given the fact that MCR16 performed
very well on the RG dataset, it comes as a surprise
that it performs so poorly for the similarity subset
of WordSim353. In an additional evaluation, we at-
tested that MCR16 does indeed perform as well as
MCR30g on the similar pairs subset. We believe
that this deviation could be due to the method used to
construct the similarity dataset, which includes some
pairs of loosely related pairs labeled as unrelated.

7Available at http://alfonseca.org/eng/research/wordsim353.html
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Methods combined in the SVM RG dataset WordSim353 dataset WordSim353 similarity WordSim353 relatedness
WN30g, bag of words 0.88 [0.82, 0.93] 0.78 [0.73, 0.81] 0.81 [0.76, 0.86] 0.72 [0.65, 0.77]
WN30g, context windows 0.90 [0.84, 0.94] 0.73 [0.68, 0.79] 0.83 [0.78, 0.87] 0.64 [0.56, 0.71]
WN30g, syntax 0.89 [0.83, 0.93] 0.75 [0.70, 0.79] 0.83 [0.78, 0.87] 0.67 [0.60, 0.74]
WN30g, bag of words, context windows, syntax 0.96 [0.93, 0.97] 0.78 [0.73, 0.82] 0.83 [0.78, 0.87] 0.71 [0.65, 0.77]

Table 6: Results using a supervised combination of several systems. Max values are bolded for each dataset.

Concerning the techniques based on distributional
similarities, the method based on context windows
provides the best results for similarity, and the bag-
of-words representation outperforms most of the
other techniques for relatedness.

5.4 Supervised combination

In order to gain an insight on which would be the up-
per bound that we could obtain when combining our
methods, we took the output of three systems (bag
of words with window size 10, context window with
size 4, and the WN30g run). Each of these outputs is
a ranking of word pairs, and we implemented an or-
acle that chooses, for each pair, the rank that is most
similar to the rank of the pair in the gold-standard.
The outputs of the oracle have a Spearman correla-
tion of 0.97 for RG and 0.92 for WordSim353, which
gives as an indication of the correlations that could
be achieved by choosing for each pair the rank out-
put by the best classifier for that pair.

The previous results motivated the use of a su-
pervised approach to combine the output of the
different systems. We created a training cor-
pus containing pairs of pairs of words from the
datasets, having as features the similarity and rank
of each pair involved as given by the differ-
ent unsupervised systems. A classifier is trained
to decide whether the first pair is more simi-
lar than the second one. For example, a train-
ing instance using two unsupervised classifiers is

0.001364, 31, 0.327515, 64, 0.084805, 57, 0.109061, 59, negative

meaning that the similarities given by the first clas-
sifier to the two pairs were 0.001364 and 0.327515
respectively, which ranked them in positions 31 and
64. The second classifier gave them similarities of
0.084805 and 0.109061 respectively, which ranked
them in positions 57 and 59. The class negative in-
dicates that in the gold-standard the first pair has a
lower score than the second pair.

We have trained a SVM to classify pairs of pairs,
and use its output to rank the entries in both datasets.
It uses a polynomial kernel with degree 4. We did

Method Source Spearman (MC) Pearson (MC)
(Sahami et al., 2006) Web snippets 0.62 [0.32, 0.81] 0.58 [0.26, 0.78]
(Chen et al., 2006) Web snippets 0.69 [0.42, 0.84] 0.69 [0.42, 0.85]
(Wu and Palmer, 1994) WordNet 0.78 [0.59, 0.90] 0.78 [0.57, 0.89]
(Leacock et al., 1998) WordNet 0.79 [0.59, 0.90] 0.82 [0.64, 0.91]
(Resnik, 1995) WordNet 0.81 [0.62, 0.91] 0.80 [0.60, 0.90]
(Lin, 1998a) WordNet 0.82 [0.65, 0.91] 0.83 [0.67, 0.92]
(Bollegala et al., 2007) Web snippets 0.82 [0.64, 0.91] 0.83 [0.67, 0.92]
(Jiang and Conrath, 1997) WordNet 0.83 [0.67, 0.92] 0.85 [0.69, 0.93]
(Jarmasz, 2003) Roget’s 0.87 [0.73, 0.94] 0.87 [0.74, 0.94]
(Patwardhan et al., 2006) WordNet n/a 0.91
(Alvarez and Lim, 2007) WordNet n/a 0.91
(Yang and Powers, 2005) WordNet 0.87 [0.73, 0.91] 0.92 [0.84, 0.96]
(Hughes et al., 2007) WordNet 0.90 n/a
Personalized PageRank WordNet 0.89 [0.77, 0.94] n/a
Bag of words Web corpus 0.85 [0.70, 0.93] 0.84 [0.69, 0.93]
Context window Web corpus 0.88 [0.76, 0.95] 0.89 [0.77, 0.95]
Syntactic contexts Web corpus 0.76 [0.54, 0.88] 0.74 [0.51, 0.87]
SVM Web, WN 0.92 [0.84, 0.96] 0.93 [0.85, 0.97]

Table 7: Comparison with previous approaches for MC.

not have a held-out set, so we used the standard set-
tings of Weka, without trying to modify parameters,
e.g. C. Each word pair is scored with the number
of pairs that were considered to have less similar-
ity using the SVM. The results using 10-fold cross-
validation are shown in Table 6. A combination of
all methods produces the best results reported so far
for both datasets, statistically significant for RG.

6 Related work

Contrary to the WordSim353 dataset, common prac-
tice with the RG dataset has been to perform the
evaluation with Pearson correlation. In our believe
Pearson is less informative, as the Pearson correla-
tion suffers much when the scores of two systems are
not linearly correlated, something which happens
often given due to the different nature of the tech-
niques applied. Some authors, e.g. Alvarez and Lim
(2007), use a non-linear function to map the system
outputs into new values distributed more similarly
to the values in the gold-standard. In their case, the
mapping function was exp (−x4 ), which was chosen
empirically. Finding such a function is dependent
on the dataset used, and involves an extra step in the
similarity calculations. Alternatively, the Spearman
correlation provides an evaluation metric that is in-
dependent of such data-dependent transformations.

Most similarity researchers have published their
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Word pair M&C SVM Word pair M&C SVM
automobile, car 3.92 62 crane, implement 1.68 26
journey, voyage 3.84 54 brother, lad 1.66 39
gem, jewel 3.84 61 car, journey 1.16 37
boy, lad 3.76 57 monk, oracle 1.1 32
coast, shore 3.7 53 food, rooster 0.89 3
asylum, madhouse 3.61 45 coast, hill 0.87 34
magician, wizard 3.5 49 forest, graveyard 0.84 27
midday, noon 3.42 61 monk, slave 0.55 17
furnace, stove 3.11 50 lad, wizard 0.42 13
food, fruit 3.08 47 coast, forest 0.42 18
bird, cock 3.05 46 cord, smile 0.13 5
bird, crane 2.97 38 glass, magician 0.11 10
implement, tool 2.95 55 rooster, voyage 0.08 1
brother, monk 2.82 42 noon, string 0.08 5

Table 8: Our best results for the MC dataset.

Method Source Spearman
(Strube and Ponzetto, 2006) Wikipedia 0.19–0.48
(Jarmasz, 2003) WordNet 0.33–0.35
(Jarmasz, 2003) Roget’s 0.55
(Hughes and Ramage, 2007) WordNet 0.55
(Finkelstein et al., 2002) Web corpus, WN 0.56
(Gabrilovich and Markovitch, 2007) ODP 0.65
(Gabrilovich and Markovitch, 2007) Wikipedia 0.75
SVM Web corpus, WN 0.78

Table 9: Comparison with previous work for WordSim353.

complete results on a smaller subset of the RG
dataset containing 30 word pairs (Miller and
Charles, 1991), usually referred to as MC, making it
possible to compare different systems using differ-
ent correlation. Table 7 shows the results of related
work on MC that was available to us, including our
own. For the authors that did not provide the de-
tailed data we include only the Pearson correlation
with no confidence intervals.

Among the unsupervised methods introduced in
this paper, the context window produced the best re-
ported Spearman correlation, although the 0.95 con-
fidence intervals are too large to allow us to accept
the hypothesis that it is better than all others meth-
ods. The supervised combination produces the best
results reported so far. For the benefit of future re-
search, our results for the MC subset are displayed
in Table 8.

Comparison on the WordSim353 dataset is eas-
ier, as all researchers have used Spearman. The
figures in Table 9) show that our WordNet-based
method outperforms all previously published Word-
Net methods. We want to note that our WordNet-
based method outperforms that of Hughes and Ram-
age (2007), which uses a similar method. Although
there are some differences in the method, we think
that the main performance gain comes from the use
of the disambiguated glosses, which they did not
use. Our distributional methods also outperform all

other corpus-based methods. The most similar ap-
proach to our distributional technique is Finkelstein
et al. (2002), who combined distributional similar-
ities from Web documents with a similarity from
WordNet. Their results are probably worse due to
the smaller data size (they used 270,000 documents)
and the differences in the calculation of the simi-
larities. The only method which outperforms our
non-supervised methods is that of (Gabrilovich and
Markovitch, 2007) when based on Wikipedia, prob-
ably because of the dense, manually distilled knowl-
edge contained in Wikipedia. All in all, our super-
vised combination gets the best published results on
this dataset.

7 Conclusions and future work

This paper has presented two state-of-the-art dis-
tributional and WordNet-based similarity measures,
with a study of several parameters, including per-
formance on similarity and relatedness data. We
show that the use of disambiguated glosses allows
for the best published results for WordNet-based
systems on the WordSim353 dataset, mainly due to
the better modeling of relatedness (as opposed to
similarity). Distributional similarities have proven
to be competitive when compared to knowledge-
based methods, with context windows being better
for similarity and bag of words for relatedness. Dis-
tributional similarity was effectively used to cover
out-of-vocabulary items in the WordNet-based mea-
sure providing our best unsupervised results. The
complementarity of our methods was exploited by
a supervised learner, producing the best results so
far for RG and WordSim353. Our results include
confidence values, which, surprisingly, were not in-
cluded in most previous work, and show that many
results over RG and WordSim353 are indistinguish-
able. The algorithm for WordNet-base similarity
and the necessary resources are publicly available8.

This work pioneers cross-lingual extension and
evaluation of both distributional and WordNet-based
measures. We have shown that closely aligned
wordnets provide a natural and effective way to
compute cross-lingual similarity with minor losses.
A simple translation strategy also yields good results
for distributional methods.

8http://ixa2.si.ehu.es/ukb/
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Abstract

Word sense disambiguation is the process of
determining which sense of a word is used
in a given context. Due to its importance in
understanding semantics of natural languages,
word sense disambiguation has been exten-
sively studied in Computational Linguistics.
However, existing methods either are brit-
tle and narrowly focus on specific topics or
words, or provide only mediocre performance
in real-world settings. Broad coverage and
disambiguation quality are critical for a word
sense disambiguation system. In this paper we
present a fully unsupervised word sense dis-
ambiguation method that requires only a dic-
tionary and unannotated text as input. Such an
automatic approach overcomes the problem of
brittleness suffered in many existing methods
and makes broad-coverage word sense dis-
ambiguation feasible in practice. We evalu-
ated our approach using SemEval 2007 Task
7 (Coarse-grained English All-words Task),
and our system significantly outperformed the
best unsupervised system participating in Se-
mEval 2007 and achieved the performance ap-
proaching top-performing supervised systems.
Although our method was only tested with
coarse-grained sense disambiguation, it can be
directly applied to fine-grained sense disam-
biguation.

1 Introduction

In many natural languages, a word can represent
multiple meanings/senses, and such a word is called
a homograph. Word sense disambiguation(WSD)

is the process of determining which sense of a ho-
mograph is used in a given context. WSD is a
long-standing problem in Computational Linguis-
tics, and has significant impact in many real-world
applications including machine translation, informa-
tion extraction, and information retrieval. Gener-
ally, WSD methods use the context of a word for
its sense disambiguation, and the context informa-
tion can come from either annotated/unannotated
text or other knowledge resources, such as Word-
Net (Fellbaum, 1998), SemCor (SemCor, 2008),
Open Mind Word Expert (Chklovski and Mihal-
cea, 2002), eXtended WordNet (Moldovan and Rus,
2001), Wikipedia (Mihalcea, 2007), parallel corpora
(Ng, Wang, and Chan, 2003). In (Ide and Véronis,
1998) many different WSD approaches were de-
scribed. Usually, WSD techniques can be divided
into four categories (Agirre and Edmonds, 2006),

• Dictionary and knowledge based methods.
These methods use lexical knowledge bases
such as dictionaries and thesauri, and hypoth-
esize that context knowledge can be extracted
from definitions of words. For example, Lesk
disambiguated two words by finding the pair of
senses with the greatest word overlap in their
dictionary definitions (Lesk, 1986).

• Supervised methods. Supervised methods
mainly adopt context to disambiguate words.
A supervised method includes a training phase
and a testing phase. In the training phase,
a sense-annotated training corpus is required,
from which syntactic and semantic features are
extracted to create a classifier using machine
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learning techniques, such as Support Vector
Machine (Novischi et al., 2007). In the fol-
lowing testing phase, a word is classified into
senses (Mihalcea, 2002) (Ng and Lee, 1996).
Currently supervised methods achieve the best
disambiguation quality (about 80% precision
and recall for coarse-grained WSD in the most
recent WSD evaluation conference SemEval
2007 (Navigli et al., 2007)). Nevertheless,
since training corpora are manually annotated
and expensive, supervised methods are often
brittle due to data scarcity, and it is hard to an-
notate and acquire sufficient contextual infor-
mation for every sense of a large number of
words existing in natural languages.

• Semi-supervised methods. To overcome the
knowledge acquisition bottleneck problem suf-
fered by supervised methods, these methods
make use of a small annotated corpus as seed
data in a bootstrapping process (Hearst, 1991)
(Yarowsky, 1995). A word-aligned bilingual
corpus can also serve as seed data (Ng, Wang,
and Chan, 2003).

• Unsupervised methods. These methods acquire
contextual information directly from unanno-
tated raw text, and senses can be induced from
text using some similarity measure (Lin, 1997).
However, automatically acquired information
is often noisy or even erroneous. In the most
recent SemEval 2007 (Navigli et al., 2007), the
best unsupervised systems only achieved about
70% precision and 50% recall.

Disambiguation of a limited number of words is
not hard, and necessary context information can be
carefully collected and hand-crafted to achieve high
disambiguation accuracy as shown in (Yarowsky,
1995). However, such approaches suffer a signifi-
cant performance drop in practice when domain or
vocabulary is not limited. Such a “cliff-style” per-
formance collapse is called brittleness, which is due
to insufficient knowledge and shared by many tech-
niques in Artificial Intelligence. The main challenge
of a WSD system is how to overcome the knowl-
edge acquisition bottleneck and efficiently collect
the huge amount of context knowledge. More pre-
cisely, a practical WSD need figure out how to create

and maintain a comprehensive, dynamic, and up-to-
date context knowledge base in a highly automatic
manner. The context knowledge required in WSD
has the following properties:

1. The context knowledge need cover a large
number of words and their usage. Such a
requirement of broad coverage is not trivial
because a natural language usually contains
thousands of words, and some popular words
can have dozens of senses. For example, the
Oxford English Dictionary has approximately
301,100 main entries (Oxford, 2003), and the
average polysemy of the WordNet inventory is
6.18 (Fellbaum, 1998). Clearly acquisition of
such a huge amount of knowledge can only be
achieved with automatic techniques.

2. Natural language is not a static phenomenon.
New usage of existing words emerges, which
creates new senses. New words are created,
and some words may “die” over time. It is esti-
mated that every year around 2,500 new words
appear in English (Kister, 1992). Such dynam-
ics requires a timely maintenance and updating
of context knowledge base, which makes man-
ual collection even more impractical.

Taking into consideration the large amount and
dynamic nature of context knowledge, we only have
limited options when choosing knowledge sources
for WSD. WSD is often an unconscious process to
human beings. With a dictionary and sample sen-
tences/phrases an average educated person can cor-
rectly disambiguate most polysemous words. In-
spired by human WSD process, we choose an elec-
tronic dictionary and unannotated text samples of
word instances as context knowledge sources for
our WSD system. Both sources can be automat-
ically accessed, provide an excellent coverage of
word meanings and usage, and are actively updated
to reflect the current state of languages. In this pa-
per we present a fully unsupervised WSD system,
which only requires WordNet sense inventory and
unannotated text. In the rest of this paper, section
2 describes how to acquire and represent the con-
text knowledge for WSD. We present our WSD al-
gorithm in section 3. Our WSD system is evaluated
with SemEval-2007 Task 7 (Coarse-grained English
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Figure 1: Context Knowledge Acquisition and Represen-
tation Process

All-words Task) data set, and the experiment results
are discussed in section 4. We conclude in section 5.

2 Context Knowledge Acquisition and
Representation

Figure 1 shows an overview of our context knowl-
edge acquisition process, and collected knowledge
is saved in a local knowledge base. Here are some
details about each step.

2.1 Corpus building through Web search

The goal of this step is to collect as many as possi-
ble valid sample sentences containing the instances
of to-be-disambiguated words. Preferably these in-
stances are also diverse and cover many senses of a
word. We have considered two possible text sources,

1. Electronic text collection, e.g., Gutenberg
project (Gutenberg, 1971). Such collections of-
ten include thousands of books, which are often
written by professionals and can provide many
valid and accurate usage of a large number of
words. Nevertheless, books in these collections
are usually copyright-free and old, hence are
lack of new words or new senses of words used
in modern English.

2. Web documents. Billions of documents exist
in the World Wide Web, and millions of Web
pages are created and updated everyday. Such a
huge dynamic text collection is an ideal source

to provide broad and up-to-date context knowl-
edge for WSD. The major concern about Web
documents is inconsistency of their quality, and
many Web pages are spam or contain erroneous
information. However, factual errors in Web
pages will not hurt the performance of WSD.
Nevertheless, the quality of context knowledge
is affected by broken sentences of poor linguis-
tic quality and invalid word usage, e.g., sen-
tences like “Colorless green ideas sleep furi-
ously” that violate commonsense knowledge.
Based on our experience these kind of errors
are negligible when using popular Web search
engines to retrieve relevant Web pages.

To start the acquisition process, words that need
to be disambiguated are compiled and saved in a
text file. Each single word is submitted to a Web
search engine as a query. Several search engines
provide API’s for research communities to auto-
matically retrieve large number of Web pages. In
our experiments we used both Google and Yahoo!
API’s to retrieve up to 1,000 Web pages for each to-
be-disambiguated word. Collected Web pages are
cleaned first, e.g., control characters and HTML tags
are removed. Then sentences are segmented simply
based on punctuation (e.g., ?, !, .). Sentences that
contain the instances of a specific word are extracted
and saved into a local repository.

2.2 Parsing

Sentences organized according to each word are
sent to a dependency parser, Minipar. Dependency
parsers have been widely used in Computational
Linguistics and natural language processing. An
evaluation with the SUSANNE corpus shows that
Minipar achieves 89% precision with respect to de-
pendency relations (Lin, 1998). After parsing sen-
tences are converted to parsing trees and saved in
files. Neither our simple sentence segmentation ap-
proach nor Minipar parsing is 100% accurate, so a
small number of invalid dependency relations may
exist in parsing trees. The impact of these erroneous
relations will be minimized in our WSD algorithm.
Comparing with tagging or chunking, parsing is rel-
atively expensive and time-consuming. However, in
our method parsing is not performed in real time
when we disambiguate words. Instead, sentences
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Figure 2: Merging two parsing trees. The number beside
each edge is the number of occurrences of this depen-
dency relation existing in the context knowledge base.

are parsed only once to extract dependency relations,
then these relations are merged and saved in a local
knowledge base for the following disambiguation.
Hence, parsing will not affect the speed of disam-
biguation at all.

2.3 Merging dependency relations

After parsing, dependency relations from different
sentences are merged and saved in a context knowl-
edge base. The merging process is straightforward.
A dependency relation includes one head word/node
and one dependent word/node. Nodes from different
dependency relations are merged into one as long as
they represent the same word. An example is shown
in Figure 2, which merges the following two sen-
tences:

“Computer programmers write software.”
“Many companies hire computer programmers.”
In a dependency relation “word1 → word2”,

word1 is the head word, and word2 is the depen-
dent word. After merging dependency relations, we
will obtain a weighted directed graph with a word
as a node, a dependency relation as an edge, and
the number of occurrences of dependency relation as
weight of an edge. This weight indicates the strength
of semantic relevancy of head word and dependent
word. This graph will be used in the following WSD

Figure 3: WSD Procedure

process as our context knowledge base. As a fully
automatic knowledge acquisition process, it is in-
evitable to include erroneous dependency relations
in the knowledge base. However, since in a large text
collection valid dependency relations tend to repeat
far more times than invalid ones, these erroneous
edges only have minimal impact on the disambigua-
tion quality as shown in our evaluation results.

3 WSD Algorithm

Our WSD approach is based on the following in-
sight:

If a word is semantically coherent with its context,
then at least one sense of this word is semantically
coherent with its context.

Assume that the text to be disambiguated is se-
mantically valid, if we replace a word with its
glosses one by one, the correct sense should be
the one that will maximize the semantic coherence
within this word’s context. Based on this idea we
set up our WSD procedure as shown in Figure 3.
First both the original sentence that contains the
to-be-disambiguated word and the glosses of to-be-
disambiguated word are parsed. Then the parsing
tree generated from each gloss is matched with the
parsing tree of original sentence one by one. The
gloss most semantically coherent with the original
sentence will be chosen as the correct sense. How
to measure the semantic coherence is critical. Our
idea is based on the following hypotheses (assume
word1 is the to-be-disambiguated word):

• In a sentence if word1 is dependent on word2,
and we denote the gloss of the correct sense of
word1 as g1i, then g1i contains the most se-
mantically coherent words that are dependent
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on word2;

• In a sentence if a set of words DEP1 are de-
pendent on word1, and we denote the gloss of
the correct sense of word1 as g1i, then g1i con-
tains the most semantically coherent words that
DEP1 are dependent on.

For example, we try to disambiguate “company”
in “A large company hires many computer program-
mers”, after parsing we obtain the dependency rela-
tions “hire → company” and “company → large”.
The correct sense for the word “company” should
be “an institution created to conduct business”. If
in the context knowledge base there exist the depen-
dency relations “hire → institution” or “institution
→ large”, then we believe that the gloss “an institu-
tion created to conduct business” is semantically co-
herent with its context - the original sentence. The
gloss with the highest semantic coherence will be
chosen as the correct sense. Obviously, the size of
context knowledge base has a positive impact on the
disambiguation quality, which is also verified in our
experiments (see Section 4.2). Figure 4 shows our
detailed WSD algorithm. Semantic coherence score
is generated by the function TreeMatching, and
we adopt a sentence as the context of a word.

We illustrate our WSD algorithm through an ex-
ample. Assume we try to disambiguate “company”
in the sentence “A large software company hires
many computer programmers”. “company” has 9
senses as a noun in WordNet 2.1. Let’s pick the fol-
lowing two glosses to go through our WSD process.

• an institution created to conduct business

• small military unit

First we parse the original sentence and two
glosses, and get three weighted parsing trees as
shown in Figure 5. All weights are assigned to
nodes/words in these parsing trees. In the parsing
tree of the original sentence the weight of a node is
reciprocal of the distance between this node and to-
be-disambiguated node “company” (line 12 in Fig-
ure 4). In the parsing tree of a gloss the weight
of a node is reciprocal of the level of this node in
the parsing tree (line 16 in Figure 4). Assume that
our context knowledge base contains relevant depen-
dency relations shown in Figure 6.

Input: Glosses from WordNet;
S: the sentence to be disambiguated;
G: the knowledge base generated in Section 2;

1. Input a sentence S, W = {w| w’s part of speech
is noun, verb, adjective, or adverb, w ∈ S};

2. Parse S with a dependency parser, generate
parsing tree TS ;

3. For each w ∈W {
4. Input all w’s glosses from WordNet;
5. For each gloss wi {
6. Parse wi, get a parsing tree Twi;
7. score = TreeMatching(TS , Twi);

}
8. If the highest score is larger than a preset

threshold, choose the sense with the
highest score as the correct sense;

9. Otherwise, choose the first sense.
10. }

TreeMatching(TS , Twi)
11. For each node nSi ∈ TS {
12. Assign weight wSi = 1

lSi
, lSi is the

length between nSi and wi in TS ;
13. }
14. For each node nwi ∈ Twi {
15. Load its dependent words Dwi from G;
16. Assign weight wwi = 1

lwi
, lwi is the

level number of nwi in Twi;
17. For each nSj {
18. If nSj ∈ Dwi

19. calculate connection strength sji
between nSj and nwi;

20. score = score + wSi × wwi × sji;
21. }
22. }
23. Return score;

Figure 4: WSD Algorithm

The weights in the context knowledge base are as-
signed to dependency relation edges. These weights
are normalized to [0, 1] based on the number of de-
pendency relation instances obtained in the acquisi-
tion and merging process. A large number of occur-
rences will be normalized to a high value (close to
1), and a small number of occurrences will be nor-
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Figure 5: Weighted parsing trees of the original sentence
and two glosses of “company”

Figure 6: A fragment of context knowledge base

malized to a low value (close to 0).
Now we load the dependent words of each word

in gloss 1 from the knowledge base (line 14, 15 in
Figure 4), and we get {small, large} for “institu-
tion” and {large, software} for “business”. In the
dependent words of “company”, “large” belongs to
the dependent word sets of “institution” and “busi-
ness”, and “software” belongs to the dependent word
set of “business”, so the coherence score of gloss 1
is calculated as (line 19, 20 in Figure 4):

1.0×1.0×0.7 + 1.0×0.25×0.8 + 1.0×0.25×0.9
= 1.125

We go through the same process with the second
gloss “small military unit”. “Large” is the only de-
pendent word of “company” appearing in the depen-
dent word set of “unit” in gloss 2, so the coherence
score of gloss 2 in the current context is:

1.0× 1.0× 0.8 = 0.8

After comparing the coherence scores of two
glosses, we choose sense 1 of “company” as the cor-
rect sense (line 9 in Figure 4). This example illus-
trates that a strong dependency relation between a
head word and a dependent word has a powerful dis-
ambiguation capability, and disambiguation quality
is also significantly affected by the quality of dictio-
nary definitions.

In Figure 4 the TreeMatching function matches
the dependent words of to-be-disambiguated word
(line 15 in Figure 4), and we call this matching strat-
egy as dependency matching. This strategy will not
work if a to-be-disambiguated word has no depen-
dent words at all, for example, when the word “com-
pany” in “Companies hire computer programmers”
has no dependent words. In this case, we developed
the second matching strategy, which is to match the
head words that the to-be-disambiguated word is de-
pendent on, such as matching “hire” (the head word
of “company”) in Figure 5(a). Using the dependency
relation “hire→ company”, we can correctly choose
sense 1 since there is no such relation as “hire →
unit” in the knowledge base. This strategy is also
helpful when disambiguating adjectives and adverbs
since they usually only depend on other words, and
rarely any other words are dependent on them. The
third matching strategy is to consider synonyms as a
match besides the exact matching words. Synonyms
can be obtained through the synsets in WordNet.
For example, when we disambiguate “company” in
“Big companies hire many computer programmers”,
“big” can be considered as a match for “large”. We
call this matching strategy as synonym matching.
The three matching strategies can be combined and
applied together, and in Section 4.1 we show the
experiment results of 5 different matching strategy
combinations.
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4 Experiments

We have evaluated our method using SemEval-2007
Task 07 (Coarse-grained English All-words Task)
test set (Navigli et al., 2007). The task organiz-
ers provide a coarse-grained sense inventory cre-
ated with SSI algorithm (Navigli and Velardi, 2005),
training data, and test data. Since our method
does not need any training or special tuning, neither
coarse-grained sense inventory nor training data was
used. The test data includes: a news article about
“homeless” (including totally 951 words, 368 words
are annotated and need to be disambiguated), a re-
view of the book “Feeding Frenzy” (including to-
tally 987 words, 379 words are annotated and need
to be disambiguated), an article about some trav-
eling experience in France (including totally 1311
words, 500 words are annotated and need to be dis-
ambiguated), computer programming(including to-
tally 1326 words, 677 words are annotated and need
to be disambiguated), and a biography of the painter
Masaccio (including totally 802 words, 345 words
are annotated and need to be disambiguated). Two
authors of (Navigli et al., 2007) independently and
manually annotated part of the test set (710 word
instances), and the pairwise agreement was 93.80%.
This inter-annotator agreement is usually considered
an upper-bound for WSD systems.

We followed the WSD process described in Sec-
tion 2 and 3 using the WordNet 2.1 sense repository
that is adopted by SemEval-2007 Task 07. All exper-
iments were performed on a Pentium 2.33GHz dual
core PC with 3GB memory. Among the 2269 to-
be-disambiguated words in the five test documents,
1112 words are unique and submitted to Google
API as queries. The retrieved Web pages were
cleaned, and 1945189 relevant sentences were ex-
tracted. On average 1749 sentences were obtained
for each word. The Web page retrieval step took 3
days, and the cleaning step took 2 days. Parsing was
very time-consuming and took 11 days. The merg-
ing step took 3 days. Disambiguation of 2269 words
in the 5 test articles took 4 hours. All these steps can
be parallelized and run on multiple computers, and
the whole process will be shortened accordingly.

The overall disambiguation results are shown in
Table 1. For comparison we also listed the re-
sults of the top three systems and three unsuper-

vised systems participating in SemEval-2007 Task
07. All of the top three systems (UoR-SSI, NUS-
PT, NUS-ML) are supervised systems, which used
annotated resources (e.g., SemCor, Defense Science
Organization Corpus) during the training phase. Our
fully unsupervised WSD system significantly out-
performs the three unsupervised systems (SUSSZ-
FR, SUSSX-C-WD, SUSSX-CR) and achieves per-
formance approaching the top-performing super-
vised WSD systems.

4.1 Impact of different matching strategies to
disambiguation quality

To test the effectiveness of different matching strate-
gies discussed in Section 3, we performed some ad-
ditional experiments. Table 2 shows the disambigua-
tion results by each individual document with the
following 5 matching strategies:

1. Dependency matching only.

2. Dependency and backward matching.

3. Dependency and synonym backward matching.

4. Dependency and synonym dependency match-
ing.

5. Dependency, backward, synonym backward,
and synonym dependency matching.

As expected combination of more matching
strategies results in higher disambiguation quality.
By analyzing the scoring details, we verified that
backward matching is especially useful to disam-
biguate adjectives and adverbs. Adjectives and ad-
verbs are often dependent words, so dependency
matching itself rarely finds any matched words.
Since synonyms are semantically equivalent, it is
reasonable that synonym matching can also improve
disambiguation performance.

4.2 Impact of knowledge base size to
disambiguation quality

To test the impact of knowledge base size to dis-
ambiguation quality we randomly selected 1339264
sentences (about two thirds of all sentences) from
our text collection and built a smaller knowledge
base. Table 3 shows the experiment results. Overall
disambiguation quality has dropped slightly, which

34



System Attempted Precision Recall F1
UoR-SSI 100.0 83.21 83.21 83.21
NUS-PT 100.0 82.50 82.50 82.50
NUS-ML 100.0 81.58 81.58 81.58
TreeMatch 100.0 73.65 73.65 73.65
SUSSZ-FR 72.8 71.73 52.23 60.44
SUSSX-C-WD 72.8 54.54 39.71 45.96
SUSSX-CR 72.8 54.30 39.53 45.75

Table 1: Overall disambiguation scores (Our system “TreeMatch” is marked in bold)

Matching d001 d002 d003 d004 d005 Overall
strategy P R P R P R P R P R P R
1 72.28 72.28 66.23 66.23 63.20 63.20 66.47 66.47 56.52 56.52 65.14 65.14
2 70.65 70.65 70.98 70.98 65.20 65.20 72.23 72.23 58.84 58.84 68.18 68.18
3 79.89 79.89 75.20 75.20 69.00 69.00 71.94 71.94 64.64 64.64 72.01 72.01
4 80.71 80.71 78.10 78.10 72.80 72.80 71.05 71.05 67.54 67.54 73.65 73.65
5 80.16 80.16 78.10 78.10 69.40 69.40 72.82 72.82 66.09 66.09 73.12 73.12

Table 2: Disambiguation scores by article with 5 matching strategies

shows a positive correlation between the amount of
context knowledge and disambiguation quality. It is
reasonable to assume that our disambiguation per-
formance can be improved further by collecting and
incorporating more context knowledge.

Matching Overall
strategy P R

1 65.36 65.36
2 67.78 67.78
3 68.09 68.09
4 70.69 70.69
5 67.78 67.78

Table 3: Disambiguation scores by article with a smaller
knowledge base

5 Conclusion and Future Work

Broad coverage and disambiguation quality are crit-
ical for WSD techniques to be adopted in prac-
tice. This paper proposed a fully unsupervised
WSD method. We have evaluated our approach with
SemEval-2007 Task 7 (Coarse-grained English All-
words Task) data set, and we achieved F-scores ap-
proaching the top performing supervised WSD sys-
tems. By using widely available unannotated text
and a fully unsupervised disambiguation approach,

our method may provide a viable solution to the
problem of WSD. The future work includes:

1. Continue to build the knowledge base, enlarge
the coverage and improve the system perfor-
mance. The experiment results in Section 4.2
clearly show that more word instances can im-
prove the disambiguation accuracy and recall
scores;

2. WSD is often an unconscious process for hu-
man beings. It is unlikely that a reader exam-
ines all surrounding words when determining
the sense of a word, which calls for a smarter
and more selective matching strategy than what
we have tried in Section 4.1;

3. Test our WSD system on fine-grained SemEval
2007 WSD task 17. Although we only evalu-
ated our approach with coarse-grained senses,
our method can be directly applied to fine-
grained WSD without any modifications.
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Abstract

We present a method for performing machine
transliteration without any parallel resources.
We frame the transliteration task as a deci-
pherment problem and show that it is possi-
ble to learn cross-language phoneme mapping
tables using only monolingual resources. We
compare various methods and evaluate their
accuracies on a standard name transliteration
task.

1 Introduction

Transliteration refers to the transport of names and
terms between languages with different writing sys-
tems and phoneme inventories. Recently there has
been a large amount of interesting work in this
area, and the literature has outgrown being citable
in its entirety. Much of this work focuses on back-
transliteration, which tries to restore a name or
term that has been transported into a foreign lan-
guage. Here, there is often only one correct target
spelling—for example, given jyon.kairu (the
name of a U.S. Senator transported to Japanese), we
must output “Jon Kyl”, not “John Kyre” or any other
variation.

There are many techniques for transliteration and
back-transliteration, and they vary along a number
of dimensions:

• phoneme substitution vs. character substitution

• heuristic vs. generative vs. discriminative mod-
els

• manual vs. automatic knowledge acquisition

We explore the third dimension, where we see
several techniques in use:

• Manually-constructed transliteration models,
e.g., (Hermjakob et al., 2008).

• Models constructed from bilingual dictionaries
of terms and names, e.g., (Knight and Graehl,
1998; Huang et al., 2004; Haizhou et al., 2004;
Zelenko and Aone, 2006; Yoon et al., 2007;
Li et al., 2007; Karimi et al., 2007; Sherif
and Kondrak, 2007b; Goldwasser and Roth,
2008b).

• Extraction of parallel examples from bilin-
gual corpora, using bootstrap dictionaries e.g.,
(Sherif and Kondrak, 2007a; Goldwasser and
Roth, 2008a).

• Extraction of parallel examples from compara-
ble corpora, using bootstrap dictionaries, and
temporal and word co-occurrence, e.g., (Sproat
et al., 2006; Klementiev and Roth, 2008).

• Extraction of parallel examples from web
queries, using bootstrap dictionaries, e.g., (Na-
gata et al., 2001; Oh and Isahara, 2006; Kuo et
al., 2006; Wu and Chang, 2007).

• Comparing terms from different languages in
phonetic space, e.g., (Tao et al., 2006; Goldberg
and Elhadad, 2008).

In this paper, we investigate methods to acquire
transliteration mappings from non-parallel sources.
We are inspired by previous work in unsupervised
learning for natural language, e.g. (Yarowsky, 1995;
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WFSA - A WFST - B

English word 

sequence
English sound 

sequence

( SPENCER ABRAHAM )
( S P EH N S ER  

EY B R AH HH AE M )

WFST - C WFST - D

Japanese sound 

sequence

( ス ペ ン サ ー ・ エ ー ブ ラ ハ ム )

Japanese katakana 

sequence

( S U P E N S A A  

E E B U R A H A M U )

Figure 1: Model used for back-transliteration of Japanese katakana names and terms into English. The model employs
a four-stage cascade of weighted finite-state transducers (Knight and Graehl, 1998).

Goldwater and Griffiths, 2007), and we are also in-
spired by cryptanalysis—we view a corpus of for-
eign terms as a code for English, and we attempt to
break the code.

2 Background

We follow (Knight and Graehl, 1998) in tackling
back-transliteration of Japanese katakana expres-
sions into English. Knight and Graehl (1998) devel-
oped a four-stage cascade of finite-state transducers,
shown in Figure 1.

• WFSA A - produces an English word sequence
w with probability P(w) (based on a unigram
word model).

• WFST B - generates an English phoneme se-
quence e corresponding to w with probability
P(e|w).

• WFST C - transforms the English phoneme se-
quence into a Japanese phoneme sequence j ac-
cording to a model P(j|e).

• WFST D - writes out the Japanese phoneme
sequence into Japanese katakana characters ac-
cording to a model P(k|j).

Using the cascade in the reverse (noisy-channel)
direction, they are able to translate new katakana
names and terms into English. They report 36% er-
ror in translating 100 U.S. Senators’ names, and they
report exceeding human transliteration performance
in the presence of optical scanning noise.

The only transducer that requires parallel training
data is WFST C. Knight and Graehl (1998) take sev-
eral thousand phoneme string pairs, automatically
align them with the EM algorithm (Dempster et
al., 1977), and construct WFST C from the aligned
phoneme pieces.

We re-implement their basic method by instanti-
ating a densely-connected version of WFST C with

all 1-to-1 and 1-to-2 phoneme connections between
English and Japanese. Phoneme bigrams that occur
fewer than 10 times in a Japanese corpus are omit-
ted, and we omit 1-to-3 connections. This initial
WFST C model has 15320 uniformly weighted pa-
rameters. We then train the model on 3343 phoneme
string pairs from a bilingual dictionary, using the
EM algorithm. EM immediately reduces the con-
nections in the model to those actually observed in
the parallel data, and after 14 iterations, there are
only 188 connections left with P(j|e) ≥ 0.01. Fig-
ure 2 shows the phonemic substitution table learnt
from parallel training.

We use this trained WFST C model and apply it
to the U.S. Senator name transliteration task (which
we update to the 2008 roster). We obtain 40% er-
ror, roughly matching the performance observed in
(Knight and Graehl, 1998).

3 Task and Data

The task of this paper is to learn the mappings in
Figure 2, but without parallel data, and to test those
mappings in end-to-end transliteration. We imagine
our problem as one faced by monolingual English
speaker wandering around Japan, reading a multi-
tude of katakana signs, listening to people speak
Japanese, and eventually deciphering those signs
into English. To mis-quote Warren Weaver:

“When I look at a corpus of Japanese
katakana, I say to myself, this is really
written in English, but it has been coded
in some strange symbols. I will now pro-
ceed to decode.”

Our larger motivation is to move toward
easily-built transliteration systems for all language
pairs, regardless of parallel resources. While
Japanese/English transliteration has its own partic-
ular features, we believe it is a reasonable starting
point.
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e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e)

AA o 0.49 AY a i 0.84 EH e 0.94 HH h 0.95 L r 0.62 OY o i 0.89 SH sh y 0.33 V b 0.75
a 0.46 i 0.09 a 0.03 w 0.02 r u 0.37 o e 0.04 sh 0.31 b u 0.17
o o 0.02 a 0.03 h a 0.02 o 0.04 y u 0.17 w 0.03
a a 0.02 i y 0.01 i 0.04 ssh y 0.12 a 0.02

a y 0.01 sh i 0.04
ssh 0.02
e 0.01

AE a 0.93 B b 0.82 ER a a 0.8 IH i 0.89 M m 0.68 P p 0.63 T t 0.43 W w 0.73
a ssh 0.02 b u 0.15 a 0.08 e 0.05 m u 0.22 p u 0.16 t o 0.25 u 0.17
a n 0.02 a r 0.03 i n 0.01 n 0.08 pp u 0.13 tt o 0.17 o 0.04

r u 0.02 a 0.01 pp 0.06 ts 0.04 i 0.02
o r 0.02 tt 0.03
e r 0.02 u 0.02

ts u 0.02
ch 0.02

AH a 0.6 CH tch i 0.27 EY e e 0.58 IY i i 0.58 N n 0.96 PAUSE pause 1.0 TH s u 0.48 Y y 0.7
o 0.13 ch 0.24 e 0.15 i 0.3 nn 0.02 s 0.22 i 0.26
e 0.11 ch i 0.23 e i 0.12 e 0.07 sh 0.16 e 0.02
i 0.07 ch y 0.2 a 0.1 e e 0.03 t o 0.04 a 0.02
u 0.06 tch y 0.02 a i 0.03 ch 0.04

tch 0.02 t e 0.02
ssh y 0.01 t 0.02
k 0.01 a 0.02

AO o 0.6 D d 0.54 F h 0.58 JH j y 0.35 NG n 0.62 R r 0.61 UH u 0.79 Z z 0.27
o o 0.27 d o 0.27 h u 0.35 j 0.24 g u 0.22 a 0.27 u u 0.09 z u 0.25
a 0.05 dd o 0.06 hh 0.04 j i 0.21 n g 0.09 o 0.07 u a 0.04 u 0.16
o n 0.03 z 0.02 hh u 0.02 jj i 0.14 i 0.04 r u 0.03 dd 0.03 s u 0.07
a u 0.03 j 0.02 z 0.04 u 0.01 a a 0.01 u ssh 0.02 j 0.06
u 0.01 u 0.01 o 0.01 o 0.02 a 0.06

a 0.01 n 0.03
i 0.03
s 0.02
o 0.02

AW a u 0.69 DH z 0.87 G g 0.66 K k 0.53 OW o 0.57 S s u 0.43 UW u u 0.67 ZH j y 0.43
a w 0.15 z u 0.08 g u 0.19 k u 0.2 o o 0.39 s 0.37 u 0.29 j i 0.29
a o 0.06 a z 0.04 gg u 0.1 kk u 0.16 o u 0.02 sh 0.08 y u 0.02 j 0.29
a 0.04 g y 0.03 kk 0.05 u 0.05
u u 0.02 gg 0.01 k y 0.02 ss 0.02
o o 0.02 g a 0.01 k i 0.01 ssh 0.01
o 0.02

Figure 2: Phonemic substitution table learnt from 3343 parallel English/Japanese phoneme string pairs. English
phonemes are in uppercase, Japanese in lowercase. Mappings with P(j|e) > 0.01 are shown.

A A CH I D O CH E N J I N E B A D A W A K O B I A
A A K U P U R A Z A CH E S : W A N K A PP U
A A N D O : O P U T I K U S U W A N T E N P O
A A T I S U T O D E K O R A T I B U : W A S E R I N
A A T O S E R I N A P I S U T O N D E T O M O R U T O P I I T A A Y U N I O N
A I A N B I R U E P I G U R A M U P I KK A A Y U N I TT O SH I S U T E M U
A I D I I D O E R A N D O P I N G U U Y U U
A I K E N B E R I I : P I P E R A J I N A M I D O :
A J I A K A PP U J Y A I A N TS U P I S A :
A J I T O J Y A Z U P I U R A Z E N E R A R U E A K O N
A K A SH I A K O O S U : P O I N T O Z E R O
A K U A M Y U U Z E U M U : Z O N B I I Z U

: : : :
: : : :

Figure 3: Some Japanese phoneme sequences generated from the monolingual katakana corpus using WFST D.

Our monolingual resources are:

• 43717 unique Japanese katakana sequences
collected from web newspaper data. We split
multi-word katakana phrases on the center-dot
(“·”) character, and select a final corpus of
9350 unique sequences. We add monolingual
Japanese versions of the 2008 U.S. Senate ros-
ter.1

• The CMU pronunciation dictionary of English,
1We use “open” EM testing, in which unlabeled test data

is allowed to be part of unsupervised training. However, no
parallel data is allowed.

with 112,151 entries.

• The English gigaword corpus. Knight and
Graehl (1998) already use frequently-occurring
capitalized words to build the WFSA A compo-
nent of their four-stage cascade.

We seek to use our English knowledge (derived
from 2 and 3) to decipher the Japanese katakana cor-
pus (1) into English. Figure 3 shows a portion of the
Japanese corpus, which we transform into Japanese
phoneme sequences using the monolingual resource
of WFST D. We note that the Japanese phoneme in-
ventory contains 39 unique (“ciphertext”) symbols,
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compared to the 40 English (“plaintext”) phonemes.
Our goal is to compare and evaluate the WFST C

model learnt under two different scenarios—(a) us-
ing parallel data, and (b) using monolingual data.
For each experiment, we train only the WFST C
model and then apply it to the name translitera-
tion task—decoding 100 U.S. Senator names from
Japanese to English using the automata shown in
Figure 1. For all experiments, we keep the rest of
the models in the cascade (WFSA A, WFST B, and
WFST D) unchanged. We evaluate on whole-name
error-rate (maximum of 100/100) as well as normal-
ized word edit distance, which gives partial credit
for getting the first or last name correct.

4 Acquiring Phoneme Mappings from
Non-Parallel Data

Our main data consists of 9350 unique Japanese
phoneme sequences, which we can consider as a sin-
gle long sequence j. As suggested by Knight et
al (2006), we explain the existence of j as the re-
sult of someone initially producing a long English
phoneme sequence e, according to P(e), then trans-
forming it into j, according to P(j|e). The probabil-
ity of our observed data P(j) can be written as:

P (j) =
∑

e

P (e) · P (j|e)

We take P(e) to be some fixed model of mono-
lingual English phoneme production, represented
as a weighted finite-state acceptor (WFSA). P(j|e)
is implemented as the initial, uniformly-weighted
WFST C described in Section 2, with 15320 phone-
mic connections.

We next maximize P(j) by manipulating the sub-
stitution table P(j|e), aiming to produce a result
such as shown in Figure 2. We accomplish this by
composing the English phoneme model P(e) WFSA
with the P(j|e) transducer. We then use the EM al-
gorithm to train just the P(j|e) parameters (inside
the composition that predicts j), and guess the val-
ues for the individual phonemic substitutions that
maximize the likelihood of the observed data P(j).2

2In our experiments, we use the Carmel finite-state trans-
ducer package (Graehl, 1997), a toolkit with an algorithm for
EM training of weighted finite-state transducers.

We allow EM to run until the P(j) likelihood ra-
tio between subsequent training iterations reaches
0.9999, and we terminate early if 200 iterations are
reached.

Finally, we decode our test set of U.S. Senator
names. Following Knight et al (2006), we stretch
out the P(j|e) model probabilities after decipher-
ment training and prior to decoding our test set, by
cubing their values.

Decipherment under the conditions of translit-
eration is substantially more difficult than solv-
ing letter-substitution ciphers (Knight et al., 2006;
Ravi and Knight, 2008; Ravi and Knight, 2009) or
phoneme-substitution ciphers (Knight and Yamada,
1999). This is because the target table contains sig-
nificant non-determinism, and because each symbol
has multiple possible fertilities, which introduces
uncertainty about the length of the target string.

4.1 Baseline P(e) Model

Clearly, we can design P(e) in a number of ways. We
might expect that the more the system knows about
English, the better it will be able to decipher the
Japanese. Our baseline P(e) is a 2-gram phoneme
model trained on phoneme sequences from the CMU
dictionary. The second row (2a) in Figure 4 shows
results when we decipher with this fixed P(e). This
approach performs poorly and gets all the Senator
names wrong.

4.2 Consonant Parity

When training under non-parallel conditions, we
find that we would like to keep our WFST C model
small, rather than instantiating a fully-connected
model. In the supervised case, parallel training al-
lows the trained model to retain only those con-
nections which were observed from the data, and
this helps eliminate many bad connections from the
model. In the unsupervised case, there is no parallel
data available to help us make the right choices.

We therefore use prior knowledge and place a
consonant-parity constraint on the WFST C model.
Prior to EM training, we throw out any mapping
from the P(j|e) substitution model that does not
have the same number of English and Japanese con-
sonant phonemes. This is a pattern that we observe
across a range of transliteration tasks. Here are ex-
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Phonemic Substitution Model Name Transliteration Error
whole-name error norm. edit distance

1 e → j = { 1-to-1, 1-to-2 } 40 25.9
+ EM aligned with parallel data

2a e → j = { 1-to-1, 1-to-2 } 100 100.0
+ decipherment training with 2-gram English P(e)

2b e → j = { 1-to-1, 1-to-2 } 98 89.8
+ decipherment training with 2-gram English P(e)
+ consonant-parity

2c e → j = { 1-to-1, 1-to-2 } 94 73.6
+ decipherment training with 3-gram English P(e)
+ consonant-parity

2d e → j = { 1-to-1, 1-to-2 } 77 57.2
+ decipherment training with a word-based English model
+ consonant-parity

2e e → j = { 1-to-1, 1-to-2 } 73 54.2
+ decipherment training with a word-based English model
+ consonant-parity
+ initialize mappings having consonant matches with higher proba-
bility weights

Figure 4: Results on name transliteration obtained when using the phonemic substitution model trained under different
scenarios—(1) parallel training data, (2a-e) using only monolingual resources.

amples of mappings where consonant parity is vio-
lated:

K => a N => e e
EH => s a EY => n

Modifying the WFST C in this way leads to bet-
ter decipherment tables and slightly better results
for the U.S. Senator task. Normalized edit distance
drops from 100 to just under 90 (row 2b in Figure 4).

4.3 Better English Models

Row 2c in Figure 4 shows decipherment results
when we move to a 3-gram English phoneme model
for P(e). We notice considerable improvements in
accuracy. On the U.S. Senator task, normalized edit
distance drops from 89.8 to 73.6, and whole-name
error decreases from 98 to 94.

When we analyze the results from deciphering
with a 3-gram P(e) model, we find that many of the
Japanese phoneme test sequences are decoded into
English phoneme sequences (such as “IH K R IH
N” and “AE G M AH N”) that are not valid words.
This happens because the models we used for de-
cipherment so far have no knowledge of what con-
stitutes a globally valid English sequence. To help
the phonemic substitution model learn this infor-
mation automatically, we build a word-based P(e)
from English phoneme sequences in the CMU dic-
tionary and use this model for decipherment train-

ing. The word-based model produces complete En-
glish phoneme sequences corresponding to 76,152
actual English words from the CMU dictionary.
The English phoneme sequences are represented as
paths through a WFSA, and all paths are weighted
equally. We represent the word-based model in com-
pact form, using determinization and minimization
techniques applicable to weighted finite-state au-
tomata. This allows us to perform efficient EM train-
ing on the cascade of P(e) and P(j|e) models. Under
this scheme, English phoneme sequences resulting
from decipherment are always analyzable into actual
words.

Row 2d in Figure 4 shows the results we ob-
tain when training our WFST C with a word-based
English phoneme model. Using the word-based
model produces the best result so far on the phone-
mic substitution task with non-parallel data. On the
U.S. Senator task, word-based decipherment outper-
forms the other methods by a large margin. It gets
23 out of 100 Senator names exactly right, with a
much lower normalized edit distance (57.2). We
have managed to achieve this performance using
only monolingual data. This also puts us within
reach of the parallel-trained system’s performance
(40% whole-name errors, and 25.9 word edit dis-
tance error) without using a single English/Japanese
pair for training.

To summarize, the quality of the English phoneme
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e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e) e j P(j|e)

AA a 0.37 AY a i 0.36 EH e 0.37 HH h 0.45 L r 0.3 OY a 0.27 SH sh y 0.22 V b 0.34
o 0.25 o o 0.13 a 0.24 s 0.12 n 0.19 i 0.16 m 0.11 k 0.14
i 0.15 e 0.12 o 0.12 k 0.09 r u 0.15 y u 0.1 r 0.1 m 0.13
u 0.08 i 0.11 i 0.12 b 0.08 r i 0.04 o i 0.1 s 0.06 s 0.07
e 0.07 a 0.11 u 0.06 m 0.07 t 0.03 y a 0.09 p 0.06 d 0.07
o o 0.03 u u 0.05 o o 0.04 w 0.03 m u 0.02 y o 0.08 s a 0.05 r 0.04
y a 0.01 y u 0.02 y u 0.01 p 0.03 m 0.02 e 0.08 h 0.05 t 0.03
a a 0.01 u 0.02 a i 0.01 g 0.03 w a 0.01 o 0.06 b 0.05 h 0.02

o 0.02 k y 0.02 t a 0.01 o o 0.02 t 0.04 sh 0.01
e e 0.02 d 0.02 r a 0.01 e i 0.02 k 0.04 n 0.01

AE a 0.52 B b 0.41 ER a a 0.47 IH i 0.36 M m 0.3 P p 0.18 T t 0.2 W w 0.23
i 0.19 p 0.12 a 0.17 e 0.25 n 0.08 p u 0.08 t o 0.16 r 0.2
e 0.11 k 0.09 u 0.08 a 0.15 k 0.08 n 0.05 t a 0.05 m 0.13
o 0.08 m 0.07 o 0.07 u 0.09 r 0.07 k 0.05 n 0.04 s 0.08
u 0.03 s 0.04 e 0.04 o 0.09 s 0.06 sh i 0.04 k u 0.03 k 0.07
u u 0.02 g 0.04 o o 0.03 o o 0.01 h 0.05 k u 0.04 k 0.03 h 0.06
o o 0.02 t 0.03 i i 0.03 t 0.04 s u 0.03 t e 0.02 b 0.06

z 0.02 y u 0.02 g 0.04 p a 0.03 s 0.02 t 0.04
d 0.02 u u 0.02 b 0.04 t 0.02 r 0.02 p 0.04
ch y 0.02 i 0.02 m u 0.03 m a 0.02 g u 0.02 d 0.02

AH a 0.31 CH g 0.12 EY e e 0.3 IY i 0.25 N n 0.56 PAUSE pause 1.0 TH k 0.21 Y s 0.25
o 0.23 k 0.11 a 0.22 i i 0.21 r u 0.09 p u 0.11 k 0.18
i 0.17 b 0.09 i 0.11 a 0.15 s u 0.04 k u 0.1 m 0.07
e 0.12 sh 0.07 u 0.09 a a 0.12 m u 0.02 d 0.08 g 0.06
u 0.1 s 0.07 o 0.06 u 0.07 kk u 0.02 h u 0.07 p 0.05
e e 0.02 r 0.07 e 0.06 o 0.05 k u 0.02 s u 0.05 b 0.05
o o 0.01 ch y 0.07 o o 0.05 o o 0.02 h u 0.02 b u 0.04 r 0.04
a a 0.01 p 0.06 e i 0.04 i a 0.02 t o 0.01 k o 0.03 d 0.04

m 0.06 i i 0.02 e e 0.02 pp u 0.01 g a 0.03 u r 0.03
ch 0.06 u u 0.01 e 0.02 b i 0.01 s a 0.02 n y 0.03

AO o 0.29 D d 0.16 F h 0.18 JH b 0.13 NG tt o 0.21 R r 0.53 UH a 0.24 Z t o 0.14
a 0.26 d o 0.15 h u 0.14 k 0.1 r u 0.17 n 0.07 o 0.14 z u 0.11
e 0.14 n 0.05 b 0.09 j y 0.1 n 0.14 u r 0.05 e 0.11 r u 0.11
o o 0.12 t o 0.03 sh i 0.07 s 0.08 kk u 0.1 r i 0.03 y u 0.1 s u 0.1
i 0.08 sh i 0.03 p 0.07 m 0.08 s u 0.07 r u 0.02 a i 0.09 g u 0.09
u 0.05 k u 0.03 m 0.06 t 0.07 m u 0.06 d 0.02 i 0.08 m u 0.07
y u 0.03 k 0.03 r 0.04 j 0.07 dd o 0.04 t 0.01 u u 0.07 n 0.06
e e 0.01 g u 0.03 s 0.03 h 0.07 tch i 0.03 s 0.01 o o 0.07 d o 0.06

b 0.03 h a 0.03 sh 0.06 pp u 0.03 m 0.01 a a 0.03 j i 0.02
s 0.02 b u 0.02 d 0.05 jj i 0.03 k 0.01 u 0.02 ch i 0.02

AW o o 0.2 DH h 0.13 G g u 0.13 K k 0.17 OW a 0.3 S s u 0.4 UW u 0.39 ZH m 0.17
a u 0.19 r 0.12 g 0.11 n 0.1 o 0.25 n 0.11 a 0.15 p 0.16
a 0.18 b 0.09 k u 0.08 k u 0.1 o o 0.12 r u 0.05 o 0.13 t 0.15
a i 0.11 w 0.08 b u 0.06 kk u 0.05 u 0.09 t o 0.03 u u 0.12 h 0.13
a a 0.11 t 0.07 k 0.04 t o 0.03 i 0.07 k u 0.03 i 0.04 d 0.1
e 0.05 p 0.07 b 0.04 s u 0.03 y a 0.04 sh i 0.02 y u 0.03 s 0.08
o 0.04 g 0.06 t o 0.03 sh i 0.02 e 0.04 r i 0.02 i i 0.03 b 0.07
i 0.04 j y 0.05 t 0.03 r 0.02 u u 0.02 m u 0.02 e 0.03 r 0.05
i y 0.02 d 0.05 h a 0.03 k o 0.02 a i 0.02 h u 0.02 o o 0.02 j y 0.03
e a 0.01 k 0.03 d 0.03 k a 0.02 i i 0.01 ch i 0.02 e e 0.02 k 0.02

Figure 5: Phonemic substitution table learnt from non-parallel corpora. For each English phoneme, only the top ten
mappings with P(j|e) > 0.01 are shown.

model used in decipherment training has a large ef-
fect on the learnt P(j|e) phonemic substitution ta-
ble (i.e., probabilities for the various phoneme map-
pings within the WFST C model), which in turn af-
fects the quality of the back-transliterated English
output produced when decoding Japanese.

Figure 5 shows the phonemic substitution table
learnt using word-based decipherment. The map-
pings are reasonable, given the lack of parallel data.
They are not entirely correct—for example, the map-
ping “S→ s u” is there, but “S→ s” is missing.

Sample end-to-end transliterations are illustrated
in Figure 6. The figure shows how the transliteration
results from non-parallel training improve steadily
as we use stronger decipherment techniques. We
note that in one case (LAUTENBERG), the deci-
pherment mapping table leads to a correct answer

where the mapping table derived from parallel data
does not. Because parallel data is limited, it may not
contain all of the necessary mappings.

4.4 Size of Japanese Training Data

Monolingual corpora are more easily available than
parallel corpora, so we can use increasing amounts
of monolingual Japanese training data during de-
cipherment training. The table below shows that
using more Japanese training data produces bet-
ter transliteration results when deciphering with the
word-based English model.

Japanese training data Error on name transliteration task
(# of phoneme sequences) whole-name error normalized word

edit distance
4,674 87 69.7
9,350 77 57.2
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Figure 6: Results for end-to-end name transliteration. This figure shows the correct answer, the answer obtained
by training mappings on parallel data (Knight and Graehl, 1998), and various answers obtained by deciphering non-
parallel data. Method 1 uses a 2-gram P(e), Method 2 uses a 3-gram P(e), and Method 3 uses a word-based P(e).

4.5 P(j|e) Initialization

So far, the P(j|e) connections within the WFST C
model were initialized with uniform weights prior
to EM training. It is a known fact that the EM al-
gorithm does not necessarily find a global minimum
for the given objective function. If the search space
is bumpy and non-convex as is the case in our prob-
lem, EM can get stuck in any of the local minima
depending on what weights were used to initialize
the search. Different sets of initialization weights
can lead to different convergence points during EM
training, or in other words, depending on how the
P(j|e) probabilities are initialized, the final P(j|e)
substitution table learnt by EM can vary.

We can use some prior knowledge to initialize the
probability weights in our WFST C model, so as to
give EM a good starting point to work with. In-
stead of using uniform weights, in the P(j|e) model
we set higher weights for the mappings where En-
glish and Japanese sounds share common consonant
phonemes.

For example, mappings such as:

N => n N => a n
D => d D => d o

are weighted X (a constant) times higher than
other mappings such as:

N => b N => r
D => B EY => a a

in the P(j|e) model. In our experiments, we set
the value X to 100.

Initializing the WFST C in this way results in EM
learning better substitution tables and yields slightly
better results for the Senator task. Normalized edit
distance drops from 57.2 to 54.2, and the whole-
name error is also reduced from 77% to 73% (row
2e in Figure 4).

4.6 Size of English Training Data

We saw earlier (in Section 4.4) that using more
monolingual Japanese training data yields improve-
ments in decipherment results. Similarly, we hy-
pothesize that using more monolingual English data
can drive the decipherment towards better translit-
eration results. On the English side, we build dif-
ferent word-based P(e) models, each trained on dif-
ferent amounts of data (English phoneme sequences
from the CMU dictionary). The table below shows
that deciphering with a word-based English model
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built from more data produces better transliteration
results.

English training data Error on name transliteration task
(# of phoneme sequences) whole-name error normalized word

edit distance
76,152 73 54.2
97,912 66 49.3

This yields the best transliteration results on the
Senator task with non-parallel data, getting 34 out
of 100 Senator names exactly right.

4.7 Re-ranking Results Using the Web

It is possible to improve our results on the U.S. Sen-
ator task further using external monolingual re-
sources. Web counts are frequently used to auto-
matically re-rank candidate lists for various NLP
tasks (Al-Onaizan and Knight, 2002). We extract
the top 10 English candidates produced by our word-
based decipherment method for each Japanese test
name. Using a search engine, we query the entire
English name (first and last name) corresponding to
each candidate, and collect search result counts. We
then re-rank the candidates using the collected Web
counts and pick the most frequent candidate as our
choice.

For example, France Murkowski gets only 1 hit
on Google, whereas Frank Murkowski gets 135,000
hits. Re-ranking the results in this manner lowers
the whole-name error on the Senator task from 66%
to 61%, and also lowers the normalized edit dis-
tance from 49.3 to 48.8. However, we do note that
re-ranking using Web counts produces similar im-
provements in the case of parallel training as well
and lowers the whole-name error from 40% to 24%.

So, the re-ranking idea, which is simple and re-
quires only monolingual resources, seems like a nice
strategy to apply at the end of transliteration exper-
iments (during decoding), and can result in further
gains on the final transliteration performance.

5 Comparable versus Non-Parallel
Corpora

We also present decipherment results when using
comparable corpora for training the WFST C model.
We use English and Japanese phoneme sequences
derived from a parallel corpus containing 2,683
phoneme sequence pairs to construct comparable
corpora (such that for each Japanese phoneme se-

quence, the correct back-transliterated phoneme se-
quence is present somewhere in the English data)
and apply the same decipherment strategy using a
word-based English model. The table below com-
pares the transliteration results for the U.S. Sena-
tor task, when using comparable versus non-parallel
data for decipherment training. While training on
comparable corpora does have benefits and reduces
the whole-name error to 59% on the Senator task, it
is encouraging to see that our best decipherment re-
sults using only non-parallel data comes close (66%
error).

English/Japanese Corpora Error on name transliteration task
(# of phoneme sequences) whole-name error normalized word

edit distance
Comparable Corpora 59 41.8
(English = 2,608
Japanese = 2,455)
Non-Parallel Corpora 66 49.3
(English = 98,000
Japanese = 9,350)

6 Conclusion

We have presented a method for attacking machine
transliteration problems without parallel data. We
developed phonemic substitution tables trained us-
ing only monolingual resources and demonstrated
their performance in an end-to-end name translitera-
tion task. We showed that consistent improvements
in transliteration performance are possible with the
use of strong decipherment techniques, and our best
system achieves significant improvements over the
baseline system. In future work, we would like to
develop more powerful decipherment models and
techniques, and we would like to harness the infor-
mation available from a wide variety of monolingual
resources, and use it to further narrow the gap be-
tween parallel-trained and non-parallel-trained ap-
proaches.
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Abstract

In this paper we explore a learning-based ap-
proach to the problem of predicting language
impairment in children. We analyzed sponta-
neous narratives of children and extracted fea-
tures measuring different aspects of language
including morphology, speech fluency, lan-
guage productivity and vocabulary. Then, we
evaluated a learning-based approach and com-
pared its predictive accuracy against a method
based on language models. Empirical re-
sults on monolingual English-speaking chil-
dren and bilingual Spanish-English speaking
children show the learning-based approach is
a promising direction for automatic language
assessment.

1 Introduction

The question of how best to identify children with
language disorders is a topic of ongoing debate.
One common assessment approach is based on cut-
off scores from standardized, norm-referenced lan-
guage assessment tasks. Children scoring at the
lower end of the distribution, typically more than
1.25 or 1.5 Standard Deviations (SD) below the
mean, are identified as having language impair-
ment (Tomblin et al., 1997). This cutoff-based
approach has several well-documented weaknesses
that may result in both over- and under-identification
of children as language impaired (Plante and Vance,
1994). Recent studies have suggested considerable
overlap between children with language impairment
and their typically developing cohorts on many of
these tasks (e.g., (Peña et al., 2006b; Spaulding et

al., 2006)). In addition, scores and cutoffs on stan-
dardized tests depend on the distribution of scores
from the particular samples used in normalizing the
measure. Thus, the validity of the measure for chil-
dren whose demographic and other socioeconomic
characteristics are not well represented in the test’s
normative sample is a serious concern. Finally, most
norm-referenced tests of language ability rely heav-
ily on exposure to mainstream language and expe-
riences, and have been found to be biased against
children from families with low parental education
and socioeconomic status, as well as children from
different ethnic backgrounds (Campbell et al., 1997;
Dollaghan and Campbell, 1998).

This paper aims to develop a reliable and auto-
matic method for identifying the language status of
children. We propose the use of different lexico-
syntactic features, typically used in computational
linguistics, in combination with features inspired
by current assessment practices in the field of lan-
guage disorders to train Machine Learning (ML) al-
gorithms. The two main contributions of this pa-
per are: 1) It is one step towards developing a re-
liable and automatic approach for language status
prediction in English-speaking children; 2) It pro-
vides evidence showing that the same approach can
be adapted to predict language status in Spanish-
English bilingual children.

2 Related Work

2.1 Monolingual English-Speaking Children

Several hypotheses exist that try to explain the gram-
matical deficits of children with Language Impair-
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ment (LI). Young children normally go through a
stage where they use non-finite forms of verbs in
grammatical contexts where finite forms are re-
quired (Wexler, 1994). This is referred as the op-
tional infinitive stage. The Extended Optional Infini-
tive (EOI) theory (Rice and Wexler, 1996) suggests
that children with LI exhibit the use of a “young”
grammar for an extended period of time, where
tense, person, and number agreement markers are
omitted.

In contrast to the EOI theory, the surface account
theory (Leonard et al., 1997) assumes that chil-
dren with LI have reduced processing capabilities.
This deficit affects the perception of low stress mor-
phemes, such as -ed, -s, be and do, resulting in an
inconsistent use of these verb morphemes.

Spontaneous narratives are considered as one of
the most ecologically valid ways to measure com-
municative competence (Botting, 2002). They rep-
resent various aspects involved in children’s every-
day communication. Typical measures for sponta-
neous language samples include Mean Length of
Utterance (MLU) in words, Number of Different
Words (NDW), and errors in grammatical morphol-
ogy. Assessment approaches compare children’s
performance on these measures against expected
performance. As mentioned in Section 1, these cut-
off based methods raise questions concerning accu-
racy and bias. Manually analyzing the narratives is
also a very time consuming task. After transcribing
the sample, clinicians need to code for the differ-
ent clinical markers and other morphosyntactic in-
formation. This can take up to several hours for each
child making it infeasible to analyze a large number
of samples.

2.2 Bilingual Spanish-English Speaking
Children

Bilingual children face even more identification
challenges due to their dual language acquisition.
They can be mistakenly labeled as LI due to: 1) the
inadequate use of translations of assessment tools;
2) an over reliance on features specific to English; 3)
a lack of appropriate expectations about how the lan-
guages of a bilingual child should develop (Bedore
and Peña, 2008); 4) or the use of standardized
tests where the normal distribution used to compare
language performance is composed of monolingual

children (Restrepo and Gutiérrez-Clellen, 2001).
Spanish speaking children with LI show differ-

ent clinical markers than English speaking children
with LI. As mentioned above, English speakers have
problems with verb morphology. In contrast, Span-
ish speakers have been found to have problems with
noun morphology, in particular in the use of articles
and clitics (Restrepo and Gutiérrez-Clellen, 2001;
Jacobson and Schwartz, 2002; Bedore and Leonard,
2005). Bedore and Leonard (2005) also found dif-
ferences in the error patterns of Spanish and related
languages such as Italian. Spanish-speakers tend to
both omit and substitute articles and clitics, while
the dominant errors for Italian-speakers are omis-
sions.

3 Our Approach

We use language models (LMs) in our initial inves-
tigation, and later explore more complex ML algo-
rithms to improve the results. Our ultimate goal is
to discover a highly accurate ML method that can be
used to assist clinicians in the task of LI identifica-
tion in children.

3.1 Language Models for Predicting Language
Impairment

LMs are statistical models used to estimate the prob-
ability of a given sequence of words. They have been
explored previously for clinical purposes. Roark et
al. (2007) proposed cross entropy of LMs trained
on Part-of-Speech (POS) sequences as a measure of
syntactic complexity with the aim of determining
mild cognitive impairment in adults. Solorio and
Liu (2008) evaluated LMs on a small data set in a
preliminary trial on LI prediction.

The intuition behind using LMs is that they can
identify atypical grammatical patterns and help dis-
criminate the population with potential LI from
the Typically Developing (TD) one. We use LMs
trained on POS tags rather than on words. Using
POS tags can address the data sparsity issue in LMs,
and place less emphasis on the vocabulary and more
emphasis on the syntactic patterns.

We trained two separate LMs using POS tags
from the transcripts of TD and LI children, respec-
tively. The language status of a child is predicted
using the following criterion:
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d(s) =
{

LI if (PPTD(s) > PPLI(s))
TD otherwise

where s represents a transcript from a child, and
PPTD(s) and PPLI(s) are the perplexity values
from the TD and LI LMs, respectively. We used the
SRI Language Modeling Toolkit (Stolcke, 2002) for
training the LMs and calculating perplexities.

3.2 Machine Learning for Predicting Language
Impairment

Although LMs have been used successfully on dif-
ferent human language processing tasks, they are
typically trained and tested on language samples
larger than what is usually collected by clinicians for
the purpose of diagnosing a child with potential LI.
Clinicians make use of additional information be-
yond children’s speech, such as parent and teacher
questionnaires and test scores on different language
assessment tasks. Therefore in addition to using
LMs for children language status prediction, we ex-
plore a machine learning classification approach that
can incorporate more information for better predic-
tion. We aim to identify effective features for this
task and expect this information will help clinicians
in their assessment.

We consider various ML algorithms for the clas-
sification task, including Naive Bayes, Artificial
Neural Networks (ANNs), Support Vector Ma-
chines (SVM), and Boosting with Decision Stumps.
Weka (Witten and Frank, 1999) was used in our ex-
periments due to its known reliability and the avail-
ability of a large number of algorithms. Below we
provide a comprehensive list of features that we ex-
plored for both English and Spanish-English tran-
scripts. We group these features according to the
aspect of language they focus on. Features specific
to Spanish are discussed in Section 5.2.

1. Language productivity

(a) Mean Length of Utterance (MLU) in
words
Due to a general deficit of language abil-
ity, children with LI have been found to
produce language samples with a shorter
MLU in words because they produce

grammatically simpler sentences when
compared to their TD peers.

(b) Total number of words
This measure is widely used when build-
ing language profiles of children for diag-
nostic and treatment purposes.

(c) Degree of support
In spontaneous samples of children’s
speech, it has been pointed out that chil-
dren with potential LI need more encour-
agement from the investigator (Wetherell
et al., 2007) than their TD peers. A sup-
port prompt can be a question like “What
happened next?” We count the number of
utterances, or turns, of the investigator in-
terviewing the child for this feature.

2. Morphosyntactic skills

(a) Ratio of number of raw verbs to the total
number of verbs
As mentioned previously, children with LI
omit tense markers in verbs more often
than their TD cohorts. For example:

...the boy look into the hole but didn’t
find...

Hence, we include the ratio of the number
of raw verbs to the total number of verbs
as a feature.

(b) Subject-verb agreement
Research has shown that English-speaking
children with LI have difficulties mark-
ing subject-verb agreement (Clahsen and
Hansen, 1997; Schütze and Wexler, 1996).
An illustration of subject-verb disagree-
ment is the following:

...and he were looking behind the rocks

As a way of capturing this information
in the machine learning setting, we con-
sider various bigrams of POS tags: noun
and verb, noun and auxiliary verb, pro-
noun and verb, and pronoun and auxiliary
verb. These features are included in a bag-
of-words fashion using individual counts.
Also, we allow a window between these
pairs to capture agreement between sub-
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ject and verb that may have modifiers in
between.

(c) Number of different POS tags
This feature is the total number of differ-
ent POS tags in each transcript.

3. Vocabulary knowledge

We use the Number of Different Words (NDW)
to represent vocabulary knowledge of a child.
Although such measures can be biased against
children from different backgrounds, we expect
this possible negative effect to decrease as a re-
sult of having a richer pool of features.

4. Speech fluency

Repetitions, revisions, and filled pauses have
been considered indicators of language learn-
ing difficulties (Thordardottir and Weismer,
2002; Wetherell et al., 2007). In this work
we include as features (a) the number of fillers,
such as uh, um, er; and (b) the number of disflu-
encies (abandoned words) found in each tran-
script.

5. Perplexities from LMs

As mentioned in Section 3.1 we trained LMs of
order 1, 2, and 3 on POS tags extracted from
TD and LI children. We use the perplexity val-
ues from these models as features. Addition-
ally, differences in perplexity values from LI
and TD LMs for different orders are used as
features.

6. Standard scores

A standard score, known as a z-score, is the dif-
ference between an observation and the mean
relative to the standard deviation. For this fea-
ture group, we first find separate distributions
for the MLU in words, NDW and total num-
ber of utterances for the TD and LI populations.
Then, for each transcript, we compute the stan-
dard scores based on each of these six distribu-
tions. This represents how well the child is per-
forming relative to the TD and LI populations.
Note that a cross validation setup was used to
obtain the distribution for the TD and LI chil-
dren for training. This is also required for the
LM features above.

4 Experiments with Monolingual Children

4.1 The Monolingual English Data Set

Our target population for this work is children with
an age range of 3 to 6 years old. However, currently
we do not have any monolingual data sets readily
available to test our approach in this age range. In
the field of communication disorders data sharing
is not a common practice due to the sensitive con-
tent of the material in the language samples of chil-
dren, and also due to the large amount of effort and
time it takes researchers to collect, transcribe, and
code the data before they can begin their analysis.
To evaluate our approach we used a dataset from
CHILDES (MacWhinney, 2000) that includes nar-
ratives from English-speaking adolescents with and
without LI with ages ranging between 13 and 16
years old. Even though the age range is outside the
range we are interested in, we believe that this data
set can still be helpful in exploring the feasibility of
our approach as a first step.

This data set contains 99 TD adolescents and 19
adolescents who met the LI profile at one point in
the duration of the study. There are transcripts from
each child for two tasks: a story telling and a spon-
taneous personal narrative. The first task is a picture
prompted story telling task using the wordless pic-
ture book, “Frog, Where Are You?” (Mayer, 1969).
In this story telling task children first look at the
story book –to develop a story in memory– and then
are asked to narrate the story. This type of elicitation
task encourages the use of past tense constructions,
providing plenty of opportunities for extracting clin-
ical markers. In the spontaneous personal narrative
task, the child is asked to talk about a person who an-
noys him/her the most and describe the most annoy-
ing features of that person. This kind of spontaneous
personal narrative encourages the participant for the
use of third person singular forms (-s). Detailed in-
formation of this data set can be found in (Wetherell
et al., 2007).

We processed the transcripts using the CLAN
toolkit (MacWhinney, 2000). MOR and POST from
CLAN are used for morphological analysis and POS
tagging of the children’s speech. We decided to use
these analyzers since they are customized for chil-
dren’s speech.
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Story telling Personal narrative
Method P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Baseline 28.57 10.53 15.38 33.33 15.79 21.43
1-gram LMs 41.03 84.21 55.17 34.21 68.42 45.61
2-gram LMs 75.00 47.37 58.06 55.56 26.32 35.71
3-gram LMs 80.00 21.05 33.33 87.50 36.84 51.85

Table 1: Evaluation of language models on the monolingual English data set.

Story telling Personal narrative
Algorithm P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Naive Bayes 38.71 63.16 48.00 34.78 42.11 38.10
Bayesian Network 58.33 73.68 65.12 28.57 42.11 34.04
SVM 76.47 68.42 72.22 47.06 42.11 44.44
ANNs 62.50 52.63 57.14 50.00 47.37 48.65
Boosting 70.59 63.16 66.67 69.23 47.37 56.25

Table 2: Evaluation of machine learning algorithms on the monolingual English data set.

4.2 Results with Monolingual
English-Speaking Children

The performance measures we use are: precision
(P), recall (R), and F-measure (F1). Here the LI cat-
egory is the positive class and the TD category is the
negative class.

Table 1 shows the results of leave-one-out-cross-
validation (LOOCV) obtained from the LM ap-
proach for the story telling and spontaneous personal
narrative tasks. It also shows results from a base-
line method that predicts language status by using
standard scores on measures that have been asso-
ciated with LI in children (Dollaghan, 2004). The
three measures we used for the baseline are: MLU
in words, NDW, and total number of utterances pro-
duced. To compute this baseline we estimate the
mean and standard deviation of these measures us-
ing LOOCV with the TD population as our norma-
tive sample. The baseline predicts that a child has
LI if the child scores more than 1.25 SD below the
mean on at least two out of the three measures.

Although LMs yield different results for the story
telling and personal narrative tasks, they both pro-
vide consistently better results than the baseline. For
the story telling task the best results, in terms of the
F1 measure, are achieved by a bigram LM (F1 =
58.06%) while for the personal narrative the highest
F1 measure (51.85%) is from the trigram LM. If we
consider precision, both tasks have the same increas-

ing pattern when increasing LM orders. However for
recall that is not the case. In the story telling task,
recall decreases at the expense of higher precision,
but for the personal narrative task, the trigram LM
reaches a better trade-off between precision and re-
call, which yields a high F1 measure. We also evalu-
ated 4-gram LMs, but results did not improve, most
likely because we do not have enough data to train
higher order LMs.

The results for different ML algorithms are shown
in Table 2, obtained by using all features described
in Section 3.2. The feature based approach us-
ing ML algorithms outperformed using only LMs
on both tasks. For the story telling task, SVM
with a linear kernel achieves the best results (F1 =
72.22%), while Boosting with Decision Stumps pro-
vides the best performance (F1 = 56.25%) for the
personal narrative task.

4.3 Feature and Error Analysis

The ML results shown above use the entire feature
set described in Subsection 3.2. The next question
we ask is the effectiveness of different features for
this task. The datasets we are using in our evalua-
tion are very small, especially considering the num-
ber of positive instances. This prevents us from hav-
ing a separate subset of the data for parameter tun-
ing or feature selection. Therefore, we performed
additional experiments to evaluate the usefulness of
individual features. Figure 1 shows the F1 measures
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Figure 1: Discriminating power of different groups of
features. The numbers on the x-axis correspond to the
feature groups in Section 3.2.

when using different feature groups. The numbers
on the x-axis correspond to the feature groups de-
scribed in Section 3.2. The F1 measure value for
each of the features is the highest value obtained by
running different ML algorithms for classification.

We noticed that for the story telling task, using
perplexity values from LMs (group 5) as a feature
in the ML setting outperforms the LM threshold ap-
proach by a large margin. It seems that having the
perplexity values as well as the perplexity differ-
ences from all the LMs of different orders in the ML
algorithm provides a better estimation of the target
concept.

Only the standard scores (group 6) yield a higher
F1 measure for the personal narrative task than the
story telling one. The majority of the features (5
out of 6 groups) provide higher F1 measures for the
story telling task, which explains the significantly
better results on this task over the personal narrative
in our learning approach. This is consistent with pre-
vious work contrasting narrative genre stating that
the restrictive setting of a story retell is more reveal-
ing of language difficulties than spontaneous narra-
tives, where the subjects have more control on the
content and style (Wetherell et al., 2007).

We also performed some error analysis for some
of the transcripts that were consistently misidenti-
fied by different ML algorithms. In the story telling
task, we find that some LI transcripts are misclassi-
fied as TD because they (1) have fewer fillers, dis-
fluencies, and degree of support; (2) are similar to

the TD transcripts, which is depicted by the perplex-
ity values for these transcripts; or (3) contain higher
MLU in words as compared to their LI peers. Some
of the reasons for classifying transcripts in the TD
category as LI are shorter MLU in words as com-
pared to other TD peers, large number of fillers, and
excessive repetitions of words and phrases unlike the
other TD children. These factors are consistent with
the effective features that we found from Figure 1.

For the personal narrative task, standard scores
(group 6) and language productivity (group 1) have
an important role in classification, as shown in Fig-
ure 1. The TD transcripts that are misidentified have
lower standard scores and MLU in words than those
of their TD peers.

We believe that another source of noise in the
transcripts comes from the POS tags themselves.
For instance, we found that many verbs in present
tense for third person singular are tagged as plural
nouns, which results in a failure to capture subject-
verb agreement.

Lastly, according to the dataset description, chil-
dren in the LI category met the LI criteria at one
stage in their lifetime and some of these children
also had, or were receiving, some educational sup-
port in the school environment at the time of data
collection. This support for children with LI is
meant to improve their performance on language
related tasks, making the automatic classification
problem more complicated. This also raises the
question about the reference label (TD or LI) for
each child in the data set we used. The details about
which children received interventions are not speci-
fied in the dataset description.

5 Experiments with Bilingual Children

In this section we generalize the approach to a
Spanish-English bilingual population. In adapting
the approach to our bilingual population we face two
challenges: first, what shows to be promising for
a monolingual and highly heterogeneous population
may not be as successful in a bilingual setting where
we expect to have a large variability of exposure to
each language; second, there is a large difference
in the mean age of the monolingual setting and that
of our bilingual one. This age difference will result
in different speech patterns. Younger children pro-
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duce more ill-formed sentences since they are still
in a language acquisition phase. Lastly, the clini-
cal markers in adolescents are geared towards prob-
lems at the pragmatic and discourse levels, while at
younger ages they focus more on syntax and mor-
phology.

For dealing with the first challenge we are extract-
ing language-specific features and hope that by look-
ing at both languages we can reach a good discrim-
ination performance. For the second challenge, our
feature engineering approach has been focused on
younger children from the beginning. We are aiming
to capture the type of morphosyntactic patterns that
can identify LI in young children. In addition, the
samples in the bilingual population are story retells,
and our feature setting showed to be a good match
for this task. Therefore, we expect our approach to
capture relevant classification patterns, even in the
presence of noisy utterances.

5.1 The Bilingual Data Set
The transcripts for the bilingual LI task come from
an on-going longitudinal study of language impair-
ment in Spanish-English speaking children (Peña et
al., 2006a). The children in this study were enrolled
in kindergarten with a mean age of about 70 months.
Of the 59 children, 6 were identified as having a
possible LI by an expert in communication disor-
ders, while 53 were identified as TD. Six of the TD
children were excluded due to missing information,
yielding a total of 47 TD children.

Each child told a series of stories based on Mercer
Mayer’s wordless picture books (Mayer, 1969). Two
stories were told in English and two were told in
Spanish, for a total of four transcripts per child. The
books used for English were “A Boy, A Dog, and
A Frog” and “Frog, Where Are You?” The books
used for Spanish retelling were “Frog on His Own”
and “Frog Goes to Dinner.” The transcripts for each
separate language were combined, yielding one in-
stance per language for each child.

An interesting aspect of the bilingual data is that
the children mix languages in their narratives. This
phenomenon is called code-switching. At the begin-
ning of a retelling session, the interviewer encour-
ages the child to speak the target language if he/she
is not doing so. Once the child begins speaking the
correct language, any code-switching thereafter is

not corrected by the interviewer. Due to this, the En-
glish transcripts contain Spanish utterances and vice
versa. We believe that words in the non-target lan-
guage help contribute to a more accurate language
development profile. Therefore, in our work we de-
cided to keep these code-switched elements. A com-
bined lexicon approach was used to tag the mixed-
language fragments. If a word does not appear in the
target language lexicon, we apply the POS tag from
the non-target language.

5.2 Spanish-Specific Features

Many structural differences exist between Spanish,
a Romance language, and English, a Germanic lan-
guage. Spanish is morphologically richer than En-
glish. It contains a larger number of different verb
conjugations and it uses a two gender system for
nouns, adjectives, determiners, and participles. A
Spanish-speaking child with LI will have difficulties
with different grammatical elements, such as articles
and clitics, than an English-speaking child (Bedore
and Peña, 2008). These differences indicate that the
Spanish feature set will need to be tailored towards
the Spanish language.

To account for Spanish-specific patterns we in-
cluded new POS bigrams as features. To capture
the use of correct and incorrect gender and num-
ber marking morphology, we added noun-adjective,
determiner-noun, and number-noun bigrams to the
list of morphosyntactic features.

5.3 Results on Bilingual Children

Results are shown for the baseline and LM threshold
approach for the bilingual data set in Table 3. The
baseline is computed from the same measures as the
monolingual dataset (MLU in words, NDW, and to-
tal utterances).

Compared to Table 1, the values in Table 3
are generally lower than on the monolingual story
telling task. In this inherently difficult task, the bilin-
gual transcripts are more disfluent than the monolin-
gual ones. This could be due to the age of the chil-
dren or their bilingual status. Recent studies on psy-
cholinguistics and language production have shown
that bilingual speakers have both languages active
at speech production time (Kroll et al., 2008) and
it is possible that this may cause interference, espe-
cially in children still in the phase of language acqui-
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English Spanish
Method P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Baseline 20.00 16.66 18.18 16.66 16.66 16.66
1-gram LMs 40.00 33.33 36.36 17.64 50.00 26.08
2-gram LMs 50.00 33.33 40.00 33.33 16.66 22.22
3-gram LMs 100.00 33.33 50.00 0.00 0.00 -

Table 3: Evaluation of language models on Bilingual Spanish-English data set.

sition. In addition, the LMs in the monolingual task
were trained using more instances per class, possibly
yielding better results.

There are some different patterns between using
the English and Spanish transcripts. In English,
the unigram models provide the least discriminative
value, and the bigram and trigram models improve
discrimination. We also evaluated higher order n-
grams, but did not obtain any further improvement.
We found that the classification accuracy of the LM
approach was influenced by two children with LI
who were consistently marked as LI due to a greater
perplexity value from the TD LM. A further analysis
shows that these children spoke mostly Spanish on
the “English” tasks yielding larger perplexities from
the TD LM, which was trained from mostly English.
In contrast, the LI LM was created with transcripts
containing more Spanish than the TD one, and thus
test transcripts with a lot of Spanish do not inflate
perplexity values that much.

For Spanish, unigram LMs provide some discrim-
inative usefulness, and then the bigram performance
decreases while the trigram model provides no dis-
criminative value. One reason for this may be that
the Spanish LMs have a larger vocabulary. In the
Spanish LMs, there are 2/3 more POS tags than in
the English LM. This size difference dramatically
increases the possible bigrams and trigrams, there-
fore increasing the number of parameters to esti-
mate. In addition, we are using an “off the shelf”
POS tagger (provided by CLAN) and this may add
noise in the feature extraction process. Since we do
not have gold standard annotations for these tran-
scripts, we cannot measure the POS tagging accu-
racy. A rough estimate based on manually revis-
ing one transcript in each language showed a POS
tagging accuracy of 90% for English and 84% for
Spanish. Most of the POS tagger errors involve
verbs, nouns and pronouns. Thus while the accu-
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Figure 2: Discriminating power of different groups of
features for the bilingual population. The numbers on the
x-axis correspond to the feature groups in Section 3.2.

racy might not seem that low, it can still have a ma-
jor impact on our approach since it involves the POS
categories that are more relevant for this task.

Table 4 shows the results from various ML algo-
rithms. In addition to predicting the language status
with the English and Spanish samples separately, we
also combined the English and Spanish transcripts
together for each child, and used all the features
from both languages in order to allow a prediction
based on both samples. The best F1 measure for this
task (60%) is achieved by using the Naive Bayes al-
gorithm with the combined Spanish-English feature
set. This is an improvement over both the separate
English and Spanish trials. The Naive Bayes algo-
rithm provided the best discrimination for the En-
glish (54%) and Combined data sets and Boosting
and SVM provided the best discrimination for the
Spanish set (18%).

5.4 Feature Analysis

Similar to the monolingual dataset, we performed
additional experiments exploring the contribution
of different groups of features. We tested the six

53



English Spanish Combined
Algorithm P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
ANNs 66.66 33.33 44.44 0.00 0.00 - 100.00 16.66 28.57
SVM 14.28 16.66 15.38 20.00 16.66 18.18 66.66 33.33 44.44
Naive Bayes 60.00 50.00 54.54 0.00 0.00 - 75.00 50.00 60.00
Logistic Regression 25.00 16.66 20.00 - 0.00 - 50.00 33.33 40.00
Boosting 50.00 33.33 40.00 20.00 16.66 18.18 66.66 33.33 44.44

Table 4: Evaluation of machine learning algorithms on the Bilingual Spanish-English data set.

groups of features described in Section 3.2 sepa-
rately. Overall, the combined LM perplexity val-
ues (group 5) provided the best discriminative value
(F1 = 66%). The LM perplexity values performed
the best for English. It even outperformed using all
the features in the ML algorithm, suggesting some
feature selection is needed for this task.

The morpohsyntactic skills (group 2) provided the
best discriminative value for the Spanish language
features, and performed better than the complete
feature set for Spanish. Within group 2, we evalu-
ated different POS bigrams for the Spanish and En-
glish sets and observed that most of the bigram com-
binations by themselves are usually weak predictors
of language status. In the Spanish set, out of all of
the lexical combinations, only the determiner-noun,
noun-verb, and pronoun-verb categories provided
some discriminative value. The determiner-noun
category captured the correct and incorrect gender
marking between the two POS tags. The noun-verb
and pronoun-verb categories covered the correct and
incorrect usage of subject-verb combinations. In-
terestingly enough, the pronoun-verb category per-
formed well by itself, yielding an F1 measure of
54%. There are also some differences in the frequen-
cies of bigram features in the English and Spanish
data sets. For example, there is no noun-auxiliary
POS pattern in Spanish, and the pronoun-auxiliary
bigram appears less frequently in Spanish than in
English because in Spanish the use of personal pro-
nouns is not mandatory since the verb inflection will
disambiguate the subject of the sentence.

The vocabulary knowledge feature (group 3) did
not provide any discriminative value for any of the
language tasks. This may be because bilingual chil-
dren receive less input for each language than a
monolingual child learning one language, or due to
the varied vocabulary acquisition rate in our bilin-

gual population.

6 Conclusions and Future Work

In this paper we present results on the use of LMs
and ML techniques trained on features representing
different aspects of language gathered from spon-
taneous speech samples for the task of assisting
clinicians in determining language status in chil-
dren. First, we evaluate our approach on a monolin-
gual English-speaking population. Next, we show
that this ML approach can be successfully adapted
to a bilingual Spanish-English population. ML al-
gorithms provide greater discriminative power than
only using a threshold approach with LMs.

Our current efforts are devoted to improving pre-
diction accuracy by refining our feature set. We are
working on creating a gold standard corpus of chil-
dren’s transcripts annotated with POS tags. This
data set will help us improve accuracy on our POS-
based features. We are also exploring the use of
socio-demographic features such as the educational
level of parents, the gender of children, and enroll-
ment status on free lunch programs.
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Abstract

Conventional approaches to Chinese word
segmentation treat the problem as a character-
based tagging task. Recently, semi-Markov
models have been applied to the problem, in-
corporating features based on complete words.
In this paper, we propose an alternative, a
latent variable model, which uses hybrid in-
formation based on both word sequences and
character sequences. We argue that the use of
latent variables can help capture long range
dependencies and improve the recall on seg-
menting long words, e.g., named-entities. Ex-
perimental results show that this is indeed the
case. With this improvement, evaluations on
the data of the second SIGHAN CWS bakeoff
show that our system is competitive with the
best ones in the literature.

1 Introduction

For most natural language processing tasks, words
are the basic units to process. Since Chinese sen-
tences are written as continuous sequences of char-
acters, segmenting a character sequence into a word
sequence is the first step for most Chinese process-
ing applications. In this paper, we study the prob-
lem of Chinese word segmentation (CWS), which

aims to find these basic units (words1) for a given
sentence in Chinese.

Chinese character sequences are normally am-
biguous, and out-of-vocabulary (OOV) words are a
major source of the ambiguity. Typical examples
of OOV words include named entities (e.g., orga-
nization names, person names, and location names).
Those named entities may be very long, and a dif-
ficult case occurs when a long word W (|W | ≥ 4)
consists of some words which can be separate words
on their own; in such cases an automatic segmenter
may split the OOV word into individual words. For
example,
(Computer Committee of International Federation of
Automatic Control) is one of the organization names
in the Microsoft Research corpus. Its length is 13
and it contains more than 6 individual words, but it
should be treated as a single word. Proper recogni-
tion of long OOV words are meaningful not only for
word segmentation, but also for a variety of other
purposes, e.g., full-text indexing. However, as is il-
lustrated, recognizing long words (without sacrific-
ing the performance on short words) is challenging.

Conventional approaches to Chinese word seg-
mentation treat the problem as a character-based la-

1Following previous work, in this paper, words can also refer
to multi-word expressions, including proper names, long named
entities, idioms, etc.
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beling task (Xue, 2003). Labels are assigned to each
character in the sentence, indicating whether the
character xi is the start (Labeli = B), middle or end
of a multi-character word (Labeli = C). A popu-
lar discriminative model that have been used for this
task is the conditional random fields (CRFs) (Laf-
ferty et al., 2001), starting with the model of Peng
et al. (2004). In the Second International Chinese
Word Segmentation Bakeoff (the second SIGHAN
CWS bakeoff) (Emerson, 2005), two of the highest
scoring systems in the closed track competition were
based on a CRF model (Tseng et al., 2005; Asahara
et al., 2005).

While the CRF model is quite effective compared
with other models designed for CWS, it may be lim-
ited by its restrictive independence assumptions on
non-adjacent labels. Although the window can in
principle be widened by increasing the Markov or-
der, this may not be a practical solution, because
the complexity of training and decoding a linear-
chain CRF grows exponentially with the Markov or-
der (Andrew, 2006).

To address this difficulty, a choice is to relax the
Markov assumption by using the semi-Markov con-
ditional random field model (semi-CRF) (Sarawagi
and Cohen, 2004). Despite the theoretical advan-
tage of semi-CRFs over CRFs, however, some pre-
vious studies (Andrew, 2006; Liang, 2005) explor-
ing the use of a semi-CRF for Chinese word seg-
mentation did not find significant gains over the
CRF ones. As discussed in Andrew (2006), the rea-
son may be that despite the greater representational
power of the semi-CRF, there are some valuable fea-
tures that could be more naturally expressed in a
character-based labeling model. For example, on
a CRF model, one might use the feature “the cur-
rent character xi is X and the current label Labeli
is C”. This feature may be helpful in CWS for gen-
eralizing to new words. For example, it may rule
out certain word boundaries if X were a character
that normally occurs only as a suffix but that com-
bines freely with some other basic forms to create
new words. This type of features is slightly less nat-
ural in a semi-CRF, since in that case local features
ϕ(yi, yi+1, x) are defined on pairs of adjacent words.
That is to say, information about which characters
are not on boundaries is only implicit. Notably, ex-
cept the hybrid Markov/semi-Markov system in An-

drew (2006)2, no other studies using the semi-CRF
(Sarawagi and Cohen, 2004; Liang, 2005; Daumé
III and Marcu, 2005) experimented with features of
segmenting non-boundaries.

In this paper, instead of using semi-Markov mod-
els, we describe an alternative, a latent variable
model, to learn long range dependencies in Chi-
nese word segmentation. We use the discrimina-
tive probabilistic latent variable models (DPLVMs)
(Morency et al., 2007; Petrov and Klein, 2008),
which use latent variables to carry additional infor-
mation that may not be expressed by those original
labels, and therefore try to build more complicated
or longer dependencies. This is especially meaning-
ful in CWS, because the used labels are quite coarse:
Label(y) ∈ {B,C}, where B signifies beginning a
word and C signifies the continuation of a word.3

For example, by using DPLVM, the aforementioned
feature may turn to “the current character xi is X ,
Labeli = C, and LatentV ariablei = LV ”. The
current latent variable LV may strongly depend on
the previous one or many latent variables, and there-
fore we can model the long range dependencies
which may not be captured by those very coarse la-
bels. Also, since character and word information
have their different advantages in CWS, in our latent
variable model, we use hybrid information based on
both character and word sequences.

2 A Latent Variable Segmenter

2.1 Discriminative Probabilistic Latent
Variable Model

Given data with latent structures, the task is to
learn a mapping between a sequence of observa-
tions x = x1, x2, . . . , xm and a sequence of labels
y = y1, y2, . . . , ym. Each yj is a class label for the
j’th character of an input sequence, and is a mem-
ber of a set Y of possible class labels. For each se-
quence, the model also assumes a sequence of latent
variables h = h1, h2, . . . , hm, which is unobserv-
able in training examples.

The DPLVM is defined as follows (Morency et al.,

2The system was also used in Gao et al. (2007), with an
improved performance in CWS.

3In practice, one may add a few extra labels based on lin-
guistic intuitions (Xue, 2003).
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2007):

P (y|x,Θ) =
∑

h

P (y|h,x,Θ)P (h|x,Θ), (1)

where Θ are the parameters of the model. DPLVMs
can be seen as a natural extension of CRF models,
and CRF models can be seen as a special case of
DPLVMs that have only one latent variable for each
label.

To make the training and inference efficient, the
model is restricted to have disjoint sets of latent vari-
ables associated with each class label. Each hj is a
member in a set Hyj of possible latent variables for
the class label yj . H is defined as the set of all pos-
sible latent variables, i.e., the union of all Hyj sets.
Since sequences which have any hj /∈ Hyj will by
definition have P (y|x,Θ) = 0, the model can be
further defined4 as:

P (y|x,Θ) =
∑

h∈Hy1×...×Hym

P (h|x,Θ), (2)

where P (h|x,Θ) is defined by the usual conditional
random field formulation:

P (h|x,Θ) =
expΘ·f(h,x)∑
∀h expΘ·f(h,x)

, (3)

in which f(h,x) is a feature vector. Given a training
set consisting of n labeled sequences, (xi,yi), for
i = 1 . . . n, parameter estimation is performed by
optimizing the objective function,

L(Θ) =
n∑

i=1

log P (yi|xi,Θ) − R(Θ). (4)

The first term of this equation is the conditional log-
likelihood of the training data. The second term is
a regularizer that is used for reducing overfitting in
parameter estimation.

For decoding in the test stage, given a test se-
quence x, we want to find the most probable label
sequence, y∗:

y∗ = argmaxyP (y|x,Θ∗). (5)

For latent conditional models like DPLVMs, the best
label path y∗ cannot directly be produced by the

4It means that Eq. 2 is from Eq. 1 with additional definition.

Viterbi algorithm because of the incorporation of
hidden states. In this paper, we use a technique
based on A∗ search and dynamic programming de-
scribed in Sun and Tsujii (2009), for producing the
most probable label sequence y∗ on DPLVM.

In detail, an A∗ search algorithm5 (Hart et al.,
1968) with a Viterbi heuristic function is adopted to
produce top-n latent paths, h1,h2, . . .hn. In addi-
tion, a forward-backward-style algorithm is used to
compute the exact probabilities of their correspond-
ing label paths, y1,y2, . . .yn. The model then tries
to determine the optimal label path based on the
top-n statistics, without enumerating the remaining
low-probability paths, which could be exponentially
enormous.

The optimal label path y∗ is ready when the fol-
lowing “exact-condition” is achieved:

P (y1|x,Θ)− (1−
∑

yk∈LPn

P (yk|x,Θ)) ≥ 0, (6)

where y1 is the most probable label sequence in
current stage. It is straightforward to prove that
y∗ = y1, and further search is unnecessary. This
is because the remaining probability mass, 1 −∑

yk∈LPn
P (yk|x,Θ), cannot beat the current op-

timal label path in this case. For more details of the
inference, refer to Sun and Tsujii (2009).

2.2 Hybrid Word/Character Information

We divide our main features into two types:
character-based features and word-based features.
The character-based features are indicator functions
that fire when the latent variable label takes some
value and some predicate of the input (at a certain
position) corresponding to the label is satisfied. For
each latent variable label hi (the latent variable la-
bel at position i), we use the predicate templates as
follows:

• Input characters/numbers/letters locating at po-
sitions i − 2, i − 1, i, i + 1 and i + 2

• The character/number/letter bigrams locating
at positions i − 2, i − 1, i and i + 1

5A∗ search and its variants, like beam-search, are widely
used in statistical machine translation. Compared to other
search techniques, an interesting point of A∗ search is that it
can produce top-n results one-by-one in an efficient manner.
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• Whether xj and xj+1 are identical, for j = (i−
2) . . . (i + 1)

• Whether xj and xj+2 are identical, for j = (i−
3) . . . (i + 1)

The latter two feature templates are designed to de-
tect character or word reduplication, a morphologi-
cal phenomenon that can influence word segmenta-
tion in Chinese.

The word-based features are indicator functions
that fire when the local character sequence matches
a word or a word bigram. A dictionary containing
word and bigram information was collected from the
training data. For each latent variable label unigram
hi, we use the set of predicate template checking for
word-based features:

• The identity of the string xj . . . xi, if it matches
a word A from the word-dictionary of training
data, with the constraint i−6 < j < i; multiple
features will be generated if there are multiple
strings satisfying the condition.

• The identity of the string xi . . . xk, if it matches
a word A from the word-dictionary of training
data, with the constraint i < k < i+6; multiple
features could be generated.

• The identity of the word bigram (xj . . . xi−1,
xi . . . xk), if it matches a word bigram in the
bigram dictionary and satisfies the aforemen-
tioned constraints on j and k; multiple features
could be generated.

• The identity of the word bigram (xj . . . xi,
xi+1 . . . xk), if it matches a word bigram in the
bigram dictionary and satisfies the aforemen-
tioned constraints on j and k; multiple features
could be generated.

All feature templates were instantiated with val-
ues that occur in positive training examples. We
found that using low-frequency features that occur
only a few times in the training set improves perfor-
mance on the development set. We hence do not do
any thresholding of the DPLVM features: we simply
use all those generated features.

The aforementioned word based features can in-
corporate word information naturally. In addition,

following Wang et al. (2006), we found using a
very simple heuristic can further improve the seg-
mentation quality slightly. More specifically, two
operations, merge and split, are performed on the
DPLVM/CRF outputs: if a bigram A B was not ob-
served in the training data, but the merged one AB
was, then A B will be simply merged into AB; on
the other hand, if AB was not observed but A B ap-
peared, then it will be split into A B. We found this
simple heuristic on word information slightly im-
proved the performance (e.g., for the PKU corpus,
+0.2% on the F-score).

3 Experiments

We used the data provided by the second Inter-
national Chinese Word Segmentation Bakeoff to
test our approaches described in the previous sec-
tions. The data contains three corpora from different
sources: Microsoft Research Asia (MSR), City Uni-
versity of Hong Kong (CU), and Peking University
(PKU).

Since the purpose of this work is to evaluate the
proposed latent variable model, we did not use ex-
tra resources such as common surnames, lexicons,
parts-of-speech, and semantics. For the generation
of word-based features, we extracted a word list
from the training data as the vocabulary.

Four metrics were used to evaluate segmentation
results: recall (R, the percentage of gold standard
output words that are correctly segmented by the de-
coder), precision (P , the percentage of words in the
decoder output that are segmented correctly), bal-
anced F-score (F ) defined by 2PR/(P + R), recall
of OOV words (R-oov). For more detailed informa-
tion on the corpora and these metrics, refer to Emer-
son (2005).

3.1 Training the DPLVM Segmenter

We implemented DPLVMs in C++ and optimized
the system to cope with large scale problems, in
which the feature dimension is beyond millions. We
employ the feature templates defined in Section 2.2,
taking into account those 3,069,861 features for the
MSR data, 2,634,384 features for the CU data, and
1,989,561 features for the PKU data.

As for numerical optimization, we performed
gradient decent with the Limited-Memory BFGS
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(L-BFGS)6 optimization technique (Nocedal and
Wright, 1999). L-BFGS is a second-order Quasi-
Newton method that numerically estimates the cur-
vature from previous gradients and updates. With
no requirement on specialized Hessian approxima-
tion, L-BFGS can handle large-scale problems in an
efficient manner.

Since the objective function of the DPLVM model
is non-convex, we randomly initialized parameters
for the training.7 To reduce overfitting, we employed
an L2 Gaussian weight prior8 (Chen and Rosen-
feld, 1999). During training, we varied the L2-
regularization term (with values 10k, k from -3 to
3), and finally set the value to 1. We use 4 hidden
variables per label for this task, compromising be-
tween accuracy and efficiency.

3.2 Comparison on Convergence Speed

First, we show a comparison of the convergence
speed between the objective function of DPLVMs
and CRFs. We apply the L-BFGS optimization algo-
rithm to optimize the objective function of DPLVM
and CRF models, making a comparison between
them. We find that the number of iterations required
for the convergence of DPLVMs are fewer than for
CRFs. Figure 1 illustrates the convergence-speed
comparison on the MSR data. The DPLVM model
arrives at the plateau of convergence in around 300
iterations, with the penalized loss of 95K when
#passes = 300; while CRFs require 900 iterations,
with the penalized loss of 98K when #passes =
900.

However, we should note that the time cost of the
DPLVM model in each iteration is around four times
higher than the CRF model, because of the incorpo-
ration of hidden variables. In order to speed up the

6For numerical optimization on latent variable models, we
also experimented the conjugate-gradient (CG) optimization al-
gorithm and stochastic gradient decent algorithm (SGD). We
found the L-BFGS with L2 Gaussian regularization performs
slightly better than the CG and the SGD. Therefore, we adopt
the L-BFGS optimizer in this study.

7For a non-convex objective function, different parame-
ter initializations normally bring different optimization results.
Therefore, to approach closer to the global optimal point, it
is recommended to perform multiple experiments on DPLVMs
with random initialization and then select a good start point.

8We also tested the L-BFGS with L1 regularization, and we
found the L-BFGS with L2 regularization performs better in
this task.
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Figure 1: The value of the penalized loss based on the
number of iterations: DPLVMs vs. CRFs on the MSR
data.

Style #W.T. #Word #C.T. #Char
MSR S.C. 88K 2,368K 5K 4,050K
CU T.C. 69K 1,455K 5K 2,403K
PKU S.C. 55K 1,109K 5K 1,826K

Table 1: Details of the corpora. W.T. represents word
types; C.T. represents character types; S.C. represents
simplified Chinese; T.C. represents traditional Chinese.

training speed of the DPLVM model in the future,
one solution is to use the stochastic learning tech-
nique9. Another solution is to use a distributed ver-
sion of L-BFGS to parallelize the batch training.

4 Results and Discussion

Since the CRF model is one of the most successful
models in Chinese word segmentation, we compared
DPLVMs with CRFs. We tried to make experimen-
tal results comparable between DPLVMs and CRF
models, and have therefore employed the same fea-
ture set, optimizer and fine-tuning strategy between
the two. We also compared DPLVMs with semi-
CRFs and other successful systems reported in pre-
vious work.

4.1 Evaluation Results
Three training and test corpora were used in the test,
including the MSR Corpus, the CU Corpus, and the

9We have tried stochastic gradient decent, as described pre-
viously. It is possible to try other stochastic learning methods,
e.g., stochastic meta decent (Vishwanathan et al., 2006).
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MSR data P R F R-oov
DPLVM (*) 97.3 97.3 97.3 72.2
CRF (*) 97.1 96.8 97.0 72.0
semi-CRF (A06) N/A N/A 96.8 N/A
semi-CRF (G07) N/A N/A 97.2 N/A
CRF (Z06-a) 96.5 96.3 96.4 71.4
Z06-b 97.2 96.9 97.1 71.2
ZC07 N/A N/A 97.2 N/A
Best05 (T05) 96.2 96.6 96.4 71.7
CU data P R F R-oov
DPLVM (*) 94.7 94.4 94.6 68.8
CRF (*) 94.3 93.9 94.1 65.8
CRF (Z06-a) 95.0 94.2 94.6 73.6
Z06-b 95.2 94.9 95.1 74.1
ZC07 N/A N/A 95.1 N/A
Best05 (T05) 94.1 94.6 94.3 69.8
PKU data P R F R-oov
DPLVM (*) 95.6 94.8 95.2 77.8
CRF (*) 95.2 94.2 94.7 76.8
CRF (Z06-a) 94.3 94.6 94.5 75.4
Z06-b 94.7 95.5 95.1 74.8
ZC07 N/A N/A 94.5 N/A
Best05 (C05) 95.3 94.6 95.0 63.6

Table 2: Results from DPLVMs, CRFs, semi-CRFs, and
other systems.

PKU Corpus (see Table 1 for details). The results
are shown in Table 2. The results are grouped into
three sub-tables according to different corpora. Each
row represents a CWS model. For each group, the
rows marked by ∗ represent our models with hy-
brid word/character information. Best05 represents
the best system of the Second International Chinese
Word Segmentation Bakeoff on the corresponding
data; A06 represents the semi-CRF model in An-
drew (2006)10, which was also used in Gao et al.
(2007) (denoted as G07) with an improved perfor-
mance; Z06-a and Z06-b represents the pure sub-
word CRF model and the confidence-based com-
bination of CRF and rule-based models, respec-
tively (Zhang et al., 2006); ZC07 represents the
word-based perceptron model in Zhang and Clark
(2007); T05 represents the CRF model in Tseng et
al. (2005); C05 represents the system in Chen et al.

10It is a hybrid Markov/semi-Markov CRF model which
outperforms conventional semi-CRF models (Andrew, 2006).
However, in general, as discussed in Andrew (2006), it is essen-
tially still a semi-CRF model.

(2005). The best F-score and recall of OOV words
of each group is shown in bold.

As is shown in the table, we achieved the best
F-score in two out of the three corpora. We also
achieved the best recall rate of OOV words on those
two corpora. Both of the MSR and PKU Corpus use
simplified Chinese, while the CU Corpus uses the
traditional Chinese.

On the MSR Corpus, the DPLVM model reduced
more than 10% error rate over the CRF model us-
ing exactly the same feature set. We also compared
our DPLVM model with the semi-CRF models in
Andrew (2006) and Gao et al. (2007), and demon-
strate that the DPLVM model achieved slightly bet-
ter performance than the semi-CRF models. Andrew
(2006) and Gao et al. (2007) only reported the re-
sults on the MSR Corpus.

In summary, tests for the Second International
Chinese Word Segmentation Bakeoff showed com-
petitive results for our method compared with the
best results in the literature. Our discriminative la-
tent variable models achieved the best F-scores on
the MSR Corpus (97.3%) and PKU Corpus (95.2%);
the latent variable models also achieved the best re-
calls of OOV words over those two corpora. We will
analyze the results by varying the word-length in the
following subsection.

4.2 Effect on Long Words
One motivation of using a latent variable model for
CWS is to use latent variables to more adequately
learn long range dependencies, as we argued in Sec-
tion 1. In the test data of the MSR Corpus, 19% of
the words are longer than 3 characters; there are also
8% in the CU Corpus and 11% in the PKU Corpus,
respectively. In the MSR Corpus, there are some ex-
tremely long words (Length > 10), while the CU
and PKU corpus do not contain such extreme cases.

Figure 2 shows the recall rate on different groups
of words categorized by their lengths (the number
of characters). As we expected, the DPLVM model
performs much better on long words (Length ≥ 4)
than the CRF model, which used exactly the same
feature set. Compared with the CRF model, the
DPLVM model exhibited almost the same level of
performance on short words. Both models have
the best performance on segmenting the words with
the length of two. The performance of the CRF
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Figure 2: The recall rate on words grouped by the length.

model deteriorates rapidly as the word length in-
creases, which demonstrated the difficulty on mod-
eling long range dependencies in CWS. Compared
with the CRF model, the DPLVM model performed
quite well in dealing with long words, without sacri-
ficing the performance on short words. All in all, we
conclude that the improvement of using the DPLVM
model came from the improvement on modeling
long range dependencies in CWS.

4.3 Error Analysis
Table 3 lists the major errors collected from the la-
tent variable segmenter. We examined the collected
errors and found that many of them can be grouped
into four types: over-generalization (the top row),
errors on named entities (the following three rows),
errors on idioms (the following three rows) and er-
rors from inconsistency (the two rows at the bottom).

Our system performed reasonably well on very
complex OOV words, such as

(Agricultural Bank of China,

Gold Segmentation Segmenter Output
//

Co-allocated org. names
(Chen Yao) //
(Chen Fei) //

(Vasillis) //
//

//
// //

Idioms
// (propagandist)

(desertification) //

Table 3: Error analysis on the latent variable seg-
menter. The errors are grouped into four types: over-
generalization, errors on named entities, errors on idioms
and errors from data-inconsistency.

Shijiazhuang-city Branch, the second sales depart-
ment) and (Science
and Technology Commission of China, National In-
stitution on Scientific Information Analysis). How-
ever, it sometimes over-generalized to long words.
For example, as shown in the top row,
(National Department of Environmental Protection)
and (The Central Propaganda Department)
are two organization names, but they are incorrectly
merged into a single word.

As for the following three rows, (Chen Yao)
and (Chen Fei) are person names. They are
wrongly segmented because we lack the features to
capture the information of person names (such use-
ful knowledge, e.g., common surname list, are cur-
rently not used in our system). In the future, such
errors may be solved by integrating open resources
into our system. (Vasillis) is a transliter-
ated foreign location name and is also wrongly seg-
mented.

For the corpora that considered 4 character idioms
as a word, our system successfully combined most
of new idioms together. This differs greatly from the
results of CRFs. However, there are still a number
of new idioms that failed to be correctly segmented,
as listed from the fifth row to the seventh row.

Finally, some errors are due to inconsistencies in
the gold segmentation. For example, // (pro-
pagandist) is two words, but a word with similar
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structure, (theorist), is one word.
(desertification) is one word, but its synonym,

// (desertification), is two words in the gold seg-
mentation.

5 Conclusion and Future Work

We presented a latent variable model for Chinese
word segmentation, which used hybrid information
based on both word and character sequences. We
discussed that word and character information have
different advantages, and could be complementary
to each other. Our model is an alternative to the ex-
isting word based models and character based mod-
els.

We argued that using latent variables can better
capture long range dependencies. We performed
experiments and demonstrated that our model can
indeed improve the segmentation accuracy on long
words. With this improvement, tests on the data
of the Second International Chinese Word Segmen-
tation Bakeoff show that our system is competitive
with the best in the literature.

Since the latent variable model allows a wide
range of features, so the future work will consider
how to integrate open resources into our system. The
latent variable model handles latent-dependencies
naturally, and can be easily extended to other label-
ing tasks.
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Abstract

We present an unsupervised approach to re-
constructing ancient word forms. The present
work addresses three limitations of previous
work. First, previous work focused on faith-
fulness features, which model changes be-
tween successive languages. We add marked-
ness features, which model well-formedness
within each language. Second, we introduce
universal features, which support generaliza-
tions across languages. Finally, we increase
the number of languages to which these meth-
ods can be applied by an order of magni-
tude by using improved inference methods.
Experiments on the reconstruction of Proto-
Oceanic, Proto-Malayo-Javanic, and Classical
Latin show substantial reductions in error rate,
giving the best results to date.

1 Introduction

A central problem in diachronic linguistics is the re-
construction of ancient languages from their modern
descendants (Campbell, 1998). Here, we consider
the problem of reconstructing phonological forms,
given a known linguistic phylogeny and known cog-
nate groups. For example, Figure 1 (a) shows a col-
lection of word forms in several Oceanic languages,
all meaning to cry. The ancestral form in this case
has been presumed to be /taNis/ in Blust (1993). We
are interested in models which take as input many
such word tuples, each representing a cognate group,
along with a language tree, and induce word forms
for hidden ancestral languages.

The traditional approach to this problem has been
the comparative method, in which reconstructions
are done manually using assumptions about the rel-
ative probability of different kinds of sound change
(Hock, 1986). There has been work attempting to
automate part (Durham and Rogers, 1969; Eastlack,
1977; Lowe and Mazaudon, 1994; Covington, 1998;

Kondrak, 2002) or all of the process (Oakes, 2000;
Bouchard-Côté et al., 2008). However, previous au-
tomated methods have been unable to leverage three
important ideas a linguist would employ. We ad-
dress these omissions here, resulting in a more pow-
erful method for automatically reconstructing an-
cient protolanguages.

First, linguists triangulate reconstructions from
many languages, while past work has been lim-
ited to small numbers of languages. For example,
Oakes (2000) used four languages to reconstruct
Proto-Malayo-Javanic (PMJ) and Bouchard-Côté et
al. (2008) used two languages to reconstruct Clas-
sical Latin (La). We revisit these small datasets
and show that our method significantly outperforms
these previous systems. However, we also show that
our method can be applied to a much larger data
set (Greenhill et al., 2008), reconstructing Proto-
Oceanic (POc) from 64 modern languages. In ad-
dition, performance improves with more languages,
which was not the case for previous methods.

Second, linguists exploit knowledge of phonolog-
ical universals. For example, small changes in vowel
height or consonant place are more likely than large
changes, and much more likely than change to ar-
bitrarily different phonemes. In a statistical system,
one could imagine either manually encoding or auto-
matically inferring such preferences. We show that
both strategies are effective.

Finally, linguists consider not only how languages
change, but also how they are internally consistent.
Past models described how sounds do (or, more of-
ten, do not) change between nodes in the tree. To
borrow broad terminology from the Optimality The-
ory literature (Prince and Smolensky, 1993), such
models incorporated faithfulness features, captur-
ing the ways in which successive forms remained
similar to one another. However, each language
has certain regular phonotactic patterns which con-
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strain these changes. We encode such patterns us-
ing markedness features, characterizing the internal
phonotactic structure of each language. Faithfulness
and markedness play roles analogous to the channel
and language models of a noisy-channel system. We
show that markedness features improve reconstruc-
tion, and can be used efficiently.

2 Related work

Our focus in this section is on describing the prop-
erties of the two previous systems for reconstruct-
ing ancient word forms to which we compare our
method. Citations for other related work, such as
similar approaches to using faithfulness and marked-
ness features, appear in the body of the paper.

In Oakes (2000), the word forms in a given pro-
tolanguage are reconstructed using a Viterbi multi-
alignment between a small number of its descendant
languages. The alignment is computed using hand-
set parameters. Deterministic rules characterizing
changes between pairs of observed languages are ex-
tracted from the alignment when their frequency is
higher than a threshold, and a proto-phoneme inven-
tory is built using linguistically motivated rules and
parsimony. A reconstruction of each observed word
is first proposed independently for each language. If
at least two reconstructions agree, a majority vote
is taken, otherwise no reconstruction is proposed.
This approach has several limitations. First, it is not
tractable for larger trees, since the time complexity
of their multi-alignment algorithm grows exponen-
tially in the number of languages. Second, deter-
ministic rules, while elegant in theory, are not robust
to noise: even in experiments with only four daugh-
ter languages, a large fraction of the words could not
be reconstructed.

In Bouchard-Côté et al. (2008), a stochastic model
of sound change is used and reconstructions are in-
ferred by performing probabilistic inference over an
evolutionary tree expressing the relationships be-
tween languages. The model does not support gener-
alizations across languages, and has no way to cap-
ture phonotactic regularities within languages. As a
consequence, the resulting method does not scale to
large phylogenies. The work we present here ad-
dresses both of these issues, with a richer model
and faster inference allowing improved reconstruc-

tion and increased scale.

3 Model

We start this section by introducing some notation.
Let τ be a tree of languages, such as the examples
in Figure 3 (c-e). In such a tree, the modern lan-
guages, whose word forms will be observed, are the
leaves of τ . All internal nodes, particularly the root,
are languages whose word forms are not observed.
Let L denote all languages, modern and otherwise.
All word forms are assumed to be strings Σ∗ in the
International Phonological Alphabet (IPA).1

We assume that word forms evolve along the
branches of the tree τ . However, it is not the case
that each cognate set exists in each modern lan-
guage. Formally, we assume there to be a known
list of C cognate sets. For each c ∈ {1, . . . , C}
let L(c) denote the subset of modern languages that
have a word form in the c-th cognate set. For each
set c ∈ {1, . . . , C} and each language ` ∈ L(c), we
denote the modern word form by wc`. For cognate
set c, only the minimal subtree τ(c) containing L(c)
and the root is relevant to the reconstruction infer-
ence problem for that set.

From a high-level perspective, the generative pro-
cess is quite simple. Let c be the index of the cur-
rent cognate set, with topology τ(c). First, a word
is generated for the root of τ(c) using an (initially
unknown) root language model (distribution over
strings). The other nodes of the tree are drawn incre-
mentally as follows: for each edge `→ `′ in τ(c) use
a branch-specific distribution over changes in strings
to generate the word at node `′.

In the remainder of this section, we clarify the ex-
act form of the conditional distributions over string
changes, the distribution over strings at the root, and
the parameterization of this process.

3.1 Markedness and Faithfulness

In Optimality Theory (OT) (Prince and Smolensky,
1993), two types of constraints influence the selec-
tion of a realized output given an input form: faith-
fulness and markedness constraints. Faithfulness en-

1The choice of a phonemic representation is motivated by
the fact that most of the data available comes in this form. Dia-
critics are available in a smaller number of languages and may
vary across dialects, so we discarded them in this work.
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Language Word form
Proto Oceanic /taNis/

Lau /aNi/
Kwara’ae /angi/

Taiof /taNis/

Table 1: A cognate set from the Austronesian dataset. All
word forms mean to cry.

constrain these changes. We encode such patterns
using markedness features, characterizing the inter-
nal phonotactic structure of each language. Faith-
fulness and markedness play roles analogous to the
channel and language models of a noisy-channel
system. We show that markedness features greatly
improve reconstruction quality, and we show how to
work with them efficiently.

2 Related Work

Our focus in this section is on describing the prop-
erties of the two previous systems for reconstruct-
ing ancient word forms to which we compare our
method. Citations for other related work, such as
similar approaches to using faithfulness and marked-
ness features, appear in the body of the paper.

In Oakes (2000), the word forms in a given proto-
language are reconstructed using a Viterbi multi-
alignment between a small number of its descendant
languages. The alignment is computed using hand-
set parameters. Deterministic rules characterizing
changes between pairs of observed languages are ex-
tracted from the alignment when their frequency is
higher than a threshold, and a proto-phoneme inven-
tory is built using linguistically motivated rules and
parsimony. A reconstruction of each observed word
is first proposed independently for each language. If
at least two reconstructions agree, a majority vote
is taken, otherwise no reconstruction is proposed.
This approach has several limitations. First, it is
not tractable for larger trees since the complexity of
the multi-alignment algorithm grows exponentially
in the number of languages. Second, determinis-
tic rules, while elegant in theory, are not robust to
noise: even in experiments with only four daughter
languages, a large fraction of the words could not be
reconstructed.

In Bouchard-Côté et al. (2008), a stochastic model
of sound change is used and reconstructions are in-

ferred by performing probabilistic inference over an
evolutionary tree expressing the relationships be-
tween languages. Use of approximate inference and
stochastic rules addresses some of the limitations of
(Oakes, 2000), but the resulting method is computa-
tionally demanding and consequently does not scale
to large phylogenies. The high computational cost
of probabilistic inference also limits the features that
can be included in the model (omitting global fea-
tures supporting generalizations across languages,
and markedness features within languages). The
work we present here addresses both of these issues,
with faster inference and a richer model allowing in-
creased scale and improved reconstruction.

3 Model

We start this section by introducing some notation.
Let τ be a tree of languages, such as the examples in
Figure 4 (c-e). In such a tree, the modern languages,
whose word forms will be observed, are the leaves
"1 . . . "m. All internal nodes, particularly the root,
are languages " whose word forms are not observed.
Let L denote all languages, modern and otherwise.
All word forms are assumed to be strings Σ∗ in the
International Phonological Alphabet (IPA).1

As a first approximation, we assume that word
forms evolve along the branches of the tree τ . How-
ever, it is not the case that each cognate set exists
in each modern langugage. Formally, we assume
there to be a known list of C cognate sets. For each
c ∈ {1, . . . , C} let L(c) denote the subset of mod-
ern languages that have a word form in the c-th cog-
nate set. For each set c ∈ {1, . . . , C} and each lan-
guage " ∈ L(c), we denote the modern word form
by wc!. For cognate set c, only the minimal subtree
τ(c) containing L(c) and the root is relevant to the
reconstruction inference problem for that set.

From a high-level perspective, the generative pro-
cess is quite simple. Let c be the index of the cur-
rent cognate set, with topology τ(c). First, a word
is generated for the root of τ(c) using an (initially
unknown) root language model (distribution over
strings). The other nodes of the tree are drawn in-
crementally as follows: for each edge "→ "′ in τ(c)

1The choice of a phonemic representation is motivated by
the fact that most of the data available comes in this form. Dia-
critics are available in a smaller number of languages and may
vary across dialects, so we discarted them in this work.

(a) (b)

(f)

(c)

(d)(e)
..?

Figure 1: (a) A cognate set from the Austronesian dataset.
All word forms mean to cry. (b-d) The mutation model
used in this paper. (b) The mutation of POc /taNis/ to
Kw. /angi/. (c) Graphical model depicting the dependen-
cies among variables in one step of the mutation Markov
chain. (d) Active features for one step in this process.
(e-f) Comparison of two inference procedures on trees:
Single sequence resampling (e) draws one sequence at a
time, conditioned on its parent and children, while ances-
try resampling (f) draws an aligned slice from all words
simultaneously. In large trees, the latter is more efficient
than the former.

courages similarity between the input and output
while markedness favors well-formed output.

Viewed from this perspective, previous computa-
tional approaches to reconstruction are based almost
exclusively on faithfulness, expressed through a mu-
tation model. Only the words in the language at the
root of the tree, if any, are explicitly encouraged to
be well-formed. In contrast, we incorporate con-
straints on markedness for each language with both
general and branch-specific constraints on faithful-
ness. This is done using a lexicalized stochastic
string transducer (Varadarajan et al., 2008).

We now make precise the conditional distribu-
tions over pairs of evolving strings, referring to Fig-
ure 1 (b-d). Consider a language `′ evolving to `
for cognate set c. Assume we have a word form
x = wcl′ . The generative process for producing
y = wcl works as follows. First, we consider
x to be composed of characters x1x2 . . . xn, with
the first and last being a special boundary symbol
x1 = # ∈ Σ which is never deleted, mutated, or
created. The process generates y = y1y2 . . . yn in
n chunks yi ∈ Σ∗, i ∈ {1, . . . , n}, one for each xi.

The yi’s may be a single character, multiple charac-
ters, or even empty. In the example shown, all three
of these cases occur.

To generate yi, we define a mutation Markov
chain that incrementally adds zero or more charac-
ters to an initially empty yi. First, we decide whether
the current phoneme in the top word t = xi will be
deleted, in which case yi = ε as in the example of
/s/ being deleted. If t is not deleted, we chose a sin-
gle substitution character in the bottom word. This
is the case both when /a/ is unchanged and when /N/
substitutes to /n/. We write S = Σ∪{ζ} for this set
of outcomes, where ζ is the special outcome indi-
cating deletion. Importantly, the probabilities of this
multinomial can depend on both the previous char-
acter generated so far (i.e. the rightmost character
p of yi−1) and the current character in the previous
generation string (t). As we will see shortly, this al-
lows modelling markedness and faithfulness at every
branch, jointly. This multinomial decision acts as
the initial distribution of the mutation Markov chain.

We consider insertions only if a deletion was not
selected in the first step. Here, we draw from a
multinomial over S , where this time the special out-
come ζ corresponds to stopping insertions, and the
other elements of S correspond to symbols that are
appended to yi. In this case, the conditioning envi-
ronment is t = xi and the current rightmost symbol
p in yi. Insertions continue until ζ is selected. In
the example, we follow the substitution of /N/ to /n/
with an insertion of /g/, followed by a decision to
stop that yi. We will use θS,t,p,` and θI,t,p,` to denote
the probabilities over the substitution and insertion
decisions in the current branch `′ → `.

A similar process generates the word at the root
` of a tree, treating this word as a single string
y1 generated from a dummy ancestor t = x1. In
this case, only the insertion probabilities matter, and
we separately parameterize these probabilities with
θR,t,p,`. There is no actual dependence on t at the
root, but this formulation allows us to unify the pa-
rameterization, with each θω,t,p,` ∈ R|Σ|+1 where
ω ∈ {R,S, I}.

3.2 Parameterization
Instead of directly estimating the transition proba-
bilities of the mutation Markov chain (as the param-
eters of a collection of multinomial distributions) we
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express them as the output of a log-linear model. We
used the following feature templates:

OPERATION identifies whether an operation in the
mutation Markov chain is an insertion, a deletion,
a substitution, a self-substitution (i.e. of the form
x → y, x = y), or the end of an insertion event.
Examples in Figure 1 (d): 1[Subst] and 1[Insert].

MARKEDNESS consists of language-specific n-
gram indicator functions for all symbols in Σ. Only
unigram and bigram features are used for computa-
tional reasons, but we show in Section 5 that this
already captures important constraints. Examples in
Figure 1 (d): the bigram indicator 1[(n g)@Kw] (Kw
stands for Kwara’ae, a language of the Solomon
Islands), the unigram indicators 1[(n)@Kw] and
1[(g)@Kw].

FAITHFULNESS consists of indicators for muta-
tion events of the form 1[x → y], where x ∈ Σ,
y ∈ S . Examples: 1[N→ n], 1[N→ n@Kw].

Feature templates similar to these can be found
for instance in Dreyer et al. (2008) and Chen (2003),
in the context of string-to-string transduction. Note
also the connection with stochastic OT (Goldwater
and Johnson, 2003; Wilson, 2006), where a log-
linear model mediates markedness and faithfulness
of the production of an output form from an under-
lying input form.

3.3 Parameter sharing
Data sparsity is a significant challenge in protolan-
guage reconstruction. While the experiments we
present here use an order of magnitude more lan-
guages than previous computational approaches, the
increase in observed data also brings with it addi-
tional unknowns in the form of intermediate pro-
tolanguages. Since there is one set of parameters
for each language, adding more data is not sufficient
for increasing the quality of the reconstruction: we
show in Section 5.2 that adding extra languages can
actually hurt reconstruction using previous methods.
It is therefore important to share parameters across
different branches in the tree in order to benefit from
having observations from more languages.

As an example of useful parameter sharing, con-
sider the faithfulness features 1[/p/ → /b/] and
1[/p/ → /r/], which are indicator functions for the
appearance of two substitutions for /p/. We would
like the model to learn that the former event (a sim-

ple voicing change) should be preferred over the lat-
ter. In Bouchard-Côté et al. (2008), this has to be
learned for each branch in the tree. The difficulty is
that not all branches will have enough information
to learn this preference, meaning that we need to de-
fine the model in such a way that it can generalize
across languages.

We used the following technique to address this
problem: we augment the sufficient statistics of
Bouchard-Côté et al. (2008) to include the current
language (or language at the bottom of the current
branch) and use a single, global weight vector in-
stead of a set of branch-specific weights. Gener-
alization across branches is then achieved by using
features that ignore `, while branch-specific features
depend on `.

For instance, in Figure 1 (d), 1[N → n] is
an example of a universal (global) feature shared
across all branches while 1[N → n@Kw] is branch-
specific. Similarly, all of the features in OPERA-
TION, MARKEDNESS and FAITHFULNESS have uni-
versal and branch-specific versions.

3.4 Objective function
Concretely, the transition probabilities of the muta-
tion and root generation are given by:

θω,t,p,`(ξ) =
exp{〈λ, f(ω, t, p, `, ξ)〉}

Z(ω, t, p, `, λ)
× µ(ω, t, ξ),

where ξ ∈ S , f : {S, I,R}×Σ×Σ×L×S → Rk

is the sufficient statistics or feature function, 〈·, ·〉
denotes inner product and λ ∈ Rk is a weight vector.
Here, k is the dimensionality of the feature space of
the log-linear model. In the terminology of exponen-
tial families, Z and µ are the normalization function
and reference measure respectively:

Z(ω, t, p, `, λ) =
∑

ξ′∈S

exp{〈λ, f(ω, t, p, `, ξ′)〉}

µ(ω, t, ξ) =





0 if ω = S, t = #, ξ 6= #
0 if ω = R, ξ = ζ
0 if ω 6= R, ξ = #
1 o.w.

Here, µ is used to handle boundary conditions.
We will also need the following notation: let

Pλ(·),Pλ(·|·) denote the root and branch probabil-
ity models described in Section 3.1 (with transition
probabilities given by the above log-linear model),
I(c), the set of internal (non-leaf) nodes in τ(c),
pa(`), the parent of language `, r(c), the root of τ(c)
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and W (c) = (Σ∗)|I(c)|. We can summarize our ob-
jective function as follows:

CX
c=1

log
X

~w∈W (c)

Pλ(wc,r(c))
Y

`∈I(c)

Pλ(wc,`|wc,pa(`)) −
||λ||22
2σ2

The second term is a standard L2 regularization
penalty (we used σ2 = 1).

4 Learning algorithm

Learning is done using a Monte Carlo variant of the
Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977). The M step is convex and com-
puted using L-BFGS (Liu et al., 1989); but the E
step is intractable (Lunter et al., 2003), so we used
a Markov chain Monte Carlo (MCMC) approxima-
tion (Tierney, 1994). At E step t = 1, 2, . . . , we
simulated the chain for O(t) iterations; this regime
is necessary for convergence (Jank, 2005).

In the E step, the inference problem is to com-
pute an expectation under the posterior over strings
in a protolanguage given observed word forms at the
leaves of the tree. The typical approach in biology
or historical linguistics (Holmes and Bruno, 2001;
Bouchard-Côté et al., 2008) is to use Gibbs sam-
pling, where the entire string at a single node in the
tree is sampled, conditioned on its parent and chil-
dren. This sampling domain is shown in Figure 1 (e),
where the middle word is completely resampled but
adjacent words are fixed. We will call this method
Single Sequence Resampling (SSR). While concep-
tually simple, this approach suffers from problems
in large trees (Holmes and Bruno, 2001). Con-
sequently, we use a different MCMC procedure,
called Ancestry Resampling (AR) that alleviates
the mixing problems (Figure 1 (f)). This method
was originally introduced for biological applications
(Bouchard-Côté et al., 2009), but commonalities be-
tween the biological and linguistic cases make it
possible to use it in our model.

Concretely, the problem with SSR arises when the
tree under consideration is large or unbalanced. In
this case, it can take a long time for information
from the observed languages to propagate to the root
of the tree. Indeed, samples at the root will ini-
tially be independent of the observations. AR ad-
dresses this problem by resampling one thin vertical
slice of all sequences at a time, called an ancestry.
For the precise definition, see Bouchard-Côté et al.

(2009). Slices condition on observed data, avoiding
the problems mentioned above, and can propagate
information rapidly across the tree.

5 Experiments

We performed a comprehensive set of experiments
to test the new method for reconstruction outlined
above. In Section 5.1, we analyze in isolation the
effects of varying the set of features, the number of
observed languages, the topology, and the number
of iterations of EM. In Section 5.2 we compare per-
formance to an oracle and to three other systems.

Evaluation of all methods was done by computing
the Levenshtein distance (Levenshtein, 1966) be-
tween the reconstruction produced by each method
and the reconstruction produced by linguists. We
averaged this distance across reconstructed words to
report a single number for each method. We show
in Table 2 the average word length in each corpus;
note that the Latin average is much larger, giving
an explanation to the higher errors in the Romance
dataset. The statistical significance of all perfor-
mance differences are assessed using a paired t-test
with significance level of 0.05.

5.1 Evaluating system performance

We used the Austronesian Basic Vocabulary
Database (Greenhill et al., 2008) as the basis for
a series of experiments used to evaluate the per-
formance of our system and the factors relevant to
its success. The database includes partial cognacy
judgments and IPA transcriptions, as well as a few
reconstructed protolanguages. A reconstruction of
Proto-Oceanic (POc) originally developed by Blust
(1993) using the comparative method was the basis
for evaluation.

We used the cognate information provided in
the database, automatically constructing a global
tree2 and set of subtrees from the cognate set in-
dicator matrix M(`, c) = 1[` ∈ L(c)], c ∈
{1, . . . , C}, ` ∈ L. For constructing the global tree,
we used the implementation of neighbor joining in
the Phylip package (Felsenstein, 1989). We used
a distance based on cognates overlap, dc(`1, `2) =∑C

c=1M(`1, c)M(`2, c). We bootstrapped 1000

2The dataset included a tree, but it was out of date as of
November 2008 (Greenhill et al., 2008).
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Figure 3: Phylogenetic trees for three language families.
Clockwise, from the top left: Romance, Austronesian and
Proto-Malayo-Javanic.

formance of our system and the factors relevant to
its success. The database contained, as of Novem-
ber 2008, 124,468 lexical items from 587 languages
mostly from the Austronesian language family. The
database includes partial cognacy judgments and
IPA transcriptions, as well as a few reconstructed
proto-languages. A reconstruction of Proto Oceanic
(POc) originally developed by (Blust, 1993) using
the comparative method was the basis for evaluation.

We used the cognate information provided in the
database, automatically constructing a global tree2

and set of subtrees from the cognate set indicator
matrix M(!, c) = 1[! ∈ L(c)], c ∈ {1, . . . , C}, ! ∈
L. For constructing the global tree, we used the
implementation of neighbor joining in the Phylip
package (Felsenstein, 1989). The distance ma-
trix used the Hamming distance of cognate indi-
cators, dc(!1, !2) =

∑C
c=1 M(!1, c)M(!2, c). We

bootstrapped 1000 samples and formed an accurate
(90%) consensus tree. The tree obtained is not bi-
nary, but the AR inference algorithm scales linearly
in the branching factor of the tree (in contrast, SSR
scales exponentially (Lunter et al., 2003)).

The first claim we verified experimentally is that
having more observed languages aids reconstruction
of proto-languages. To test this hypothesis we added
observed modern languages in increasing order of
distance dc to the target reconstruction of POc so
that the languages that are most useful for POc re-
construction are added first. This prevents the ef-
fects of adding a close language after several distant

2The dataset included a tree, but as of November 2008, it
was generated automatically and “has [not] been updated in a
while.”

0 10 20 30 40 50 60 70
1.4

1.6

1.8

2

2.2

2.4

2.6

Number of modern languages

E
rr

o
r

Figure 4: Mean distance to the target reconstruction of
proto Oceanic as a function of the number of modern lan-
guages used by the inference procedure.

ones being confused with an improvement produced
by increasing the number of languages.

The results are reported in Figure 4. They con-
firm that large-scale inference is desirable for auto-
matic proto-language reconstruction: going from 2-
to-4, 4-to-8, 8-to-16, 16-to-32 languages all signifi-
cantly helped reconstruction. There was still an av-
erage edit distance improvement of 0.05 from 32 to
64 languages, altough this was not statistically sig-
nificant.

We then conducted a number of experiments in-
tended to assess the robustness of the system, and to
identify the contribution made by different factors it
incorporates. First, we ran the system with 20 dif-
ferent random seeds and assessed the stability of the
solution found. In each cases, learning was stable
and helded performances. See Figure 5.

Next, we found that all of the following ablations
significantly hurts reconstruction: using a flat tree
in which all languages are equidistant from the re-
constructed root and from each other instead of the
consensus tree, dropping the markedness features,
disabling sharing across branches and dropping the
faithfulness features. The results of these experi-
ments are shown in Table 2.

For comparison, we also included in the same
table the performance of a semi-supervised system
trained by K-fold validation. The system was ran
K time, with disjoint 1 − K−1 of the POc. words
given to the system (as observations in the graph-

Condition Edit dist.
Unsupervised full system 1.87
-FAITHFULNESS 2.02
-MARKEDNESS 2.18
-Sharing 1.99
-Topology 2.06
Semi-supervised system 1.75

Table 2: Effects of ablation of various aspects of our
unsupervised system on mean edit distance to proto
Oceanic. -Sharing corresponds to the subset of the fea-
tures in OPERATION, FAITHFULNESS and MARKEDNESS
that condition on the current language, -Topology corre-
sponds to using a flat topology where the only edges in
the tree connect modern languages to proto Oceanic. The
semi-supervised system is described in the text. All dif-
ferences (compared to the unsupervised full system) are
statistically significant.

ical model) for each run. It is semi-supervised in
the sense that gold reconstruction for many internal
nodes are not available (such as the common ances-
tor of Kw. and Lau in Figure 6).3

Figure 6 shows the results of a concrete run over
32 languages, zooming in to a pair of the Solomonic
languages and the cognate set from Table 1. In the
example shown, the reconstruction is as good as the
oracle, though off by one character (the final /s/ is
not present in any of the 32 inputs and therefore
is not reconstructed). The diagrams show, for both
the global and the local features, the expectations
of each substitution superimposed on an IPA sound
chart, as well as a list of the top changes. Darker
lines indicate higher counts. This run did not use
natural class constraints, but it can be seen that lin-
guistically plausible substitutions are learned. The
global features prefer a range of voicing changes,
manner changes, adjacent vowel motion, and so on,
including mutations like /s/ to /h/ which are common
but poorly represented in a naive attribute-based nat-
ural class scheme. On the other hand, the features lo-
cal to the language Kwara’ae (Kw.) pick out the sub-
set of these changes which are active in that branch,
such as /s/→/t/ fortition.

3We also tried a fully supervised system where a flat topol-
ogy is used so that all of these latent internal nodes are avoided;
but it did not perform as well.
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Figure 5: Mean distance to the target reconstruction of
POc as a function of the EM iteration.

5.2 Comparisons against other methods

The first two competing methods, PRAGUE and
BCLKG, are described in Oakes (2000) and
Bouchard-Côté et al. (2008) respectively and sum-
marized them in Section 1. Neither approach scales
well to large datasets. In the first case, the bottleneck
is the complexity of computing multi-alignments
without guide trees and the vanishing probability
that independent reconstructions agree. In the sec-
ond case, the problem comes from slow mixing of
the inference algorithm and the unregularized pro-
liferation of parameters. For this reason, we built a
third baseline that scales well in large datasets.

This third baseline, CENTROID, computes the
centroid of the observed word forms in Leven-
shtein distance. Let L(x, y) denote the Lev-
enshtein distance between word forms x and
y. Ideally, we would like the baseline to
return argminx∈Σ∗

∑
y∈O L(x, y), where O =

{y1, . . . , y|O|} is the set of observed word forms.
Note that the optimum is not changed if we restrict
the minimization to be taken on x ∈ Σ(O)∗ such
that m ≤ |x| ≤ M where m = mini |yi|,M =
maxi |yi| and Σ(O) is the set of characters occurring
in O. Even with this restriction, this optimization
is intractable. As an approximation, we considered
only strings built by at most k contiguous substrings
taken from the word forms in O. If k = 1, then it
is equivalent to taking the min over x ∈ O. At the
other end of the spectrum, if k = M , it is exact.
This scheme is exponential in k, but since words are
relatively short, we found that k = 2 often finds the
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Figure 2: Left: Mean distance to the target reconstruction
of POc as a function of the number of modern languages
used by the inference procedure. Right: Mean distance
and confidence intervals as a function of the EM iteration,
averaged over 20 random seeds and ran on 4 languages.

samples and formed an accurate (90%) consensus
tree. The tree obtained is not binary, but the AR
inference algorithm scales linearly in the branching
factor of the tree (in contrast, SSR scales exponen-
tially (Lunter et al., 2003)).

The first claim we verified experimentally is that
having more observed languages aids reconstruction
of protolanguages. To test this hypothesis we added
observed modern languages in increasing order of
distance dc to the target reconstruction of POc so
that the languages that are most useful for POc re-
construction are added first. This prevents the ef-
fects of adding a close language after several distant
ones being confused with an improvement produced
by increasing the number of languages.

The results are reported in Figure 2 (a). They con-
firm that large-scale inference is desirable for au-
tomatic protolanguage reconstruction: reconstruc-
tion improved statistically significantly with each in-
crease except from 32 to 64 languages, where the
average edit distance improvement was 0.05.

We then conducted a number of experiments in-
tended to assess the robustness of the system, and to
identify the contribution made by different factors it
incorporates. First, we ran the system with 20 dif-
ferent random seeds to assess the stability of the so-
lutions found. In each case, learning was stable and
accuracy improved during training. See Figure 2 (b).

Next, we found that all of the following ablations
significantly hurt reconstruction: using a flat tree (in
which all languages are equidistant from the recon-
structed root and from each other) instead of the con-
sensus tree, dropping the markedness features, drop-

Condition Edit dist.
Unsupervised full system 1.87
-FAITHFULNESS 2.02
-MARKEDNESS 2.18
-Sharing 1.99
-Topology 2.06
Semi-supervised system 1.75

Table 1: Effects of ablation of various aspects of our
unsupervised system on mean edit distance to POc.
-Sharing corresponds to the restriction to the subset of the
features in OPERATION, FAITHFULNESS and MARKED-
NESS that are branch-specific, -Topology corresponds to
using a flat topology where the only edges in the tree con-
nect modern languages to POc. The semi-supervised sys-
tem is described in the text. All differences (compared to
the unsupervised full system) are statistically significant.

ping the faithfulness features, and disabling sharing
across branches. The results of these experiments
are shown in Table 1.

For comparison, we also included in the same
table the performance of a semi-supervised system
trained by K-fold validation. The system was ran
K = 5 times, with 1−K−1 of the POc words given
to the system as observations in the graphical model
for each run. It is semi-supervised in the sense that
gold reconstruction for many internal nodes are not
available in the dataset (for example the common an-
cestor of Kwara’ae (Kw.) and Lau in Figure 3 (b)),
so they are still not filled.3

Figure 3 (b) shows the results of a concrete run
over 32 languages, zooming in to a pair of the
Solomonic languages and the cognate set from Fig-
ure 1 (a). In the example shown, the reconstruc-
tion is as good as the ORACLE (described in Sec-
tion 5.2), though off by one character (the final /s/
is not present in any of the 32 inputs and therefore
is not reconstructed). In (a), diagrams show, for
both the global and the local (Kwara’ae) features,
the expectations of each substitution superimposed
on an IPA sound chart, as well as a list of the top
changes. Darker lines indicate higher counts. This
run did not use natural class constraints, but it can

3We also tried a fully supervised system where a flat topol-
ogy is used so that all of these latent internal nodes are avoided;
but it did not perform as well—this is consistent with the
-Topology experiment of Table 1.
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be seen that linguistically plausible substitutions are
learned. The global features prefer a range of voic-
ing changes, manner changes, adjacent vowel mo-
tion, and so on, including mutations like /s/ to /h/
which are common but poorly represented in a naive
attribute-based natural class scheme. On the other
hand, the features local to the language Kwara’ae
pick out the subset of these changes which are ac-
tive in that branch, such as /s/→/t/ fortition.

5.2 Comparisons against other methods

The first two competing methods, PRAGUE and
BCLKG, are described in Oakes (2000) and
Bouchard-Côté et al. (2008) respectively and sum-
marized in Section 1. Neither approach scales well
to large datasets. In the first case, the bottleneck is
the complexity of computing multi-alignments with-
out guide trees and the vanishing probability that in-
dependent reconstructions agree. In the second case,
the problem comes from the unregularized prolifera-
tion of parameters and slow mixing of the inference
algorithm. For this reason, we built a third baseline
that scales well in large datasets.

This third baseline, CENTROID, computes the
centroid of the observed word forms in Leven-
shtein distance. Let L(x, y) denote the Lev-
enshtein distance between word forms x and
y. Ideally, we would like the baseline to
return argminx∈Σ∗

∑
y∈O L(x, y), where O =

{y1, . . . , y|O|} is the set of observed word forms.
Note that the optimum is not changed if we restrict
the minimization to be taken on x ∈ Σ(O)∗ such
that m ≤ |x| ≤ M where m = mini |yi|,M =
maxi |yi| and Σ(O) is the set of characters occurring
in O. Even with this restriction, this optimization
is intractable. As an approximation, we considered
only strings built by at most k contiguous substrings
taken from the word forms in O. If k = 1, then it
is equivalent to taking the min over x ∈ O. At the
other end of the spectrum, if k = M , it is exact.
This scheme is exponential in k, but since words are
relatively short, we found that k = 2 often finds the
same solution as higher values of k. The difference
was in all the cases not statistically significant, so we
report the approximation k = 2 in what follows.

We also compared against an oracle, denoted OR-
ACLE, which returns argminy∈OL(y, x∗), where x∗

is the target reconstruction. We will denote it by OR-

Comparison CENTROID PRAGUE BCLKG

Protolanguage POc PMJ La
Heldout (prop.) 243 (1.0) 79 (1.0) 293 (0.5)
Modern languages 70 4 2
Cognate sets 1321 179 583
Observed words 10783 470 1463
Mean word length 4.5 5.0 7.4

Table 2: Experimental setup: number of held-out proto-
word from (absolute and relative), of modern languages,
cognate sets and total observed words. The split for
BCLKG is the same as in Bouchard-Côté et al. (2008).

ACLE. This is superior to picking a single closest
language to be used for all word forms, but it is pos-
sible for systems to perform better than the oracle
since it has to return one of the observed word forms.

We performed the comparison against Oakes
(2000) and Bouchard-Côté et al. (2008) on the same
dataset and experimental conditions as those used in
the respective papers (see Table 2). Note that the
setup of Bouchard-Côté et al. (2008) provides super-
vision (half of the Latin word forms are provided);
all of the other comparisons are performed in a com-
pletely unsupervised manner.

The PMJ dataset was compiled by Nothofer
(1975), who also reconstructed the corresponding
protolanguage. Since PRAGUE is not guaranteed to
return a reconstruction for each cognate set, only 55
word forms could be directly compared to our sys-
tem. We restricted comparison to this subset of the
data. This favors PRAGUE since the system only pro-
poses a reconstruction when it is certain. Still, our
system outperformed PRAGUE, with an average dis-
tance of 1.60 compared to 2.02 for PRAGUE. The
difference is marginally significant, p = 0.06, partly
due to the small number of word forms involved.

We also exceeded the performance of BCLKG on
the Romance dataset. Our system’s reconstruction
had an edit distance of 3.02 to the truth against 3.10
for BCLKG. However, this difference was not signifi-
cant (p = 0.15). We think this is because of the high
level of noise in the data (the Romance dataset is the
only dataset we consider that was automatically con-
structed rather than curated by linguists). A second
factor contributing to this small difference may be
that the the experimental setup of BCLKG used very
few languages, while the performance of our system
improves markedly with more languages.
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Figure 3: (a) A visualization of two learned faithfulness parameters: on the top, from the universal features, on
the bottom, for one particular branch. Each pair of phonemes have a link with grayscale value proportional to the
expectation of a transition between them. The five strongest links are also included at the right. (b) A sample taken
from our POc experiments (see text). (c-e) Phylogenetic trees for three language families: Proto-Malayo-Javanic,
Austronesian and Romance.

We conducted another experiment to verify this
by running both systems in larger trees. Because the
Romance dataset had only three modern languages
transcribed in IPA, we used the Austronesian dataset
to perform the test. The results were all significant in
this setup: while our method went from an edit dis-
tance of 2.01 to 1.79 in the 4-to-8 languages exper-
iment described in Section 5.1, BCLKG went from
3.30 to 3.38. This suggests that more languages can
actually hurt systems that do not support parameter
sharing.

Since we have shown evidence that PRAGUE and
BCLKG do not scale well to large datasets, we
also compared against ORACLE and CENTROID in a
large-scale setting. Specifically, we compare to the
experimental setup on 64 modern languages used to
reconstruct POc described before. Encouragingly,
while the system’s average distance (1.49) does not
attain that of the ORACLE (1.13), we significantly
outperform the CENTROID baseline (1.79).

5.3 Incorporating prior linguistic knowledge

The model also supports the addition of prior lin-
guistic knowledge. This takes the form of feature
templates with more internal structure. We per-
formed experiments with an additional feature tem-
plate:

STRUCT-FAITHFULNESS is a structured version of
FAITHFULNESS, replacing x and y with their natu-
ral classes Nβ(x) and Nβ(y) where β indexes types
of classes, ranging over {manner, place, phonation,
isOral, isCentral, height, backness, roundedness}.
This feature set is reminiscent of the featurized rep-

resentation of Kondrak (2000).

We compared the performance of the system with
and without STRUCT-FAITHFULNESS to check if the
algorithm can recover the structure of natural classes
in an unsupervised fashion. We found that with
2 or 4 observed languages, FAITHFULNESS under-
performed STRUCT-FAITHFULNESS, but for larger
trees, the difference was not significant. FAITH-
FULNESS even slightly outperformed its structured
cousin with 16 observed languages.

6 Conclusion

By enriching our model to include important fea-
tures like markedness, and by scaling up to much
larger data sets than were previously possible, we
obtained substantial improvements in reconstruc-
tion quality, giving the best results on past data
sets. While many more complex phenomena are
still unmodeled, from reduplication to borrowing to
chained sound shifts, the current approach signifi-
cantly increases the power, accuracy, and efficiency
of automatic reconstruction.
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Abstract

We present a family of priors over probabilis-
tic grammar weights, called the shared logistic
normal distribution. This family extends the
partitioned logistic normal distribution, en-
abling factored covariance between the prob-
abilities of different derivation events in the
probabilistic grammar, providing a new way
to encode prior knowledge about an unknown
grammar. We describe a variational EM al-
gorithm for learning a probabilistic grammar
based on this family of priors. We then experi-
ment with unsupervised dependency grammar
induction and show significant improvements
using our model for both monolingual learn-
ing and bilingual learning with a non-parallel,
multilingual corpus.

1 Introduction

Probabilistic grammars have become an important
tool in natural language processing. They are most
commonly used for parsing and linguistic analy-
sis (Charniak and Johnson, 2005; Collins, 2003),
but are now commonly seen in applications like ma-
chine translation (Wu, 1997) and question answer-
ing (Wang et al., 2007). An attractive property of
probabilistic grammars is that they permit the use
of well-understood parameter estimation methods
for learning—both from labeled and unlabeled data.
Here we tackle the unsupervised grammar learning
problem, specifically for unlexicalized context-free
dependency grammars, using an empirical Bayesian
approach with a novel family of priors.

There has been an increased interest recently
in employing Bayesian modeling for probabilistic
grammars in different settings, ranging from putting
priors over grammar probabilities (Johnson et al.,

2007) to putting non-parametric priors over deriva-
tions (Johnson et al., 2006) to learning the set of
states in a grammar (Finkel et al., 2007; Liang et al.,
2007). Bayesian methods offer an elegant frame-
work for combining prior knowledge with data.
The main challenge in Bayesian grammar learning
is efficiently approximating probabilistic inference,
which is generally intractable. Most commonly vari-
ational (Johnson, 2007; Kurihara and Sato, 2006)
or sampling techniques are applied (Johnson et al.,
2006).

Because probabilistic grammars are built out of
multinomial distributions, the Dirichlet family (or,
more precisely, a collection of Dirichlets) is a natural
candidate for probabilistic grammars because of its
conjugacy to the multinomial family. Conjugacy im-
plies a clean form for the posterior distribution over
grammar probabilities (given the data and the prior),
bestowing computational tractability.

Following work by Blei and Lafferty (2006) for
topic models, Cohen et al. (2008) proposed an alter-
native to Dirichlet priors for probabilistic grammars,
based on the logistic normal (LN) distribution over
the probability simplex. Cohen et al. used this prior
to softly tie grammar weights through the covariance
parameters of the LN. The prior encodes informa-
tion about which grammar rules’ weights are likely
to covary, a more intuitive and expressive represen-
tation of knowledge than offered by Dirichlet distri-
butions.1

The contribution of this paper is two-fold. First,
from the modeling perspective, we present a gen-
eralization of the LN prior of Cohen et al. (2008),
showing how to extend the use of the LN prior to

1Although the task, underlying model, and weights being
tied were different, Eisner (2002) also showed evidence for the
efficacy of parameter tying in grammar learning.
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tie between any grammar weights in a probabilistic
grammar (instead of only allowing weights within
the same multinomial distribution to covary). Sec-
ond, from the experimental perspective, we show
how such flexibility in parameter tying can help in
unsupervised grammar learning in the well-known
monolingual setting and in a new bilingual setting
where grammars for two languages are learned at
once (without parallel corpora).

Our method is based on a distribution which we
call the shared logistic normal distribution, which
is a distribution over a collection of multinomials
from different probability simplexes. We provide a
variational EM algorithm for inference.

The rest of this paper is organized as follows. In
§2, we give a brief explanation of probabilistic gram-
mars and introduce some notation for the specific
type of dependency grammar used in this paper, due
to Klein and Manning (2004). In §3, we present our
model and a variational inference algorithm for it. In
§4, we report on experiments for both monolingual
settings and a bilingual setting and discuss them. We
discuss future work (§5) and conclude in §6.

2 Probabilistic Grammars and
Dependency Grammar Induction

A probabilistic grammar defines a probability dis-
tribution over grammatical derivations generated
through a step-by-step process. HMMs, for exam-
ple, can be understood as a random walk through
a probabilistic finite-state network, with an output
symbol sampled at each state. Each “step” of the
walk and each symbol emission corresponds to one
derivation step. PCFGs generate phrase-structure
trees by recursively rewriting nonterminal symbols
as sequences of “child” symbols (each itself either
a nonterminal symbol or a terminal symbol analo-
gous to the emissions of an HMM). Each step or
emission of an HMM and each rewriting operation
of a PCFG is conditionally independent of the other
rewriting operations given a single structural ele-
ment (one HMM or PCFG state); this Markov prop-
erty permits efficient inference for the probability
distribution defined by the probabilistic grammar.

In general, a probabilistic grammar defines the
joint probability of a string x and a grammatical

derivation y:

p(x,y | θ) =
K∏

k=1

Nk∏

i=1

θ
fk,i(x,y)
k,i (1)

= exp
K∑

k=1

Nk∑

i=1

fk,i(x,y) log θk,i

where fk,i is a function that “counts” the number
of times the kth distribution’s ith event occurs in
the derivation. The θ are a collection of K multi-
nomials 〈θ1, ...,θK〉, the kth of which includes Nk

events. Note that there may be many derivations y
for a given string x—perhaps even infinitely many
in some kinds of grammars.

2.1 Dependency Model with Valence
HMMs and PCFGs are the best-known probabilis-
tic grammars, but there are many others. In this
paper, we use the “dependency model with va-
lence” (DMV), due to Klein and Manning (2004).
DMV defines a probabilistic grammar for unla-
beled, projective dependency structures. Klein and
Manning (2004) achieved their best results with a
combination of DMV with a model known as the
“constituent-context model” (CCM). We do not ex-
periment with CCM in this paper, because it does
not fit directly in a Bayesian setting (it is highly defi-
cient) and because state-of-the-art unsupervised de-
pendency parsing results have been achieved with
DMV alone (Smith, 2006).

Using the notation above, DMV defines x =
〈x1, x2, ..., xn〉 to be a sentence. x0 is a special
“wall” symbol, $, on the left of every sentence. A
tree y is defined by a pair of functions yleft and
yright (both {0, 1, 2, ..., n} → 2{1,2,...,n}) that map
each word to its sets of left and right dependents,
respectively. Here, the graph is constrained to be a
projective tree rooted at x0 = $: each word except $
has a single parent, and there are no cycles or cross-
ing dependencies. yleft(0) is taken to be empty, and
yright(0) contains the sentence’s single head. Let
y(i) denote the subtree rooted at position i. The
probability P (y(i) | xi,θ) of generating this sub-
tree, given its head word xi, is defined recursively,
as described in Fig. 1 (Eq. 2).

The probability of the entire tree is given by
p(x,y | θ) = P (y(0) | $,θ). The θ are the multi-
nomial distributions θs(· | ·, ·, ·) and θc(· | ·, ·). To
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P (y(i) | xi,θ) =
∏
D∈{left ,right} θs(stop | xi,D , [yD(i) = ∅]) (2)

×∏j∈yD (i) θs(¬stop | xi,D ,firsty(j))× θc(xj | xi,D)× P (y(j) | xj ,θ)

Figure 1: The “dependency model with valence” recursive equation. firsty(j) is a predicate defined to be true iff xj is
the closest child (on either side) to its parent xi. The probability of the tree p(x,y | θ) = P (y(0) | $,θ).

follow the general setting of Eq. 1, we index these
distributions as θ1, ...,θK .

Headden et al. (2009) extended DMV so that the
distributions θc condition on the valence as well,
with smoothing, and showed significant improve-
ments for short sentences. Our experiments found
that these improvements do not hold on longer sen-
tences. Here we experiment only with DMV, but
note that our techniques are also applicable to richer
probabilistic grammars like that of Headden et al.

2.2 Learning DMV

Klein and Manning (2004) learned the DMV prob-
abilities θ from a corpus of part-of-speech-tagged
sentences using the EM algorithm. EM manipulates
θ to locally optimize the likelihood of the observed
portion of the data (here, x), marginalizing out the
hidden portions (here, y). The likelihood surface
is not globally concave, so EM only locally opti-
mizes the surface. Klein and Manning’s initializa-
tion, though reasonable and language-independent,
was an important factor in performance.

Various alternatives to EM were explored by
Smith (2006), achieving substantially more accu-
rate parsing models by altering the objective func-
tion. Smith’s methods did require substantial hyper-
parameter tuning, and the best results were obtained
using small annotated development sets to choose
hyperparameters. In this paper, we consider only
fully unsupervised methods, though we the Bayesian
ideas explored here might be merged with the bias-
ing approaches of Smith (2006) for further benefit.

3 Parameter Tying in the Bayesian Setting

As stated above, θ comprises a collection of multi-
nomials that weights the grammar. Taking the
Bayesian approach, we wish to place a prior on those
multinomials, and the Dirichlet family is a natural
candidate for such a prior because of its conjugacy,

which makes inference algorithms easier to derive.
For example, if we make a “mean-field assumption,”
with respect to hidden structure and weights, the
variational algorithm for approximately inferring the
distribution over θ and trees y resembles the tradi-
tional EM algorithm very closely (Johnson, 2007).
In fact, variational inference in this case takes an ac-
tion similar to smoothing the counts using the exp-Ψ
function during the E-step. Variational inference can
be embedded in an empirical Bayes setting, in which
we optimize the variational bound with respect to the
hyperparameters as well, repeating the process until
convergence.

3.1 Logistic Normal Distributions

While Dirichlet priors over grammar probabilities
make learning algorithms easy, they are limiting.
In particular, as noted by Blei and Lafferty (2006),
there is no explicit flexible way for the Dirichlet’s
parameters to encode beliefs about covariance be-
tween the probabilities of two events. To illustrate
this point, we describe how a multinomial θ of di-
mension d is generated from a Dirichlet distribution
with parameters α = 〈α1, ..., αd〉:

1. Generate ηj ∼ Γ(αj , 1) independently for j ∈
{1, ..., d}.

2. θj ← ηj/
∑

i ηi.

where Γ(α, 1) is a Gamma distribution with shape α
and scale 1.

Correlation among θi and θj , i 6= j, cannot be
modeled directly, only through the normalization
in step 2. In contrast, LN distributions (Aitchison,
1986) provide a natural way to model such correla-
tion. The LN draws a multinomial θ as follows:

1. Generate η ∼ Normal(µ,Σ).

2. θj ← exp(ηj)/
∑

i exp(ηi).
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I1 = {1:2, 3:6, 7:9} = { I1,1, I1,2, I1,L1 }
I2 = {1:2, 3:6} = { I2,1, I2,L2 }
I3 = {1:4, 5:7} = { I3,1, I3,L3 }
IN = {1:2} = { I4,L4 }

J1 J2 JK





partition struct. S

η1 = 〈η1,1, η1,2, η1,3, η1,4, η1,5, η1,6, η1,7, η1,8, η1,`1〉 ∼ Normal(µ1,Σ1)
η2 = 〈η2,1, η2,2, η2,3, η2,4, η2,5, η2,`2〉 ∼ Normal(µ2,Σ2)
η3 = 〈η3,1, η3,2, η3,3, η3,4, η3,5, η3,6, η3,`3〉 ∼ Normal(µ3,Σ3)
η4 = 〈η4,1, η4,`4〉 ∼ Normal(µ4,Σ4)





sample η

η̃1 = 1
3 〈η1,1 + η2,1 + η4,1, η1,2 + η2,2 + η4,2〉

η̃2 = 1
3 〈η1,3 + η2,3 + η3,1, η1,4 + η2,4 + η3,2, η1,5 + η2,5 + η3,3, η1,6 + η2,6 + η3,4〉

η̃3 = 1
2 〈η1,7 + η3,5, η1,8 + η3,6, η1,9 + η3,7〉



 combine η

θ1 = (exp η̃1)
/∑N1

i′=1 exp η̃1,i′

θ2 = (exp η̃2)
/∑N2

i′=1 exp η̃2,i′

θ3 = (exp η̃3)
/∑N3

i′=1 exp η̃3,i′





softmax

Figure 2: An example of a shared logistic normal distribution, illustrating Def. 1. N = 4 experts are used to sample
K = 3 multinomials; L1 = 3, L2 = 2, L3 = 2, L4 = 1, `1 = 9, `2 = 6, `3 = 7, `4 = 2, N1 = 2, N2 = 4, and
N3 = 3. This figure is best viewed in color.

Blei and Lafferty (2006) defined correlated topic
models by replacing the Dirichlet in latent Dirich-
let allocation models (Blei et al., 2003) with a LN
distribution. Cohen et al. (2008) compared Dirichlet
and LN distributions for learning DMV using em-
pirical Bayes, finding substantial improvements for
English using the latter.

In that work, we obtained improvements even
without specifying exactly which grammar proba-
bilities covaried. While empirical Bayes learning
permits these covariances to be discovered without
supervision, we found that by initializing the covari-
ance to encode beliefs about which grammar prob-
abilities should covary, further improvements were
possible. Specifically, we grouped the Penn Tree-
bank part-of-speech tags into coarse groups based
on the treebank annotation guidelines and biased
the initial covariance matrix for each child distri-
bution θc(· | ·, ·) so that the probabilities of child
tags from the same coarse group covaried. For ex-
ample, the probability that a past-tense verb (VBD)
has a singular noun (NN) as a right child may be
correlated with the probability that it has a plu-
ral noun (NNS) as a right child. Hence linguistic

knowledge—specifically, a coarse grouping of word
classes—can be encoded in the prior.

A per-distribution LN distribution only permits
probabilities within a multinomial to covary. We
will generalize the LN to permit covariance among
any probabilities in θ, throughout the model. For
example, the probability of a past-tense verb (VBD)
having a noun as a right child might correlate with
the probability that other kinds of verbs (VBZ, VBN,
etc.) have a noun as a right child.

The partitioned logistic normal distribution
(PLN) is a generalization of the LN distribution
that takes the first step towards our goal (Aitchison,
1986). Generating from PLN involves drawing a
random vector from a multivariate normal distribu-
tion, but the logistic transformation is applied to dif-
ferent parts of the vector, leading to sampled multi-
nomial distributions of the required lengths from
different probability simplices. This is in principle
what is required for arbitrary covariance between
grammar probabilities, except that DMV has O(t2)
weights for a part-of-speech vocabulary of size t, re-
quiring a very large multivariate normal distribution
with O(t4) covariance parameters.
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3.2 Shared Logistic Normal Distributions
To solve this problem, we suggest a refinement of
the class of PLN distributions. Instead of using a
single normal vector for all of the multinomials, we
use several normal vectors, partition each one and
then recombine parts which correspond to the same
multinomial, as a mixture. Next, we apply the lo-
gisitic transformation on the mixed vectors (each of
which is normally distributed as well). Fig. 2 gives
an example of a non-trivial case of using a SLN
distribution, where three multinomials are generated
from four normal experts.

We now formalize this notion. For a natural num-
ber N , we denote by 1:N the set {1, ..., N}. For a
vector in v ∈ RN and a set I ⊆ 1:N , we denote
by vI to be the vector created from v by using the
coordinates in I . Recall that K is the number of
multinomials in the probabilistic grammar, and Nk

is the number of events in the kth multinomial.
Definition 1. We define a shared logistic nor-
mal distribution with N “experts” over a collec-
tion of K multinomial distributions. Let ηn ∼
Normal(µn,Σn) be a set of multivariate normal
variables for n ∈ 1:N , where the length of ηn
is denoted `n. Let In = {In,j}Ln

j=1 be a parti-
tion of 1:`n into Ln sets, such that ∪Ln

j=1In,j =
1:`n and In,j ∩ In,j′ = ∅ for j 6= j′. Let Jk
for k ∈ 1:K be a collection of (disjoint) sub-
sets of {In,j | n ∈ 1:N, j ∈ 1:`n, |In,j | =
Nk}, such that all sets in Jk are of the same size,
Nk. Let η̃k = 1

|Jk|
∑

In,j∈Jk
ηn,In,j

, and θk,i =
exp(η̃k,i)

/∑
i′ exp(η̃k,i′) . We then say θ distributes

according to the shared logistic normal distribution
with partition structure S = ({In}Nn=1, {Jk}Kk=1)
and normal experts {(µn,Σn)}Nn=1 and denote it by
θ ∼ SLN(µ,Σ, S).

The partitioned LN distribution in Aitchison
(1986) can be formulated as a shared LN distribution
where N = 1. The LN collection used by Cohen et
al. (2008) is the special case where N = K, each
Ln = 1, each `k = Nk, and each Jk = {Ik,1}.

The covariance among arbitrary θk,i is not defined
directly; it is implied by the definition of the nor-
mal experts ηn,In,j

, for each In,j ∈ Jk. We note
that a SLN can be represented as a PLN by relying
on the distributivity of the covariance operator, and
merging all the partition structure into one (perhaps

sparse) covariance matrix. However, if we are inter-
ested in keeping a factored structure on the covari-
ance matrices which generate the grammar weights,
we cannot represent every SLN as a PLN.

It is convenient to think of each ηi,j as a weight
associated with a unique event’s probability, a cer-
tain outcome of a certain multinomial in the prob-
abilistic grammar. By letting different ηi,j covary
with each other, we loosen the relationships among
θk,j and permit the model—at least in principle—
to learn patterns from the data. Def. 1 also implies
that we multiply several multinomials together in a
product-of-experts style (Hinton, 1999), because the
exponential of a mixture of normals becomes a prod-
uct of (unnormalized) probabilities.

Our extension to the model in Cohen et al. (2008)
follows naturally after we have defined the shared
LN distribution. The generative story for this model
is as follows:

1. Generate θ ∼ SLN(µ,Σ, S), where θ is a col-
lection of vectors θk, k = 1, ...,K.

2. Generate x and y from p(x,y | θ) (i.e., sample
from the probabilistic grammar).

3.3 Inference

In this work, the partition structure S is known, the
sentences x are observed, the trees y and the gram-
mar weights θ are hidden, and the parameters of the
shared LN distribution µ and Σ are learned.2

Our inference algorithm aims to find the poste-
rior over the grammar probabilities θ and the hidden
structures (grammar trees y). To do that, we use
variational approximation techniques (Jordan et al.,
1999), which treat the problem of finding the pos-
terior as an optimization problem aimed to find the
best approximation q(θ,y) of the posterior p(θ,y |
x,µ,Σ, S). The posterior q needs to be constrained
to be within a family of tractable and manageable
distributions, yet rich enough to represent good ap-
proximations of the true posterior. “Best approx-
imation” is defined as the KL divergence between
q(θ,y) and p(θ,y | x,µ,Σ, S).

Our variational inference algorithm uses a mean-
field assumption: q(θ,y) = q(θ)q(y). The distri-
bution q(θ) is assumed to be a LN distribution with

2In future work, we might aim to learn S.
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log p(x | µ,Σ, S) ≥
(∑N

n=1 Eq [log p(ηk | µk,Σk)]
)

+
(∑K

k=1

∑Nk
i=1 f̃k,iψ̃k,i

)
+H(q)

︸ ︷︷ ︸
B

(3)

f̃k,i ,
∑

y q(y)fk,i(x,y) (4)

ψ̃k,i , µ̃Ck,i − log ζ̃k + 1− 1
ζ̃k

∑Nk
i′=1 exp

(
µ̃Ck,i +

(σ̃C
k,i)

2

2

)
(5)

µ̃Ck , 1
|Jk|
∑
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µ̃r,Ir,j (6)

(σ̃Ck )2 , 1
|Jk|2

∑
Ir,j∈Jk

σ̃2
r,Ir,j

(7)

Figure 3: Variational inference bound. Eq. 3 is the bound itself, using notation defined in Eqs. 4–7 for clarity. Eq. 4
defines expected counts of the grammar events under the variational distribution q(y), calculated using dynamic pro-
gramming. Eq. 5 describes the weights for the weighted grammar defined by q(y). Eq. 6 and Eq. 7 describe the mean
and the variance, respectively, for the multivariate normal eventually used with the weighted grammar. These values
are based on the parameterization of q(θ) by µ̃i,j and σ̃2

i,j . An additional set of variational parameters is ζ̃k, which
helps resolve the non-conjugacy of the LN distribution through a first order Taylor approximation.

all off-diagonal covariances fixed at zero (i.e., the
variational parameters consist of a single mean µ̃k,i
and a single variance σ̃2

k,i for each θk,i). There is
an additional variational parameter, ζ̃k per multino-
mial, which is the result of an additional variational
approximation because of the lack of conjugacy of
the LN distribution to the multinomial distribution.
The distribution q(y) is assumed to be defined by a
DMV with unnormalized probabilities ψ̃.

Inference optimizes the bound B given in Fig. 3
(Eq. 3) with respect to the variational parameters.
Our variational inference algorithm is derived simi-
larly to that of Cohen et al. (2008). Because we wish
to learn the values ofµ and Σ, we embed variational
inference as the E step within a variational EM algo-
rithm, shown schematically in Fig. 4. In our exper-
iments, we use this variational EM algorithm on a
training set, and then use the normal experts’ means
to get a point estimate for θ, the grammar weights.
This is called empirical Bayesian estimation. Our
approach differs from maximum a posteriori (MAP)
estimation, since we re-estimate the parameters of
the normal experts. Exact MAP estimation is prob-
ably not feasible; a variational algorithm like ours
might be applied, though better performance is ex-
pected from adjusting the SLN to fit the data.

4 Experiments

Our experiments involve data from two treebanks:
the Wall Street Journal Penn treebank (Marcus et

al., 1993) and the Chinese treebank (Xue et al.,
2004). In both cases, following standard practice,
sentences were stripped of words and punctuation,
leaving part-of-speech tags for the unsupervised in-
duction of dependency structure. For English, we
train on §2–21, tune on §22 (without using annotated
data), and report final results on §23. For Chinese,
we train on §1–270, use §301–1151 for development
and report testing results on §271–300.3

To evaluate performance, we report the fraction
of words whose predicted parent matches the gold
standard corpus. This performance measure is also
known as attachment accuracy. We considered two
parsing methods after extracting a point estimate
for the grammar: the most probable “Viterbi” parse
(argmaxy p(y | x,θ)) and the minimum Bayes risk
(MBR) parse (argminy Ep(y′|x,θ)[`(y;x,y′)]) with
dependency attachment error as the loss function
(Goodman, 1996). Performance with MBR parsing
is consistently higher than its Viterbi counterpart, so
we report only performance with MBR parsing.

4.1 Nouns, Verbs, and Adjectives

In this paper, we use a few simple heuristics to de-
cide which partition structure S to use. Our heuris-

3Unsupervised training for these datasets can be costly,
and requires iteratively running a cubic-time inside-outside dy-
namic programming algorithm, so we follow Klein and Man-
ning (2004) in restricting the training set to sentences of ten or
fewer words in length. Short sentences are also less structurally
ambiguous and may therefore be easier to learn from.
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Input: initial parameters µ(0), Σ(0), partition
structure S, observed data x, number of
iterations T

Output: learned parameters µ, Σ
t← 1 ;
while t ≤ T do

E-step (for ` = 1, ...,M ) do: repeat
optimize B w.r.t. µ̃`,(t)

r , r = 1, ..., N ;
optimize B w.r.t. σ̃`,(t)

r , r = 1, ..., N ;
update ζ̃`,(t)

r , r = 1, ..., N ;

update ψ̃
`,(t)

r , r = 1, ..., N ;
compute counts f̃ `,(t)

r , r = 1, ..., N ;
until convergence of B ;
M-step: optimize B w.r.t. µ(t) and Σ(t);
t← t+ 1;

end
return µ(T ), Σ(T )

Figure 4: Main details of the variational inference EM
algorithm with empirical Bayes estimation of µ and Σ.
B is the bound defined in Fig. 3 (Eq. 3). N is the number
of normal experts for the SLN distribution defining the
prior. M is the number of training examples. The full
algorithm is given in Cohen and Smith (2009).

tics rely mainly on the centrality of content words:
nouns, verbs, and adjectives. For example, in the En-
glish treebank, the most common attachment errors
(with the LN prior from Cohen et al., 2008) happen
with a noun (25.9%) or a verb (16.9%) parent. In
the Chinese treebank, the most common attachment
errors happen with noun (36.0%) and verb (21.2%)
parents as well. The errors being governed by such
attachments are the direct result of nouns and verbs
being the most common parents in these data sets.

Following this observation, we compare four dif-
ferent settings in our experiments (all SLN settings
include one normal expert for each multinomial on
its own, equivalent to the regular LN setting from
Cohen et al.):

• TIEV: We add normal experts that tie all proba-
bilities corresponding to a verbal parent (any par-
ent, using the coarse tags of Cohen et al., 2008).
Let V be the set of part-of-speech tags which be-
long to the verb category. For each direction D
(left or right), the set of multinomials of the form
θc(· | v,D), for v ∈ V , all share a normal expert.
For each direction D and each boolean value B

of the predicate firsty(·), the set of multinomials
θs(· | x,D , v), for v ∈ V share a normal expert.
• TIEN: This is the same as TIEV, only for nominal

parents.
• TIEV&N: Tie both verbs and nouns (in separate

partitions). This is equivalent to taking the union
of the partition structures of the above two set-
tings.
• TIEA: This is the same as TIEV, only for adjecti-

val parents.

Since inference for a model with parameter tying
can be computationally intensive, we first run the in-
ference algorithm without parameter tying, and then
add parameter tying to the rest of the inference algo-
rithm’s execution until convergence.

Initialization is important for the inference al-
gorithm, because the variational bound is a non-
concave function. For the expected values of the
normal experts, we use the initializer from Klein and
Manning (2004). For the covariance matrices, we
follow the setting in Cohen et al. (2008) in our ex-
periments also described in §3.1. For each treebank,
we divide the tags into twelve disjoint tag families.4

The covariance matrices for all dependency distri-
butions were initialized with 1 on the diagonal, 0.5
between tags which belong to the same family, and
0 otherwise. This initializer has been shown to be
more successful than an identity covariance matrix.

4.2 Monolingual Experiments
We begin our experiments with a monolingual set-
ting, where we learn grammars for English and Chi-
nese (separately) using the settings described above.

The attachment accuracy for this set of experi-
ments is described in Table 1. The baselines include
right attachment (where each word is attached to the
word to its right), MLE via EM (Klein and Man-
ning, 2004), and empirical Bayes with Dirichlet and
LN priors (Cohen et al., 2008). We also include a
“ceiling” (DMV trained using supervised MLE from
the training sentences’ trees). For English, we see
that tying nouns, verbs or adjectives improves per-
formance compared to the LN baseline. Tying both
nouns and verbs improves performance a bit more.

4These are simply coarser tags: adjective, adverb, conjunc-
tion, foreign word, interjection, noun, number, particle, prepo-
sition, pronoun, proper noun, verb.
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attachment acc. (%)
≤ 10 ≤ 20 all

E
ng

lis
h

Attach-Right 38.4 33.4 31.7
EM (K&M, 2004) 46.1 39.9 35.9
Dirichlet 46.1 40.6 36.9
LN (CG&S, 2008) 59.4 45.9 40.5
SLN, TIEV 60.2 46.2 40.0
SLN, TIEN 60.2 46.7 40.9
SLN, TIEV&N 61.3 47.4 41.4
SLN, TIEA 59.9 45.8 40.9
Biling. SLN, TIEV †61.6 47.6 41.7
Biling. SLN, TIEN †61.8 48.1 †42.1
Biling. SLN, TIEV&N 62.0 †48.0 42.2
Biling. SLN, TIEA 61.3 47.6 41.7
Supervised MLE 84.5 74.9 68.8

C
hi

ne
se

Attach-Right 34.9 34.6 34.6
EM (K&M, 2004) 38.3 36.1 32.7
Dirichlet 38.3 35.9 32.4
LN 50.1 40.5 35.8
SLN, TIEV †51.9 42.0 35.8
SLN, TIEN 43.0 38.4 33.7
SLN, TIEV&N 45.0 39.2 34.2
SLN, TIEA 47.4 40.4 35.2
Biling. SLN, TIEV †51.9 42.0 35.8
Biling. SLN, TIEN 48.0 38.9 33.8
Biling. SLN, TIEV&N †51.5 †41.7 35.3
Biling. SLN, TIEA 52.0 41.3 35.2
Supervised MLE 84.3 66.1 57.6

Table 1: Attachment accuracy of different models, on test
data from the Penn Treebank and the Chinese Treebank
of varying levels of difficulty imposed through a length
filter. Attach-Right attaches each word to the word on
its right and the last word to $. Bold marks best overall
accuracy per length bound, and † marks figures that are
not significantly worse (binomial sign test, p < 0.05).

4.3 Bilingual Experiments

Leveraging information from one language for the
task of disambiguating another language has re-
ceived considerable attention (Dagan, 1991; Smith
and Smith, 2004; Snyder and Barzilay, 2008; Bur-
kett and Klein, 2008). Usually such a setting re-
quires a parallel corpus or other annotated data that
ties between those two languages.5

Our bilingual experiments use the English and
Chinese treebanks, which are not parallel corpora,
to train parsers for both languages jointly. Shar-

5Haghighi et al. (2008) presented a technique to learn bilin-
gual lexicons from two non-parallel monolingual corpora.

ing information between those two models is done
by softly tying grammar weights in the two hidden
grammars.

We first merge the models for English and Chi-
nese by taking a union of the multinomial fami-
lies of each and the corresponding prior parame-
ters. We then add a normal expert that ties be-
tween the parts of speech in the respective parti-
tion structures for both grammars together. Parts
of speech are matched through the single coarse
tagset (footnote 4). For example, with TIEV, let
V = V Eng ∪V Chi be the set of part-of-speech tags
which belong to the verb category for either tree-
bank. Then, we tie parameters for all part-of-speech
tags in V . We tested this joint model for each of
TIEV, TIEN, TIEV&N, and TIEA. After running
the inference algorithm which learns the two mod-
els jointly, we use unseen data to test each learned
model separately.

Table 1 includes the results for these experiments.
The performance on English improved significantly
in the bilingual setting, achieving highest perfor-
mance with TIEV&N. Performance with Chinese is
also the highest in the bilingual setting, with TIEA
and TIEV&N.

5 Future Work

In future work we plan to lexicalize the model, in-
cluding a Bayesian grammar prior that accounts for
the syntactic patterns of words. Nonparametric mod-
els (Teh, 2006) may be appropriate. We also believe
that Bayesian discovery of cross-linguistic patterns
is an exciting topic worthy of further exploration.

6 Conclusion

We described a Bayesian model that allows soft pa-
rameter tying among any weights in a probabilistic
grammar. We used this model to improve unsuper-
vised parsing accuracy on two different languages,
English and Chinese, achieving state-of-the-art re-
sults. We also showed how our model can be effec-
tively used to simultaneously learn grammars in two
languages from non-parallel multilingual data.
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Abstract

We investigate the problem of unsupervised
part-of-speech tagging when raw parallel data
is available in a large number of languages.
Patterns of ambiguity vary greatly across lan-
guages and therefore even unannotated multi-
lingual data can serve as a learning signal. We
propose a non-parametric Bayesian model that
connects related tagging decisions across lan-
guages through the use of multilingual latent
variables. Our experiments show that perfor-
mance improves steadily as the number of lan-
guages increases.

1 Introduction

In this paper we investigate the problem of unsu-
pervised part-of-speech tagging when unannotated
parallel data is available in a large number of lan-
guages. Our goal is to develop a fully joint multilin-
gual model that scales well and shows improved per-
formance for individual languages as the totalnum-
ber of languages increases.

Languages exhibit ambiguity at multiple levels,
making unsupervised induction of their underlying
structure a difficult task. However, sources of lin-
guistic ambiguity vary across languages. For exam-
ple, the wordfish in English can be used as either a
verb or a noun. In French, however, the nounpois-
son (fish) is entirely distinct from the verbal form
pêcher (to fish). Previous work has leveraged this
idea by building models for unsupervised learning
from aligned bilingual data (Snyder et al., 2008).
However, aligned data is often available formany
languages. The benefits of bilingual learning vary

markedly depending on which pair of languages is
selected, and without labeled data it is unclear how
to determine which supplementary language is most
helpful. In this paper, we show that it is possi-
ble to leverage all aligned languages simultaneously,
achieving accuracy that in most cases outperforms
even optimally chosen bilingual pairings.

Even in expressing the same meaning, languages
take different syntactic routes, leading to variation
in part-of-speech sequences. Therefore, an effec-
tive multilingual model must accurately model com-
mon linguistic structure, yet remain flexible to the
idiosyncrasies of each language. This tension only
becomes stronger as additional languages are added
to the mix. From a computational standpoint, the
main challenge is to ensure that the model scales
well as the number of languages increases. Care
must be taken to avoid an exponential increase in
the parameter space as well as the time complexity
of inference procedure.

We propose a non-parametric Bayesian model for
joint multilingual tagging. The topology of our
model connects tagging decisions within a language
as well as across languages. The model scales lin-
early with the number of languages, allowing us to
incorporate as many as are available. For each lan-
guage, the model contains an HMM-like substruc-
ture and connects these substructures to one another
by means of cross-lingual latent variables. These
variables, which we refer to assuperlingual tags,
capture repeated multilingual patterns and thus re-
duce the overall uncertainty in tagging decisions.

We evaluate our model on a parallel corpus of
eight languages. The model is trained once using all
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languages, and its performance is tested separately
for each on a held-out monolingual test set. When a
complete tag lexicon is provided, our unsupervised
model achieves an average accuracy of 95%, in com-
parison to 91% for an unsupervised monolingual
Bayesian HMM and 97.4% for its supervised coun-
terpart. Thus, on average, the gap between unsu-
pervised and supervised monolingual performance
is cut by nearly two thirds. We also examined sce-
narios where the tag lexicon is reduced in size. In
all cases, the multilingual model yielded substantial
performance gains. Finally, we examined the per-
formance of our model when trained on all possible
subsets of the eight languages. We found that perfor-
mance improves steadily as the number of available
languages increases.

2 Related Work

Bilingual Part-of-Speech Tagging Early work on
multilingual tagging focused on projecting annota-
tions from an annotated source language to a target
language (Yarowsky and Ngai, 2001; Feldman et al.,
2006). In contrast, we assume no labeled data at
all; our unsupervised model instead symmetrically
improves performance for all languages by learning
cross-lingual patterns in raw parallel data. An addi-
tional distinction is that projection-based work uti-
lizes pairs of languages, while our approach allows
for continuous improvement as languages are added
to the mix.

In recent work, Snyder et al. (2008) presented
a model for unsupervised part-of-speech tagging
trained from a bilingual parallel corpus. This bilin-
gual model and the model presented here share a
number of similarities: both are Bayesian graphi-
cal models building upon hidden Markov models.
However, the bilingual model explicitly joins each
aligned word-pair into a single coupled state. Thus,
the state-space of these joined nodes grows exponen-
tially in the number of languages. In addition, cross-
ing alignments must be removed so that the result-
ing graph structure remains acyclic. In contrast, our
multilingual model posits latent cross-lingual tags
without explicitly joining or directly connecting the
part-of-speech tags across languages. Besides per-
mitting crossing alignments, this structure allows the
model to scale gracefully with the number of lan-

guages.

Beyond Bilingual Learning While most work on
multilingual learning focuses on bilingual analysis,
some models operate on more than one pair of lan-
guages. For instance, Genzel (2005) describes a
method for inducing a multilingual lexicon from
a group of related languages. His model first in-
duces bilingual models for each pair of languages
and then combines them. Our work takes a different
approach by simultaneously learning from all lan-
guages, rather than combining bilingual results.

A related thread of research is multi-source ma-
chine translation (Och and Ney, 2001; Utiyama and
Isahara, 2006; Cohn and Lapata, 2007) where the
goal is to translate from multiple source languages to
a single target language. Rather than jointly training
all the languages together, these models train bilin-
gual models separately, and then use their output to
select a final translation. The selection criterion can
be learned at training time since these models have
access to the correct translation. In unsupervised set-
tings, however, we do not have a principled means
for selecting among outputs of different bilingual
models. By developing a joint multilingual model
we can automatically achieve performance that ri-
vals that of the best bilingual pairings.

3 Model

We propose a non-parametric directed Bayesian
graphical model for multilingual part-of-speech tag-
ging using a parallel corpus. We perform a joint
training pass over the corpus, and then apply the
parameters learned for each language to a held-out
monolingual test set.

The core idea of our model is that patterns of
ambiguity vary across languages and therefore even
unannotated multilingual data can serve as a learn-
ing signal. Our model is able to simultaneously har-
ness this signal fromall languages present in the
corpus. This goal is achieved by designing a sin-
gle graphical model that connects tagging decisions
within a language as well as across languages.

The model contains language-specific HMM sub-
structures connected to one another by cross-lingual
latent variables spanning two or more languages.
These variables, which we refer to assuperlingual
tags, capture repeated cross-lingual patterns and
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Figure 1: Model structure for parallel sentences in English, French, Hebrew, and Urdu. In this example, there are three
superlingual tags, each connected to the part-of-speech tag of a word in each of the four languages.

thus reduce the overall uncertainty in tagging deci-
sions. To encourage the discovery of a compact set
of such cross-lingual patterns, we place a Dirichlet
process prior on the superlingual tag values.

3.1 Model Structure

For each language, our model includes an HMM-
like substructure with observed word nodes, hid-
den part-of-speech nodes, and directed transition
and emission edges. For each set of aligned words
in parallel sentences, we add a latent superlingual
variable to capture the cross-lingual context. A set
of directed edges connect this variable to the part-
of-speech nodes of the aligned words. Our model
assumes that the superlingual tags for parallel sen-
tences are unordered and are drawn independently
of one another.

Edges radiate outward from superlingual tags to
language-specific part-of-speech nodes. Thus, our
model implicitly assumes that superlingual tags are
drawn prior to the part-of-speech tags of all lan-
guages and probabilistically influence their selec-
tion. See Figure 1 for an example structure.

The particular model structure for each set of par-
allel sentences (i.e. the configuration of superlingual
tags and their edges) is determined by bilingual lexi-
cal alignments and — like the text itself — is consid-
ered an observed variable. In practice, these lexical
alignments are obtained using standard techniques
from machine translation.

Our model design has several benefits. Crossing
and many-to-many alignments may be used with-
out creating cycles in the graph, as all cross-lingual
information emanates from the hidden superlingual
tags. Furthermore, the model scales gracefully with
the number of languages, as the number of new
edges and nodes will be proportional to the number
of words for each additional language.

3.2 Superlingual Tags

Each superlingual tag value specifies a set of dis-
tributions — one for each language’s part-of-speech
tagset. In order to learn repeated cross-lingual pat-
terns, we need to constrain the number of superlin-
gual tag values and thus the number of distributions
they provide. For example, we might allow the su-
perlingual tags to take on integer values from1 to
K, with each integer value indexing a separate set
of distributions. Each set of distributions should cor-
respond to a discovered cross-lingual pattern in the
data. For example, one set of distributions might fa-
vor nouns in each language and another might favor
verbs.

Rather than fixing the number of superlingual
tag values to an arbitrary and predetermined size
1, . . . , K, we allow them to range over the entire set
of integers. In order to encourage the desired multi-
lingual clustering behavior, we use a Dirichlet pro-
cess prior for the superlingual tags. This prior allows
high posterior probability only when a small number
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of values are used repeatedly. The actual number of
sampled values will be dictated by the data and the
number of languages.

More formally, suppose we haven lan-
guages, ℓ1, . . . , ℓn. According to our genera-
tive model, a countably infinite sequence of sets
〈ωℓ1

1 , . . . , ωℓn
1 〉, 〈ωℓ1

2 , . . . , ωℓn
2 〉, . . . is drawn from

some base distribution. Eachωℓ
i is a distribution

over the parts-of-speech in languageℓ.
In parallel, an infinite sequence of mixing compo-

nentsπ1, π2, . . . is drawn from a stick-breaking pro-
cess (Sethuraman, 1994). These components define
a distribution over the integers with most probabil-
ity mass placed on some initial set of values. The
two sequences〈ωℓ1

1 , . . . , ωℓn
1 〉, 〈ωℓ1

2 , . . . , ωℓn
2 〉 . . .

andπ1, π2 . . . now define the distribution over su-
perlingual tags and their associated distributions on
parts-of-speech. That is, each superlingual tagz ∈
N is drawn with probabilityπz, and indexes the set
of distributions〈ωℓ1

z , . . . , ωℓn
z 〉.

3.3 Part-of-Speech Tags

Finally, we need to define the generative probabili-
ties of the part-of-speech nodes. For each such node
there may be multiple incoming edges. There will
always be an incoming transition edge from the pre-
vious tag (in the same language). In addition, there
may be incoming edges from zero or more superlin-
gual tags. Each edge carries with it a distribution
over parts-of-speech and these distributions must be
combined into the single distribution from which the
tag is ultimately drawn.

We choose to combine these distributions as a
product of experts. More formally: for languageℓ
and tag positioni, the part-of-speech tagyi is drawn
according to

yi ∼
φyi−1(yi)

∏
z ωℓ

z(yi)
Z

(1)

Where φyi−1 indicates the transition distribution,
and thez’s range over the values of the incoming
superlingual tags. The normalization termZ is ob-
tained by summing the numerator over all part-of-
speech tagsyi in the tagset.

This parameterization allows for a relatively sim-
ple and small parameter space. It also leads to a
desirable property: for a tag to have high probabil-
ity eachof the incoming distributions must allow it.

That is, any expert can “veto” a potential tag by as-
signing it low probability, generally leading to con-
sensus decisions.

We now formalize this description by giving the
stochastic process by which the observed data (raw
parallel text) is generated, according to our model.

3.4 Generative Process

For n languages, we assume the existence ofn
tagsetsT 1, . . . , Tn and vocabularies,W 1, . . . , Wn,
one for each language. For clarity, the generative
process is described using only bigram transition
dependencies, but our experiments use a trigram
model.

1. Transition and Emission Parameters: For
each languageℓ and for each tagt ∈ T ℓ, draw
a transition distribution φℓ

t over tagsTℓ and
anemissiondistributionθℓ

t over wordsW ℓ, all
from symmetric Dirichlet priors of appropriate
dimension.

2. Superlingual Tag Parameters:
Draw an infinite sequence of sets
〈ωℓ1

1 , . . . , ωℓn
1 〉, 〈ωℓ1

2 , . . . , ωℓn
2 〉, . . . from

base distributionG0. Eachωℓ
i is a distribution

over the tagsetT ℓ. The base distributionG0 is
a product ofn symmetric Dirichlets, where the
dimension of theith such Dirichlet is the size
of the corresponding tagsetT ℓi .

At the same time, draw an infinite sequence
of mixture weightsπ ∼ GEM(α), where
GEM(α) indicates the stick-breaking distribu-
tion (Sethuraman, 1994), andα = 1. These
parameters together define a prior distribution
over superlingual tags,

p(z) =
∞∑

k

πkδk=z, (2)

or equivalently over the part-of-speech distri-
butions〈ωℓ1 , . . . , ωℓn〉 that they index:

∞∑

k

πkδ〈ωℓ1
k ,...,ωℓn

k 〉=〈ωℓ1 ,...,ωℓn 〉. (3)

In both cases,δv=v′ is defined as one when
v = v′ and zero otherwise. Distribution 3 is
said to be drawn from a Dirichlet process, con-
ventionally written asDP (α, G0).
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3. Data: For each multilingual parallel sentence,

(a) Draw an alignmenta specifying sets of
aligned indices across languages. Each
such set may consist of indices in any sub-
set of the languages. We leave the distri-
bution over alignments undefined, as we
consider alignments observed variables.

(b) For each set of indices ina, draw a super-
lingual tag valuez according to Distribu-
tion 2.

(c) For each languageℓ, for i = 1, . . . (until
end-tag reached):

i. Draw a part-of-speech tagyi ∈ T ℓ ac-
cording to Distribution 1

ii. Draw a wordwi ∈ W ℓ according to
the emission distributionθyi .

To perform Bayesian inference under this model
we use a combination of sampling techniques, which
we describe in detail in the next section.

3.5 Inference

Ideally we would like to predict the part-of-speech
tags which have highestmarginalprobability given
the observed wordsx and alignmentsa. More
specifically, since we are evaluating our accuracy per
tag-position, we would like to predict, for language
index ℓ and word indexi, the single part-of-speech
tag:

argmax
t∈T ℓ

P
(
yℓ

i = t
∣∣x,a

)

which we can rewrite as theargmaxt∈T ℓ of the inte-
gral,
∫ [

P
(
yℓ

i = t
∣∣∣y−(ℓ,i),φ,θ, z,ω,x,a

)
·

P
(
y−(ℓ,i),φ,θ, z,π,ω,

∣∣∣x,a
)]

dy−(ℓ,i) dφ dθ dz dπ dω,

in which we marginalize over the settings of all
tags other thanyℓ

i (written as y−(ℓ,i)), the tran-
sition distributionsφ =

{
φℓ

t′
}

, emission distri-
butions θ =

{
θℓ
t′
}

, superlingual tagsz, and su-
perlingual tag parametersπ = {π1, π2, . . .} and
ω =

{
〈ωℓ1

1 , . . . , ωℓn
1 〉, 〈ωℓ1

2 , . . . , ωℓn
2 〉 . . .} (wheret′

ranges over all part-of-speech tags).
As these integrals are intractable to compute ex-

actly, we resort to the standard Monte Carlo approx-
imation. We collectN samples of the variables over

which we wish to marginalize but for which we can-
not compute closed-form integrals, where each sam-
ple samplek is drawn fromP (samplek|x,a). We
then approximate the tag marginals as:

P
(
yℓ

i = t
∣∣x,a

)
≈

∑
k P

(
yℓ

i = t
∣∣samplek,x,a

)

N
(4)

We employ closed forms for integrating out the
emission parametersθ, transition parametersφ, and
superlingual tag parametersπ and ω. We explic-
itly sample only part-of-speech tagsy, superlingual
tagsz, and the hyperparameters of the transition and
emission Dirichlet priors. To do so, we apply stan-
dard Markov chain sampling techniques: a Gibbs
sampler for the tags and a within-Gibbs Metropolis-
Hastings subroutine for the hyperparameters (Hast-
ings, 1970).

Our Gibbs sampler samples each part-of-speech
and superlingual tag separately, conditioned on the
current value of all other tags. In each case, we use
standard closed forms to integrate over all parameter
values, using currently sampled counts and hyperpa-
rameter pseudo-counts. We note that conjugacy is
technically broken by our use of a product form in
Distribution 1. Nevertheless, we consider the sam-
pled tags to have been generated separately by each
of the factors involved in the numerator. Thus our
method of using count-based closed forms should be
viewed as an approximation.

3.6 Sampling Part-of-Speech Tags

To sample the part-of-speech tag for languageℓ at
positioni we draw from

P (yℓ
i |y−(ℓ,i),x,a, z) ∝
P (yℓ

i+1|yℓ
i ,y−(ℓ,i),a, z) P (yℓ

i |y−(ℓ,i),a, z)·
P (xℓ

i |xℓ
−i,y

ℓ) ,

where the first two terms are the generative proba-
bilities of (i) the current tag given the previous tag
and superlingual tags, and(ii) the next tag given the
current tag and superlingual tags. These two quan-
tities are similar to Distribution 1, except here we
integrate over the transition parameterφyi−1 and the
superlingual tag parametersωℓ

z. We end up with a
product of integrals. Each integral can be computed
in closed form using multinomial-Dirichlet conju-
gacy (and by making the above-mentioned simpli-
fying assumption that all other tags were gener-
ated separately by their transition and superlingual
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parameters), just as in the monolingual Bayesian
HMM of (Goldwater and Griffiths, 2007).

For example, the closed form for integrating over
the parameter of a superlingual tag with valuez is
given by:
∫

ωℓ
z(yi)P (ωℓ

z|ω0)dωℓ
z =

count(z, yi, ℓ) + ω0

count(z, ℓ) + T ℓω0

wherecount(z, yi, ℓ) is the number of times that tag
yi is observed together with superlingual tagz in
languageℓ, count(z, ℓ) is the total number of times
that superlingual tagz appears with an edge into lan-
guageℓ, andω0 is a hyperparameter.

The third term in the sampling formula is the
emission probability of the current wordxℓ

i given
the current tag and all other words and sampled tags,
as well as a hyperparameter which is suppressed for
the sake of clarity. This quantity can be computed
exactly in closed form in a similar way.

3.7 Sampling Superlingual Tags

For each set of aligned words in the observed align-
ment a we need to sample a superlingual tagz.
Recall thatz is an index into an infinite sequence
〈ωℓ1

1 , . . . , ωℓn
1 〉, 〈ωℓ1

2 , . . . , ωℓn
2 〉 . . ., where eachωℓ

z is
a distribution over the tagsetT ℓ. The generative dis-
tribution overz is given by equation 2. In our sam-
pling scheme, however, we integrate over all possi-
ble settings of the mixing componentsπ using the
standard Chinese Restaurant Process (CRP) closed
form (Antoniak, 1974):

P
(
zi

∣∣z−i,y
)
∝

∏

ℓ

P
(
yℓ

i

∣∣z,y−(ℓ,i)

)
·
{

1
k+αcount(zi) if zi ∈ z−i

α
k+α otherwise

The first term is the product of closed form tag prob-
abilities of the aligned words, givenz. The final term
is the standard CRP closed form for posterior sam-
pling from a Dirichlet process prior. In this term,
k is the total number of sampled superlingual tags,
count(zi) is the total number of times the valuezi

occurs in the sampled tags, andα is the Dirichlet
process concentration parameter (see Step 2 in Sec-
tion 3.4).

Finally, we perform standard hyperparameter re-
estimation for the parameters of the Dirichlet distri-
bution priors onθ andφ (the transition and emis-
sion distributions) using Metropolis-Hastings. We

assume an improper uniform prior and use a Gaus-
sian proposal distribution with mean set to the pre-
vious value, and variance to one-tenth of the mean.

4 Experimental Setup

We test our model in an unsupervised framework
where only raw parallel text is available for each
of the languages. In addition, we assume that for
each language a tag dictionary is available that cov-
ers some subset of words in the text. The task is to
learn an independent tagger for each language that
can annotate non-parallel raw text using the learned
parameters. All reported results are on non-parallel
monolingual test data.

Data For our experiments we use the Multext-
East parallel corpus (Erjavec, 2004) which has been
used before for multilingual learning (Feldman et
al., 2006; Snyder et al., 2008). The tagged portion of
the corpus includes a 100,000 word English text, Or-
well’s novel “Nineteen Eighty Four”, and its trans-
lation into seven languages: Bulgarian, Czech, Es-
tonian, Hungarian, Romanian, Slovene and Serbian.
The corpus also includes a tag lexicon for each of
these languages. We use the first 3/4 of the text for
learning and the last 1/4 as held-out non-parallel test
data.

The corpus provides sentence level alignments.
To obtain word level alignments, we runGIZA++
(Och and Ney, 2003) on all 28 pairings of the 8 lan-
guages. Since we want each latent superlingual vari-
able to span as many languages as possible, we ag-
gregate the pairwise lexical alignments into larger
sets of aligned words. These sets of aligned words
are generated as a preprocessing step. During sam-
pling they remain fixed and are treated as observed
data.

We use the set of 14 basic part-of-speech tags pro-
vided by the corpus. In our first experiment, we
assume that a complete tag lexicon is available, so
that for each word, its set of possible parts-of-speech
is known ahead of time. In this setting, the aver-
age number of possible tags per token is 1.39. We
also experimented with incomplete tag dictionaries,
where entries are only available for words appearing
more than five or ten times in the corpus. For other
words, the entire tagset of 14 tags is considered. In
these two scenarios, the average per-token tag ambi-
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Lexicon: Full Lexicon: Frequency> 5 Lexicon: Frequency> 10

MONO
BI

MULTI MONO
BI

MULTI MONO
BI

MULTI
AVG BEST AVG BEST AVG BEST

BG 88.8 91.3 94.7 92.6 73.5 80.2 82.7 81.3 71.9 77.8 80.2 78.8
CS 93.7 97.0 97.7 98.2 72.2 79.0 79.7 83.0 66.7 75.3 76.7 79.4
EN 95.8 95.9 96.1 95.0 87.3 90.4 90.7 88.1 84.4 88.8 89.4 86.1
ET 92.5 93.4 94.3 94.6 72.5 76.5 77.5 80.6 68.3 72.9 74.9 77.9
HU 95.3 96.8 96.9 96.7 73.5 77.3 78.0 80.8 69.0 73.8 75.2 76.4
RO 90.1 91.8 94.0 95.1 77.1 82.7 84.4 86.1 73.0 80.5 82.1 83.1
SL 87.4 89.3 94.8 95.8 75.7 78.7 80.9 83.6 70.4 76.1 77.6 80.0
SR 84.5 90.2 94.5 92.3 66.3 75.9 79.4 78.8 63.7 72.4 76.1 75.9
Avg. 91.0 93.2 95.4 95.0 74.7 80.1 81.7 82.8 70.9 77.2 79.0 79.7

Table 1: Tagging accuracy for Bulgarian, Czech, English, Estonian, Hungarian, Romanian, Slovene, and Serbian. In
the first scenario, a complete tag lexicon is available for all the words. In the other two scenarios the tag lexicon
only includes words that appear more than five or ten times. Results are given for a monolingual Bayesian HMM
(Goldwater and Griffiths, 2007), a bilingual model (Snyder et al., 2008), and the multilingual model presented here.
In the case of the bilingual model, we present both the average accuracy over all pairings as well as the result from the
best performing pairing for each language. The best resultsfor each language in each scenario are given in boldface.

guity is 4.65 and 5.58, respectively.

Training and testing In the full lexicon ex-
periment, each word is initialized with a random
part-of-speech tag from its dictionary entry. In the
two reduced lexicon experiments, we initialize the
tags with the result of our monolingual baseline (see
below) to reduce sampling time. In both cases,
we begin with 14 superlingual tag values — corre-
sponding to the parts-of-speech — and initially as-
sign them based on the most common initial part-of-
speech of words in each alignment.

We run our Gibbs sampler for 1,000 iterations,
and store the conditional tag probabilities for the last
100 iterations. We then approximate marginal tag
probabilities on the training data using Equation 4
and predict the highest probability tags. Finally, we
compute maximum likelihood transition and emis-
sion probabilities using these tag counts, and then
apply smoothed viterbi decoding to each held-out
monolingual test set. All reported results are aver-
aged over five runs of the sampler.

Monolingual and bilingual baselines We
reimplemented the Bayesian HMM model of Gold-
water and Griffiths (2007) (BHMM1) as our mono-
lingual baseline. It has a standard HMM structure
with conjugate Bayesian priors over transitions and
emissions. We note that our model, in the absence
of any superlingual tags, reduces to this Bayesian
HMM. As an additional baseline we use a bilingual

model (Snyder et al., 2008). It is a directed graphical
model that jointly tags two parallel streams of text
aligned at the word level. The structure of the model
consists of two parallel HMMs, one for each lan-
guage. The aligned words form joint nodes that are
shared by both HMMs. These joint nodes are sam-
pled from a probability distribution that is a prod-
uct of the transition and emission distributions in the
two languages and a coupling distribution.

We note that the numbers reported here for
the bilingual model differ slightly from those re-
ported by Snyder et al. (2008) for two reasons: we
use a slightly larger set of sentences, and an im-
proved sampling scheme. The new sampling scheme
marginalizes over the transition and coupling param-
eters by using the same count-based approximation
that we utilize for our multilingual model. This leads
to higher performance, and thus a stronger baseline.1

5 Results

Table 1 shows the tagging accuracy of our multilin-
gual model on the test data, when training is per-
formed on all eight languages together. Results from
both baselines are also reported. In the case of the
bilingual baseline, seven pairings are possible for
each language, and the results vary by pair. There-

1Another difference is that we use the English lexicon pro-
vided with the Multext-East corpus, whereas (Snyder et al.,
2008) augment this lexicon with tags found in WSJ.
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fore, for each language, we present the average accu-
racy over all seven pairings, as well as the accuracy
of its highest performing pairing.

We provide results for three scenarios. In the first
case, a tag dictionary is provided for all words, lim-
iting them to a restricted set of possible tags. In the
other two scenarios, dictionary entries are limited to
words that appear more than five or ten times in the
corpus. All other words can be assigned any tag,
increasing the overall difficulty of the task. In the
full lexicon scenario, our model achieves an average
tagging accuracy of 95%, compared to 91% for the
monolingual baseline and 93.2% for the bilingual
baseline when averaged over all pairings. This ac-
curacy (95%) comes close to the performance of the
bilingual model when the best pairing for each lan-
guage is chosen by an oracle (95.4%). This demon-
strates that our multilingual model is able to effec-
tively learn from all languages. In the two reduced
lexicon scenarios, the gains are even more striking.
In both cases the average multilingual performance
outpaces even thebestperforming pairs.

Looking at individual languages, we see that in
all three scenarios, Czech, Estonian, Romanian, and
Slovene show their best performance with the mul-
tilingual model. Bulgarian and Serbian, on the
other hand, give somewhat better performance with
their optimal pairings under the bilingual model, but
their multilingual performance remains higher than
their average bilingual results. The performance of
English under the multilingual model is somewhat
lower, especially in the full lexicon scenario, where
it drops below monolingual performance. One pos-
sible explanation for this decrease lies in the fact that
English, by far, has the lowest trigram tag entropy of
all eight languages (Snyder et al., 2008). It is pos-
sible, therefore, that the signal it should be getting
from its own transitions is being drowned out by less
reliable information from other languages.

In order to test the performance of our model as
the number of languages increases, we ran the full
lexicon experiment with all possible subsets of the
eight languages. Figure 2 plots the average accuracy
as the number of languages varies. For comparison,
the monolingual and average bilingual baseline re-
sults are given, along with supervised monolingual
performance. Our multilingual model steadily gains
in accuracy as the number of available languages in-

Figure 2: Performance of the multilingual model as the
number of languages varies. Performance of the mono-
lingual and average bilingual baselines as well as a su-
pervised monolingual performance are given for compar-
ison.

creases. Interestingly, it even outperforms the bilin-
gual baseline (by a small margin) when only two lan-
guages are available, which may be attributable to
the more flexible non-parametric dependencies em-
ployed here. Finally, notice that the gap between
monolingual supervised and unsupervised perfor-
mance is cut by nearly two thirds under the unsu-
pervised multilingual model.

6 Conclusion

In this paper we’ve demonstrated that the benefits of
unsupervised multilingual learning increase steadily
with the number of available languages. Our model
scales gracefully as languages are added and effec-
tively incorporates information from them all, lead-
ing to substantial performance gains. In one experi-
ment, we cut the gap between unsupervised and su-
pervised performance by nearly two thirds. A fu-
ture challenge lies in incorporating constraints from
additional languages even when parallel text is un-
available.
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Abstract

Recent applications of Tree-Adjoining Gram-
mar (TAG) to the domain of semantics as well
as new attention to syntactic phenomena have
given rise to increased interested in more ex-
pressive and complex multicomponent TAG
formalisms (MCTAG). Although many con-
structions can be modeled using tree-local
MCTAG (TL-MCTAG), certain applications
require even more flexibility. In this pa-
per we suggest a shift in focus from con-
straining locality and complexity through tree-
and set-locality to constraining locality and
complexity through restrictions on the deriva-
tional distance between trees in the same tree
set in a valid derivation. We examine three
formalisms, restricted NS-MCTAG, restricted
Vector-TAG and delayed TL-MCTAG, that
use notions of derivational distance to con-
strain locality and demonstrate how they
permit additional expressivity beyond TL-
MCTAG without increasing complexity to the
level of set local MCTAG.

1 Introduction

Tree-Adjoining Grammar (TAG) has long been pop-
ular for natural language applications because of its
ability to naturally capture syntactic relationships
while also remaining efficient to process. More re-
cent applications of TAG to the domain of seman-
tics as well as new attention to syntactic phenomena
such as scrambling have given rise to increased in-
terested in multicomponent TAG formalisms (MC-
TAG), which extend the flexibility, and in some
cases generative capacity of the formalism but also

have substantial costs in terms of efficient process-
ing. Much work in TAG semantics makes use of
tree-local MCTAG (TL-MCTAG) to model phenom-
ena such as quantifier scoping, Wh-question forma-
tion, and many other constructions (Kallmeyer and
Romero, 2004; Romero et al., 2004). Certain ap-
plications, however, appear to require even more
flexibility than is provided by TL-MCTAG. Scram-
bling is one well-known example (Rambow, 1994).
In addition, in the semantics domain, the use of a
new TAG operation, flexible composition, is used to
perform certain semantic operations that seemingly
cannot be modeled with TL-MCTAG alone (Chiang
and Scheffler, 2008) and in work in synchronous
TAG semantics, constructions such as nested quanti-
fiers require a set-local MCTAG (SL-MCTAG) anal-
ysis (Nesson and Shieber, 2006).

In this paper we suggest a shift in focus from
constraining locality and complexity through restric-
tions that all trees in a tree set must adjoin within
a single tree or tree set to constraining locality and
complexity through restrictions on the derivational
distance between trees in the same tree set in a
valid derivation. We examine three formalisms, two
of them introduced in this work for the first time,
that use derivational distance to constrain locality
and demonstrate by construction of parsers their re-
lationship to TL-MCTAG in both expressivity and
complexity. In Section 2 we give a very brief in-
troduction to TAG. In Section 3 we elaborate fur-
ther the distinction between these two types of lo-
cality restrictions using TAG derivation trees. Sec-
tion 4 briefly addresses the simultaneity requirement
present in MCTAG formalisms but not in Vector-
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Figure 1: An example of the TAG operations substitu-
tion and adjunction.

TAG formalisms and argues for dropping the re-
quirement. In Sections 5 and 6 we introduce two
novel formalisms, restricted non-simultaneous MC-
TAG and restricted Vector-TAG, respectively, and
define CKY-style parsers for them. In Section 7
we recall the delayed TL-MCTAG formalism intro-
duced by Chiang and Scheffler (2008) and define a
CKY-style parser for it as well. In Section 8 we
explore the complexity of all three parsers and the
relationship between the formalisms. In Section 9
we discuss the linguistic applications of these for-
malisms and show that they permit analyses of some
of the hard cases that have led researchers to look
beyond TL-MCTAG.

2 Background

A tree-adjoining grammar consists of a set of el-
ementary tree structures of arbitrary depth, which
are combined by operations of adjunction and sub-
stitution. Auxiliary trees are elementary trees in
which the root and a frontier node, called the foot
node and distinguished by the diacritic ∗, are labeled
with the same nonterminalA. The adjunction opera-
tion entails splicing an auxiliary tree in at an internal
node in an elementary tree also labeled with nonter-
minal A. Trees without a foot node, which serve as
a base for derivations and may combine with other
trees by substitution, are called initial trees. Exam-
ples of the adjunction and substitution operations are
given in Figure 1. For further background, refer to
the survey by (Joshi and Schabes, 1997).

Shieber et al. (1995) and Vijay-Shanker (1987)
apply the Cocke-Kasami-Younger (CKY) algorithm
first introduced for use with context-free grammars
in Chomsky normal form (Kasami, 1965; Younger,
1967) to the TAG parsing problem to generate
parsers with a time complexity of O(n6|G|2). In

order to clarify the presentation of our extended TL-
MCTAG parsers below, we briefly review the algo-
rithm of Shieber et al. (1995) using the inference
rule notation from that paper. As shown in Figure 2,
items in CKY-style TAG parsing consist of a node
in an elementary tree and the indices that mark the
edges of the span dominated by that node. Nodes,
notated α@a◦, are specified by three pieces of infor-
mation: the identifier α of the elementary tree the
node is in, the Gorn address a of the node in that
tree1, and a diacritic, ◦, indicating that an adjunc-
tion or substitution is still available at that node or •,
indicating that one has already taken place.

Each item has four indices, indicating the left and
right edges of the span covered by the node as well
as any gap in the node that may be the result of a
foot node dominated by the node. Nodes that do
not dominate a foot node will have no gap in them,
which we indicate by the use of underscores in place
of the indices for the gap. To limit the number of in-
ference rules needed, we define the following func-
tion i ∪ j for combining indices:

i ∪ j =





i j =
j i =
i i = j
undefined otherwise

The side conditions Init(α) and Aux(α) hold if α
is an initial tree or an auxiliary tree, respectively.
Label(α@a) specifies the label of the node in tree
α at address a. Ft(α) specifies the address of the
foot node of tree α. Adj(α@a, β) holds if tree β
may adjoin into tree α at address a. Subst(α@a, β)
holds if tree β may substitute into tree α at address
a. These conditions fail if the adjunction or substitu-
tion is prevented by constraints such as mismatched
node labels.

Multi-component TAG (MCTAG) generalizes
TAG by allowing the elementary items to be sets
of trees rather than single trees (Joshi and Schabes,
1997). The basic operations are the same but all
trees in a set must adjoin (or substitute) into another
tree or tree set in a single step in the derivation.

An MCTAG is tree-local if tree sets are required
to adjoin within a single elementary tree (Weir,

1A Gorn address uniquely identifies a node within a tree.
The Gorn address of the root node is ε. The jth child of the
node with address i has address i · j.
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Goal Item: 〈α@ε•, 0, , , n〉 Init(α)
Label(α@ε) = S

Terminal Axiom: 〈α@a•, i− 1, , , i〉 Label(α@a) = wi

Empty Axiom: 〈α@a•, i, , , i〉 Label(α@a) = ε

Foot Axiom: 〈α@Ft(α)◦, p, p, q, q〉 Aux(α)

Unary Complete: 〈α@(a · 1)•, i, j, k, l〉 α@(a · 2) undefined
〈α@a◦, i, j, k, l〉

Binary Complete: 〈α@(a · 1)•, i, j, k, l〉, 〈α@(a · 2)•, l, j′, k′,m〉
〈α@a◦, i, j ∪ j′, k ∪ k′,m〉

Adjoin: 〈β@ε•, i, p, q, l〉, 〈α@a◦, p, j, k, q〉 Adj(α@a, β)
〈α@a•, i, j, k, l〉

No Adjoin: 〈α@a◦, i, j, k, l〉
〈α@a•, i, j, k, l〉

Substitute: 〈β@ε•, i, , , l〉 Subst(α@a, β)
〈α@a•, i, , , l〉

Figure 2: The CKY algorithm for TAG

1988). Although tree-local MCTAG (TL-MCTAG)
has the same generative capacity as TAG (Weir,
1988), the conversion to TAG is exponential and
the TL-MCTAG formalism is NP-hard to recognize
(Søgaard et al., 2007). An MCTAG is set-local
if tree sets required to adjoin within a single ele-
mentary tree set (Weir, 1988). Set-local MCTAG
(SL-MCTAG) has equivalent expressivity to linear
context-free rewriting systems and recognition is
provably PSPACE complete (Nesson et al., 2008).

3 Domains of Locality and Derivation
Trees

The domains of locality of TL-MCTAG and SL-
MCTAG (and trivially, TAG) can be thought of as
lexically defined. That is, all locations at which the
adjunction of one tree set into another may occur
must be present within a single lexical item. How-
ever, we can also think of locality derivationally. In
a derivationally local system the constraint is on the

relationships allowed between members of the same
tree set in the derivation tree.

TAG derivation trees provide the information
about how the elementary structures of the grammar
combine that is necessary to construct the derived
tree. Nodes in a TAG derivation tree are labeled with
identifiers of elementary structures. One elementary
structure is the child of another in the derivation tree
if it adjoins or substitutes into it in the derivation.
Arcs in the derivation tree are labeled with the ad-
dress in the target elementary structure at which the
operation takes place.

In MCTAG the derivation trees are often drawn
with identifiers of entire tree sets as the nodes of
the tree because the lexical locality constraints re-
quire that each elementary tree set be the deriva-
tional child of only one other tree set. However, if
we elaborate the derivation tree to include a node for
each tree in the grammar rather than only for each
tree set we can see a stark contrast in the derivational
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Figure 3: An example SL-MCTAG grammar that gener-
ates the language ww and associated derivation tree that
demonstrating an arbitrarily long derivational distance
between the trees of a given tree set and their nearest com-
mon ancestor. Note that if this grammar is interpreted as
a TL-MCTAG grammar only two derivations are possible
(for the strings aa and bb).

locality of these two formalisms. In TL-MCTAG
all trees in a set must adjoin to the same tree. This
means that they must all be siblings in the derivation
tree. In SL-MCTAG, on the other hand, it is possi-
ble to generate derivations with arbitrarily long dis-
tances before the nearest common ancestor of two
trees from the same elementary tree set is reached.
An example SL-MCTAG grammar that can produce
an arbitrarily long derivational distance to the near-
est common ancestor of the trees in a given tree set
is given in Figure 3.

Chiang and Scheffler (2008) recently introduced
one variant of MCTAG, delayed Tree-Local MC-
TAG (delayed TL-MCTAG) that uses a derivational
notion of locality. In this paper we introduce two ad-
ditional derivationally local TAG-based formalisms,
restricted non-simultaneous MCTAG (restricted NS-
MCTAG) and restricted Vector TAG (restricted V-
TAG) and demonstrate by construction of parsers
how each gives rise to a hierarchy of derivation-
ally local formalisms with a well-defined efficiency
penalty for each step of derivational distance permit-
ted.

4 The Simultaneity Requirement

In addition to lexical locality constraints the defini-
tion of MCTAG requires that all trees from a set ad-

join simultaneously. In terms of well-formed deriva-
tion trees, this amounts to disallowing derivations
in which a tree from a given set is the ancestor of
a tree from the same tree set. For most linguistic
applications of TAG, this requirement seems natu-
ral and is strictly obeyed. There are a few appli-
cations, including flexible composition and scram-
bling in free-word order languages that benefit from
TAG-based grammars that drop the simultaneity re-
quirement (Chiang and Scheffler, 2008; Rambow,
1994). From a complexity perspective, however,
checking the simultaneity requirement is expensive
(Kallmeyer, 2007). As a result, it can be advan-
tageous to select a base formalism that does not
require simultaneity even if the grammars imple-
mented with it do not make use of that additional
freedom.

5 Restricted Non-simultaneous MCTAG

The simplest version of a derivationally local TAG-
based formalism is most similar to non-local MC-
TAG. There is no lexical locality requirement at all.
In addition, we drop the simultaneity requirement.
Thus the only constraint on elementary tree sets is
the limit, d, on the derivational distance between
the trees in a given set and their nearest common
ancestor. We call this formalism restricted non-
simultaneous MCTAG. Note that if we constrain d to
be one, this happens to enforce both the derivational
delay limit and the lexical locality requirement of
TL-MCTAG.

A CKY-style parser for restricted NS-MCTAG
with a restriction of d is given in Figure 4. The items
of this parser contain d lists, Λ1, . . . ,Λd, called his-
tories that record the identities of the trees that have
already adjoined in the derivation in order to enforce
the locality constraints. The identities of the trees in
a tree set that have adjoined in a given derivation are
maintained in the histories until all the trees from
that set have adjoined. Once the locality constraint
is checked for a tree set, the Filter side condition
expunges those trees from the histories. A tree is
recorded in this history list with superscript i, where
i is the derivational distance between the location
where the recorded tree adjoined and the location of
the current item. The locality constraint is enforced
at the point of adjunction or substitution where the
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Goal Item Init(α1)
〈α0@ε•, 0, , , n, ∅, . . . , ∅〉 Label(α0@ε) = S

|α| = 1
Terminal Axiom

〈αx@a•, i− 1, , , i, ∅, . . . , ∅〉 Label(αx@a) = wi
Empty Axiom

〈αx@a•, i, , , i, ∅, . . . , ∅〉 Label(αx@a) = ε
Foot Axiom

〈αx@Ft(αx)◦, p, p, q, q, ∅, . . . , ∅〉 Aux(αx)
Unary Complete

〈αx@(a · 1)•, i, j, k, l,Λ1, . . . ,Λd〉 αx@(a · 2) undefined
〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉

Binary Complete Filter(Λ1
1 ∪ Λ1

2, . . . ,
〈αx@(a · 1)•, i, j, k, l,Λ1

1, . . . ,Λ
d
1〉〈αx@(a · 2)•, l, j′, k′,m,Λ1

2, . . . ,Λ
d
2〉 Λd1 ∪ Λd2) =

〈αx@a◦, i, j ∪ j′, k ∪ k′,m,Λ1, . . . ,Λd〉 Λ1, . . . ,Λd

Adjoin: Adj(αx@a, βy)
〈βy@ε•, i, p, q, l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉〈αx@a◦, p, j, k, q,Λ1

2, . . . ,Λ
d
2〉 Filter(Λ1

2 ∪ {βy},Λ2
2 ∪ Λ1

1,

〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉 . . . ,Λd2 ∪ Λd−1
1 ) =

Λ1, . . . ,Λd

Substitute:
〈βy@ε•, i, , , l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉 Subst(αx@a, βy)

〈αx@a•, i, , , l,Λ1, . . . ,Λd〉 Filter({βy},Λ1
1, . . . ,Λ

d−1
1 )

= Λ1, . . . ,Λd

No Adjoin:
〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉
〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉

Figure 4: Axioms and inference rules for the CKY algorithm for restricted NS-MCTAG with a restriction of d.

history at the limit of the permissible delay must be
empty for the operation to succeed.

6 Restricted V-TAG

A Vector-TAG (V-TAG) (Rambow, 1994) is similar
to an MCTAG in that the elementary structures are
sets (or vectors) of TAG trees. A derivation in a V-
TAG is defined as in TAG. There is no locality re-
quirement or other restriction on adjunction except
that if one tree from a vector is used in a derivation,
all trees from that vector must be used in the deriva-
tion. The trees in a vector may be connected by
dominance links between the foot nodes of auxiliary
trees and any node in other trees in the vector. All
adjunctions must respect the dominance relations in
that a node η1 that dominates a node η2 must appear
on the path from η2 to the root of the derived tree.
The definition of V-TAG is very similar to that of

non-local MCTAG as defined by Weir (1988) except
that in non-local MCTAG all trees from a tree set are
required to adjoin simultaneously.

Restricted V-TAG constrains V-TAG in several
ways. First, the dominance chain in each elementary
tree vector is required to define a total order over
the trees in the vector. This means there is a sin-
gle base tree in each vector. Note also that all trees
other than the base tree must be auxiliary trees in or-
der to dominate other trees in the vector. The base
tree may be either an initial tree or an auxiliary tree.
Second, a restricted V-TAG has a restriction level,
d, that determines the largest derivational distance
that may exists between the base tree and the high-
est tree in a tree vector in a derivation. Restricted
V-TAG differs from restricted NS-MCTAG in one
important respect: the dominance requirements of
restricted V-TAG require that trees from the same
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set must appear along a single path in the derived
tree, whereas in restricted NS-MCTAG trees from
the same set need not adhere to any dominance rela-
tionship in the derived tree.

A CKY-style parser for restricted V-TAG with re-
striction level d is given in Figure 5. Parsing is sim-
ilar to delayed TL-MCTAG in that we have a set
of histories for each restriction level. However, be-
cause of the total order over trees in a vector, the
parser only needs to maintain the identity of the
highest tree from a vector that has been used in the
derivation along with its distance from the base tree
from that vector. The Filter side condition accord-
ingly expunges trees that are the top tree in the dom-
inance chain of their tree vector. The side conditions
for the Adjoin non-base rule enforce that the domi-
nance constraints are satisfied and that the deriva-
tional distance from the base of a tree vector to its
currently highest adjoined tree is maintained accu-
rately. We note that in order to allow a non-total or-
dering of the trees in a vector we would simply have
to record all trees in a tree vector in the histories as
is done in the delayed TL-MCTAG parser.

7 Delayed TL-MCTAG

Chiang and Scheffler (2008) introduce the de-
layed TL-MCTAG formalism which makes use of
a derivational distance restriction in a somewhat dif-
ferent way. Rather than restricting the absolute dis-
tance between the trees of a set and their nearest
common ancestor, given a node α in a derivation
tree, delayed TL-MCTAG restricts the number of
tree sets that are not fully dominated by α. Bor-
rowing directly from Chiang and Scheffler (2008),
Figure 7 gives two examples.

Parsing for delayed TL-MCTAG is not discussed
by Chiang and Scheffler (2008) but can be accom-
plished using a similar CKY-style strategy as in the
two parsers above. We present a parser in Fig-
ure 6. Rather than keeping histories that record
derivational distance, we keep an active delay list
for each item that records the delays that are active
(by recording the identities of the trees that have ad-
joined) for the tree of which the current node is a
part. At the root of each tree the active delay list is
filtered using the Filter side condition to remove all
tree sets that are fully dominated and the resulting

Figure 7: Examples of 1-delay (top) and 2-delay (bottom)
taken from Chiang and Scheffler (2008). The delays are
marked with dashed boxes on the derivation trees.

list is checked using the Size to ensure that it con-
tains no more than d distinct tree sets where d is the
specified delay for the grammar. The active delays
for a given tree are passed to its derivational parent
when it adjoins or substitutes.

Delayed TL-MCTAG differs from both of the pre-
vious formalisms in that it places no constraint on
the length of a delay. On the other hand while
the previous formalisms allow unlimited short de-
lays to be pending at the same time, in delayed TL-
MCTAG, only a restricted number of delays may be
active at once. Similar to restricted V-TAG, there
is no simultaneity requirement, so a tree may have
another tree from the same set as an ancestor.

8 Complexity

The complexity of the restricted NS-MCTAG and
restricted V-TAG parsers presented above depends
on the number of possible histories that may appear
in an item. For each step of derivational distance
permitted between trees of the same set, the corre-
sponding history permits many more entries. His-
tory Λ1 may contain trees that have adjoined into
the same tree as the node of the current item. The
number of entries is therefore limited by the num-
ber of adjunction sites in that tree, which is in turn
limited by the number of nodes in that tree. We will
call the maximum number of nodes in a tree in the
grammar t. Theoretically, any tree in the grammar
could adjoin at any of these adjunction sites, mean-
ing that the number of possible values for each entry
in the history is bounded by the size of the grammar
|G|. Thus the size of Λ1 is O(|G|t). For Λ2 the en-
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Unary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1, . . . ,Λd〉 αx@(a · 2) undefined
〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉

Binary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1

1, . . . ,Λ
d
1〉〈αx@(a · 2)•, l, j′, k′,m,Λ1

2, . . . ,Λ
d
2〉

〈αx@a◦, i, j ∪ j′, k ∪ k′,m,Λ1
1 ∪ Λ1

2, . . . ,Λ
d
1 ∪ Λd2〉

Adjoin base: Adj(αx@a, β1)
〈β1@ε•, i, p, q, l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉〈αx@a◦, p, j, k, q,Λ1

2, . . . ,Λ
d
2〉 Filter(Λ1

2 ∪ {β1},Λ2
2 ∪ Λ1

1,

〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉 . . . ,Λd2 ∪ Λd−1
1 ) =

Λ1, . . . ,Λd

Adjoin non-base:
〈βy@ε•, i, p, q, l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉〈αx@a◦, p, j, k, q,Λ1

2, . . . ,Λ
d
2〉 Adj(αx@a, βy)

〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉 Filter(Λ1
2′ ,Λ

2
2′ ∪ Λ1

1, . . . ,

for unique Λi2 s.t. βy−1 ∈ Λi2,Λ
i
2′ = (Λi2 ∪ Λi−1

1 ∪ {βy})− {βy−1} Λd2′ ∪ Λd−1
1 ) =

for Λi2 s.t. βy−1 /∈ Λi2,Λ
i
2′ = Λi2 ∪ Λi−1

1 Λ1, . . . ,Λd

Substitute:
〈β1@ε•, i, , , l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉 Subst(αx@a, β1)

〈αx@a•, i, , , l,Λ1, . . . ,Λd〉 Filter({β1},Λ1
1, . . . ,Λ

d−1
1 )

= Λ1, . . . ,Λd

No Adjoin:
〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉
〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉

Figure 5: Inference rules for the CKY algorithm for restricted V-TAG with a restriction of d. Item form, goal item and
axioms are omitted because they are identical to those in restricted NS-MCTAG parser.

tries correspond to tree that have adjoined into a tree
that has adjoined into the tree of the current item.
Thus, for each of the t trees that may have adjoined
at a derivational distance of one, there are t more
trees that may have adjoined at a derivational dis-
tance of two. The size of Λ2 is therefore |G|t2 . The
combined size of the histories for a grammar with a

delay or restriction of d is therefore O(|G|
∑d

i=1
td).

Replacing the sum with its closed form solution, we

have O(|G|
td+1−1

t−1
−1) histories.

Using the reasoning about the size of the histories
given above, the restricted NS-MCTAG parser pre-

sented here has a complexity of O(n6 |G|1+ td+1−1
t−1 ),

where t is as defined above and d is the limit on de-
lay of adjunction. For a tree-local MCTAG, the com-
plexity reduces to O(n6 |G|2+t). For the linguis-
tic applications that motivate this chapter no delay
greater than two is needed, resulting in a complexity
of O(n6 |G|2+t+t2).

The same complexity analysis applies for re-

stricted V-TAG. However, we can provide a some-
what tighter bound by noting that the rank, r, of
the grammar—how many tree sets adjoin in a sin-
gle tree—and the fan out, f of the grammar—how
many trees may be in a single tree set—are limited
by t. That is, a complete derivation containing |D|
tree sets can contain no more than t |D| individual
trees and also no more than rf |D| individual trees.
In the restricted V-TAG algorithm we maintain only
one tree from a tree set in the history at a time, so
rather than maintaining O(t) entries in each history,
we only need to maintain the smaller O(r) entries.

The complexity of the delayed TL-MCTAG
parser depends on the number of possible active de-
lay lists. As above, each delay list may have a maxi-
mum of t entries for trees that adjoin directly into it.
The restriction on the number of active delays means
that the active delay lists passed up from these child
nodes at the point of adjunction or substitution can
have size no more than d. This results in an addi-
tional td(f − 1) possible entries in the active de-

98



Goal Item: Init(α1)
〈α0@ε•, 0, , , n, ∅, . . . , ∅〉 Label(α0@ε) = S

|α| = 1
Terminal Axiom

〈αx@a•, i− 1, , , i, ∅, . . . , {αx}〉 Label(αx@a) = wi
Empty Axiom

〈αx@a•, i, , , i, ∅, . . . , {αx}〉 Label(αx@a) = ε
Foot Axiom

〈αx@Ft(αx)◦, p, p, q, q, ∅, . . . , {αx}〉 Aux(αx)
Unary Complete

〈αx@(a · 1)•, i, j, k, l,Λ〉 αx@(a · 2) undefined
〈αx@a◦, i, j, k, l,Λ〉

Binary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1〉〈αx@(a · 2)•, l, j′, k′,m,Λ2〉

〈αx@a◦, i, j ∪ j′, k ∪ k′,m,Λ1 ∪ Λ2〉
Adjoin:

〈βy@ε•, i, p, q, l,Λβ〉〈αx@a◦, p, j, k, q,Λα〉 Adj(αx@a, βy)
〈αx@a•, i, j, k, l,Λ′β ∪ Λα〉 Filter(Λβ,Λ′β)

Size(Λ′β) ≤ d
Substitute:

〈βy@ε•, i, , , l,Λβ〉 Subst(αx@a, βy)
〈αx@a•, i, , , l,Λ′β ∪ {αx}〉 Filter(Λβ,Λ′β)

Size(Λ′β) ≤ d
No Adjoin:

〈αx@a◦, i, j, k, l,Λ〉
〈αx@a•, i, j, k, l,Λ〉

Figure 6: Axioms and inference rules for the CKY algorithm for delayed TL-MCTAG with a delay of d.

lay list, giving a total number of active delay lists
of O(|G|t(1+d(f−1))). Thus the complexity of the
parser is O(n6 |G|2+t(1+d(f−1))).

9 Conclusion

Each of the formalisms presented above extends the
flexibility of MCTAG beyond that of TL-MCTAG
while maintaining, as we have shown herein, com-
plexity much less than that of SL-MCTAG. All three
formalisms permit modeling of flexible composi-
tion (because they permit one member of a tree set
to be a derivational ancestor of another tree in the
same set), at least restricted NS-MCTAG and re-
stricted V-TAG permit analyses of scrambling, and
all three permit analyses of the various challeng-
ing semantic constructions mentioned in the intro-
duction. We conclude that extending locality by
constraining derivational distance may be an effec-

tive way to add flexibility to MCTAG without losing
computational tractability.
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Abstract

Unsupervised grammar induction models tend
to employ relatively simple models of syntax
when compared to their supervised counter-
parts. Traditionally, the unsupervised mod-
els have been kept simple due to tractabil-
ity and data sparsity concerns. In this paper,
we introduce basic valence frames and lexi-
cal information into an unsupervised depen-
dency grammar inducer and show how this
additional information can be leveraged via
smoothing. Our model produces state-of-the-
art results on the task of unsupervised gram-
mar induction, improving over the best previ-
ous work by almost 10 percentage points.

1 Introduction

The last decade has seen great strides in statisti-
cal natural language parsing. Supervised and semi-
supervised methods now provide highly accurate
parsers for a number of languages, but require train-
ing from corpora hand-annotated with parse trees.
Unfortunately, manually annotating corpora with
parse trees is expensive and time consuming so for
languages and domains with minimal resources it is
valuable to study methods for parsing without re-
quiring annotated sentences.

In this work, we focus on unsupervised depen-
dency parsing. Our goal is to produce a directed
graph of dependency relations (e.g. Figure 1) where
each edge indicates a head-argument relation. Since
the task is unsupervised, we are not given any ex-
amples of correct dependency graphs and only take
words and their parts of speech as input. Most
of the recent work in this area (Smith, 2006; Co-
hen et al., 2008) has focused on variants of the

The big dog barks

Figure 1: Example dependency parse.

Dependency Model with Valence (DMV) by Klein
and Manning (2004). DMV was the first unsu-
pervised dependency grammar induction system to
achieve accuracy above a right-branching baseline.
However, DMV is not able to capture some of the
more complex aspects of language. Borrowing some
ideas from the supervised parsing literature, we
present two new models: Extended Valence Gram-
mar (EVG) and its lexicalized extension (L-EVG).
The primary difference between EVG and DMV is
that DMV uses valence information to determine the
number of arguments a head takes but not their cat-
egories. In contrast, EVG allows different distri-
butions over arguments for different valence slots.
L-EVG extends EVG by conditioning on lexical in-
formation as well. This allows L-EVG to potentially
capture subcategorizations. The downside of adding
additional conditioning events is that we introduce
data sparsity problems. Incorporating more valence
and lexical information increases the number of pa-
rameters to estimate. A common solution to data
sparsity in supervised parsing is to add smoothing.
We show that smoothing can be employed in an un-
supervised fashion as well, and show that mixing
DMV, EVG, and L-EVG together produces state-of-
the-art results on this task. To our knowledge, this is
the first time that grammars with differing levels of
detail have been successfully combined for unsuper-
vised dependency parsing.

A brief overview of the paper follows. In Section
2, we discuss the relevant background. Section 3
presents how we will extend DMV with additional
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features. We describe smoothing in an unsupervised
context in Section 4. In Section 5, we discuss search
issues. We present our experiments in Section 6 and
conclude in Section 7.

2 Background

In this paper, the observed variables will be a corpus
of n sentences of texts = s1 . . . sn, and for each
wordsij an associated part-of-speechτij. We denote
the set of all words asVw and the set of all parts-of-
speech asVτ . The hidden variables are parse trees
t = t1 . . . tn and parameters̄θ which specify a dis-
tribution overt. A dependency treeti is a directed
acyclic graph whose nodes are the words insi. The
graph has a single incoming edge for each word in
each sentence, except one called theroot of ti. An
edge from wordi to word j means that wordj is
anargumentof word i or alternatively, wordi is the
headof word j. Note that each word token may be
the argument of at most one head, but a head may
have several arguments.

If parse treeti can be drawn on a plane above the
sentence with no crossing edges, it is calledprojec-
tive. Otherwise it isnonprojective. As in previous
work, we restrict ourselves to projective dependency
trees. The dependency models in this paper will be
formulated as a particular kind of Probabilistic Con-
text Free Grammar (PCFG), described below.

2.1 Tied Probabilistic Context Free Grammars

In order to perform smoothing, we will find useful a
class of PCFGs in which the probabilities of certain
rules are required to be the same. This will allow
us to make independence assumptions for smooth-
ing purposes without losing information, by giving
analogous rules the same probability.

Let G = (N ,T , S,R, θ) be a Probabilistic Con-
text Free Grammar with nonterminal symbolsN ,
terminal symbolsT , start symbolS ∈ N , set of
productionsR of the formN → β, N ∈ N , β ∈
(N ∪ T )∗. LetRN indicate the subset ofR whose
left-hand sides areN . θ is a vector of length|R|, in-
dexed by productionsN → β ∈ R. θN→β specifies
the probability thatN rewrites toβ. We will let θN

indicate the subvector ofθ corresponding toRN .
A tied PCFG constrains a PCFGG with a tying

relation, which is an equivalence relation over rules

that satisfies the following properties:

1. Tied rules have the same probability.

2. Rules expanding the same nonterminal are
never tied.

3. If N1 → β1 andN2 → β2 are tied then the ty-
ing relation defines a one-to-one mapping be-
tween rules inRN1 andRN2 , and we say that
N1 andN2 are tied nonterminals.

As we see below, we can estimate tied PCFGs using
standard techniques. Clearly, the tying relation also
defines an equivalence class over nonterminals. The
tying relation allows us to formulate the distribu-
tions over trees in terms of rule equivalence classes
and nonterminal equivalence classes. SupposeR̄ is
the set of rule equivalence classes andN̄ is the set
of nonterminal equivalence classes. Since all rules
in an equivalence class̄r have the same probability
(condition 1), and since all the nonterminals in an
equivalence class̄N ∈ N̄ have the same distribu-
tion over rule equivalence classes (condition 1 and
3), we can define the set of rule equivalence classes
R̄N̄ associated with a nonterminal equivalence class
N̄ , and a vector̄θ of probabilities, indexed by rule
equivalence classes̄r ∈ R̄ . θ̄N̄ refers to the sub-
vector ofθ̄ associated with nonterminal equivalence
classN̄ , indexed byr̄ ∈ R̄N̄ . Since rules in the
same equivalence class have the same probability,
we have that for eachr ∈ r̄, θr = θ̄r̄.

Let f(t, r) denote the number of times ruler ap-
pears in treet, and letf(t, r̄) =

∑
r∈r̄ f(t, r). We

see that the complete data likelihood is

P (s, t|θ) =
∏

r̄∈R̄

∏

r∈r̄

θf(t,r)
r =

∏

r̄∈R̄
θ̄

f(t,r̄)
r̄

That is, the likelihood is a product of multinomi-
als, one for each nonterminal equivalence class, and
there are no constraints placed on the parameters of
these multinomials besides being positive and sum-
ming to one. This means that all the standard es-
timation methods (e.g. Expectation Maximization,
Variational Bayes) extend directly to tied PCFGs.

Maximum likelihood estimation provides a point
estimate of̄θ. However, often we want to incorpo-
rate information about̄θ by modeling itsprior distri-
bution. As a prior, for each̄N ∈ N̄ we will specify a
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Dirichlet distribution over̄θN̄ with hyperparameters
αN̄ . The Dirichlet has the density function:

P (θ̄N̄ |αN̄ ) =
Γ(

∑
r̄∈R̄N̄

αr̄)∏
r̄∈R̄N̄

Γ(αr̄)

∏

r̄∈R̄N̄

θ̄αr̄−1
r̄ ,

Thus the prior over̄θ is a product of Dirichlets,which
is conjugateto the PCFG likelihood function (John-
son et al., 2007). That is, the posteriorP (θ̄|s, t, α)
is also a product of Dirichlets, also factoring into a
Dirichlet for each nonterminal̄N , where the param-
etersαr̄ are augmented by the number of times rule
r̄ is observed in treet:

P (θ̄|s, t, α) ∝ P (s, t|θ̄)P (θ̄|α)

∝
∏

r̄∈R̄
θ̄

f(t,r̄)+αr̄−1
r̄

We can see thatαr̄ acts as a pseudocount of the num-
ber of times̄r is observed prior tot.

To make use of this prior, we use the Variational
Bayes (VB) technique for PCFGs with Dirichlet Pri-
ors presented by Kurihara and Sato (2004). VB es-
timates a distribution over̄θ. In contrast, Expec-
tation Maximization estimates merely a point esti-
mate of θ̄. In VB, one estimatesQ(t, θ̄), called
the variational distribution, which approximates the
posterior distributionP (t, θ̄|s, α) by minimizing the
KL divergence ofP from Q. Minimizing the KL
divergence, it turns out, is equivalent to maximiz-
ing a lower boundF of the log marginal likelihood
log P (s|α).

log P (s|α) ≥
∑

t

∫

θ̄
Q(t, θ̄) log

P (s, t, θ̄|α)
Q(t, θ̄)

= F

The negative of the lower bound,−F , is sometimes
called thefree energy.

As is typical in variational approaches, Kuri-
hara and Sato (2004) make certain independence as-
sumptions about the hidden variables in the vari-
ational posterior, which will make estimating it
simpler. It factors Q(t, θ̄) = Q(t)Q(θ̄) =∏n

i=1 Qi(ti)
∏

N̄∈N̄ Q(θ̄N̄ ). The goal is to recover
Q(θ̄), the estimate of the posterior distribution over
parameters andQ(t), the estimate of the posterior
distribution over trees. Finding a local maximum of
F is done via an alternating maximization ofQ(θ̄)

andQ(t). Kurihara and Sato (2004) show that each
Q(θ̄N̄ ) is a Dirichlet distribution with parameters
α̂r = αr + EQ(t)f(t, r).

2.2 Split-head Bilexical CFGs

In the sections that follow, we frame various de-
pendency models as a particular variety of CFGs
known as split-head bilexical CFGs (Eisner and
Satta, 1999). These allow us to use the fast Eisner
and Satta (1999) parsing algorithm to compute the
expectations required by VB inO(m3) time (Eis-
ner and Blatz, 2007; Johnson, 2007) wherem is the
length of the sentence.1

In the split-head bilexical CFG framework, each
nonterminal in the grammar is annotated with a ter-
minal symbol. For dependency grammars, these
annotations correspond to words and/or parts-of-
speech. Additionally, split-head bilexical CFGs re-
quire that each wordsij in sentencesi is represented
in a split form by two terminals called its left part
sijL and right partsijR. The set of these parts con-
stitutes the terminal symbols of the grammar. This
split-head property relates to a particular type of de-
pendency grammar in which the left and right depen-
dents of a head are generated independently. Note
that like CFGs, split-head bilexical CFGs can be
made probabilistic.

2.3 Dependency Model with Valence

The most successful recent work on dependency
induction has focused on the Dependency Model
with Valence (DMV) by Klein and Manning (2004).
DMV is a generative model in which the head of
the sentence is generated and then each head recur-
sively generates its left and right dependents. The
arguments of headH in direction d are generated
by repeatedly deciding whether to generate another
new argument or to stop and then generating the
argument if required. The probability of deciding
whether to generate another argument is conditioned
onH, d and whether this would be the first argument
(this is the sense in which it models valence). When
DMV generates an argument, the part-of-speech of
that argumentA is generated givenH andd.

1Efficiently parsable versions of split-head bilexical CFGs
for the models described in this paper can be derived using the
fold-unfold grammar transform (Eisner and Blatz, 2007; John-
son, 2007).
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Rule Description

S → YH SelectH as root

YH → LH RH Move to split-head representation

LH → HL STOP| dir = L, head = H,val = 0

LH → L1
H CONT | dir = L, head = H, val = 0

L′
H → HL STOP| dir = L, head = H,val = 1

L′
H → L1

H CONT | dir = L, head = H, val = 1

L1
H → YA L′

H Arg A | dir = L, head = H

Figure 2: Rule schema for DMV. For brevity, we omit
the portion of the grammar that handles the right argu-
ments since they are symmetric to the left (all rules are
the same except for the attachment rule where the RHS is
reversed).val ∈ {0, 1} indicates whether we have made
any attachments.

The grammar schema for this model is shown in
Figure 2. The first rule generates the root of the sen-
tence. Note that these rules are for∀H,A ∈ Vτ so
there is an instance of the first schema rule for each
part-of-speech.YH splits words into their left and
right components.LH encodes the stopping deci-
sion given that we have not generated any arguments
so far.L′H encodes the same decision after generat-
ing one or more arguments.L1

H represents the distri-
bution over left attachments. To extract dependency
relations from these parse trees, we scan for attach-
ment rules (e.g.,L1

H → YA L′H) and record that
A depends onH. The schema omits the rules for
right arguments since they are symmetric. We show
a parse of “The big dog barks” in Figure 3.2

Much of the extensions to this work have fo-
cused on estimation procedures. Klein and Manning
(2004) use Expectation Maximization to estimate
the model parameters. Smith and Eisner (2005) and
Smith (2006) investigate using Contrastive Estima-
tion to estimate DMV. Contrastive Estimation max-
imizes the conditional probability of the observed
sentences given a neighborhood of similar unseen
sequences. The results of this approach vary widely
based on regularization and neighborhood, but often
outperforms EM.

2Note that our examples use words as leaf nodes but in our
unlexicalized models, the leaf nodes are in fact parts-of-speech.

S

Ybarks

Lbarks

L1
barks

Ydog

Ldog

L1
dog

YT he

LT he

TheL

RT he

TheR

L′
dog

L1
dog

Ybig

Lbig

bigL

Rbig

bigR

L′
dog

dogL

Rdog

dogR

L′
barks

barksL

Rbarks

barksR

Figure 3: DMV split-head bilexical CFG parse of “The
big dog barks.”

Smith (2006) also investigates two techniques for
maximizing likelihood while incorporating the lo-
cality bias encoded in the harmonic initializer for
DMV. One technique, skewed deterministic anneal-
ing, ameliorates the local maximum problem by flat-
tening the likelihood and adding a bias towards the
Klein and Manning initializer, which is decreased
during learning. The second technique is structural
annealing (Smith and Eisner, 2006; Smith, 2006)
which penalizes long dependencies initially, grad-
ually weakening the penalty during estimation. If
hand-annotated dependencies on a held-out set are
available for parameter selection, this performs far
better than EM; however, performing parameter se-
lection on a held-out set without the use of gold de-
pendencies does not perform as well.

Cohen et al. (2008) investigate using Bayesian
Priors with DMV. The two priors they use are the
Dirichlet (which we use here) and the Logistic Nor-
mal prior, which allows the model to capture correla-
tions between different distributions. They initialize
using the harmonic initializer of Klein and Manning
(2004). They find that the Logistic Normal distri-
bution performs much better than the Dirichlet with
this initialization scheme.

Cohen and Smith (2009), investigate (concur-
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Rule Description

S → YH SelectH as root

YH → LH RH Move to split-head representation

LH → HL STOP| dir = L, head = H,val = 0

LH → L′
H CONT | dir = L, head = H, val = 0

L′
H → L1

H STOP| dir = L, head = H,val = 1

L′
H → L2

H CONT | dir = L, head = H, val = 1

L2
H → YA L′

H Arg A | dir = L, head = H,val = 1

L1
H → YA HL Arg A | dir = L, head = H,val = 0

Figure 4: Extended Valence Grammar schema. As be-
fore, we omit rules involving the right parts of words. In
this case,val ∈ {0, 1} indicates whether we are generat-
ing the nearest argument (0) or not (1).

rently with our work) an extension of this, the
Shared Logistic Normal prior, which allows differ-
ent PCFG rule distributions to share components.
They use this machinery to investigate smoothing
the attachment distributions for (nouns/verbs), and
for learning using multiple languages.

3 Enriched Contexts

DMV models the distribution over arguments iden-
tically without regard to their order. Instead, we
propose to distinguish the distribution over the argu-
ment nearest the head from the distribution of sub-
sequent arguments.3

Consider the following changes to the DMV
grammar (results shown in Figure 4). First, we will
introduce the ruleL2

H → YA L′H to denote the deci-
sion of what argument to generate for positions not
nearest to the head. Next, instead of havingL′H ex-
pand toHL or L1

H , we will expand it toL1
H (attach

to nearest argument and stop) orL2
H (attach to non-

nearest argument and continue). We call this theEx-
tended Valence Grammar(EVG).

As a concrete example, consider the phrase “the
big hungry dog” (Figure 5). We would expect that
distribution over the nearest left argument for “dog”
to be different than farther left arguments. The fig-

3McClosky (2008) explores this idea further in an un-
smoothed grammar.

.

.

.

Ldog

L1
dog

YT he

TheL TheR

L′
dog

L1
dog

Ybig

bigL bigR

L′
dog

dogL

.

.

.

Ldog

L′
dog

L2
dog

YT he

TheL TheR

L′
dog

L1
dog

Ybig

bigL bigR

dogL

Figure 5: An example of moving from DMV to EVG
for a fragment of “The big dog.” Boxed nodes indicate
changes. The key difference is that EVG distinguishes
between the distributions over the argument nearest the
head (big) from arguments farther away (The).

ure shows that EVG allows these two distributions to
be different (nonterminalsL2

dog andL1
dog) whereas

DMV forces them to be equivalent (both useL1
dog as

the nonterminal).

3.1 Lexicalization

All of the probabilistic models discussed thus far
have incorporated only part-of-speech information
(see Footnote 2). In supervised parsing of both de-
pendencies and constituency, lexical information is
critical (Collins, 1999). We incorporate lexical in-
formation into EVG (henceforth L-EVG) by extend-
ing the distributions over argument parts-of-speech
A to condition on the head wordh in addition to the
head part-of-speechH, directiond and argument po-
sitionv. The argument worda distribution is merely
conditioned on part-of-speechA; we leave refining
this model to future work.

In order to incorporate lexicalization, we extend
the EVG CFG to allow the nonterminals to be anno-
tated with both the word and part-of-speech of the
head. We first remove the old rulesYH → LH RH

for eachH ∈ Vτ . Then we mark each nonter-
minal which is annotated with a part-of-speech as
also annotated with its head, with a single excep-
tion: YH . We add a new nonterminalYH,h for each
H ∈ Vτ , h ∈ Vw, and the rulesYH → YH,h and
YH,h → LH,h RH,h. The ruleYH → YH,h cor-
responds to selecting the word, given its part-of-
speech.
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4 Smoothing

In supervised estimation one common smoothing
technique islinear interpolation, (Jelinek, 1997).
This section explains how linear interpolation can
be represented using a PCFG with tied rule proba-
bilities, and how one might estimate smoothing pa-
rameters in an unsupervised framework.

In many probabilistic models it is common to esti-
mate the distribution of some eventx conditioned on
some set of context informationP (x|N(1) . . . N(k))
by smoothing it with less complicated condi-
tional distributions. Using linear interpolation
we modelP (x|N(1) . . . N(k)) as a weighted aver-
age of two distributionsλ1P1(x|N(1), . . . , N(k)) +
λ2P2(x|N(1), . . . , N(k−1)), where the distribution
P2 makes an independence assumption by dropping
the conditioning eventN(k).

In a PCFG a nonterminalN can encode a collec-
tion of conditioning eventsN(1) . . . N(k), andθN de-
termines a distribution conditioned onN(1) . . . N(k)

over events represented by the rulesr ∈ RN . For
example, in EVG the nonterminalL1

NN encodes
three separate pieces of conditioning information:
the directiond = left , the head part-of-speech
H = NN , and the argument positionv = 0;
θL1

NN→YJJ NNL
represents the probability of gener-

ating JJ as the first left argument ofNN . Sup-
pose in EVG we are interested in smoothingP (A |
d,H, v) with a component that excludes the head
conditioning event. Using linear interpolation, this
would be:

P (A | d,H, v) = λ1P1(A | d,H, v)+λ2P2(A | d, v)

We will estimate PCFG rules with linearly interpo-
lated probabilities by creating a tied PCFG which
is extended by adding rules that select between the
main distributionP1 and the backoff distributionP2,
and also rules that correspond to draws from those
distributions. We will make use of tied rule proba-
bilities to make the independence assumption in the
backoff distribution.

We still use the original grammar to parse the sen-
tence. However, we estimate the parameters in the
extended grammar and then translate them back into
the original grammar for parsing.

More formally, supposeB ⊆ N is a set of non-
terminals (called the backoff set) with conditioning

eventsN(1) . . . N(k−1) in common (differing in a
conditioning eventN(k)), and with rule sets of the
same cardinality. IfG is our model’s PCFG, we can
define a new tied PCFGG′ = (N ′,T , S,R′, φ),
where N ′ = N ∪

{
N bℓ | N ∈ B, ℓ ∈ {1, 2}

}
,

meaning for each nonterminalN in the backoff
set we add two nonterminalsN b1 , N b2 represent-
ing each distributionP1 and P2. The new rule
set R′ = (∪N∈N ′R′

N ) where for all N ∈ B
rule setR′

N =
{
N → N bℓ | ℓ ∈ {1, 2}

}
, mean-

ing atN in G′ we decide which distributionP1, P2

to use; and forN ∈ B and ℓ ∈ {1, 2} ,
R′

Nbℓ
=

{
N bℓ → β | N → β ∈ RN

}
indicating a

draw from distributionPℓ. For nonterminalsN 6∈ B,
R′

N = RN . Finally, for eachN,M ∈ B we
specify a tying relation between the rules inR′

Nb2

andR′
Mb2

, grouping together analogous rules. This
has the effect of making an independence assump-
tion aboutP2, namely that it ignores the condition-
ing eventN(k), drawing from a common distribution
each time a nonterminalN b2 is rewritten.

For example, in EVG to smoothP (A = DT |
d = left ,H = NN , v = 0) with P2(A = DT |
d = left , v = 0) we define the backoff set to
be

{
L1

H | H ∈ Vτ

}
. In the extended grammar we

define the tying relation to form rule equivalence
classes by the argument they generate, i.e. for each
argumentA ∈ Vτ , we have a rule equivalence class{

L1b2
H → YA HL | H ∈ Vτ

}
.

We can see that in grammarG′ eachN ∈ B even-
tually ends up rewriting to one ofN ’s expansionsβ
in G. There are two indirect paths, one throughN b1

and one throughN b2 . Thus this defines the proba-
bility of N → β in G, θN→β, as the probability of
rewriting N asβ in G′ via N b1 andN b2 . That is:

θN→β = φN→Nb1φNb1→β + φN→Nb2φNb2→β

The example in Figure 6 shows the probability that
L1

dog rewrites toYbig dogL in grammarG.
Typically when smoothing we need to incorporate

the prior knowledge that conditioning events that
have been seen fewer times should be more strongly
smoothed. We accomplish this by setting the Dirich-
let hyperparameters for eachN → N b1 , N → N b2

decision to(K, 2K), whereK = |RNb1 | is the num-
ber of rewrite rules forA. This ensures that the
model will only start to ignore the backoff distribu-
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Figure 6: Using linear interpolation to smoothL1
dog →

Ybig dogL: The first component represents the distri-
bution fully conditioned on headdog, while the second
component represents the distribution ignoring the head
conditioning event. This later is accomplished by tying
the ruleL1b2

dog → Ybig dogL to, for instance,L1b2
cat →

Ybig catL, L1b2
fish → Ybig fishL etc.

tion after having seen a sufficiently large number of
training examples.4

4.1 Smoothed Dependency Models

Our first experiments examine smoothing the dis-
tributions over an argument in the DMV and EVG
models. In DMV we smooth the probability of argu-
mentA given head part-of-speechH and directiond
with a distribution that ignoresH. In EVG, which
conditions onH, d and argument positionv we back
off two ways. The first is to ignorev and use back-
off conditioning eventH, d. This yields a backoff
distribution with the same conditioning information
as the argument distribution from DMV. We call this
EVG smoothed-skip-val.

The second possibility is to have the backoff
distribution ignore the head part-of-speechH and
use backoff conditioning eventv, d. This assumes
that arguments share a common distribution across
heads. We call this EVG smoothed-skip-head. As
we see below, backing off by ignoring the part-of-
speech of the headH worked better than ignoring
the argument positionv.

For L-EVG we smooth the argument part-of-
speech distribution (conditioned on the head word)
with the unlexicalized EVG smoothed-skip-head
model.

5 Initialization and Search issues

Klein and Manning (2004) strongly emphasize the
importance of smart initialization in getting good
performance from DMV. The likelihood function is
full of local maxima and different initial parameter
values yield vastly different quality solutions. They
offer what they call a “harmonic initializer” which

4We set the other Dirichlet hyperparameters to 1.

initializes the attachment probabilities to favor ar-
guments that appear more closely in the data. This
starts EM in a state preferring shorter attachments.

Since our goal is to expand the model to incor-
porate lexical information, we want an initializa-
tion scheme which does not depend on the details
of DMV. The method we use is to createM sets of
B random initial settings and to run VB some small
number of iterations (40 in all our experiments) for
each initial setting. For each of theM sets, the
model with the best free energy of theB runs is
then run out until convergence (as measured by like-
lihood of a held-out data set); the other models are
pruned away. In this paper we useB = 20 and
M = 50.

For the bth setting, we draw a random sample
from the prior θ̄(b). We set the initialQ(t) =
P (t|s, θ̄(b)) which can be calculated using the
Expectation-Maximization E-Step.Q(θ̄) is then ini-
tialized using the standard VB M-step.

For the Lexicalized-EVG, we modify this proce-
dure slightly, by first runningMB smoothed EVG
models for 40 iterations each and selecting the best
model in each cohort as before; each L-EVG dis-
tribution is initialized from its corresponding EVG
distribution. The newP (A|h,H, d, v) distributions
are set initially to their correspondingP (A|H, d, v)
values.

6 Results

We trained on the standard Penn Treebank WSJ cor-
pus (Marcus et al., 1993). Following Klein and Man-
ning (2002), sentences longer than 10 words after
removing punctuation are ignored. We refer to this
variant as WSJ10. Following Cohen et al. (2008),
we train on sections 2-21, used 22 as a held-out de-
velopment corpus, and present results evaluated on
section 23. The models were all trained using Varia-
tional Bayes, and initialized as described in Section
5. To evaluate, we follow Cohen et al. (2008) in us-
ing the mean of the variational posterior Dirichlets
as a point estimatēθ′. For the unsmoothed models
we decode by selecting the Viterbi parse givenθ̄′, or
argmaxtP (t|s, θ̄′).

For the smoothed models we find the Viterbi parse
of the unsmoothed CFG, but use the smoothed prob-
abilities. We evaluate against the gold standard
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Model Variant Dir. Acc.

DMV harmonic init 46.9*

DMV random init 55.7 (8.0)

DMV log normal-families 59.4*

DMV shared log normal-families 62.4†
DMV smoothed 61.2 (1.2)

EVG random init 53.3 (7.1)

EVG smoothed-skip-val 62.1 (1.9)

EVG smoothed-skip-head 65.0 (5.7)

L-EVG smoothed 68.8 (4.5)

Table 1: Directed accuracy (DA) for WSJ10, section 23.
*,† indicate results reported by Cohen et al. (2008), Co-
hen and Smith (2009) respectively. Standard deviations
over 10 runs are given in parentheses

dependencies for section 23, which were extracted
from the phrase structure trees using the standard
rules by Yamada and Matsumoto (2003). We mea-
sure the percent accuracy of the directed dependency
edges. For the lexicalized model, we replaced all
words that were seen fewer than 100 times with
“UNK.” We ran each of our systems 10 times, and
report the average directed accuracy achieved. The
results are shown in Table 1. We compare to work
by Cohen et al. (2008) and Cohen and Smith (2009).

Looking at Table 1, we can first of all see the
benefit of randomized initialization over the har-
monic initializer for DMV. We can also see a large
gain by adding smoothing to DMV, topping even
the logistic normal prior. The unsmoothed EVG ac-
tually performs worse than unsmoothed DMV, but
both smoothed versions improve even on smoothed
DMV. Adding lexical information (L-EVG) yields a
moderate further improvement.

As the greatest improvement comes from moving
to model EVG smoothed-skip-head, we show in Ta-
ble 2 the most probable arguments for eachval, dir,
using the mean of the appropriate variational Dirich-
let. Ford = right, v = 1, P (A|v, d) largely seems
to acts as a way of grouping together various verb
types, while ford = left, v = 0 the model finds
that nouns tend to act as the closest left argument.

Dir,Val Arg Prob Dir,Val Arg Prob

left, 0 NN 0.65 right, 0 NN 0.26

NNP 0.18 RB 0.23

DT 0.12 NNS 0.12

IN 0.11

left, 1 CC 0.35 right, 1 IN 0.78

RB 0.27

IN 0.18

Table 2: Most likely arguments given valence and direc-
tion, according to smoothing distributionP (arg|dir, val)
in EVG smoothed-skip-head model with lowest free en-
ergy.

7 Conclusion

We present a smoothing technique for unsupervised
PCFG estimation which allows us to explore more
sophisticated dependency grammars. Our method
combines linear interpolation with a Bayesian prior
that ensures the backoff distribution receives proba-
bility mass. Estimating the smoothed model requires
running the standard Variational Bayes on an ex-
tended PCFG. We used this technique to estimate a
series of dependency grammars which extend DMV
with additional valence and lexical information. We
found that both were helpful in learning English de-
pendency grammars. Our L-EVG model gives the
best reported accuracy to date on the WSJ10 corpus.

Future work includes using lexical information
more deeply in the model by conditioning argument
words and valence on the lexical head. We suspect
that successfully doing so will require using much
larger datasets. We would also like to explore us-
ing our smoothing technique in other models such
as HMMs. For instance, we could do unsupervised
HMM part-of-speech induction by smooth a tritag
model with a bitag model. Finally, we would like to
learn the parts-of-speech in our dependency model
from text and not rely on the gold-standard tags.
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Abstract

We introduce alignment models for Machine Trans-
lation that take into account the context of a source
word when determining its translation. Since the use
of these contexts alone causes data sparsity prob-
lems, we develop a decision tree algorithm for clus-
tering the contexts based on optimisation of the
EM auxiliary function. We show that our context-
dependent models lead to an improvement in align-
ment quality, and an increase in translation quality
when the alignments are used in Arabic-English and
Chinese-English translation.

1 Introduction
Alignment modelling for Statistical Machine Translation
(SMT) is the task of determining translational correspon-
dences between the words in pairs of sentences in parallel
text. Given a source language word sequence f J1 and a
target language word sequence eI1, we model the transla-
tion probability as P(eI1|fJ1 ) and introduce a hidden vari-
able aI1 representing a mapping from the target word po-
sitions to source word positions such that ei is aligned to
fai . Then P(eI1|f j1 ) =

∑
aI1

P(eI1, a
I
1|f j1 ) (Brown et al.,

1993).
Previous work on statistical alignment modelling has

not taken into account the source word context when de-
termining translations of that word. It is intuitive that a
word in one context, with a particular part-of-speech and
particular words surrounding it, may translate differently
when in a different context. We aim to take advantage
of this information to provide a better estimate of the
word’s translation. The challenge of incorporating con-
text information is maintaining computational tractability
of estimation and alignment, and we develop algorithms
to overcome this.

The development of efficient estimation procedures
for context-dependent acoustic models revolutionised the
field of Automatic Speech Recognition (ASR) (Young et

al., 1994). Clustering is used extensively for improv-
ing parameter estimation of triphone (and higher order)
acoustic models, enabling robust estimation of param-
eters and reducing the computation required for recog-
nition. Kannan et al. (1994) introduce a binary tree-
growing procedure for clustering Gaussian models for
triphone contexts based on the value of a likelihood ra-
tio. We adopt a similar approach to estimate context-
dependent translation probabilities.

We focus on alignment with IBM Model 1 and HMMs.
HMMs are commonly used to generate alignments from
which state of the art SMT systems are built. Model 1 is
used as an intermediate step in the creation of more pow-
erful alignment models, such as HMMs and further IBM
models. In addition, it is used in SMT as a feature in Min-
imum Error Training (Och et al., 2004) and for rescor-
ing lattices of translation hypotheses (Blackwood et al.,
2008). It is also used for lexically-weighted phrase ex-
traction (Costa-jussà and Fonollosa, 2005) and sentence
segmentation of parallel text (Deng et al., 2007) prior to
machine translation.

1.1 Overview
We first develop an extension to Model 1 that allows the
use of arbitrary context information about a source word
to estimate context-dependent word-to-word translation
probabilities. Since there is insufficient training data to
accurately estimate translation probabilities for less fre-
quently occurring contexts, we develop a decision tree
clustering algorithm to form context classes. We go on to
develop a context-dependent HMM model for alignment.

In Section 3, we evaluate our context-dependent mod-
els on Arabic-English parallel text, comparing them to
our baseline context-independent models. We perform
morphological decomposition of the Arabic text using
MADA, and use part-of-speech taggers on both lan-
guages. Alignment quality is measured using Alignment
Error Rate (AER) measured against a manually-aligned
parallel text. Section 4 uses alignments produced by
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our improved alignment models to initialise a statistical
machine translation system and evaluate the quality of
translation on several data sets. We also apply part-of-
speech tagging and decision tree clustering of contexts to
Chinese-English parallel text; translation results for these
languages are presented in Section 4.2.

1.2 Previous and related work

Brown et al. (1993) introduce IBM Models 1-5 for align-
ment modelling; Vogel et al. (1996) propose a Hidden
Markov Model (HMM) model for word-to-word align-
ment, where the words of the source sentence are viewed
as states of an HMM and emit target sentence words;
Deng and Byrne (2005a) extend this to an HMM word-to-
phrase model which allows many-to-one alignments and
can capture dependencies within target phrases.

Habash and Sadat (2006) perform morphological de-
composition of Arabic words, such as splitting of pre-
fixes and suffixes. This leads to gains in machine trans-
lation quality when systems are trained on parallel text
containing the modified Arabic and processing of Arabic
text is carried out prior to translation. Nießen and Ney
(2001a) perform pre-processing of German and English
text before translation; Nießen and Ney (2001b) use mor-
phological information of the current word to estimate
hierarchical translation probabilities.

Berger et al. (1996) introduce maximum entropy mod-
els for machine translation, and use a window either side
of the target word as context information. Varea et al.
(2002) test for the presence of specific words within a
window of the current source word to form features for
use inside a maximum entropy model of alignment.

Toutanova et al. (2002) use part-of-speech informa-
tion in both the source and target languages to estimate
alignment probabilities, but this information is not in-
corporated into translation probabilities. Popović and
Ney (2004) use the base form of a word and its part-of-
speech tag during the estimation of word-to-word transla-
tion probabilities for IBM models and HMMs, but do not
defined context-dependent estimates of translation prob-
abilities.

Stroppa et al. (2007) consider context-informed fea-
tures of phrases as components of the log-linear model
during phrase-based translation, but do not address align-
ment.

2 Use of source language context in
alignment modelling

Consider the alignment of the target sentence e = eI1 with
the source sentence f = fJ1 . Let a = aI1 be the align-
ments of the target words to the source words. Let cj be
the context information of fj for j = 1, . . . , J . This con-
text information can be any information about the word,

e.g. part-of-speech, previous and next words, part-of-
speech of previous and next words, or longer range con-
text information.

We follow Brown et al. (1993), but extend their mod-
elling framework to include information about the source
word from which a target word is emitted. We model the
alignment process as:

P(eI1, a
I
1, I |fJ1 , cJ1 ) =

P(I |fJ1 , cJ1 )
I∏

i=1

[
P(ei|ai1, ei−1

1 , fJ1 , c
J
1 , I)

× P(ai|ei−1
1 , ai−1

1 , fJ1 , c
J
1 , I)

]
(1)

We introduce word-to-word translation tables that depend
on the source language context for each word, i.e. the
probability that f translates to e given f has context c is
t(e|f, c). We assume that the context sequence is given
for a source word sequence. This assumption can be
relaxed to allow for multiple tag sequences as hidden
processes, but we assume here that a tagger generates
a single context sequence cJ1 for a word sequence fJ1 .
This corresponds to the assumption that, for a context se-
quence c̃J1 , P(c̃J1 |fJ1 ) = δcJ1 (c̃J1 ); hence

P(eI1, a
I
1|fJ1 ) =

∑

c̃J1

P(eI1, a
I
1, c̃

J
1 |fJ1 ) = P(eI1, a

I
1|cJ1 , fJ1 )

For Model 1, ignoring the sentence length distribution,

PM1(eI1, a
I
1|fJ1 , cJ1 ) =

1
(J + 1)I

I∏

i=1

t(ei|fai , cai). (2)

Estimating translation probabilities separately for ev-
ery possible context of a source word individually leads
to problems with data sparsity and rapid growth of the
translation table. We therefore wish to cluster source con-
texts which lead to similar probability distributions. Let
Cf denote the set of all observed contexts of source word
f . A particular clustering is denoted

Kf = {Kf,1, . . . ,Kf,Nf},
where Kf is a partition of Cf . We define a class mem-
bership function µf such that for any context c, µf (c)
is the cluster containing c. We assume that all contexts
in a cluster give rise to the same translation probability
distribution for that source word, i.e. for a cluster K,
t(e|f, c) = t(e|f, c′) for all contexts c, c′ ∈ K and all
target words e; we write this shared translation probabil-
ity as t(e|f,K).

The Model 1 sentence translation probability for a
given alignment (Equation 2) becomes

PM1(eI1, a
I
1|fJ1 , cJ1 ) =

1
(J + 1)I

I∏

i=1

t(ei|fai , µf (cai)).

(3)
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For HMM alignment, we assume that the transition prob-
abilities a(ai|ai−1) are independent of the word contexts
and the sentence translation probability is

PH(eI1, a
I
1|fJ1 , cJ1 ) =

I∏

i=1

a(ai|ai−1, J)t(ei|fai , µf (cai)).

(4)
Section 2.1.1 describes how the context classes are deter-
mined by optimisation of the EM auxiliary function. Al-
though the translation model is significantly more com-
plex than that of context-independent models, once class
membership is fixed, alignment and parameter estimation
use the standard algorithms.

2.1 EM parameter estimation
We train using Expectation Maximisation (EM), optimis-
ing the log probability of the training set {e(s), f (s)}Ss=1

(Brown et al., 1993). Given model parameters θ′, we es-
timate new parameters θ by maximisation of the EM aux-
iliary function
∑

s,a

Pθ′(a|f (s), c(s), e(s)) log Pθ(e(s), a, I(s)|f (s), c(s)).

We assume the sentence length distribution and align-
ment probabilities do not depend on the contexts of the
source words; hence the relevant part of the auxiliary
function is

∑

e

∑

f

∑

c∈Cf
γ′(e|f, c) log t(e|f, c), (5)

where

γ′(e|f, c) =
∑

s

I(s)∑

i=1

J(s)∑

j=1

[
δc(c

(s)
j )δe(e

(s)
i )δf (f (s)

j )

× Pθ′(ai = j|e(s), f (s), c(s))
]

Here γ′ can be computed under Model 1 or the HMM,
and is calculated using the forward-backward algorithm
for the HMM.

2.1.1 Parameter estimation with clustered contexts
We can re-write the EM auxiliary function (Equation

5) in terms of the cluster-specific translation probabilities:

∑

e

∑

f

|Kf |∑

l=1

∑

c∈Kf,l
γ′(e|f, c) log t(e|f, c)

=
∑

e

∑

f

∑

K∈Kf
γ′(e|f,K) log t(e|f,K) (6)

where γ′(e|f,K) =
∑

c∈K
γ′(e|f, c)

Following the usual derivation, the EM update for the
class-specific translation probabilities becomes

t̂(e|f,K) =
γ′(e|f,K)∑
e′ γ
′(e′|f,K)

. (7)

Standard EM training can be viewed a special case of this,
with every context of a source word grouped into a sin-
gle cluster. Another way to view these clustered context-
dependent models is that contexts belonging to the same
cluster are tied and share a common translation proba-
bility distribution, which is estimated from all training
examples in which any of the contexts occur.

2.2 Decision trees for context clustering
The objective for each source word is to split the contexts
into classes to maximise the likelihood of the training
data. Since it is not feasible to maximise the likelihood
of the observations directly, we maximise the expected
log likelihood by considering the EM auxiliary function,
in a similar manner to that used for modelling contextual
variations of phones for ASR (Young et al., 1994; Singer
and Ostendorf, 1996). We perform divisive clustering in-
dependently for each source word f , by building a binary
decision tree which forms classes of contexts which max-
imise the EM auxiliary function. Questions for the tree
are drawn from a set of questions Q = {q1, . . . , q|Q|}
concerning the context information of f .

Let K be any set of contexts of f , and define

L(K) =
∑

e

∑

c∈K
γ′(e|f, c) log t(e|f, c)

=
∑

e

∑

c∈K
γ′(e|f, c) log

∑
c∈K γ

′(e|f, c)∑
e′
∑

c∈K γ
′(e′|f, c) .

This is the contribution to the EM auxiliary function of
source word f occurring in the contexts of K. Let q be
a binary question about the context of f , and consider
the effect on the partial auxiliary function (Equation 6)
of splitting K into two clusters using question q. Define
Kq be the set of contexts in K which answer ‘yes’ to q
and Kq̄ be the contexts which answer ‘no’. Define the
objective function

Qf,q(K) =
∑

e

∑

c∈Kq
γ′(e|f, c) log t(e|f, c)

+
∑

e

∑

c∈Kq̄
γ′(e|f, c) log t(e|f, c)

= L(Kq) + L(Kq̄)

When the node is split using question q, the increase in
objective function is given by

Qf,q(K)− L(K) = L(Kq̄) + L(Kq)− L(K).
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We choose q to maximise this.
In order to build the decision tree for f , we take the set

of all contexts Cf as the initial cluster at the root node.
We then find the question q̂ such that Qf,q(Cf ) is maxi-
mal, i.e.

q̂ = arg max
q∈Q

Qf,q(Cf )

This splits Cf , so our decision tree now has two nodes.
We iterate this process, at each iteration splitting (into
two further nodes) the leaf node that leads to the great-
est increase in objective function. This leads to a greedy
search to optimise the log likelihood over possible state
clusterings.

In order to control the growth of the tree, we put in
place two thresholds:

• Timp is the minimum improvement in objective func-
tion required for a node to be split; without it, we
would continue splitting nodes until each contained
only one context, even though doing so would cause
data sparsity problems.
• Tocc is the minimum occupancy of a node, based on

how often the contexts at that node occur in the train-
ing data; we want to ensure that there are enough ex-
amples of a context in the training data to estimate
accurately the translation probability distribution for
that cluster.

For each leaf node l and set of contextsKl at that node,
we find the question ql that, when used to split Kl, pro-
duces the largest gain in objective function:

ql = arg max
q∈Q

[L(Kl,q) + L(Kl,q̄)− L(Kl)]

= arg max
q∈Q

[L(Kl,q) + L(Kl,q̄)]

We then find the leaf node for which splitting gives the
largest improvement:

l̂ = arg max
l

[L(Kl,ql) + L(Kl,q̄l)− L(Kl)]

If the following criteria are both satisfied at that node, we
split the node into two parts, creating two leaf nodes in
its place:

• The objective function increases sufficiently

L(Kl,ql) + L(Kl,q̄l)− L(Kl) > Timp

• The occupancy threshold is exceeded for both child
nodes:

∑

e

∑

c∈Kl,x
γ′(e|f, c) > Tocc for x = q, q̄

We perform such clustering for every source word in the
parallel text.

shares NNS · · · · · � ·
bank NN · · · · · · �
the DT · · · · · · �
of IN · · · · � · ·
% PUNC · · · � · · ·
12 NN · · � · · · ·
selling VBG · � · · · · ·
of IN · · · · · · ·
deal NN � · · · · · ·
the DT · · · · · · ·

Sf
qp

N
N

by
E

N
N

12
N

N
%

PU
N

C
m

n
IN

>
sh

m
N

N
A

lb
nk

N
N

city NN · · · · · · · �
the DT · · · · · · · �
in IN · · · · · · � ·
liquor NN · · · · · � · ·
selling VBG · · · · � · · ·
were VBD · · · · � · · ·
owners NNS · · · � · · · ·
whose WP$ · · · � · · · ·
houses NNS · � · · · · · ·
several JJ · · � · · · · ·
and CC � · · · · · · ·

w
+

C
C

m
nA

zl
N

N
E

dp
JJ

>
SH

A
bh

A
N

N
yb

yE
w

n
V

B
P

A
lx

m
w

r
N

N
fy

IN
A

lm
dy

np
N

N

Figure 1: Alignment of the English selling in different contexts.
In the first, it is preceded by of and links to the infinitive of the
Arabic verb byE; in the second, it is preceded by were and links
to an inflected form of the same Arabic verb, ybyEwn.

3 Evaluation of alignment quality

Our models were built using the MTTK toolkit (Deng
and Byrne, 2005b). Decision tree clustering was imple-
mented and the process parallelised to enable thousands
of decision trees to be built. Our context-dependent (CD)
Model 1 models trained on context-annotated data were
compared to the baseline context-independent (CI) mod-
els trained on untagged data.

The models were trained using data allowed for the
NIST 08 Arabic-English evaluation1, excluding the UN
collections, comprising 300k parallel sentence pairs, a to-
tal of 8.4M words of Arabic and 9.5M words of English.

The Arabic language incorporates into its words sev-
eral prefixes and suffixes which determine grammatical
features such as gender, number, person and voice. The
MADA toolkit (Habash and Sadat, 2006) was used to
perform Arabic morphological word decomposition and
part-of-speech tagging. It determines the best analysis
for each word in a sentence and splits word prefixes and
suffixes, based on the alternative analyses provided by
BAMA (Buckwalter, 2002). We use tokenisation scheme

1http://nist.gov/speech/tests/mt/2008
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‘D2’, which splits certain prefixes and has been reported
to improve machine translation performance (Habash and
Sadat, 2006). The alignment models are trained on this
processed data, and the prefixes and suffixes are treated
as words in their own right; in particular their contexts
are examined and clustered.

The TnT tagger (Brants, 2000), used as distributed
with its model trained on the Wall Street Journal portion
of the Penn treebank, was used to obtain part-of-speech
tags for the English side of the parallel text. Marcus et al.
(1993) gives a complete list of part-of-speech tags pro-
duced. No morphological analysis is performed for En-
glish.

Automatic word alignments were compared to a
manually-aligned corpus made up of the IBM Arabic-
English Word Alignment Corpus (Ittycheriah et al.,
2006) and the word alignment corpora LDC2006E86 and
LDC2006E93. This contains 28k parallel text sentences
pairs: 724k words of Arabic and 847k words of English.
The alignment links were modified to reflect the MADA
tokenisation; after modification, there are 946k word-to-
word alignment links.

Alignment quality was evaluated by computing Align-
ment Error Rate (AER) (Och and Ney, 2000) relative to
the manual alignments. Since the links supplied con-
tain only ‘sure’ links and no ‘possible’ links, we use the
following formula for computing AER given reference
alignment links S and hypothesised alignment links A:
AER = 1− 2|S∩A|

|S|+|A| .

3.1 Questions about contexts
The algorithm presented in Section 2 allows for any infor-
mation about the context of the source word to be consid-
ered. We could consider general questions of the form ‘Is
the previous word x?’ and ‘Does word y occur within n
words of this one?’. To maintain computational tractabil-
ity, we restrict the questions to those concerning the part-
of-speech tag assigned to the current, previous and next
words. We do not ask questions about the identities of the
words themselves. For each part-of-speech tag T , we ask
the question ‘Does w have tag T?’. In addition, we group
part-of-speech tags to ask more general questions: e.g.
the set of contexts which satisfies ‘Is w a noun?’ contains
those that satisfy ‘Is w a proper noun?’ and ‘Is w a sin-
gular or mass noun?’. We also ask the same questions
of the previous and next words in the source sentence.
In English, this gives a total of 152 distinct questions,
each of which is considered when splitting a leaf node.
The MADA part-of-speech tagger uses a reduced tag set,
which produces a total of 68 distinct questions.

Figure 1 shows the links of the English source word
selling in two different contexts where it links to different
words in Arabic, which are both forms of the same verb.
The part-of-speech of the previous word is useful for dis-
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Figure 2: Increase in log probability of training data during
training for varying Timp, with Model 1, for Arabic to English
(top) and English to Arabic (bottom)

criminating between the two cases, whereas a context-
independent model would assign the same probability to
both Arabic words.

3.2 Training Model 1

Training is carried out in both translation directions. For
Arabic to English, the Arabic side of the parallel text is
tagged and the English side remains untagged; we view
the English words as being generated from the Arabic
words and questions are asked about the context of the
Arabic words to determine clusters for the translation ta-
ble. For English to Arabic, the situation is reversed: we
used tagged English text as the source language and un-
tagged Arabic text, with morphological decomposition,
as the target language.

Standard CI Model 1 training, initialised with a uni-
form translation table so that t(e|f) is constant for all
source/target word pairs (f, e), was run on untagged data
for 10 iterations in each direction (Brown et al., 1993;
Deng and Byrne, 2005b). A decision tree was built to
cluster the contexts and a further 10 iterations of training
were carried out using the tagged words-with-context to
produce context-dependent models (CD Model 1). The
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English question Frequency
Is Next Preposition 1523
Is Prev Determiner 1444
Is Prev Preposition 1209
Is Prev Adjective 864
Is Next Noun Singular Mass 772
Is Prev Noun Singular Mass 690
Is Next Noun Plural 597
Is Next Noun 549
Arabic question Frequency
Is Prev Preposition 1110
Is Next Preposition 993
Is Prev Noun 981
Is Next Noun 912
Is Prev Coordinating Conjunction 627
Is Prev Noun SingularMass 607
Is Next Punctuation 603
Is Next Adjective Adverb 559

Table 1: Most frequent root node context questions

models were then evaluated using AER at each train-
ing iteration. A number of improvement thresholds Timp

were tested, and performance compared to that of models
found after further iterations of CI Model 1 training on
the untagged data. In both alignment directions, the log
probability of the training data increases during training
(see Figure 2). As expected, the training set likelihood
increases as the threshold Timp is reduced, allowing more
clusters and closer fitting to the data.

3.2.1 Analysis of frequently used questions

Table 1 shows the questions used most frequently at
the root node of the decision tree when clustering con-
texts in English and Arabic. Because they are used first,
these are the questions that individually give the great-
est ability to discriminate between the different contexts
of a word. The list shows the importance of the left and
right contexts of the word in predicting its translation: of
the most common 50 questions, 25 concern the previous
word, 19 concern the next, and only 6 concern the part-
of-speech of the current word. For Arabic, of the most
frequent 50 questions, 21 concern the previous word, 20
concern the next and 9 the current word.

3.2.2 Alignment Error Rate

Since MT systems are usually built on the union of the
two sets of alignments (Koehn et al., 2003), we consider
the union of alignments in the two directions as well as
those in each direction. Figure 3 shows the change in
AER of the alignments in each direction, as well as the
alignment formed by taking their union at corresponding
thresholds and training iterations.

Timp Arabic-English (%) English-Arabic (%)
10 30601 (25.33) 26011 (39.87)
20 11193 (9.27) 18365 (28.15)
40 1874 (1.55) 9104 (13.96)
100 307 (0.25) 1128 (1.73)

Table 2: Words [number (percentage)] with context-dependent
translation for varying Timp

3.2.3 Variation of improvement threshold Timp

There is a trade-off between modelling the data accu-
rately, which requires more clusters, and eliminating data
sparsity problems, which requires each cluster to contain
contexts that occur frequently enough in the training data
to estimate the translation probabilities accurately. Use of
a smaller threshold Timp leads to more clusters per word
and an improved ability to fit to the data, but this can lead
to reduced alignment quality if there is insufficient data
to estimate the translation probability distribution accu-
rately for each cluster. For lower thresholds, we observe
over-fitting and the AER rises after the second iteration of
CD training, similar to the behaviour seen in Och (2002).
Setting Timp = 0 results in each context of a word having
its own cluster, which leads to data sparsity problems.

Table 2 shows the percentage of words for which the
contexts are split into multiple clusters for CD Model 1
with varying improvement thresholds. This occurs when
there are enough training data examples and sufficient
variability between the contexts of a word that splitting
the contexts into more than one cluster increases the EM
auxiliary function. For words where the contexts are not
split, all the contexts remain in the same cluster and pa-
rameter estimation is exactly the same as for the unclus-
tered context-independent models.

3.3 Training HMMs

Adding source word context to translation has so far led
to improvements in AER for Model 1, but the perfor-
mance does not match that of HMMs trained on untagged
data; we therefore train HMMs on tagged data.

We proceed with Model 1 and Model 2 trained in the
usual way, and context-independent (CI) HMMs were
trained for 5 iterations on the untagged data. Statistics
were then gathered for clustering at various thresholds,
after which 5 further EM iterations were performed with
tagged data to produce context-dependent (CD) HMMs.
The HMMs were trained in both the Arabic to English
and the English to Arabic directions. The log likelihood
of the training set varies with Timp in much the same
way as for Model 1, increasing at each iteration, with
greater likelihood at lower thresholds. Figure 4 shows
how the AER of the union alignment varies with Timp

during training. As with Model 1, the clustered HMM

115



 49.2

 49.4

 49.6

 49.8

 50

 50.2

 50.4

 50.6

 50.8

 10  11  12  13  14  15  16  17  18  19  20

A
E

R

Iteration

CI Model 1
Threshold 10
Threshold 20
Threshold 60

49.6

49.8

50.0

50.2

50.4

50.6

50.8

51.0

51.2

 10  11  12  13  14  15  16  17  18  19  20

A
E

R

Iteration

CI Model 1
Threshold 10
Threshold 20
Threshold 60

Threshold 100

49.0

49.2

49.4

49.6

49.8

50.0

50.2

50.4

50.6

50.8

51.0

 10  11  12  13  14  15  16  17  18  19  20

A
E

R

Iteration

CI Model 1
Threshold 10
Threshold 20
Threshold 60

Figure 3: Variation of AER during Model 1 training for varying
Timp, for Arabic to English (top), English to Arabic (middle)
and their union (bottom)
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Figure 4: AER of the union alignment for varying Timp with the
HMM model
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Figure 5: Precision/recall curves for the context-dependent
HMM and the baseline context-independent HMM, for Arabic
to English and English to Arabic. p0 varies from 0.00 to 0.95 in
steps of 0.05.

models produce alignments with a lower AER than the
baseline model, and there is evidence of over-fitting to
the training data.

3.3.1 Alignment precision and recall
The HMM models include a null transition probability,
p0, which can be modified to adjust the number of align-
ments to the null token (Deng and Byrne, 2005a). Where
a target word is emitted from null, it is not included in
the alignment links, so this target word is viewed as not
being aligned to any source word; this affects the preci-
sion and recall. The results reported above use p0 = 0.2
for English-Arabic and p0 = 0.4 for Arabic-English; we
can tune these values to produce alignments with the low-
est AER. Figure 5 shows precision-recall curves for the
CD HMMs compared to the CI HMMs for both transla-
tion directions. For a given value of precision, the CD
HMM has higher recall; for a given value of recall, the
CD HMM has higher precision.

We do not report F-score (Fraser and Marcu, 2006)
since in our experiments we have not found strong cor-
relation with translation performance, but we note that
these results for precision and recall should lead to im-
proved F-scores as well.

4 Evaluation of translation quality

We have shown that the context-dependent models pro-
duce a decrease in AER measured on manually-aligned
data; we wish to show this improved model performance
leads to an increase in translation quality, measured by
BLEU score (Papineni et al., 2001). In addition to the
Arabic systems already evaluated by AER, we also report
results for a Chinese-English translation system.

Alignment models were evaluated by aligning the
training data using the models in each translation direc-
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tion. HiFST, a WFST-based hierarchical translation sys-
tem described in (Iglesias et al., 2009), was trained on
the union of these alignments. MET (Och, 2003) was
carried out using a development set, and the BLEU score
evaluated on two test sets. Decoding used a 4-gram lan-
guage model estimated from the English side of the entire
MT08 parallel text, and a 965M word subset of monolin-
gual data from the English Gigaword Third Edition.

For both Arabic and English, the CD HMM models
were evaluated as follows. Iteration 5 of the CI HMM
was used to produce alignments for the parallel text train-
ing data: these were used to train the baseline system.
The same data is aligned using CD HMMs after two
further iterations of training and a second WFST-based
translation system built from these alignments. The mod-
els are evaluated by comparing BLEU scores with those
of the baseline model.

4.1 Arabic to English translation

Alignment models were trained on the NIST MT08
Arabic-English parallel text, excluding the UN portion.
The null alignment probability was chosen based on the
AER, resulting in values of p0 = 0.05 for Arabic to
English and p0 = 0.10 for English to Arabic. We per-
form experiments on the NIST Arabic-English transla-
tion task. The mt02 05 tune and mt02 05 test data sets
are formed from the odd and even numbered sentences
of the NIST MT02 to MT05 evaluation sets respectively;
each contains 2k sentences and 60k words. We use
mt02 05 tune as a development set and evaluate the sys-
tem on mt02 05 test and the newswire portion of the
MT08 set, MT08-nw. Table 3 shows a comparison of the
system trained using CD HMMs with the baseline sys-
tem, which was trained using CI HMM models on un-
tagged data. The context-dependent models result in a
gain in BLEU score of 0.3 for mt02 05 test and 0.6 for
MT08-nw.

4.2 Chinese to English translation

The Chinese training set was 600k random parallel text
sentences of the newswire LDC collection allowed for
NIST MT08, a total of 15.2M words of Chinese and
16.6M words of English. The Chinese text was tagged us-
ing the MXPOST maximum-entropy part of speech tag-
ging tool (Ratnaparkhi, 1996) trained on the Penn Chi-
nese Treebank 5.1; the English text was tagged using the
TnT part of speech tagger (Brants, 2000) trained on the
Wall Street Journal portion of the English Penn treebank.

The development set tune-nw and validation set test-nw
contain a mix of the newswire portions of MT02 through
MT05 and additional developments sets created by trans-
lation within the GALE program. We also report results
on the newswire portion of the MT08 set. Again we see
an increase in BLEU score for both test sets: 0.5 for test-

Arabic-English
Alignments tune mt02 05 test MT08-nw
CI HMM 50.0 49.4 46.3
CD HMM 50.0 49.7 46.9

Chinese-English
Alignments tune test-nw MT08-nw
CI HMM 28.1 28.5 26.9
CD HMM 28.5 29.0 27.7

Table 3: Comparison, using BLEU score, of the CD HMM with
the baseline CI HMM

nw and 0.8 for MT08-nw.

5 Conclusions and future work

We have introduced context-dependent Model 1 and
HMM alignment models, which use context information
in the source language to improve estimates of word-
to-word translation probabilities. Estimation of parame-
ters using these contexts without smoothing leads to data
sparsity problems; therefore we have developed decision
tree clustering algorithms to cluster source word contexts
based on optimisation of the EM auxiliary function. Con-
text information is incorporated by the use of part-of-
speech tags in both languages of the parallel text, and the
EM algorithm is used for parameter estimation.

We have shown that these improvements to the model
lead to decreased AER compared to context-independent
models. Finally, we compare machine translation sys-
tems built using our context-dependent alignments. For
both Arabic- and Chinese-to-English translation, we
report an increase in translation quality measured by
BLEU score compared to a system built using context-
independent alignments.

This paper describes an initial investigation into
context-sensitive alignment models, and there are many
possible directions for future research. Clustering the
probability distributions of infrequently occurring may
produce improvements in alignment quality, different
model training schemes and extensions of the context-
dependence to more sophisticated alignment models will
be investigated. Further translation experiments will be
carried out.
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Maja Popović and Hermann Ney. 2004. Improving word align-
ment quality using morpho-syntactic information. In In Pro-
ceedings of COLING, page 310.

Adwait Ratnaparkhi. 1996. A maximum entropy model for
part-of-speech tagging. In In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing,
pages 133–142.

H. Singer and M. Ostendorf. 1996. Maximum likelihood suc-
cessive state splitting. Proceedings of ICASSP, 2:601–604.

Nicolas Stroppa, Antal van den Bosch, and Andy Way. 2007.
Exploiting source similarity for SMT using context-informed
features. In Proceedings of the 11th Conference on Theoreti-
cal and Methodological Issues in Machine Translation (TMI
2007), pages 231 – 240.

Kristina Toutanova, H. Tolga Ilhan, and Christopher D. Man-
ning. 2002. Extensions to HMM-based statistical word
alignment models. In Proceedings of EMNLP, pages 87–94.

Ismael Garcı́a Varea, Franz J. Och, Hermann Ney, and Fran-
cisco Casacuberta. 2002. Improving alignment quality in
statistical machine translation using context-dependent max-
imum entropy models. In Proceedings of COLING, pages
1–7.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. 1996.
HMM-based word alignment in statistical translation. In
Proceedings of COLING, pages 836–841.

S. J. Young, J. J. Odell, and P. C. Woodland. 1994. Tree-based
state tying for high accuracy acoustic modelling. In HLT ’94:
Proceedings of the workshop on Human Language Technol-
ogy, pages 307–312.

118



Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 119–127,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Graph-based Learning for Statistical Machine Translation

Andrei Alexandrescu
Dept. of Comp. Sci. Eng.
University of Washington
Seattle, WA 98195, USA

andrei@cs.washington.edu

Katrin Kirchhoff
Dept. of Electrical Eng.

University of Washington
Seattle, WA 98195, USA

katrin@ee.washington.edu

Abstract

Current phrase-based statistical machine
translation systems process each test sentence
in isolation and do not enforce global consis-
tency constraints, even though the test data
is often internally consistent with respect to
topic or style. We propose a new consistency
model for machine translation in the form
of a graph-based semi-supervised learning
algorithm that exploits similarities between
training and test data and also similarities
between different test sentences. The algo-
rithm learns a regression function jointly over
training and test data and uses the resulting
scores to rerank translation hypotheses. Eval-
uation on two travel expression translation
tasks demonstrates improvements of up to 2.6
BLEU points absolute and 2.8% in PER.

1 Introduction

Current phrase-based statistical machine translation
(SMT) systems commonly operate at the sentence
level—each sentence is translated in isolation, even
when the test data consists of internally coherent
paragraphs or stories, such as news articles. For
each sentence, SMT systems choose the translation
hypothesis that maximizes a combined log-linear
model score, which is computed independently of
all other sentences, using globally optimized com-
bination weights. Thus, similar input strings may
be translated in very different ways, depending on
which component model happens to dominate the
combined score for that sentence. This is illustrated
by the following example (from the IWSLT 2007

Arabic-English translation task):
Source 1: Asf lA ymknk *lk hnAk klfp HwAly vmAnyn
dwlAr lAlsAEp AlwAHdp
Ref: sorry you can’t there is a cost the charge is eighty
dollars per hour
1-best: i’m sorry you can’t there in the cost about eighty
dollars for a one o’clock
Source 2: E*rA lA ymknk t$gyl AltlfAz HtY tqlE
AlTA }rp
Ref: sorry you cannot turn the tv on until the plane has
taken off
1-best: excuse me i you turn tv until the plane departs

The phraselA ymknk (you may not/you cannot)
is translated differently (and wrongly in the sec-
ond case) due to different segmentations and phrase
translations chosen by the decoder. Though differ-
ent choices may be sometimes appropriate, the lack
of constraints enforcing translation consistency of-
ten leads to suboptimal translation performance. It
would be desirable to counter this effect by encour-
aging similar outputs for similar inputs (under a suit-
ably defined notion of similarity, which may include
e.g. a context specification for the phrase/sentence).

In machine learning, the idea of forcing the out-
puts of a statistical learner to vary smoothly with the
underlying structure of the inputs has been formal-
ized in the graph-based learning (GBL) framework.
In GBL, both labeled (train) and unlabeled (test)
data samples are jointly represented as vertices in a
graph whose edges encode pairwise similarities be-
tween samples. Various learning algorithms can be
applied to assign labels to the test samples while en-
suring that the classification output varies smoothly
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along the manifold defined by the graph. GBL has
been successfully applied to a range of problems in
computer vision, computational biology, and natu-
ral language processing. However, in most cases,
the learning tasks consisted of unstructured classi-
fication, where the input was represented by fixed-
length feature vectors and the output was one of a
finite set of discrete labels. In machine translation,
by contrast, both inputs and outputs consist of word
strings of variable length, and the number of possi-
ble outputs is not fixed and practically unlimited.

In this paper we propose a new graph-based learn-
ing algorithm with structured inputs and outputs to
improve consistency in phrase-based statistical ma-
chine translation. We define a joint similarity graph
over training and test data and use an iterative label
propagation procedure to regress a scoring function
over the graph. The resulting scores for unlabeled
samples (translation hypotheses) are then combined
with standard model scores in a log-linear transla-
tion model for the purpose of reranking. Our con-
tributions are twofold. First, from a machine trans-
lation perspective, we design and evaluate a global
consistency model enforcing that similar inputs re-
ceive similar translations. Second, from a machine
learning perspective, we apply graph-based learning
to a task with structured inputs and outputs, which
is a novel contribution in itself since previous ap-
plications of GBL have focused on predicting cat-
egorical labels. We evaluate our approach on two
machine translation tasks, the IWSLT 2007 Italian-
to-English and Arabic-to-English tasks, and demon-
strate significant improvements over the baseline.

2 Graph-Based Learning

GBL algorithms rely on a similarity graph consisting
of a set of nodes representing data samplesxi (where
i ranges over1, . . . , l labeled points andl+1, . . . , n
unlabeled points), and a set of weighted edges en-
coding pairwise similarities between samples. The
graph is characterized by a weight matrixW whose
elementsWij ≥ 0 are the similarity values for edges
between verticesxi andxj, and by its label vector
Y = (y1, . . . yl), yi ∈ {1, . . . , C} that defines la-
bels for the firstl points. If there is no edge linking
nodesxi andxj, thenWij = 0. There is consider-
able freedom in choosing the weights. The similar-

ity measure used to compute the edge weights de-
termines the graph structure and is the most impor-
tant factor in successfully applying GBL. In most
applications of GBL, data samples are represented
by fixed-length feature vectors, and cosine similar-
ity or Euclidean distance-based measures are used
for edge weights.

Learning algorithms on similarity graphs include
e.g. min-cut (Blum and Chawla, 2001), spectral
graph transducer (Joachims, 2003), random walk-
based approaches (Szummer and Jaakkola, 2001),
and label propagation (Zhu and Ghahramani, 2002).
The algorithm proposed herein is based on the latter.

2.1 Label Propagation

Given a graph defined by a weight matrixW and
a label setY , the basic label propagation algorithm
proceeds as follows:

1. Initialize the matrixP asPij = Wij−Wii
P

j Wij−Wii

2. Initialize an× C matrix f with binary vectors
encoding the known labels for the firstl rows:
fi = δC(yi) ∀i ∈ {1, 2, . . . , l}, whereδC(yi) is
the Kronecker vector of lengthC with 1 in po-
sition yi and 0 elsewhere. The remaining rows
of f can be zero.

3. f ′ ← P × f
4. Clamp already-labeled data rows:f ′i = δC(yi)
∀i ∈ {1, 2, . . . , l}

5. If f ′ ∼= f , stop.
6. f ← f ′

7. Repeat from step 3.

After convergence,f contains the solution in rows
l + 1 to n in the form of unnormalized label proba-
bility distributions. Hard labels can be obtained by

ŷi = arg max
j∈{1,...,C}

fij ∀i ∈ {l + 1, . . . , n} (1)

The algorithm minimizes the following cost func-
tion (Zhu, 2005):

S =
C∑

k=1

∑

i>l ∨ j>l

Wij(fik − fjk)2 (2)

S measures the smoothness of the learned function,
i.e., the extent to which the labeling allows large-
weight edges to link nodes of different labels. By
minimizing S, label propagation finds a labeling
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that, to the extent possible, assigns similar soft labels
(identical hard labels) to nodes linked by edges with
large weights (i.e., highly similar samples). The
labeling decision takes into account not only sim-
ilarities between labeled and unlabeled nodes (as
in nearest-neighbor approaches) but also similarities
among unlabeled nodes. Label propagation has been
used successfully for various classification tasks,
e.g. image classification and handwriting recogni-
tion (Zhu, 2005). In natural language processing, la-
bel propagation has been used for document classifi-
cation (Zhu, 2005), word sense disambiguation (Niu
et al., 2005; Alexandrescu and Kirchhoff, 2007), and
sentiment categorization (Goldberg and Zhu, 2006).

3 Graph-Based Learning for Machine
Translation

Our goal is to exploit graph-based learning for im-
proving consistency in statistical phrase-based ma-
chine translation. Intuitively, a set of similar source
sentences should receive similar target-language
translations. This means that similarities between
training and test sentences should be taken into ac-
count, butalso similarities between different test
sentences, which is a source of information currently
not exploited by standard SMT systems. To this
end we define a graph over the training and test sets
with edges between test and training sentences as
well as between different test sentences. In cases
where a test sentence does not have any connections
to training sentences but is connected to other test
sentences, helpful information about preferred trans-
lations can be propagated via these edges.

As mentioned above, the problem of machine
translation does not neatly fit into the standard
GBL framework. Given that our samples consist
of variable-length word strings instead of feature
vectors, the standard cosine or Euclidean-distance
based similarity measures cannot be used mean-
ingfully, and the number of possible “labels”—
correct translations—is unbounded and practically
very large. We thus need to modify both the graph
construction and the label propagation algorithms.

First, we handle the problem of unlimited out-
puts by applying GBL to rescoring only. In most
SMT systems, anN -best list (generated by a first de-
coding pass) approximates the search space of good

hypotheses reasonably well, providedN is large
enough. For all hypotheses of all sentences in the
test set (set we denote withH), the system learns a
ranking functionr : H → [0, 1]. Larger values ofr
indicate better hypotheses. The corresponding loss
functional is

L(r) =
∑

i,j

Wij [r(xi)− r(xj)]
2 (3)

L(r) measures the smoothness ofr over the graph
by penalizing highly similar clusters of nodes that
have a high variance ofr (in other words, simi-
lar input sentences that have very different transla-
tions). The smallerL(r), the “smoother”r is over
the graph. Thus, instead of directly learning a clas-
sification function, we learn a regression function—
similar to (Goldberg and Zhu, 2006)—that is then
used for ranking the hypotheses.

3.1 Graph Construction

Each graph node represents a sentencepair (consist-
ing of source and target strings), and edge weights
represent the combined similarity scores computed
from comparing both the source sides and target
sides of a pair of nodes. Given a training set
with l source and target language sentence pairs
(s1, t1), . . . , (sl, tl) and a test set withl + 1, ..., n
source sentences,sl+1, . . . , sn, the construction of
the similarity graph proceeds as follows:

1. For each test sentencesi, i = l + 1, . . . , n,
find a setStraini of similar training source
sentences and a setStesti of similar test sen-
tences (excludingsi and sentences identical to
it) by applying a string similarity functionσ to
the source sides only and retaining sentences
whose similarity exceeds a thresholdθ. Dif-
ferentθ’s can be used for training vs. test sen-
tences; we use the sameθ for both sets.

2. For each hypothesishsi generated forsi by a
baseline system, compute its similarity to the
target sides of all sentences inStraini . The
overall similarity is then defined by the com-
bined score

αij = κ
(
σ(si, s

j), σ(hsi , t
j)
)

(4)

wherei = l + 1, . . . n, j = 1, . . . , |Straini | and
κ : R+ × R+ → R+ is an averaging function.
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If αij > 0, establish graph nodes forhsi andtj
and link them with an edge of weightαij .

3. For each hypothesishsi and each hypothe-
sis generated for each of the sentencessk ∈
Σtesti , compute similarity on the target side and
use the combined similarity score as the edge
weight between nodes forhsi andhsk

.
4. Finally,for each nodext representing a train-

ing sentence, assignr(xt) = 1 and also de-
fine its synthetic counterpart: a vertexx′t with
r(x′t) = 0. For each edge incident toxt of
weight Wth, define a corresponding edge of
weight1−Wt′h.

The synthetic nodes and edges need to be added
to prevent the label propagation algorithm from con-
verging to the trivial solution that assignsr = 1 to
all points in the graph. This choice is theoretically
motivated—a similarity graph for regression should
have not only “sources” (good nodes with high value
of r) but also “sinks” (counterparts for the sources).
Figure 1 illustrates the connections of a test node.

Similarity Measure The similarity measure used
for comparing source and target sides is of prime
importance, as it determines the structure of the
graph. This has consequences for both computa-
tional efficiency (denser graphs require more com-
putation and memory) and the accuracy of the out-
come. A low similarity threshold results in a rich
graph with a large number of edges but possibly in-
troduces noise. A higher threshold leads to a small
graph emphasizing highly similar samples but with
too many disconnected components. The similarity
measure is also the means by which domain knowl-
edge can be incorporated into the graph construc-
tion process. Similarity may be defined at the level
of surface word strings, but may also include lin-
guistic information such as morphological features,
part-of-speech tags, or syntactic structures. Here,
we compare two similarity measures: the famil-
iar BLEU score (Papineni et al., 2002) and a score
based on string kernels. In using BLEU we treat
each sentence as a complete document. BLEU is not
symmetric—when comparing two sentences, differ-
ent results are obtained depending on which one is
considered the reference and which one is the hy-
pothesis. For computing similarities between train
and test translations, we use the train translation as

the reference. For computing similarity between two
test hypotheses, we compute BLEU in both direc-
tions and take the average. We note that more ap-
propriate distance measures are certainly possible.
Many previous studies, such as (Callison-Burch et
al., 2006), have pointed out drawbacks of BLEU,
and any other similarity measure could be utilized
instead. In particular, similarity measures that model
aspects of sentences that are ill handled by standard
phrase-based decoders (such as syntactic structure
or semantic information) could be useful here.

A more general way of computing similarity be-
tween strings is provided by string kernels (Lodhi et
al., 2002; Rousu and Shawe-Taylor, 2005), which
have been extensively used in bioinformatics and
email spam detection. String kernels map strings
into a feature space defined by all possible sub-
strings of the string up a fixed lengthk, and com-
puting the dot product between the resulting feature
vectors. Several variants of basic string kernels ex-
ist, notably those allowing gaps or mismatches, and
efficient implementations have been devised even
for large scale applications. Formally, we define a
sentences as a concatenation of symbols from a fi-
nite alphabetΣ (the vocabulary of the language) and
an embedding function from strings to feature vec-
tors,φ : Σ∗ → H. A kernel functionK(s, t) com-
putes the distance between the resulting vectors for
two sentencess andt. In our case, the embedding
function is defined as

φk
u(s) :=

∑

i:u=s(i)

λ|i| u ∈ Σk (5)

wherek is the maximum length of substrings,|i| is
the length ofi, andλ is a penalty parameter for each
gap encountered in the substring.K is defined as

K(s, t) =
∑

u

〈φu(s), φu(t)〉wu (6)

wherew is a weight dependent on the length of the
substringu. Finally, the kernel score is normalized
by
√
K(s, s) · K(t, t) to discourage long sentences

from being favored. Thus, our similarity measure is
a gapped, normalized string kernel, which is a more
general measure than BLEU in that is considers non-
contiguous substrings. We use a dynamic program-
ming implementation of string kernels (Rousu and
Shawe-Taylor, 2005).
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For the combination of source-side and target-
side similarity scores (the function we denoted asκ)
we test two simple schemes, using either the ge-
ometric or the arithmetic mean of the individual
scores. In the first case, large edge weights only re-
sult when both source and target are close to each
other; the latter may produce high edge weights
when only one of them (typically the source score)
is high. More sophisticated combination schemes,
using e.g. weighted combination, could be used but
were not investigated in this study.

Scalability Poor scalability is often mentioned as
a drawback of graph-based learning. Straightfor-
ward implementations of GBL algorithms often rep-
resent the joint training and test data in working
memory and therefore do not scale well to large
data sets. However, we have developed several tech-
niques to improve scalability without impeding ac-
curacy. First, we construct separate graphs for each
test sentence without losing global connectivity in-
formation. The graph for a test sentence is com-
puted as thetransitive closure of the edge setE over
the nodes containing all hypotheses for that test sen-
tence. This smaller graph does not affect the out-
come of the learning process for the chosen sentence
because in label propagation the learned valuer(xi)
can be influenced by that of another nodexj if and
only if xj is reachable fromxi. In the worst the-
oretical case, the transitive closure could compre-
hend the entire graph, but in practice the edge set is
never that dense and can be easily pruned based on
the heuristic that faraway nodes connected through
low-weight edges have less influence on the result.
We use a simple embodiment of this heuristic in a
work-list approach: starting from the nodes of inter-
est (hypotheses for the focal sentence), we expand
the closure starting with the direct neighbors, which
have the largest influence; then add their neighbors,
which have less influence, and so forth. A thresh-
old on the number of added vertices limits undue
expansion while capturing either the entire closure
or a good approximation of it. Another practical
computational advantage of portioning work is that
graphs for different hypothesis sets can be trivially
created and used in parallel, whereas distributing
large matrix-vector multiplication is much more dif-
ficult (Choi, 1998). The disadvantage is that overall

1 0

1 0
. . . . . .

W2h

W1h 1−W1h
1−W

2h

Figure 1: Connections for hypothesis nodexh. Similar-
ity edges with weightsWth link the node with train sen-
tencesxt, for whichr(xt) = 1. For each of these edges
we define a dissimilarity edge of weight1−Wth, linking
the node with nodex′

t for whichr(x′
t) = 0. The vertex is

also connected to other test vertices (the dotted edges).

redundant computations are being made: incomplete
estimates ofr are computed for the ancillary nodes
in the transitive closure and then discarded.

Second, we obtain a reduction in graph size of or-
ders of magnitude by collapsing all training vertices
of the samer that are connected to the same test
vertex into one and sum the edge weights. This is
equivalent to the full graph for learning purposes.

3.2 Propagation

Label propagation proceeds as follows:

1. Compute the transitive closure over the edges
starting from all hypothesis nodes of a given
sentence.

2. On the resulting graph, collapse all test-train
similarities for each test node by summing edge
weights. Obtain accumulated similarities in
row and column 1 of the similarity matrixW .

3. Normalize test-to-train weights such that∑
j W1j =

∑
j Wj1 = 1.

4. Initialize the matrixP asPij = Wij

1−Wi1+
P

j Wij
.

(The quantity1−W1i in the denominator is the
weight of the dissimilarity edge.)

5. Initialize a column vectorf of height n with
f1 = 1 (corresponding to nodex1) and 0 in the
remaining positions.

6. f ′ ← P × f
7. Clampf ′1: f ′1 = 1
8. If f ′ ∼= f , continue with step 11.
9. f ← f ′

10. Repeat from step 6.
11. The resultr is in the slots off that correspond

to the hypotheses of interest. Normalize per
sentence if needed, and rank in decreasing or-
der ofr.
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Convergence Our algorithm’s convergence proof
is similar to that for standard label propagation (Zhu,
2005, p. 6). We splitP as follows:

P =
[

0 PLU

PUL PUU

]
(7)

wherePUL is a column vector holding global simi-
larities of test hypotheses with train sentences,PLU

is a horizontal vector holding the same similarities
(though PLU 6= P T

UL due to normalization), and
PUU holds the normalized similarities between pairs
of test hypotheses. We also separatef :

f =
[

1
fU

]
(8)

where we distinguish the first entry because it repre-
sents the training part of the data. With these nota-
tions, the iteration formula becomes:

f ′U = PUUfU + PUL (9)

Unrolling the iteration yields:

fU = lim
n→∞

[
(PUU )nf0

U +

(
n∑

i=1

(PUU )i−1

)
PUL

]

It can be easily shown that the first term converges
to zero because of normalization in step 4 (Zhu,
2005). The sum in the second term converges to
(I − PUU )−1, so the unique fixed point is:

fU = (I − PUU )−1PUL (10)

Our system uses the iterative form. On the data sets
used, convergence took 61.07 steps on average.

At the end of the label propagation algorithm, nor-
malized scores are obtained for each N-best list (sen-
tences without any connections whatsoever are as-
signed zero scores). These are then used together
with the other component models in log-linear com-
bination. Combination weights are optimized on a
held-out data set.

4 Data and System

We evaluate our approach on the IWSLT 2007
Italian-to-English (IE) and Arabic-to-English (AE)
travel tasks. The first is a challenge task, where the

training set consists of read sentences but the de-
velopment and test data consist of spontaneous di-
alogues. The second is a standard travel expres-
sion translation task consisting entirely of read in-
put. For our experiments we chose the text input
(correct transcription) condition only. The data set
sizes are shown in Table 1. We split the IE develop-
ment set into two subsets of 500 and 496 sentences
each. The first set (dev-1) is used to train the system
parameters of the baseline system and as a training
set for GBL. The second is used to tune the GBL pa-
rameters. For each language pair, the baseline sys-
tem was trained with additional out-of-domain text
data: the Italian-English Europarl corpus (Koehn,
2005) in the case of the IE system, and 5.5M words
of newswire data (LDC Arabic Newswire, Multiple-
Translation Corpus and ISI automatically extracted
parallel data) in the case of the AE system.

Set # sent pairs # words # refs

IE train 26.5K 160K 1
IE dev-1 500 4308 1
IE dev-2 496 4204 1
IE eval 724 6481 4

AE train 23K 160K 1
AE dev4 489 5392 7
AE dev5 500 5981 7
AE eval 489 2893 6

Table 1: Data set sizes and reference translations count.

Our baseline is a standard phrase-based SMT
system based on a log-linear model with the fol-
lowing feature functions: two phrase-based trans-
lation scores, two lexical translation scores, word
count and phrase count penalty, distortion score,
and language model score. We use the Moses de-
coder (Koehn et al., 2007) with a reordering limit of
4 for both languages, which generatesN -best lists
of up to 2000 hypotheses per sentence in a first pass.
The second pass uses a part-of-speech (POS) based
trigram model, trained on POS sequences generated
by a MaxEnt tagger (Ratnaparkhi, 1996). The lan-
guage models are trained on the English side using
SRILM (Stolcke, 2002) and modified Kneser-Ney
discounting for the first-pass models and Witten-
Bell discounting for the POS models. The baseline
system yields state-of-the-art performance.
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Weighting dev-2 eval

none (baseline) 22.3/53.3 29.6/45.5
(a) 23.4/51.5 30.7/44.1
(b) 23.5/51.6 30.6/44.3
(c) 23.2/51.8 30.0/44.6

Table 2: GBL results (%BLEU/PER) on IE task
for different weightings of labeled-labeled vs. labeled-
unlabeled graph edges (BLEU-based similarity measure).

5 Experiments and Results

We started with the IE system and initially inves-
tigated the effect of only including edges between
labeled and unlabeled samples in the graph. This
is equivalent to using a weightedk-nearest neighbor
reranker that, for each hypothesis, computes average
similarity with its neighborhood of labeled points,
and uses the resulting score for reranking.

Starting with the IE task and the BLEU-based
similarity metric, we ran optimization experiments
that varied the similarity threshold and compared
sum vs. product combination of source and target
similarity scores, settling forθ = 0.7 and prod-
uct combination. We experimented with three dif-
ferent ways of weighting the contributions from
labeled-unlabeled vs. unlabeled-unlabeled edges:
(a) no weighting, (b) labeled-to-unlabeled edges
were weighted 4 times stronger than unlabeled-
unlabeled ones; and (c) labeled-to-unlabeled edges
were weighted 2 times stronger. The weighting
schemes do not lead to significantly different results.
The best result obtained shows a gain of 1.2 BLEU
points on the dev set and 1 point on the eval set, re-
flecting PER gains of 2% and 1.2%, respectively.

We next tested the string kernel based similarity
measure. The parameter values were 0.5 for the gap
penalty, a maximum substring length ofk = 4, and
weights of 0, 0.1, 0.2, 0.7. These values were chosen
heuristically and were not tuned extensively due to
time constraints. Results (Table 3) show significant
improvements in PER and BLEU.

In the context of the BTEC challenge task it is
interesting to compare this approach to adding the
development set directly to the training set. Part of
the improvements may be due to utilizingkNN in-
formation from a data set that is matched to the test

System dev-2 eval

Baseline 22.3/53.3 29.6/45.5
GBL 24.3/51.0 32.2/42.7

Table 3: GBL results (%BLEU/PER) on IE tasks with
string-kernel based similarity measure.

set in terms of style. If this data were also used for
training the initial phrase table, the improvements
might disappear. We first optimized the log-linear
model combination weights on the entire dev07 set
(dev-1 and dev-2 in Table 1) before retraining the
phrase table using the combined train and dev07
data. The new baseline performance (shown in Ta-
ble 4) is much better than before, due to the im-
proved training data. We then added GBL to this
system by keeping the model combination weights
trained for the previous system, using the N-best
lists generated by the new system, and using the
combined train+dev07 set as a train set for select-
ing similar sentences. We used the GBL parameters
that yielded the best performance in the experiments
described above. As can be seen from Table 4, GBL
again yields an improvement of up to 1.2% absolute
in both BLEU and PER.

System BLEU (%) PER

Baseline 37.9 38.4
GBL 39.2 37.2

Table 4: Effect of GBL on IE system trained with
matched data (eval set).

For the AE task we usedθ = 0.5; however, this
threshold was not tuned extensively. Results using
BLEU similarity are shown in Table 5. The best
result on the eval set yields an improvement of 1.2
BLEU points though only 0.2% reduction in PER.
Overall, results seem to vary with parameter settings
and nature of the test set (e.g. on dev5, used as a test
set, not for optimization, a surprisingly larger im-
provement in BLEU of 2.7 points is obtained!).

Overall, sentence similarities were observed to be
lower for this task. One reason may be that the AE
system includes statistical tokenization of the source
side, which is itself error-prone in that it can split the
same word in different ways depending on the con-
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Method dev4 dev5 eval

Baseline 30.2/43.5 21.9/48.4 37.8/41.8
GBL 30.3/42.5 24.6/48.1 39.0/41.6

Table 5: AE results (%BLEU/PER,θ = 0.5)

text. Since our similarity measure is word-based,
this may cause similar sentences to fall below the
threshold. The string kernel does not yield any im-
provement over the BLEU-based similarity measure
on this task. One possible improvement would be to
use an extended string kernel that can take morpho-
logical similarity into account.

Example Below we give an actual example of a
translation improvement, showing the source sen-
tence, the 1-best hypotheses of the baseline system
and GBL system, respectively, the references, and
the translations of similar sentences in the graph
neighborhood of the current sentence.
Source: Al+ mE*rp Aymknk {ltqAT Swrp lnA
Baseline: i’m sorry could picture for us
GBL: excuse me could you take a picture of the us
Refs:
excuse me can you take a picture of us
excuse me could you take a photo of us
pardon would you mind taking a photo of us
pardon me could you take our picture
pardon me would you take a picture of us
excuse me could you take a picture of u
Similar sentences:
could you get two tickets for us
please take a picture for me
could you please take a picture of us

6 Related Work

GBL is an instance of semi-supervised learning,
specifically transductive learning. A different form
of semi-supervised learning (self-training) has been
applied to MT by (Ueffing et al., 2007). Ours is
the first study to explore a graph-based learning ap-
proach. In the machine learning community, work
on applying GBL to structured outputs is beginning
to emerge. Transductive graph-based regularization
has been applied to large-margin learning on struc-
tured data (Altun et al., 2005). However, scalability
quickly becomes a problem with these approaches;
we solve that issue by working on transitive closures

as opposed to entire graphs. String kernel represen-
tations have been used in MT (Szedmak, 2007) in
a kernel regression based framework, which, how-
ever, was an entirely supervised framework. Finally,
our approach can be likened to a probabilistic imple-
mentation of translation memories (Maruyana and
Watanabe, 1992; Veale and Way, 1997). Translation
memories are (usually commercial) databases of
segment translations extracted from a large database
of translation examples. They are typically used by
human translators to retrieve translation candidates
for subsequences of a new input text. Matches can
be exact or fuzzy; the latter is similar to the iden-
tification of graph neighborhoods in our approach.
However, our GBL scheme propagates similarity
scores not just from known to unknown sentences
but also indirectly, via connections through other un-
known sentences. The combination of a translation
memory and statistical translation was reported in
(Marcu, 2001); however, this is a combination of
word-based and phrase-based translation predating
the current phrase-based approach to SMT.

7 Conclusion

We have presented a graph-based learning scheme
to implement a consistency model for SMT that
encourages similar inputs to receive similar out-
puts. Evaluation on two small-scale translation tasks
showed significant improvements of up to 2.6 points
in BLEU and 2.8% PER. Future work will include
testing different graph construction schemes, in par-
ticular better parameter optimization approaches and
better string similarity measures. More gains can
be expected when using better domain knowledge
in constructing the string kernels. This may include
e.g. similarity measures that accommodate POS tags
or morphological features, or comparisons of the
syntax trees of parsed sentence. The latter could be
quite easily incorporated into a string kernel or the
related tree kernel similarity measure. Additionally,
we will investigate the effectiveness of this approach
on larger translation tasks.
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Abstract

In current phrase-based SMT systems, more
training data is generally better than less.
However, a larger data set eventually intro-
duces a larger model that enlarges the search
space for the translation problem, and con-
sequently requires more time and more re-
sources to translate. We argue redundant in-
formation in a SMT system may not only de-
lay the computations but also affect the qual-
ity of the outputs. This paper proposes an ap-
proach to reduce the model size by filtering
out the less probable entries based on com-
patible data in an intermediate language, a
novel use of triangulation, without sacrificing
the translation quality. Comprehensive exper-
iments were conducted on standard data sets.
We achieved significant quality improvements
(up to 2.3 BLEU points) while translating with
reduced models. In addition, we demon-
strate a straightforward combination method
for more progressive filtering. The reduction
of the model size can be up to 94% with the
translation quality being preserved.

1 Introduction

Statistical machine translation (SMT) applies ma-
chine learning techniques to a bilingual corpus to
produce a translation system entirely automatically.
Such a scheme has many potential advantages over
earlier systems which relied on carefully crafted
rules. The most obvious is that it at dramatically
reduces cost in human labor and it is able to reach
many critical translation rules that are easily over-
looked by human being.

SMT systems generally assemble translations by
selecting phrases from a large candidate set. Un-
supervised learning often introduces a considerable
amount of noise into this set as a result of which the
selection process becomes more longer and less ef-
fective. This paper provides one approach to these
problems.

Various filtering techniques, such as (Johnson et
al., 2007) and (Chen et al., 2008), have been ap-
plied to eliminate a large portion of the translation
rules that were judged unlikely to be of value for
the current translation. However, these approaches
were only able to improve the translation quality
slightly. In this paper, we describe a triangulation
approach (Kay, 1997) that incorporates multilingual
data to improve system efficiency and translation
quality at the same time. Most of the previous tri-
angulation approaches (Kumar et al., 2007; Cohn
and Lapata, 2007; Filali and Bilmes, 2005; Simard,
1999; Och and Ney, 2001) add information obtained
from a third language. In other words, they work
with the union of the data from the different lan-
guages. In contrast, we work with the intersection of
information acquired through a third language. The
hope is that the intersection will be more precise and
more compact than the union, so that a better result
will be obtained more efficiently.

2 Noise in a phrase-based SMT system

The phrases in a translation model are extracted
heuristically from a word alignment between the
parallel texts in two languages using machine learn-
ing techniques. The translation model feature values
are stored in the form of a so-called phrase-table,
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while the distortion model is in the reordering-table.
As we have said models built in this way tend to con-
tain a contains a considerable amount of noise. The
phrase-table entries are far less reliable than the lex-
icons and grammar rules handcrafted for rule-based
systems.

The main source of noise in the phrase table is
errors from the word alignment process. For exam-
ple, many function words occur so frequently that
they are incorrectly mapped to translations of many
function words in the other language to which they
are, in fact, unrelated. On the other hand, many
words remain unaligned on account of their very low
frequency. Another source noise comes from the
phrase extraction algorithm itself. The unaligned
words are usually attached to aligned sequences In
order to achieve longer phrase pairs.

The final selection of entries from the phrase ta-
ble is based not only on the values assigned to them
there, but also to values coming from the language
and reordering models, so that entries that receive an
initially high value may end up not being preferred.

(1) Sie
they

lieben
love

ihre
their

Kinder
children

nicht.
not

They don’t love their children.

The frequently occurring German negative “nicht”
in (1). is sometimes difficult for SMT systems
to translate into English because it may appear in
many positions of a sentence. For instance, it oc-
curs at the end of the sentence in (1). The phrase
pairs “ihre kinder nicht → their children are not”
and “ihre kinder nicht → their children” are both
likely also to appear in the phrase table and the for-
mer has greater estimated probability. However, the
language model would preferred the latter in this ex-
ample because the sentence “They love their children
are not.” is unlikely to be attested. Accordingly,
SMT system may therefore produce the misleading
translation in (2).

(2) They love their children.

The system would not produce translations with the
opposite meanings if the noisy entries like “ihre
kinder nicht → their children” were excluded from
the translation candidates. Eliminating the noise
should help to improve the system’s performance,
for both efficiency and translation quality.

3 Triangulated filtering

While direct translation and pivot translation
through a bridge language presumably introduce
noise, in substantially similar amounts, there is no
reason to expect the noise in the two systems to cor-
relate strongly. In fact, the noise from such differ-
ent sources, tends to be quite distinct, whereas the
more useful information is often retained. This en-
courages us to hope that information gathered from
various sources will be more reliable overall.

Our plan is to ameliorate the noise problem by
constructing a smaller phrase-table by taking the
intersection of a number of sources. We reason that a
target phrase is will appear as a candidate translation
of a given source phrase, only if it also appears as a
candidate translation for some word or phrase in the
bridge language mapping to the source phrase. We
refer to this triangulation approach as triangulated
phrase-table filtering.

Target
Text

Source
Text

Model
Filtered

Parallel
Corpus

Extraction

Alignment,
Phrase

SMT
Decoder

Translation
Model

Language
ModelMonolingual

Corpus
Counting
Smoothing

Filtering

Model
Target−Bridge

Model
Source−Bridge

Figure 1: Triangulated filtering in SMT systems

Figure 1 illustrates our triangulation approach.
Two bridge models are first constructed: one from
the source language to the bridge language, and an-
other from the target language to the bridge lan-
guage. Then, we use these two models to filter the
original source-target model. For each phrase pair
in the original table, we try to find a common link
in these bridge models to connect both phrases. If
such links do not exist, we remove the entry from
the table. The probability values in the table remain
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unchanged. The reduced table can be used in place
of the original one in the SMT system.

There are various forms of links that can be used
as our evidence for the filtering process. One obvi-
ous form is complete phrases in the bridge language,
which means, for each phrase pair in the model to
be filtered, we should look for a third phrase in the
bridge language that can relate the two phrases in the
pair.

This approach to filtering examines each phrase
pair presented in the phrase-table one by one. For
each phrase pair, we collect the corresponding trans-
lations using the models for translation into a third
language. If both phrases can be mapped to some
phrases in the bridge language, but to different ones,
we should remove it from the model. It is also possi-
ble that neither of the phrases appear in correspond-
ing bridge models. In this case, we consider the
bridge models insufficient for making the filtering
decision and prefer to keep the pair in the table.

The way a decoder constructs translation hypothe-
ses is directly related to the weights for different
model features in a SMT system, which are usually
optimized for a given set of models with minimum
error rate training (MERT) (Och, 2003) to achieve
better translation performance. In other words, the
weights obtained for a model do not necessarily ap-
ply to another model. Since the triangulated filter-
ing method removes a part of the model, it is impor-
tant to readjust the feature weights for the reduced
phrase-table.

4 Experimental design

All the text data used in our experiments are
from Release v3 of “European Parliament Proceed-
ings Parallel Corpus 1996-2006” (Europarl) cor-
pus (Koehn, 2005). We mainly investigated trans-
lations from Spanish to English. There are enough
structural differences in these two language to in-
troduce some noise in the phrase table. French,
Portuguese, Danish, German and Finnish were used
as bridge languages. Portuguese is very similar to
Spanish and French somewhat less so. Finnish is un-
related and fairly different typologically with Danish
and German occupying the middle ground. In addi-
tion, we also present briefly the results on German-
English translations with Dutch, Spanish and Danish

as bridges.
For the Spanish-English pair, three translation

models were constructed over the same parallel cor-
pora. We acquired comparable data sets by draw-
ing several subsets from the same corpus according
to various maximal sentence lengths. The subsets

Tokens
Model Sentences Spanish English
EP-20 410,487 5,220,142 5,181,452
EP-40 964,687 20,820,067 20,229,833
EP-50 1,100,813 26,731,269 25,867,370
Europarl 1,304,116 37,870,751 36,429,274

Table 1: Europarl subsets for building the Spanish-
English SMT system

we used in the experiments are presented by “EP-
20”, “EP-40” and “EP-50”, in which the numbers
indicate the maximal sentence length in respective
Europarl subsets. Table 1 lists the characteristics
of the Spanish-English subsets. Although the max-
imal sentence length in these sets is far less than
that of the whole corpus (880 tokens), EP-50 al-
ready includes nearly 85% of Spanish-English sen-
tence pairs from Europarl.

The translations models, both the models to be
filtered and the bridge models, were generated
from compatible Europarl subsets using the Moses
toolkit (Koehn et al., 2007) with the most basic con-
figurations. The feature weights for the Spanish-
English translation models were optimized over a
development set of 500 sentences using MERT to
maximize BLEU (Papineni et al., 2001).

The triangulated filtering algorithm was applied
to each combination of a translation model and a
third language. The reordering models were also
filtered according to the phrase-table. Only those
phrase pairs that appeared in the phrase-table re-
mained in the reordering table. We rerun the MERT
process solely based on the remaining entries in the
filtered tables. Each table is used to translate a set of
2,000 sentences of test data (from the shared task of
the third Workshop on Statistical Machine Transla-
tion, 2008 1). Both the test set and the development
data set have been excluded from the training data.

We evaluated the proposed phrase-table filtering

1For details, see
http://www.statmt.org/wmt08/shared-task.html
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method mainly from two points of view: the effi-
ciency of systems with filtered tables and the quality
of output translations produced by the systems.

5 Results

5.1 System efficiency

Often the question of machine translation is not only
how to produce a good translation, but also how
to produce it quickly. To evaluate the system ef-
ficiency, we measured both storage space and time
consumption. For recording the computation time,
we run an identical of installation of the decoder
with different models and then measure the average
execution time for the given translation task.

In Table 2, we give the number of entries in each
phrase table (N ), and the physical file size of the
phrase table (SPT ) and the reordering table (SRT )
(without any compression or binarization), Tl, the
time for the program to load phrase tables and Tt the
time to translate the complete test set. We also high-
lighted the largest and the smallest reduction from
each group.

All filtered models showed significant reductions
in size. The greatest reduction of model sizes, taking
both phrase-table and reordering table into account,
is nearly 11 gigabytes for filtering the largest model
(EP-50) with a Finnish bridge, which leads to the
maximal time saving of 939 seconds, or almost 16
minutes, for translating two thousand sentences.

The reduction rates from two larger models are
very close to each other whereas the filtered table
scaled down the most significantly on the smallest
model (EP-20), which was in fact constructed over a
much smaller subset of Europarl corpus, consisting
of less than half of the sentences pairs in the other
two Europarl subsets. Compared to the larger Eu-
roparl subsets, the small data set is expected to pro-
duce more errors through training as there is much
less relevant data for the machine learning algorithm
to correctly extract useful information from. Conse-
quently, there are more noisy entries in this small
model, and therefore more entries to be removed. In
addition, the filtering is done by exact matching of
complete phrases, which presumably happens much
less frequently even for correctly paired phrase pairs
in the very limited data supplied by the smallest
training set. For the same reason, the distinction be-

tween different bridge languages was less clear for
this small model.

Due to hardware limitation, we are not able to
fit the unfiltered phrase tables completely into the
memory. Every table was filtered based on the given
input so only a small portion of each table was
loaded into memory. This may diminish the differ-
ence between the original and the filtered table to a
certain degree. The relative time consumptionnev-
ertheless agrees with the reduction in size: phrase
tables from the smallest model showed the most re-
duction for both loading the models and processing
the translations.

For loading time, we count the time it takes to
start and to load the bilingual phrase-tables plus re-
ordering tables and the monolingual language model
into the memory. The majority of the loading time
for the smallest model, even before filtering, has
been used for loading language models and other
start-up processes, could not be reduced as much as
the reduction on table size.

5.2 Translation quality

Bridge EP-20 EP-40 EP-50
— 26.62 31.43 31.68
pt 28.40 32.90 33.93
fr 28.28 32.69 33.47
da 28.48 32.47 33.88
de 28.05 32.65 33.13
fi 28.02 31.91 33.04

Table 3: BLEU scores of translations using filtered phrase
tables

Efficiency aside, a translation system should be
able to produce useful translation. It is important
to verify that the filtering approach does not affect
the translation quality of the system. Table 3 show
the BLEU scores of each translation acquired in the
experiments.

Between translation models of different sizes,
there are obvious performance gaps. Different
bridge languages can cause different effects on per-
formance. However, the translation qualities from
a single model are fairly close to each other. We
therefore take it that the effect of the triangulation
approach is rather robust across translation models
of different sizes.

131



Time Table Size
Model+Bridge Tl (s) Tt (s) N SPT (byte) SRT (byte)
EP-20+ — 55 3529 7,599,271 953M 717M
EP-20+ pt 53 2826 1,712,508 (22.54%) 198M 149M
EP-20+ fr 48 2702 1,536,056 (20.21%) 172M 131M
EP-20+ da 52 2786 1,659,067 (21.83%) 186M 141M
EP-20+ de 43 2732 1,260,524 (16.59%) 132M 101M
EP-20+ fi 47 2670 1,331,323 (17.52%) 147M 111M
EP-40+ — 65 3673 19,199,807 2.5G 1.9G
EP-40+ pt 50 3091 8,378,517 (43.64%) 1.1G 1.8G
EP-40+ fr 46 3129 8,599,708 (44.79%) 1.1G 741M
EP-40+ da 42 3050 6,716,304 (34.98%) 842M 568M
EP-40+ de 46 3069 6,113,769 (31.84%) 725M 492M
EP-40+ fi 40 2889 4,473,483 (23.30%) 533M 353M
EP-50+ — 140 4130 54,382,715 7.1G 5.4G
EP-50+ pt 78 3410 13,225,654 (24.32%) 1.6G 1.3G
EP-50+ fr 97 3616 24,057,849 (44.24%) 3.0G 2.3G
EP-50+ da 81 3418 12,547,839 (23.07%) 1.5G 1.2G
EP-50+ de 95 3488 15,938,151 (29.31%) 1.9G 1.5G
EP-50+ fi 71 3191 7,691,904 (17.75%) 895M 677M

Table 2: System efficiency: time consumption and phrase-table size

It is obvious that the best systems are usually
NOT from the filtered tables that preserved the most
entries from the original. All the filtered models
showed some improvement in quality with updated
model weights. Mostly around 1.5 BLEU points, the
increases ranged from 0.36 to 2.25. Table 4 gives a
set of translations from the experiments. The unfil-
tered baseline system inserted the negative by mis-
take while all the filtered systems are able to avoid
this. It indicates that there are indeed noisy entries
affecting translation quality in the original table. We
were able to achieve better translations by eliminat-
ing noisy entries.

The filtering methods indeed tend to remove en-
tries composed of long phrases. Table 5 lists the
average length of phrases in several models. Both
source phrases and target phrases are taken into ac-
count. The best models have shortest phrases on av-
erage. Discarding such entries seems to be neces-
sary. This is consistent with the findings in (Koehn,
2003) that phrases longer than three words improve
performance little for training corpora of up to 20
million words.

Quality gains appeared to converge in the results
across different bridge languages while the original
models became larger. Translations generated us-
ing large models filtered with different bridge lan-

Bridge EP-20 EP-40 EP-50
— 3.776 4.242 4.335
pt 3.195 3.943 3.740
fr 3.003 3.809 3.947
da 3.005 3.74 3.453
de 2.535 3.501 3.617
fi 2.893 3.521 3.262

Table 5: Average phrase length

guages are less diverse. Meanwhile, the degradation
is less for a larger model. It is reasonable to expect
improvements for extremely large models with arbi-
trary bridge languages. For relatively small models,
the selection of bridge languages would be critical
for the effect of our approach.

5.3 Language clustering

To further understand how the triangulated filter-
ing approach worked and why it could work as it
did, we examined a randomly selected phrase table
fragment through the experiments. The segment in-
cluded 10 potential English translations of the same
Spanish word “fabricantes”, the plural form of the
word “fabricante” (manufacturer).

Table 6 shows the filtering results on a randomly
selected segment from the original “EP-40” model,
including 10 English translations of the same source
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source Ası́, se van modificando poco a poco los principios habituales del Estado de derecho por influencia de una
concepcin extremista de la lucha con tra las discriminaciones..

ref thus , the usual principles of the rule of law are being gradually altered under the influence of an extremist
approach to combating discrimination.

baseline we are not changing the usual principles of the rule of law from the influence of an extremist approach in
the fight against discrimination.

pt so , are gradually changing normal principles of the rule of law by influence of an extremist conception of
the fight against discrimination.

fr so , we are gradually changing the usual principles of the rule of law by influence of an extremist conception
of the fight against discrimination.

da so , are gradually changing the usual principles of the rule of law by influence of an extremist conception
of the fight against discrimination.

de thus , we are gradually altering the usual principles of the rule of law by influence of an extremist concep-
tion of the fight against discrimination.

fi so , are gradually changing normal principles of the rule of law by influence of an extremist conception of
the fight against discrimination.

Table 4: Examples

fabricantes pt fr da de fi
a manufacturer X X X X 4
battalions X X X 3
car manufacturers have 0
car manufacturers X X X X X 5
makers X X X 3
manufacturer X X X X X 5
manufacturers X X X X X 5
producers are X X X 3
producers need 0
producers X X X X X 5

Table 6: Phrase-table entries before and after filtering a
model with different bridges

word “fabricantes”. X indicates that the corre-
sponding English phrase remained in the table after
triangulated filtering with the corresponding bridge
language. We also counted the number of tables that
included each phrase pair.

Regardless of the bridge language, the triangu-
lated filtering approach had removed those entries
that are clearly noise. Meanwhile, entries which
are surely correct were always preserved in the fil-
tered tables. The results of using different bridge
languages turned out to be consistent on these ex-
treme cases. The 5 filtering processes agreed on six
out of ten pairs.

As for the other 4 pairs, the decisions were differ-
ent using different bridge languages. The remaining
entries were always different when the bridge was

changed. None of the languages led to the identi-
cal eliminations. None of the cases excludes all er-
rors. Apparently, the selection of bridge languages
had immediate effects on the filtering results.
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Figure 2: Clustering of bridge languages

We compared two factors of these filtered tables:
their sizes and the corresponding BLEU scores. Fig-
ure 2 shows interesting signs of language similar-
ity/dissimilarity. There are apparently two groups
of languages having extremely close performance,
which happen to fall in two language groups: Ger-
manic (German and Danish) and Romance (French
and Portuguese). The Romance group was as-
sociated with larger filtered tables that produced
slightly better translations. The filtered tables cre-
ated with Germanic bridge languages contained ap-
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proximately 2 million entries less than Romance
groups. The translation quality difference between
these two groups was within 1 point of BLEU.

Observed from this figure, it seems that the trans-
lation quality was connected to the similarity be-
tween the bridge language and the source language.
The closer the bridge is to the source language, the
better translations it may produce. For instance, Por-
tuguese led to a filtered table that produced the best
translations. On the other hand, the more different
the bridge languages compared to the source, the
larger portion of the phrase-table the filtering algo-
rithm will remove. The table filtered with German
was the smallest in the four cases.

Finnish, a language that is unrelated to others, was
associated with distinctive results. The size of the
table filtered with Finnish is only 23% of the orig-
inal, almost half of the table generated with Por-
tuguese. Finnish has extremely rich morphology,
hence a great many word-forms, which would make
exact matching in bridge models less likely to hap-
pen. Many more phrase pairs in the original table
were removed for this reason even though some of
these entries were beneficial for translations. Even
though the improvement on translation quality due
to the Finnish bridge was less significant than the
others, it is clear that triangulated filtering retained
the useful information from the original model.

5.4 Further filtering
The filtering decision with a bridge language on a
particular phrase pair is fixed: either to keep the en-
try or to discard it. It is difficult to adjust the system
to work differently. However, as the triangulated fil-
tering procedure does not consider probability distri-
butions in the models, it is possible to further filter
the tables according to the probabilities.

The phrase pairs are associated with values com-
puted from the given set of feature weights and
sorted, so that we can remove any portions of the
remain entries based on the values. Each generated
table is used to translate the test set again. Fig-
ure 3 shows BLEU scores of the translation out-
puts produced with tables derived from the “EP-50”
model with respect to their sizes. We also included
the curve of probability-based filtering alone as the
baseline.

The difference between filtered tables at the same
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Figure 3: Combining probability-based filtering

size can be over 6 BLEU points, which is a re-
markable advantage for the triangulated filtering ap-
proach always producing better translations. The
curves of the triangulated filtered models are clearly
much steeper than that of the naive pruned ones.
Data in these filtered models are more compact than
the original model before any filtering. The triangu-
lated filtered phrase-tables contain more useful in-
formation than a normal phrase-table of the same
size. The curves representing the triangulated filter-
ing performance are always on the left of the original
curves.

We are able to use less than 6% of the original
phrase table (40% of the table filtered with Finnish)
to obtain translations with the same quality as the
original. The extreme case, using only 1.4% of the
original table, leads to a reasonable BLEU score, in-
dicating that most of the output sentences should
still be understandable. In this case, the overall size
of the phrase table and the reordering table was less
than 100 megabytes, potentially feasible for mobile
devices, whereas the original models took nearly
12.5 gigabytes of disk space.

5.5 Different source language

Bridge EP-40 EP-50
— 5.1G 26.92 6.5G 27.23

Dutch 562M 27.11 1.3G 28.14
Spanish 3.0G 27.28 3.6G 28.09
Danish 505M 28.04 780M 28.21

Table 7: Filtered German-English systems (Size and
BLEU)
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In addition to Spanish-English translation, we
also conducted experiments on German-English
translation. The results, shown in Table 7, appear
consistent with the results of Spanish-English trans-
lation. Translations in most cases have performance
close to the original unfiltered models, whereas the
reduction in phrase-table size ranged from 40% to
85%. Meanwhile, translation speed has been in-
creased up to 17%.

Due to German’s rich morphology, the unfil-
tered German-English models contain many more
entries than the Spanish-English ones constructed
from similar data sets. Unlike the Spanish-English
models, the difference between “EP-40” and “EP-
50” was not significant. Neither was the difference
between the impacts of the filtering in terms of trans-
lation quality. In addition, German and English are
so dissimilar that none of the three bridge languages
we chose turned out to be significantly superior.

6 Conclusions

We highlighted one problem of the state-of-the-art
SMT systems that was generally neglected: the
noise in the translation models. Accordingly, we
proposed triangulated filtering methods to deal with
this problem. We used data in a third language as ev-
idence to locate the less probable items in the trans-
lation models so as to obtain the intersection of in-
formation extracted from multilingual data. Only
the occurrences of complete phrases were taken into
account. The probability distributions of the phrases
have not been considered so far.

Although the approach was fairly naive, our ex-
periments showed it to be effective. The approaches
were applied to SMT systems built with the Moses
toolkit. The translation quality was improved at least
1 BLEU for all 15 cases (filtering 3 different models
with 5 bridge languages). The improvement can be
as much as 2.25 BLEU. It is also clear that the best
translations were not linked to the largest translation
models. We also sketched a simple extension to the
triangulated filtering approach to further reduce the
model size, which allows us to generate reasonable
results with only 1.4% of the entries from the origi-
nal table.

The results varied for different bridge languages
as well as different models. For translation from

Spanish to English, Finnish, the most distinctive
bridge language, appeared to be a more effective
intermediate language which could remove more
phrase pair entries while still improving the transla-
tion quality. Portuguese, the most close to the source
language, always leads to a filtered model that pro-
duces the best translations. The selection of bridge
languages has more obvious impact on the perfor-
mance of our approach when the size of the model
to filter was larger.

The work gave one instance of the general ap-
proach described in Section 3. There are several
potential directions for continuing this work. The
most straightforward one is to use our approaches
with more different languages, such as Chinese and
Arabic, and incompatible corpora, for example, dif-
ferent segments of Europarl. The main focus of such
experiments should be verifying the conclusions we
had in this paper.
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Abstract

An important part of textual inference is mak-
ing deductions involving monotonicity, that
is, determining whether a given assertion en-
tails restrictions or relaxations of that asser-
tion. For instance, the statement ‘We know the
epidemic spread quickly’ does not entail ‘We
know the epidemic spread quickly via fleas’,
but ‘We doubt the epidemic spread quickly’
entails ‘We doubt the epidemic spread quickly
via fleas’. Here, we present the first algorithm
for the challenging lexical-semantics prob-
lem of learning linguistic constructions that,
like ‘doubt’, are downward entailing (DE).
Our algorithm is unsupervised, resource-lean,
and effective, accurately recovering many DE
operators that are missing from the hand-
constructed lists that textual-inference sys-
tems currently use.

1 Introduction

Making inferences based on natural-language state-
ments is a crucial part of true natural-language un-
derstanding, and thus has many important applica-
tions. As the field of NLP has matured, there has
been a resurgence of interest in creating systems ca-
pable of making such inferences, as evidenced by
the activity surrounding the ongoing sequence of
“Recognizing Textual Entailment” (RTE) competi-
tions (Dagan, Glickman, and Magnini, 2006; Bar-
Haim, Dagan, Dolan, Ferro, Giampiccolo, Magnini,
and Szpektor, 2006; Giampiccolo, Magnini, Dagan,
and Dolan, 2007) and the AQUAINT knowledge-
based evaluation project (Crouch, Saurı́, and Fowler,
2005).

The following two examples help illustrate the
particular type of inference that is the focus of this
paper.

1. ‘We know the epidemic spread quickly’

2. ‘We doubt the epidemic spread quickly’

A relaxation of ‘spread quickly’ is ‘spread’; a re-
striction of it is ‘spread quickly via fleas’. From
statement 1, we can infer the relaxed version, ‘We
know the epidemic spread’, whereas the restricted
version, ‘We know the epidemic spread quickly via
fleas’, does not follow. But the reverse holds for
statement 2: it entails the restricted version ‘We
doubt the epidemic spread quickly via fleas’, but not
the relaxed version. The reason is that ‘doubt’ is a
downward-entailing operator;1 in other words, it al-
lows one to, in a sense, “reason from sets to subsets”
(van der Wouden, 1997, pg. 90).

Downward-entailing operators are not restricted
to assertions about belief or to verbs. For example,
the preposition ‘without’ is also downward entail-
ing: from ‘The applicants came without payment or
waivers’ we can infer that all the applicants came
without payment. (Contrast this with ‘with’, which,
like ‘know’, is upward entailing.) In fact, there are
many downward-entailing operators, encompassing
many syntactic types; these include explicit nega-
tions like ‘no’ and ‘never’, but also many other
terms, such as ‘refuse (to)’, ‘preventing’, ‘nothing’,
‘rarely’, and ‘too [adjective] to’.

1Synonyms for “downward entailing” include downward-
monotonic and monotone decreasing. Related concepts include
anti-additivity, veridicality, and one-way implicatives.
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As the prevalence of these operators indicates and
as van der Wouden (1997, pg. 92) states, downward
entailment “plays an extremely important role in
natural language” (van Benthem, 1986; Hoeksema,
1986; Sánchez Valencia, 1991; Dowty, 1994; Mac-
Cartney and Manning, 2007). Yet to date, only a few
systems attempt to handle the phenomenon in a gen-
eral way, i.e., to consider more than simple direct
negation (Nairn, Condoravdi, and Karttunen, 2006;
MacCartney and Manning, 2008; Christodoulopou-
los, 2008; Bar-Haim, Berant, Dagan, Greental,
Mirkin, Shnarch, and Szpektor, 2008). These sys-
tems rely on lists of items annotated with respect to
their behavior in “polar” (positive or negative) envi-
ronments. The lists contain a relatively small num-
ber of downward-entailing operators, at least in part
because they were constructed mainly by manual
inspection of verb lists (although a few non-verbs
are sometimes also included). We therefore propose
to automatically learn downward-entailing opera-
tors2 — henceforth DE operators for short — from
data; deriving more comprehensive lists of DE op-
erators in this manner promises to substantially en-
hance the ability of textual-inference systems to han-
dle monotonicity-related phenomena.

Summary of our approach There are a num-
ber of significant challenges to applying a learning-
based approach. First, to our knowledge there do
not exist DE-operator-annotated corpora, and more-
over, relevant types of semantic information are “not
available in or deducible from any public lexical
database” (Nairn et al., 2006). Also, it seems there
is no simple test one can apply to all possible candi-
dates; van der Wouden (1997, pg. 110) remarks, “As
a rule of thumb, assume that everything that feels
negative, and everything that [satisfies a condition
described below], is monotone decreasing. This rule
of thumb will be shown to be wrong as it stands; but

2We include superlatives (‘tallest’), comparatives (‘taller’),
and conditionals (‘if’) in this category because they have non-
default (i.e., non-upward entailing) properties — for instance,
‘he is the tallest father’ does not entail ‘he is the tallest man’.
Thus, they also require special treatment when considering en-
tailment relations. In fact, there have been some attempts
to unify these various types of non-upward entailing opera-
tors (von Fintel, 1999). We use the term downward entailing
(narrowly-defined) (DE(ND)) when we wish to specifically ex-
clude superlatives, comparatives, and conditionals.

it sort of works, like any rule of thumb.”
Our first insight into how to overcome these chal-

lenges is to leverage a finding from the linguistics lit-
erature, Ladusaw’s (1980) hypothesis, which can be
treated as a cue regarding the distribution of DE op-
erators: it asserts that a certain class of lexical con-
structions known as negative polarity items (NPIs)
can only appear in the scope of DE operators. Note
that this hypothesis suggests that one can develop
an unsupervised algorithm based simply on check-
ing for co-occurrence with known NPIs.

But there are significant problems with apply-
ing this idea in practice, including: (a) there is no
agreed-upon list of NPIs; (b) terms can be ambigu-
ous with respect to NPI-hood; and (c) many non-DE
operators tend to co-occur with NPIs as well. To
cope with these issues, we develop a novel unsuper-
vised distillation algorithm that helps filter out the
noise introduced by these problems. This algorithm
is very effective: it is accurate and derives many DE
operators that do not appear on pre-existing lists.

Contributions Our project draws a connection be-
tween the creation of textual entailment systems and
linguistic inquiry regarding DE operators and NPIs,
and thus relates to both language-engineering and
linguistic concerns.

To our knowledge, this work represents the first
attempt to aid in the process of discovering DE oper-
ators, a task whose importance we have highlighted
above. At the very least, our method can be used
to provide high-quality raw materials to help human
annotators create more extensive DE operator lists.
In fact, while previous manual-classification efforts
have mainly focused on verbs, we retrieve DE oper-
ators across multiple parts of speech. Also, although
we discover many items (including verbs) that are
not on pre-existing manually-constructed lists, the
items we find occur frequently — they are not some-
how peculiar or rare.

Our algorithm is surprisingly accurate given that it
is quite resource- and knowledge-lean. Specifically,
it relies only on Ladusaw’s hypothesis as initial in-
spiration, a relatively short and arguably noisy list
of NPIs, and a large unannotated corpus. It does
not use other linguistic information — for exam-
ple, we do not use parse information, even though
c-command relations have been asserted to play a
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key role in the licensing of NPIs (van der Wouden,
1997).

2 Method

We mentioned in the introduction some significant
challenges to developing a machine-learning ap-
proach to discovering DE operators. The key insight
we apply to surmount these challenges is that in the
linguistics literature, it has been hypothesized that
there is a strong connection between DE operators
and negative polarity items (NPIs), which are terms
that tend to occur in “negative environments”. An
example NPI is ‘anymore’: one can say ‘We don’t
have those anymore’ but not ‘�We have those any-
more’.

Specifically, we propose to take advantage of the
seminal hypothesis of Ladusaw (1980, influenced by
Fauconnier (1975), inter alia):

(Ladusaw) NPIs only appear within the
scope of downward-entailing operators.

This hypothesis has been actively discussed, up-
dated, and contested by multiple parties (Linebarger,
1987; von Fintel, 1999; Giannakidou, 2002, inter
alia). It is not our intent to comment (directly) on its
overall validity. Rather, we simply view it as a very
useful starting point for developing computational
tools to find DE operators— indeed, even detractors
of the theory have called it “impressively algorith-
mic” (Linebarger, 1987, pg. 361).

First, a word about scope. For Ladusaw’s hypoth-
esis, scope should arguably be defined in terms of c-
command, immediate scope, and so on (von Fintel,
1999, pg. 100). But for simplicity and to make our
approach as resource-lean as possible, we simply as-
sume that potential DE operators occur to the left of
NPIs,3 except that we ignore text to the left of any
preceding commas or semi-colons as a way to en-
force a degree of locality. For example, in both ‘By
the way, we don’t have plants anymoreNPI because
they died’ and ‘we don’t have plants anymoreNPI’,
we look for DE operators within the sequence of
words ‘we don’t have plants’. We refer to such se-
quences in which we seek DE operators as NPI con-
texts.

3There are a few exceptions, such as with the NPI “for the
life of me” (Hoeksema, 1993).

Now, Ladusaw’s hypothesis suggests that we can
find DE operators by looking for words that tend to
occur more often in NPI contexts than they occur
overall. We formulate this as follows:

Assumption: For any DE operator d,
FbyNPIpdq ¡ F pdq.

Here, FbyNPIpdq is the number of occurrences of d
in NPI contexts4 divided by the number of words
in NPI contexts, and F pxq refers to the number of
occurrences of x relative to the number of words in
the corpus.

An additional consideration is that we would like
to focus on the discovery of novel or non-obvious
DE operators. Therefore, for a given candidate DE
operator c, we compute pFbyNPIpcq: the value of
FbyNPIpcq that results if we discard all NPI con-
texts containing a DE operator on a list of 10 well-
known instances, namely, ‘not’, ‘n’t’, ‘no’, ‘none’,
‘neither’, ‘nor’, ‘few’, ‘each’, ‘every’, and ‘without’.
(This list is based on the list of DE operators used by
the RTE system presented in MacCartney and Man-
ning (2008).) This yields the following scoring func-
tion:

Spcq :�
pFbyNPIpcq

F pcq
. (1)

Distillation There are certain terms that are not
DE operators, but nonetheless co-occur with NPIs as
a side-effect of co-occurring with true DE operators
themselves. For instance, the proper noun ‘Milken’
(referring to Michael Milken, the so-called “junk-
bond king”) occurs relatively frequently with the DE
operator ‘denies’, and ‘vigorously’ occurs frequently
with DE operators like ‘deny’ and ‘oppose’. We re-
fer to terms like ‘milken’ and ‘vigorously’ as “pig-
gybackers”, and address the piggybackers problem
by leveraging the following intuition: in general, we
do not expect to have two DE operators in the same
NPI context.5 One way to implement this would be
to re-score the candidates in a winner-takes-all fash-
ion: for each NPI context, reward only the candidate

4Even if d occurs multiple times in a single NPI context we
only count it once; this way we “dampen the signal” of func-
tion words that can potentially occur multiple times in a single
sentence.

5One reason is that if two DE operators are composed, they
ordinarily create a positive context, which would not license
NPIs (although this is not always the case (Dowty, 1994)).
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with the highest score S. However, such a method
is too aggressive because it would force us to pick
a single candidate even when there are several with
relatively close scores — and we know our score S is
imperfect. Instead, we propose the following “soft”
mechanism. Each sentence distributes a “budget” of
total score 1 among the candidates it contains ac-
cording to the relative scores of those candidates;
this works out to yield the following new distilled
scoring function

Sdpcq �

°
NPIcontexts p

Spcq
nppq

Npcq
, (2)

where nppq �
°
cP p Spcq is an NPI-context normal-

izing factor and Npcq is the number of NPI con-
texts containing the candidate c. This way, plausi-
ble candidates that have high S scores relative to the
other candidates in the sentence receive enhanced Sd
scores. To put it another way: apparently plausible
candidates that often appear in sentences with mul-
tiple good candidates (i.e., piggybackers) receive a
low distilled score, despite a high initial score.

Our general claim is that the higher the distilled
score of a candidate, the better its chances of being
a DE operator.

Choice of NPIs Our proposed method requires ac-
cess to a set of NPIs. However, there does not ap-
pear to be universal agreement on such a set. Lichte
and Soehn (2007) mention some doubts regarding
approximately 200 (!) of the items on a roughly 350-
item list of German NPIs (Kürschner, 1983). For
English, the “moderately complete”6 Lawler (2005)
list contains two to three dozen items; however,
there is also a list of English NPIs that is several
times longer (von Bergen and von Bergen, 1993,
written in German), and Hoeksema (1997) asserts
that English should have hundreds of NPIs, similarly
to French and Dutch.

We choose to focus on the items on these lists
that seem most likely to be effective cues for our
task. Specifically, we select a subset of the Lawler
NPIs, focusing mostly on those that do not have
a relatively frequent non-NPI sense. An example
discard is ‘much’, whose NPI-hood depends on

6www-personal.umich.edu/�jlawler/aue/
npi.html

what it modifies and perhaps on whether there
are degree adverbs pre-modifying it (Hoeksema,
1997). There are some ambiguous NPIs that we
do retain due to their frequency. For example,
‘any’ occurs both in a non-NPI “free choice”
variant, as in ‘any idiot can do that’, and in an
NPI version. Although it is ambiguous with re-
spect to NPI-hood, ‘any’ is also a very valuable
cue due to its frequency.7 Here is our NPI list:

any in weeks/ages/years budge yet
at all drink a drop red cent ever
give a damn last/be/take long but what bother to
do a thing arrive/leave until give a shit lift a finger
bat an eye would care/mind eat a bite to speak of

3 Experiments

Our main set of evaluations focuses on the precision
of our method at discovering new DE operators. We
then briefly discuss evaluation of other dimensions.

3.1 Setup

We applied our method to the entirety of the BLLIP
(Brown Laboratory for Linguistic Information Pro-
cessing) 1987–89 WSJ Corpus Release 1, available
from the LDC (LDC2000T43). The 1,796,379 sen-
tences in the corpus comprise 53,064 NPI contexts;
after discarding the ones containing the 10 well-
known DE operators, 30,889 NPI contexts were left.
To avoid sparse data problems, we did not consider
candidates with very low frequency in the corpus
(¤150 occurrences) or in the NPI contexts (¤10 oc-
currences).

Methodology for eliciting judgments The obvi-
ous way to evaluate the precision of our algorithm is
to have human annotators judge each output item as
to whether it is a DE operator or not. However, there
are some methodological issues that arise.

First, if the judges know that every term they are
rating comes from our system and that we are hoping
that the algorithm extracts DE operators, they may
be biased towards calling every item “DE” regard-
less of whether it actually is. We deal with this prob-
lem by introducing distractors — items that are not
produced by our algorithm, but are similar enough
to not be easily identifiable as “fakes”. Specifically,

7It is by far the most frequent NPI, appearing in 36,554 of
the sentences in the BLLIP corpus (see Section 3).
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for each possible part of speech of each of our sys-
tem’s outputs c that exists in WordNet, we choose a
distractor that is either in a “sibling” synset (a hy-
ponym of c’s hypernym) or an antonym. Thus, the
distractors are highly related to the candidates. Note
that they may in fact also be DE operators.

The judges were made aware of the presence of
a substantial number of distractors (about 70 for the
set of top 150 outputs). This design choice did seem
to help ensure that the judges carefully evaluated
each item.

The second issue is that, as mentioned in the in-
troduction, there does not seem to be a uniform test
that judges can apply to all items to ascertain their
DE-ness; but we do not want the judges to impro-
vise excessively, since that can introduce undesir-
able randomness into their decisions. We therefore
encouraged the judges to try to construct sentences
wherein the arguments for candidate DE operators
were drawn from a set of phrases and restricted
replacements we specified (example: ‘singing’ vs
‘singing loudly’). However, improvisation was still
required in a number of cases; for example, the can-
didate ‘act’, as either a noun or a verb, cannot take
‘singing’ as an argument.

The labels that the judges could apply were
“DE(ND)” (downward entailing (narrowly-
defined)), “superlative”, “comparative”, “condi-
tional”, “hard to tell”, and “not-DE” (= none of the
above). We chose this fine-grained sub-division
because the second through fourth categories are
all known to co-occur with NPIs. There is some
debate in the linguistics literature as to whether
they can be considered to be downward entailing,
narrowly construed, or not (von Fintel, 1999,
inter alia), but nonetheless, such operators call for
special reasoning quite distinct from that required
when dealing with upward entailing operators —
hence, we consider it a success when our algorithm
identifies them.

Since monotonicity phenomena can be rather sub-
tle, the judges engaged in a collaborative process.
Judge A (the second author) annotated all items, but
worked in batches of around 10 items. At the end of
each batch, Judge B (the first author) reviewed Judge
A’s decisions, and the two consulted to resolve dis-
agreements as far as possible.

One final remark regarding the annotation: some

decisions still seem uncertain, since various factors
such as context, Gricean maxims, what should be
presupposed8 and so on come into play. However,
we take comfort in a comment by Eugene Charniak
(personal communication) to the effect that if a word
causes a native speaker to pause, that word is inter-
esting enough to be included. And indeed, it seems
reasonable that if a native speaker thinks there might
be a sense in which a word can be considered down-
ward entailing, then our system should flag it as a
word that an RTE system should at least perhaps
pass to a different subsystem for further analysis.

3.2 Precision Results

We now examine the 150 items that were most
highly ranked by our system, which were sub-
sequently annotated as just described. (For
full system output that includes the unannotated
items, see http://www.cs.cornell.edu/
�cristian. We would welcome external anno-
tation help.) As shown in Figure 1a, which depicts
precision at k for various values of k, our system
performs very well. In fact, 100% of the first 60 out-
puts are DE, broadly construed. It is also interesting
to note the increasing presence of instances that the
judges found hard to categorize as we move further
down the ranking.

Of our 73 distractors, 46% were judged to be
members of one of our goal categories. The fact that
this percentage is substantially lower than our algo-
rithm’s precision at both 73 and 150 (the largest k we
considered) confirms that our judges were not mak-
ing random decisions. (We expect the percentage
of DE operators among the distractors to be much
higher than 0 because they were chosen to be simi-
lar to our system’s outputs, and so can be expected
to also be DE operators some fraction of the time.)

Table 1 shows the lemmas of just the DE(ND) op-
erators that our algorithm placed in its top 150 out-
puts.9 Most of these lemmas are new discoveries, in
the sense of not appearing in Ladusaw’s (1980) (im-
plicit) enumeration of DE operators. Moreover, the

8For example, ‘X doubts the epidemic spread quickly’ might
be said to entail ‘X would doubt the epidemic spreads via fleas,
presupposing that X thinks about the flea issue’.

9By listing lemmas, we omit variants of the same word, such
as ‘doubting’ and ‘doubted’, to enhance readability. We omit
superlatives, comparatives, and conditionals for brevity.
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Figure 1: (a) Precision at k for k divisible by 10 up to k � 150. The bar divisions are, from the x-axis up,
DE(ND) (blue, the largest); Superlatives/Conditionals/Comparatives (green, 2nd largest); and Hard (red, sometimes
non-existent). For example, all of the first 10 outputs were judged to be either downward entailing (narrowly-defined)
(8 of 10, or 80%) or in one of the related categories (20%). (b) Precision at k when the distillation step is omitted.

not-DE Hard
almost firmly one-day approve
ambitious fined signal cautioned
considers liable remove dismissed
detect notify vowed fend

Table 3: Examples of words judged to be either not in
one of our monotonicity categories of interest (not-DE)
or hard to evaluate (Hard).

lists of DE(ND) operators that are used by textual-
entailment systems are significantly smaller than
that depicted in Table 1; for example, MacCartney
and Manning (2008) use only about a dozen (per-
sonal communication).

Table 3 shows examples of the words in our sys-
tem’s top 150 outputs that are either clear mistakes
or hard to evaluate. Some of these are due to id-
iosyncrasies of newswire text. For instance, we of-
ten see phrases like ‘biggest one-day drop in ...’,
where ‘one-day’ piggybacks on superlatives, and
‘vowed’ piggybacks on the DE operator ‘veto’, as
in the phrase ‘vowed to veto’.

Effect of distillation In order to evaluate the im-
portance of the distillation process, we study how
the results change when distillation is omitted (thus
using as score function S from Equation 1 rather
than Sd). When comparing the results (summarized
in Figure 1b) with those of the complete system
(Figure 1a) we observe that the distillation indeed
has the desired effect: the number of highly ranked

words that are annotated as not-DE decreases after
distillation. This results in an increase of the preci-
sion at k ranging from 5% to 10% (depending on k),
as can be observed by comparing the height of the
composite bars in the two figures.10

Importantly, this improvement does indeed seem
to stem at least in part from the distillation process
handling the piggybacking problem. To give just a
few examples: ‘vigorously’ is pushed down from
rank 48 (undistilled scoring) to rank 126 (distilled
scoring), ‘one-day’ from 25th to 65th, ‘vowed’ from
45th to 75th, and ‘Milken’ from 121st to 350th.

3.3 Other Results
It is natural to ask whether the (expected) decrease
in precision at k is due to the algorithm assigning
relatively low scores to DE operators, so that they
do not appear in the top 150, or due to there be-
ing no more more true DE operators to rank. We
cannot directly evaluate our method’s recall because
no comprehensive list of DE operators exists. How-
ever, to get a rough impression, we can check how
our system ranks the items in the largest list we are
aware of, namely, the Ladusaw (implicit) list men-
tioned above. Of the 31 DE operator lemmas on this
list (not including the 10 well-known DE operators),
only 7 of those frequent enough to be considered by
our algorithm are not in its top 150 outputs, and only

10The words annotated “hard” do not affect this increase in
precision.
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absence of
absent from
anxious about 

to avoid (L)
to bar
barely
to block
cannot (L)
compensate for 

to decline

to defer
to deny (L)
to deter
to discourage
to dismiss
to doubt (L)
to eliminate
essential for 

to exclude
to fail (L)

hardly (L)
to lack
innocent of 

to minimize 

never (L)
nobody
nothing
to oppose
to postpone 

to preclude

premature to
to prevent
to prohibit
rarely (L)
to refrain from
to refuse (L)
regardless 

to reject
reluctant to (L)
to resist

to rule out
skeptical 

to suspend
to thwart
unable to
unaware of
unclear on
unlike
unlikely (L)
unwilling to

to veto
wary of
warned that (L)
whenever
withstand

Table 1: The 55 lemmas for the 90 downward entailing (narrowly-defined) operators among our algorithm’s top 150
outputs. (L) marks instances from Ladusaw’s list. 
 marks some of the more interesting cases. We have added
function words (e.g., ‘to’, ‘for’) to indicate parts of speech or subcategorization; our algorithm does not discover
multi-word phrases.

Original Ñ Restriction

Dan is unlikely to sing. ùñ

ðù{ Dan is unlikely to sing loudly.

Olivia compensates for eating by exercising. ùñ

ðù{ Olivia compensates for eating late by exercising.

Ursula refused to sing or dance. ùñ

ðù{ Ursula refused to sing.

Bob would postpone singing. ùñ

ðù{ Bob would postpone singing loudly.

Talent is essential for singing. ùñ

ðù{ Talent is essential for singing a ballad.

She will finish regardless of threats. ùñ

ðù{ She will finish regardless of threats to my career.

Table 2: Example demonstrations that the underlined expressions (selected from Table 1) are DE operators: the
sentences on the left entail those on the right. We also have provided ðù{ indicators because the reader might find it
helpful to reason in the opposite direction and see that these expressions are not upward entailing.

5 are not in the top 300. Remember that we only an-
notated the top 150 outputs; so, there may be many
other DE operators between positions 150 and 300.

Another way of evaluating our method would be
to assess the effect of our newly discovered DE op-
erators on downstream RTE system performance.
There are two factors to take into account. First, the
DE operators we discovered are quite prevalent in
naturally occurring text11 : the 90 DE(ND) operators
appearing in our algorithm’s top 150 outputs occur
in 111,456 sentences in the BLLIP corpus (i.e., in
6% of its sentences). Second, as previously men-
tioned, systems do already account for monotonic-
ity to some extent — but they are limited by the fact
that their DE operator lexicons are restricted mostly
to well-known instances; to take a concrete example
with a publicly available RTE system: Nutcracker
(Bos and Markert, 2006) correctly infers that ‘We
did not know the disease spread’ entails ‘We did not
know the disease spread quickly’ but it fails to in-

11However, RTE competitions do not happen to currently
stress inferences involving monotonicity. The reasons why are
beyond the scope of this paper.

fer that ‘We doubt the disease spread’ entails ‘We
doubt the disease spread quickly’. So, systems can
use monotonicity information but currently do not
have enough of it; our method can provide them with
this information, enabling them to handle a greater
fraction of the large number of naturally occurring
instances of this phenomenon than ever before.

4 Related work not already discussed

Magnini (2008), in describing modular approaches
to textual entailment, hints that NPIs may be used
within a negation-detection sub-component.

There is a substantial body of work in the linguis-
tics literature regarding the definition and nature of
polarity items (Polarity Items Bibliography). How-
ever, very little of this work is computational. There
has been passing speculation that one might want
to learn polarity-inverting verbs (Christodoulopou-
los, 2008, pg. 47). There have also been a few
projects on the discovery of NPIs, which is the con-
verse of the problem we consider. Hoeksema (1997)
discusses some of the difficulties with corpus-based
determination of NPIs, including “rampant” poly-
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semy and the problem of “how to determine inde-
pendently which predicates should count as nega-
tive” — a problem which our work addresses. Lichte
and Soehn (Lichte, 2005; Lichte and Soehn, 2007)
consider finding German NPIs using a method con-
ceptually similar in some respects to our own, al-
though again, their objective is the reverse of ours.
Their discovery statistic for single-word NPIs is the
ratio of within-licenser-clause occurrences to total
occurrences, where, to enhance precision, the list of
licensers was filtered down to a set of fairly unam-
biguous, easily-identified items. They do not con-
sider distillation, which we found to be an impor-
tant component of our DE-operator-detection algo-
rithm. Their evaluation scheme, unlike ours, did not
employ a bias-compensation mechanism. They did
employ a collocation-detection technique to extend
their list to multi-word NPIs, but our independent
experiments with a similar technique (not reported
here) did not yield good results.

5 Conclusions and future work

To our knowledge, this work represents the first at-
tempt to discover downward entailing operators. We
introduced a unsupervised algorithm that is moti-
vated by research in linguistics but employs simple
distributional statistics in a novel fashion. Our algo-
rithm is highly accurate and discovers many reason-
able DE operators that are missing from pre-existing
manually-built lists.

Since the algorithm is resource-lean — requiring
no parser or tagger but only a list of NPIs — it can be
immediately applied to languages where such lists
exist, such as German and Romanian (Trawiński and
Soehn, 2008). On the other hand, although the re-
sults are already quite good for English, it would
be interesting to see what improvements could be
gained by using more sophisticated syntactic infor-
mation.

For languages where NPI lists are not extensive,
one could envision applying an iterative co-learning
approach: use the newly-derived DE operators to in-
fer new NPIs, and then discover even more new DE
operators given the new NPI list. (For English, our
initial attempts at bootstrapping from our initial NPI
list on the BLLIP corpus did not lead to substantially
improved results.)

In practice, subcategorization is an important fea-
ture to capture. In Table 1, we indicate which sub-
categorizations are DE. An interesting extension of
our work would be to try to automatically distin-
guish particular DE subcategorizations that are lex-
ically apparent, e.g., ‘innocent’ (not DE) vs. ‘inno-
cent of’ (as in ‘innocent of burglary’, DE).

Our project provides a connection (among many)
between the creation of textual entailment systems
(the domain of language engineers) and the char-
acterization of DE operators (the subject of study
and debate among linguists). The prospect that our
method might potentially eventually be refined in
such a way so as to shed at least a little light on lin-
guistic questions is a very appealing one, although
we cannot be certain that any progress will be made
on that front.
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Abstract

Nominals frequently surface without overtly
expressed arguments. In order to measure the
potential benefit of nominal SRL for down-
stream processes, such nominals must be ac-
counted for. In this paper, we show that a
state-of-the-art nominal SRL system with an
overall argumentF1 of 0.76 suffers a perfor-
mance loss of more than 9% when nominals
with implicit arguments are included in the
evaluation. We then develop a system that
takes implicit argumentation into account, im-
proving overall performance by nearly 5%.
Our results indicate that the degree of implicit
argumentation varies widely across nominals,
making automated detection of implicit argu-
mentation an important step for nominal SRL.

1 Introduction

In the past few years, a number of studies have
focused on verbal semantic role labeling (SRL).
Driven by annotation resources such as FrameNet
(Baker et al., 1998) and PropBank (Palmer et al.,
2005), many systems developed in these studies
have achieved argumentF1 scores near 80% in
large-scale evaluations such as the one reported by
Carreras and M̀arquez (2005).

More recently, the automatic identification of
nominal argument structure has received increased
attention due to the release of the NomBank cor-
pus (Meyers, 2007a). NomBank annotates predicat-
ing nouns in the same way that PropBank annotates
predicating verbs. Consider the following example
of the verbal predicatedistributefrom the PropBank
corpus:

(1) Freeport-McMoRan Energy Partners will be
liquidated and [Arg1 shares of the new

company] [Predicate distributed] [Arg2 to the
partnership’s unitholders].

The NomBank corpus contains a similar instance of
the deverbal nominalizationdistribution:

(2) Searle will give [Arg0 pharmacists] [Arg1

brochures] [Arg1 on the use of prescription
drugs] for [Predicate distribution] [Location in
their stores].

This instance demonstrates the annotation of split ar-
guments (Arg1) and modifying adjuncts (Location),
which are also annotated in PropBank. In cases
where a nominal has a verbal counterpart, the inter-
pretation of argument positions Arg0-Arg5 is con-
sistent between the two corpora.

In addition to deverbal (i.e., event-based) nomi-
nalizations, NomBank annotates a wide variety of
nouns that are not derived from verbs and do not de-
note events. An example is given below of the parti-
tive nounpercent:

(3) Hallwood owns about 11 [Predicate %] [Arg1 of
Integra].

In this case, the noun phrase headed by the predicate
% (i.e., “about 11% of Integra”) denotes a fractional
part of the argument in position Arg1.

Since NomBank’s release, a number of studies
have applied verbal SRL techniques to the task of
nominal SRL. For example, Liu and Ng (2007) re-
ported an argumentF1 of 0.7283. Although this
result is encouraging, it does not take into account
nominals that surface without overt arguments. Con-
sider the following example:

(4) The [Predicate distribution] represents [NP

available cash flow] [PP from the partnership]
[PP between Aug. 1 and Oct. 31].
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As in (2), distribution in (4) has a noun phrase and
multiple prepositional phrases in its environment,
but not one of these constituents is an argument to
distribution in (4); rather, any arguments are implic-
itly supplied by the surrounding discourse. As de-
scribed by Meyers (2007a), instances such as (2) are
called “markable” because they contain overt argu-
ments, and instances such as (4) are called “unmark-
able” because they do not. In the NomBank corpus,
only markable instances have been annotated.

Previous evaluations (e.g., those by Jiang and
Ng (2006) and Liu and Ng (2007)) have been based
on markable instances, which constitute 57% of all
instances of nominals from the NomBank lexicon.
In order to use nominal SRL systems for down-
stream processing, it is important to develop and
evaluate techniques that can handle markable as well
as unmarkable nominal instances. To address this
issue, we investigate the role of implicit argumenta-
tion for nominal SRL. This is, in part, inspired by the
recent CoNLL Shared Task (Surdeanu et al., 2008),
which was the first evaluation of syntactic and se-
mantic dependency parsing to include unmarkable
nominals. In this paper, we extend this task to con-
stituent parsing with techniques and evaluations that
focus specifically on implicit argumentation in nom-
inals.

We first present our NomBank SRL system,
which improves the best reported argumentF1 score
in the markable-only evaluation from 0.7283 to
0.7630 using a single-stage classification approach.
We show that this system, when applied to all nomi-
nal instances, achieves an argumentF1 score of only
0.6895, a loss of more than 9%. We then present
a model of implicit argumentation that reduces this
loss by 46%, resulting in anF1 score of 0.7235 on
the more complete evaluation task. In our analyses,
we find that SRL performance varies widely among
specific classes of nominals, suggesting interesting
directions for future work.

2 Related work

Nominal SRL is related to nominal relation interpre-
tation as evaluated in SemEval (Girju et al., 2007).
Both tasks identify semantic relations between a
head noun and other constituents; however, the tasks
focus on different relations. Nominal SRL focuses

primarily on relations that hold between nominaliza-
tions and their arguments, whereas the SemEval task
focuses on a range of semantic relations, many of
which are not applicable to nominal argument struc-
ture.

Early work in identifying the argument struc-
ture of deverbal nominalizations was primarily rule-
based, using rule sets to associate syntactic con-
stituents with semantic roles (Dahl et al., 1987;
Hull and Gomez, 1996; Meyers et al., 1998). La-
pata (2000) developed a statistical model to classify
modifiers of deverbal nouns as underlying subjects
or underlying objects, where subject and object de-
note the grammatical position of the modifier when
linked to a verb.

FrameNet and NomBank have facilitated machine
learning approaches to nominal argument struc-
ture. Gildea and Jurafsky (2002) presented an early
FrameNet-based SRL system that targeted both ver-
bal and nominal predicates. Jiang and Ng (2006)
and Liu and Ng (2007) have tested the hypothe-
sis that methodologies and representations used in
PropBank SRL (Pradhan et al., 2005) can be ported
to the task of NomBank SRL. These studies report
argumentF1 scores of 0.6914 and 0.7283, respec-
tively. Both studies also investigated the use of fea-
tures specific to the task of NomBank SRL, but ob-
served only marginal performance gains.

NomBank argument structure has also been used
in the recent CoNLL Shared Task on Joint Parsing
of Syntactic and Semantic Dependencies (Surdeanu
et al., 2008). In this task, systems were required to
identify syntactic dependencies, verbal and nominal
predicates, and semantic dependencies (i.e., argu-
ments) for the predicates. For nominals, the best se-
manticF1 score was 0.7664 (Surdeanu et al., 2008);
however this score is not directly comparable to the
NomBank SRL results of Liu and Ng (2007) or the
results in this paper due to a focus on different as-
pects of the problem (see the end of section 5.2 for
details).

3 NomBank SRL

Given a nominal predicate, an SRL system attempts
to assign surrounding spans of text to one of 23
classes representing core arguments, adjunct argu-
ments, and thenull or non-argument. Similarly to
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verbal SRL, this task is traditionally formulated as
a two-stage classification problem over nodes in the
syntactic parse tree of the sentence containing the
predicate.1 In the first stage, each parse tree node is
assigned a binary label indicating whether or not it
is an argument. In the second stage, argument nodes
are assigned one of the 22 non-null argument types.
Spans of text subsumed by labeled parse tree nodes
constitute arguments of the predication.

3.1 An improved NomBank SRL baseline

To investigate the effects of implicit argumenta-
tion, we first developed a system based on previ-
ous markable-only approaches. Our system follows
many of the traditions above, but differs in the fol-
lowing ways. First, we replace the standard two-
stage pipeline with a single-stage logistic regression
model2 that predicts arguments directly. Second,
we model incorporated arguments (i.e., predicates
that are also arguments) with a simple maximum
likelihood model that predicts the most likely argu-
ment label for a predicate based on counts from the
training data. Third, we use the following heuris-
tics to resolve argument conflicts: (1) If two argu-
ments overlap, the one with the higher probability is
kept. (2) If two non-overlapping arguments are of
the same type, the one with the higher probability
is kept unless the two nodes are siblings, in which
case both are kept. Heuristic (2) accounts for split
argument constructions.

Our NomBank SRL system uses features that are
selected with a greedy forward search strategy sim-
ilar to the one used by Jiang and Ng (2006). The
top half of Table 2 (next page) lists the selected ar-
gument features.3 We extracted training nodes from
sections 2-21 of NomBank, used section 24 for de-
velopment and section 23 for testing. All parse
trees were generated by Charniak’s re-ranking syn-
tactic parser (Charniak and Johnson, 2005). Follow-
ing the evaluation methodology used by Jiang and
Ng (2006) and Liu and Ng (2007), we obtained sig-

1The syntactic parse can be based on ground-truth annota-
tion or derived automatically, depending on the evaluation.

2We use LibLinear (Fan et al., 2008).
3For features requiring the identification of support verbs,

we use the annotations provided in NomBank. Preliminary ex-
periments show a small loss when using automatic support verb
identification.

Dev. F1 TestingF1

Jiang and Ng (2006) 0.6677 0.6914
Liu and Ng (2007) - 0.7283
This paper 0.7454 0.7630

Table 1: Markable-only NomBank SRL results for ar-
gument prediction using automatically generated parse
trees. The f-measure statistics were calculated by ag-
gregating predictions across all classes. “-” indicates
that the result was not reported.

Markable-only All-token % loss
P 0.7955 0.6577 -17.32
R 0.7330 0.7247 -1.13
F1 0.7630 0.6895 -9.63

Table 3: Comparison of the markable-only and all-
token evaluations of the baseline argument model.

nificantly better results, as shown in Table 1 above.4

3.2 The effect of implicit nominal arguments

The presence of implicit nominal arguments
presents challenges that are not taken into account
by the evaluation described above. To assess the im-
pact of implicit arguments, we evaluated our Nom-
Bank SRL system over each token in the testing
section. The system attempts argument identifica-
tion for all singular and plural nouns that have at
least one annotated instance in the training portion
of the NomBank corpus (morphological variations
included).

Table 3 gives a comparison of the results from the
markable-only and all-token evaluations. As can be
seen, assuming that all known nouns take overt argu-
ments results in a significant performance loss. This
loss is due primarily to a drop in precision caused by
false positive argument predictions made for nomi-
nals with implicit arguments.

4 Accounting for implicit arguments in
nominal SRL

A natural solution to the problem described above
is to first distinguish nominals that bear overt
arguments from those that do not. We treat this

4As noted by Carreras and M̀arquez (2005), the discrepancy
between the development and testing results is likely due to
poorer syntactic parsing performance on the development sec-
tion.
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# Description N S

1 12& parse tree path fromn to pred
2 Position ofn relative topred & parse tree path fromn to pred *
3 First word subsumed byn
4 12& position ofn relative topred
5 12& 14
6 Head word ofn’s parent *
7 Last word subsumedn
8 n’s syntactic category& length of parse tree path fromn to pred
9 First word ofn’s right sibling * *
10 Production rule that expands the parent ofpred
11 Head word of the right-most NP inn if n is a PP *
12 Stem ofpred
13 Parse tree path fromn to the lowest common ancestor ofn andpred
14 Head word ofn
15 12& n’s syntactic category
16 Production rule that expandsn’s parent * *
17 Parse tree path fromn to the nearest support verb *
18 Last part of speech (POS) subsumed byn *
19 Production rule that expandsn’s left sibling *
20 Head word ofn, if the parent ofn is a PP
21 The POS of the head word of the right-most NP undern if n is a PP
... Features 22-31 are available upon request 0 3

N
om

in
al

fe
at

ur
es

1 n’s ancestor subcategorization frames (ASF) (see section 4) *
2 n’s word
3 Syntactic category ofn’s right sibling
4 Parse tree paths fromn to each support verb *
5 Last word ofn’s left sibling * *
6 Parse tree path fromn to previous nominal, with lexicalized source (see section 4) *
7 Last word ofn’s right sibling *
8 Production rule that expandsn’s left sibling * *
9 Syntactic category ofn *
10 PropBank markability score (see section 4) *
11 Parse tree path fromn to previous nominal, with lexicalized source and destination *
12 Whether or notn is followed by PP *
13 Parse tree path fromn to previous nominal, with lexicalized destination *
14 Head word ofn’s parent *
15 Whether or notn surfaces before a passive verb * *
16 First word ofn’s left sibling *
17 Parse tree path fromn to closest support verb, with lexicalized destination *
18 Whether or notn is a head *
19 Head word ofn’s right sibling
20 Production rule that expandsn’s parent * *
21 Parse tree paths fromn to all support verbs, with lexicalized destinations *
22 First word ofn’s right sibling * *
23 Head word ofn’s left sibling *
24 If n is followed by a PP, the head of that PP’s object *
25 Parse tree path fromn to previous nominal *
26 Token distance fromn to previous nominal *
27 Production rule that expandsn’s grandparent *

Table 2: Features, sorted by gain in selection algorithm.& denotes concatenation. The last two columns indicate
(N)ew features (not used in Liu and Ng (2007)) and features (S)hared by the argument and nominal models.
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as a binary classification task over token nodes.
Once a nominal has been identified as bearing
overt arguments, it is processed with the argument
identification model developed in the previous
section. To classify nominals, we use the features
shown in the bottom half of Table 2, which were
selected with the same algorithm used for the
argument classification model. As shown by Table
2, the sets of features selected for argument and
nominal classification are quite different, and many
of the features used for nominal classification have
not been previously used. Below, we briefly explain
a few of these features.

Ancestor subcategorization frames (ASF)
As shown in Table 2, the most informative feature
is ASF. For a given tokent, ASF is actually a set
of sub-features, one for each parse tree node above
t. Each sub-feature is indexed (i.e., named) by its
distance fromt. The value of an ASF sub-feature
is the production rule that expands the correspond-
ing node in the tree. An ASF feature with two
sub-features is depicted below for the token “sale”:

VP: ASF2 = V P → V, NP

V (made) NP:ASF1 = NP → Det, N

Det (a) N (sale)

Parse tree path lexicalizationA lexicalized parse
tree path is one in which surface tokens from the
beginning or end of the path are included in the path.
This is a finer-grained version of the traditional
parse tree path that captures the joint behavior of
the path and the tokens it connects. For example,
in the tree above, the path from “sale” to “made”
with a lexicalized source and destination would be
sale : N ↑ NP ↑ V P ↓ V : made. Lexicalization
increases sparsity; however, it is often preferred
by the feature selection algorithm, as shown in the
bottom half of Table 2.

PropBank markability score This feature is
the probability that the context (± 5 words) of a de-
verbal nominal is generated by a unigram language
model trained over the PropBank argument words
for the corresponding verb. Entities are normalized

Precision Recall F1

Baseline 0.5555 0.9784 0.7086
MLE 0.6902 0.8903 0.7776
LibLinear 0.8989 0.8927 0.8958

Table 4: Evaluation results for identifying nominals
with explicit arguments.

to their entity type using BBN’s IdentiFinder, and
adverbs are normalized to their related adjective us-
ing theADJADVdictionary provided by NomBank.
The normalization of adverbs is motivated by the
fact that adverbial modifiers of verbs typically have
a corresponding adjectival modifier for deverbal
nominals.

5 Evaluation results

Our evaluation methodology reflects a practical sce-
nario in which the nominal SRL system must pro-
cess each token in a sentence. The system can-
not safely assume that each token bears overt argu-
ments; rather, this decision must be made automat-
ically. In section 5.1, we present results for the au-
tomatic identification of nominals with overt argu-
ments. Then, in section 5.2, we present results for
the combined task in which nominal classification is
followed by argument identification.

5.1 Nominal classification

Following standard practice, we train the nomi-
nal classifier over NomBank sections 2-21 using
LibLinear and automatically generated syntactic
parse trees. The prediction threshold is set to the
value that maximizes the nominalF1 score on
development section (24), and the resulting model
is tested over section 23. For comparison, we
implemented the following simple classifiers.

Baseline nominal classifier Classifies a token
as overtly bearing arguments if it is a singular or
plural noun that is markable in the training data.
As shown in Table 4, this classifier achieves nearly
perfect recall.5

MLE nominal classifier Operates similarly to
5Recall is less than 100% due to (1) part-of-speech errors

from the syntactic parser and (2) nominals that were not anno-
tated in the training data but exist in the testing data.
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(b) Nominal classification performance with respect to the
distribution in Figure 1a. They-axis denotes the combined
F1 for nominals in the interval.
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(c) All-token argument classification performance with re-
spect to the distribution in Figure 1a. They-axis denotes the
combinedF1 for nominals in the interval.

Figure 1: Evaluation results with respect to the distribution of nominals in TreeBank.

the baseline classifier, but also produces a score
for the classification. The value of the score is
equal to the probability that the nominal bears overt
arguments, as observed in the training data. A
prediction threshold is imposed on this score as
determined by the development data (t = 0.23).
As shown by Table 4, this exchanges recall for
precision and leads to a significant increase in the
overallF1 score.

The last row in Table 4 shows the results for
the LibLinear nominal classifier, which significantly
outperforms the others, achieving balanced preci-
sion and recall scores near 0.9. In addition, it is

able to recover from part-of-speech errors because
it does not filter out non-noun instances; rather, it
combines part-of-speech information with other lex-
ical and syntactic features to classify nominals.

Interesting observations can be made by grouping
nominals according to the probability with which
they are markable in the corpus. Figure 1a gives
the overall distribution of markable nominals in the
training data. As shown, 50% of nominal instances
are markable only 65% of the time or less, making
nominal classification an important first step. Using
this view of the data, Figure 1b presents the over-
all F1 scores for the baseline and LibLinear nominal
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classifiers.6 As expected, gains in nominal classi-
fication diminish as nominals become more overtly
associated with arguments. Furthermore, nominals
that are rarely markable (i.e., those in interval 0.05)
remain problematic due to a lack of positive training
instances and the unbalanced nature of the classifi-
cation task.

5.2 Combined nominal-argument classification

We now turn to the task of combined nominal-
argument classification. In this task, systems must
first identify nominals that bear overt arguments. We
evaluated three configurations based on the nominal
classifiers from the previous section. Each config-
uration uses the argument classification model from
section 3.

As shown in Table 3, overall argument classifi-
cationF1 suffers a loss of more than 9% under the
assumption that all known nouns bear overt argu-
ments. This corresponds precisely to using the base-
line nominal classifier in the combined nominal-
argument task. The MLE nominal classifier is able
to reduce this loss by 25% to anF1 of 0.7080. The
LibLinear nominal classifier reduces this loss by
46%, resulting in an overall argument classification
F1 of 0.7235. This improvement is the direct result
of filtering out nominal instances that do not bear
overt arguments.

Similarly to the nominal evaluation, we can view
argument classification performance with respect to
the probability that a nominal bears overt arguments.
This is shown in Figure 1c for the three configura-
tions. The configuration using the MLE nominal
classifier obtains an argumentF1 of zero for nom-
inals below its prediction threshold. Compared to
the baseline nominal classifier, the LibLinear clas-
sifier achieves argument classification gains as large
as 150.94% (interval 0.05), with an average gain of
52.87% for intervals 0.05 to 0.4. As with nomi-
nal classification, argument classification gains di-
minish for nominals that express arguments more
overtly - we observe an average gain of only 2.15%
for intervals 0.45 to 1.00. One possible explana-
tion for this is that the argument prediction model
has substantially more training data for the nomi-
nals in intervals 0.45 to 1.00. Thus, even if the nom-

6Baseline and MLE are identical above the MLE threshold.

Nominals
Deverbal Deverbal-like Other

Baseline 0.7975 0.6789 0.6757
MLE 0.8298 0.7332 0.7486
LibLinear 0.9261 0.8826 0.8905

Arguments
Baseline 0.7059 0.6738 0.7454
MLE 0.7206 0.6641 0.7675
LibLinear 0.7282 0.7178 0.7847

Table 5: Nominal and argumentF1 scores for dever-
bal, deverbal-like, and other nominals in the all-token
evaluation.

inal classifier makes a false positive prediction in the
0.45 to 1.00 interval range, the argument model may
correctly avoid labeling any arguments.

As noted in section 2, these results are not di-
rectly comparable to the results of the recent CoNLL
Shared Task (Surdeanu et al., 2008). This is due to
the fact that the semantic labeledF1 in the Shared
Task combines predicate and argument predictions
into a single score. The same combinedF1 score for
our best two-stage nominal SRL system (logistic re-
gression nominal and argument models) is 0.7806;
however, this result is not precisely comparable be-
cause we do not identify the predicate role set as re-
quired by the CoNLL Shared Task.

5.3 NomLex-based analysis of results

As demonstrated in section 1, NomBank annotates
many classes of deverbal and non-deverbal nomi-
nals, which have been categorized on syntactic and
semantic bases in NomLex-PLUS (Meyers, 2007b).
To help understand what types of nominals are par-
ticularly affected by implicit argumentation, we fur-
ther analyzed performance with respect to these
classes.

Figure 2a shows the distribution of nominals
across classes defined by the NomLex resource. As
shown in Figure 2b, many of the most frequent
classes exhibit significant gains. For example, the
classification of partitive nominals (13% of all nom-
inal instances) with the LibLinear classifier results
in gains of 55.45% and 33.72% over the baseline
and MLE classifiers, respectively. For the 5 most
common classes, which constitute 82% of all nomi-
nals instances, we observe average gains of 27.47%
and 19.30% over the baseline and MLE classifiers,
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(a)Distribution of nominals across the NomLex classes. The
y-axis denotes the percentage of all nominal instances that is
occupied by nominals in the class.
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(b) Nominal classification performance with respect to the
NomLex classes in Figure 2a. They-axis denotes the com-
binedF1 for nominals in the class.

Figure 2: Evaluation results with respect to NomLex classes.

respectively.
Table 5 separates nominal and argument classifi-

cation results into sets of deverbal (NomLex class
nom), deverbal-like (NomLex classnom-like), and
all other nominalizations. A deverbal-like nominal
is closely related to some verb, although not mor-
phologically. For example, the nounaccoladeshares
argument interpretation withaward, but the two are
not morphologically related. As shown by Table 5,
nominal classification tends to be easier - and ar-
gument classification harder - for deverbals when
compared to other types of nominals. The differ-
ence in argumentF1 between deverbal/deverbal-like
nominals and the others is due primarily to relational
nominals, which are relatively easy to classify (Fig-
ure 2b); additionally, relational nominals exhibit a
high rate of argument incorporation, which is eas-
ily handled by the maximum-likelihood model de-
scribed in section 3.1.

6 Conclusions and future work

The application of nominal SRL to practical NLP
problems requires a system that is able to accurately
process each token it encounters. Previously, it was
unclear whether the models proposed by Jiang and
Ng (2006) and Liu and Ng (2007) would operate ef-
fectively in such an environment. The systems de-
scribed by Surdeanu et al. (2008) are designed with
this environment in mind, but their evaluation did
not focus on the issue of implicit argumentation.
These two problems motivate the work presented in

this paper.
Our contribution is three-fold. First, we improve

upon previous nominal SRL results using a single-
stage classifier with additional new features. Sec-
ond, we show that this model suffers a substantial
performance degradation when evaluated over nom-
inals with implicit arguments. Finally, we identify a
set of features - many of them new - that can be used
to reliably detect nominals with explicit arguments,
thus significantly increasing the performance of the
nominal SRL system.

Our results also suggest interesting directions for
future work. As described in section 5.2, many nom-
inals do not have enough labeled training data to
produce accurate argument models. The general-
ization procedures developed by Gordon and Swan-
son (2007) for PropBank SRL and Padó et al. (2008)
for NomBank SRL might alleviate this problem.
Additionally, instead of ignoring nominals with im-
plicit arguments, we would prefer to identify the im-
plicit arguments using information contained in the
surrounding discourse. Such inferences would help
connect entities and events across sentences, provid-
ing a fuller interpretation of the text.
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Abstract

In this paper we present a Markov Logic Net-
work for Semantic Role Labelling that jointly
performs predicate identification, frame dis-
ambiguation, argument identification and ar-
gument classification for all predicates in a
sentence. Empirically we find that our ap-
proach is competitive: our best model would
appear on par with the best entry in the
CoNLL 2008 shared task open track, and at
the 4th place of the closed track—right be-
hind the systems that use significantly better
parsers to generate their input features. More-
over, we observe that by fully capturing the
complete SRL pipeline in a single probabilis-
tic model we can achieve significant improve-
ments over more isolated systems, in particu-
lar for out-of-domain data. Finally, we show
that despite the joint approach, our system is
still efficient.

1 Introduction

Semantic Role Labelling (SRL, Márquez et al.,
2008) is generally understood as the task of iden-
tifying and classifying the semantic arguments and
modifiers of the predicates mentioned in a sentence.
For example, in the case of the following sentence:

we are to find out that for the predicate token “plays”
with sense “play a role” (play.02) the phrase headed
by the token “Haag” is referring to the player (A0)
of the play event, and the phrase headed by the token

“Elianti” is referring to the role (A1) being played.
SRL is considered as a key task for applications that
require to answer “Who”, “What”, “Where”, etc.
questions, such as Information Extraction, Question
Answering and Summarization.

Any real-world SRL system needs to make sev-
eral decisions, either explicitly or implicitly: which
are the predicate tokens of a sentence (predicate
identification), which are the tokens that have se-
mantic roles with respect to these predicates (argu-
ment identification), which are the roles these to-
kens play (argument classification), and which is the
sense of the predicate (sense disambiguation).

In this paper we use Markov Logic (ML), a Statis-
tical Relational Learning framework that combines
First Order Logic and Markov Networks, to develop
a joint probabilistic model over all decisions men-
tioned above. The following paragraphs will moti-
vate this choice.

First, it allows us to readily capture global cor-
relations between decisions, such as the constraint
that a predicate can only have one agent. This type
of correlations has been successfully exploited in
several previous SRL approaches (Toutanova et al.,
2005; Punyakanok et al., 2005).

Second, we can use the joint model to evaluate
the benefit of incorporating decisions into the joint
model that either have not received much attention
within the SRL community (predicate identification
and sense disambiguation), or been largely made in
isolation (argument identification and classification
for all predicates of a sentence).

Third, our ML model is essentially a template that
describes a class of Markov Networks. Algorithms
can perform inference in terms of this template with-
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out ever having to fully instantiate the complete
Markov Network (Riedel, 2008; Singla and Domin-
gos, 2008). This can dramatically improve the effi-
ciency of an SRL system when compared to a propo-
sitional approach such as Integer Linear Program-
ming (ILP).

Finally, when it comes to actually building an
SRL system with ML there are “only” four things
to do: preparing input data files, converting out-
put data files, and triggering learning and inference.
The remaining work can be done by an off-the-
shelf Markov Logic interpreter. This is to be con-
trasted with pipeline systems where several compo-
nents need to be trained and connected, or Integer
Linear Programming approaches for which we need
to write additional wrapper code to generate ILPs.

Empirically we find that our system is
competitive—our best model would appear on
par with the best entry in the CoNLL 2008 shared
task open track, and at the 4th place of the closed
track—right behind systems that use significantly
better parsers1 to generate their input features.

We also observe that by integrating frame disam-
biguation into the joint SRL model, and by extract-
ing all arguments for all predicates in a sentence
simultaneously, significant improvements compared
to more isolated systems can be achieved. These
improvements are particularly large in the case of
out-of-domain data, suggesting that a joint approach
helps to increase the robustness of SRL. Finally, we
show that despite the joint approach, our system is
still efficient.

Our paper is organised as follows: we first intro-
duce ML (section 2), then we present our model in
terms of ML (section 3) and illustrate how to per-
form learning and inference with it (section 4). How
this model will be evaluated is explained in section 5
with the corresponding evaluation presented in sec-
tion 6. We conclude in section 7.

2 Markov Logic

Markov Logic (ML, Richardson and Domingos,
2005) is a Statistical Relational Learning language
based on First Order Logic and Markov Networks.
It can be seen as a formalism that extends First Or-
der Logic to allow formulae that can be violated with

1Our unlabelled accuracy for syntactic dependencies is at
least 3% points under theirs.

some penalty. From an alternative point of view, it is
an expressive template language that uses First Or-
der Logic formulae to instantiate Markov Networks
of repetitive structure.

Let us describe ML by considering the predicate
identification task. In ML we can model this task by
first introducing a set of logical predicates2 such as
isPredicate(Token) or word(Token,Word). Then we
specify a set of weighted first order formulae that
define a distribution over sets of ground atoms of
these predicates (or so-called possible worlds).

Ideally, the distribution we define with these
weighted formulae assigns high probability to possi-
ble worlds where SRL predicates are correctly iden-
tified and a low probability to worlds where this is
not the case. For example, a suitable set of weighted
formulae would assign a high probability to the
world3

{word (1,Haag) , word(2, plays),
word(3,Elianti), isPredicate(2)}

and a low one to

{word (1,Haag) , word(2, plays),
word(3,Elianti), isPredicate(3)}

In Markov Logic a set of weighted formulae is called
a Markov Logic Network (MLN). Formally speak-
ing, an MLN M is a set of pairs (φ,w) where φ is a
first order formula and w a real weight. M assigns
the probability

p (y) =
1
Z

exp


 ∑

(φ,w)∈M
w
∑

c∈Cφ

fφc (y)


 (1)

to the possible world y. Here Cφ is the set of all
possible bindings of the free variables in φ with the
constants of our domain. fφc is a feature function
that returns 1 if in the possible world y the ground
formula we get by replacing the free variables in φ
by the constants in c is true and 0 otherwise. Z
is a normalisation constant. Note that this distri-
bution corresponds to a Markov Network (the so-
called Ground Markov Network) where nodes repre-
sent ground atoms and factors represent ground for-
mulae.

2In the cases were is not obvious whether we refer to SRL
or ML predicates we add the prefix SRL or ML, respectively.

3“Haag plays Elianti” is a segment of a sentence in the train-
ing corpus.
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For example, if M contains the formula φ

word (x, take)⇒ isPredicate (x)

then its corresponding log-linear model has, among
others, a feature fφt1 for which x in φ has been re-
placed by the constant t1 and that returns 1 if

word (1, take)⇒ isPredicate (1)

is true in y and 0 otherwise.
We will refer predicates such as word as observed

because they are known in advance. In contrast, is-
Predicate is hidden because we need to infer it at test
time.

3 Model

Conceptually we divide our SRL system into three
stages: one stage that identifies the predicates of
a sentence, one stage that identifies and classifies
the arguments of these predicates, and a final stage
that predicts the sense of each predicate. We should
stress that this architecture is intended to illustrate
a typical SRL system, and to describe the pipeline-
based approach we will compare our models to.
However, it does not correspond to the way in-
ference is performed in our proposed model—we
jointly infer all decisions described above.

Note that while the proposed division into con-
ceptual stages seems somewhat intuitive, it is by no
means uncontroversial. In fact, for the CoNLL 2008
shared task slightly more than one half of the par-
ticipants performed sense disambiguation before ar-
gument identification and classification; most other
participants framed the problem in the reverse or-
der.4

We define five hidden predicates for the three
stages of the task. Figure 1 illustrates these pred-
icates and the stage they belong to. For predicate
identification, we use the predicate isPredicate. is-
Predicate(p) indicates that the word in the position
p is an SRL predicate. For argument identifica-
tion and classification, we use the predicates isAr-
gument, hasRole and role. The atom isArgument(a)
signals that the word in the position a is a SRL ar-
gument of some (unspecified) SRL predicate while
hasRole(p,a) indicates that the token at position a is

4However, for almost all pipeline based systems, predicate
identification was the first stage of the role labelling process.
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Figure 1: MLN hidden predicates divided in stages

an argument of the predicate in position p. The pred-
icate role(p,a,r) corresponds to the decision that the
argument at position a has the role r with respect to
the predicate in position p. Finally, for sense disam-
biguation we define the predicate sense(p,e) which
signals that the predicate in position p has the sense
e.

Before we continue to describe the formulae of
our Markov Logic Network we would like to high-
light the introduction of the isArgument predicate
mentioned above. This predicate corresponds to a
decision that is usually made implicitly: a token is
an argument if there exists a predicate for which it
plays a semantic role. Here we model this decision
explicitly, assuming that there exist cases where a
token clearly has to be an argument of some pred-
icate, regardless of which predicate in the sentence
this might be. It is this assumption that requires us to
infer the arguments for all predicates of a sentence
at once—otherwise we cannot make sure that for a
marked argument there exists at least one predicate
for which the argument plays a semantic role.

In addition to the hidden predicates, we define
observable predicates to represent the information
available in the corpus. Table 1 presents these pred-
icates.

3.1 Local formulae
A formula is local if its groundings relate any num-
ber of observed ground atoms to exactly one hidden
ground atom. For example, two groundings of the
local formula

lemma(p,+l1)∧lemma(a,+l2)⇒ hasRole(p, a)

can be seen in the Factor Graph of Figure 2. Both
connect a single hidden hasRole ground atom with
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word(i,w) Token i has word w
lemma(i,l) Token i has lemma l
ppos(i,p) Token i has POS tag p
cpos(i,p) Token i has coarse POS tag p
voice(i,v) Token i is verb and has voice v

(Active/Passive).
subcat(i,f) Token i has subcategorization

frame f
dep(i,j,d) Token h is head of token m and

has dependency label d
palmer(i,j) Token j can be semantic argu-

ment for token i according to
high recall heuristic∗

depPath(i,j,p) Dependency path between to-
kens i and j is p∗

depFrame(i,j,f) f is a syntactic (dependency)
frame in which tokens i and j
are designated as “pivots”∗

Table 1: Observable predicates; predicates marked with
∗ are dependency parsing-based versions for features of
Xue and Palmer (2004).

two observed lemma ground atoms. The + notation
indicates that the MLN contains one instance of the
rule, with a separate weight, for each assignment of
the variables with a plus sign (?).

The local formulae for isPredicate, isArgument
and sense aim to capture the relation of the tokens
with their lexical and syntactic surroundings. This
includes formulae such as

subcat(p,+f)⇒ isPredicate(p)

which implies that a certain token is a predicate
with a weight that depends on the subcategorization
frame of the token. Further local formulae are con-
structed using those observed predicates in table 1
that relate single tokens and their properties.

The local formulae for role and hasRole focus on
properties of the predicate and argument token—the
formula illustrated in figure 2 is an example of this—
and on the relation between the two tokens. An ex-
ample of the latter type is the formula

depPath(p, a,+d)⇒ role(p, a,+r)

which implies that token a plays the semantic role r
with respect to token p, and for which the weight de-
pends on the syntactic (dependency) path d between
p and a and on the actual role to assign. Again,
further formulae are constructed using the observed

Figure 2: Factor graph for the first local formula in sec-
tion 3.1. Here round nodes represent variables (corre-
sponding to the states of ground atoms) and the rectan-
gular nodes represent the factor and their parameters at-
tached to the ground formulae.

predicates in table 1; however, this time we consider
both predicates that relate tokens to their individual
properties and predicates that describe the relation
between tokens.

Unfortunately, the complete set of local formulae
is too large to be exhaustively described in this pa-
per. Its size results from the fact that we also con-
sider conjunctions of several atoms as conditions,
and lexical windows around tokens. Hence, instead
of describing all local formulae we refer the reader
to our MLN model files.5 They can be used both as
a reference and as input to our Markov Logic En-
gine,6 and thus allow the reader to easily reproduce
our results.

3.2 Global formulae
Global formulae relate several hidden ground atoms.
We use this type of formula for two purposes: to
ensure consistency between the predicates of all
SRL stages, and to capture some of our background
knowledge about SRL. We will refer to formulae
that serve the first purpose as structural constraints.

For example, a structural constraint is given by the
(deterministic) formula

role(p, a, r)⇒ hasRole(p, a)

which ensures that, whenever the argument a is
given a label r with respect to the predicate p, this
argument must be an argument of a as denoted by
hasRole(p,a). Note that this formula by itself models
the traditional “bottom-up” argument identification
and classification pipeline (Xue and Palmer, 2004):

5http://code.google.com/p/thebeast/
source/browse/#svn/mlns/naacl-hlt

6http://code.google.com/p/thebeast
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it is possible to not assign a role r to an predicate-
argument pair (p, a) proposed by the identification
stage; however, it is impossible to assign a role r
to token pairs (p, a) that have not been proposed as
potential arguments.

An example of another class of structural con-
straints is

hasRole(p, a)⇒ ∃r.role(p, a, r)

which, by itself, models an inverted or “top-down”
pipeline. In this architecture the argument classifi-
cation stage can assign roles to tokens that have not
been proposed by the argument identification stage.
However, it must assign a label to any token pair the
previous stage proposes.

For the SRL predicates that perform a labelling
task (role and sense) we also need a structural con-
straint which ensures that not more than one label is
assigned. For instance,

(role(p, a, r1) ∧ r1 6= r2 ⇒ ¬role(p, a, r2))

forbids two different semantic roles for a pair of
words.

There are three global formulae that capture our
linguistic background knowledge. The first one is
a deterministic constraint that had been frequently
applied in the SRL literature. It forbids cases where
distinct arguments of a predicate have the same role
unless the role describes a modifier:

role (p, a1, r) ∧ ¬mod (r) ∧ a1 6= a2 ⇒
¬role (p, a2, r)

The second “linguistic” global formula is

role(p, a,+r) ∧ lemma(p,+l)⇒ sense(p,+s)

which implies that when a predicate p with lemma l
has an argument awith role r it has to have the sense
s. Here the weight depends on the combination of
role r, lemma l and sense s.

The third and final “linguistic” global formula is

lemma(p,+l) ∧ ppos(a,+p)
∧hasRole(p, a)⇒ sense(p,+f)

It implies that if a predicate p has the lemma l and an
argument a with POS tag p it has to have the sense

s. This time the weight depends on the combination
of POS tag p, lemma l and sense s.

Note that the final two formulae evaluate the se-
mantic frame of a predicate and become local for-
mulae in a pipeline system that performs sense dis-
ambiguation after argument identification and clas-
sification.

Table 2 summarises the global formulae we use in
this work.

4 Inference and Learning

Assuming that we have an MLN, a set of weights
and a given sentence then we need to predict the
choice of predicates, frame types, arguments and
role labels with maximal a posteriori probabil-
ity (MAP). To this end we apply a method that
is both exact and efficient: Cutting Plane Infer-
ence (CPI, Riedel, 2008) with Integer Linear Pro-
gramming (ILP) as base solver.

Instead of fully instantiating the Markov Network
that a Markov Logic Network describes, CPI begins
with a subset of factors/edges—in our case we use
the factors that correspond to the local formulae of
our model—and solves the MAP problem for this
subset using the base solver. It then inspects the
solution for ground formulae/features that are not
yet included but could, if added, lead to a different
solution—this process is usually referred to as sep-
aration. The ground formulae that we have found
are added and the network is solved again. This pro-
cess is repeated until the network does not change
anymore.

This type of algorithm could also be realised for
an ILP formulation of SRL. However, it would re-
quire us to write a dedicated separation routine for
each type of constraint we want to add. In Markov
Logic, on the other hand, separation can be gener-
ically implemented as the search for variable bind-
ings that render a weighted first order formulae true
(if its weight is negative) or false (if its weight is
positive). In practise this means that we can try new
global formulae/constraints without any additional
implementation overhead.

We learn the weights associated with each MLN
using 1-best MIRA (Crammer and Singer, 2003)
Online Learning method. As MAP inference
method that is applied in the inner loop of the on-
line learner we apply CPI, again with ILP as base
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Bottom-up

sense(p, s)⇒ isPredicate(p)
hasRole(p, a)⇒ isPredicate(p)
hasRole(p, a)⇒ isArgument(a)
role(p, a, r)⇒ hasLabel(p, a)

Top-Down

isPredicate(p)⇒ ∃s.sense(p, s)
isPredicate(p)⇒ ∃a.hasRole(p, a)
isArgument(a)⇒ ∃p.hasRole(p, a)
hasLabel(p, a)⇒ ∃r.role(p, a, r)

Unique Labels role(p, a, r1) ∧ r1 6= r2 ⇒ ¬role(p, a, r2)
sense(p, s1) ∧ s1 6= s2 ⇒ ¬sense(p, r2)

Linguistic
role (p, a1, r) ∧ ¬mod (r) ∧ a1 6= a2 ⇒ ¬role (p, a2, r)
lemma(p,+l) ∧ ppos(a,+p) ∧ hasRole(p, a)⇒ sense(p,+f)
lemma(p,+l) ∧ role(p, a,+r)⇒ sense(p,+f)

Table 2: Global formulae for ML model

solver.

5 Experimental Setup

For training and testing our SRL systems we used a
version of the CoNLL 2008 shared task (Surdeanu
et al., 2008) dataset that only mentions verbal predi-
cates, disregarding the nominal predicates available
in the original corpus.7 While the original (open
track) corpus came with MALT (Nivre et al., 2007)
dependencies, we observed slightly better results
when using the dependency parses generated with
a Charniak parser (Charniak, 2000). Hence we used
the latter for all our experiments.

To assess the performance of our model, and it to
evaluate the possible gains to be made from consid-
ering a joint model of the complete SRL pipeline,
we set up several systems. The full system uses a
Markov Logic Network with all local and global for-
mulae described in section 3. For the bottom-up sys-
tem we removed the structural top-down constraints
from the complete model—previous work Riedel
and Meza-Ruiz (2008) has shown that this can lead
to improved performance. The bottom-up (-arg) sys-
tem is equivalent to the bottom-up system, but it
does not include any formulae that mention the hid-
den isArgument predicate.

For the systems presented so far we perform joint
inference and learning. The pipeline system dif-
fers in this regard. For this system we train a sep-
arate model for each stage in the pipeline of figure
1. The predicate identification stage identifies the
predicates (using all local isPredicate formulae) of

7The reason for this choice where license problems.

a sentence. The next stage predicts arguments and
their roles for the identified predicates. Here we in-
clude all local and global formulae that involve only
the predicates of this stage. In the last stage we pre-
dict the sense of each identified predicate using all
formulae that involve the sense, without the struc-
tural constraints that connect the sense predicate to
the previous stages of the pipeline (these constraints
are enforced by architecture).

6 Results

Table 3 shows the results of our systems for the
CoNLL 2008 development set and the WSJ and
brown test sets. The scores are calculated using the
semantic evaluation metric of the CoNLL-08 shared
task (Surdeanu et al., 2008). This metric measures
the precision, recall and F1 score of the recovered
semantic dependencies. A semantic dependency is
created for each predicate and its arguments, the
label of such dependency is the role of the argu-
ment. Additionally, there is a semantic dependency
for each predicate and aROOT argument which has
the sense of the predicate as label.

To put these results into context, let us compare
them to those of the participants of the CoNLL 2008
shared task (see the last three rows of table 3).8 Our
best model, Bottom-up, would reach the highest F1

WSJ score, and second highest Brown score, for
the open track. Here the best-performing participant
was Vickrey and Koller (2008).

Table 3 also shows the results of the best (Jo-
hansson and Nugues, 2008) and fourth best sys-

8Results of other systems were extracted from Table 16 of
the shared task overview paper (Surdeanu et al., 2008).
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tem (Zhao and Kit, 2008) of the closed track. We
note that we do significantly worse than Johansson
and Nugues (2008), and roughly equivalent to Zhao
and Kit (2008); this places us on the fourth rank of
19 participants. However, note that all three sys-
tems above us, as well as Zhao and Kit (2008), use
parsers with at least about 90% (unlabelled) accu-
racy on the WSJ test set (Johansson’s parser has
about 92% unlabelled accuracy).9 By contrast, with
about 87% unlabelled accuracy our parses are sig-
nificantly worse.

Finally, akin to Riedel and Meza-Ruiz (2008) we
observe that the bottom-up joint model performs
better than the full joint model.

System Devel WSJ Brown
Full 76.93 79.09 67.64
Bottom-up 77.96 80.16 68.02
Bottom-up (-arg) 77.57 79.37 66.70
Pipeline 75.69 78.19 64.66
Vickrey N/A 79.75 69.57
Johansson N/A 86.37 71.87
Zhao N/A 79.40 66.38

Table 3: Semantic F1 scores for our systems and three
CoNLL 2008 shared task participants. The Bottom-up
results are statistically significantly different to all others
(i.e., ρ ≤ 0.05 according to the sign test).

6.1 Joint Model vs. Pipeline

Table 3 suggests that by including sense disam-
biguation into the joint model (as is the case for all
systems but the pipeline) significant improvements
can be gained. Where do these improvements come
from? We tried to answer this question by taking a
closer look at how accurately the pipeline predicts
the isPredicate, isArgument, hasRole, role and
sense relations, and how this compares to the result
of the joint full model.

Table 4 shows that the joint model mainly does
better when it comes to predicting the right predi-
cate senses. This is particularly true for the case of
the Brown corpus—here we gain about 10% points.
These results suggest that a more joint approach may
be particularly useful in order to increase the robust-
ness of an SRL system in out-of-domain scenarios.10

9Since our parses use a different label set we could not com-

WSJ Brown
Pipe. Fu. Pipe. Fu.

isPredicate 96.6 96.5 92.2 92.5
isArgument 90.3 90.6 85.9 86.9

hasRole 88.0 87.9 83.6 83.8
role 75.4 75.5 64.2 64.6

sense 85.5 88.5 67.3 77.1

Table 4: F1 scores for M predicates; Pipe. refers to the
Pipeline system, Fu. to the full system.

6.2 Modelling if a Token is an Argument

In table 3 we also observe that improvements can be
made if we explicitly model the decision whether a
token is a semantic argument of some predicate or
not. As we mentioned in section 3, this aspect of our
model requires us to jointly perform inference for
all predicates of a sentence, and hence our results
justify the per-sentence SRL approach proposed in
this paper.

In order to analyse where these improvements
come from, we again list our results on a per-SRL-
predicate basis. Table 5 shows that by including the
isArgument predicate and the corresponding for-
mulae we gain around 0.6% and 1.0% points across
the board for WSJ and Brown, respectively.11 As
shown in table 3, these improvements result in about
1.0% improvements for both WSJ and Brown in
terms of the CoNLL 2008 metric. Hence, an ex-
plicit model of the “is an argument” decision helps
the SRL at all levels.

How the isArgument helps to improve the over-
all role labelling score can be illustrated with the
example in figure 3. Here the model without a
hidden isArgument predicate fails to attach the
preposition “on” to the predicate “start.01” (here 01
refers to the sense of the predicate). Apparently
the model has not enough confidence to assign the
preposition to either “start.01” or “get.03”, so it just
drops the argument altogether. However, because
the isArgument model knows that most preposi-
tions have to be modifying some predicate, pres-

pare labelled accuracy.
10The differences between results of the full and joint model

are statistically significant with the exception of the results for
the isPredicate predicate for the WSJ test set.

11The differences between results of the w/ and w/o model
are statistically significant with the exception of the results for
the sense predicate for the Brown test set.
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Figure 3: Segment of the CoNLL 2008 development set
for which the bottom-up model w/o isArgument predi-
cate fails to attach the preposition “on” as an “AM-LOC”
for “started”. The joint bottom-up model attaches the
preposition correctly.

sure is created that forces a decision between the
two predicates. And because for the role model
“start.01” looks like a better fit than “get.03”, the
correct attachment is found.

WSJ Brown
w/o w/ w/o w/

isPredicate 96.3 96.5 91.4 92.5
hasRole 87.1 87.7 82.5 83.6

role 76.9 77.5 65.2 66.2
sense 88.3 89.0 76.1 77.5

Table 5: F1 scores for ML predicates; w/o refers to
a Bottom-up system without isArgument predicate, w/
refers to a Bottom-up system with isArgument predicate.

6.3 Efficiency

In the previous sections we have shown that our joint
model indeed does better than an equivalent pipeline
system. However, usually most joint approaches
come at a price: efficiency. Interestingly, in our case
we observe the opposite: our joint model is actually
faster than the pipeline. This can be seen in table 6,
where we list the time it took for several different
system to process the WSJ and Brown test corpus,
respectively. When we compare the times for the
bottom-up model to those of the pipeline, we note
that the joint model is twice as fast. While the indi-
vidual stages within the pipeline may be faster than
the joint system (even when we sum up inference
times), extracting results from one system and feed-
ing them into another creates overhead which offsets
this potential reduction.

Table 6 also lists the run-time of a bottom-up
system that solves the inference problem by fully
grounding the Markov Network that the Markov
Logic (ML) model describes, mapping this network
to an Integer Linear Program, and finding the most

likely assignment using an ILP solver. This sys-
tem (Bottom-up (-CPI)) is four times slower than the
equivalent system that uses Cutting Plane Inference
(Bottom-up). This suggests that if we were to imple-
ment the same joint model using ILP instead of ML,
our system would either be significantly slower, or
we would need to implement a Cutting Plane algo-
rithm for the corresponding ILP formulation—when
we use ML this algorithm comes “for free”.

System WSJ Brown
Full 9.2m 1.5m
Full (-CPI) 38.4m 7.47m
Bottom-up 9.5m 1.6m
Bottom-up (-CPI) 38.8m 6.9m
Pipeline 18.9m 2.9m

Table 6: Testing times for full model and bottom-up when
CPI algorithm is not used. The WSJ test set contains 2414
sentences, the Brown test set 426. Our best systems thus
takes on average 230ms per WSJ sentence (on a 2.4Ghz
system).

7 Conclusion

In this paper we have presented a Markov Logic Net-
work that jointly models all predicate identification,
argument identification and classification and sense
disambiguation decisions for a sentence. We have
shown that this approach is competitive, in particular
if we consider that our input parses are significantly
worse than those of the top CoNLL 2008 systems.

We demonstrated the benefit of jointly predicting
senses and semantic arguments when compared to a
pipeline system that first picks arguments and then
senses. We also showed that by modelling whether
a token is an argument of some predicate and jointly
picking arguments for all predicates of a sentence,
further improvements can be achieved.

Finally, we demonstrated that our system is effi-
cient, despite following a global approach. This ef-
ficiency was also shown to stem from the first order
inference method our Markov Logic engine applies.
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Abstract

We describe a generative model for clustering
named entities which also models named en-
tity internal structure, clustering related words
by role. The model is entirely unsupervised;
it uses features from the named entity itself
and its syntactic context, and coreference in-
formation from an unsupervised pronoun re-
solver. The model scores 86% on the MUC-7
named-entity dataset. To our knowledge, this
is the best reported score for a fully unsuper-
vised model, and the best score for a genera-
tive model.

1 Introduction

Named entity clustering is a classic task in NLP, and
one for which both supervised and semi-supervised
systems have excellent performance (Mikheev et al.,
1998; Chinchor, 1998). In this paper, we describe a
fully unsupervised system (using no “seed rules” or
initial heuristics); to our knowledge this is the best
such system reported on the MUC-7 dataset. In ad-
dition, the model clusters the words which appear
in named entities, discovering groups of words with
similar roles such as first names and types of orga-
nization. Finally, the model defines a notion of con-
sistency between different references to the same en-
tity; this component of the model yields a significant
increase in performance.

The main motivation for our system is the re-
cent success of unsupervised generative models for
coreference resolution. The model of Haghighi
and Klein (2007) incorporated a latent variable for
named entity class. They report a named entity score

of 61.2 percent, well above the baseline of 46.4, but
still far behind existing named-entity systems.

We suspect that better models for named entities
could aid in the coreference task. The easiest way to
incorporate a better model is simply to run a super-
vised or semi-supervised system as a preprocess. To
perform joint inference, however, requires an unsu-
pervised generative model for named entities. As far
as we know, this work is the best such model.

Named entities also pose another problem with
the Haghighi and Klein (2007) coreference model;
since it models only the heads of NPs, it will fail to
resolve some references to named entities: (“Ford
Motor Co.”, “Ford”), while erroneously merging
others: (“Ford Motor Co.”, “Lockheed Martin Co.”).
Ng (2008) showed that better features for match-
ing named entities– exact string match and an “alias
detector” looking for acronyms, abbreviations and
name variants– improve the model’s performance
substantially. Yet building an alias detector is non-
trivial (Uryupina, 2004). English speakers know that
“President Clinton” is the same person as “Bill Clin-
ton” , not “President Bush”. But this cannot be im-
plemented by simple substring matching. It requires
some concept of the role of each word in the string.
Our model attempts to learn this role information by
clustering the words within named entities.

2 Related Work

Supervised named entity recognition now performs
almost as well as human annotation in English
(Chinchor, 1998) and has excellent performance on
other languages (Tjong Kim Sang and De Meul-
der, 2003). For a survey of the state of the art,
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see Nadeau and Sekine (2007). Of the features
we explore here, all but the pronoun information
were introduced in supervised work. Supervised ap-
proaches such as Black et al. (1998) have used clus-
tering to group together different nominals referring
to the same entity in ways similar to the “consis-
tency” approach outlined below in section 3.2.

Semi-supervised approaches have also achieved
notable success on the task. Co-training (Riloff and
Jones, 1999; Collins and Singer, 1999) begins with
a small set of labeling heuristics and gradually adds
examples to the training data. Various co-training
approaches presented in Collins and Singer (1999)
all score about 91% on a dataset of named entities;
the inital labels were assigned using 7 hand-written
seed rules. However, Collins and Singer (1999)
show that a mixture-of-naive-Bayes generative clus-
tering model (which they call an EM model), initial-
ized with the same seed rules, performs much more
poorly at 83%.

Much later work (Evans, 2003; Etzioni et al.,
2005; Cucerzan, 2007; Pasca, 2004) relies on the
use of extremely large corpora which allow very
precise, but sparse features. For instance Etzioni
et al. (2005) and Pasca (2004) use web queries to
count occurrences of “cities such as X” and simi-
lar phrases. Although our research makes use of a
fairly large amount of data, our method is designed
to make better use of relatively common contextual
features, rather than searching for high-quality se-
mantic features elsewhere.

Models of the internal structure of names have
been used for cross-document coreference (Li et al.,
2004; Bhattacharya and Getoor, 2006) and a goal in
their own right (Charniak, 2001). Li et al. (2004)
take named entity classes as a given, and develops
both generative and discriminative models to detect
coreference between members of each class. Their
generative model designates a particular mention of
a name as a “representative” and generates all other
mentions from it according to an editing process.
Bhattacharya and Getoor (2006) operates only on
authors of scientific papers. Their model accounts
for a wider variety of name variants than ours, in-
cluding misspellings and initials. In addition, they
confirm our intuition that Gibbs sampling for infer-
ence has insufficient mobility; rather than using a
heuristic algorithm as we do (see section 3.5), they

use a data-driven block sampler. Charniak (2001)
uses a Markov chain to generate 6 different com-
ponents of people’s names, again assuming that the
class of personal names can be pre-distinguished us-
ing a name list. He infers coreference relationships
between similar names appearing in the same docu-
ment, using the same notion of consistency between
names as our model. As with our model, the clusters
found are relatively good, although with some mis-
takes even on frequent items (for example, “John” is
sometimes treated as a descriptor like “Secretary”).

3 System Description

Like Collins and Singer (1999), we assume that the
named entities have already been correctly extracted
from the text, and our task is merely to label them.
We assume that all entities fit into one of the three
MUC-7 categories, LOC (locations), ORG (organi-
zations), and PER (people). This is an oversimplifi-
cation; Collins and Singer (1999) show that about
12% of examples do not fit into these categories.
However, while using the MUC-7 data, we have no
way to evaluate on such examples.

As a framework for our models, we adopt adap-
tor grammars (Johnson et al., 2007), a framework
for non-parametric Bayesian inference over context-
free grammars. Although our system does not re-
quire the full expressive power of PCFGs, the adap-
tor grammar framework allows for easy develop-
ment of structured priors, and supplies a flexible
generic inference algorithm. An adaptor grammar is
a hierarchical Pitman-Yor process (Pitman and Yor,
1997). The grammar has two parts: a base PCFG
and a set of adapted nonterminals. Each adapted
nonterminal is a Pitman-Yor process which expands
either to a previously used subtree or to a sample
from the base PCFG. The end result is a posterior
distribution over PCFGs and over parse trees for
each example in our dataset.

Each of our models is an adaptor grammar based
on a particular base PCFG where the top nonter-
minal of each parse tree represents a named entity
class.

3.1 Core NP Model

We begin our analysis by reducing each named-
entity reference to the contiguous substring of
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ROOT →NE 0|NE 1|NE 2

NE 0 →(NE 0
0)(NE 1

0)(NE 2
0)(NE 3

0)(NE 4
0)

∗NE 0
0 →Words

∗Words →Word (Words)
Word →Bill . . .

Figure 1: Part of the grammar for core phrases. (Paren-
theses) mark optional nonterminals. *Starred nontermi-
nals are adapted.

proper nouns which surrounds its head, which we
call the core (Figure 1). To analyze the core, we use
a grammar with three main symbols (NEx), one for
each named entity class x. Each class has an asso-
ciated set of lexical symbols, which occur in a strict
order (NE i

x is the ith symbol for class x). We can
think of the NE i as the semantic parts of a proper
name; for people, NE 0

PER might generate titles and
NE 1

PER first names. Each NE i is adapted, and can
expand to any string of words; the ability to gen-
erate multiple words from a single symbol is use-
ful both because it can learn to group collocations
like “New York” and because it allows the system to
handle entities longer than four words. However, we
set the prior on multi-word expansions very low, to
avoid degenerate solutions where most phrases are
analyzed with a single symbol. The system learns
a separate probability for each ordered subset of the
NE i (for instance the rule NE 0 → NE 0

0 NE 2
0 NE 4

0),
so that it can represent constraints on possible refer-
ences; for instance, a last name can occur on its own,
but not a title.

3.2 Consistency Model

This system captures some of our intuitions about
core phrases, but not all: our representation for “Bill
Clinton” does not share any information with “Presi-
dent Bill Clinton” except the named-entity class. To
remedy this, we introduce a set of “entity” nonter-
minals Ek, which enforce a weak notion of consis-
tency. We follow Charniak (2001) in assuming that
two names are consistent (can be references to the
same entity) if they do not have different expansions
for any lexical symbol. In other words, a particu-
lar entity EPER,Clinton has a title E0

PER,Clinton =

ROOT →NE 0|NE 1|NE 2

NE 0 →E00|E01 . . . E0k

E00 →(E0
00)(E

1
00)(E

2
00)(E

3
00)(E

4
00)

∗ ∗ E0
00 →NE 0

0

∗NE 0
0 →Words . . .

Figure 2: Part of the consistency-enforcing grammar for
core phrases. There are an infinite number of entities
Exk, all with their own lexical symbols. Each lexical
symbol Ei

xk expands to a single NE i
x.

“President”, a first name E1
PER,Clinton = “Bill” etc.

These are generated from the class-specific distribu-
tions, for instance E0

PER,Clinton ∼ E0
PER, which

we intend to be a distribution over titles in general.
The resulting grammar is shown in Figure 2; the

prior parameters for the entity-specific symbols Eixk
are fixed so that, with overwhelming probability,
only one expansion occurs. We can represent any
fixed number of entities Ek with a standard adap-
tor grammar, but since we do not know the correct
number, we must extend the adaptor model slightly
to allow for an unbounded number. We generate the
Ek from a Chinese Restaurant process prior. (Gen-
eral grammars with infinite numbers of nonterminals
were studied by (Liang et al., 2007b)).

3.3 Modifiers, Prepositions and Pronouns
Next, we introduce two types of context information
derived from Collins and Singer (1999): nominal
modifiers and prepositional information. A nominal
modifier is either the head of an appositive phrase
(“Maury Cooper, a vice president”) or a non-proper
prenominal (“spokesman John Smith”)1. If the en-
tity is the complement of a preposition, we extract
the preposition and the head of the governing NP (“a
federally funded sewage plant in Georgia”). These
are added to the grammar at the named-entity class
level (separated from the core by a special punctua-
tion symbol).

Finally, we add information about pronouns and
wh-complementizers (Figure 3). Our pronoun infor-
mation is derived from an unsupervised coreference
algorithm which does not use named entity informa-

1We stem modifiers with the Porter stemmer.
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ROOT →Modifiers0 # NE 0 #
Prepositions0 # Pronouns0 #

. . .

Pronouns0 →Pronoun0 Pronouns0

Pronouns0 →
Pronoun0 →pers|loc|org |any

pers →i |he|she|who|me . . .
loc →where|which|it |its
org →which|it |they |we . . .

Figure 3: A fragment of the full grammar. The symbol
# represents punctuation between different feature types.
The prior for class 0 is concentrated around personal pro-
nouns, although other types are possible.

tion (Charniak and Elsner, 2009). This algorithm
uses EM to learn a generative model with syntactic,
number and gender parameters. Like Haghighi and
Klein (2007), we give our model information about
the basic types of pronouns in English. By setting
up the base grammar so that each named-entity class
prefers to associate to a single type of pronoun, we
can also determine the correspondence between our
named-entity symbols and the actual named-entity
labels– for the models without pronoun information,
this matching is arbitrary and must be inferred dur-
ing the evaluation process.

3.4 Data Preparation

To prepare data for clustering with our system, we
first parse it with the parser of Charniak and Johnson
(2005). We then annotate pronouns with Charniak
and Elsner (2009). For the evaluation set, we use the
named entity data from MUC-7. Here, we extract
all strings in <ne> tags and determine their cores,
plus any relevant modifiers, governing prepositions
and pronouns, by examining the parse trees. In addi-
tion, we supply the system with additional data from
the North American News Corpus (NANC). Here
we extract all NPs headed by proper nouns.

We then process our data by merging all exam-
ples with the same core; some merged examples
from our dataset are shown in Figure 4. When two
examples are merged, we concatenate their lists of

attack airlift airlift rescu # wing # of-commander
of-command with-run # #
# air-india # # #
# abels # # it #
# gaudreau # # they he #
# priddy # # he #
spokesman bird bird bird director bird ford clin-
ton director bird # johnson # before-hearing
to-happened of-cartoon on-pressure under-medicare
to-according to-allied with-stuck of-government of-
photographs of-daughter of-photo for-embarrassing
under-instituted about-allegations for-worked
before-hearing to-secretary than-proposition of-
typical # he he his he my himself his he he he he i
he his his i i i he his #

Figure 4: Some merged examples from an input file. (#
separates different feature types.)

modifiers, prepositions and pronouns (capping the
length of each list at 20 to keep inference tractable).
For instance, “air-india” has no features outside the
core, while “wing” has some nominals (“attack”
&c.) and some prepositions (“commander-of” &c.).
This merging is useful because it allows us to do in-
ference based on types rather than tokens (Goldwa-
ter et al., 2006). It is well known that, to interpo-
late between types and tokens, Hierarchical Dirich-
let Processes (including adaptor grammars) require
a deeper hierarchy, which slows down inference and
reduces the mobility of sampling schemes. By merg-
ing examples, we avoid using this more complicated
model. Each merged example also represents many
examples from the training data, so we can summa-
rize features (such as modifiers) observed through-
out a large input corpus while keeping the size of
our input file small.

To create an input file, we first add all the MUC-
7 examples. We then draw additional examples
from NANC, ranking them by how many features
they have, until we reach a specified number (larger
datasets take longer, but without enough data, results
tend to be poor).

3.5 Inference

Our implementation of adaptor grammars is a mod-
ified version of the Pitman-Yor adaptor grammar
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sampler2, altered to deal with the infinite number of
entities. It carries out inference using a Metropolis-
within-Gibbs algorithm (Johnson et al., 2007), in
which it repeatedly parses each input line using the
CYK algorithm, samples a parse, and proposes this
as the new tree.

To do Gibbs sampling for our consistency-
enforcing model, we would need to sample a parse
for an example from the posterior over every pos-
sible entity. However, since there are thousands of
entities (the number grows roughly linearly with the
number of merged examples in the data file), this is
not tractable. Instead, we perform a restricted Gibbs
sampling search, where we enumerate the posterior
only for entities which share a word in their core
with the example in question. In fact, if the shared
word is very common (occuring in more than .001 of
examples), we compute the posterior for that entity
only .05 of the time3. These restrictions mean that
we do not compute the exact posterior. In particular,
the actual model allows entities to contain examples
with no words in common, but our search procedure
does not explore these solutions.

For our model, inference with the Gibbs algo-
rithm seems to lack mobility, sometimes falling into
very poor local minima from which it does not seem
to escape. This is because, if there are several ref-
erences to the same named entity with slightly dif-
ferent core phrases, once they are all assigned to
the wrong class, it requires a low-probability se-
ries of individual Gibbs moves to pull them out.
Similarly, the consistency-enforcing model gener-
ally does not fully cluster references to common en-
tities; there are usually several “Bill Clinton” clus-
ters which it would be best to combine, but the se-
quence of moves that does so is too improbable. The
data-merging process described above is one attempt
to improve mobility by reducing the number of du-
plicate examples. In addition, we found that it was a
better use of CPU time to run multiple samplers with
different initialization than to perform many itera-
tions. In the experiments below, we use 20 chains,
initializing with 50 iterations without using consis-
tency, then 50 more using the consistency model,
and evaluate the last sample from each. We discard

2Available at http://www.cog.brown.edu/ mj/Software.htm
3We ignore the corresponding Hastings correction, as in

practice it leads to too many rejections.

the 10 samples with worst log-likelihood and report
the average score for the other 10.

3.6 Parameters

In addition to the base PCFG itself, the system re-
quires a few hyperparameter settings: Dirichlet pri-
ors for the rule weights of rules in the base PCFG.
Pitman-Yor parameters for the adapted nonterminals
are sampled from vague priors using a slice sam-
pler (Neal, 2003). The prior over core words was
set to the uniform distribution (Dirichlet 1.0) and the
prior for all modifiers, prepositions and pronouns to
a sparse value of .01. Beyond setting these param-
eters to a priori reasonable values, we did not opti-
mize them. To encourage the system to learn that
some lexical symbols were more common than oth-
ers, we set a sparse prior over expansions to sym-
bols4. There are two really important hyperparame-
ters: an extremely biased prior on class-to-pronoun-
type probabilities (1000 for the desired class, .0001
for everything else), and a prior of .0001 for the
Word →Word Words rule to discourage symbols
expanding to multiword strings.

4 Experiments

We performed experiments on the named entity
dataset from MUC-7 (Chinchor, 1998), using the
training set as development data and the formal test
set as test data. The development set has 4936
named entities, of which 1575 (31.9%) are locations,
2096 (42.5%) are organizations and 1265 (25.6%)
people. The test set has 4069 named entities, 1321
(32.5%) locations, 1862 (45.8%) organizations and
876 (21.5%) people5. We use a baseline which
gives all named entities the same label; this label is
mapped to “organization”.

In most of our experiments, we use an input file of
40000 lines. For dev experiments, the labeled data
contributes 1585 merged examples; for test experi-
ments, only 1320. The remaining lines are derived

4Expansions that used only the middle three symbols
NE1,2,3

x got a prior of .005, expansions whose outermost sym-
bol was NE0,4

x got .0025, and so forth. This is not so impor-
tant for our final system, which has only 5 symbols, but was
designed during development to handle systems with up to 10
symbols.

510 entities are labeled location|organization; since this
fraction of the dataset is insignificant we score them as wrong.
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Model Accuracy
Baseline (All Org) 42.5
Core NPs (no consistency) 45.5
Core NPs (consistency) 48.5
Context Features 83.3
Pronouns 87.1

Table 1: Accuracy of various models on development
data.

Model Accuracy
Baseline (All Org) 45.8
Pronouns 86.0

Table 2: Accuracy of the final model on test data.

using the process described in section 3.4 from 5
million words of NANC.

To evaluate our results, we map our three induced
labels to their corresponding gold label, then count
the overlap; as stated, this mapping is predictably
encoded in the prior when we use the pronoun fea-
tures. Our experimental results are shown in Table
1. All models perform above baseline, and all fea-
tures contribute significantly to the final result. Test
results for our final model are shown in Table 2.

A confusion matrix for our highest-likelihood test
solution is shown as Figure 5. The highest confusion
class is “organization”, which is confused most often
with “location” but also with “person”. “location” is
likewise confused with “organization”. “person” is
the easiest class to identify– we believe this explains
the slight decline in performance from dev to test,
since dev has proportionally more people.

Our mapping from grammar symbols to words ap-
pears in Table 3; the learned prepositional and mod-
ifier information is in Table 4. Overall the results
are good, but not perfect; for instance, the Pers
states are mostly interpretable as a sequence of ti-
tle - first name - middle name or initial - last name -

loc org per
LOC 1187 97 37
ORG 223 1517 122
PER 36 20 820

Figure 5: Confusion matrix for highest-likelihood test
run. Gold labels in CAPS, induced labels italicized. Or-
ganizations are most frequently confused.

last name or post-title (similar to (Charniak, 2001)).
The organization symbols tend to put nationalities
and other modifiers first, and end with institutional
types like “inc.” or “center”, although there is a sim-
ilar (but smaller) cluster of types at Org2, suggest-
ing the system has incorrectly found two analyses
for these names. Location symbols seem to put en-
tities with a single, non-analyzable name into Loc2,
and use symbols 0, 1 and 3 for compound names.
Loc4 has been recruited for time expressions, since
our NANC dataset includes many of these, but we
failed to account for them in the model. Since
they appear in a single class here, we are optimistic
that they could be clustered separately if another
class and some appropriate features were added to
the prior. Some errors do appear (“supreme court”
and “house” as locations, “minister” and “chairman”
as middle names, “newt gingrich” as a multiword
phrase). The table also reveals an unforeseen issue
with the parser: it tends to analyze the dateline be-
ginning a news story along with the following NP
(“WASHINGTON Bill Clinton said...”). Thus com-
mon datelines (“washington”, “new york” and “los
angeles”) appear in state 0 for each class.

5 Discussion

As stated above, we aim to build an unsupervised
generative model for named entity clustering, since
such a model could be integrated with unsupervised
coreference models like Haghighi and Klein (2007)
for joint inference. To our knowledge, the closest
existing system to such a model is the EM mix-
ture model used as a baseline in Collins and Singer
(1999). Our system improves on this EM system
in several ways. While they initialize with minimal
supervision in the form of 7 seed heuristics, ours is
fully unsupervised. Their results cover only exam-
ples which have a prepositional or modifier feature;
we adopt these features from their work, but label
all entities in the predefined test set, including those
that appear without these features. Finally, as dis-
cussed, we find the “person” category to be the eas-
iest to label. 33% of the test items in Collins and
Singer (1999) were people, as opposed to 21% of
ours. However, even without the pronoun features,
that is, using the same feature set, our system scores
equivalently to the EM model, at 83% (this score is
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Pers0 Pers1 Pers2 Pers3 Pers4

rep. john (767) minister brown jr.
sen. (256) robert (495) j. smith (97) a
washington david john (242) b smith (111)
dr. michael l. johnson iii
los angeles james chairman newt gingrich williams
senate president e. king wilson
house richard m. miller brown
new york william (317) william (173) kennedy clinton
president sen. (236) robert (155) martin simpson
republican george r. davis b
Org0 Org1 Org2 Org3 Org4

american (137) national university research association
washington american (182) inc. (166) medical center
washington the new york corp. (156) news inc. (257)
national international (136) college health corp. (252)
first public institute (87) services co.
los angeles united group communications committee
new house hospital development institute
royal federal museum policy council
british home press affairs fund
california world international (61) defense act
Loc0 Loc1 Loc2 Loc3 Loc4

washington (92) the texas county monday
los angeles st. new york city thursday
south new washington (22) beach river (57)
north national (69) united states valley tuesday
old east (65) baltimore island wednesday
grand mount california river (71) hotel
black fort capitol park friday
west (22) west (56) christmas bay hall
east (21) lake bosnia house center
haiti great san juan supreme court building

Table 3: 10 most common words for each grammar symbol. Words which appear in multiple places have observed
counts indicated in parentheses.
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Pers-gov Pers-mod Org-gov Org-mod Loc-gov Loc-mod
according-to (1044) director president-of $ university-of calif.
played-by spokesman chairman-of giant city-of newspap[er]
directed-by leader director-of opposit[e] from-to state
led-by presid[ent] according-to (786) group town-of downtown
meeting-with attorney professor-at pp state-of n.y.
from-to candid[ate] head-of compan[y] center-in warrant
met-with lawyer department-of journal out-of va.
letter-to chairman member-of firm is-in fla.
secretary-of counsel members-of state house-of p.m.
known-as actor spokesman-for agenc[y] known-as itself

Table 4: 10 most common prepositional and modifier features for each named entity class. Modifiers were Porter-
stemmed; for clarity a reconstructed stem is shown in brackets.

on dev, 25% people). When the pronoun features are
added, our system’s performance increases to 86%,
significantly better than the EM system.

One motivation for our use of a structured model
which defined a notion of consistency between en-
tities was that it might allow the construction of
an unsupervised alias detector. According to the
model, two entities are consistent if they are in the
same class, and do not have conflicting assignments
of words to lexical symbols. Results here are at
best equivocal. The model is reasonable at pass-
ing basic tests– “Dr. Seuss” is not consistent with
“Dr. Strangelove”, “Dr. Quinn” etc, despite their
shared title, because the model identifies the sec-
ond element of each as a last name. Also correctly,
“Dr. William F. Gibson” is judged consistent with
“Dr. Gibson” and “Gibson” despite the missing el-
ements. But mistakes are commonplace. In the
“Gibson” case, the string “William F.” is misana-
lyzed as a multiword string, making the name in-
consistent with “William Gibson”; this is probably
the result of a search error, which, as we explained,
Gibbs sampling is unlikely to correct. In other cases,
the system clusters a family group together under
a single “entity” nonterminal by forcing their first
names into inappropriate states, for instance assign-
ing Pers1 Bruce, Pers2 Ellen, Pers3 Jarvis, where
Pers2 (usually a middle name) actually contains the
first name of a different individual. To improve this
aspect of our system, we might incorporate name-
specific features into the prior, such as abbreviations
and the concept of a family name. The most critical
improvement, however, would be integration with a

generative coreference system, since the document
context probably provides hints about which entities
are and are not coreferent.

The other key issue with our system is inference.
Currently we are extremely vulnerable to falling into
local minima, since the complex structure of the
model can easily lock a small group of examples
into a poor configuration. (The “William F. Gibson”
case above seems to be one of these.) In addition to
the block sampler used by Bhattacharya and Getoor
(2006), we are investigating general-purpose split-
merge samplers (Jain and Neal, 2000) and the per-
mutation sampler (Liang et al., 2007a). One inter-
esting question is how well these samplers perform
when faced with thousands of clusters (entities).

Despite these issues, we clearly show that it is
possible to build a good model of named entity class
while retaining compatibility with generative sys-
tems and without supervision. In addition, we do a
reasonable job learning the latent structure of names
in each named entity class. Our system improves
over the latent named-entity tagging in Haghighi
and Klein (2007), from 61% to 87%. This sug-
gests that it should indeed be possible to improve
on their coreference results without using a super-
vised named-entity model. How much improvement
is possible in practice, and whether joint inference
can also improve named-entity performance, remain
interesting questions for future work.
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Abstract

We propose a principled probabilisitc frame-
work which uses trees over the vocabulary to
capture similarities among terms in an infor-
mation retrieval setting. This allows the re-
trieval of documents based not just on occur-
rences of specific query terms, but also on sim-
ilarities between terms (an effect similar to
query expansion). Additionally our principled
generative model exhibits an effect similar to
inverse document frequency. We give encour-
aging experimental evidence of the superiority
of the hierarchical Dirichlet tree compared to
standard baselines.

1 Introduction

Information retrieval (IR) is the task of retrieving,
given a query, the documents relevant to the user
from a large quantity of documents (Salton and
McGill, 1983). IR has become very important in
recent years, with the proliferation of large quanti-
ties of documents on the world wide web. Many IR
systems are based on some relevance score function
R(j, q) which returns the relevance of documentj to
queryq. Examples of such relevance score functions
include term frequency-inverse document frequency
(tf-idf) and Okapi BM25 (Robertson et al., 1992).

Besides the effect that documents containing
more query terms should be more relevant (term fre-
quency), the main effect that many relevance scores
try to capture is that of inverse document frequency:
the importance of a term is inversely related to the
number of documents that it appears in, i.e. the
popularity of the term. This is because popular

terms, e.g. common and stop words, are often un-
informative, while rare terms are often very infor-
mative. Another important effect is that related or
co-occurring terms are often useful in determining
the relevance of documents. Because most relevance
scores do not capture this effect, IR systems resort to
techniques like query expansion which includes syn-
onyms and other morphological forms of the origi-
nal query terms in order to improve retrieval results;
e.g. (Riezler et al., 2007; Metzler and Croft, 2007).

In this paper we explore a probabilistic model for
IR that simultaneously handles both effects in a prin-
cipled manner. It builds upon the work of (Cow-
ans, 2004) who proposed a hierarchical Dirichlet
document model. In this model, each document is
modeled using a multinomial distribution (making
the bag-of-words assumption) whose parameters are
given Dirichlet priors. The common mean of the
Dirichlet priors is itself assumed random and given
a Dirichlet hyperprior. (Cowans, 2004) showed that
the shared mean parameter induces sharing of infor-
mation across documents in the corpus, and leads to
an inverse document frequency effect.

We generalize the model of (Cowans, 2004) by re-
placing the Dirichlet distributions with Dirichlet tree
distributions (Minka, 2003), thus we call our model
the hierarchical Dirichlet tree. Related terms are
placed close by in the vocabulary tree, allowing the
model to take this knowledge into account when de-
termining document relevance. This makes it unnec-
essary to use ad-hoc query expansion methods, as re-
lated words such as synonyms will be taken into ac-
count by the retrieval rule. The structure of the tree
is learned from data in an unsupervised fashion, us-
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ing a variety of agglomerative clustering techniques.
We review the hierarchical Dirichlet document

(HDD) model in section 2, and present our proposed
hierarchical Dirichlet tree (HDT) document model
in section 3. We describe three algorithms for con-
structing the vocabulary tree in section 4, and give
encouraging experimental evidence of the superi-
ority of the hierarchical Dirichlet tree compared to
standard baselines in section 5. We conclude the pa-
per in section 6.

2 Hierarchical Dirichlet Document Model

The probabilistic approach to IR assumes that each
document in a collection can be modeled probabilis-
tically. Given a queryq, it is further assumed that
relevant documentsj are those with highest gener-
ative probabilityp(q|j) for the query. Thus givenq
the relevance score isR(j, q) = p(q|j) and the doc-
uments with highest relevance are returned.

Assume that each document is a bag of words,
with documentj modeled as a multinomial distri-
bution over the words inj. Let V be the terms in
the vocabulary,njw be the number of occurrences
of termw ∈ V in documentj, andθflat

jw be the proba-
bility of w occurring in documentj (the superscript
“flat” denotes a flat Dirichlet as opposed to our pro-
posed Dirichlet tree). (Cowans, 2004) assumes the
following hierarchical Bayesian model for the docu-
ment collection:

θflat
0 = (θflat

0w)w∈V ∼ Dirichlet(γu) (1)

θflat
j = (θflat

jw)w∈V ∼ Dirichlet(αθflat
0 )

nj = (njw)w∈V ∼ Multinomial(θflat
j )

In the above, bold facea = (aw)w∈V means thata
is a vector with|V | entries indexed byw ∈ V , and
u is a uniform distribution overV . The generative
process is as follows (Figure 1(a)). First a vector
θflat

0 is drawn from a symmetric Dirichlet distribution
with concentration parameterγ. Then we draw the
parametersθflat

j for each documentj from a common
Dirichlet distribution with meanθflat

0 and concentra-
tion parameterα. Finally, the term frequencies of
the document are drawn from a multinomial distri-
bution with parametersθflat

j .
The insight of (Cowans, 2004) is that because

the common mean parameterθflat
0 is random, it in-

duces dependencies across the document models in

u

njw

nj

J

θflat
j

θflat
0 γ

α

θk
0

θk
j

J

uk

γk

αk

(a) (b)

αflat
k

b

Figure 1: (a) The graphical model representation of the
hierarchical Dirichlet document model. (b) The global
tree and local trees in hierarchical Dirichlet tree docu-
ment model. Triangles stand for trees with the same
structure, but different parameters at each node. The gen-
eration of words in each document is not shown.

the collection, and this in turn is the mechanism for
information sharing among documents. (Cowans,
2004) proposed a good estimate ofθflat

0 :

θflat
0w =

γ/|V |+ n0w

γ +
∑

w∈V n0w
(2)

wheren0w is simply the number of documents con-
taining termw, i.e. the document frequency. Inte-
grating out the document parametersθflat

j , we see that
the probability of queryq being generated from doc-
umentj is:

p(q|j) =
∏

x∈q

αθflat
0x + njx

α +
∑

w∈V njw
(3)

= Const·
∏

x∈q

Const+ njx

γ/|V |+n0x

α +
∑

w∈V njw

Where Const are terms not depending onj. We see
thatnjx is term frequency, its denominatorγ/|V |+
n0x is an inverse document frequency factor, and
α +

∑
w∈V njw normalizes for document length.

The inverse document frequency factor is directly
related to the shared mean parameter, in that popular
termsx will have highθflat

0x value, causing all docu-
ments to assign higher probability tox, and down
weighting the term frequency. This effect will be
inherited by our model in the next section.
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3 Hierarchical Dirichlet Trees

Apart from the constraint that the parameters should
sum to one, the Dirichlet priors in the HDD model
do not impose any dependency among the param-
eters of the resulting multinomial. In other words,
the document models cannot capture the notion that
related terms tend to co-occur together. For exam-
ple, this model cannot incorporate the knowledge
that if the word ‘computer’ is seen in a document, it
is likely to observe the word ‘software’ in the same
document. We relax the independence assump-
tion of the Dirichlet distribution by using Dirichlet
tree distributions (Minka, 2003), which can capture
some dependencies among the resulting parameters.
This allows relationships among terms to be mod-
eled, and we will see that it improves retrieval per-
formance.

3.1 Model

Let us assume that we have a tree over the vocab-
ulary whose leaves correspond to vocabulary terms.
Each internal nodek of the tree has a multinomial
distribution over its childrenC(k). Words are drawn
by starting at the root of the tree, recursively picking
a childl ∈ C(k) whenever we are in an internal node
k, until we reach a leaf of the tree which corresponds
to a vocabulary term (see Figure 2(b)). The Dirich-
let tree distribution is the product of Dirichlet dis-
tributions placed over the child probabilities of each
internal node, and serves as a (dependent) prior over
the parameters of multinomial distributions over the
vocabulary (the leaves).

Our model generalizes the HDD model by replac-
ing the Dirichlet distributions in (1) by Dirichlet tree
distributions. At each internal nodek, define a hier-
archical Dirichlet prior over the choice of the chil-
dren:

θ0k = (θ0l)l∈C(k) ∼ Dirichlet(γkuk) (4)

θjk = (θjl)l∈C(k) ∼ Dirichlet(αkθ0k)

whereuk is a uniform distribution over the children
of nodek, and each internal node has its own hy-
perparametersγk andαk. θjl is the probability of
choosing childl if we are at internal nodek. If the
tree is degenerate with just one internal node (the
root) and all leaves are direct children of the root we

recover the “flat” HDD model in the previous sec-
tion. We call our model thehierarchical Dirichlet
tree(HDT).

3.2 Inference and Learning

Given a term, the path from the root to the corre-
sponding leaf is unique. Thus given the term fre-
quenciesnj of documentj as defined in (1), the
number of timesnjl child l ∈ C(k) was picked at
nodek is known and fixed. The probability of all
words in documentj, given the parameters, is then
a product of multinomials probabilities over internal
nodesk:

p(nj |{θjk}) =
∏

k

njk!
Q

l∈C(k) njl!

∏

l∈C(k)

θ
njl

jl (5)

The probability of the documents, integrating out the
θjk’s, is:

p({nj}|{θ0k}) = (6)
∏

j

∏

k

njk !
Q

l∈C(k) njl!
Γ(αk)

Γ(αk+njk)

∏

l∈C(k)

Γ(αkθ0l+njl)
Γ(αkθ0l)

The probability of a queryq under documentj, i.e.
the relevance score, follows from (3):

p(q|j) =
∏

x∈q

∏

(kl)

αkθ0l+njl

αk+njk
(7)

where the second product is over pairs(kl) wherek
is a parent ofl on the path from the root tox.

The hierarchical Dirichlet tree model we pro-
posed has a large number of parameters and hy-
perparameters (even after integrating out theθjk’s),
since the vocabulary trees we will consider later typ-
ically have large numbers of internal nodes. This
over flexibility might lead to overfitting or to param-
eter regimes that do not aid in the actual task of IR.
To avoid both issues, we constrain the hierarchical
Dirichlet tree to be centered over the flat hierarchi-
cal Dirichlet document model, and allow it to learn
only theαk hyperparameters, integrating out theθjk

parameters.
We set{θ0k}, the hyperparameters of the global

tree, so that it induces the same distribution over vo-
cabulary terms asθflat

0 :

θ0l = θflat
0l θ0k =

∑

l∈C(k)

θ0l (8)
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The hyperparameters of the local treesαk ’s are es-
timated using maximum a posteriori learning with
likelihood given by (6), and a gamma prior with
informative parameters. The density function of a
Gamma(a, b) distribution is

g(x; a, b) =
xa−1bae−bx

Γ(a)

where the mode happens atx = a−1
b . We set the

mode of the prior such that the hierarchical Dirichlet
tree reduces to the hierarchical Dirichlet document
model at these values:

αflat
l = αθflat

0l αflat
k =

∑

l∈C(k)

αflat
l (9)

αk ∼ Gamma(bαflat
k + 1, b)

andb > 0 is an inverse scale hyperparameter to be
tuned, with large values giving a sharp peak around
αflat

k . We tried a few values1 of b and have found that
the results we report in the next section are not sen-
sitive tob. This prior is constructed such that if there
is insufficient information in (6) the MAP value will
simply default back to the hierarchical Dirichlet doc-
ument model.

We used LBFGS2 which is a gradient based opti-
mization method to find the MAP values, where the
gradient of the likelihood part of the objective func-
tion (6) is:

∂ log p({nj}|{θ0j})
∂αk

=
∑

j

Ψ(αk)−Ψ(αk + njk)

+
∑

l∈C(k)

θ0l

(
Ψ(αkθ0l + njl)−Ψ(αkθ0l)

)

whereΨ(x) := ∂ log Γ(x)/∂x is the digamma func-
tion. Because eachαk can be optimized separately,
the optimization is very fast (approximately 15-30
minutes in the experiments to follow on a Linux ma-
chine with 1.8 GH CPU speed).

4 Vocabulary Tree Structure Learning

The structure of the vocabulary tree plays an impor-
tant role in the quality of the HDT document model,

1Of the form10i for i ∈ {−2,−1, 0, 1}.
2We used a C++ re-implementation of Jorge Nocedal’s

LBFGS library (Nocedal, 1980) from the ALGLIB website:
http://www.alglib.net.

Algorithm 1 Greedy Agglomerative Clustering
1: Placem words intom singleton clusters
2: repeat
3: Merge the two clusters with highest similarity, re-

sulting in one less cluster
4: If there still are unincluded words, pick one and

place it in a singleton cluster, resulting in one more
cluster

5: until all words have been included and there is only
one cluster left

since it encapsulates the similarities among words
captured by the model. In this paper we explored
using trees learned in an unsupervised fashion from
the training corpus.

The three methods are all agglomerative cluster-
ing algorithms (Duda et al., 2000) with different
similarity functions. Initially each vocabulary word
is placed in its own cluster; each iteration of the al-
gorithm finds the pair of clusters with highest sim-
ilarity and merges them, continuing until only one
cluster is left. The sequence of merges determines a
binary tree with vocabulary words as its leaves.

Using a heap data structure, this basic agglom-
erative clustering algorithm requiresO(n2 log(n) +
sn2) computations wheren is the size of the vocab-
ulary ands is the amount of computation needed to
compute the similarity between two clusters. Typi-
cally the vocabulary sizen is large; to speed up the
algorithm, we use a greedy version described in Al-
gorithm 1 which restricts the number of cluster can-
didates to at mostm ≪ n. This greedy version is
faster with complexityO(nm(log m + s)). In the
experiments we usedm = 500.

Distributional clustering (Dcluster) (Pereira et
al., 1993) measures similarity among words in terms
of the similarity among their local contexts. Each
word is represented by the frequencies of various
words in a window around each occurrence of the
word. The similarity between two words is com-
puted to be a symmetrized KL divergence between
the distributions over neighboring words associated
with the two words. For a cluster of words the neigh-
boring words are the union of those associated with
each word in the cluster. Dcluster has been used
extensively in text classification (Baker and McCal-
lum, 1998).

Probabilistic hierarchical clustering (Pcluster)
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(Friedman, 2003). Dcluster associates each word
with its local context, as a result it captures both
semantic and syntactic relationships among words.
Pcluster captures more relevant semantic relation-
ships by instead associating each word with the doc-
uments in which it appears. Specifically, each word
is associated with a binary vector indexed by doc-
uments in the corpus, where a 1 means the word
appears in the corresponding document. Pcluster
models a cluster of words probabilistically, with the
binary vectors being iid draws from a product of
Bernoulli distributions. The similarity of two clus-
tersc1 andc2 of words isP (c1 ∪ c2)/P (c1)P (c2),
i.e. two clusters of words are similar if their union
can be effectively modeled using one cluster, rela-
tive to modeling each separately. Conjugate beta pri-
ors are placed over the parameters of the Bernoulli
distributions and integrated out so that the similarity
scores are comparable.

Brown’s algorithm (Bcluster) (Brown et al.,
1990) was originally proposed to build class-based
language models. In the 2-gram case, words are
clustered such that the class of the previous word
is most predictive of the class of the current word.
Thus the similarity between two clusters of words
is defined to be the resulting mutual information be-
tween adjacent classes corrresponding to a sequence
of words.

4.1 Operations to Simplify Trees

Trees constructed using the agglomerative hierarchi-
cal clustering algorithms described in this section
suffer from a few drawbacks. Firstly, because they
are binary trees they have large numbers of internal
nodes. Secondly, many internal nodes are simply not
informative in that the two clusters of words below
a node are indistinguishable. Thirdly, Pcluster and
Dcluster tend to produce long chain-like branches
which significantly slows down the computation of
the relevance score.

To address these issues, we considered operations
to simplify trees by contracting internal edges of the
tree while preserving as much of the word relation-
ship information as possible. LetL be the set of tree
leaves andτ(a) be the distance from node or edgea
to the leaves:

τ(a) := min
l∈L

#{edges betweena andl} (10)

a

b

Figure 2: τ(root) = 2, while τ(v) = 1 for shaded ver-
tices v. Contractinga and b results in both child ofb
being direct children ofa while b is removed.

In the experiments we considered either contracting
edges3 close to the leavesτ(a) = 1 (thus remov-
ing many of the long branches described above), or
edges further up the treeτ(a) ≥ 2 (preserving the
informative subtrees closer to the leaves while re-
moving many internal nodes). See Figure 2.

(Miller et al., 2004) cut the BCluster tree at a cer-
tain depthk to simplify the tree, meaning every leaf
descending from a particular internal node at level
k is made an immediate child of that node. They
use the tree to get extra features for a discrimina-
tive model to tackle the problem of sparsity—the
features obtained from the new tree do not suffer
from sparsity since each node has several words as
its leaves. This technique did not work well for our
application so we will not report results using it in
our experiments.

5 Experiments

In this section we present experimental results on
two IR datasets: Cranfield and Medline4. The Cran-
field dataset consists of 1,400 documents and 225
queries; its vocabulary size after stemming and re-
moving stop words is 4,227. The Medline dataset
contains 1,033 documents and 30 queries with the
vocabulary size of 8,800 after stemming and remov-
ing stop words. We compare HDT with the flat
HDD model and Okapi BM25 (Robertson et al.,
1992). Since one of our motivations has been to

3Contracting an edge means removing the edge and the adja-
cent child node and connecting the grandchildren to the parent.

4Both datasets can be downloaded from
http://www.dcs.gla.ac.uk/idom/irresources/testcollections.
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Depth Statistics Performance
Tree Cranfield Medline Cranfield Medline

avg / max total avg / max total avg-pr top10-pr avg-pr top10-pr

BCluster 16.7 / 24 4226 16.4 / 22 8799 0.2675 0.3218 0.2131 0.6433
BC contractτ ≥ 2 6.2 / 16 3711 5.3 / 14 7473 0.2685 0.3147 0.2079 0.6533
BC contractτ = 1 16.1 / 23 3702 15.8 / 22 7672 0.2685 0.3204 0.1975 0.6400

DCluster 41.2 / 194 4226 38.1 / 176 8799 0.2552 0.3120 0.1906 0.6300
DC contractτ ≥ 2 2.3 / 8 2469 3.3 / 9 5091 0.2555 0.3156 0.1906 0.6167
DC contractτ = 1 40.9 / 194 3648 38.1 / 176 8799 0.2597 0.3129 0.1848 0.6300

PCluster 50.2 / 345 4226 37.1 / 561 8799 0.2613 0.3231 0.1681 0.6633
PC contractτ ≥ 2 35.2 / 318 3741 20.4 / 514 7280 0.2624 0.3213 0.1792 0.6767
PC contractτ = 1 33.6 / 345 2246 34.1 / 561 4209 0.2588 0.3240 0.1880 0.6633

flat model 1 / 1 1 1 / 1 1 0.2506 0.3089 0.1381 0.6133
BM25 – – – – 0.2566 0.3124 0.1804 0.6567
BM25QueryExp – – – – 0.2097 0.3191 0.2121 0.7366

Table 1: Average precision and Top-10 precision scores of HDT with different trees versus flat model and BM25. The
statistics for each tree shows its average/maximum depth ofits leaf nodes as well as the number of its total internal
nodes.Thebold numbers highlight the best results in the corresponding columns.

get away from query expansion, we also compare
against Okapi BM25 with query expansion. The
new terms to expand each query are chosen based
on Robertson-Sparck Jones weights (Robertson and
Sparck Jones, 1976) from the pseudo relevant docu-
ments. The comparison criteria are (i) top-10 preci-
sion, and (ii) average precision.

5.1 HDT vs Baselines

All the hierarchical clustering algorithms mentioned
in section 4 are used to generate trees, each of which
is further post-processed by tree simplification op-
erators described in section 4.1. We consider (i)
contracting nodes at higher levels of the hierarchy
(τ ≥ 2), and (ii) contracting nodes right above the
leaves (τ = 1).

The statistics of the trees before and after post-
processing are shown in Table 1. Roughly, the
Dcluster and BCluster trees do not have long chains
with leaves hanging directly off them, which is why
their average depths are reduced significantly by the
τ ≥ 2 simplification, but not by theτ = 1 sim-
plification. The converse is true for Pcluster: the
trees have many chains with leaves hanging directly
off them, which is why average depth is not reduced
as much as the previous trees based on theτ ≥ 2
simplification. However the average depth is still re-
duced significantly compared to the original trees.

Table 1 presents the performance of HDT with

different trees against the baselines in terms of the
top-10 and average precision (we have bold faced
the performance values which are the maximum
of each column). HDT with every tree outper-
forms significantly the flat model in both datasets.
More specifically, HDT with (original) BCluster and
PCluster trees significantly outperforms the three
baselines in terms of both performance measure for
the Cranfield. Similar trends are observed on the
Medline except here the baseline Okapi BM25 with
query expansion is pretty strong5, which is still out-
performed by HDT with BCluster tree.

To further highlight the differences among the
methods, we have shown the precision at particular
recall points on Medline dataset in Figure 4 for HDT
with PCluster tree vs the baselines. As the recall
increases, the precision of the PCluster tree signifi-
cantly outperforms the flat model and BM25. We at-
tribute this to the ability of PCluster tree to give high
scores to documents which have words relevant to a
query word (an effect similar to query expansion).

5.2 Analysis

It is interesting to contrast the learnedαk ’s for each
of the clustering methods. Theseαk ’s impose cor-

5Note that we tuned the parameters of the baselines BM25
with/without query expansion with respect to their performance
on the actual retrieval task, which in a sense makes them appear
better than they should.
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Figure 3: The plots showing the contribution of internal nodes in trees constructed by the three clustering algorithms
for the Cranfield dataset. In each plot, a point represent an internal node showing a positive exponent in the node’s
contribution (i.e. positive correlation among its children) if the point is belowx = y line. From left to the right plots,
the fraction of nodes below the line is 0.9044, 0.7977, and 0.3344 for a total of 4,226 internal nodes.
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Figure 4: The precision of all methods at particular recall
points for the Medline dataset.

relations on the probabilities of the children underk
in an interesting fashion. In particular, if we com-
pareαk to θ0kαparent(k), then a larger value ofαk

implies that the probabilities of picking one of the
children ofk (from among all nodes) are positively
correlated, while a smaller value ofαk implies neg-
ative correlation. Roughly speaking, this is because
drawn values ofθjl for l ∈ C(k) are more likely
to be closer to uniform (relative to the flat Dirichlet)
thus if we had picked one child ofk we will likely
pick another child ofk.

Figure 3 shows scatter plots ofαk values ver-
susθ0kαparent(k) for the internal nodes of the trees.
Firstly, smaller values for both tend to be associ-
ated with lower levels of the trees, while large val-
ues are with higher levels of the trees. Thus we
see that PCluster tend to have subtrees of vocabu-
lary terms that are positively correlated with each
other—i.e. they tend to co-occur in the same docu-

ments. The converse is true of DCluster and BClus-
ter because they tend to put words with the same
meaning together, thus to express a particular con-
cept it is enough to select one of the words and not
to choose the rest. Figure 5 show some fragments
of the actual trees including the words they placed
together andαk parameters learned by HDT model
for their internal nodes. Moreover, visual inspection
of the trees shows that DCluster can easily misplace
words in the tree, which explains its lower perfor-
mance compared to the other tree construction meth-
ods.

Secondly, we observed that for higher nodes of
the tree (corresponding generally to larger values of
αk andθ0kαparent(k)) PClusterαk ’s are smaller, thus
higher levels of the tree exhibit negative correlation.
This is reasonable, since if the subtrees capture pos-
itively correlated words, then higher up the tree the
different subtrees correspond to clusters of words
that do not co-occur together, i.e. negatively corre-
lated.

6 Conclusion and Future Work

We presented a hierarchical Dirichlet tree model for
information retrieval which can inject (semantical or
syntactical) word relationships as the domain knowl-
edge into a probabilistic model for information re-
trieval. Using trees to capture word relationships,
the model is highly efficient while making use of
both prior information about words and their occur-
rence statistics in the corpus. Furthermore, we inves-
tigated the effect of different tree construction algo-
rithms on the model performance.

On the Cranfield dataset, HDT achieves 26.85%
for average-precision and 32.40% for top-10 preci-
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Figure 5: Small parts of the trees learned by clustering algorithms for the Cranfield dataset where the learnedαk for
each internal node is written close to it.

sion, and outperforms all baselines including BM25
which gets 25.66% and 31.24% for these two mea-
sures. On the Medline dataset, HDT is competi-
tive with BM25 with Query Expansion and outper-
forms all other baselines. These encouraging results
show the benefits of HDT as a principled probabilis-
tic model for information retrieval.

An interesting avenue of research is to construct
the vocabulary tree based on WordNet, as a way to
inject independent prior knowledge into the model.
However WordNet has a low coverage problem, i.e.
there are some words in the data which do not ex-
ist in it. One solution to this low coverage problem
is to combine trees generated by the clustering algo-
rithms mentioned in this paper and WordNet, which
we leave as a future work.
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Abstract

This paper introduces a new approach to rank-
ing speech utterances by a system’s confi-
dence that they contain a spoken word. Multi-
ple alternate pronunciations, or degradations,
of a query word’s phoneme sequence are hy-
pothesized and incorporated into the ranking
function. We consider two methods for hy-
pothesizing these degradations, the best of
which is constructed using factored phrase-
based statistical machine translation. We show
that this approach is able to significantly im-
prove upon a state-of-the-art baseline tech-
nique in an evaluation on held-out speech.
We evaluate our systems using three differ-
ent methods for indexing the speech utter-
ances (using phoneme, phoneme multigram,
and word recognition), and find that degrada-
tion modeling shows particular promise for lo-
cating out-of-vocabulary words when the un-
derlying indexing system is constructed with
standard word-based speech recognition.

1 Introduction

Our goal is to find short speech utterances which
contain a query word. We accomplish this goal
by ranking the set of utterances by our confidence
that they contain the query word, a task known as
Ranked Utterance Retrieval (RUR). In particular,
we are interested in the case when the user’s query
word can not be anticipated by a Large Vocabulary
Continuous Speech Recognizer’s (LVCSR) decod-
ing dictionary, so that the word is said to be Out-Of-
Vocabulary (OOV).

Rare words tend to be the most informative, but
are also most likely to be OOV. When words are

OOV, we must use vocabulary-independent tech-
niques to locate them. One popular approach is to
search for the words in output from a phoneme rec-
ognizer (Ng and Zue, 2000), although this suffers
from the low accuracy typical of phoneme recogni-
tion. We consider two methods for handling this in-
accuracy. First, we compare an RUR indexing sys-
tem using phonemes with two systems using longer
recognition units: words or phoneme multigrams.
Second, we consider several methods for handling
the recognition inaccuracy in the utterance rank-
ing function itself. Our baseline generative model
handles errorful recognition by estimating term fre-
quencies from smoothed language models trained
on phoneme lattices. Our new approach, which we
call query degradation, hypothesizes many alternate
“pronunciations” for the query word and incorpo-
rates them into the ranking function. These degra-
dations are translations of the lexical phoneme se-
quence into the errorful recognition language, which
we hypothesize using a factored phrase-based statis-
tical machine translation system.

Our speech collection is a set of oral history
interviews from the MALACH collection (Byrne
et al., 2004), which has previously been used for
ad hoc speech retrieval evaluations using one-best
word level transcripts (Pecina et al., 2007; Olsson,
2008a) and for vocabulary-independent RUR (Ols-
son, 2008b). The interviews were conducted with
survivors and witnesses of the Holocaust, who dis-
cuss their experiences before, during, and after the
Second World War. Their speech is predominately
spontaneous and conversational. It is often also
emotional and heavily accented. Because the speech
contains many words unlikely to occur within a gen-
eral purpose speech recognition lexicon, it repre-
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sents an excellent collection for RUR evaluation.
We were graciously permitted to use BBN Tech-

nology’s speech recognition system Byblos (Prasad
et al., 2005; Matsoukas et al., 2005) for our speech
recognition experiments. We train on approximately
200 hours of transcribed audio excerpted from about
800 unique speakers in the MALACH collection. To
provide a realistic set of OOV query words, we use
an LVCSR dictionary previously constructed for a
different topic domain (broadcast news and conver-
sational telephone speech) and discard all utterances
in our acoustic training data which are not covered
by this dictionary. New acoustic and language mod-
els are trained for each of the phoneme, multigram
and word recognition systems.

The output of LVCSR is a lattice of recogni-
tion hypotheses for each test speech utterance. A
lattice is a directed acyclic graph that is used to
compactly represent the search space for a speech
recognition system. Each node represents a point in
time and arcs between nodes indicates a word oc-
curs between the connected nodes’ times. Arcs are
weighted by the probability of the word occurring,
so that the so-called “one-best” path through the lat-
tice (what a system might return as a transcription)
is the path through the lattice having highest proba-
bility under the acoustic and language models. Each
RUR model we consider is constructed using the ex-
pected counts of a query word’s phoneme sequences
in these recognition lattices. We consider three ap-
proaches to producing these phoneme lattices, using
standard word-based LVCSR, phoneme recognition,
and LVCSR using phoneme multigrams. Our word
system’s dictionary contains about 50,000 entries,
while the phoneme system contains 39 phonemes
from the ARPABET set.

Originally proposed by Deligne and Bimbot
(1997) to model variable length regularities in
streams of symbols (e.g., words, graphemes, or
phonemes), phoneme multigrams are short se-
quences of one or more phonemes. We produce a
set of “phoneme transcripts” by replacing transcript
words with their lexical pronunciation. The set of
multigrams is learned by then choosing a maximum-
likelihood segmentation of these training phoneme
transcripts, where the segmentation is viewed as hid-
den data in an Expectation-Maximization algorithm.
The set of all continuous phonemes occurring be-

tween segment boundaries is then chosen as our
multigram dictionary. This multigram recognition
dictionary contains 16,409 entries.

After we have obtained each recognition lat-
tice, our indexing approach follows that of Olsson
(2008b). Namely, for the word and multigram sys-
tems, we first expand lattice arcs containing multi-
ple phones to produce a lattice having only single
phonemes on its arcs. Then, we compute the ex-
pected count of all phoneme n-grams n ≤ 5 in the
lattice. These n-grams and their counts are inserted
in our inverted index for retrieval.

This paper is organized as follows. In Section 2
we introduce our baseline RUR methods. In Sec-
tion 3 we introduce our query degradation approach.
We introduce our experimental validation in Sec-
tion 4 and our results in Section 5. We find that
using phrase-based query degradations can signifi-
cantly improve upon a strong RUR baseline. Finally,
in Section 6 we conclude and outline several direc-
tions for future work.

2 Generative Baseline

Each method we present in this paper ranks the ut-
terances by the term’s estimated frequency within
the corresponding phoneme lattice. This general
approach has previously been considered (Yu and
Seide, 2005; Saraclar and Sproat, 2004), on the ba-
sis that it provides a minimum Bayes-risk ranking
criterion (Yu et al., Sept 2005; Robertson, 1977) for
the utterances. What differs for each method is the
particular estimator of term frequency which is used.
We first outline our baseline approach, a generative
model for term frequency estimation.

Recall that our vocabulary-independent indices
contain the expected counts of phoneme sequences
from our recognition lattices. Yu and Seide (2005)
used these expected phoneme sequence counts to es-
timate term frequency in the following way. For a
query term Q and lattice L, term frequency t̂fG is
estimated as t̂fG(Q,L) = P (Q|L) ·NL, where NL
is an estimate for the number of words in the utter-
ance. The conditional P (Q|L) is modeled as an or-
der M phoneme level language model,

P̂ (Q|L) =
l∏

i=1

P̃ (qi|qi−M+1, . . . , qi−1,L), (1)
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so that t̂fG(Q,L) ≈ P̂ (Q|L) · NL. The probabil-
ity of a query phoneme qj being generated, given
that the phoneme sequence qj−M+1, . . . , qj−1 =
qj−1
j−M+1 was observed, is estimated as

P̃ (qj |qj−1
j−M+1,L) =

EPL [C(qjj−M+1)]

EPL [C(qj−1
j−M+1)]

.

Here, EPL [C(qj−1
j−M+1)] denotes the expected count

in lattice L of the phoneme sequence qj−1
j−M+1. We

compute these counts using a variant of the forward-
backward algorithm, which is implemented by the
SRI language modeling toolkit (Stolcke, 2002).

In practice, because of data sparsity, the language
model in Equation 1 must be modified to include
smoothing for unseen phoneme sequences. We use a
backoff M -gram model with Witten-Bell discount-
ing (Witten and Bell, 1991). We set the phoneme
language model’s order to M = 5, which gave good
results in previous work (Yu and Seide, 2005).

3 Incorporating Query Degradations

One problem with the generative approach is that
recognition error is not modeled (apart from the un-
certainty captured in the phoneme lattice). The es-
sential problem is that while the method hopes to
model P (Q|L), it is in fact only able to model the
probability of one degradation H in the lattice, that
is P (H|L). We define a query degradation as any
phoneme sequence (including the lexical sequence)
which may, with some estimated probability, occur
in an errorful phonemic representation of the audio
(either a one-best or lattice hypothesis). Because of
speaker variation and because recognition is error-
ful, we ought to also consider non-lexical degrada-
tions of the query phoneme sequence. That is, we
should incorporate P (H|Q) in our ranking function.

It has previously been demonstrated that allow-
ing for phoneme confusability can significantly in-
crease spoken term detection performance on one-
best phoneme transcripts (Chaudhari and Picheny,
2007; Schone et al., 2005) and in phonemic lat-
tices (Foote et al., 1997). These methods work by
allowing weighted substitution costs in minimum-
edit-distance matching. Previously, these substitu-
tion costs have been maximum-likelihood estimates
of P (H|Q) for each phoneme, where P (H|Q) is

easily computed from a phoneme confusion matrix
after aligning the reference and one-best hypothesis
transcript under a minimum edit distance criterion.
Similar methods have also been used in other lan-
guage processing applications. For example, in (Ko-
lak, 2005), one-for-one character substitutions, in-
sertions and deletions were considered in a genera-
tive model of errors in OCR.

In this work, because we are focused on construct-
ing inverted indices of audio files (for speed and
to conserve space), we must generalize our method
of incorporating query degradations in the ranking
function. Given a degradation model P (H|Q), we
take as our ranking function the expectation of the
generative baseline estimate NL · P̂ (H|L) with re-
spect to P (H|Q),

t̂fG(Q,L) =
∑

H∈H

[
P̂ (H|L) ·NL

]
·P (H|Q), (2)

where H is the set of degradations. Note that, while
we consider the expected value of our baseline term
frequency estimator with respect to P (H|Q), this
general approach could be used with any other term
frequency estimator.

Our formulation is similar to approaches taken
in OCR document retrieval, using degradations of
character sequences (Darwish and Magdy, 2007;
Darwish, 2003). For vocabulary-independent spo-
ken term detection, perhaps the most closely re-
lated formulation is provided by (Mamou and Ram-
abhadran, 2008). In that work, they ranked ut-
terances by the weighted average of their match-
ing score, where the weights were confidences from
a grapheme to phoneme system’s first several hy-
potheses for a word’s pronunciation. The match-
ing scores were edit distances, where substitution
costs were weighted using phoneme confusability.
Accordingly, their formulation was not aimed at ac-
counting for errors in recognition per se, but rather
for errors in hypothesizing pronunciations. We ex-
pect this accounts for their lack of significant im-
provement using the method.

Since we don’t want to sum over all possible
recognition hypotheses H , we might instead sum
over the smallest setH such that

∑
H∈H P (H|Q) ≥

γ. That is, we could take the most probable degra-
dations until their cumulative probability exceeds
some threshold γ. In practice, however, because

184



degradation probabilities can be poorly scaled, we
instead take a fixed number of degradations and
normalize their scores. When a query is issued,
we apply a degradation model to learn the top few
phoneme sequences H that are most likely to have
been recognized, under the model. In the machine
translation literature, this process is commonly re-
ferred to as decoding.

We now turn to the modeling of query degrada-
tions H given a phoneme sequence Q, P (H|Q).
First, we consider a simple baseline approach in Sec-
tion 3.1. Then, in Section 3.2, we propose a more
powerful technique, using state-of-the-art machine
translation methods to hypothesize our degradations.

3.1 Baseline Query Degradations
Schone et al. (2005) used phoneme confusion ma-
trices created by aligning hypothesized and refer-
ence phoneme transcripts to weight edit costs for a
minimum-edit distance based search in a one-best
phoneme transcript. Foote et al. (1997) had previ-
ously used phoneme lattices, although with ad hoc
edit costs and without efficient indexing. In this
work, we do not want to linearly scan each phoneme
lattice for our query’s phoneme sequence, preferring
instead to look up sequences in the inverted indices
containing phoneme sequences.

Our baseline degradation approach is related to
the edit-cost approach taken by (Schone et al.,
2005), although we generalize it so that it may be
applied within Equation 2 and we consider speech
recognition hypotheses beyond the one-best hypoth-
esis. First, we randomly generate N traversals of
each phonemic recognition lattice. These traver-
sals are random paths through the lattice (i.e., we
start at the beginning of the lattice and move to the
next node, where our choice is weighted by the out-
going arcs’ probabilities). Then, we align each of
these traversals with its reference transcript using a
minimum-edit distance criterion. Phone confusion
matrices are then tabulated from the aggregated in-
sertion, substitution, and deletion counts across all
traversals of all lattices. From these confusion ma-
trices, we compute unsmoothed estimates of P (h|r),
the probability of a phoneme h being hypothesized
given a reference phoneme r.

Making an independence assumption, our base-
line degradation model for a query with m

AY K M AA N

Vowel Consonant Semi-vowel Vowel Semi-vowel

Dipthong Voiceless plosive Nasal Back vowel Nasal

Figure 1: Three levels of annotation used by the factored
phrase-based query degradation model.

phonemes is then P (H|Q) =
∏m
i=1 P (hi|ri). We

efficiently compute the most probable degradations
for a query Q using a lattice of possible degrada-
tions and the forward backward algorithm. We call
this baseline degradation approach CMQD (Confu-
sion Matrix based Query Degradation).

3.2 Phrase-Based Query Degradation

One problem with CMQD is that we only allow in-
sertions, deletions, and one-for-one substitutions. It
may be, however, that certain pairs of phonemes
are commonly hypothesized for a particular refer-
ence phoneme (in the language of statistical machine
translation, we might say that we should allow some
non-zero fertility). Second, there is nothing to dis-
courage query degradations which are unlikely un-
der an (errorful) language model—that is, degrada-
tions that are not observed in the speech hypothe-
ses. Finally, CMQD doesn’t account for similarities
between phoneme classes. While some of these de-
ficiencies could be addressed with an extension to
CMQD (e.g., by expanding the degradation lattices
to include language model scores), we can do bet-
ter using a more powerful modeling framework. In
particular, we adopt the approach of phrase-based
statistical machine translation (Koehn et al., 2003;
Koehn and Hoang, 2007). This approach allows
for multiple-phoneme to multiple-phoneme substi-
tutions, as well as the soft incorporation of addi-
tional linguistic knowledge (e.g., phoneme classes).
This is related to previous work allowing higher or-
der phoneme confusions in bigram or trigram con-
texts (Chaudhari and Picheny, 2007), although they
used a fuzzy edit distance measure and did not in-
corporate other evidence in their model (e.g., the
phoneme language model score). The reader is re-
ferred to (Koehn and Hoang, 2007; Koehn et al.,
2007) for detailed information about phrase-based
statistical machine translation. We give a brief out-
line here, sufficient only to provide background for
our query degradation application.

Statistical machine translation systems work by
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converting a source-language sentence into the most
probable target-language sentence, under a model
whose parameters are estimated using example sen-
tence pairs. Phrase-based machine translation is one
variant of this statistical approach, wherein multiple-
word phrases rather than isolated words are the
basic translation unit. These phrases are gener-
ally not linguistically motivated, but rather learned
from co-occurrences in the paired example transla-
tion sentences. We apply the same machinery to hy-
pothesize our pronunciation degradations, where we
now translate from the “source-language” reference
phoneme sequence Q to the hypothesized “target-
language” phoneme sequence H .

Phrase-based translation is based on the noisy
channel model, where Bayes rule is used to refor-
mulate the translation probability for translating a
reference query Q into a hypothesized phoneme se-
quence H as

arg max
H

P (H|Q) = arg max
H

P (Q|H)P (H).

Here, for example, P (H) is the language model
probability of a degradation H and P (Q|H) is the
conditional probability of the reference sequence Q
given H . More generally however, we can incorpo-
rate other feature functions of H and Q, hi(H,Q),
and with varying weights. This is implemented us-
ing a log-linear model for P (H|Q), where the model
covariates are the functions hi(H,Q), so that

P (H|Q) =
1
Z

exp
n∑

i=1

λihi(H,Q)

The parameters λi are estimated by MLE and the
normalizing Z need not be computed (because we
will take the argmax). Example feature functions in-
clude the language model probability of the hypoth-
esis and a hypothesis length penalty.

In addition to feature functions being defined on
the surface level of the phonemes, they may also be
defined on non-surface annotation levels, called fac-
tors. In a word translation setting, the intuition is
that statistics from morphological variants of a lex-
ical form ought to contribute to statistics for other
variants. For example, if we have never seen the
word houses in language model training, but have
examples of house, we still can expect houses are to

be more probable than houses fly. In other words,
factors allow us to collect improved statistics on
sparse data. While sparsity might appear to be less
of a problem for phoneme degradation modeling
(because the token inventory is comparatively very
small), we nevertheless may benefit from this ap-
proach, particularly because we expect to rely on
higher order language models and because we have
rather little training data: only 22,810 transcribed
utterances (about 600k reference phonemes).

In our case, we use two additional annotation lay-
ers, based on a simple grouping of phonemes into
broad classes. We consider the phoneme itself, the
broad distinction of vowel and consonant, and a finer
grained set of classes (e.g., front vowels, central
vowels, voiceless and voiced fricatives). Figure 1
shows the three annotation layers we consider for an
example reference phoneme sequence. After map-
ping the reference and hypothesized phonemes to
each of these additional factor levels, we train lan-
guage models on each of the three factor levels of
the hypothesized phonemes. The language models
for each of these factor levels are then incorporated
as features in the translation model.

We use the open source toolkit Moses (Koehn
et al., 2007) as our phrase-based machine transla-
tion system. We used the SRI language model-
ing toolkit to estimate interpolated 5-gram language
models (for each factor level), and smoothed our
estimates with Witten-Bell discounting (Witten and
Bell, 1991). We used the default parameter settings
for Moses’s training, with the exception of modi-
fying GIZA++’s default maximum fertility from 10
to 4 (since we don’t expect one reference phoneme
to align to 10 degraded phonemes). We used default
decoding settings, apart from setting the distortion
penalty to prevent any reorderings (since alignments
are logically constrained to never cross). For the rest
of this chapter, we refer to our phrase-based query
degradation model as PBQD. We denote the phrase-
based model using factors as PBQD-Fac.

Figure 2 shows an example alignment learned
for a reference and one-best phonemic transcript.
The reference utterance “snow white and the seven
dwarves” is recognized (approximately) as “no
white a the second walks”. Note that the phrase-
based system is learning not only acoustically plau-
sible confusions, but critically, also confusions aris-
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N OW W AY T AX DH AX S EH K AX N D W AO K S

S N OW W AY T AE N D DH AX S EH V AX N D W OW R F S

snow white and the seven dwarves

Figure 2: An alignment of hypothesized and reference phoneme transcripts from the multigram phoneme recognizer,
for the phrase-based query degradation model.

ing from the phonemic recognition system’s pe-
culiar construction. For example, while V and
K may not be acoustically similar, they are still
confusable—within the context of S EH—because
multigram language model data has many exam-
ples of the word second. Moreover, while the word
dwarves (D-W-OW-R-F-S) is not present in the
dictionary, the words dwarf (D-W-AO-R-F) and
dwarfed (D-W-AO-R-F-T) are present (N.B., the
change of vowel from AO to OW between the OOV
and in vocabulary pronunciations). While CMQD
would have to allow a deletion and two substitutions
(without any context) to obtain the correct degrada-
tion, the phrase-based system can align the complete
phrase pair from training and exploit context. Here,
for example, it is highly probable that the errorfully
hypothesized phonemes W AO will be followed by
K, because of the prevalence of walk in language
model data.

4 Experiments

An appropriate and commonly used measure for
RUR is Mean Average Precision (MAP). Given a
ranked list of utterances being searched through, we
define the precision at position i in the list as the pro-
portion of the top i utterances which actually contain
the corresponding query word. Average Precision
(AP) is the average of the precision values computed
for each position containing a relevant utterance. To
assess the effectiveness of a system across multi-
ple queries, Mean Average Precision is defined as
the arithmetic mean of per-query average precision,
MAP = 1

n

∑
n APn. Throughout this paper, when

we report statistically significant improvements in
MAP, we are comparing AP for paired queries us-
ing a Wilcoxon signed rank test at α = 0.05.

Note, RUR is different than spoken term detec-
tion in two ways, and thus warrants an evaluation
measure (e.g., MAP) different than standard spoken

term detection measures (such as NIST’s actual term
weighted value (Fiscus et al., 2006)). First, STD
measures require locating a term with granularity
finer than that of an utterance. Second, STD mea-
sures are computed using a fixed detection thresh-
old. This latter requirement will be unnecessary in
many applications (e.g., where a user might prefer
to decide themselves when to stop reading down
the ranked list of retrieved utterances) and unlikely
to be helpful for downstream evidence combination
(where we may prefer to keep all putative hits and
weight them by some measure of confidence).

For our evaluation, we consider retrieving
short utterances from seventeen fully transcribed
MALACH interviews. Our query set contains all
single words occurring in these interviews that are
OOV with respect to the word dictionary. This
gives us a total of 261 query terms for evalua-
tion. Note, query words are also not present in
the multigram training transcripts, in any language
model training data, or in any transcripts used for
degradation modeling. Some example query words
include BUCHENWALD, KINDERTRANSPORT, and
SONDERKOMMANDO.

To train our degradation models, we used a held
out set of 22,810 manually transcribed utterances.
We run each recognition system (phoneme, multi-
gram, and word) on these utterances and, for each,
train separate degradation models using the aligned
reference and hypothesis transcripts. For CMQD,
we computed 100 random traversals on each lattice,
giving us a total of 2,281,000 hypothesis and refer-
ence pairs to align for our confusion matrices.

5 Results

We first consider an intrinsic measure of the three
speech recognition systems we consider, namely
Phoneme Error Rate (PER). Phoneme Error Rate
is calculated by first producing an alignment of
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the hypothesis and reference phoneme transcripts.
The counts of each error type are used to compute
PER = 100 · S+D+I

N , where S,D, I are the num-
ber of substitutions, insertions, and deletions respec-
tively, while N is the phoneme length of the refer-
ence. Results are shown in Table 1. First, we see that
the PER for the multigram system is roughly half
that of the phoneme-only system. Second, we find
that the word system achieves a considerably lower
PER than the multigram system. We note, however,
that since these are not true phonemes (but rather
phonemes copied over from pronunciation dictionar-
ies and word transcripts), we must cautiously inter-
pret these results. In particular, it seems reasonable
that this framework will overestimate the strength
of the word based system. For comparison, on the
same train/test partition, our word-level system had
a word error rate of 31.63. Note, however, that au-
tomatic word transcripts can not contain our OOV
query words, so word error rate is reported only to
give a sense of the difficulty of the recognition task.

Table 1 shows our baseline RUR evaluation re-
sults. First, we find that the generative model yields
statistically significantly higher MAP using words
or multigrams than phonemes. This is almost cer-
tainly due to the considerably improved phoneme
recognition afforded by longer recognition units.
Second, many more unique phoneme sequences typ-
ically occur in phoneme lattices than in their word
or multigram counterparts. We expect this will in-
crease the false alarm rate for the phoneme system,
thus decreasing MAP.

Surprisingly, while the word-based recognition
system achieved considerably lower phoneme er-
ror rates than the multigram system (see Table 1),
the word-based generative model was in fact in-
distinguishable from the same model using multi-
grams. We speculate that this is because the method,
as it is essentially a language modeling approach,
is sensitive to data sparsity and requires appropri-
ate smoothing. Because multigram lattices incor-
porate smaller recognition units, which are not con-
strained to be English words, they naturally produce
smoother phoneme language models than a word-
based system. On the other hand, the multigram
system is also not statistically significantly better
than the word-based generative model, suggesting
this may be a promising area for future work.

Table 1 shows results using our degradation mod-
els. Query degradation appears to help all sys-
tems with respect to the generative baseline. This
agrees with our intuition that, for RUR, low MAP on
OOV terms is predominately driven by low recall.1

Note that, at one degradation, CMQD has the same
MAP as the generative model, since the most prob-
able degradation under CMQD is almost always the
reference phoneme sequence. Because the CMQD
model can easily hypothesize implausible degrada-
tions, we see the MAP increases modestly with a
few degradations, but then MAP decreases. In con-
trast, the MAP of the phrase-based system (PBQD-
Fac) increases through to 500 query degradations us-
ing multigrams. The phonemic system appears to
achieve its peak MAP with fewer degradations, but
also has a considerably lower best value.

The non-factored phrase-based system PBQD
achieves a peak MAP considerably larger than the
peak CMQD approach. And, likewise, using addi-
tional factor levels (PBQD-Fac) also considerably
improves performance. Note especially that, using
multiple factor levels, we not only achieve a higher
MAP, but also a higher MAP when only a few degra-
dations are possible.

To account for errors in phonemic recognition, we
have taken two steps. First, we used longer recog-
nition units which we found significantly improved
MAP while using our baseline RUR technique. As
a second method for handling recognition errors,
we also considered variants of our ranking func-
tion. In particular, we incorporated query degrada-
tions hypothesized using factored phrase-based ma-
chine translation. Comparing the MAP for PBQD-
Fac with MAP using the generative baseline for the
most improved indexing system (the word system),
we find that this degradation approach again statisti-
cally significantly improved MAP. That is, these two
strategies for handling recognition errors in RUR ap-
pear to work well in combination.

Although we focused on vocabulary-independent
RUR, downstream tasks such as ad hoc speech
retrieval will also want to incorporate evidence
from in-vocabulary query words. This makes

1We note however that the preferred operating point in the
tradeoff between precision and recall will be task specific. For
example, it is known that precision errors become increasingly
important as collection size grows (Shao et al., 2008).
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Query Degradations

Method Phone Source PER QD Model Baseline 1 5 50 500

Degraded Model Phonemes 64.4 PBQD-Fac 0.0387 0.0479 0.0581 0.0614 0.0612

Multigrams 32.1 CMQD 0.1258 0.1258 0.1272 0.1158 0.0991
Multigrams 32.1 PBQD 0.1258 0.1160 0.1283 0.1347 0.1317
Multigrams 32.1 PBQD-Fac 0.1258 0.1238 0.1399 0.1510 0.1527

Words 20.5 PBQD-Fac 0.1255 0.1162 0.1509 0.1787 0.1753

Table 1: PER and MAP results for baseline and degradation models. The best result for each indexing approach is
shown in bold.

our query degradation approach which indexed
phonemes from word-based LVCSR particularly at-
tractive. Not only did it achieve the best MAP in
our evaluation, but this approach also allows us to
construct recognition lattices for both in and out-of-
vocabulary query words without running a second,
costly, recognition step.

6 Conclusion

Our goal in this work was to rank utterances by our
confidence that they contained a previously unseen
query word. We proposed a new approach to this
task using hypothesized degradations of the query
word’s phoneme sequence, which we produced us-
ing a factored phrase-based machine translation
model. This approach was principally motivated by
the mismatch between the query’s phonemes and
the recognition phoneme sequences due to errorful
speech indexing. Our approach was constructed and
evaluated using phoneme-, multigram-, and word-
based indexing, and significant improvements in
MAP using each indexing system were achieved.
Critically, these significant improvements were in
addition to the significant gains we achieved by con-
structing our index with longer recognition units.

While PBQD-Fac outperformed CMQD averag-
ing over all queries in our evaluation, as expected,
there may be particular query words for which this
is not the case. Table 2 shows example degrada-
tions using both the CMQD and PBQD-Fac degra-
dation models for multigrams. The query word is
Mengele. We see that CMQD degradations are near
(in an edit distance sense) to the reference pronun-
ciation (M-EH-NX-EY-L-EH), while the phrase-
based degradations tend to sound like commonly oc-

CMQD Phrase-based

M-EH-NX-EY-L-EH M-EH-N-T-AX-L

M-EH-NX-EY-L M-EH-N-T-AX-L-AA-T

M-NX-EY-L-EH AH-AH-AH-AH-M-EH-N-T-AX-L

M-EH-NX-EY-EH M-EH-N-DH-EY-L-EH

M-EH-NX-L-EH M-EH-N-T-AX-L-IY

Table 2: The top five degradations and associated proba-
bilities using the CMQD and PBQD-Fac models, for the
term Mengele using multigram indexing.

curring words (mental, meant a lot, men they. . . ,
mentally). In this case, the lexical phoneme se-
quence does not occur in the PBQD-Fac degrada-
tions until degradation nineteen. Because delet-
ing EH has the same cost irrespective of context
for CMQD, both CMQD degradations 2 and 3 are
given the same pronunciation weight. Here, CMQD
performs considerably better, achieving an average
precision of 0.1707, while PBQD-Fac obtains only
0.0300. This suggests that occasionally the phrase-
based language model may exert too much influence
on the degradations, which is likely to increase the
incidence of false alarms. One solution, for future
work, might be to incorporate a false alarm model
(e.g., down-weighting putative occurrences which
look suspiciously like non-query words). Second,
we might consider training the degradation model
in a discriminative framework (e.g., training to op-
timize a measure that will penalize degradations
which cause false alarms, even if they are good can-
didates from the perspective of MLE). We hope that
the ideas presented in this paper will provide a solid
foundation for this future work.
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Abstract

We propose a unified approach to web search
query alterations in Japanese that is not lim-
ited to particular character types or ortho-
graphic similarity between a query and its al-
teration candidate. Our model is based on pre-
vious work on English query correction, but
makes some crucial improvements: (1) we
augment the query-candidate list to include
orthographically dissimilar but semantically
similar pairs; and (2) we use kernel-based
lexical semantic similarity to avoid the prob-
lem of data sparseness in computing query-
candidate similarity. We also propose an ef-
ficient method for generating query-candidate
pairs for model training and testing. We show
that the proposed method achieves about 80%
accuracy on the query alteration task, improv-
ing over previously proposed methods that use
semantic similarity.

1 Introduction

Web search query correction is an important prob-
lem to solve for robust information retrieval given
how pervasive errors are in search queries: it is said
that more than 10% of web search queries contain
errors (Cucerzan and Brill, 2004). English query
correction has been an area of active research in re-
cent years, building on previous work on general-
purpose spelling correction. However, there has
been little investigation of query correction in lan-
guages other than English.

In this paper, we address the issue of query cor-
rection, and more generally, query alteration in
Japanese. Japanese poses particular challenges to
the query correction task due to its complex writ-
ing system, summarized in Fig. 11. There are four

1The figure is somewhat over-simplified as it does not in-
clude any word consisting of multiple character types. It also
does not include examples of spelling mistakes and variants in
word segmentation.

KanjiSp: 慶応～慶應Abbr: 東京大学～東大Abbr: 東急東横線～東横線

HiraganaSp: あかしあ～あかしや
RomanAlphabetSp: Ohno~OonoSp: center~centre

KatakanaSp: スパゲティ～スパゲッティAbbr: マクドナルド～マックAbbr: ドラゴンクエスト～ドラクエ
Sp: Fedex～フェデックスAbbr: MS～マイクロソフト

Sp: びん～ビンSyn: こよみ～カレンダー
Sp: 乗換～のりかえSp: 花瓶～かびん

Sp:蛋白～タンパクSyn: 座席～シート
Syn: 全日空～ANA

Figure 1: Japanese character types and spelling variants

main character types, including two types of kana
(phonetic alphabet - hiragana and katakana), kanji
(ideographic - characters represent meaning) and
Roman alphabet; a word can be legitimately spelled
in multiple ways, combining any of these character
sets. For example, the word for ‘protein’ can be
spelled as たんぱくしつ (all in hiragana), タンパク
質 (katakana+kanji), 蛋白質 (all in kanji) or たん白
質 (hiragana+kanji), all pronounced in the same way
(tanpakushitsu). Some examples of these spelling
variants are shown in Fig. 1 with the prefix Sp: as is
observed from the figure, spelling variation occurs
within and across different character types. Resolv-
ing these variants will be essential not only for in-
formation retrieval but practically for all NLP tasks.

A particularly prolific source of spelling varia-
tions in Japanese is katakana. Katakana charac-
ters are used to transliterate words from English and
other foreign languages, and as such, the variations
in the source language pronunciation as well as the
ambiguity in sound adaptation are reflected in the
katakana spelling. For example, Masuyama et al.
(2004) report that at least six distinct translitera-
tions of the word ‘spaghetti’ (スパゲッティ, スパゲ
ティー, etc.) are attested in the newspaper corpus
they studied. Normalizing katakana spelling varia-
tions has been the subject of research by itself (Ara-
maki et al., 2008; Masuyama et al., 2004). Similarly,
English-to-katakana transliteration (e.g., ‘fedex’ as
フェデックス fedekkusu in Fig. 1) and katakana-to-
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English back-transliteration (e.g.,フェデックス back
into ‘fedex’) have also been studied extensively (Bi-
lac and Tanaka, 2004; Brill et al., 2001; Knight and
Graehl, 1998), as it is an essential component for
machine translation. To our knowledge, however,
there has been no work that addresses spelling vari-
ation in Japanese generally.

In this paper, we propose a general approach to
query correction/alteration in Japanese. Our goal is
to find precise re-write candidates for a query, be
it a correction of a spelling error, normalization of
a spelling variant, or finding a strict synonym in-
cluding abbreviations (e.g., MS マイクロソフト

‘Microsoft’, prefixed by Abbr in Fig. 1) and true
synonyms (e.g., 座席 (translation of ‘seat’) シート

(transliteration of ‘seat’, indicated by Syn in Fig. 1)2.
Our method is based on previous work on English
query correction in that we use both spelling and se-
mantic similarity between a query and its alteration
candidate, but is more general in that we include al-
teration candidates that are not similar to the original
query in spelling. In computing semantic similar-
ity, we adopt a kernel-based method (Kandola et al.,
2002), which improves the accuracy of the query al-
teration results over previously proposed methods.
We also introduce a novel approach to creating a
dataset of query and alteration candidate pairs effi-
ciently and reliably from query session logs.

2 Related Work

The key difference between traditional general-
purpose spelling correction and search query cor-
rection lies in the fact that the latter cannot rely on
a lexicon: web queries are replete with valid out-
of-dictionary words which are not mis-spellings of
in-vocabulary words. Cucerzan and Brill (2004) pi-
oneered the research of query spelling correction,
with an excellent description of how a traditional
dictionary-based speller had to be adapted to solve
the realistic query correction problem. The model
they proposed is a source-channel model, where the
source model is a word bigram model trained on
query logs, and the channel model is based on a
weighted Damerau-Levenshtein edit distance. Brill

2Our goal is to harvest alternation candidates; therefore, ex-
actly how they are used in the search task (whether it is used to
substitute the original query, to expand it, or simply to suggest
an alternative) is not a concern to us here.

and Moore (2000) proposed a general, improved
source model for general spelling correction, while
Ahmad and Kondrak (2005) learned a spelling error
model from search query logs using the Expectation
Maximization algorithm, without relying on a train-
ing set of misspelled words and their corrections.

Extending the work of Cucerzan and Brill (2004),
Li et al. (2006) proposed to include semantic sim-
ilarity between the query and its correction candi-
date. They point out that adventura is a common
misspelling of aventura, not adventure, and this can-
not be captured by a simple string edit distance, but
requires some knowledge of distributional similar-
ity. Distributional similarity is measured by the sim-
ilarity of the context shared by two terms, and has
been successfully applied to many natural language
processing tasks, including semantic knowledge ac-
quisition (Lin, 1998).

Though the use of distributional similarity im-
proved the query correction results in Li et al.’s
work, one problem is that it is sparse and is not avail-
able for many rarer query strings. Chen et al. (2007)
addressed this problem by using external informa-
tion (i.e., web search results); we take a different ap-
proach to solve the sparseness problem, namely by
using semantic kernels.

Jones et al. (2006a) generated Japanese query al-
teration pairs from by mining query logs and built a
regression model which predicts the quality of query
rewriting pairs. Their model includes a wide variety
of orthographical features, but not semantic similar-
ity features.

3 Query Alteration Model
3.1 Problem Formulation

We employ a formulation of query alteration model
that is similar to conventional query correction mod-
els. Given a query string q as input, a query correc-
tion model finds a correct alteration c∗ within the
confusion set of q, so that it maximizes the posterior
probability:

c∗ = arg max
c∈CF(q)⊂C

P (c|q) (1)

where C is the set of all white-space separated words
and their bigrams in query logs in our case3, and

3In regular text, Japanese uses no white spaces to separate
words; however, white spaces are often (but not consistently)
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CF(q) ⊂ C is the confusion set of q, consisting of
the candidates within a certain edit distance from q,
i.e., CF(q) = {c ∈ C|ED(q, c) < θ}. We set θ =
24 using an unnormalized edit distance. The detail
of the edit distance ED(q, c) is described in Section
3.2. The query string q itself is contained in CF(q),
and if the model output is different from q, it means
the model suggests a query alteration. Formulated
in this way, both query error detection and alteration
are performed in a unified way.

After computing the posterior probability of each
candidate in CF(q) by the source channel model
(Section 3.2), an N-best list is obtained as the ini-
tial candidate set C0, which is then augmented by
the bootstrapping method Tchai (Section 3.4) to cre-
ate the final candidate list C(q). The candidates in
C(q) are re-ranked by a maximum entropy model
(Section 3.5) and the candidate with the highest pos-
terior probability is selected as the output.

3.2 Source Channel Model
Source channel models are widely used for spelling
and query correction (Brill and Moore, 2000;
Cucerzan and Brill, 2004). Instead of directly com-
puting Eq. (1), we can decompose the posterior
probability using Bayes’ rule as:

c∗ = arg max
c∈CF(q)⊂C

P (c)P (q|c), (2)

where the source model P (c) measures how proba-
ble the candidate c is, while the error model P (q|c)
measures how similar q and c are.

For the source model, an n-gram based statisti-
cal language model is the standard in previous work
(Ahmad and Kondrak, 2005; Li et al., 2006). Word
n-gram models are simple to create for English,
which is easy to tokenize and to obtain word-based
statistics, but this is not the case with Japanese.
Therefore, we simply considered the whole input
string as a candidate to be altered, and used the rel-
ative frequency of candidates in the query logs to
build the language model:

P (c) =
Freq(c)∑

c′∈C Freq(c′)
. (3)

For the error model, we used an improved chan-
nel model described in (Brill and Moore, 2000),
used to separate words in Japanese search queries, due to their
keyword-based nature.

which we call the alpha-beta model in this paper.
The model is a weighted extension of the normal
Damerau-Levenshtein edit distance which equally
penalizes single character insertion, substitution, or
deletion operations (Damerau, 1964; Levenshtein,
1966), and considers generic edit operations of the
form α → β, where α and β are any (possibly
null) strings. From misspelled/correct word pairs,
alpha-beta trains the probability P (α → β|PSN),
conditioned by the position PSN of α in a word,
where PSN ∈ {start of word, middle of word, end of
word}. Under this model, the probability of rewrit-
ing a string w to a string s is calculated as:

Pαβ(s|w) = max
R∈Part(w),T∈Part(s)

|R|∏

i=1

P (Ri → Ti|PSN(Ri)),

which corresponds to finding best partitions R and T
in all possible partitions Part(w) and Part(s). Brill
and Moore (2000) reported that this model gave a
significant improvement over conventional edit dis-
tance methods.

Brill et al. (2001) applied this model for ex-
tracting katakana-English transliteration pairs from
query logs. They trained the edit distance between
character chunks of katakana and Roman alphabets,
after converting katakana strings to Roman script.
We also trained this model using 59,754 katakana-
English pairs extracted from aligned Japanese and
English Wikipedia article titles. In this paper we al-
lowed |α|, |β| ≤ 3. The resulting edit distance is
obtained as the negative logarithm of the alpha-beta
probability, i.e., EDαβ(q|c) = − log Pαβ(q|c).

Since the edit operations are directional and c and
q can be any string consisting of katakana and En-
glish, distance in both directions were considered.
We also included a modified edit distance EDhd for
simple kana-kana variations after converting them
into Roman script. The distance EDhd is essen-
tially the same as the normal Damerau-Levenshtein
edit distance, with the modification that it does not
penalize character halving (aa → a) and doubling
(a → aa), because a large part of katakana vari-
ants only differ in halving/doubling (e.g. スパゲティ
(supageti) vsスパゲティー (supagetii)4.

The final error probability is obtained from the
minimum of these three distances:

4However, character length can be distinctive in katakana,
as inビル biru ‘building’ vs.ビール biiru ‘beer’.
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ED(q, c) = min[EDαβ(q|c), EDαβ(c|q), EDhd(q, c)],(4)

P (q|c) = exp[−ED(q, c)] (5)

where every edit distance is normalized to [0, 1] by
multiplying by a factor of 2/(|q||c|) so that it does
not depend on the length of the input strings5.

3.3 Kernel-based Lexical Semantic Similarity

3.3.1 Distributional Similarity
The source channel model described in Sec-

tion 3.2 only considers language and error models
and cannot capture semantic similarity between the
query and its correction candidate. To address this
issue, we use distributional similarity (Lin, 1998) es-
timated from query logs as additional evidence for
query alteration, following Li et al. (2006).

For English, it is relatively easy to define the con-
text of a word based on the bag-of-words model. As
this is not expected to work on Japanese, we de-
fine context as everything but the query string in a
query log, as Paşca et al. (2006) and Komachi and
Suzuki (2008) did for their information extraction
tasks. This formulation does not involve any seg-
mentation or boundary detection, which makes this
method fast and robust. On the other hand, this may
cause additional sparseness in the vector representa-
tion; we address this issue in the next two sections.

Once the context of a candidate ci is de-
fined as the patterns that the candidate co-occurs
with, it can be represented as a vector ci =
[pmi(ci, p1), . . . ,pmi(ci, pM )]′, where M denotes
the number of context patterns and x′ is the trans-
position of a vector (or possibly a matrix) x. The el-
ements of the vector are given by pointwise mutual
information between the candidate ci and the pattern
pj , computed as:

pmi(ci, pj) = log
|ci, pj |

|ci, ∗||∗, pj |
, (6)

where |ci, pj | is the frequency of the pattern pj in-
stantiated with the candidate ci, and ‘*’ denotes a

5We did not include kanji variants here, because disam-
biguating kanji readings is a very difficult task, and the ma-
jority of the variations in queries are in katakana and Roman
alphabet. The framework proposed in this paper, however, can
incorporate kanji variants straightforwardly into ED(q, c) once
we have reasonable edit distance functions for kanji variations.

wildcard, i.e., |ci, ∗| =
∑

p |ci, p| and |∗, pj | =∑
c |c, pj |. With these defined, the distributional

similarity can be calculated as cosine similarity. Let
ĉi be the L2-normalized pattern vector of the candi-
date ci, and X = {ĉi} be the candidate-pattern co-
occurrence matrix. The candidate similarity matrix
K can then be obtained as K = X ′X . In the follow-
ing, the (i, j)-element of the matrix K is denoted as
Kij , which corresponds to the cosine similarity be-
tween candidates ci and cj .

3.3.2 Semantic Kernels
Although distributional similarity serves as strong

evidence for semantically relevant candidates, di-
rectly applying the technique to query logs faces the
sparseness problem. Because context patterns are
drawn from query logs and can also contain spelling
errors, alterations, and word permutations as much
as queries do, context differs so greatly in represen-
tations that even related candidates might not have
sufficient contextual overlap between them. For
example, a candidate “YouTube” matched against
the patterns “YouTube+movie”, “movie+YouTube”
and “You-Tube+movii” (with a minor spelling er-
ror) will yield three distinct patterns “#+movie”,
“movie+#” and “#+movii”6, which will be treated as
three separate dimensions in the vector space model.

This sparseness problem can be partially ad-
dressed by considering the correlation between pat-
terns. Kandola et al. (2002) proposed new kernel-
based similarity methods which incorporate indirect
similarity between terms for a text retrieval task. Al-
though their kernels are built on a document-term
co-occurrence model, they can also be applied to our
candidate-pattern co-occurrence model. The pro-
posed kernel is recursively defined as:

K̂ = βX ′ĜX + K, Ĝ = βXK̂X ′ + G, (7)

where G = XX ′ is the correlation matrix between
patterns and β is the factor to ensure that longer
range effects decay exponentially. This can be in-
terpreted as augmenting the similarity matrix K
through indirect similarities of patterns Ĝ and vice
versa. Semantically related pairs of patterns are ex-
pected to be given high correlation in the matrix Ĝ
and this will alleviate the sparseness problem. By

6‘+’ denotes a white space, and ‘#’ indicates where the word
of interest is found in a context pattern.
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“YouTube”

“#+movie”

“stage6” “You+Tube”

“movie+#” “#+anime”
c1 c2 c3
p1 p2 p3

(a)

“YouTube”

“#+movie”

“stage6” “You+Tube”

“movie+#” “#+anime”
c1 c2 c3p1 p2 p3

(b)
Figure 2: Orthographically Augmented Graph

solving the above recursive definition, one obtains
the von Neumann kernel:

K̂(β) = K(I − βK)−1 =
∞∑

t=1

βt−1Kt. (8)

This can also be interpreted in terms of a random
walk in a graph where the nodes correspond to all the
candidates and the weight of an edge (i, j) is given
by Kij . A simple calculation shows that Kij equals
the sum of the products of the edge weights over all
possible paths between the nodes corresponding ci

and cj in the graph. Also, Kt
ij corresponds to the

probability that a random walk beginning at node ci

ends up at node cj after t steps, assuming that the en-
tries are all positive and the sum of the connections
is 1 at each node. Following this notion, Kandola
et al. (2002) proposed another kernel called expo-
nential kernel, with alternative faster decay factors:

K̃(β) = K
∞∑

t=1

βtKt

t!
= K exp(βK). (9)

They showed that this alternative kernel achieved a
better performance for their text retrieval task. We
employed these two kernels to compute distribu-
tional similarity for our query correction task.

3.3.3 Orthographically Augmented Kernels
Although semantic relatedness can be partially

captured by the semantic kernels introduced in the
previous section, they may still have difficulties
computing correlations between candidates and pat-
terns especially for only sparsely connected graphs.
Take the graph (a) in Fig. 2 for example, which is
a simplified yet representative graph topology for
candidate-pattern co-occurrence we often encounter.
In this case K = X ′X equals I , meaning that the
connections between candidates and patterns are too
sparse to obtain sufficient correlation even when se-
mantic kernels are used.

Inputquery q 0CPatterninduction
Source channelmodel

0P
1C
1P

InstanceinductionPatterninduction
10)( CCqC ∪=

1P
Distributionalsimilarity

Figure 3: Bootstrapping Additional Candidates

In order to address this issue, we propose to aug-
ment the graph by weakly connecting the candidate
and pattern nodes as shown in the graph (b) of Fig. 2
based on prior knowledge of orthographic similarity
about candidates and patterns. This can be achieved
using the following candidate similarity matrix K+

instead of K:

K+ = γSC + (1− γ)X ′ [δSP + (1− δ)I] X (10)

where SC = {sc(i, j)} is the orthographical similar-
ity matrix of candidates in which the (i, j)-element
is given by the edit distance based similarity, i.e.,
sc(i, j) = exp [−ED(ci, cj)]. The orthographical
similarity matrix of patterns SP = {sP (i, j)} is de-
fined similarly, i.e., sP (i, j) = exp[−ED(pi, pj)].
Note that using this similarity matrix K+ can be
interpreted as a random walk process on a bipar-
tite graph as follows. Let C and P as the sets of
candidates and patterns. K+ corresponds to a sin-
gle walking step from C to C, by either remaining
within C with a probability of γ or moving to “the
other side” P of the graph with a probability of 1−γ.
When the walking remains in C, it is allowed to
move to another candidate node following the candi-
date orthographic similarity SC . Otherwise it moves
to P by the matrix X , chooses either to move within
P with a probability γSP or to stay with a probabil-
ity 1− γ, and finally comes back to C by the matrix
X ′. Multiplication (K+)t corresponds to repeating
this process t times. Using this similarity, we can de-
fine two orthographically augmented semantic ker-
nels which differ in the decaying factors, augmented
von Neumann kernel and exponential kernel:

K̂+(β) = K+(I − βK+)−1 (11)

K̃+(β) = K+ exp(βK+). (12)

3.4 Bootstrapping Additional Candidates
Now that we have a semantic model, our query
correction model can cover query-candidate pairs

195



which are only semantically related. However, pre-
vious work on query correction all used a string dis-
tance function and a threshold to restrict the space of
potential candidates, allowing only the orthographi-
cally similar candidates.

To collect additional candidates, the use of
context-based semantic extraction methods would
be effective because semantically related candidates
are likely to share context with the initial query
q, or at least with the initial candidate set C0.
Here we used the Tchai algorithm (Komachi and
Suzuki, 2008), a modified version of Espresso (Pan-
tel and Pennacchiotti, 2006) to collect such candi-
dates. This algorithm starts with initial seed in-
stances, then induces reliable context patterns co-
occurring with the seeds, induces instances from
the patterns, and iterates this process to obtain cat-
egories of semantically related words. Using the
candidates in C0 as the seed instances, one boot-
strapping iteration of the Tchai algorithm is executed
to obtain the semantically related set of instances
C1. The seed instance reliabilities are given by the
source channel probabilities P (c)P (q|c). Finally we
take the union C0 ∪ C1 to obtain the candidate set
C(q). This process is outlined in Fig. 3.

3.5 Maximum Entropy Model
In order to build a unified probabilistic query al-
teration model, we used the maximum entropy ap-
proach of (Beger et al., 1996), which Li et al. (2006)
also employed for their query correction task and
showed its effectiveness. It defines a conditional
probabilistic distribution P (c|q) based on a set of
feature functions f1, . . . , fK :

P (c|q) =
exp

∑K
i=1 λifi(c, q)∑

c exp
∑K

i=1 λifi(c, q)
, (13)

where λ1, . . . , λK are the feature weights. The op-
timal set of feature weights λ∗ can be computed by
maximizing the log-likelihood of the training set.

We used the Generalized Iterative Scaling (GIS)
algorithm (Darroch and Ratcliff, 1972) to optimize
the feature weights. GIS trains conditional proba-
bility in Eq. (13), which requires the normalization
over all possible candidates. However, the number
of all possible candidates C obtained from a query
log can be very large, so we only calculated the sum
over the candidates in C(q). This is the same ap-
proach that Och and Ney (2002) took for statistical

machine translation, and Li et al. (2006) for query
spelling correction.

We used the following four categories of func-
tions as the features:
1. Language model feature, given by the logarithm

of the source model probability: log P (c).
2. Error model features, which are composed of

three edit distance functions: −EDαβ(q|c),
−EDαβ(c|q), and −EDhd(q, c).

3. Similarity based feature, computed as the loga-
rithm of distributional similarity between q and c:
log sim(q, c), which is calcualted using one of the
following kernels (Section 3.3): K, K̂, K̃, K̂+,
and K̃+. The similarity values were normalized
to [0, 1] after adding a small discounting factor
ε = 1.0× 10−5.

4. Similarity based correction candidate features,
which are binary features with a value of 1 if and
only if the frequency of c is higher than that of
q, and distributional similarity between them is
higher than a certain threshold. Li et al. (2006)
used this set of features, and suggested that these
features give the evidence that q may be a com-
mon misspelling of c. The thresholds on the nor-
malized distributional similarity are enumerated
from 0.5 to 0.9 with the interval 0.1.

4 Experiment
4.1 Dataset Creation
For all the experiments conducted in this paper, we
used a subset of the Japanese search query logs sub-
mitted to Live Search (www.live.com) in November
and December of 2007. Queries submitted less than
eight times were deleted. The query log we used
contained 83,080,257 tokens and 1,038,499 unique
queries.

Models of query correction in previous work were
trained and evaluated using manually created query-
candidate pairs. That is, human annotators were
given a set of queries and were asked to provide a
correction for each query when it needed to be re-
written. As Cucerzan and Brill (2004) point out,
however, this method is seriously flawed in that the
intention of the original query is completely lost to
the annotator, without which the correction is often
impossible: it is not clear if gogle should be cor-
rected to google or goggle, or neither — gogle may
be a brand new product name. Cucerzan and Brill
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therefore performed a second evaluation, where the
test data was drawn by sampling the query logs for
successive queries (q1, q2) by the same user where
the edit distance between q1 and q2 are within a cer-
tain threshold, which are then submitted to annota-
tors for generating the correction. While this method
makes the annotation more reliable by relying on
user (rather than annotator) reformulation, the task
is still overly difficult: going back to the example
in Section 1, it is unclear which spelling of ‘protein’
produces the best search results — it can only be em-
pirically determined. Their method also eliminates
all pairs of candidates that are not orthographically
similar. We have therefore improved their method
in the following manner, making the process more
automated and thus more reliable.

We first collected a subset of the query log that
contains only those pairs (q1, q2) that are issued suc-
cessively by the same user, q2 is issued within 3 min-
utes of q1, and q2 resulted in a click of the resulting
page while q1 did not. The last condition adds the
evidence that q2 was a better formulation than q1.
We then ranked the collected query pairs using log-
likelihood ratio (LLR) (Dunning, 1993), which mea-
sures the dependence between q1 and q2 within the
context of web queries (Jones et al., 2006b). We ran-
domly sampled 10,000 query pairs with LLR≥ 200,
and submitted them to annotators, who only confirm
or reject a query pair as being synonymous. For ex-
ample, q1 = nikon and q2 = canon are related but
not synonymous, while we are reasonably sure q1 =
ipot and q2 = ipod are synonymous, given that this
pair has a high LLR value. This verification process
is extremely fast and consistent across annotators:
it takes less than 1 hour to go through 1,000 query
pairs, and the inter-annotator agreement rate of two
annotators on 2,000 query pairs was 95.7%. We
annotated 10,000 query pairs consisting of alpha-
numerical and kana characters in this manner. After
rejecting non-synonymous pairs and those which do
not co-occur with any context patterns, 6,489 pairs
remained, and we used 1,243 pairs for testing, 628
as a development set, and 4,618 for training the max-
imum entropy model.

4.2 Experimental Settings

The performance of query alteration was evaluated
based on the following measures (Li et al., 2006).

Table 1: Performance results (%)
Model Accuracy Recall Precision
SC 71.12 39.29 45.09
ME-NoSim 74.58 44.58 52.52
ME-Cos 74.18 45.84 50.70
ME-vN 74.34 45.59 52.16
ME-Exp 73.61 44.84 50.57
ME-vN+ 75.06 44.33 53.01
ME-Exp+ 75.14 44.08 53.52

The input queries, correct suggestions, and outputs
were matched in a case-insensitive manner.
• Accuracy: The number of correct outputs gener-

ated by the system divided by the total number of
queries in the test set;

• Recall: The number of correct suggestions for al-
tered queries divided by the total number of al-
tered queries in the test set;

• Precision: The number of correct suggestions for
altered queries divided by the total number of al-
terations made by the system.
The parameters for the kernels, namely, β, γ, and

δ, are tuned using the development set. The finally
employed values are: β = 0.3 for K̂, K̃, and K̂+,
β = 0.2 for K̃+, γ = 0.2 and δ = 0.4 for K̂+, and
γ = 0.35 and δ = 0.7 for K̃+. In the source channel
model, we manually scaled the language probability
by a factor of 0.1 to alleviate the bias toward highly
frequent candidates.

As the initial candidate set C0, top-50 instances
were selected by the source channel model, and 100
patterns were extracted as P0 by the Tchai iteration
after removing generic patterns, which we detected
simply by rejecting those which induced more than
200 unique instances. Finally top-30 instances were
induced using P0 to create C1. Generic instances
were not removed in this process because they may
still be alterations of input query q. The maximum
size of P1 was set to 2,000, after removing unreliable
patterns with reliability smaller than 0.0001.

4.3 Results
Table 1 shows the evaluation results. SC is the
source channel model, while the others are maxi-
mum entropy (ME) models with different features.
ME-NoSim uses the same features as SC, but con-
siderably outperforms SC in all three measures, con-
firming the superiority of the ME approach. Decom-
posing the three edit distance functions into three
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separate features in the ME model may also explain
the better result. All the ME approaches outper-
formed SC in accuracy with a statistically significant
difference (p < 0.0001 on McNemar’s test).

The model with the cosine similarity (ME-Cos)
in addition to the basic set of features yielded higher
recall compared to ME-NoSim, but decreased accu-
racy and precision, which are more important than
recall for our purposes because a false alteration
does more damage than no alteration. This is also
the case when the kernel-based methods, ME-vN
(the von Neumann kernel) and ME-Exp (the expo-
nential kernel), are used in place of the cosine sim-
ilarity. This shows that using semantic similarity
does not always help, which we believe is due to
the sparseness of the contextual information used in
computing semantic similarity.

On the other hand, ME-vN+ (with augmented von
Neumann kernel) and ME-Exp+ (with augmented
exponential kernel) increased both accuracy and pre-
cision with a slight decrease of recall, compared to
the distributional similarity baseline and the non-
augmented kernel-based methods. ME-Exp+ was
significantly better than ME-Exp (p < 0.01).

Note that the accuracy values appear lower than
some of the previous results on English (e.g., more
than 80% in (Li et al., 2006)), but this is because
the dataset creation method we employed tends to
over-represent the pairs that lead to alteration: the
simplest baseline (= always propose no alteration)
performs 67.3% accuracy on our data, in contrast to
83.4% on the data used in (Li et al., 2006).

Manually examining the suggestions made by the
system also confirms the effectiveness of our model.
For example, the similarity-based models altered the
query ipot to ipod, while the simple ME-NoSim
model failed, because it depends too much on the
edit distance-based features. We also observed that
many of the suggestions made by the system were
actually reasonable, even though they were differ-
ent from the annotated gold standard. For example,
ME-vN+ suggests a re-write of the query 2tyann as
2ちゃんねる (‘2-channel’), while the gold standard
was an abbreviated form 2ちゃん (‘2-chan’).

To incorporate such possibly correct candidates
into account, we conducted a follow-up experiment
where we considered multiple reference alterations,
created automatically from our data set in the fol-

Table 2: Performance with the multiple reference model
Model Accuracy Recall Precision
SC 75.30 48.61 55.78
ME-NoSim 79.49 56.17 66.17
ME-Cos 79.32 58.19 64.35
ME-vN 79.24 57.18 65.42
ME-Exp 78.52 56.42 63.64
ME-vN+ 79.89 55.67 66.57
ME-Exp+ 79.81 54.91 66.67

lowing manner. Suppose that a query q1 is corrected
as q2, and q2 is corrected as q3 in our annotated data.
If this is the case, we considered q1 → q3 as a valid
alteration as well. By applying this chaining oper-
ation up to 5 degrees of separation, we re-created a
set of valid alterations for each input query. Note
that directionality is important — in the above ex-
ample, q1 → q3 is valid, while q3 → q1 is not. Table
2 shows the results of evaluation with multiple refer-
ences. The numbers substantially improved over the
single reference cases, as expected, but did not af-
fect the relative performance of each model. Again,
the differences in accuracy between the SC and ME
models, and ME-Exp and ME-Exp+ were statisti-
cally significant (p < 0.01).

5 Conclusion and future work

In this paper we have presented a unified approach
to Japanese query alteration. Our approach draws
on previous research in English spelling and query
correction, Japanese katakana variation and translit-
eration, and semantic similarity, and builds a model
that makes improvements over previously proposed
query correction methods. In particular, the use of
orthographically augmented semantic kernels pro-
posed in this paper is general and applicable to other
languages, including English, for query alteration,
especially when the data sparseness is an issue. In
the future, we also plan to investigate other meth-
ods, such as PLSI (Hofmann, 1999), to deal with
data sparseness in computing semantic similarity.
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Abstract

Computational processing of text exchanged
in interactive venues in which participants en-
gage in simultaneous conversations can bene-
fit from techniques for automatically grouping
overlapping sequences of messages into sepa-
rate conversations, a problem known as “dis-
entanglement.” While previous methods ex-
ploit both lexical and non-lexical information
that exists in conversations for this task, the
inter-dependency between the meaning of a
message and its temporal and social contexts
is largely ignored. Our approach exploits con-
textual properties (both explicit and hidden)
to probabilistically expand each message to
provide a more accurate message representa-
tion. Extensive experimental evaluations show
our approach outperforms the best previously
known technique.

1 Introduction

Conversational media such as the text messages
found in Internet Relay Chat presents both new op-
portunities and new challenges. Among the chal-
lenges are that individual messages are often quite
short, for the reason that conversational participants
are able to assemble the required context over the
course of a conversation. A natural consequence of
this is that many tasks that we would like to perform
on conversational media (e.g., search, summariza-
tion, or automated response) would benefit from re-
assembly of individual messages into complete con-
versations. This task has been studied extensively in
the context of email (where it is often referred to as

“threading”) (Yeh et al., 2006). The extensive meta-
data associated with email and the relatively rich
content of some email messages makes email some-
what of a special case in the broad set of conversa-
tion recovery tasks, however. At the opposite ex-
treme, conversation “threading” in multi-party spo-
ken interactions (e.g., meetings) would be a com-
pelling application, but the word error rate of current
automated transcription techniques somewhat limits
access to the lexical evidence that we know is use-
ful for this task. The recent interest in identifying
individual conversations from online-discussions, a
task that some refer to as “disentanglement,” there-
fore seems to be something of a middle ground in
the research space: computationally tractable, repre-
sentative to some degree of a broader class of prob-
lems, and directly useful as a pre-processing step for
a range of important applications.

One way to think of this task is as a clustering
problem—we seek to partition the messages into a
set of disjoint clusters, where each cluster represents
a conversation among a set of participants on a topic.
This formulation raises the natural question of how
we should design a similarity measure. Since the
messages are often too short to be meaningful by
themselves, techniques based solely on lexical over-
lap (e.g., inner products of term vectors weighted
by some function of term frequency, document fre-
quency and message length) are unlikely to be suc-
cessful. For instance, consider the multi-party ex-
change in Figure 1, in which a single message may
not convey much about the topic without consider-
ing what has been said before, and who said it.

Fortunately for us, additional sources of evidence
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(18323 Ricardo) is there a way to emulate input for a 
program listening on a COM port? 
(18911 Azzie) Ricardo: Hello there, how is it going?
(18939 Ricardo) pretty good, just at the office, about to 
leave. How are you?
(18970 Azzie) well, end of semester work, what could 
be better?
(18980 Josephina) if it's just reading from /dev/ttyS0 or 
something you could somehow get it to just read from a 
named pipe instead
(19034 Ricardo) Josephina: I might just have to end up 
modifying the entire program... 
(19045 Ricardo) so it can read from a different input 
stream

Figure 1: An example of the text message stream. The
number before each author’s name denotes the time-
stamp of the message.

are available. As we describe below, messages
are strongly correlated both temporally (i.e., across
time) and socially (i.e,, across participants). For
example, in our running example in Figure 1, Ri-
cardo’s message (19045 Ricardo) “so it can read
from a different input stream” elaborates on his
previous message (19034 Ricardo) to Josephina.
Messages that are close in time and from the
same speaker can share related meanings. Simi-
larly, we see that Ricardo’s messages to Josephina
(19034 Ricardo and 19045 Ricardo) are responses
to earlier comments made by Josephina (18980
Josephina), and that fact is signaled by Ricardo in-
voking Josephena’s name. This is an example of
social correlation: lexicalized references to identity
can also provide useful evidence. If we take so-
cial and temporal context into account, we should be
able to do better at recognizing conversations than
we could using lexical overlap alone.

In recent years, several approaches have been de-
veloped for detecting conversational threads in dy-
namic text streams (Elsner et al., 2008; Shen et
al., 2006; Wang et al., 2008). Although they use
both lexical and non-lexical information (e.g., time,
name mentions in message) for this task, they have
ignored the temporal and social contexts a message
appears in, which provide valuable cues for inter-
preting the message.Correlation clusteringused in

a two-step approach (Elsner et al., 2008) exploits
message contexts to some degree, but its perfor-
mance is largely limited by the classifier used in the
first-step which computes message similarity with-
out considering the temporal and social contexts of
each message.

Our approach exploits contextual properties (both
explicit and hidden) to probabilistically expand each
message to provide a more accurate message rep-
resentation. The new representation leads to a much
improved performance for conversation disentangle-
ment. We note that this is a general approach and can
be applied to the representation of non-chat data that
exhibits temporal and social correlations as well.
The results that we obtain with this technique are
close to the limit of what we can measure using
present test collections and evaluation measures. To
the best of our knowledge, our work is the first to
apply document expansion to the conversation dis-
entanglement problem.

2 Related Work

Previous work in conversation disentanglement
(i.e. thread detection) has shown the conven-
tional lexical-based clustering is not suitable for text
streams because messages are often too short and
incomplete. They focus on using discourse/chat-
specific features to bias the lexical-based message
similarity (Elsner et al., 2008; Shen et al., 2006;
Wang et al., 2008). These features provide the
means to link messages that may not have sufficient
lexical overlap but are nevertheless likely to be top-
ically related. However, our work is different from
them in several aspects:
(1) They treat individual messages as the basic ele-
ments for clustering, and ignore the social and tem-
poral contexts of the messages. In our work, each
message is probabilistically expanded using reliable
information from its contexts and the expanded mes-
sages are the basic elements for clustering.
(2) Messages have different amount of explicit infor-
mation. For example, messages that initiate conver-
sations may have more name mentions than subse-
quent messages (i.e. for establishing conversations).
Previous work only uses what are explicitly present
in each message, and clusters may be erroneously
assigned for messages that lack enough explicit in-
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formation. Our work exploits both explicit and im-
plicit context for each message due to how we define
contexts (Section 3.2.1).
(3) Most work imposes a fixed window size for clus-
tering and it may break up long conversations or may
not be fine-grained enough for short conversations.
Given each message, we use an exponential decay
model to naturally encode time effect and assign dif-
ferential weights to messages in its contexts.

Another thread of related work is document ex-
pansion. It was previously studied in (Singhal et al.,
1999) in the context of the speech retrieval, helping
to overcome limitations in the transcription accuracy
by selecting additional terms from lexically simi-
lar (text) documents. Document expansion has also
been applied to cross-language retrieval in (Levow
et al., 2005), in that case to overcome limitations
in translation resources. The technique has recently
been re-visited (Tao et al., 2006; Kurland et al.,
2004; Liu et al., 2004) in the language modeling
framework, where lexically related documents are
used to enlarge the sample space for a document
to improve the accuracy of the estimated document
language model. However, these lexical-based ap-
proaches are less well suited to conversational in-
teraction, because conversational messages are often
short, they therefore may not overlap sufficiently in
words with other messages to provide a useful basis
for expansion. Our technique can be viewed as an
extension of these previous methods to text streams.

Our work is also related to text segmentation (Ji
et al., 2003) and meeting segmentation (Malioutov
et al., 2006; Malioutov et al., 2007; Galley et al.,
2003; Eisenstein et al., 2008). Text segmentation
identifies boundaries of topic changes in long text
documents, but we form threads of messages from
streams consisting of short messages. Meeting con-
versations are not as highly interleaving as chat con-
versations, where participants can create a new con-
versation at any time.

3 Method

This section describes our technique for clustering
messages into threads based on the lexical similar-
ity of documents that have been expanded based on
social and temporal evidence.

3.1 Context-Free Message Model

To represent the semantic information of messages
and threads (clusters of messages), most of the prior
approaches build a document representation on each
messagealone(using word features and time-stamp
and/or discourse features found in the message). We
call such a model a context-free message model.
Most commonly, a message is represented as a vec-
tor (Salton, 1989). Each dimension corresponds to
a separate term. If a term occurs in the message,
its value in the vector is non-zero. Several dif-
ferent ways of computing these values, known as
term weights, have been developed. One of the best
known schemes is tf-idf weighting.

However, in conversational text, a context-free
model cannot fully capture the semantics of mes-
sages. The meaning of a message is highly depen-
dent on other messages in its context. For example,
in our running example in Figure 1, to fully interpret
the message 19045 Ricardo, we need to first read
his previous message (19034 Ricardo) to Josephina.
Further, messages on the same topic may have lit-
tle or no overlap in words (Figure 1), and the mes-
sages between participants are highly interactive and
are often too short and incomplete to fully capture a
topic on their own.

3.2 Context-Sensitive Message Model

Our main idea is to exploit the temporal and so-
cial aspects of the conversations to build a context-
sensitive document model for each message. We
do this by first identifying the temporal and social
contexts for each message, then probabilistically ex-
panding the content of each message with selected
messages in each context. As we have seen, a mes-
sage’s contexts provide valuable cues for interpret-
ing the message. Finally, we cluster the messages
into distinct conversations based on their new repre-
sentation models.

We present the formal definitions of each context
and discuss how to model them in Section 3.2.1. In
Section 3.2.2, we show how to efficiently identify
the related messages in each context, and how to use
them to expand our representation of the message.

3.2.1 Social and Temporal Contexts

Social contexts: we define two kinds of social con-
texts: author context and conversational context. We
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Figure 2: (i) Relationship between messages from the same author (ii) Relationship between messages that mention
each other’s authors, and (iii) All pairs of messages as a function of time. Estimation is based on training data used in
experiments.

explain them in detail below.
Author context: the author context of a message

m, denoted byCA(m), is the set of other messages
written bym’s authoram:

CA(m) = {mi|ami = am,m 6= mi}

Further, because of the nature of human conversa-
tions, we would be less surprised to find messages
from the same person belonging to the same conver-
sation if they are close in time rather than far apart.
This is illustrated in Figure 2(i)1, which shows the
probability that a pair of messages written by the
same person belong to the same conversation as a
function of the time difference between them. Not
surprisingly, messages inm’s author context have
probabilities which are influenced by their temporal
proximity tom.

We use a normal distribution (Figure 2(i)) to en-
code the notion of author context. Given two mes-
sagesmi andmj written by thesameauthor, each
with time-stampti and tj , respectively, the proba-
bility that mj is topically related tomi given their
time differenced = tj − ti is:

Pa(d) = N(µa, σ2
a) =

1
σa
√

2π
e
− (d−µa)2

2σ2
a

The exponential decay helps to limit the influence
from temporally remote messages. For messagemi,
this distribution models the uncertainty that mes-
sages in its author context (i.e. other messagesmj

from the same author) belong to the same conver-
sation by assigning assigning a high value tomj if

1Gaussian kernels shown for illustration purpose in Figure 2
are un-normalized.

tj − ti is small. The meanµa is chosen to be zero so
that the curve is centered at each message. The vari-
ance can be readily estimated from training data.

Conversational context: the second kind of so-
cial context is the conversational context, which is
constructed from name mentions. As pointed out by
previous linguistic studies of discourse, especially
analysis of multi-party conversation (ONeill et al.,
2003), one key difference between multi-party con-
versation and typical two-party conversation is the
frequency with which participants mention each oth-
ers’ names. Name mentioning is hypothesized as a
strategy for participants to compensate for the lack
of cues normally present in face-to-face dialogue
(ONeill et al., 2003; Elsner et al., 2008). Although
infrequent, name mentions (such as Azzie’s com-
ments to Ricardo in Figure 1) provide a means for
linking two speakers and their messages.

The conversational context ofm, CC(m), is de-
fined to be the set of all messages written by peo-
ple whose names are mentioned inanyof am’s mes-
sages (wheream is the author ofm), or who mention
am in their messages. LetMa denote all messages
written by authora. The conversational context of
m is:

CC(m) = {∀a Ma|mention(am, a)}
∪ {∀a Ma|mention(a, am)}

wheremention(am, a) = true if authoram men-
tionsa in any of am’s messages.Mention(a, am)
is similarly defined.
Discussion: From the definition,mj is included in
mi’s conversational context if the author ofmi men-
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tions the author ofmj in any ofmi’s messages, or
vice versa. For instance, the conversational con-
text for Ricardo’s message (19034 Ricardo) in Fig-
ure 1 includes the messages from Josephina (18980
Josephina) due to the mentioning of Josephina in
his message. However, it may well be the case that
mi doesnot contain any name mentions, e.g. Ri-
cardo’s message to Azzie (18939 Ricardo). In this
case, if Ricardo is being mentioned by another au-
thor (here Azzie asks Ricardo a question by start-
ing with his name in 18939 Azzie), message (18939
Ricardo)’s conversational context will containall of
Azzie’s messages (18911 and 18970 Azzie) accord-
ing to the above definition. This intuitively captures
the implicit question-answer patterns in conversa-
tional speech: Ricardo’s subsequent answer is a re-
sponse to Azzie’s comments, hence they are in each
other’s conversational context.

Our definition also accounts for another source of
implicit context. In interactive conversations name
mention is a tool for getting people’s attention and
starting a conversation. Once a participantai estab-
lishes a conversation withaj (such thatai may men-
tion aj ’s name in an initial messagemp to aj), ai
may stop mentioningaj ’s name in subsequent mes-
sages (mq) to aj . This is illustrated in Ricardo’s last
message to Josephina in Figure 1. Our definition
accounts for theconversation continuitybetweenaj
andai by including messages fromaj in the conver-
sational context of subsequent messagesmq from ai
(notemq may or may not mentionaj). For instance,
message 19045 Ricardo continues the conversation
with Josephina from 19034 Ricardo, message 19045
Ricardo thus has Josephina’s messages as part of its
conversational context.

In general, a person can participate in multiple
conversations over time, but as time goes on the
topic of interest may shift and the person may start
talking to other people. So the messages in the con-
versational context ofmi due to earlier discussions
with other people should be assigned a lower con-
fidence value formi. For example, five hours later
Ricardo may still be active, but it is unlikely he still
chats with Josephina on the same topic, so the ear-
lier messages by Josephina should receive a small
confidence value in the conversational context of Ri-
cardo’s later messages. We illustrate this idea in Fig-
ure 2(ii). It shows the probability that messagemj ,

wheremj ∈ CC(mi), belongs to the same thread
as mi, given their time differencetj − ti. This
is encoded with a normal probability distribution,
N(µc, σc) whereµc = 0 and variance is estimated
from training data. Letd = tj − ti, the probability
they are topically related givenmj ∈ CC(mi) is:

Pc(d) =
1

σc
√

2π
e
− d2

2σ2
c

Temporal context: temporal context for message
m, CT (m), refers to all other messages:

CT (m) = M \m

whereM denotes the entire set of messages. The
intuition is that nearby messages tom can provide
further evidence to the semantics ofm. This is illus-
trated in Figure 2(iii). From the viewpoint of doc-
ument smoothing, this can also be regarded as us-
ing temporally nearby messages to smooth the rep-
resentation ofm. So givenmi, we again model its
temporal context by fitting a normal probability dis-
tribution N(µt, σt), so that ifmj ∈ CT (mi) and
d = tj − ti, the probability thatmj is topically re-
lated tomi is:

Pt(d) =
1

σt
√

2π
e
− d2

2σ2
t

3.2.2 Constructing Expanded Messages

We have shown how to use the social and tem-
poral aspects of conversational text to identify and
model the contexts of each message, and how to
assign confidence values to messages in its con-
texts. We now show how to use a message’s con-
texts and their associated messages to probabilisti-
cally expand the given message. We hypothesize
that the expanded message provides a more accurate
message representation and that this improved repre-
sentation can lead to improved accuracy for conver-
sation disentanglement. We will test this hypothesis
in the experiment section.

Each messagem is represented as a vector of es-
timated term counts. We expandm using the nor-
malized messages in its contexts. For the expanded
messagem′ of m we estimate the term counts as a
linear mixture of term counts from each message in
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each context:

c(w,m′) = αc(w,m) + (1− α){
λC

∑

mj∈CC(m)

Pc(dji)× c(w,mj)

+ λA
∑

mj∈CA(m)

Pa(dji)× c(w,mj)

+ λT
∑

mj∈CT (m)

Pt(dji)× c(w,mj)}

These parameter values are tuned on training data:
α controls how much relative weight we give to lex-
ical content ofm (0.45 in our experiments), and
λC , λA and λT are the relative weights assigned
to the conversational, author and temporal contexts
(0.6, 0.3, and 0.1 in our experiments, respectively).
A context with large variance in its normal density
graph should receive a smallλ value. This is be-
cause a large variance in contextk implies more un-
certainty on a messagemj being topically related to
m while mj is in the contextk of m. In Figure 2,
the conversational context (Figure 2(ii)) has the min-
imum variance among all contexts, hence, it is more
accurate for linking messages related in topic and it
is assigned a higherλ value (0.6), while the tempo-
ral context has the lowestλ value (0.1). Finally, for
a messagemj in contextk of mi, Pk(dji) indicates
how strongly we believemj is topically related to
mi, given their time differencedji.

Because of the exponential decays of the normal
densities that model contextsk, messages in a con-
text will contribute differentially tomi. Temporally
distant messages will have a very low density.

3.3 Single-Pass Clustering

The expanded messages are the basic elements for
clustering. The cosine is used to measure similarity:

sim(mi,mj) =
∑

w

c(w,mi)c(w,mj)
‖mi‖‖mj‖

Single-pass clustering is then performed: treat the
first message as a single-message clusterT ; for each
remaining messagem compute∀T :

sim(m,T ) = maxmi∈T sim(mi,m)

For the threadT that maximizessim(m,T ), if
sim(m,T ) > tsim, wheretsim is a threshold (0.7 in

Min Mean Max
Number of Conversations 50.00 81.33 128.00
Avg. Conv. Length 6.20 10.60 16.00
Avg. Conv. Density 2.53 2.75 2.92

Table 1: Statistics on the IRC chat transcript data (Elsner
et al., 2008). The reported values are based on annota-
tions from six different annotations for the 800 lines of
chat transcript.

our experiments) empirically estimated from train-
ing data, addm to T ; else, start a new cluster con-
taining onlym. The time complexity of this algo-
rithm is O(n2), which is tractable for problems of
moderate size.

4 Experiments

The collection used in the experiments consists of
real text streams produced in Internet Relay Chat,
created by (Elsner et al., 2008) and annotated inde-
pendently by six annotators. As an upper (human)
baseline for each of the three measures reported be-
low, we report the average agreement between all
pairs of annotators (i.e., treating one annotator as
truth and another as a “system”). For our experi-
ment results, we report the average across all anno-
tators of the agreement between our system and each
annotator.

The test collection also contains both a develop-
ment set and an evaluation set. We used the devel-
opment set to approximate the normal densities used
in our context models and the evaluation set to ob-
tain the results reported below. Some statistics for
the 800 annotated messages in the chat transcript of
the evaluation collection are shown in Table 1. As
that table shows, the average number of active con-
versation at a given time is2.75, which makes thread
detection a non-trivial task.

4.1 Evaluation Measures

We conduct comparisons using three commonly
used evaluation measures for the thread detection
task. As a measure of the systems ability to group
related messages we report theF -measure (Shen et
al., 2006):

F =
∑

i

ni
n
maxj(F (i, j))
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wherei is a ground-truth conversation with length
ni, andn is the length of entire transcript.F (i, j)
is the harmonic mean of recall (fraction of the mes-
sages in thei also present inj) and precision (frac-
tion of messages inj also present ini), and F is
a weighted sum over all ground-truth conversations
(i.e.,F is microaveraged).

Two other evaluation measures are “one-to-one
accuracy” and “local agreement” (Elsner et al.,
2008). “One-to-one accuracy” measures how well
we extract whole conversations intact (e.g., as might
be required for summarization). It is computed by
finding the max-weight bipartite matching between
the set of detected threads and the set of real threads,
where weight is defined in terms of percentage over-
laps for each ground truth and detected thread pair.

Some applications (e.g., real-time monitoring)
may not require that we look at entire conversations
ar once; in this case a “local agreement” measure
might make more sense. “loc3” between system and
human annotations as the average (over all possible
sets of three consecutive messages) of whether those
3 consecutive messages are assigned consistently by
the ground truth and the system. For example, if
both the ground truth and the system cluster the first
and third messages together and place the second
message in a different cluster, then agreement would
be recorded.

4.2 Methods Used in Comparison

We compare with the following methods:
Elsner et al. 2008(best previously known tech-
nique): Message similarity is computed with lexical
and discourse features, but without document
expansion.
Blocks ofk: Every consecutive group ofk messages
is a conversation.
Pause ofk: Every pause ofk seconds or more
separate two conversations.
Speaker: Each speaker’s messages are treated as a
single conversation.
All different : Each utterance is a separate thread.
All same: The entire transcript is one conversation.

4.3 Results

Figure 3 compares the effectiveness of different
schemes in terms of theF measure. We show results

Figure 3: F measure. The dotted line represents inter-
annotator agreement.

from the best baseline, Elsner and our technique
(which we call the Context model). The averageF
between human annotators is shown with the dotted
line at 0.55; we would expect this to be an upper
bound for any model. Our method substantially out-
performs the other methods, with a24% improve-
ment over Elsner and48% improvement over the
best baseline (speaker). Viewed another way, our
system achieves98% of human performance, while
Elsner and the best baseline achieve79% and66% of
that bound, respectively. From this, we can conclude
that our Context model is quite effective at cluster-
ing messages from same conversation together.

To illustrate the impact of conversation length,
we binned the lengths of ground-truth conversations
from a single assessor into bins of size 5 (i.e., 3–7
messages, 8–12 messages,. . .; there were no ground
truth bins of size 1 or 2). Figure 4 plots the approx-
imated microaveragedF at the center value of each
bin (i.e., theF for each ground truth cluster, scaled
by the number of messages in the cluster). These
fine-grained values provide insight into the contri-
bution of conversations of different sizes to the over-
all microaveragedF . The Context model performs
well for every conversation length, but particularly
so for conversations containing 35 or more messages
as shown by the widened gap in that region. Long
conversations usually have richer social and tempo-
ral contexts for each message. The context model
can benefit more from drawing evidences from these
sources and using them to expand the message, thus
makes it possible to group messages of the same
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Figure 4: Dependence ofF on ground-truth conversation
size, in number of messages.

Figure 5: One-to-one measure. The dotted line represents
inter-annotator agreement.

conversation together. The other two methods that
ignore contextual properties do not do well in com-
parison.

To measure how well we extract whole conversa-
tions intact, Figure 5 shows the results in terms of
the one-to-one measure, where each real conversa-
tion is matched up with a distinct detected conversa-
tion thread. It is computed by max-weight bipartite
matching such that the total message overlap is max-
imized between the sets of detected threads and real
threads. The average by this measure between hu-
man annotators is0.53. In this case, the proposed
context model achieves an14% increase over El-
sner and32% increase over the best baseline, and
it is within 88% of human performance. This fairly
clearly indicates that our Context model can disen-
tangle interleaved conversations relatively well.

Finally, Figure 6 presents the results for “local-3”
to evaluate the system’s ability to do local annota-

Figure 6: Local-3 measure. The dotted line represents
inter-annotator agreement.

tions. The difference between the best baseline and
maximum upper bound is small, implying limited
room for potential improvement by any non-baseline
techniques. Our result again compares favorably
with the previously reported result and the best base-
line, although with a smaller margin of20% over the
best baseline and3% over Elsner as a result of the
relatively high baseline for this measure.

5 Conclusion and Future Work

We have presented an approach that exploits contex-
tual properties to probabilistically expand each mes-
sage to provide a more accurate message represen-
tation for dynamic conversations. It is a general ap-
proach and can be applied to the representation of
non-chat data that exhibits temporal and social cor-
relations as well. For conversation disentanglement,
it outperforms the best previously known technique.
Our work raises three important questions: (1) to
what extent is the single test collection that we have
used representative of the broad range of “text chat”
applications?, (2) to what extent do the measures we
have reported correlate to effective performance of
downstream tasks such as summarization or auto-
mated response?, and (3) can we re-conceptualize
the formalized problem in a way that would result
in greater inter-annotator agreement, and hence pro-
vide scope for further refinements in our technique.
These problems will be the focus of our future work.
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Abstract

Morphological segmentation breaks words
into morphemes (the basic semantic units). It
is a key component for natural language pro-
cessing systems. Unsupervised morphologi-
cal segmentation is attractive, because in ev-
ery language there are virtually unlimited sup-
plies of text, but very few labeled resources.
However, most existing model-based systems
for unsupervised morphological segmentation
use directed generative models, making it dif-
ficult to leverage arbitrary overlapping fea-
tures that are potentially helpful to learning.
In this paper, we present the first log-linear
model for unsupervised morphological seg-
mentation. Our model uses overlapping fea-
tures such as morphemes and their contexts,
and incorporates exponential priors inspired
by the minimum description length (MDL)
principle. We present efficient algorithms
for learning and inference by combining con-
trastive estimation with sampling. Our sys-
tem, based on monolingual features only, out-
performs a state-of-the-art system by a large
margin, even when the latter uses bilingual in-
formation such as phrasal alignment and pho-
netic correspondence. On the Arabic Penn
Treebank, our system reduces F1 error by 11%
compared to Morfessor.

1 Introduction

The goal of morphological segmentation is to seg-
ment words intomorphemes, the basic syntac-
tic/semantic units. This is a key subtask in many

∗ This research was conducted during the author’s intern-
ship at Microsoft Research.

NLP applications, including machine translation,
speech recognition and question answering. Past
approaches include rule-based morphological an-
alyzers (Buckwalter, 2004) and supervised learn-
ing (Habash and Rambow, 2005). While successful,
these require deep language expertise and a long and
laborious process in system building or labeling.

Unsupervised approaches are attractive due to the
the availability of large quantities of unlabeled text,
and unsupervised morphological segmentation has
been extensively studied for a number of languages
(Brent et al., 1995; Goldsmith, 2001; Dasgupta and
Ng, 2007; Creutz and Lagus, 2007). The lack
of supervised labels makes it even more important
to leverage rich features and global dependencies.
However, existing systems use directed generative
models (Creutz and Lagus, 2007; Snyder and Barzi-
lay, 2008b), making it difficult to extend them with
arbitrary overlapping dependencies that are poten-
tially helpful to segmentation.

In this paper, we present the first log-linear model
for unsupervised morphological segmentation. Our
model incorporates simple priors inspired by the
minimum description length (MDL) principle, as
well as overlapping features such as morphemes and
their contexts (e.g., in Arabic, the stringAl is likely
a morpheme, as is any string betweenAl and a word
boundary). We develop efficient learning and infer-
ence algorithms using a novel combination of two
ideas from previous work on unsupervised learn-
ing with log-linear models: contrastive estimation
(Smith and Eisner, 2005) and sampling (Poon and
Domingos, 2008).

We focus on inflectional morphology and test our
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approach on datasets in Arabic and Hebrew. Our
system, using monolingual features only, outper-
forms Snyder & Barzilay (2008b) by a large mar-
gin, even when their system uses bilingual informa-
tion such as phrasal alignment and phonetic corre-
spondence. On the Arabic Penn Treebank, our sys-
tem reduces F1 error by 11% compared to Mor-
fessor Categories-MAP (Creutz and Lagus, 2007).
Our system can be readily applied to supervised
and semi-supervised learning. Using a fraction of
the labeled data, it already outperforms Snyder &
Barzilay’s supervised results (2008a), which further
demonstrates the benefit of using a log-linear model.

2 Related Work

There is a large body of work on the unsupervised
learning of morphology. In addition to morpholog-
ical segmentation, there has been work on unsuper-
vised morpheme analysis, where one needs to deter-
mine features of word forms (Kurimo et al., 2007)
or identify words with the same lemma by model-
ing stem changes (Schone and Jurafsky, 2001; Gold-
smith, 2001). However, we focus our review specif-
ically on morphological segmentation.

In the absence of labels, unsupervised learning
must incorporate a strong learning bias that reflects
prior knowledge about the task. In morphological
segmentation, an often-used bias is the minimum
description length (MDL) principle, which favors
compact representations of the lexicon and corpus
(Brent et al., 1995; Goldsmith, 2001; Creutz and La-
gus, 2007). Other approaches use statistics on mor-
pheme context, such as conditional entropy between
adjacentn-grams, to identify morpheme candidates
(Harris, 1955; Keshava and Pitler, 2006). In this pa-
per, we incorporate both intuitions into a simple yet
powerful model, and show that each contributes sig-
nificantly to performance.

Unsupervised morphological segmentation sys-
tems also differ from the engineering perspective.
Some adopt a pipeline approach (Schone and Ju-
rafsky, 2001; Dasgupta and Ng, 2007; Demberg,
2007), which works by first extracting candidate
affixes and stems, and then segmenting the words
based on the candidates. Others model segmenta-
tion using a joint probabilistic distribution (Goldwa-
ter et al., 2006; Creutz and Lagus, 2007; Snyder and

Barzilay, 2008b); they learn the model parameters
from unlabeled data and produce the most proba-
ble segmentation as the final output. The latter ap-
proach is arguably more appealing from the mod-
eling standpoint and avoids error propagation along
the pipeline. However, most existing systems use
directed generative models; Creutz & Lagus (2007)
used an HMM, while Goldwater et al. (2006) and
Snyder & Barzilay (2008b) used Bayesian models
based on Pitman-Yor or Dirichlet processes. These
models are difficult to extend with arbitrary overlap-
ping features that can help improve accuracy.

In this work we incorporate novel overlapping
contextual features and show that they greatly im-
prove performance. Non-overlapping contextual
features previously have been used in directed gen-
erative models (in the form of Markov models) for
unsupervised morphological segmentation (Creutz
and Lagus, 2007) or word segmentation (Goldwater
et al., 2007). In terms of feature sets, our model is
most closely related to the constituent-context model
proposed by Klein and Manning (2001) for grammar
induction. If we exclude the priors, our model can
also be seen as a semi-Markov conditional random
field (CRF) model (Sarawagi and Cohen, 2004).
Semi-Markov CRFs previously have been used for
supervised word segmentation (Andrew, 2006), but
not for unsupervised morphological segmentation.

Unsupervised learning with log-linear models has
received little attention in the past. Two notable ex-
ceptions are Smith & Eisner (2005) for POS tagging,
and Poon & Domingos (2008) for coreference res-
olution. Learning with log-linear models requires
computing the normalization constant (a.k.a. the
partition function)Z. This is already challenging in
supervised learning. In unsupervised learning, the
difficulty is further compounded by the absence of
supervised labels. Smith & Eisner (2005) proposed
contrastive estimation, which uses a small neighbor-
hood to computeZ. The neighborhood is carefully
designed so that it not only makes computation eas-
ier but also offers sufficient contrastive information
to aid unsupervised learning. Poon & Domingos
(2008), on the other hand, used sampling to approx-
imateZ.1 In this work, we benefit from both tech-
niques: contrastive estimation creates a manageable,

1Rosenfeld (1997) also did this for language modeling.
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w

(##__vl)

vlAv

(#w__wn)

wn

(Av__##)

Figure 1: The morpheme and context (in parentheses)
features for the segmented wordw-vlAv-wn.

informativeZ, while sampling enables the use of
powerful global features.

3 Log-Linear Model for Unsupervised
Morphological Segmentation

Central to our approach is a log-linear model that
defines the joint probability distribution for a cor-
pus (i.e., the words) and a segmentation on the cor-
pus. The core of this model is a morpheme-context
model, with one feature for each morpheme,2 and
one feature for each morpheme context. We rep-
resent contexts using then-grams before and after
the morpheme, for some constantn. To illustrate
this, a segmented Arabic corpus is shown below
along with its features, assuming we are tracking bi-
gram contexts. The segmentation is indicated with
hyphens, while the hash symbol (#) represents the
word boundary.
Segmented Corpus hnAk w-vlAv-wn bn-w

Al-ywm Al-jmAEp
Morpheme Feature:Value hnAk:1 w:2 vlAv:1

wn:1 bn:1 Al:2 ywm:1 jmAEp:1
hnAk:1 wvlAvwn:1 bnw:1 Alywm:1 Alj-
mAEp:1

Bigram Context Feature:Value ## vl:1
#w wn:1 Av ##:1 ##w#:1 bn##:1
## yw:1 Al ##:2 ##jm:1 ## ##:5

Furthermore, the corresponding features for the seg-
mented wordw-vlAv-wnare shown in Figure 1.

Each feature is associated with a weight, which
correlates with the likelihood that the correspond-
ing morpheme or context marks a valid morpholog-
ical segment. Such overlapping features allow us to
capture rich segmentation regularities. For example,
given the Arabic wordAlywm, to derive its correct
segmentationAl-ywm, it helps to know thatAl and
ywmare likely morphemes whereasAly or lyw are

2The word as a whole is also treated as a morpheme in itself.

not; it also helps to know thatAl ## or ## yw are
likely morpheme contexts whereasly ## or ## wm
are not. Ablation tests verify the importance of these
overlapping features (see Section 7.2).

Our morpheme-context model is inspired by
the constituent-context model (CCM) proposed by
Klein and Manning (2001) for grammar induction.
The morphological segmentation of a word can be
viewed as a flat tree, where the root node corre-
sponds to the word and the leaves correspond to
morphemes (see Figure 1). The CCM uses uni-
grams for context features. For this task, however,
we found that bigrams and trigrams lead to much
better accuracy. We use trigrams in our full model.

For learning, one can either view the corpus as
a collection of wordtypes(unique words) ortokens
(word occurrences). Some systems (e.g., Morfessor)
use token frequency for parameter estimation. Our
system, however, performs much better using word
types. This has also been observed for other mor-
phological learners (Goldwater et al., 2006). Thus
we use types in learning and inference, and effec-
tively enforce the constraint that words can have
only one segmentation per type. Evaluation is still
based on tokens to reflect the performance in real
applications.

In addition to the features of the morpheme-
context model, we incorporate two priors which cap-
ture additional intuitions about morphological seg-
mentations. First, we observe that the number of
distinct morphemes used to segment a corpus should
be small. This is achieved when the same mor-
phemes are re-used across many different words.
Our model incorporates this intuition by imposing
a lexicon prior : an exponential prior with nega-
tive weight on the length of the morpheme lexi-
con. We define the lexicon to be the set of unique
morphemes identified by a complete segmentation
of the corpus, and the lexicon length to be the to-
tal number of characters in the lexicon. In this
way, we can simultaneously emphasize that a lexi-
con should contain few unique morphemes, and that
those morphemes should be short. However, the lex-
icon prior alone incorrectly favors the trivial seg-
mentation that shatters each word into characters,
which results in the smallest lexicon possible (sin-
gle characters). Therefore, we also impose acorpus
prior : an exponential prior on the number of mor-
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phemes used to segment each word in the corpus,
which penalizes over-segmentation. We notice that
longer words tend to have more morphemes. There-
fore, each word’s contribution to this prior is nor-
malized by the word’s length in characters (e.g., the
segmented wordw-vlAv-wncontributes 3/7 to the to-
tal corpus size). Notice that it is straightforward to
incorporate such a prior in a log-linear model, but
much more challenging to do so in a directed gen-
erative model. These two priors are inspired by the
minimum description length (MDL) length princi-
ple; the lexicon prior favors fewer morpheme types,
whereas the corpus prior favors fewer morpheme to-
kens. They are vital to the success of our model,
providing it with the initial inductive bias.

We also notice that often a word is decomposed
into a stem and some prefixes and suffixes. This is
particularly true for languages with predominantly
inflectional morphology, such as Arabic, Hebrew,
and English. Thus our model uses separate lexicons
for prefixes, stems, and suffixes. This results in a
small but non-negligible accuracy gain in our exper-
iments. We require that a stem contain at least two
characters and no fewer characters than any affixes
in the same word.3 In a given word, when a mor-
pheme is identified as the stem, any preceding mor-
pheme is identified as a prefix, whereas any follow-
ing morpheme as a suffix. The sample segmented
corpus mentioned earlier induces the following lex-
icons:
Prefix w Al
Stem hnAk vlAv bn ywm jmAEp
Suffix wn w

Before presenting our formal model, we first in-
troduce some notation. LetW be a corpus (i.e., a set
of words), andS be a segmentation that breaks each
word inW into prefixes, a stem, and suffixes. Letσ
be a string (character sequence). Each occurrence of
σ will be in the form ofψ1σψ2, whereψ1, ψ2 are the
adjacent charactern-grams, andc = (ψ1, ψ2) is the
context ofσ in this occurrence. Thus a segmentation
can be viewed as a set of morpheme strings and their
contexts. For a stringx,L(x) denotes the number of
characters inx; for a wordw, MS(w) denotes the

3In a segmentation where several morphemes have the max-
imum length, any of them can be identified as the stem, each
resulting in a distinct segmentation.

number of morphemes inw given the segmentation
S; Pref(W,S), Stem(W,S), Suff(W,S) denote
the lexicons of prefixes, stems, and suffixes induced
by S for W . Then, our model defines a joint proba-
bility distribution over a restricted set ofW andS:

Pθ(W,S) =
1
Z
· uθ(W,S)

where

uθ(W,S) = exp(
∑

σ

λσfσ(S) +
∑

c

λcfc(S)

+ α ·
∑

σ∈Pref(W,S)

L(σ)

+ α ·
∑

σ∈Stem(W,S)

L(σ)

+ α ·
∑

σ∈Suff(W,S)

L(σ)

+ β ·
∑

w∈W

MS(w)/L(w) )

Here,fσ(S) andfc(S) are respectively the occur-
rence counts of morphemes and contexts underS,
and θ = (λσ, λc : σ, c) are their feature weights.
α, β are the weights for the priors.Z is the nor-
malization constant, which sums over a set of cor-
pora and segmentations. In the next section, we will
define this set for our model and show how to effi-
ciently perform learning and inference.

4 Unsupervised Learning

As mentioned in Smith & Eisner (2005), learning
with probabilistic models can be viewed as moving
probability mass to the observed data. The question
is from where to take this mass. For log-linear mod-
els, the answer amounts to defining the set thatZ
sums over. We use contrastive estimation and define
the set to be a neighborhood of the observed data.
The instances in the neighborhood can be viewed
as pseudo-negative examples, and learning seeks to
discriminate them from the observed instances.

Formally, letW ∗ be the observed corpus, and let
N(·) be a function that maps a string to a set of
strings; letN(W ∗) denote the set of all corpora that
can be derived fromW ∗ by replacing every word
w ∈W ∗ with one inN(w). Then,

Z =
∑

W∈N(W ∗)

∑

S

u(W,S).
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Unsupervised learning maximizes the log-likelihood
of observingW ∗

Lθ(W ∗) = log
∑

S

P (W ∗, S)

We use gradient descent for this optimization; the
partial derivatives for feature weights are

∂

∂λi
Lθ(W ∗) = ES|W ∗[fi]− ES,W [fi]

wherei is either a stringσ or a contextc. The first
expected count ranges over all possible segmenta-
tions while the words are fixed to those observed in
W ∗. For the second expected count, the words also
range over the neighborhood.

Smith & Eisner (2005) considered various neigh-
borhoods for unsupervised POS tagging, and
showed that the best neighborhoods areTRANS1
(transposing any pair of adjacent words) and
DELORTRANS1 (deleting any word or transposing
any pair of adjacent words). We can obtain their
counterparts for morphological segmentation by
simply replacing “words” with “characters”. As
mentioned earlier, the instances in the neighbor-
hood serve as pseudo-negative examples from which
probability mass can be taken away. In this regard,
DELORTRANS1 is suitable for POS tagging since
deleting a word often results in an ungrammatical
sentence. However, in morphology, a word less a
character is often a legitimate word too. For exam-
ple, deletingl from the Hebrew wordlyhwh (to the
lord) results inyhwh(the lord). ThusDELORTRANS1
forces legal words to compete against each other for
probability mass, which seems like a misguided ob-
jective. Therefore, in our model we useTRANS1. It
is suited for our task because transposing a pair of
adjacent characters usually results in a non-word.

To combat overfitting in learning, we impose a
Gaussian prior (L2 regularization) on all weights.

5 Supervised Learning

Our learning algorithm can be readily applied to su-
pervised or semi-supervised learning. Suppose that
gold segmentation is available for some words, de-
noted asS∗. If S∗ contains gold segmentations
for all words inW , we are doing supervised learn-
ing; otherwise, learning is semi-supervised. Train-

ing now maximizesLθ(W ∗, S∗); the partial deriva-
tives become

∂

∂λi
Lθ(W ∗, S∗) = ES|W ∗,S∗[fi]− ES,W [fi]

The only difference in comparison with unsuper-
vised learning is that we fix the known segmenta-
tion when computing the first expected counts. In
Section 7.3, we show that when labels are available,
our model also learns much more effectively than a
directed graphical model.

6 Inference

In Smith & Eisner (2005), the objects (sentences) are
independent from each other, and exact inference is
tractable. In our model, however, the lexicon prior
renders all objects (words) interdependent in terms
of segmentation decisions. Consider the simple cor-
pus with just two words:Alrb, lAlrb. If lAlrb is seg-
mented intol-Al-rb, Alrb can be segmented intoAl-
rb without paying the penalty imposed by the lexi-
con prior. If, however,lAlrb remains a single mor-
pheme, and we still segmentAlrb into Al-rb, then
we introduce two new morphemes into the lexicons,
and we will be penalized by the lexicon prior ac-
cordingly. As a result, we must segment the whole
corpus jointly, making exact inference intractable.
Therefore, we resort to approximate inference. To
computeES|W ∗[fi], we use Gibbs sampling. To de-
rive a sample, the procedure goes through each word
and samples the next segmentation conditioned on
the segmentation of all other words. Withm sam-
plesS1, · · · , Sm, the expected count can be approx-
imated as

ES|W ∗[fi] ≈
1
m

∑

j

fi(Sj)

There are2n−1 ways to segment a word ofn char-
acters. To sample a new segmentation for a partic-
ular word, we need to compute conditional proba-
bility for each of these segmentations. We currently
do this by explicit enumeration.4 Whenn is large,

4These segmentations could be enumerated implicitly us-
ing the dynamic programming framework employed by semi-
Markov CRFs (Sarawagi and Cohen, 2004). However, in such a
setting, our lexicon prior would likely need to be approximated.
We intend to investigate this in future work.

213



this is very expensive. However, we observe that
the maximum number of morphemes that a word
contains is usually a small constant for many lan-
guages; in the Arabic Penn Treebank, the longest
word contains 14 characters, but the maximum num-
ber of morphemes in a word is only 5. Therefore,
we impose the constraint that a word can be seg-
mented into no more thank morphemes, wherek
is a language-specific constant. We can determine
k from prior knowledge or use a development set.
This constraint substantially reduces the number of
segmentation candidates to consider; withk = 5, it
reduces the number of segmentations to consider by
almost 90% for a word of 14 characters.
ES,W [fi] can be computed by Gibbs sampling in

the same way, except that in each step we also sam-
ple the next word from the neighborhood, in addition
to the next segmentation.

To compute the most probable segmentation, we
use deterministic annealing. It works just like a sam-
pling algorithm except that the weights are divided
by atemperature, which starts with a large value and
gradually drops to a value close to zero. To make
burn-in faster, when computing the expected counts,
we initialize the sampler with the most probable seg-
mentation output by annealing.

7 Experiments

We evaluated our system on two datasets. Our main
evaluation is on a multi-lingual dataset constructed
by Snyder & Barzilay (2008a; 2008b). It consists of
6192 short parallel phrases in Hebrew, Arabic, Ara-
maic (a dialect of Arabic), and English. The paral-
lel phrases were extracted from the Hebrew Bible
and its translations via word alignment and post-
processing. For Arabic, the gold segmentation was
obtained using a highly accurate Arabic morpholog-
ical analyzer (Habash and Rambow, 2005); for He-
brew, from a Bible edition distributed by Westmin-
ster Hebrew Institute (Groves and Lowery, 2006).
There is no gold segmentation for English and Ara-
maic. Like Snyder & Barzilay, we evaluate on the
Arabic and Hebrew portions only; unlike their ap-
proach, our system does not use any bilingual in-
formation. We refer to this dataset asS&B . We
also report our results on the Arabic Penn Treebank
(ATB ), which provides gold segmentations for an

Arabic corpus with about 120,000 Arabic words.
As in previous work, we report recall, precision,

and F1 over segmentation points. We used 500
phrases from the S&B dataset for feature develop-
ment, and also tuned our model hyperparameters
there. The weights for the lexicon and corpus pri-
ors were set toα = −1, β = −20. The feature
weights were initialized to zero and were penalized
by a Gaussian prior withσ2 = 100. The learning
rate was set to 0.02 for all experiments, except the
full Arabic Penn Treebank, for which it was set to
0.005.5 We used 30 iterations for learning. In each
iteration, 200 samples were collected to compute
each of the two expected counts. The sampler was
initialized by running annealing for 2000 samples,
with the temperature dropping from 10 to 0.1 at 0.1
decrements. The most probable segmentation was
obtained by running annealing for 10000 samples,
using the same temperature schedule. We restricted
the segmentation candidates to those with no greater
than five segments in all experiments.

7.1 Unsupervised Segmentation on S&B

We followed the experimental set-up of Snyder &
Barzilay (2008b) to enable a direct comparison. The
dataset is split into a training set with 4/5 of the
phrases, and a test set with the remaining 1/5. First,
we carried out unsupervised learning on the training
data, and computed the most probable segmentation
for it. Then we fixed the learned weights and the seg-
mentation for training, and computed the most prob-
able segmentation for the test set, on which we eval-
uated.6 Snyder & Barzilay (2008b) compared sev-
eral versions of their systems, differing in how much
bilingual information was used. Using monolingual
information only, their system (S&B-MONO) trails
the state-of-the-art system Morfessor; however, their
best system (S&B-BEST), which uses bilingual in-
formation that includes phrasal alignment and pho-
netic correspondence between Arabic and Hebrew,
outperforms Morfessor and achieves the state-of-
the-art results on this dataset.

5The ATB set is more than an order of magnitude larger and
requires a smaller rate.

6With unsupervised learning, we can use the entire dataset
for training since no labels are provided. However, this set-
up is necessary for S&B’s system because they used bilingual
information in training, which is not available at test time.
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ARABIC Prec. Rec. F1
S&B-MONO 53.0 78.5 63.2
S&B-BEST 67.8 77.3 72.2
FULL 76.0 80.2 78.1

HEBREW Prec. Rec. F1
S&B-MONO 55.8 64.4 59.8
S&B-BEST 64.9 62.9 63.9
FULL 67.6 66.1 66.9

Table 1: Comparison of segmentation results on the S&B
dataset.

Table 1 compares our system with theirs. Our sys-
tem outperforms both S&B-MONO and S&B-BEST
by a large margin. For example, on Arabic, our sys-
tem reduces F1 error by 21% compared to S&B-
BEST, and by 40% compared to S&B-MONO. This
suggests that the use of monolingual morpheme con-
text, enabled by our log-linear model, is more help-
ful than their bilingual cues.

7.2 Ablation Tests

To evaluate the contributions of the major compo-
nents in our model, we conducted seven ablation
tests on the S&B dataset, each using a model that
differed from our full model in one aspect. The first
three tests evaluate the effect of priors, whereas the
next three test the effect of context features. The
last evaluates the impact of using separate lexicons
for affixes and stems.

NO-PRIOR The priors are not used.
NO-COR-PR The corpus prior is not used.
NO-LEX-PR The lexicon prior is not used.
NO-CONTEXT Context features are not used.
UNIGRAM Unigrams are used in context.
BIGRAM Bigrams are used in context.
SG-LEXICON A single lexicon is used, rather than

three distinct ones for the affixes and stems.

Table 2 presents the ablation results in compari-
son with the results of the full model. When some or
all priors are excluded, the F1 score drops substan-
tially (over 10 points in all cases, and over 40 points
in some). In particular, excluding the corpus prior,
as in NO-PRIOR and NO-COR-PR, results in over-
segmentation, as is evident from the high recalls and
low precisions. When the corpus prior is enacted
but not the lexicon priors (NO-LEX-PR), precision

ARABIC Prec. Rec. F1
FULL 76.0 80.2 78.1
NO-PRIOR 24.6 89.3 38.6
NO-COR-PR 23.7 87.4 37.2
NO-LEX-PR 79.1 51.3 62.3
NO-CONTEXT 71.2 62.1 66.3
UNIGRAM 71.3 76.5 73.8
BIGRAM 73.1 78.4 75.7
SG-LEXICON 72.8 82.0 77.1

HEBREW Prec. Rec. F1
FULL 67.6 66.1 66.9
NO-PRIOR 34.0 89.9 49.4
NO-COR-PR 35.6 90.6 51.1
NO-LEX-PR 65.9 49.2 56.4
NO-CONTEXT 63.0 47.6 54.3
UNIGRAM 63.0 63.7 63.3
BIGRAM 69.5 66.1 67.8
SG-LEXICON 67.4 65.7 66.6

Table 2: Ablation test results on the S&B dataset.

is much higher, but recall is low; the system now errs
on under-segmentation because recurring strings are
often not identified as morphemes.

A large accuracy drop (over 10 points in F1
score) also occurs when the context features are
excluded (NO-CONTEXT), which underscores the
importance of these overlapping features. We also
notice that the NO-CONTEXT model is compara-
ble to the S&B-MONO model; they use the same
feature types, but different priors. The accuracies of
the two systems are comparable, which suggests that
we did not sacrifice accuracy by trading the more
complex and restrictive Dirichlet process prior for
exponential priors. A priori, it is unclear whether us-
ing contexts larger than unigrams would help. While
potentially beneficial, they also risk aggravating the
data sparsity and making our model more prone to
overfitting. For this problem, however, enlarging the
context (using highern-grams up to trigrams) helps
substantially. For Arabic, the highest accuracy is at-
tained by using trigrams, which reduces F1 error by
16% compared to unigrams; for Hebrew, by using
bigrams, which reduces F1 error by 17%. Finally, it
helps to use separate lexicons for affixes and stems,
although the difference is small.
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ARABIC %Lbl. Prec. Rec. F1
S&B-MONO-S 100 73.2 92.4 81.7
S&B-BEST-S 200 77.8 92.3 84.4
FULL-S 25 84.9 85.5 85.2

50 88.2 86.8 87.5
75 89.6 86.4 87.9

100 91.7 88.5 90.0

HEBREW %Lbl. Prec. Rec. F1
S&B-MONO-S 100 71.4 79.1 75.1
S&B-BEST-S 200 76.8 79.2 78.0
FULL-S 25 78.7 73.3 75.9

50 82.8 74.6 78.4
75 83.1 77.3 80.1

100 83.0 78.9 80.9

Table 3: Comparison of segmentation results with super-
vised and semi-supervised learning on the S&B dataset.

7.3 Supervised and Semi-Supervised Learning

To evaluate our system in the supervised and semi-
supervised learning settings, we report the perfor-
mance when various amounts of labeled data are
made available during learning, and compare them
to the results of Snyder & Barzilay (2008a). They
reported results for supervised learning using mono-
lingual features only (S&B-MONO-S), and for su-
pervised bilingual learning with labels for both lan-
guages (S&B-BEST-S). On both languages, our sys-
tem substantially outperforms both S&B-MONO-S
and S&B-BEST-S. E.g., on Arabic, our system re-
duces F1 errors by 46% compared to S&B-MONO-
S, and by 36% compared to S&B-BEST-S. More-
over, with only one-fourth of the labeled data, our
system already outperforms S&B-MONO-S. This
demonstrates that our log-linear model is better
suited to take advantage of supervised labels.

7.4 Arabic Penn Treebank

We also evaluated our system on the Arabic Penn
Treebank (ATB). As is common in unsupervised
learning, we trained and evaluated on the entire set.
We compare our system with Morfessor (Creutz and
Lagus, 2007).7 In addition, we compare with Mor-
fessor Categories-MAP, which builds on Morfessor
and conducts an additional greedy search specifi-
cally tailored to segmentation. We found that it per-

7We cannot compare with Snyder & Barzilay’s system as its
strongest results require bilingual data, which is not available.

ATB-7000 Prec. Rec. F1
MORFESSOR-1.0 70.6 34.3 46.1
MORFESSOR-MAP 86.9 46.4 60.5
FULL 83.4 77.3 80.2

ATB Prec. Rec. F1
MORFESSOR-1.0 80.7 20.4 32.6
MORFESSOR-MAP 77.4 72.6 74.9
FULL 88.5 69.2 77.7

Table 4: Comparison of segmentation results on the Ara-
bic Penn Treebank.

forms much better than Morfessor on Arabic but
worse on Hebrew. To test each system in a low-
data setting, we also ran experiments on the set con-
taining the first 7,000 words in ATB with at least
two characters (ATB-7000). Table 4 shows the re-
sults. Morfessor performs rather poorly on ATB-
7000. Morfessor Categories-MAP does much bet-
ter, but its performance is dwarfed by our system,
which further cuts F1 error by half. On the full ATB
dataset, Morfessor performs even worse, whereas
Morfessor Categories-MAP benefits from the larger
dataset and achieves an F1 of 74.9. Still, our system
substantially outperforms it, further reducing F1 er-
ror by 11%.8

8 Conclusion

This paper introduces the first log-linear model for
unsupervised morphological segmentation. It lever-
ages overlapping features such as morphemes and
their contexts, and enables easy extension to incor-
porate additional features and linguistic knowledge.
For Arabic and Hebrew, it outperforms the state-
of-the-art systems by a large margin. It can also
be readily applied to supervised or semi-supervised
learning when labeled data is available. Future di-
rections include applying our model to other in-
flectional and agglutinative languages, modeling in-
ternal variations of morphemes, leveraging parallel
data in multiple languages, and combining morpho-
logical segmentation with other NLP tasks, such as
machine translation.

8Note that the ATB and ATB-7000 experiments each mea-
sure accuracy on their entire training set. This differencein
testing conditions explains why some full ATB results are lower
than ATB-7000.
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Abstract

We use the Margin Infused Relaxed Algo-
rithm of Crammer et al. to add a large num-
ber of new features to two machine transla-
tion systems: the Hiero hierarchical phrase-
based translation system and our syntax-based
translation system. On a large-scale Chinese-
English translation task, we obtain statistically
significant improvements of +1.5 B and
+1.1 B, respectively. We analyze the im-
pact of the new features and the performance
of the learning algorithm.

1 Introduction

What linguistic features can improve statistical ma-
chine translation (MT)? This is a fundamental ques-
tion for the discipline, particularly as it pertains to
improving the best systems we have. Further:

• Do syntax-based translation systems have
unique and effective levers to pull when design-
ing new features?

• Can large numbers of feature weights be
learned efficiently and stably on modest
amounts of data?

In this paper, we address these questions by exper-
imenting with a large number of new features. We
add more than 250 features to improve a syntax-
based MT system—already the highest-scoring sin-
gle system in the NIST 2008 Chinese-English
common-data track—by +1.1 B. We also add
more than 10,000 features to Hiero (Chiang, 2005)
and obtain a +1.5 B improvement.

∗This research was supported in part by DARPA contract
HR0011-06-C-0022 under subcontract to BBN Technologies.

Many of the new features use syntactic informa-
tion, and in particular depend on information that
is available only inside a syntax-based translation
model. Thus they widen the advantage that syntax-
based models have over other types of models.

The models are trained using the Margin Infused
Relaxed Algorithm or MIRA (Crammer et al., 2006)
instead of the standard minimum-error-rate training
or MERT algorithm (Och, 2003). Our results add
to a growing body of evidence (Watanabe et al.,
2007; Chiang et al., 2008) that MIRA is preferable to
MERT across languages and systems, even for very
large-scale tasks.

2 Related Work

The work of Och et al (2004) is perhaps the best-
known study of new features and their impact on
translation quality. However, it had a few shortcom-
ings. First, it used the features for reranking n-best
lists of translations, rather than for decoding or for-
est reranking (Huang, 2008). Second, it attempted to
incorporate syntax by applying off-the-shelf part-of-
speech taggers and parsers to MT output, a task these
tools were never designed for. By contrast, we incor-
porate features directly into hierarchical and syntax-
based decoders.

A third difficulty with Och et al.’s study was that
it used MERT, which is not an ideal vehicle for fea-
ture exploration because it is observed not to per-
form well with large feature sets. Others have in-
troduced alternative discriminative training meth-
ods (Tillmann and Zhang, 2006; Liang et al., 2006;
Turian et al., 2007; Blunsom et al., 2008; Macherey
et al., 2008), in which a recurring challenge is scal-
ability: to train many features, we need many train-
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ing examples, and to train discriminatively, we need
to search through all possible translations of each
training example. Another line of research (Watan-
abe et al., 2007; Chiang et al., 2008) tries to squeeze
as many features as possible from a relatively small
dataset. We follow this approach here.

3 Systems Used

3.1 Hiero
Hiero (Chiang, 2005) is a hierarchical, string-to-
string translation system. Its rules, which are ex-
tracted from unparsed, word-aligned parallel text,
are synchronous CFG productions, for example:

X→ X1 de X2,X2 of X1

As the number of nonterminals is limited to two, the
grammar is equivalent to an inversion transduction
grammar (Wu, 1997).

The baseline model includes 12 features whose
weights are optimized using MERT. Two of the fea-
tures are n-gram language models, which require
intersecting the synchronous CFG with finite-state
automata representing the language models. This
grammar can be parsed efficiently using cube prun-
ing (Chiang, 2007).

3.2 Syntax-based system
Our syntax-based system transforms source Chinese
strings into target English syntax trees. Following
previous work in statistical MT (Brown et al., 1993),
we envision a noisy-channel model in which a lan-
guage model generates English, and then a transla-
tion model transforms English trees into Chinese.
We represent the translation model as a tree trans-
ducer (Knight and Graehl, 2005). It is obtained from
bilingual text that has been word-aligned and whose
English side has been syntactically parsed. From this
data, we use the the GHKM minimal-rule extraction
algorithm of (Galley et al., 2004) to yield rules like:

NP-C(x0:NPB PP(IN(of x1:NPB))↔ x1 de x0

Though this rule can be used in either direction,
here we use it right-to-left (Chinese to English). We
follow Galley et al. (2006) in allowing unaligned
Chinese words to participate in multiple translation
rules, and in collecting larger rules composed of

minimal rules. These larger rules have been shown
to substantially improve translation accuracy (Gal-
ley et al., 2006; DeNeefe et al., 2007).

We apply Good-Turing discounting to the trans-
ducer rule counts and obtain probability estimates:

P(rule) =
count(rule)

count(LHS-root(rule))

When we apply these probabilities to derive an En-
glish sentence e and a corresponding Chinese sen-
tence c, we wind up with the joint probability P(e, c).

The baseline model includes log P(e, c), the two
n-gram language models log P(e), and other features
for a total of 25. For example, there is a pair of
features to punish rules that drop Chinese content
words or introduce spurious English content words.
All features are linearly combined and their weights
are optimized using MERT.

For efficient decoding with integrated n-gram lan-
guage models, all transducer rules must be binarized
into rules that contain at most two variables and
can be incrementally scored by the language model
(Zhang et al., 2006). Then we use a CKY-style parser
(Yamada and Knight, 2002; Galley et al., 2006) with
cube pruning to decode new sentences.

We include two other techniques in our baseline.
To get more general translation rules, we restruc-
ture our English training trees using expectation-
maximization (Wang et al., 2007), and to get more
specific translation rules, we relabel the trees with up
to 4 specialized versions of each nonterminal sym-
bol, again using expectation-maximization and the
split/merge technique of Petrov et al. (2006).

3.3 MIRA training

We incorporate all our new features into a linear
model (Och and Ney, 2002) and train them using
MIRA (Crammer et al., 2006), following previous
work (Watanabe et al., 2007; Chiang et al., 2008).

Let e stand for output strings or their derivations,
and let h(e) stand for the feature vector for e. Initial-
ize the feature weights w. Then, repeatedly:

• Select a batch of input sentences f1, . . . , fm and
decode each fi to obtain a forest of translations.

• For each i, select from the forest a set of hy-
pothesis translations ei1, . . . , ein, which are the
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10-best translations according to each of:

h(e) · w
B(e) + h(e) · w
−B(e) + h(e) · w

(1)

• For each i, select an oracle translation:

e∗ = arg max
e

(B(e) + h(e) · w) (2)

Let ∆hi j = h(e∗i ) − h(ei j).

• For each ei j, compute the loss

`i j = B(e∗i ) − B(ei j) (3)

• Update w to the value of w′ that minimizes:

1
2
‖w′ − w‖2 + C

m∑
i=1

max
1≤ j≤n

(`i j − ∆hi j · w′) (4)

where C = 0.01. This minimization is per-
formed by a variant of sequential minimal opti-
mization (Platt, 1998).

Following Chiang et al. (2008), we calculate the sen-
tence B scores in (1), (2), and (3) in the context
of some previous 1-best translations. We run 20 of
these learners in parallel, and when training is fin-
ished, the weight vectors from all iterations of all
learners are averaged together.

Since the interface between the trainer and the de-
coder is fairly simple—for each sentence, the de-
coder sends the trainer a forest, and the trainer re-
turns a weight update—it is easy to use this algo-
rithm with a variety of CKY-based decoders: here,
we are using it in conjunction with both the Hiero
decoder and our syntax-based decoder.

4 Features

In this section, we describe the new features intro-
duced on top of our baseline systems.

Discount features Both of our systems calculate
several features based on observed counts of rules in
the training data. Though the syntax-based system
uses Good-Turing discounting when computing the
P(e, c) feature, we find, as noted above, that it uses
quite a few one-count rules, suggesting that their
probabilities have been overestimated. We can di-
rectly attack this problem by adding features counti

that reward or punish rules seen i times, or features
count[i, j] for rules seen between i and j times.

4.1 Target-side features

String-to-tree MT offers some unique levers to pull,
in terms of target-side features. Because the system
outputs English trees, we can analyze output trees on
the tuning set and design new features to encourage
the decoder to produce more grammatical trees.

Rule overlap features While individual rules ob-
served in decoder output are often quite reasonable,
two adjacent rules can create problems. For exam-
ple, a rule that has a variable of type IN (preposi-
tion) needs another rule rooted with IN to fill the po-
sition. If the second rule supplies the wrong prepo-
sition, a bad translation results. The IN node here
is an overlap point between rules. Considering that
certain nonterminal symbols may be more reliable
overlap points than others, we create a binary fea-
ture for each nonterminal. A rule like:

IN(at)↔ zai

will have feature rule-root-IN set to 1 and all
other rule-root features set to 0. Our rule root fea-
tures range over the original (non-split) nontermi-
nal set; we have 105 in total. Even though the
rule root features are locally attached to individual
rules—and therefore cause no additional problems
for the decoder search—they are aimed at problem-
atic rule/rule interactions.

Bad single-level rewrites Sometimes the decoder
uses questionable rules, for example:

PP(x0:VBN x1:NP-C)↔ x0 x1

This rule is learned from 62 cases in our training
data, where the VBN is almost always the word
given. However, the decoder misuses this rule with
other VBNs. So we can add a feature that penalizes
any rule in which a PP dominates a VBN and NP-C.
The feature class bad-rewrite comprises penalties
for the following configurations based on our analy-
sis of the tuning set:

PP→ VBN NP-C

PP-BAR→ NP-C IN

VP→ NP-C PP

CONJP→ RB IN
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Node count features It is possible that the de-
coder creates English trees with too many or too few
nodes of a particular syntactic category. For exam-
ple, there may be an tendency to generate too many
determiners or past-tense verbs. We therefore add a
count feature for each of the 109 (non-split) English
nonterminal symbols. For a rule like

NPB(NNP(us) NNP(president) x0:NNP)

↔ meiguo zongtong x0

the feature node-count-NPB gets value 1, node-
count-NNP gets value 2, and all others get 0.

Insertion features Among the rules we extract
from bilingual corpora are target-language insertion
rules, which have a word on the English side, but no
words on the source Chinese side. Sample syntax-
based insertion rules are:

NPB(DT(the) x0:NN)↔ x0

S(x0:NP-C VP(VBZ(is) x1:VP-C))↔ x0 x1

We notice that our decoder, however, frequently fails
to insert words like is and are, which often have no
equivalent in the Chinese source. We also notice that
the-insertion rules sometimes have a good effect, as
in the translation “in the bloom of youth,” but other
times have a bad effect, as in “people seek areas of
the conspiracy.”

Each time the decoder uses (or fails to use) an in-
sertion rule, it incurs some risk. There is no guaran-
tee that the interaction of the rule probabilities and
the language model provides the best way to manage
this risk. We therefore provide MIRA with a feature
for each of the most common English words appear-
ing in insertion rules, e.g., insert-the and insert-is.
There are 35 such features.

4.2 Source-side features

We now turn to features that make use of source-side
context. Although these features capture dependen-
cies that cross boundaries between rules, they are
still local in the sense that no new states need to
be added to the decoder. This is because the entire
source sentence, being fixed, is always available to
every feature.

Soft syntactic constraints Neither of our systems
uses source-side syntactic information; hence, both
could potentially benefit from soft syntactic con-
straints as described by Marton and Resnik (2008).
In brief, these features use the output of an in-
dependent syntactic parser on the source sentence,
rewarding decoder constituents that match syntac-
tic constituents and punishing decoder constituents
that cross syntactic constituents. We use separately-
tunable features for each syntactic category.

Structural distortion features Both of our sys-
tems have rules with variables that generalize over
possible fillers, but neither system’s basic model
conditions a rule application on the size of a filler,
making it difficult to distinguish long-distance re-
orderings from short-distance reorderings. To rem-
edy this problem, Chiang et al. (2008) introduce a
structural distortion model, which we include in our
experiment. Our syntax-based baseline includes the
generative version of this model already.

Word context During rule extraction, we retain
word alignments from the training data in the ex-
tracted rules. (If a rule is observed with more than
one set of word alignments, we keep only the
most frequent one.) We then define, for each triple
( f , e, f+1), a feature that counts the number of times
that f is aligned to e and f+1 occurs to the right of
f ; and similarly for triples ( f , e, f−1) with f−1 occur-
ring to the left of f . In order to limit the size of the
model, we restrict words to be among the 100 most
frequently occurring words from the training data;
all other words are replaced with a token <unk>.

These features are somewhat similar to features
used by Watanabe et al. (2007), but more in the spirit
of features used in the word sense disambiguation
model introduced by Lee and Ng (2002) and incor-
porated as a submodel of a translation system by
Chan et al. (2007); here, we are incorporating some
of its features directly into the translation model.

5 Experiments

For our experiments, we used a 260 million word
Chinese/English bitext. We ran GIZA++ on the en-
tire bitext to produce IBM Model 4 word align-
ments, and then the link deletion algorithm (Fossum
et al., 2008) to yield better-quality alignments. For
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System Training Features # Tune Test
Hiero MERT baseline 11 35.4 36.1

MIRA syntax, distortion 56 35.9 36.9∗

syntax, distortion, discount 61 36.6 37.3∗∗

all source-side, discount 10990 38.4 37.6∗∗

Syntax MERT baseline 25 38.6 39.5
MIRA baseline 25 38.5 39.8∗

overlap 132 38.7 39.9∗

node count 136 38.7 40.0∗∗

all target-side, discount 283 39.6 40.6∗∗

Table 1: Adding new features with MIRA significantly improves translation accuracy. Scores are case-insensitive IBM
B scores. ∗ or ∗∗ = significantly better than MERT baseline (p < 0.05 or 0.01, respectively).

the syntax-based system, we ran a reimplementation
of the Collins parser (Collins, 1997) on the English
half of the bitext to produce parse trees, then restruc-
tured and relabeled them as described in Section 3.2.
Syntax-based rule extraction was performed on a 65
million word subset of the training data. For Hiero,
rules with up to two nonterminals were extracted
from a 38 million word subset and phrasal rules were
extracted from the remainder of the training data.

We trained three 5-gram language models: one on
the English half of the bitext, used by both systems,
one on one billion words of English, used by the
syntax-based system, and one on two billion words
of English, used by Hiero. Modified Kneser-Ney
smoothing (Chen and Goodman, 1998) was applied
to all language models. The language models are
represented using randomized data structures simi-
lar to those of Talbot et al. (2007).

Our tuning set (2010 sentences) and test set (1994
sentences) were drawn from newswire data from the
NIST 2004 and 2005 evaluations and the GALE pro-
gram (with no overlap at either the segment or doc-
ument level). For the source-side syntax features,
we used the Berkeley parser (Petrov et al., 2006) to
parse the Chinese side of both sets.

We implemented the source-side context features
for Hiero and the target-side syntax features for the
syntax-based system, and the discount features for
both. We then ran MIRA on the tuning set with 20
parallel learners for Hiero and 73 parallel learners
for the syntax-based system. We chose a stopping it-
eration based on the B score on the tuning set,
and used the averaged feature weights from all iter-

Syntax-based Hiero
count weight count weight
1 +1.28 1 +2.23
2 +0.35 2 +0.77
3–5 −0.73 3 +0.54
6–10 −0.64 4 +0.29

5+ −0.02

Table 2: Weights learned for discount features. Nega-
tive weights indicate bonuses; positive weights indicate
penalties.

ations of all learners to decode the test set.
The results (Table 1) show significant improve-

ments in both systems (p < 0.01) over already very
strong MERT baselines. Adding the source-side and
discount features to Hiero yields a +1.5 B im-
provement, and adding the target-side syntax and
discount features to the syntax-based system yields a
+1.1 B improvement. The results also show that
for Hiero, the various classes of features contributed
roughly equally; for the syntax-based system, we see
that two of the feature classes make small contribu-
tions but time constraints unfortunately did not per-
mit isolated testing of all feature classes.

6 Analysis

How did the various new features improve the trans-
lation quality of our two systems? We begin by ex-
amining the discount features. For these features,
we used slightly different schemes for the two sys-
tems, shown in Table 2 with their learned feature
weights. We see in both cases that one-count rules
are strongly penalized, as expected.
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Reward
−0.42 a
−0.13 are
−0.09 at
−0.09 on
−0.05 was
−0.05 from
−0.04 ’s
−0.04 by
−0.04 is
−0.03 it
−0.03 its

...

Penalty
+0.67 of
+0.56 the
+0.47 comma
+0.13 period
+0.11 in
+0.08 for
+0.06 to
+0.05 will
+0.04 and
+0.02 as
+0.02 have

...

Table 3: Weights learned for inserting target English
words with rules that lack Chinese words.

6.1 Syntax features

Table 3 shows word-insertion feature weights. The
system rewards insertion of forms of be; examples
1–3 in Figure 1 show typical improved translations
that result. Among determiners, inserting a is re-
warded, while inserting the is punished. This seems
to be because the is often part of a fixed phrase, such
as the White House, and therefore comes naturally
as part of larger phrasal rules. Inserting the outside
these fixed phrases is a risk that the generative model
is too inclined to take. We also note that the system
learns to punish unmotivated insertions of commas
and periods, which get into our grammar via quirks
in the MT training data.

Table 4 shows weights for rule-overlap features.
MIRA punishes the case where rules overlap with
an IN (preposition) node. This makes sense: if a
rule has a variable that can be filled by any English
preposition, there is a risk that an incorrect preposi-
tion will fill it. On the other hand, splitting at a pe-
riod is a safe bet, and frees the model to use rules that
dig deeper into NP and VP trees when constructing
a top-level S. Table 5 shows weights for generated
English nonterminals: SBAR-C nodes are rewarded
and commas are punished.

The combined effect of all weights is subtle.
To interpret them further, it helps to look at gross
changes in the system’s behavior. For example, a
major error in the baseline system is to move “X
said” or “X asked” from the beginning of the Chi-
nese input to the middle or end of the English trans-

Bonus
−0.50 period
−0.39 VP-C
−0.36 VB
−0.31 SG-C
−0.30 MD
−0.26 VBG
−0.25 ADJP
−0.22 -LRB-
−0.21 VP-BAR
−0.20 NPB-BAR
−0.16 FRAG
−0.16 PRN
−0.15 NPB
−0.13 RB
−0.12 SBAR-C
−0.12 VP-C-BAR
−0.11 -RRB-

...

Penalty
+0.93 IN
+0.57 NNP
+0.44 NN
+0.41 DT
+0.34 JJ
+0.24 right double quote
+0.20 VBZ
+0.19 NP
+0.16 TO
+0.15 ADJP-BAR
+0.14 PRN-BAR
+0.14 NML
+0.13 comma
+0.12 VBD
+0.12 NNPS
+0.12 PRP
+0.11 SG

...

Table 4: Weights learned for employing rules whose En-
glish sides are rooted at particular syntactic categories.

Bonus
−0.73 SBAR-C
−0.54 VBZ
−0.54 IN
−0.52 NN
−0.51 PP-C
−0.47 right double quote
−0.39 ADJP
−0.34 POS
−0.31 ADVP
−0.30 RP
−0.29 PRT
−0.27 SG-C
−0.22 S-C
−0.21 NNPS
−0.21 VP-BAR
−0.20 PRP
−0.20 NPB-BAR

...

Penalty
+1.30 comma
+0.80 DT
+0.58 PP
+0.44 TO
+0.33 NNP
+0.30 NNS
+0.30 NML
+0.22 CD
+0.18 PRN
+0.16 SYM
+0.15 ADJP-BAR
+0.15 NP
+0.15 MD
+0.15 HYPH
+0.14 PRN-BAR
+0.14 NP-C
+0.11 ADJP-C

...

Table 5: Weights learned for generating syntactic nodes
of various types anywhere in the English translation.
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lation. The error occurs with many speaking verbs,
and each time, we trace it to a different rule. The
problematic rules can even be non-lexical, e.g.:

S(x0:NP-C x1:VP x2:, x3:NP-C x4:VP x5:.)

↔ x3 x4 x2 x0 x1 x5

It is therefore difficult to come up with a straightfor-
ward feature to address the problem. However, when
we apply MIRA with the features already listed,
these translation errors all disappear, as demon-
strated by examples 4–5 in Figure 1. Why does this
happen? It turns out that in translation hypotheses
that move “X said” or “X asked” away from the be-
ginning of the sentence, more commas appear, and
fewer S-C and SBAR-C nodes appear. Therefore, the
new features work to discourage these hypotheses.
Example 6 shows additionally that commas next to
speaking verbs are now correctly deleted.

Examples 7–8 in Figure 1 show other kinds of
unanticipated improvements. We do not have space
for a fuller analysis, but we note that the specific ef-
fects we describe above account for only part of the
overall B improvement.

6.2 Word context features
In Table 6 are shown feature weights learned for the
word-context features. A surprising number of the
highest-weighted features have to do with transla-
tions of dates and bylines. Many of the penalties
seem to discourage spurious insertion or deletion
of frequent words (for, ’s, said, parentheses, and
quotes). Finally, we note that several of the features
(the third- and eighth-ranked reward and twelfth-
ranked penalty) shape the translation of shuo ‘said’,
preferring translations with an overt complementizer
that and without a comma. Thus these features work
together to attack a frequent problem that our target-
syntax features also addressed.

Figure 2 shows the performance of Hiero with all
of its features on the tuning and test sets over time.
The scores on the tuning set rise rapidly, and the
scores on the test set also rise, but much more slowly,
and there appears to be slight degradation after the
18th pass through the tuning data. This seems in line
with the finding of Watanabe et al. (2007) that with
on the order of 10,000 features, overfitting is possi-
ble, but we can still improve accuracy on new data.

 35
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Figure 2: Using over 10,000 word-context features leads
to overfitting, but its detrimental effects are modest.
Scores on the tuning set were obtained from the 1-best
output of the online learning algorithm, whereas scores
on the test set were obtained using averaged weights.

Early stopping would have given +0.2 B over the
results reported in Table 1.1

7 Conclusion

We have described a variety of features for statisti-
cal machine translation and applied them to syntax-
based and hierarchical systems. We saw that these
features, discriminatively trained using MIRA, led
to significant improvements, and took a closer look
at the results to see how the new features qualita-
tively improved translation quality. We draw three
conclusions from this study.

First, we have shown that these new features can
improve the performance even of top-scoring MT
systems. Second, these results add to a growing body
of evidence that MIRA is preferable to MERT for
discriminative training. When training over 10,000
features on a modest amount of data, we, like Watan-
abe et al. (2007), did observe overfitting, yet saw
improvements on new data. Third, we have shown
that syntax-based machine translation offers possi-
bilities for features not available in other models,
making syntax-based MT and MIRA an especially
strong combination for future work.

1It was this iteration, in fact, which was used to derive the
combined feature count used in the title of this paper.
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1 MERT: the united states pending israeli clarification on golan settlement plan
MIRA: the united states is waiting for israeli clarification on golan settlement plan

2 MERT: . . . the average life expectancy of only 18 months , canada ’s minority goverment will . . .
MIRA: . . . the average life expectancy of canada’s previous minority government is only 18 months . . .

3 MERT: . . . since un inspectors expelled by north korea . . .
MIRA: . . . since un inspectors were expelled by north korea . . .

4 MERT: another thing is . . . , " he said , " obviously , the first thing we need to do . . . .
MIRA: he said : " obviously , the first thing we need to do . . . , and another thing is . . . . "

5 MERT: the actual timing . . . reopened in january , yoon said .
MIRA: yoon said the issue of the timing . . .

6 MERT: . . . us - led coalition forces , said today that the crash . . .
MIRA: . . . us - led coalition forces said today that a us military . . .

7 MERT: . . . and others will feel the danger .
MIRA: . . . and others will not feel the danger .

8 MERT: in residential or public activities within 200 meters of the region , . . .
MIRA: within 200 m of residential or public activities area , . . .

Figure 1: Improved syntax-based translations due to MIRA-trained weights.

Bonus
f e context

−1.19 <unk> <unk> f−1 = ri ‘day’
−1.01 <unk> <unk> f−1 = (
−0.84 , that f−1 = shuo ‘say’
−0.82 yue ‘month’ <unk> f+1 = <unk>

−0.78 " " f−1 = <unk>

−0.76 " " f+1 = <unk>

−0.66 <unk> <unk> f+1 = nian ‘year’
−0.65 , that f+1 = <unk>

...

Penalty
f e context

+1.12 <unk> ) f+1 = <unk>

+0.83 jiang ‘shall’ be f+1 = <unk>

+0.83 zhengfu ‘government’ the f−1 = <unk>

+0.73 <unk> ) f−1 = <unk>

+0.73 <unk> ( f+1 = <unk>

+0.72 <unk> ) f−1 = ri ‘day’
+0.70 <unk> ( f−1 = ri ‘day’
+0.69 <unk> ( f−1 = <unk>

+0.66 <unk> for f−1 = <unk>

+0.66 <unk> ’s f−1 = ,
+0.65 <unk> said f−1 = <unk>

+0.60 , , f−1 = shuo ‘say’
...

Table 6: Weights learned for word-context features, which fire when English word e is generated aligned to Chinese
word f , with Chinese word f−1 to the left or f+1 to the right. Glosses for Chinese words are not part of features.
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Abstract

The tree-transducer grammars that arise in
current syntactic machine translation systems
are large, flat, and highly lexicalized. We ad-
dress the problem of parsing efficiently with
such grammars in three ways. First, we
present a pair of grammar transformations
that admit an efficient cubic-time CKY-style
parsing algorithm despite leaving most of the
grammar in n-ary form. Second, we show
how the number of intermediate symbols gen-
erated by this transformation can be substan-
tially reduced through binarization choices.
Finally, we describe a two-pass coarse-to-fine
parsing approach that prunes the search space
using predictions from a subset of the origi-
nal grammar. In all, parsing time reduces by
81%. We also describe a coarse-to-fine prun-
ing scheme for forest-based language model
reranking that allows a 100-fold increase in
beam size while reducing decoding time. The
resulting translations improve by 1.3 BLEU.

1 Introduction

Current approaches to syntactic machine translation
typically include two statistical models: a syntac-
tic transfer model and an n-gram language model.
Recent innovations have greatly improved the effi-
ciency of language model integration through multi-
pass techniques, such as forest reranking (Huang
and Chiang, 2007), local search (Venugopal et al.,
2007), and coarse-to-fine pruning (Petrov et al.,
2008; Zhang and Gildea, 2008). Meanwhile, trans-
lation grammars have grown in complexity from
simple inversion transduction grammars (Wu, 1997)
to general tree-to-string transducers (Galley et al.,

2004) and have increased in size by including more
synchronous tree fragments (Galley et al., 2006;
Marcu et al., 2006; DeNeefe et al., 2007). As a result
of these trends, the syntactic component of machine
translation decoding can now account for a substan-
tial portion of total decoding time. In this paper,
we focus on efficient methods for parsing with very
large tree-to-string grammars, which have flat n-ary
rules with many adjacent non-terminals, as in Fig-
ure 1. These grammars are sufficiently complex that
the purely syntactic pass of our multi-pass decoder is
the compute-time bottleneck under some conditions.

Given that parsing is well-studied in the mono-
lingual case, it is worth asking why MT grammars
are not simply like those used for syntactic analy-
sis. There are several good reasons. The most im-
portant is that MT grammars must do both analysis
and generation. To generate, it is natural to mem-
orize larger lexical chunks, and so rules are highly
lexicalized. Second, syntax diverges between lan-
guages, and each divergence expands the minimal
domain of translation rules, so rules are large and
flat. Finally, we see most rules very few times, so
it is challenging to subcategorize non-terminals to
the degree done in analytic parsing. This paper de-
velops encodings, algorithms, and pruning strategies
for such grammars.

We first investigate the qualitative properties of
MT grammars, then present a sequence of parsing
methods adapted to their broad characteristics. We
give normal forms which are more appropriate than
Chomsky normal form, leaving the rules mostly flat.
We then describe a CKY-like algorithm which ap-
plies such rules efficiently, working directly over the
n-ary forms in cubic time. We show how thoughtful
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NNP1 no daba una bofetada a DT2 NN3 verde

S ! NNP no daba una bofetada a DT NN verde

DT+NN ! DT NN

Maria no daba una bofetada a la bruja verde

Mary did not slap the green witch

S

NNP NNDT

NNP1 did not slap DT2 green NN3
S !

Lexical normal form (LNF) transformation

S ! NNP no daba una bofetada a DT NN verde

S\NNP ! no daba una bofetada a DT+NN verde

S ! NNP S\NNP

Anchored LNF transformation

DT+NN ! DT NN

0

22,500

45,000

67,500

90,000

1 2 3 4 5 6 7 8 9 10+

0

17,500

35,000

52,500

70,000

1 2 3 4 5 6+

Original grammar rules

NP ! DT NN NNS

S ! NNP no daba una bofetada a DT+NN verde

NP ! DT+NN NNS NP ! DT NN+NNSor

Type-minimizing binarization

Required symbols Sequences to build

DT+NN DT NN

NNS NNP NP S

DT,NN

DT,NN,NNS 

Minimal binary rules for LNF

NP ! DT+NN NNS

NP ! DT+NN NNS

X

no

la

X

daba

bruja

daba

VP ! no daba

NP ! la bruja

... Maria daba ...

S ! NP   daba

S ! NP daba
(a)

(b)

(c)

Figure 1: (a) A synchronous transducer rule has co-
indexed non-terminals on the source and target side. In-
ternal grammatical structure of the target side has been
omitted. (b) The source-side projection of the rule is a
monolingual source-language rule with target-side gram-
mar symbols. (c) A training sentence pair is annotated
with a target-side parse tree and a word alignment, which
license this rule to be extracted.

binarization can further increase parsing speed, and
we present a new coarse-to-fine scheme that uses
rule subsets rather than symbol clustering to build
a coarse grammar projection. These techniques re-
duce parsing time by 81% in aggregate. Finally,
we demonstrate that we can accelerate forest-based
reranking with a language model by pruning with
information from the parsing pass. This approach
enables a 100-fold increase in maximum beam size,
improving translation quality by 1.3 BLEU while
decreasing total decoding time.

2 Tree Transducer Grammars

Tree-to-string transducer grammars consist of
weighted rules like the one depicted in Figure 1.
Each n-ary rule consists of a root symbol, a se-
quence of lexical items and non-terminals on the
source-side, and a fragment of a syntax tree on
the target side. Each non-terminal on the source
side corresponds to a unique one on the target side.
Aligned non-terminals share a grammar symbol de-
rived from a target-side monolingual grammar.

These grammars are learned from word-aligned
sentence pairs annotated with target-side phrase
structure trees. Extraction proceeds by using word
alignments to find correspondences between target-
side constituents and source-side word spans, then
discovering transducer rules that match these con-
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S ! NNP no daba una bofetada a DT NN verde

DT+NN ! DT NN

Maria no daba una bofetada a la bruja verde
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NNP1 did not slap DT2 green NN3
S !

Lexical rules cannot contain adjacent non-terminals

S ! NNP no daba una bofetada a DT NN verde

S\NNP ! no daba una bofetada a DT+NN verde

S ! NNP S\NNP

Anchored LNF rules are bounded by lexical items
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Binary rules for LNF that minimize symbol count
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(a)
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Figure 2: Transducer grammars are composed of very flat
rules. Above, the histogram shows rule counts for each
rule size among the 332,000 rules that apply to an indi-
vidual 30-word sentence. The size of a rule is the total
number of non-terminals and lexical items in its source-
side yield.

stituent alignments (Galley et al., 2004). Given this
correspondence, an array of extraction procedures
yields rules that are well-suited to machine trans-
lation (Galley et al., 2006; DeNeefe et al., 2007;
Marcu et al., 2006). Rule weights are estimated
by discriminatively combining relative frequency
counts and other rule features.

A transducer grammarG can be projected onto its
source language, inducing a monolingual grammar.
If we weight each rule by the maximum weight of its
projecting synchronous rules, then parsing with this
projected grammar maximizes the translation model
score for a source sentence. We need not even con-
sider the target side of transducer rules until integrat-
ing an n-gram language model or other non-local
features of the target language.

We conduct experiments with a grammar ex-
tracted from 220 million words of Arabic-English
bitext, extracting rules with up to 6 non-terminals. A
histogram of the size of rules applicable to a typical
30-word sentence appears in Figure 2. The grammar
includes 149 grammatical symbols, an augmentation
of the Penn Treebank symbol set. To evaluate, we
decoded 300 sentences of up to 40 words in length
from the NIST05 Arabic-English test set.

3 Efficient Grammar Encodings

Monolingual parsing with a source-projected trans-
ducer grammar is a natural first pass in multi-pass
decoding. These grammars are qualitatively dif-
ferent from syntactic analysis grammars, such as
the lexicalized grammars of Charniak (1997) or the
heavily state-split grammars of Petrov et al. (2006).

228



In this section, we develop an appropriate grammar
encoding that enables efficient parsing.

It is problematic to convert these grammars into
Chomsky normal form, which CKY requires. Be-
cause transducer rules are very flat and contain spe-
cific lexical items, binarization introduces a large
number of intermediate grammar symbols. Rule size
and lexicalization affect parsing complexity whether
the grammar is binarized explicitly (Zhang et al.,
2006) or implicitly binarized using Early-style inter-
mediate symbols (Zollmann et al., 2006). Moreover,
the resulting binary rules cannot be Markovized to
merge symbols, as in Klein and Manning (2003), be-
cause each rule is associated with a target-side tree
that cannot be abstracted.

We also do not restrict the form of rules in the
grammar, a common technique in syntactic machine
translation. For instance, Zollmann et al. (2006)
follow Chiang (2005) in disallowing adjacent non-
terminals. Watanabe et al. (2006) limit grammars
to Griebach-Normal form. However, general tree
transducer grammars provide excellent translation
performance (Galley et al., 2006), and so we focus
on parsing with all available rules.

3.1 Lexical Normal Form
Sequences of consecutive non-terminals complicate
parsing because they require a search over non-
terminal boundaries when applied to a sentence
span. We transform the grammar to ensure that all
rules containing lexical items (lexical rules) do not
contain sequences of non-terminals. We allow both
unary and binary non-lexical rules.

Let L be the set of lexical items and V the set
of non-terminal symbols in the original grammar.
Then, lexical normal form (LNF) limits productions
to two forms:

Non-lexical: X → X1(X2)
Lexical: X → (X1)α(X2)

α = w+(Xiw
+)∗

Above, all Xi ∈ V and w+ ∈ L+. Symbols in
parentheses are optional. The nucleus α of lexical
rules is a mixed sequence that has lexical items on
each end and no adjacent non-terminals.

Converting a grammar into LNF requires two
steps. In the sequence elimination step, for every
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S !
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S ! NNP no daba una bofetada a DT NN verde

S\NNP ! no daba una bofetada a DT+NN verde

S ! NNP S\NNP
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la

X
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S ! NP   daba
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(a)
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DT+NN ! DT NN

NP ! DT NN NNS DT+NN ! DT NN

NP ! DT+NN NNS DT+NN ! DT NN

NP ! DT+NN NNS DT+NN ! DT NN

Figure 3: We transform the original grammar by first
eliminating non-terminal sequences in lexical rules.
Next, we binarize, adding a minimal number of inter-
mediate grammar symbols and binary non-lexical rules.
Finally, anchored LNF further transforms lexical rules
to begin and end with lexical items by introducing ad-
ditional symbols.

lexical rule we replace each sequence of consecutive
non-terminals X1 . . . Xn with the intermediate sym-
bol X1+. . .+Xn (abbreviated X1:n) and introduce a
non-lexical rule X1+. . .+Xn → X1 . . . Xn. In the
binarization step, we introduce further intermediate
symbols and rules to binarize all non-lexical rules
in the grammar, including those added by sequence
elimination.

3.2 Non-terminal Binarization

Exactly how we binarize non-lexical rules affects the
total number of intermediate symbols introduced by
the LNF transformation.

Binarization involves selecting a set of symbols
that will allow us to assemble the right-hand side
X1 . . . Xn of every non-lexical rule using binary
productions. This symbol set must at least include
the left-hand side of every rule in the grammar
(lexical and non-lexical), including the intermediate
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0
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1 2 3 4 5 6 7+ Figure 4: The number of non-terminal symbols intro-
duced to the grammar through LNF binarization depends
upon the policy for binarizing type sequences. This ex-
periment shows results from transforming a grammar that
has already been filtered for a particular short sentence.
Both the greedy and optimal binarizations use far fewer
symbols than naive binarizations.

symbols X1:n introduced by sequence elimination.
To ensure that a symbol sequence X1 . . . Xn can

be constructed, we select a split point k and add in-
termediate types X1:k and Xk+1:n to the grammar.
We must also ensure that the sequences X1 . . . Xk

and Xk+1 . . . Xn can be constructed. As baselines,
we used left-branching (where k = 1 always) and
right-branching (where k = n− 1) binarizations.

We also tested a greedy binarization approach,
choosing k to minimize the number of grammar
symbols introduced. We first try to select k such that
both X1:k and Xk+1:n are already in the grammar.
If no such k exists, we select k such that one of the
intermediate types generated is already used. If no
such k exists again, we choose k =

⌊
1
2n
⌋
. This pol-

icy only creates new intermediate types when nec-
essary. Song et al. (2008) propose a similar greedy
approach to binarization that uses corpus statistics to
select common types rather than explicitly reusing
types that have already been introduced.

Finally, we computed an optimal binarization that
explicitly minimizes the number of symbols in the
resulting grammar. We cast the minimization as an
integer linear program (ILP). Let V be the set of
all base non-terminal symbols in the grammar. We
introduce an indicator variable TY for each symbol
Y ∈ V + to indicate that Y is used in the grammar.
Y can be either a base non-terminal symbol Xi or
an intermediate symbol X1:n. We also introduce in-
dicators AY,Z for each pairs of symbols, indicating
that both Y and Z are used in the grammar. Let
L ⊆ V + be the set of left-hand side symbols for
all lexical and non-lexical rules already in the gram-

mar. Let R be the set of symbol sequences on the
right-hand side of all non-lexical rules. Then, the
ILP takes the form:

min
∑

Y ∈V +

TY (1)

s.t. TY = 1 ∀ Y ∈ L (2)

1 ≤
∑

k

AX1:k,Xk+1:n
∀ X1 . . . Xn ∈ R (3)

TX1:n ≤
∑

k

AX1:k,Xk+1:n
∀ X1:n (4)

AY,Z ≤ TY , AY,Z ≤ TZ ∀ Y, Z (5)

The solution to this ILP indicates which symbols
appear in a minimal binarization. Equation 1 explic-
itly minimizes the number of symbols. Equation 2
ensures that all symbols already in the grammar re-
main in the grammar.

Equation 3 does not require that a symbol repre-
sent the entire right-hand side of each non-lexical
rule, but does ensure that each right-hand side se-
quence can be built from two subsequence symbols.
Equation 4 ensures that any included intermediate
type can also be built from two subsequence types.
Finally, Equation 5 ensures that if a pair is used, each
member of the pair is included. This program can be
optimized with an off-the-shelf ILP solver.1

Figure 4 shows the number of intermediate gram-
mar symbols needed for the four binarization poli-
cies described above for a short sentence. Our ILP
solver could only find optimal solutions for very
short sentences (which have small grammars after
relativization). Because greedy requires very little
time to compute and generates symbol counts that
are close to optimal when both can be computed, we
use it for our remaining experiments.

3.3 Anchored Lexical Normal Form

We also consider a further grammar transformation,
anchored lexical normal form (ALNF), in which the
yield of lexical rules must begin and end with a lex-
ical item. As shown in the following section, ALNF
improves parsing performance over LNF by shifting
work from lexical rule applications to non-lexical

1We used lp solve: http://sourceforge.net/projects/lpsolve.
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rule applications. ALNF consists of rules with the
following two forms:

Non-lexical: X → X1(X2)
Lexical: X → w+(Xiw

+)∗

To convert a grammar into ALNF, we first transform
it into LNF, then introduce additional binary rules
that split off non-terminal symbols from the ends of
lexical rules, as shown in Figure 3.

4 Efficient CKY Parsing

We now describe a CKY-style parsing algorithm for
grammars in LNF. The dynamic program is orga-
nized into spans Sij and computes the Viterbi score
w(i, j,X) for each edge Sij [X], the weight of the
maximum parse over words i+1 to j, rooted at sym-
bol X . For each Sij , computation proceeds in three
phases: binary, lexical, and unary.

4.1 Applying Non-lexical Binary Rules
For a span Sij , we first apply the binary non-lexical
rules just as in standard CKY, computing an interme-
diate Viterbi score wb(i, j,X). Let ωr be the weight
of rule r. Then, wb(i, j,X) =

max
r=X→X1X2

ωr
j−1
max
k=i+1

w(i, k,X1) · w(k, j,X2).

The quantitiesw(i, k,X1) andw(k, j,X2) will have
already been computed by the dynamic program.
The work in this phase is cubic in sentence length.

4.2 Applying Lexical Rules
On the other hand, lexical rules in LNF can be ap-
plied without binarization, because they only apply
to particular spans that contain the appropriate lexi-
cal items. For a given Sij , we first compute all the le-
gal mappings of each rule onto the span. A mapping
consists of a correspondence between non-terminals
in the rule and subspans of Sij . In practice, there
is typically only one way that a lexical rule in LNF
can map onto a span, because most lexical items will
appear only once in the span.

Let m be a legal mapping and r its corresponding
rule. Let S(i)

k` [X] be the edge mapped to the ith non-
terminal of r underm, and ωr the weight of r. Then,

wl(i, j,X) = max
m

ωr
∏

S
(i)
k` [X]

w(k, `,X).

Again, w(k, `,X) will have been computed by the
dynamic program. Assuming only a constant num-
ber of mappings per rule per span, the work in this
phase is quadratic. We can then merge wl and wb:

w(i, j,X) = max(wl(i, j,X), wb(i, j,X)).

To efficiently compute mappings, we store lexi-
cal rules in a trie (or suffix array) – a searchable
graph that indexes rules according to their sequence
of lexical items and non-terminals. This data struc-
ture has been used similarly to index whole training
sentences for efficient retrieval (Lopez, 2007). To
find all rules that map onto a span, we traverse the
trie using depth-first search.

4.3 Applying Unary Rules
Unary non-lexical rules are applied after lexical
rules and non-lexical binary rules.

w(i, j,X) = max
r:r=X→X1

ωrw(i, j,X1).

While this definition is recursive, we allow only one
unary rule application per symbol X at each span
to prevent infinite derivations. This choice does not
limit the generality of our algorithm: chains of unar-
ies can always be collapsed via a unary closure.

4.4 Bounding Split Points for Binary Rules
Non-lexical binary rules can in principle apply to
any span Sij where j − i ≥ 2, using any split point
k such that i < k < j. In practice, however, many
rules cannot apply to many (i, k, j) triples because
the symbols for their children have not been con-
structed successfully over the subspans Sik and Skj .
Therefore, the precise looping order over rules and
split points can influence computation time.

We found the following nested looping order for
the binary phase of processing an edge Sij [X] gave
the fastest parsing times for these grammars:

1. Loop over symbols X1 for the left child

2. Loop over all rules X → X1X2 containing X1

3. Loop over split points k : i < k < j

4. Update wb(i, j,X) as necessary

This looping order allows for early stopping via
additional bookkeeping in the algorithm. We track
the following statistics as we parse:
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Grammar Bound checks Parsing time
LNF no 264
LNF yes 181
ALNF yes 104

Table 1: Adding bound checks to CKY and transforming
the grammar from LNF to anchored LNF reduce parsing
time by 61% for 300 sentences of length 40 or less. No
approximations have been applied, so all three scenarios
produce no search errors. Parsing time is in minutes.

minEND(i,X), maxEND(i,X): The minimum and
maximum position k for which symbol X was
successfully built over Sik.

minSTART(j,X), maxSTART(j,X): The minimum
and maximum position k for which symbol X
was successfully built over Skj .

We then bound k by mink and maxk in the inner
loop using these statistics. If ever mink > maxk,
then the loop is terminated early.

1. set mink = i+ 1,maxk = j − 1

2. loop over symbols X1 for the left child
mink = max(mink,minEND(i,X1))
maxk = min(maxk,maxEND(i,X1))

3. loop over rules X → X1X2

mink = max(mink,minSTART(j,X2))
maxk = min(maxk,maxSTART(j,X2))

4. loop over split points k : mink ≤ k ≤ maxk
5. update wb(i, j,X) as necessary

In this way, we eliminate unnecessary work by
avoiding split points that we know beforehand can-
not contribute to wb(i, j,X).

4.5 Parsing Time Results
Table 1 shows the decrease in parsing time from in-
cluding these bound checks, as well as switching
from lexical normal form to anchored LNF.

Using ALNF rather than LNF increases the num-
ber of grammar symbols and non-lexical binary
rules, but makes parsing more efficient in three
ways. First, it decreases the number of spans for
which a lexical rule has a legal mapping. In this way,
ALNF effectively shifts work from the lexical phase
to the binary phase. Second, ALNF reduces the time

spent searching the trie for mappings, because the
first transition into the trie must use an edge with a
lexical item. Finally, ALNF improves the frequency
that, when a lexical rule matches a span, we have
successfully built every edge Sk`[X] in the mapping
for that rule. This frequency increases from 45% to
96% with ALNF.

5 Coarse-to-Fine Search

We now consider two coarse-to-fine approximate
search procedures for parsing with these grammars.
Our first approach clusters grammar symbols to-
gether during the coarse parsing pass, following
work in analytic parsing (Charniak and Caraballo,
1998; Petrov and Klein, 2007). We collapse all
intermediate non-terminal grammar symbols (e.g.,
NP) to a single coarse symbol X, while pre-terminal
symbols (e.g., NN) are hand-clustered into 7 classes
(nouns, verbals, adjectives, punctuation, etc.). We
then project the rules of the original grammar into
this simplified symbol set, weighting each rule of
the coarse grammar by the maximum weight of any
rule that mapped onto it.

In our second and more successful approach, we
select a subset of grammar symbols. We then in-
clude only and all rules that can be built using those
symbols. Because the grammar includes many rules
that are compositions of smaller rules, parsing with
a subset of the grammar still provides meaningful
scores that can be used to prune base grammar sym-
bols while parsing under the full grammar.

5.1 Symbol Selection

To compress the grammar, we select a small sub-
set of symbols that allow us to retain as much of
the original grammar as possible. We use a voting
scheme to select the symbol subset. After conver-
sion to LNF (or ALNF), each lexical rule in the orig-
inal grammar votes for the symbols that are required
to build it. A rule votes as many times as it was ob-
served in the training data to promote frequent rules.
We then select the top nl symbols by vote count and
include them in the coarse grammar C.

We would also like to retain as many non-lexical
rules from the original grammar as possible, but the
right-hand side of each rule can be binarized in many
ways. We again use voting, but this time each non-
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Pruning Minutes Model score BLEU
No pruning 104 60,179 44.84
Clustering 79 60,179 44.84
Subsets 50 60,163 44.82

Table 2: Coarse-to-fine pruning speeds up parsing time
with minimal effect on either model score or translation
quality. The coarse grammar built using symbol subsets
outperforms clustering grammar symbols, reducing pars-
ing time by 52%. These experiments do not include a
language model.

lexical rule votes for its yield, a sequence of sym-
bols. We select the top nu symbol sequences as the
setR of right-hand sides.

Finally, we augment the symbol set of C with in-
termediate symbols that can construct all sequences
in R, using only binary rules. This step again re-
quires choosing a binarization for each sequence,
such that a minimal number of additional symbols is
introduced. We use the greedy approach from Sec-
tion 3.2. We then include in C all rules from the
original grammar that can be built from the symbols
we have chosen. Surprisingly, we are able to re-
tain 76% of the grammar rules while excluding 92%
of the grammar symbols2, which speeds up parsing
substantially.

5.2 Max Marginal Thresholding

We parse first with the coarse grammar to find the
Viterbi derivation score for each edge Sij [X]. We
then perform a Viterbi outside pass over the chart,
like a standard outside pass but replacing

∑
with

max (Goodman, 1999). The product of an edge’s
Viterbi score and its Viterbi outside score gives a
max marginal, the score of the maximal parse that
uses the edge.

We then prune away regions of the chart that de-
viate in their coarse max marginal from the global
Viterbi score by a fixed margin tuned on a develop-
ment set. Table 2 shows that both methods of con-
structing a coarse grammar are effective in pruning,
but selecting symbol subsets outperformed the more
typical clustering approach, reducing parsing time
by an additional factor of 2.

2We used nl of 500 and nu of 4000 for experiments. These
parameters were tuned on a development set.

6 Language Model Integration

Large n-gram language models (LMs) are critical
to the performance of machine translation systems.
Recent innovations have managed the complexity
of LM integration using multi-pass architectures.
Zhang and Gildea (2008) describes a coarse-to-fine
approach that iteratively increases the order of the
LM. Petrov et al. (2008) describes an additional
coarse-to-fine hierarchy over language projections.
Both of these approaches integrate LMs via bottom-
up dynamic programs that employ beam search. As
an alternative, Huang and Chiang (2007) describes a
forest-based reranking algorithm called cube grow-
ing, which also employs beam search, but focuses
computation only where necessary in a top-down
pass through a parse forest.

In this section, we show that the coarse-to-fine
idea of constraining each pass using marginal pre-
dictions of the previous pass also applies effectively
to cube growing. Max marginal predictions from the
parse can substantially reduce LM integration time.

6.1 Language Model Forest Reranking

Parsing produces a forest of derivations, where each
edge in the forest holds its Viterbi (or one-best)
derivation under the transducer grammar. In forest
reranking via cube growing, edges in the forest pro-
duce k-best lists of derivations that are scored by
both the grammar and an n-gram language model.
Using ALNF, each edge must first generate a k-best
list of derivations that are not scored by the language
model. These derivations are then flattened to re-
move the binarization introduced by ALNF, so that
the resulting derivations are each rooted by an n-
ary rule r from the original grammar. The leaves of
r correspond to sub-edges in the chart, which are
recursively queried for their best language-model-
scored derivations. These sub-derivations are com-
bined by r, and new n-grams at the edges of these
derivations are scored by the language model.

The language-model-scored derivations for the
edge are placed on a priority queue. The top of
the priority queue is repeatedly removed, and its
successors added back on to the queue, until k
language-model-scored derivations have been dis-
covered. These k derivations are then sorted and
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Pruning Max TM LM Total Inside Outside LM Total
strategy beam BLEU score score score time time time time
No pruning 20 57.67 58,570 -17,202 41,368 99 0 247 346
CTF parsing 200 58.43 58,495 -16,929 41,556 53 0 186 239
CTF reranking 200 58.63 58,582 -16,998 41,584 98 64 79 241
CTF parse + rerank 2000 58.90 58,602 -16,980 41,622 53 52 148 253

Table 3: Time in minutes and performance for 300 sentences. We used a trigram language model trained on 220
million words of English text. The no pruning baseline used a fix beam size for forest-based language model reranking.
Coarse-to-fine parsing included a coarse pruning pass using a symbol subset grammar. Coarse-to-fine reranking used
max marginals to constrain the reranking pass. Coarse-to-fine parse + rerank employed both of these approximations.

supplied to parent edges upon request.3

6.2 Coarse-to-Fine Parsing
Even with this efficient reranking algorithm, inte-
grating a language model substantially increased de-
coding time and memory use. As a baseline, we
reranked using a small fixed-size beam of 20 deriva-
tions at each edge. Larger beams exceeded the mem-
ory of our hardware. Results appear in Table 3.

Coarse-to-fine parsing before LM integration sub-
stantially improved language model reranking time.
By pruning the chart with max marginals from the
coarse symbol subset grammar from Section 5, we
were able to rerank with beams of length 200, lead-
ing to a 0.8 BLEU increase and a 31% reduction in
total decoding time.

6.3 Coarse-to-Fine Forest Reranking
We realized similar performance and speed bene-
fits by instead pruning with max marginals from the
full grammar. We found that LM reranking explored
many edges with low max marginals, but used few
of them in the final decoder output. Following the
coarse-to-fine paradigm, we restricted the reranker
to edges with a max marginal above a fixed thresh-
old. Furthermore, we varied the beam size of each
edge based on the parse. Let ∆m be the ratio of
the max marginal for edge m to the global Viterbi
derivation for the sentence. We used a beam of size⌈
k · 2ln ∆m

⌉
for each edge.

Computing max marginals under the full gram-
mar required an additional outside pass over the full
parse forest, adding substantially to parsing time.

3Huang and Chiang (2007) describes the cube growing al-
gorithm in further detail, including the precise form of the suc-
cessor function for derivations.

However, soft coarse-to-fine pruning based on these
max marginals also allowed for beams up to length
200, yielding a 1.0 BLEU increase over the baseline
and a 30% reduction in total decoding time.

We also combined the coarse-to-fine parsing ap-
proach with this soft coarse-to-fine reranker. Tiling
these approximate search methods allowed another
10-fold increase in beam size, further improving
BLEU while only slightly increasing decoding time.

7 Conclusion

As translation grammars increase in complexity
while innovations drive down the computational cost
of language model integration, the efficiency of the
parsing phase of machine translation decoding is be-
coming increasingly important. Our grammar nor-
mal form, CKY improvements, and symbol subset
coarse-to-fine procedure reduced parsing time for
large transducer grammars by 81%.

These techniques also improved forest-based lan-
guage model reranking. A full decoding pass with-
out any of our innovations required 511 minutes us-
ing only small beams. Coarse-to-fine pruning in
both the parsing and language model passes allowed
a 100-fold increase in beam size, giving a perfor-
mance improvement of 1.3 BLEU while decreasing
total decoding time by 50%.
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Abstract

We propose a novel probabilistic syn-
choronous context-free grammar formalism
for statistical machine translation, in which
syntactic nonterminal labels are represented
as “soft” preferences rather than as “hard”
matching constraints. This formalism allows
us to efficiently score unlabeled synchronous
derivations without forgoing traditional
syntactic constraints. Using this score as a
feature in a log-linear model, we are able
to approximate the selection of the most
likely unlabeled derivation. This helps
reduce fragmentation of probability across
differently labeled derivations of the same
translation. It also allows the importance of
syntactic preferences to be learned alongside
other features (e.g., the language model)
and for particular labeling procedures. We
show improvements in translation quality on
small and medium sized Chinese-to-English
translation tasks.

1 Introduction

Probabilistic synchronous context-free grammars
(PSCFGs) define weighted production rules that are
automatically learned from parallel training data. As
in classical CFGs, these rules make use of nontermi-
nal symbols to generalize beyond lexical modeling
of sentences. In MT, this permits translation and re-
ordering to be conditioned on more abstract notions
of context. For example,

VP→ ne VB1 pas # do not VB1

represents the discontiguous translation of the
French words “ne” and “pas” to “do not”, in the con-
text of the labeled nonterminal symbol “VB” (rep-
resenting syntactic category “verb”). Translation
with PSCFGs is typically expressed as the problem

of finding the maximum-weighted derivation consis-
tent with the source sentence, where the scores are
defined (at least in part) by R-valued weights asso-
ciated with the rules. A PSCFG derivation is a syn-
chronous parse tree.

Defining the translation function as finding the
best derivation has the unfortunate side effect of
forcing differently-derived versions of the same tar-
get sentence to compete with each other. In other
words, the true score of each translation is “frag-
mented” across many derivations, so that each trans-
lation’s most probable derivation is the only one that
matters. The more Bayesian approach of finding
the most probable translation (integrating out the
derivations) instantiates an NP-hard inference prob-
lem even for simple word-based models (Knight,
1999); for grammar-based translation it is known
as the consensus problem (Casacuberta and de la
Higuera, 2000; Sima’an, 2002).

With weights interpreted as probabilities, the
maximum-weighted derivation is the maximum a
posteriori (MAP) derivation:

ê ← argmax
e

max
d
p(e, d | f)

where f is the source sentence, e ranges over tar-
get sentences, and d ranges over PSCFG deriva-
tions (synchronous trees). This is often described
as an approximation to the most probable transla-
tion, argmaxe

∑
d p(e, d | f). In this paper, we

will describe a technique that aims to find the most
probable equivalence class of unlabeled derivations,
rather than a single labeled derivation, reducing the
fragmentation problem. Solving this problem ex-
actly is still an NP-hard consensus problem, but we
provide approximations that build on well-known
PSCFG decoding methods. Our model falls some-
where between PSCFGs that extract nonterminal
symbols from parse trees and treat them as part of
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the derivation (Zollmann and Venugopal, 2006) and
unlabeled hierarchical structures (Chiang, 2005); we
treat nonterminal labels as random variables chosen
at each node, with each (unlabeled) rule express-
ing “preferences” for particular nonterminal labels,
learned from data.

The paper is organized as follows. In Section 2,
we summarize the use of PSCFG grammars for
translation. We describe our model (Section 3).
Section 4 explains the preference-related calcula-
tions, and Section 5 addresses decoding. Experi-
mental results using preference grammars in a log-
linear translation model are presented for two stan-
dard Chinese-to-English tasks in Section 6. We re-
view related work (Section 7) and conclude.

2 PSCFGs for Machine Translation

Probabilistic synchronous context-free grammars
(PSCFGs) are defined by a source terminal set
(source vocabulary) TS , a target terminal set (target
vocabulary) TT , a shared nonterminal set N and a
setR of rules of the form: X → 〈γ, α,w〉 where

• X ∈ N is a labeled nonterminal referred to as the
left-hand-side of the rule.

• γ ∈ (N ∪ TS)∗ is the source side of the rule.

• α ∈ (N ∪ TT )∗ is the target side of the rule.

• w ∈ [0,∞) is a nonnegative real-valued weight
assigned to the rule.

For visual clarity, we will use the # character to sep-
arate the source side of the rule γ from the target
side α. PSCFG rules also have an implied one-to-
one mapping between nonterminal symbols in γ and
nonterminals symbols in α. Chiang (2005), Zoll-
mann and Venugopal (2006) and Galley et al. (2006)
all use parameterizations of this PSCFG formalism1.

Given a source sentence f and a PSCFG G, the
translation task can be expressed similarly to mono-
lingual parsing with a PCFG. We aim to find the
most likely derivation d of the input source sentence
and read off the English translation, identified by
composing α from each rule used in the derivation.
This search for the most likely translation under the

1Galley et al. (2006) rules are formally defined as tree trans-
ducers but have equivalent PSCFG forms.

MAP approximation can be defined as:

ê = tgt

(
argmax

d∈D(G):src(d)=f
p(d)

)
(1)

where tgt(d) is the target-side yield of a derivation
d, and D(G) is the set of G’s derivations. Using an
n-gram language model to score derivations and rule
labels to constraint the rules that form derivations,
we define p(d) as log-linear model in terms of the
rules r ∈ R used in d as:

p(d) = pLM(tgt(d))λ0 ×
(

m∏

i=1

pi(d)λi

)

×psyn(d)λm+1/Z(~λ)

pi(d) =
∏

r∈R
hi(r)freq(r;d) (2)

psyn(d) =
{

1 if d respects label constraints
0 otherwise

(3)

where ~λ = λ0 · · ·λm+1 are weights that reflect the
relative importance of features in the model. The
features include the n-gram language model (LM)
score of the target yield sequence, a collection of m
rule feature functions hi : R → R≥0, and a “syn-
tax” feature that (redundantly) requires every non-
terminal token to be expanded by a rule with that
nonterminal on its left-hand side. freq(r; d) denotes
the frequency of the rule r in the derivation d. Note
that λm+1 can be effectively ignored when psyn is
defined as in Equation 3. Z(~λ) is a normalization
constant that does not need to be computed during
search under the argmax search criterion in Equa-
tion 1. Feature weights ~λ are trained discrimina-
tively in concert with the language model weight
to maximize the BLEU (Papineni et al., 2002) au-
tomatic evaluation metric via Minimum Error Rate
Training (MERT) (Och, 2003).

We use the open-source PSCFG rule extraction
framework and decoder from Zollmann et al. (2008)
as the framework for our experiments. The asymp-
totic runtime of this decoder is:

O
(
|f |3

[
|N ||TT |2(n−1)

]K)
(4)

where K is the maximum number of nonterminal
symbols per rule, |f | the source sentence length, and
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n is the order of the n-gram LM that is used to com-
pute pLM. This constant factor in Equation 4 arises
from the dynamic programming item structure used
to perform search under this model. Using notation
from Chiang (2007), the corresponding item struc-
ture is:

[X, i, j, q(α)] : w (5)

whereX is the nonterminal label of a derivation, i, j
define a span in the source sentence, and q(α) main-
tains state required to compute pLM(α). Under the
MAP criterion we can discard derivations of lower
weight that share this item structure, but in practice
we often require additional lossy pruning to limit the
number of items produced. The Syntax-Augmented
MT model of Zollmann and Venugopal (2006), for
instance, produces a very large nonterminal set us-
ing “slash” (NP/NN→ the great) and “plus” labels
(NP+VB → she went) to assign syntactically mo-
tivated labels for rules whose target words do not
correspond to constituents in phrase structure parse
trees. These labels lead to fragmentation of prob-
ability across many derivations for the same target
sentence, worsening the impact of the MAP approx-
imation. In this work we address the increased frag-
mentation resulting from rules with labeled nonter-
minals compared to unlabeled rules (Chiang, 2005).

3 Preference Grammars

We extend the PSCFG formalism to include soft “la-
bel preferences” for unlabeled rules that correspond
to alternative labelings that have been encountered
in training data for the unlabeled rule form. These
preferences, estimated via relative frequency counts
from rule occurrence data, are used to estimate the
feature psyn(d), the probability that an unlabeled
derivation can be generated under traditional syn-
tactic constraints. In classic PSCFG, psyn(d) en-
forces a hard syntactic constraint (Equation 3). In
our approach, label preferences influence the value
of psyn(d).

3.1 Motivating example

Consider the following labeled Chinese-to-English
PSCFG rules:

(4) S → �(êý VB1 #
a place where I can VB1

(3) S → �(êý VP1 #
a place where I can VP1

(2) SBAR → �(êý VP1 #
a place where I can VP1

(1) FRAG → �(êý AUX1 #
a place where I can AUX1

(8) VB → �m # eat
(1) VP → �m # eat
(1) NP → �m # eat

(10) NN → �m # dish

where the numbers are frequencies of the rule from
the training corpus. In classical PSCFG we can think
of the nonterminals mentioned in the rules as hard
constraints on which rules can be used to expand a
particular node; e.g., a VP can only be expanded by
a VP rule. In Equation 2, psyn(d) explicitly enforces
this hard constraint. Instead, we propose softening
these constraints. In the rules below, labels are rep-
resented as soft preferences.

(10) X → �(êý X1 #
a place where I can X1




p(H0 = S, H1 = VB | r) = 0.4
p(H0 = S, H1 = VP | r) = 0.3

p(H0 = SBAR, H1 = VP | r) = 0.2
p(H0 = FRAG, H1 = AUX | r) = 0.1





(10) X → �m # eat{
p(H0 = VB | r) = 0.8
p(H0 = VP | r) = 0.1
p(H0 = NP | r) = 0.1

}

(10) X → �m # dish
{ p(H0 = NN | r) = 1.0 }

Each unlabeled form of the rule has an associated
distribution over labels for the nonterminals refer-
enced in the rule; the labels are random variables
Hi, with H0 the left-hand-side label. These un-
labeled rule forms are simply packed representa-
tions of the original labeled PSCFG rules. In ad-
dition to the usual features hi(r) for each rule, esti-
mated based on unlabeled rule frequencies, we now
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have label preference distributions. These are esti-
mated as relative frequencies from the labelings of
the base, unlabeled rule. Our primary contribution
is how we compute psyn(d)—the probability that
an unlabeled derivation adheres to traditional syn-
tactic constraints—for derivations built from prefer-
ence grammar rules. By using psyn(d) as a feature
in the log-linear model, we allow the MERT frame-
work to evaluate the importance of syntactic struc-
ture relative to other features.

The example rules above highlight the potential
for psyn(d) to affect the choice of translation. The
translation of the Chinese word sequence � ( ê
ý �m can be performed by expanding the non-
terminal in the rule “a place where I can X1” with
either “eat” or “dish.” A hierarchical system (Chi-
ang, 2005) would allow either expansion, relying on
features like pLM to select the best translation since
both expansions occurred the same number of times
in the data.

A richly-labeled PSCFG as in Zollmann and
Venugopal (2006) would immediately reject the rule
generating “dish” due to hard label matching con-
straints, but would produce three identical, compet-
ing derivations. Two of these derivations would pro-
duce S as a root symbol, while one derivation would
produce SBAR. The two S-labeled derivations com-
pete, rather than reinforce the choice of the word
“eat,” which they both make. They will also com-
pete for consideration by any decoder that prunes
derivations to keep runtime down.

The rule preferences indicate that VB and VP are
both valid labels for the rule translating to “eat”, and
both of these labels are compatible with the argu-
ments expected by “a place where I can X1”. Al-
ternatively, “dish” produces a NN label which is
not compatible with the arguments of this higher-
up rule. We design psyn(d) to reflect compatibility
between two rules (one expanding a right-hand side
nonterminal in the other), based on label preference
distributions.

3.2 Formal definition

Probabilistic synchronous context-free preference
grammars are defined as PSCFGs with the follow-
ing additional elements:

• H: a set of implicit labels, not to be confused

with the explicit label set N .

• π: H → N , a function that associates each im-
plicit label with a single explicit label. We can
therefore think ofH symbols as refinements of
the nonterminals inN (Matsusaki et al., 2005).

• For each rule r, we define a probability distri-
bution over vectors ~h of implicit label bindings
for its nonterminals, denoted ppref(~h | r). ~h
includes bindings for the left-hand side nonter-
minal (h0) as well as each right-hand side non-
terminal (h1, ..., h|~h|). Each hi ∈ H.

When N ,H are defined to include just a single
generic symbol as in (Chiang, 2005), we produce the
unlabeled grammar discussed above. In this work,
we define

• N = {S,X}

• H = {NP,DT,NN · · · } = NSAMT

where N corresponds to the generic labels of Chi-
ang (2005) and H corresponds to the syntactically
motivated SAMT labels from (Zollmann and Venu-
gopal, 2006), and π maps all elements of H to
X . We will use hargs(r) to denote the set of all
~h = 〈h0, h1, ..., hk〉 ∈ Hk+1 that are valid bindings
for the rule with nonzero preference probability.

The preference distributions ppref from each rule
used in d are used to compute psyn(d) as described
next.

4 Computing feature psyn(d)

Let us view a derivation d as a collection of nonter-
minal tokens nj , j ∈ {1, ..., |d|}. Each nj takes an
explicit label in N . The score psyn(d) is a product,
with one factor per nj in the derivation d:

psyn(d) =
|d|∏

j=1

φj (6)

Each φj factor considers the two rules that nj partic-
ipates in. We will refer to the rule above nonterminal
token nj as rj (the nonterminal is a child in this rule)
and the rule that expands nonterminal token j as rj .

The intuition is that derivations in which these
two rules agree (at each j) about the implicit label
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for nj , in H are preferable to derivations in which
they do not. Rather than making a decision about
the implicit label, we want to reward psyn when rj
and rj are consistent. Our way of measuring this
consistency is an inner product of preference distri-
butions:

φj ∝
∑

h∈H
ppref(h | rj)ppref(h | rj) (7)

This is not quite the whole story, because ppref(· | r)
is defined as a joint distribution of all the implicit
labels within a rule; the implicit labels are not in-
dependent of each other. Indeed, we want the im-
plicit labels within each rule to be mutually consis-
tent, i.e., to correspond to one of the rule’s preferred
labelings, for both hargs(r) and hargs(r).

Our approach to calculating psyn within the dy-
namic programming algorithm is to recursively cal-
culate preferences for each chart item based on (a)
the smaller items used to construct the item and
(b) the rule that permits combination of the smaller
items into the larger one. We describe how the pref-
erences for chart items are calculated. Let a chart
item be denoted [X, i, j, u, ...] where X ∈ N and i
and j are positions in the source sentence, and

u : {h ∈ H | π(h) = X} → [0, 1]

(where
∑

h u(h) = 1) denotes a distribution over
possible X-refinement labels. We will refer to it
below as the left-hand-side preference distribution.
Additional information (such as language model
state) may also be included; it is not relevant here.

The simplest case is for a nonterminal token nj
that has no nonterminal children. Here the left-hand-
side preference distribution is simply given by

u(h) = ppref(h | rj) .

and we define the psyn factor to be φj = 1.
Now consider the dynamic programming step

of combining an already-built item [X, i, j, u, ...]
rooted by explicit nonterminal X , spanning source
sentence positions i to j, with left-hand-side prefer-
ence distribution u, to build a larger item rooted by
Y through a rule r = Y → 〈γX1γ

′, αX1α
′, w〉with

preferences ppref(· | r).2 The new item will have
2We assume for the discussion that α, α′ ∈ T ∗S and γ, γ′ ∈

signature [Y, i − |γ|, j + |γ′|, v, ...]. The left-hand-
side preferences v for the new item are calculated as
follows:

v(h) =
ṽ(h)∑
h′ ṽ(h′)

where (8)

ṽ(h) =
∑

h′∈H:〈h,h′〉∈hargs(r)

ppref(〈h, h′〉 | r)× u(h′)

Renormalizing keeps the preference vectors on the
same scale as those in the rules. The psyn factor φ,
which is factored into the value of the new item, is
calculated as:

φ =
∑

h′∈H:〈h,h′〉∈hargs(r)

u(h′) (9)

so that the value considered for the new item is w ×
φ × ..., where factors relating to pLM, for example,
may also be included. Coming back to our example,
if we let r be the leaf rule producing “eat” at shared
nonterminal n1, we generate an item with:

u = 〈u(VB) = 0.8, u(VP) = 0.1, u(NP) = 0.1〉
φ1 = 1

Combining this item with X → 〈 � ( ê ý X1

# a place where I can X1 〉 as r2 at nonterminal n2

generates a new target item with translation “a place
where I can eat”, φ2 = 0.9 and v as calculated in
Fig. 1. In contrast, φ2 = 0 for the derivation where
r is the leaf rule that produces “dish”.

This calculation can be seen as a kind of single-
pass, bottom-up message passing inference method
embedded within the usual dynamic programming
search.

5 Decoding Approximations

As defined above, accurately computing psyn(d) re-
quires extending the chart item structure with u. For
models that use the n-gram LM feature, the item
structure would be:

[X, i, j, q(α), u] : w (10)

Since u effectively summarizes the choice of rules
in a derivation, this extension would partition the

T ∗T . If there are multiple nonterminals on the right-hand side
of the rule, we sum over the longer sequences in hargs(r) and
include appropriate values from the additional “child” items’
preference vectors in the product.
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ṽ(S) = ppref (〈h = S, h′ = VB〉 | r)u(VB) + ppref (〈h = S, h′ = VP〉 | r)u(VP) = (0.4× 0.8) + (0.3× 0.1) = 0.35
ṽ(SBAR) = p(〈h = SBAR, h′ = VP〉 | r)u(VP) = (0.2× 0.1) = 0.02
v = 〈v(S) = 0.35/(ṽ(S) + ṽ(SBAR)), v(SBAR) = 0.02/ṽ(S) + ṽ(SBAR)〉 = 〈v(S) = 0.35/0.37, v(SBAR) = 0.02/0.37〉
φ2 = u(VB) + u(VP) = 0.8 + 0.1 = 0.9

Figure 1: Calculating v and φ2 for the running example.

search space further. To prevent this partitioning, we
follow the approach of Venugopal et al. (2007). We
keep track of u for the best performing derivation
from the set of derivations that share [X, i, j, q(α)]
in a first-pass decoding. In a second top-down pass
similar to Huang and Chiang (2007), we can recal-
culate psyn(d) for alternative derivations in the hy-
pergraph; potentially correcting search errors made
in the first pass.

We face another significant practical challenge
during decoding. In real data conditions, the size
of the preference vector for a single rule can be very
high, especially for rules that include multiple non-
terminal symbols that are located on the left and
right boundaries of γ. For example, the Chinese-
to-English rule X → 〈 X1 � X2 # X1 ’s X2 〉 has
over 24K elements in hargs(r) when learned for the
medium-sized NIST task used below. In order to
limit the explosive growth of nonterminals during
decoding for both memory and runtime reasons, we
define the following label pruning parameters:

• βR: This parameter limits the size of hargs(r) to
the βR top-scoring preferences, defaulting other
values to zero.
• βL: This parameter is the same as βR but applied

only to rules with no nonterminals. The stricter of
βL and βR is applied if both thresholds apply.
• βP : This parameter limits the number labels in

item preference vectors (Equation 8) to the βP
most likely labels during decoding, defaulting
other preferences to zero.

6 Empirical Results

We evaluate our preference grammar model on
small (IWSLT) and medium (NIST) data Chinese-
to-English translation tasks (described in Table 1).
IWSLT is a limited domain, limited resource task
(Paul, 2006), while NIST is a broadcast news task
with wide genre and domain coverage. We use a

subset of the full training data (67M words of En-
glish text) from the annual NIST MT Evaluation.
Development corpora are used to train model pa-
rameters via MERT. We use a variant of MERT that
prefers sparse solutions where λi = 0 for as many
features as possible. At each MERT iteration, a sub-
set of features λ are assigned 0 weight and optimiza-
tion is repeated. If the resulting BLEU score is not
lower, these features are left at zero.

All systems are built on the SAMT framework
described in Zollmann et al. (2008), using a tri-
gram LM during search and the full-order LM dur-
ing a second hypergraph rescoring pass. Reorder-
ing limits are set to 10 words for all systems. Prun-
ing parameters during decoding limit the number of
derivations at each source span to 300.

The system “Hier.” uses a grammar with a single
nonterminal label as in Chiang (2005). The system
“Syntax” applies the grammar from Zollmann and
Venugopal (2006) that generates a large number of
syntactically motivated nonterminal labels. For the
NIST task, rare rules are discarded based on their
frequency in the training data. Purely lexical rules
(that include no terminal symbols) that occur less
than 2 times, or non-lexical rules that occur less than
4 times are discarded.

IWSLT task: We evaluate the preference gram-
mar system “Pref.” with parameters βR = 100,
βL = 5, βP = 2. Results comparing systems Pref.
to Hier. and Syntax are shown in Table 2. Auto-
matic evaluation results using the preference gram-
mar translation model are positive. The preference
grammar system shows improvements over both the
Hier. and Syntax based systems on both unseen eval-
uation sets IWSLT 2007 and 2008. The improve-
ments are clearest on the BLEU metric (matching
the MERT training criteria). On 2007 test data,
Pref. shows a 1.2-point improvement over Hier.,
while on the 2008 data, there is a 0.6-point improve-
ment. For the IWSLT task, we report additional au-
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System Name Words in Target Text LM singleton 1-n-grams (n) Dev. Test
IWSLT 632K 431K (5) IWSLT06 IWSLT07,08
NIST 67M 102M (4) MT05 MT06

Table 1: Training data configurations used to evaluate preference grammars. The number of words in the target text
and the number of singleton 1-n-grams represented in the complete model are the defining statistics that characterize
the scale of each task. For each LM we also indicate the order of the n-gram model.

System Dev
BLEU
(lpen) ↑

2007
BLEU
(lpen) ↑

2008
BLEU
(lpen) ↑

2008
WER ↓

2008 PER
↓

2008
MET. ↑

2008
GTM ↑

Hier. 28.0
(0.89)

37.0
(0.89)

45.9
(0.91)

44.5 39.9 61.8 70.7

Syntax 30.9
(0.96)

35.5
(0.94)

45.3
(0.95)

45.7 40.4 62.1 71.5

Pref. 28.3
(0.88)

38.2
(0.90)

46.3
(0.91)

43.8 40.0 61.7 71.2

Table 2: Translation quality metrics on the IWSLT translation task, with IWSLT 2006 as the development corpora, and
IWSLT 2007 and 2008 as test corpora. Each metric is annotated with an ↑ if increases in the metric value correspond
to increase in translation quality and a ↓ if the opposite is true. We also list length penalties for the BLEU metric to
show that improvements are not due to length optimizations alone.

tomatic evaluation metrics that generally rank the
Pref. system higher than Hier. and Syntax. As a fur-
ther confirmation, our feature selection based MERT
chooses to retain λm+1 in the model. While the
IWSLT results are promising, we perform a more
complete evaluation on the NIST translation task.

NIST task: This task generates much larger rule
preference vectors than the IWSLT task simply due
to the size of the training corpora. We build sys-
tems with both βR = 100, 10 varying βP . Vary-
ing βP isolates the relative impact of propagating
alternative nonterminal labels within the preference
grammar model. βL = 5 for all NIST systems. Pa-
rameters λ are trained via MERT on the βR = 100,
βL = 5, βP = 2 system. BLEU scores for each
preference grammar and baseline system are shown
in Table 3, along with translation times on the test
corpus. We also report length penalties to show that
improvements are not simply due to better tuning of
output length.

The preference grammar systems outperform the
Hier. baseline by 0.5 points on development data,
and upto 0.8 points on unseen test data. While sys-
tems with βR = 100 take significantly longer to
translate the test data than Hier., setting βR = 10
takes approximately as long as the Syntax based sys-
tem but produces better slightly better results (0.3

points).

The improvements in translation quality with the
preference grammar are encouraging, but how much
of this improvement can simply be attributed to
MERT finding a better local optimum for parame-
ters λ? To answer this question, we use parameters
λ? optimized by MERT for the preference grammar
system to run a purely hierarchical system, denoted
Hier.(λ?), which ignores the value of λm+1 during
decoding. While almost half of the improvement
comes from better parameters learned via MERT for
the preference grammar systems, 0.5 points can be
still be attributed purely to the feature psyn. In addi-
tion, MERT does not set parameter λm+1 to 0, cor-
roborating the value of the psyn feature again. Note
that Hier.(λ?) achieves better scores than the Hier.
system which was trained via MERT without psyn.
This highlights the local nature of MERT parameter
search, but also points to the possibility that train-
ing with the feature psyn produced a more diverse
derivation space, resulting in better parameters λ.
We see a very small improvement (0.1 point) by al-
lowing the runtime propagation of more than 1 non-
terminal label in the left-hand side posterior distribu-
tion, but the improvement doesn’t extend to βP = 5.
Improved integration of the feature psyn(d) into de-
coding might help to widen this gap.
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Test
Dev. Test time

System BLEU (lpen) BLEU (lpen) (h:mm)
Baseline Systems

Hier. 34.1 (0.99) 31.8 (0.95) 0:12
Syntax 34.7 (0.99) 32.3 (0.95) 0:45

Hier.(λ?) - 32.1 (0.95) 0:12
Preference Grammar: βR = 100
βP = 1 - 32.5 (0.96) 3:00
βP = 2 34.6 (0.99) 32.6 (0.95) 3:00
βP = 5 - 32.5 (0.95) 3:20

Preference Grammar: βR = 10
βP = 1 - 32.5 (0.95) 1:03
βP = 2 - 32.6 (0.95) 1:10
βP = 5 - 32.5 (0.95) 1:10

Table 3: Translation quality and test set translation time
(using 50 machines with 2 tasks per machine) measured
by the BLEU metric for the NIST task. NIST 2006 is
used as the development (Dev.) corpus and NIST 2007 is
used as the unseen evaluation corpus (Test). Dev. scores
are reported for systems that have been separately MERT
trained, Pref. systems share parameters from a single
MERT training. Systems are described in the text.

7 Related Work

There have been significant efforts in the both the
monolingual parsing and machine translation liter-
ature to address the impact of the MAP approxi-
mation and the choice of labels in their respective
models; we survey the work most closely related to
our approach. May and Knight (2006) extract n-
best lists containing unique translations rather than
unique derivations, while Kumar and Byrne (2004)
use the Minimum Bayes Risk decision rule to se-
lect the lowest risk (highest BLEU score) translation
rather than derivation from an n-best list. Tromble
et al. (2008) extend this work to lattice structures.
All of these approaches only marginalize over alter-
native candidate derivations generated by a MAP-
driven decoding process. More recently, work by
Blunsom et al. (2007) propose a purely discrimina-
tive model whose decoding step approximates the
selection of the most likely translation via beam
search. Matsusaki et al. (2005) and Petrov et al.
(2006) propose automatically learning annotations
that add information to categories to improve mono-
lingual parsing quality. Since the parsing task re-
quires selecting the most non-annotated tree, the an-

notations add an additional level of structure that
must be marginalized during search. They demon-
strate improvements in parse quality only when a
variational approximation is used to select the most
likely unannotated tree rather than simply stripping
annotations from the MAP annotated tree. In our
work, we focused on approximating the selection of
the most likely unlabeled derivation during search,
rather than as a post-processing operation; the meth-
ods described above might improve this approxima-
tion, at some computational expense.

8 Conclusions and Future Work

We have proposed a novel grammar formalism that
replaces hard syntactic constraints with “soft” pref-
erences. These preferences are used to compute a
machine translation feature (psyn(d)) that scores un-
labeled derivations, taking into account traditional
syntactic constraints. Representing syntactic con-
straints as a feature allows MERT to train the cor-
responding weight for this feature relative to others
in the model, allowing systems to learn the relative
importance of labels for particular resource and lan-
guage scenarios as well as for alternative approaches
to labeling PSCFG rules.

This approach takes a step toward addressing
the fragmentation problems of decoding based on
maximum-weighted derivations, by summing the
contributions of compatible label configurations
rather than forcing them to compete. We have sug-
gested an efficient technique to approximate psyn(d)
that takes advantage of a natural factoring of deriva-
tion scores. Our approach results in improvements
in translation quality on small and medium resource
translation tasks. In future work we plan to focus on
methods to improve on the integration of the psyn(d)
feature during decoding and techniques that allow us
consider more of the search space through less prun-
ing.
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Abstract

We introduce a novel precedence reordering
approach based on a dependency parser to sta-
tistical machine translation systems. Similar
to other preprocessing reordering approaches,
our method can efficiently incorporate linguis-
tic knowledge into SMT systems without in-
creasing the complexity of decoding. For a set
of five subject-object-verb (SOV) order lan-
guages, we show significant improvements in
BLEU scores when translating from English,
compared to other reordering approaches, in
state-of-the-art phrase-based SMT systems.

1 Introduction

Over the past ten years, statistical machine transla-
tion has seen many exciting developments. Phrase-
based systems (Och, 2002; Koehn et.al., 2003;
Och and Ney, 2004) advanced the machine transla-
tion field by allowing translations of word sequences
(a.k.a., phrases) instead of single words. This ap-
proach has since been the state-of-the-art because of
its robustness in modeling local word reordering and
the existence of an efficient dynamic programming
decoding algorithm.

However, when phrase-based systems are used
between languages with very different word or-
ders, such as between subject-verb-object (SVO)
and subject-object-verb (SOV) languages, long dis-
tance reordering becomes one of the key weak-
nesses. Many reordering methods have been pro-
posed in recent years to address this problem in dif-
ferent aspects.

The first class of approaches tries to explicitly
model phrase reordering distances. Distance based
distortion model (Och, 2002; Koehn et.al., 2003) is
a simple way of modeling phrase level reordering.
It penalizes non-monotonicity by applying a weight
to the number of words between two source phrases
corresponding to two consecutive target phrases.
Later on, this model was extended to lexicalized
phrase reordering (Tillmann, 2004; Koehn, et.al.,
2005; Al-Onaizan and Papineni, 2006) by applying
different weights to different phrases. Most recently,
a hierarchical phrase reordering model (Galley and
Manning, 2008) was proposed to dynamically deter-
mine phrase boundaries using efficient shift-reduce
parsing. Along this line of research, discrimina-
tive reordering models based on a maximum entropy
classifier (Zens and Ney, 2006; Xiong, et.al., 2006)
also showed improvements over the distance based
distortion model. None of these reordering models
changes the word alignment step in SMT systems,
therefore, they can not recover from the word align-
ment errors. These models are also limited by a
maximum allowed reordering distance often used in
decoding.

The second class of approaches puts syntactic
analysis of the target language into both modeling
and decoding. It has been shown that direct model-
ing of target language constituents movement in ei-
ther constituency trees (Yamada and Knight, 2001;
Galley et.al., 2006; Zollmann et.al., 2008) or depen-
dency trees (Quirk, et.al., 2005) can result in signifi-
cant improvements in translation quality for translat-
ing languages like Chinese and Arabic into English.
A simpler alternative, the hierarchical phrase-based
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approach (Chiang, 2005; Wu, 1997) also showed
promising results for translating Chinese to English.
Similar to the distance based reordering models, the
syntactical or hierarchical approaches also rely on
other models to get word alignments. These mod-
els typically combine machine translation decoding
with chart parsing, therefore significantly increase
the decoding complexity. Even though some re-
cent work has shown great improvements in decod-
ing efficiency for syntactical and hierarchical ap-
proaches (Huang and Chiang, 2007), they are still
not as efficient as phrase-based systems, especially
when higher order language models are used.

Finally, researchers have also tried to put source
language syntax into reordering in machine trans-
lation. Syntactical analysis of source language
can be used to deterministically reorder input sen-
tences (Xia and McCord, 2004; Collins et.al., 2005;
Wang et.al., 2007; Habash, 2007), or to provide mul-
tiple orderings as weighted options (Zhang et.al.,
2007; Li et.al., 2007; Elming, 2008). In these
approaches, input source sentences are reordered
based on syntactic analysis and some reordering
rules at preprocessing step. The reordering rules
can be either manually written or automatically ex-
tracted from data. Deterministic reordering based on
syntactic analysis for the input sentences provides
a good way of resolving long distance reordering,
without introducing complexity to the decoding pro-
cess. Therefore, it can be efficiently incorporated
into phrase-based systems. Furthermore, when the
same preprocessing reordering is performed for the
training data, we can still apply other reordering ap-
proaches, such as distance based reordering and hi-
erarchical phrase reordering, to capture additional
local reordering phenomena that are not captured by
the preprocessing reordering. The work presented in
this paper is largely motivated by the preprocessing
reordering approaches.

In the rest of the paper, we first introduce our de-
pendency parser based reordering approach based on
the analysis of the key issues when translating SVO
languages to SOV languages. Then, we show exper-
imental results of applying this approach to phrase-
based SMT systems for translating from English to
five SOV languages (Korean, Japanese, Hindi, Urdu
and Turkish). After showing that this approach can
also be beneficial for hierarchical phrase-based sys-

John can hit ballthe

존은 그 공을 수 있습니다칠 

.

.

Figure 1: Example Alignment Between an English and a
Korean Sentence

tems, we will conclude the paper with future re-
search directions.

2 Translation between SVO and SOV
Languages

In linguistics, it is possible to define a basic word
order in terms of the verb (V) and its arguments,
subject (S) and object (O). Among all six possible
permutations, SVO and SOV are the most common.
Therefore, translating between SVO and SOV lan-
guages is a very important area to study. We use
English as a representative of SVO languages and
Korean as a representative for SOV languages in our
discussion about the word orders.

Figure 1 gives an example sentence in English and
its corresponding translation in Korean, along with
the alignments between the words. Assume that we
split the sentences into four phrases: (John , t@),
(can hit , ` � �µÈä), (the ball , ø õD)
and (. , .). Since a phrase-based decoder generates
the translation from left to right, the following steps
need to happen when we translate from English to
Korean:

• Starts from the beginning of the sentence,
translates “John” to “t@”;

• Jumps to the right by two words, translates “the
ball” to “øõD”;

• Jumps to the left by four words, translates “can
hit” to “`��µÈä”;

• Finally, jumps to the right by two words, trans-
lates “.” to “.”.

It is clear that in order for the phrase-based decoder
to successfully carry out all of the reordering steps, a
very strong reordering model is required. When the
sentence gets longer with more complex structure,
the number of words to move over during decod-
ing can be quite high. Imagine when we translate
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Figure 2: Dependency Parse Tree of an Example English
Sentence

the sentence “English is used as the first or second
language in many countries around the world .”.
The decoder needs to make a jump of 13 words in
order to put the translation of “is used” at the end
of the translation. Normally in a phrase-based de-
coder, very long distance reordering is not allowed
because of efficiency considerations. Therefore, it
is very difficult in general to translate English into
Korean with proper word order.

However, knowing the dependency parse trees of
the English sentences may simplify the reordering
problem significantly. In the simple example in Fig-
ure 1, if we analyze the English sentence and know
that “John” is the subject, “can hit” is the verb and
“the ball” is the object, we can reorder the English
into SOV order. The resulting sentence “John the
ball can hit .” will only need monotonic translation.
This motivates us to use a dependency parser for En-
glish to perform the reordering.

3 Precedence Reordering Based on a
Dependency Parser

Figure 2 shows the dependency tree for the example
sentence in the previous section. In this parse, the
verb “hit” has four children: a subject noun “John”,
an auxiliary verb “can”, an object noun “ball” and a
punctuation “.”. When transforming the sentence to
SOV order, we need to move the object noun and the
subtree rooted at it to the front of the head verb, but
after the subject noun. We can have a simple rule to
achieve this.

However, in reality, there are many possible chil-
dren for a verb. These children have some relative
ordering that is typically fixed for SOV languages.
In order to describe this kind of ordering, we pro-
pose precedence reordering rules based on a depen-
dency parse tree. All rules here are based English

and Korean examples, but they also apply to other
SOV languages, as we will show later empirically.

A precedence reordering rule is a mapping from
T to a set of tuples {(L,W,O)}, where T is the
part-of-speech (POS) tag of the head in a depen-
dency parse tree node, L is a dependency label for
a child node, W is a weight indicating the order of
that child node and O is the type of order (either
NORMAL or REVERSE). The type of order is only
used when we have multiple children with the same
weight, while the weight is used to determine the
relative order of the children, going from largest to
smallest. The weight can be any real valued num-
ber. The order type NORMAL means we preserve
the original order of the children, while REVERSE
means we flip the order. We reserve a special label
self to refer to the head node itself so that we can
apply a weight to the head, too. We will call this
tuple a precedence tuple in later discussions. In this
study, we use manually created rules only.

Suppose we have a precedence rule: VB →
(nsubj, 2, NORMAL), (dobj, 1, NORMAL), (self,
0, NORMAL). For the example shown in Figure 2,
we would apply it to the ROOT node and result in
“John the ball can hit .”.

Given a set of rules, we apply them in a depen-
dency tree recursively starting from the root node. If
the POS tag of a node matches the left-hand-side of
a rule, the rule is applied and the order of the sen-
tence is changed. We go through all children of the
node and get the precedence weights for them from
the set of precedence tuples. If we encounter a child
node that has a dependency label not listed in the set
of tuples, we give it a default weight of 0 and de-
fault order type of NORMAL. The children nodes
are sorted according to their weights from highest to
lowest, and nodes with the same weights are ordered
according to the type of order defined in the rule.

3.1 Verb Precedence Rules
Verb movement is the most important movement
when translating from English (SVO) to Korean
(SOV). In a dependency parse tree, a verb node can
potentially have many children. For example, aux-
iliary and passive auxiliary verbs are often grouped
together with the main verb and moved together with
it. The order, however, is reversed after the move-
ment. In the example of Figure 2, the correct Korean
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존은 그 공을 수 있습니다칠 

   

방망이 로 .

Figure 3: Dependency Parse Tree with Alignment for a
Sentence with Preposition Modifier

word order is “`̀̀ (hit) ��� ���µµµÈÈÈäää(can) . Other
categories that are in the same group are phrasal verb
particle and negation.

If the verb in an English sentence has a preposi-
tional phrase as a child, the prepositional phrase is
often placed before the direct object in the Korean
counterpart. As shown in Figure 3, “)Ýt \”
(“with a bat”) is actually between “t@” (“John”)
and “øõD” (“the ball”).

Another common reordering phenomenon is
when a verb has an adverbial clause modifier. In that
case, the whole adverbial clause is moved together to
be in front of the subject of the main sentence. Inside
the adverbial clause, the ordering follows the same
verb reordering rules, so we recursively reorder the
clause.

Our verb precedence rule, as in Table 1, can cover
all of the above reordering phenomena. One way
to interpret this rule set is as follows: for any node
whose POS tag is matches VB* (VB, VBZ, VBD,
VBP, VBN, VBG), we group the children node that
are phrasal verb particle (prt), auxiliary verb (aux),
passive auxiliary verb (auxpass), negation (neg) and
the verb itself (self) together and reverse them. This
verb group is moved to the end of the sentence. We
move adverbial clause modifier to the beginning of
the sentence, followed by a group of noun subject
(nsubj), preposition modifier and anything else not
listed in the table, in their original order. Right be-
fore the verb group, we put the direct object (dobj).
Note that all of the children are optional.

3.2 Adjective Precedence Rules

Similar to the verbs, adjectives can also take an aux-
iliary verb, a passive auxiliary verb and a negation

T (L, W, O)

VB*

(advcl, 1, NORMAL)
(nsubj, 0, NORMAL)
(prep, 0, NORMAL)
(dobj, -1, NORMAL)
(prt, -2, REVERSE)
(aux, -2, REVERSE)

(auxpass, -2, REVERSE)
(neg, -2, REVERSE)
(self, -2, REVERSE)

JJ or JJS or JJR

(advcl, 1, NORMAL)
(self, -1, NORMAL)
(aux, -2, REVERSE)

(auxpass, -2, REVERSE)
(neg, -2, REVERSE)
(cop, -2, REVERSE)

NN or NNS
(prep, 2, NORMAL)

(rcmod, 1, NORMAL)
(self, 0, NORMAL)

IN or TO (pobj, 1, NORMAL)
(self, -1, NORMAL)

Table 1: Precedence Rules to Reorder English to SOV
Language Order (These rules were extracted manually by
a bilingual speaker after looking at some text book exam-
ples in English and Korean, and the dependency parse
trees of the English examples.)

as modifiers. In such cases, the change in order from
English to Korean is similar to the verb rule, except
that the head adjective itself should be in front of the
verbs. Therefore, in our adjective precedence rule in
the second panel of Table 1, we group the auxiliary
verb, the passive auxiliary verb and the negation and
move them together after reversing their order. They
are moved to right after the head adjective, which is
put after any other modifiers.

For both verb and adjective precedence rules,
we also apply some heuristics to prevent exces-
sive movements. In order to do this, we disallow
any movement across punctuation and conjunctions.
Therefore, for sentences like “John hit the ball but
Sam threw the ball”, the reordering result would be
“John the ball hit but Sam the ball threw”, instead
of “John the ball but Sam the ball threw hit”.

3.3 Noun and Preposition Precedence Rules

In Korean, when a noun is modified by a preposi-
tional phrase, such as in “the way to happiness”,
the prepositional phrase is usually moved in front of
the noun, resulting in “���õõõ (happiness) <<<\\\������
888 (to the way)” . Similarly for relative clause mod-
ifier, it is also reordered to the front of the head noun.
For preposition head node with an object modifier,
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the order is the object first and the preposition last.
One example is “with a bat” in Figure 3. It corre-
sponds to “)))ÝÝÝttt (a bat) \\\(with)”. We handle
these types of reordering by the noun and preposi-
tion precedence rules in the third and fourth panel of
Table 1.

With the rules defined in Table 1, we now show a
more complex example in Figure 4. First, the ROOT
node matches an adjective rule, with four children
nodes labeled as (csubj, cop, advcl, p), and with
precedence weights of (0, -2, 1, 0). The ROOT node
itself has a weight of -1. After reordering, the sen-
tence becomes: “because we do n’t know what the
future has Living exciting is .”. Note that the whole
adverbial phrase rooted at “know” is moved to the
beginning of the sentence. After that, we see that
the child node rooted at “know” matches a verb rule,
with five children nodes labeled as (mark, nsubj,
aux, neg, ccomp), with weights (0, 0, -2, -2, 0). In
this case, the verb itself also has weight -2. Now
we have two groups of nodes, with weight 0 and -2,
respectively. The first group has a NORMAL order
and the second group has a REVERSE order. Af-
ter reordering, the sentence becomes: “because we
what the future has know n’t do Living exciting
is .”. Finally, we have another node rooted at “has”
that matches the verb rule again. After the final re-
ordering, we end up with the sentence: “because we
the future what has know n’t do Living exciting
is .”. We can see in Figure 4 that this sentence has an
almost monotonic alignment with a reasonable Ko-
rean translation shown in the figure1.

4 Related Work

As we mentioned in our introduction, there have
been several studies in applying source sentence re-
ordering using syntactical analysis for statistical ma-
chine translation. Our precedence reordering ap-
proach based on a dependency parser is motivated by
those previous works, but we also distinguish from
their studies in various ways.

Several approaches use syntactical analysis to
provide multiple source sentence reordering options
through word lattices (Zhang et.al., 2007; Li et.al.,
2007; Elming, 2008). A key difference between

1We could have improved the rules by using a weight of -3
for the label “mark”, but it was not in our original set of rules.

their approaches and ours is that they do not perform
reordering during training. Therefore, they would
need to rely on reorder units that are likely not vio-
lating “phrase” boundaries. However, since we re-
order both training and test data, our system oper-
ates in a matched condition. They also focus on ei-
ther Chinese to English (Zhang et.al., 2007; Li et.al.,
2007) or English to Danish (Elming, 2008), which
arguably have less long distance reordering than be-
tween English and SOV languages.

Studies most similar to ours are those preprocess-
ing reordering approaches (Xia and McCord, 2004;
Collins et.al., 2005; Wang et.al., 2007; Habash,
2007). They all perform reordering during prepro-
cessing based on either automatically extracted syn-
tactic rules (Xia and McCord, 2004; Habash, 2007)
or manually written rules (Collins et.al., 2005; Wang
et.al., 2007). Compared to these approaches, our
work has a few differences. First of all, we study
a wide range of SOV languages using manually ex-
tracted precedence rules, not just for one language
like in these studies. Second, as we will show in
the next section, we compare our approach to a
very strong baseline with more advanced distance
based reordering model, not just the simplest distor-
tion model. Third, our precedence reordering rules,
like those in Habash, 2007, are more flexible than
those other rules. Using just one verb rule, we can
perform the reordering of subject, object, preposi-
tion modifier, auxiliary verb, negation and the head
verb. Although we use manually written rules in
this study, it is possible to learn our rules automat-
ically from alignments, similarly to Habash, 2007.
However, unlike Habash, 2007, our manually writ-
ten rules handle unseen children and their order nat-
urally because we have a default precedence weight
and order type, and we do not need to match an often
too specific condition, but rather just treat all chil-
dren independently. Therefore, we do not need to
use any backoff scheme in order to have a broad cov-
erage. Fourth, we use dependency parse trees rather
than constituency trees.

There has been some work on syntactic word or-
der model for English to Japanese machine transla-
tion (Chang and Toutanova, 2007). In this work, a
global word order model is proposed based on fea-
tures including word bigram of the target sentence,
displacements and POS tags on both source and tar-
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우리는 미래가   흥미진진합니다어떻게 될 지 알 수 없기 때문에 인생은 .

we the Livingwhatfuture knowhas n't do excitingbecause is .

csubj cop detmarkROOT auxnsubj neg advcl nsubjdobj ccomp p
Living is thebecauseexciting dowe n't know futurewhat has .

VBG VBZ DTINJJ VBPPRP RB VB NNWP VBZ .

Label
Token
POS

Figure 4: A Complex Reordering Example (Reordered English sentence and alignments are at the bottom.)

get sides. They build a log-linear model using these
features and apply the model to re-rank N -best lists
from a baseline decoder. Although we also study the
reordering problem in English to Japanese transla-
tion, our approach is to incorporate the linguistically
motivated reordering directly into modeling and de-
coding.

5 Experiments

We carried out all our experiments based on a state-
of-the-art phrase-based statistical machine transla-
tion system. When training a system for English
to any of the 5 SOV languages, the word alignment
step includes 3 iterations of IBM Model-1 training
and 2 iterations of HMM training. We do not use
Model-4 because it is slow and it does not add much
value to our systems in a pilot study. We use the
standard phrase extraction algorithm (Koehn et.al.,
2003) to get all phrases up to length 5. In addition
to the regular distance distortion model, we incor-
porate a maximum entropy based lexicalized phrase
reordering model (Zens and Ney, 2006) as a fea-
ture used in decoding. In this model, we use 4 re-
ordering classes (+1, > 1, −1, < −1) and words
from both source and target as features. For source
words, we use the current aligned word, the word
before the current aligned word and the next aligned
word; for target words, we use the previous two
words in the immediate history. Using this type of
features makes it possible to directly use the maxi-
mum entropy model in the decoding process (Zens
and Ney, 2006). The maximum entropy models are
trained on all events extracted from training data
word alignments using the LBFGS algorithm (Mal-
ouf, 2002). Overall for decoding, we use between 20

System Source Target
English→Korean 303M 267M

English→Japanese 316M 350M
English→Hindi 16M 17M
English→Urdu 17M 19M

English→Turkish 83M 76M

Table 2: Training Corpus Statistics (#words) of Systems
for 5 SOV Languages

to 30 features, whose weights are optimized using
MERT (Och, 2003), with an implementation based
on the lattice MERT (Macherey et.al., 2008).

For parallel training data, we use an in-house col-
lection of parallel documents. They come from var-
ious sources with a substantial portion coming from
the web after using simple heuristics to identify po-
tential document pairs. Therefore, for some doc-
uments in the training data, we do not necessarily
have the exact clean translations. Table 2 shows the
actual statistics about the training data for all five
languages we study. For all 5 SOV languages, we
use the target side of the parallel data and some more
monolingual text from crawling the web to build 4-
gram language models.

We also collected about 10K English sentences
from the web randomly. Among them, 9.5K are used
as evaluation data. Those sentences were translated
by humans to all 5 SOV languages studied in this
paper. Each sentence has only one reference trans-
lation. We split them into 3 subsets: dev contains
3,500 sentences, test contains 1,000 sentences and
the rest of 5,000 sentences are used in a blindtest
set. The dev set is used to perform MERT training,
while the test set is used to select trained weights
due to some nondeterminism of MERT training. We
use IBM BLEU (Papineni et al., 2002) to evaluate
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our translations and use character level BLEU for
Korean and Japanese.

5.1 Preprocessing Reordering and Reordering
Models

We first compare our precedence rules based prepro-
cessing reordering with the maximum entropy based
lexicalized reordering model. In Table 3, Baseline
is our system with both a distance distortion model
and the maximum entropy based lexicalized reorder-
ing model. For all results reported in this section,
we used a maximum allowed reordering distance of
10. In order to see how the lexicalized reordering
model performs, we also included systems with and
without it (-LR means without it). PR is our pro-
posed approach in this paper. Note that since we ap-
ply precedence reordering rules during preprocess-
ing, we can combine this approach with any other
reordering models used during decoding. The only
difference is that with the precedence reordering, we
would have a different phrase table and in the case
of LR, different maximum entropy models.

In order to implement the precedence rules, we
need a dependency parser. We choose to use a
deterministic inductive dependency parser (Nivre
and Scholz, 2004) for its efficiency and good ac-
curacy. Our implementation of the deterministic
dependency parser using maximum entropy models
as the underlying classifiers achieves 87.8% labeled
attachment score and 88.8% unlabeled attachment
score on standard Penn Treebank evaluation.

As our results in Table 3 show, for all 5 lan-
guages, by using the precedence reordering rules as
described in Table 1, we achieve significantly bet-
ter BLEU scores compared to the baseline system.
In the table, We use two stars (∗∗) to mean that
the statistical significance test using the bootstrap
method (Koehn, 2004) gives an above 95% signif-
icance level when compared to the baselie. We mea-
sured the statistical significance level only for the
blindtest data.

Note that for Korean and Japanese, our prece-
dence reordering rules achieve better absolute
BLEU score improvements than for Hindi, Urdu and
Turkish. Since we only analyzed English and Ko-
rean sentences, it is possible that our rules are more
geared toward Korean. Japanese has almost exactly
the same word order as Korean, so we could assume

Language System dev test blind

Korean

BL 25.8 27.0 26.2
-LR 24.7 25.6 25.1
-LR+PR 27.3 28.3 27.5**
+PR 27.8 28.7 27.9**

Japanese

BL 29.5 29.3 29.3
-LR 29.2 29.0 29.0
-LR+PR 30.3 31.0 30.6**
+PR 30.7 31.2 31.1**

Hindi

BL 19.1 18.9 18.3
-LR 17.4 17.1 16.4
-LR+PR 19.6 18.8 18.7**
+PR 19.9 18.9 18.8**

Urdu

BL 9.7 9.5 8.9
-LR 9.1 8.6 8.2
-LR+PR 10.0 9.6 9.6**
+PR 10.0 9.8 9.6**

Turkish

BL 10.0 10.5 9.8
-LR 9.1 10.0 9.0
-LR+PR 10.5 11.0 10.3**
+PR 10.5 10.9 10.4**

Table 3: BLEU Scores on Dev, Test and Blindtest for En-
glish to 5 SOV Languages with Various Reordering Op-
tions (BL means baseline, LR means maximum entropy
based lexialized phrase reordering model, PR means
precedence rules based preprocessing reordering.)

the benefits can carry over to Japanese.

5.2 Reordering Constraints

One of our motivations of using the precedence re-
ordering rules is that English will look like SOV lan-
guages in word order after reordering. Therefore,
even monotone decoding should be able to produce
better translations. To see this, we carried out a con-
trolled experiment, using Korean as an example.

Clearly, after applying the precedence reordering
rules, our English to Korean system is not sensitive
to the maximum allowed reordering distance any-
more. As shown in Figure 5, without the rules, the
blindtest BLEU scores improve monotonically as
the allowed reordering distance increases. This indi-
cates that the order difference between English and
Korean is very significant. Since smaller allowed
reordering distance directly corresponds to decod-
ing time, we can see that with the same decoding
speed, our proposed approach can achieve almost
5% BLEU score improvements on blindtest set.

5.3 Preprocessing Reordering and
Hierarchical Model

The hierarchical phrase-based approach has been
successfully applied to several systems (Chiang,
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Figure 5: Blindtest BLEU Score for Different Maximum
Allowed Reordering Distance for English to Korean Sys-
tems with Different Reordering Options

2005; Zollmann et.al., 2008). Since hierarchical
phrase-based systems can capture long distance re-
ordering by using a PSCFG model, we expect it to
perform well in English to SOV language systems.

We use the same training data as described in the
previous sections for building hierarchical systems.
The same 4-gram language models are also used for
the 5 SOV languages. We adopt the SAMT pack-
age (Zollmann and Venugopal, 2006) and follow
similar settings as Zollmann et.al., 2008. We allow
each rule to have at most 6 items on the source side,
including nonterminals and extract rules from initial
phrases of maximum length 12. During decoding,
we allow application of all rules of the grammar for
chart items spanning up to 12 source words.

Since our precedence reordering applies at pre-
processing step, we can train a hierarchical system
after applying the reordering rules. When doing so,
we use exactly the same settings as a regular hier-
archical system. The results for both hierarchical
systems and those combined with the precedence re-
ordering are shown in Table 4, together with the best
normal phrase-based systems we copy from Table 3.
Here again, we mark any blindtest BLEU score that
is better than the corresponding hierarchical system
with confidence level above 95%. Note that the hier-
archical systems can not use the maximum entropy
based lexicalized phrase reordering models.

Except for Hindi, applying the precedence re-
ordering rules in a hierarchical system can achieve
statistically significant improvements over a normal
hierarchical system. We conjecture that this may be
because of the simplicity of our reordering rules.

Language System dev test blind

Korean
PR 27.8 28.7 27.9
Hier 27.4 27.7 27.9
PR+Hier 28.5 29.1 28.8**

Japanese
PR 30.7 31.2 31.1**
Hier 30.5 30.6 30.5
PR+Hier 31.0 31.3 31.1**

Hindi
PR 19.9 18.9 18.8
Hier 20.3 20.3 19.3
PR+Hier 20.0 19.7 19.3

Urdu
PR 10.0 9.8 9.6
Hier 10.4 10.3 10.0
PR+Hier 11.2 10.7 10.7**

Turkish
PR 10.5 10.9 10.4
Hier 11.0 11.8 10.5
PR+Hier 11.1 11.6 10.9**

Table 4: BLEU Scores on Dev, Test and Blindtest for En-
glish to 5 SOV Languages in Hierarchical Phrase-based
Systems (PR is precedence rules based preprocessing re-
ordering, same as in Table 3, while Hier is the hierarchi-
cal system.)

Other than the reordering phenomena covered by
our rules in Table 1, there could be still some local or
long distance reordering. Therefore, using a hierar-
chical phrase-based system can improve those cases.
Another possible reason is that after the reordering
rules apply in preprocessing, English sentences in
the training data are very close to the SOV order. As
a result, EM training becomes much easier and word
alignment quality becomes better. Therefore, a hier-
archical phrase-based system can extract better rules
and hence achievesbetter translation quality.

We also point out that hierarchical phrase-based
systems require a chart parsing algorithm during de-
coding. Compared to the efficient dynamic pro-
gramming in phrase-based systems, it is much
slower. This makes our approach more appealing
in a realtime statistical machine translation system.

6 Conclusion

In this paper, we present a novel precedence re-
ordering approach based on a dependency parser.
We successfully applied this approach to systems
translating English to 5 SOV languages: Korean,
Japanese, Hindi, Urdu and Turkish. For all 5 lan-
guages, we achieve statistically significant improve-
ments in BLEU scores over a state-of-the-art phrase-
based baseline system. The amount of training data
for the 5 languages varies from around 17M to more
than 350M words, including some noisy data from
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the web. Our proposed approach has shown to be
robust and versatile. For 4 out of the 5 languages,
our approach can even significantly improve over a
hierarchical phrase-based baseline system. As far as
we know, we are the first to show that such reorder-
ing rules benefit several SOV languages.

We believe our rules are flexible and can cover
many linguistic reordering phenomena. The format
of our rules also makes it possible to automatically
extract rules from word aligned corpora. In the fu-
ture, we plan to investigate along this direction and
extend the rules to languages other than SOV.

The preprocessing reordering like ours is known
to be sensitive to parser errors. Some preliminary
error analysis already show that indeed some sen-
tences suffer from parser errors. In the recent years,
several studies have tried to address this issue by us-
ing a word lattice instead of one reordering as in-
put (Zhang et.al., 2007; Li et.al., 2007; Elming,
2008). Although there is clearly room for improve-
ments, we also feel that using one reordering during
training may not be good enough either. It would be
very interesting to investigate ways to have efficient
procedure for training EM models and getting word
alignments using word lattices on the source side of
the parallel data. Along this line of research, we
think some kind of tree-to-string model (Liu et.al.,
2006) could be interesting directions to pursue.
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Abstract 

In this paper, we propose a method for learn-
ing reordering model for BTG-based statisti-
cal machine translation (SMT). The model 
focuses on linguistic features from bilingual 
phrases. Our method involves extracting reor-
dering examples as well as features such as 
part-of-speech and word class from aligned 
parallel sentences. The features are classified 
with special considerations of phrase lengths. 
We then use these features to train the maxi-
mum entropy (ME) reordering model. With 
the model, we performed Chinese-to-English 
translation tasks. Experimental results show 
that our bilingual linguistic model outper-
forms the state-of-the-art phrase-based and 
BTG-based SMT systems by improvements of 
2.41 and 1.31 BLEU points respectively. 

1 Introduction 

Bracketing Transduction Grammar (BTG) is a spe-
cial case of Synchronous Context Free Grammar 
(SCFG), with binary branching rules that are either 
straight or inverted. BTG is widely adopted in 
SMT systems, because of its good trade-off be-
tween efficiency and expressiveness (Wu, 1996). 
In BTG, the ratio of legal alignments and all possi-
ble alignment in a translation pair drops drastically 
especially for long sentences, yet it still covers 
most of the syntactic diversities between two lan-
guages. 

It is common to utilize phrase translation in 
BTG systems. For example in (Xiong et al., 2006), 
source sentences are segmented into phrases. Each 

sequences of consecutive phrases, mapping to cells 
in a CKY matrix, are then translated through a bi-
lingual phrase table and scored as implemented in 
(Koehn et al., 2005; Chiang, 2005). In other words, 
their system shares the same phrase table with 
standard phrase-based SMT systems.  

 
 3 年 前   3 年 後  

three   after  2A  

years
1A

  three   

ago  2A  years 1A  
  

(a) (b) 

Figure 1: Two reordering examples, with straight 
rule applied in (a), and inverted rule in (b). 

 
 

On the other hand, there are various proposed 
BTG reordering models to predict correct orienta-
tions between neighboring blocks (bilingual 
phrases). In Figure 1, for example, the role of reor-
dering model is to predict correct orientations of 
neighboring blocks A1 and A2. In flat model (Wu, 
1996; Zens et al., 2004; Kumar and Byrne, 2005), 
reordering probabilities are assigned uniformly 
during decoding, and can be tuned depending on 
different language pairs. It is clear, however, that 
this kind of model would suffer when the dominant 
rule is wrongly applied. 

Predicting orientations in BTG depending on 
context information can be achieved with lexical 
features. For example, Xiong et al. (2006) pro-
posed MEBTG, based on maximum entropy (ME) 
classification with words as features. In MEBTG, 
first words of blocks are considered as the fea-
tures, which are then used to train a ME model 
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for predicting orientations of neighboring blocks. 
Xiong et al. (2008b) proposed a linguistically an-
notated BTG (LABTG), in which linguistic fea-
tures such as POS and syntactic labels from 
source-side parse trees are used. Both MEBTG 
and LABTG achieved significant improvements 
over phrase-based Pharaoh (Koehn, 2004) and 
Moses (Koehn et al., 2007) respectively, on Chi-
nese-to-English translation tasks. 

 
 該    項   計劃 

Nes  Nf    Nv 
的   詳情 
DE   Na 

the  details  of 
   14      49     50 

 
2A  

the  plan 
   14    18 1A   

Figure 2: An inversion reordering example, with 
POS below source words, and class numbers below 
target words. 
 
 

However, current BTG-based reordering meth-
ods have been limited by the features used.  Infor-
mation might not be sufficient or representative, if 
only the first (or tail) words are used as features. 
For example, in Figure 2, consider target first-word 
features extracted from an inverted reordering ex-
ample (Xiong et al., 2006) in MEBTG, in which 
first words on two blocks are both "the". This kind 
of feature set is too common and not representative 
enough to predict the correct orientation. Intui-
tively, one solution is to extend the feature set by 
considering both boundary words, forming a more 
complete boundary description. However, this 
method is still based on lexicalized features, which 
causes data sparseness problem and fails to gener-
alize. In Figure 2, for example, the orientation 
should basically be the same, when the 
source/target words "計畫/plan" from block A1 is 
replaced by other similar nouns and translations 
(e.g. "plans", "events" or "meetings"). However, 
such features would be treated as unseen by the 
current ME model, since the training data can not 
possibly cover all such similar cases. 

In this paper we present an improved reorder-
ing model based on BTG, with bilingual linguistic 
features from neighboring blocks. To avoid data 
sparseness problem, both source and target words 
are classified; we perform part-of-speech (POS) 
tagging on source language, and word classifica-

tion on target one, as shown in Figure 2. Addition-
ally, features are extracted and classified 
depending on lengths of blocks in order to obtain a 
more informed model. 

The rest of this paper is organized as follows. 
Section 2 reviews the related work. Section 3 de-
scribes the model used in our BTG-based SMT 
systems. Section 4 formally describes our bilingual 
linguistic reordering model. Section 5 and Section 
6 explain the implementation of our systems. We 
show the experimental results in Section 7 and 
make the conclusion in Section 8. 

2 Related Work 

In statistical machine translation, reordering model 
is concerned with predicting correct orders of tar-
get language sentence given a source language one 
and translation pairs. For example, in phrase-based 
SMT systems (Koehn et al., 2003; Koehn, 2004), 
distortion model is used, in which reordering prob-
abilities depend on relative positions of target side 
phrases between adjacent blocks. However, distor-
tion model can not model long-distance reordering, 
due to the lack of context information, thus is diffi-
cult to predict correct orders under different cir-
cumstances. Therefore, while phrase-based SMT 
moves from words to phrases as the basic unit of 
translation, implying effective local reordering 
within phrases, it suffers when determining phrase 
reordering, especially when phrases are longer than 
three words (Koehn et al., 2003). 

There have been much effort made to improve 
reordering model in SMT. For example, research-
ers have been studying CKY parsing over the last 
decade, which considers translations and orienta-
tions of two neighboring block according to 
grammar rules or context information. In hierar-
chical phrase-based systems (Chiang, 2005), for 
example, SCFG rules are automatically learned 
from aligned bilingual corpus, and are applied in 
CKY style decoding. 

As an another application of CKY parsing tech-
nique is BTG-based SMT. Xiong et al. (2006) and 
Xiong et al. (2008a) developed MEBTG systems, 
in which first or tail words from reordering exam-
ples are used as features to train ME-based reorder-
ing models. 

Similarly, Zhang et al. (2007) proposed a model 
similar to BTG, which uses first/tail words of 
phrases, and syntactic labels (e.g. NP and VP) 
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from source parse trees as features. In their work, 
however, inverted rules are allowed to apply only 
when source phrases are syntactic; for non-
syntactic ones, blocks are combined straight with a 
constant score.  

More recently, Xiong et al. (2008b) proposed 
LABTG, which incorporates linguistic knowledge 
by adding features such as syntactic labels and 
POS from source trees to improve their MEBTG. 
Different from Zhang's work, their model do not 
restrict non-syntactic phrases, and applies inverted 
rules on any pair of neighboring blocks. 

Although POS information is used in LABTG 
and Zhang's work, their models are syntax-oriented, 
since they focus on syntactic labels. Boundary POS 
is considered in LABTG only when source phrases 
are not syntactic phrases. 

In contrast to the previous works, we present a 
reordering model for BTG that uses bilingual in-
formation including class-level features of POS 
and word classes. Moreover, our model is dedi-
cated to boundary features and considers different 
combinations of phrase lengths, rather than only 
first/tail words. In addition, current state-of-the-art 
Chinese parsers, including the one used in LABTG 
(Xiong et al., 2005), lag beyond in inaccuracy, 
compared with English parsers (Klein and Man-
ning, 2003; Petrov and Klein 2007). In our work, 
we only use more reliable information such as 
Chinese word segmentation and POS tagging (Ma 
and Chen, 2003). 

3 The Model 

Following Wu (1996) and Xiong et al. (2006), we 
implement BTG-based SMT as our system, in 
which three rules are applied during decoding: 

 
 21 AAA     (1) 

21 AAA     (2) 

yxA /    (3) 

 
where A1 and A2 are blocks in source order. Straight 
rule (1) and inverted rule (2) are reordering rules. 
They are applied for predicting target-side order 
when combining two blocks, and form the reorder-
ing model with the distributions 
 

reoorderAA )(P ,,reo 21  

 
where order {straight, inverted}. 

In MEBTG, a ME reordering model is trained 
using features extracted from reordering examples 
of aligned parallel corpus. First words on neighbor-
ing blocks are used as features. In reordering ex-
ample (a), for example, the feature set is 
 
{"S1L=three", "S2L=ago", "T1L=3", "T2L=前"} 

 
where "S1" and "T1" denote source and target 
phrases from the block A1. 

Rule (3) is lexical translation rule, which trans-
lates source phrase x into target phrase y. We use 
the same feature functions as typical phrase-based 
SMT systems (Koehn et al., 2005): 
 

654

321

ee)|(

)|()|()|()|(Ptrans





y
lw

lw

xyp

yxpxypyxpyx




 

 

where 43 )|()|(  xypyxp lwlw  , 5e and 
6e y
 

are lexical translation probabilities in both direc-
tions, phrase penalty and word penalty. 

During decoding, the blocks are produced by 
applying either one of two reordering rules on two 
smaller blocks, or applying lexical rule (3) on 
some source phrase. Therefore, the score of a block 
A is defined as 
 

reolm orderAAAA

AAA
 ),,(P),(P

)P()P()P(

reo21lm

21

21


 

 
or 
 

)|(P)(P)P( translm yxAA lm    

 

where lmA )(Plm  and lmAA ),(P 21lm  are respec-
tively the usual and incremental score of language 
model. 

To tune all lambda weights above, we perform 
minimum error rate training (Och, 2003) on the 
development set described in Section 7. 

Let B be the set of all blocks with source side 
sentence C. Then the best translation of C is the 

target side of the block A , where 
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)P(argmaxA A
BA

  

4 Bilingual Linguistic Model 

In this section, we formally describe the problem 
we want to address and the proposed method. 

4.1 Problem Statement 

We focus on extracting features representative of 
the two neighboring blocks being considered for 
reordering by the decoder, as described in Section 
3. We define S(A) and T(A) as the information on 
source and target side of a block A. For two 
neighboring blocks A1 and A2, the set of features 
extracted from information of them is denoted as 
feature set function F(S(A1), S(A2), T(A1), S(A2)). In 
Figure 1 (b), for example, S(A1) and T(A1) are sim-
ply the both sides sentences "3 年 " and "three 
years", and F(S(A1), S(A2), T(A1), S(A2)) is 
 
{"S1L=three", "S2L=after", "T1L=3", "T2L=後"} 

 
where "S1L" denotes the first source word on the 
block A1, and "T2L" denotes the first target word 
on the block A2. 

Given the adjacent blocks A1 and A2, our goal 
includes (1) adding more linguistic and representa-
tive information to A1 and A2 and (2) finding a fea-
ture set function F' based on added linguistic 
information in order to train a more linguistically 
motivated and effective model. 

4.2 Word Classification 

As described in Section 1, designing a more com-
plete feature set causes data sparseness problem, if 
we use lexical features. One natural solution is us-
ing POS and word class features.  

In our model, we perform Chinese POS tagging 
on source language. In Xiong et al. (2008b) and 
Zhang et al. (2007), Chinese parsers with Penn 
Chinese Treebank (Xue et al., 2005) style are used 
to derive source parse trees, from which source-
side features such as POS are extracted. However, 
due to the relatively low accuracy of current Chi-
nese parsers compared with English ones, we in-
stead use CKIP Chinese word segmentation system 
(Ma and Chen, 2003) in order to derive Chinese 
tags with high accuracy. Moreover, compared with 
the Treebank Chinese tagset, the CKIP tagset pro-

vides more fine-grained tags, including many tags 
with semantic information (e.g., Nc for place 
nouns, Nd for time nouns), and verb transitivity 
and subcategorization (e.g., VA for intransitive 
verbs, VC for transitive verbs, VK for verbs that 
take a clause as object). 

On the other hand, using the POS features in 
combination with the lexical features in target lan-
guage will cause another sparseness problem in the 
phrase table, since one source phrase would map to 
multiple target ones with different POS sequences. 

As an alternative, we use mkcls toolkit (Och, 
1999), which uses maximum-likelihood principle 
to perform classification on target side. After clas-
sification, the toolkit produces a many-to-one 
mapping between English tokens and class num-
bers. Therefore, there is no ambiguity of word 
class in target phrases and word class features can 
be used independently to avoid data sparseness 
problem and the phrase table remains unchanged. 

As mentioned in Section 1, features based on 
words are not representative enough in some cases, 
and tend to cause sparseness problem. By classify-
ing words we are able to linguistically generalize 
the features, and hence predict the rules more 
robustly. In Figure 2, for example, the target words 
are converted to corresponding classes, and form 
the more complete boundary feature set 

 
{"T1L=14", "T1R=18", "T2L=14", "T2R=50"}  (4) 

 
In the feature set (4), #14 is the class containing 
"the", #18 is the class containing "plans", and #50 
is the class containing "of." Note that we add last-
word features "T1R=18" and "T2R=50". As men-
tioned in Section 1, the word "plan" from block A1 

is replaceable with similar nouns. This extends to 
other nominal word classes to realize the general 
rule of inverting "the ... NOUN" and "the ... of". 

It is hard to achieve this kind of generality using 
only lexicalized feature. With word classification, 
we gather feature sets with similar concepts from 
the training data. Table 1 shows the word classes 
can be used effectively to cope with data sparse-
ness. For example, the feature set (4) occurs 309 
times in our training data, and only 2 of them are 
straight, with the remaining 307 inverted examples, 
implying that similar features based on word 
classes lead to similar orientation. Additional ex-
amples of similar feature sets with different word 
classes are shown in Table 1. 
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class X T1R = X    straight/inverted
9 graph, government 2/488 

18 plans, events 2/307 
20 bikes, motors 0/694 
48 day, month, year 4/510 

Table 1: List of feature sets in the form of 
{"T1L=14", "T1R=X", "T2L=14", "T2R=50"}. 
 

4.3 Feature with Length Consideration 

Boundary features using both the first and last 
words provide more detailed descriptions of 
neighboring blocks. However, we should take the 
special case blocks with length 1 into consideration. 
For example, consider two features sets from 
straight and inverted reordering examples (a) and 
(b) in Figure 3. There are two identical source fea-
tures in both feature set, since first words on block 
A1 and last words on block A2 are the same: 
 
{"S1L=P","S2R=Na"}F(S(A1),S(A2),T(A1), S(A2)) 
 
Therefore, without distinguishing the special case, 
the features would represent quite different cases 
with the same feature, possibly leading to failure to 
predict orientations of two blocks.  

We propose a method to alleviate the problem of 
features with considerations of lengths of two ad-
jacent phrases by classifying both the both source 
and target phrase pairs into one of four classes: M, 
L, R and B, corresponding to different combina-
tions of phrase lengths. 

Suppose we are given two neighboring blocks 
A1 and A2, with source phrases P1 and P2 respec-
tively. Then the feature set from source side is 
classified into one of the classes as follows. We 
give examples of feature set for each class accord-
ing to Figure 4. 
 

 
基於 

P 
這些 原因 
Neqa  Na 

  
在 約旦 
P    Nc 

舉行 會議

VC    Na

 hold 
meeting  2A  

for 1A   
 

these 
reasons  2A   

in 
jordan 1A   

(a) (b) 

Figure 3: Two reordering examples with ambigu-
ous features on source side. 
 

A1 A2  A1  A2 
我 
Nh 

認為 
VE 

 基於 
P 

 這些  原因 
    Neqa    Na 

I think  for  these  reasons

              (a)                                     (b) 
M class                             L class 

 
A1 A2  A1  A2 

技術  和 
Na  Caa 

設備 
Na 

 在  約旦 
P     Nc 

 舉行  會議

      VC      Na
technology and equipment in  Jordan  hold  meeting

                (c)                                        (d) 
              R class                                 B class 

Figure 4:   Examples of different length combina-
tions, mapping to four classes. 

 
 
1. M class. The lengths of P1 and P2 are both 1. In 

Figure 4 (a), for example, the feature set is 
 

{"M1=Nh", "M2=VE"} 
 
2. L class. The length of P1 is 1, and the length of 

P2 is greater than 1. In Figure 4 (b), for exam-
ple, the feature set is 

 
{"L1=P", "L2=Neqa", "L3=Na"} 

 
3. R class. The length of P1 is greater than 1, and 

the length of P2 is 1. In Figure 4 (c), for exam-
ple, the feature set is 

 
{"R1=Na", "R2=Caa", "R3=Na"} 

 
4. B class. The lengths of P1 and P2 are both 

greater than 1. In Figure 4 (d), for example, the 
feature set is 

 
{"B1=P", "B2=Nc", "B3=VC", "B4=Na"} 

 
We use the same scheme to classify the two tar-

get phrases. Since both source and target words are 
classified as described in Section 4.2, the feature 
sets are more representative and tend to lead to 
consistent prediction of orientation. Additionally, 
the length-based features are easy to fit into mem-
ory, in contrast to lexical features in MEBTG. 

To summarize, we extract features based on 
word lengths, target-language word classes, and 
fine-grained, semantic oriented parts of speech. To 
illustrate, we use the neighboring blocks from Fig-
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ure 2 to show an example of complete bilingual 
linguistic feature set: 
 
{"S.B1=Nes", "S.B2=Nv", "S.B3=DE", 
"S.B4=Na", "T.B1=14", "T.B2=18", "T.B3=14", 
"T.B4=50"} 
 
where "S." and "T." denote source and target sides. 

In the next section, we describe the process of 
preparing the feature data and training an ME 
model. In Section 7, we perform evaluations of this 
ME-based reordering model against standard 
phrase-based SMT and previous work based on 
ME and BTG. 

5 Training 

In order to train the translation and reordering 
model, we first set up Moses SMT system (Koehn 
et al., 2007). We obtain aligned parallel sentences 
and the phrase table after the training of Moses, 
which includes running GIZA++ (Och and Ney, 
2003), grow-diagonal-final symmetrization and 
phrase extraction (Koehn et al., 2005). Our system 
shares the same translation model with Moses, 
since we directly use the phrase table to apply 
translation rules (3). 

On the other side, we use the aligned parallel 
sentences to train our reordering model, which in-
cludes classifying words, extracting bilingual 
phrase samples with orientation information, and 
training an ME model for predicting orientation. 

To perform word classification, the source sen-
tences are tagged and segmented before the Moses 
training. As for target side, we ran the Moses 
scripts to classify target language words using the 
mkcls toolkit before running GIZA++. Therefore, 
we directly use its classification result, which gen-
erate 50 classes with 2 optimization runs on the 
target sentences. 

To extract the reordering examples, we choose 
sentence pairs with top 50% alignment scores pro-
vided by GIZA++, in order to fit into memory. 
Then the extraction is performed on these aligned 
sentence pairs, together with POS tags and word 
classes, using basically the algorithm presented in 
Xiong et al. (2006). However, we enumerate all 
reordering examples, rather than only extract the 
smallest straight and largest inverted examples. 
Finally, we use the toolkit by Zhang (2004) to train 
the ME model with extracted reordering examples. 

6 Decoding 

We develop a bottom-up CKY style decoder in our 
system, similar to Chiang (2005). For a Chinese 
sentence C, the decoder finds its best translation on 
the block with entire C on source side. The decoder 
first applies translation rules (3) on cells in a CKY 
matrix. Each cell denotes a sequence of source 
phrases, and contains all of the blocks with possi-
ble translations. The longest length of source 
phrase to be applied translations rules is restricted 
to 7 words, in accordance with the default settings 
of Moses training scripts. 

To reduce the search space, we apply threshold 
pruning and histogram pruning, in which the block 
scoring worse than 10-2 times the best block in the 
same cell or scoring worse than top 40 highest 
scores would be pruned. These pruning techniques 
are common in SMT systems. We also apply re-
combination, which distinguish blocks in a cell 
only by 3 leftmost and rightmost target words, as 
suggested in (Xiong et al., 2006). 

7 Experiments and Results 

We perform Chinese-to-English translation task 
on NIST MT-06 test set, and use Moses and 
MEBTG as our competitors.  

The bilingual training data containing 2.2M sen-
tences pairs from Hong Kong Parallel Text 
(LDC2004T08) and Xinhua News Agency 
(LDC2007T09), with length shorter than 60, is 
used to train the translation and reordering model. 
The source sentences are tagged and segmented 
with CKIP Chinese word segmentation system (Ma 
and Chen, 2003). 

About 35M reordering examples are extracted 
from top 1.1M sentence pairs with higher align-
ment scores. We generate 171K features for lexi-
calized model used in MEBTG system, and 1.41K 
features for our proposed reordering model. 

For our language model, we use Xinhua news 
from English Gigaword Third Edition 
(LDC2007T07) to build a trigram model with 
SRILM toolkit (Stolcke, 2002). 

Our development set for running minimum error 
rate training is NIST MT-08 test set, with sentence 
lengths no more than 20. We report the experimen-
tal results on NIST MT-06 test set. Our evaluation 
metric is BLEU (Papineni et al., 2002) with case-
insensitive matching from unigram to four-gram. 
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System BLEU-4 
Moses(distortion) 22.55 
Moses(lexicalized) 23.42 
MEBTG 23.65 
WC+LC 24.96 

Table 2: Performances of various systems. 
 
 

The overall result of our experiment is shown in 
Table 2. The lexicalized MEBTG system proposed 
by Xiong et al. (2006) uses first words on adjacent 
blocks as lexical features, and outperforms phrase-
based Moses with default distortion model and en-
hanced lexicalized model, by 1.1 and 0.23 BLEU 
points respectively. This suggests lexicalized 
Moses and MEBTG with context information out-
performs distance-based distortion model. Besides, 
MEBTG with structure constraints has better 
global reordering estimation than unstructured 
Moses, while incorporating their local reordering 
ability by using phrase tables.  

The proposed reordering model trained with 
word classification (WC) and length consideration 
(LC) described in Section 4 outperforms MEBTG 
by 1.31 point. This suggests our proposed model 
not only reduces the model size by using 1% fewer 
features than MEBTG, but also improves the trans-
lation quality. 

We also evaluate the impacts of WC and LC 
separately and show the results in Table 3-5. Table 
3 shows the result of MEBTG with word classified 
features. While classified MEBTG only improves 
0.14 points over original lexicalized one, it drasti-
cally reduces the feature size. This implies WC 
alleviates data sparseness by generalizing the ob-
served features. 

Table 4 compares different length considerations, 
including boundary model demonstrated in Section 
4.2, and the proposed LC in Section 4.3. Although 
boundary model describes features better than us-
ing only first words, which we will show later, it 
suffers from data sparseness with twice feature size 
of MEBTG. The LC model has the largest feature 
size but performs best among three systems, sug-
gesting the effectiveness of our LC. 

In Table 5 we show the impacts of WC and LC 
together. Note that all the systems with WC sig-
nificantly reduce the size of features compared to 
lexicalized ones. 
 

System Feature size BLEU-4
MEBTG 171K 23.65 
WC+MEBTG 0.24K 23.79 

Table 3: Performances of lexicalized and word 
classified MEBTG. 
 
 

System Feature size BLEU-4
MEBTG 171K 23.65 
Boundary 349K 23.42 
LC 780K 23.86 

Table 4: Performances of BTG systems with dif-
ferent representativeness. 
 
 

System Feature size BLEU-4
MEBTG 171K 23.65 
WC+MEBTG 0.24K 23.79 
WC+Bounary 0.48K 24.29 
WC+LC 1.41K 24.96 

Table 5: Different representativeness with word 
classification. 
 
 
While boundary model is worse than first-word 
MEBTG in Table 4, it outperforms the latter when 
both are performed WC. We obtain the best result 
that outperforms the baseline MEBTG by more 
than 1 point when we apply WC and LC together.  

Our experimental results show that we are able 
to ameliorate the sparseness problem by classifying 
words, and produce more representative features 
by considering phrase length. Moreover, they are 
both important, in that we are unable to outperform 
our competitors by a large margin unless we com-
bine both WC and LC. In conclusion, while de-
signing more representative features of reordering 
model in SMT, we have to find solutions to gener-
alize them. 

8 Conclusion and Future Works 

We have proposed a bilingual linguistic reordering 
model to improve current BTG-based SMT sys-
tems, based on two drawbacks of previously pro-
posed reordering model, which are sparseness and 
representative problem. 

First, to solve the sparseness problem in previ-
ously proposed lexicalized model, we perform 
word classification on both sides. 
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Secondly, we present a more representative fea-
ture extraction method. This involves considering 
length combinations of adjacent phrases. 

The experimental results of Chinese-to-English 
task show that our model outperforms baseline 
phrase-based and BTG systems. 

We will investigate more linguistic ways to clas-
sify words in future work, especially on target lan-
guage. For example, using word hierarchical 
structures in WordNet (Fellbaum, 1998) system 
provides more linguistic and semantic information 
than statistically-motivated classification tools. 
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Abstract

A wish is “a desire or hope for something
to happen.” In December 2007, people from
around the world offered up their wishes to
be printed on confetti and dropped from the
sky during the famous New Year’s Eve “ball
drop” in New York City’s Times Square. We
present an in-depth analysis of this collection
of wishes. We then leverage this unique re-
source to conduct the first study on building
general “wish detectors” for natural language
text. Wish detection complements traditional
sentiment analysis and is valuable for collect-
ing business intelligence and insights into the
world’s wants and desires. We demonstrate
the wish detectors’ effectiveness on domains
as diverse as consumer product reviews and
online political discussions.

1 Introduction

Each year, New York City rings in the New Year
with the famous “ball drop” in Times Square. In
December 2007, the Times Square Alliance, co-
producer of the Times Square New Year’s Eve Cele-
bration, launched a Web site called the Virtual Wish-
ing Wall1 that allowed people around the world to
submit their New Year’s wishes. These wishes were
then printed on confetti and dropped from the sky
at midnight on December 31, 2007 in sync with the
ball drop.

We obtained access to this set of nearly 100,000
New Year’s wishes, which we call the “WISH cor-
pus.” Table 1 shows a selected sample of the WISH

1http://www.timessquarenyc.org/nye/nyeinteractive.html

corpus. Some are far-reaching fantasies and aspi-
rations, while others deal with everyday concerns
like economic and medical distress. We analyze this
first-of-its-kind corpus in Section 2.

The New Oxford American Dictionary defines
“wish” as “a desire or hope for something to hap-
pen.” How wishes are expressed, and how such
wishful expressions can be automatically recog-
nized, are open questions in natural language pro-
cessing. Leveraging the WISH corpus, we conduct
the first study on building general “wish detectors”
for natural language text, and demonstrate their ef-
fectiveness on domains as diverse as consumer prod-
uct reviews and online political discussions. Such
wish detectors have tremendous value in collecting
business intelligence and public opinions. We dis-
cuss the wish detectors in Section 3, and experimen-
tal results in Section 4.

1.1 Relation to Prior Work

Studying wishes is valuable in at least two aspects:
1. Being a special genre of subjective expression,

wishes add a novel dimension to sentiment analy-
sis. Sentiment analysis is often used as an auto-
matic market research tool to collect valuable busi-
ness intelligence from online text (Pang and Lee,
2008; Shanahan et al., 2005; Koppel and Shtrim-
berg, 2004; Mullen and Malouf, 2008). Wishes
differ from the recent focus of sentiment analysis,
namely opinion mining, by revealing what people
explicitly want to happen, not just what they like or
dislike (Ding et al., 2008; Hu and Liu, 2004). For ex-
ample, wishes in product reviews could contain new
feature requests. Consider the following (real) prod-
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514 peace on earth
351 peace
331 world peace
244 happy new year
112 love
76 health and happiness
75 to be happy
51 i wish for world peace
21 i wish for health and happiness for my family
21 let there be peace on earth
16 i wish u to call me if you read this 555-1234
16 to find my true love
8 i wish for a puppy
7 for the war in iraq to end
6 peace on earth please
5 a free democratic venezuela
5 may the best of 2007 be the worst of 2008
5 to be financially stable
1 a little goodness for everyone would be nice
1 i hope i get accepted into a college that i like
1 i wish to get more sex in 2008
1 please letname be healthy and live all year
1 to be emotionally stable and happy
1 to take over the world

Table 1: Example wishes and their frequencies in the
WISH corpus.

uct review excerpt: “Great camera. Indoor shots
with a flash are not quite as good as 35mm. I wish
the camera had a higher optical zoom so that I could
take even better wildlife photos.” The first sentence
contains positive opinion, the second negative opin-
ion. However, wishful statements like the third sen-
tence are often annotated as non-opinion-bearing in
sentiment analysis corpora (Hu and Liu, 2004; Ding
et al., 2008), even though they clearly contain im-
portant information. An automatic “wish detector”
text-processing tool can be useful for product manu-
facturers, advertisers, politicians, and others looking
to discover what people want.

2. Wishes can tell us a lot about people: their in-
nermost feelings, perceptions of what they’re lack-
ing, and what they desire (Speer, 1939). Many
psychology researchers have attempted to quantify
the contents of wishes and how they vary with
factors such as location, gender, age, and per-
sonality type (Speer, 1939; Milgram and Riedel,
1969; Ehrlichman and Eichenstein, 1992; King and
Broyles, 1997). These studies have been small scale

with only dozens or hundreds of participants. The
WISH corpus provides the first large-scale collec-
tion of wishes as a window into the world’s desires.

Beyond sentiment analysis, classifying sentences
as wishes is an instance of non-topical classifica-
tion. Tasks under this heading include compu-
tational humor (Mihalcea and Strapparava, 2005),
genre classification (Boese and Howe, 2005), au-
thorship attribution (Argamon and Shimoni, 2003),
and metaphor detection (Krishnakumaran and Zhu,
2007), among others (Mishne et al., 2007; Mihal-
cea and Liu, 2006). We share the common goal of
classifying text into a unique set of target categories
(in our case, wishful and non-wishful), but use dif-
ferent techniques catered to our specific task. Our
feature-generation technique for wish detection re-
sembles template-based methods for information ex-
traction (Brin, 1999; Agichtein and Gravano, 2000).

2 Analyzing the WISH Corpus

We analyze the WISH corpus with a variety of sta-
tistical methods. Our analyses not only reveal what
people wished for on New Year’s Eve, but also pro-
vide insight for the development of wish detectors in
Section 3.

The complete WISH corpus contains nearly
100,000 wishes collected over a period of 10 days
in December 2007, most written in English, with the
remainder in Portuguese, Spanish, Chinese, French,
and other languages. For this paper, we consider
only the 89,574 English wishes. Most of these En-
glish wishes contain optional geographic meta data
provided by the wisher, indicating a variety of coun-
tries (not limited to English-speaking) around the
world. We perform minimal preprocessing, includ-
ing TreeBank-style tokenization, downcasing, and
punctuation removal. Each wish is treated as a sin-
gle entity, regardless of whether it contains multiple
sentences. After preprocessing, the average length
of a wish is 8 tokens.

2.1 The Topic and Scope of Wishes

As a first step in understanding the content of the
wishes, we asked five annotators to manually an-
notate a random subsample of 5,000 wishes. Sec-
tions 2.1 and 2.2 report results on this subsample.

The wishes were annotated in terms of two at-
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(a) Topic of Wishes

(b) Scope of Wishes

Figure 1: Topic and scope distributions based on manual
annotations of a random sample of 5,000 wishes in the
WISH corpus.

tributes: topic and scope. We used 11 pre-defined
topic categories, and their distribution in this sub-
sample of the WISH corpus is shown in Figure 1(a).
The most frequent topic islove, while health,
happiness, and peace are also common themes.
Many wishes also fell into another category, in-
cluding specific individual requests (“i wish for a
new puppy”), solicitations or advertisements (“call
me 555-1234”, “visitwebsite.com”), or sinister
thoughts (“to take over the world”).

The 5,000 wishes were also manually assigned
a scope. The scope of a wish refers to the range
of people that are targeted by the wish. We used
6 pre-defined scope categories:self (“I want to be
happy”),family (“For a cure for my husband”), spe-
cific person byname(“Prayers forname”), country
(“Bring our troops home!”),world (“Peace to every-
one in the world”), andother. In cases where mul-

tiple scope labels applied, the broadest scope was
selected. Figure 1(b) shows the scope distribution.
It is bimodal: over one third of the wishes are nar-
rowly directed at one’s self, while broad wishes at
the world level are also frequent. The in-between
scopes are less frequent.

2.2 Wishes Differ by Geographic Location

As mentioned earlier, wishers had the option to enter
a city/country when submitting wishes. Of the man-
ually annotated wishes, about 4,000 included valid
location information, covering all 50 states in the
U.S., and all continents except Antarctica.

We noticed a statistically significant difference
between wishes submitted from the United States
(about 3600) versus non-U.S. (about 400), both in
terms of their topic and scope distributions. For each
comparison, we performed a Pearsonχ2-test using
location as the explanatory variable and either topic
or scope as the response variable.2 The null hypoth-
esis is that the variables are independent. For both
tests we reject the null hypothesis, withp < 0.001
for topic, andp = 0.006 for scope. This indicates a
dependence between location and topic/scope. As-
terisks in Figure 2 denote the labels that differ sig-
nificantly between U.S. and non-U.S. wishes.3

In particular, we observed that there are signif-
icantly more wishes aboutlove, peace,and travel
from non-U.S. locales, and more aboutreligion from
the U.S. There are significantly moreworld-scoped
wishes from non-U.S. locales, and morecountry-
andfamily-scoped wishes from the U.S.

We also compared wishes from “red states” ver-
sus “blue states” (U.S. states that voted a majority
for the Republican and Democratic presidential can-
didates in 2008, respectively), but found no signifi-
cant differences.

2The topic test examined a2 × 11 contingency table, while
the scope test used a2 × 6 contingency table. In both tests, all
of the cells in the tables had an expected frequency of at least 5,
so theχ2 approximation is valid.

3To identify the labels that differ significantly by location,
we computed the standardized residuals for the cells in the two
contingency tables. Standardized residuals are approximately
N (0, 1)-distributed and can be used to locate the major con-
tributors to a significantχ2-test statistic (Agresti, 2002). The
asterisks in Figure 2 indicate the surprisingly large residuals,
i.e., the difference between observed and expected frequencies
is outside a 95% confidence interval.
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(a) Wish topics differ by Location

(b) Wish scopes differ by Location

Figure 2: Geographical breakdown of topic and scope
distributions based on approximately 4,000 location-
tagged wishes. Asterisks indicate statistically significant
differences.

2.3 Wishes Follow Zipf’s Law

We now move beyond the annotated subsample and
examine the full set of 89,574 English wishes. We
noticed that a small fraction (4%) of unique wishes
account for a relatively large portion (16%) of wish
occurrences, while there are also many wishes that
only occur once. The question naturally arises: do
wishes obey Zipf’s Law (Zipf, 1932; Manning and
Scḧutze, 1999)? If so, we should expect the fre-
quency of a unique wish to be inversely proportional
to its rank, when sorted by frequency. Figure 3
plots rank versus frequency on a log-log scale and
reveals an approximately linear negative slope, thus
suggesting that wishes do follow Zipf’s law. It also
shows that low-occurrence wishes dominate, hence
learning might be hindered by data sparseness.

2.4 Latent Topic Modeling for Wishes

The 11 topics in Section 2.1 were manually pre-
defined based on domain knowledge. In contrast,
in this section we applied Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) to identify the latent
topics in the full set of 89,574 English wishes in an

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

peace

to find my true love

to take over
the world

log(rank)

lo
g(

fr
eq

ue
nc

y)

Figure 3: The rank vs. frequency plot of wishes, approx-
imately obeying Zipf’s law. Note the log-log scale.

unsupervised fashion. The goal is to validate and
complement the study in Section 2.1.

To apply LDA to the wishes, we treated each indi-
vidual wish as a short document. We used 12 topics,
Collapsed Gibbs Sampling (Griffiths and Steyvers,
2004) for inference, hyperparametersα = 0.5 and
β = 0.1, and ran Markov Chain Monte Carlo for
2000 iterations.

The resulting 12 LDA topics are shown in Ta-
ble 2, in the form of the highest probability words
p(word|topic) in each topic. We manually added
summary descriptors for readability. With LDA, it is
also possible to observe which words were assigned
to which topics in each wish. For example, LDA as-
signed most words in the wish “world(8) peace(8)
and my friends(4) in iraq(1) to come(1) home(1)”
to two topics: peace and troops (topic numbers in
parentheses). Interestingly, these LDA topics largely
agree with the pre-defined topics in Section 2.1.

3 Building Wish Detectors

We now study the novel NLP task of wish detection,
i.e., classifying individual sentences as being wishes
or not. Importantly, we want our approach to trans-
fer to domains other than New Year’s wishes, in-
cluding consumer product reviews and online politi-
cal discussions. It should be pointed out that wishes
are highly domain dependent. For example, “I wish
for world peace” is a common wish on New Year’s
Eve, but is exceedingly rare in product reviews; and
vice versa: “I want to have instant access to the vol-
ume” may occur in product reviews, but is an un-
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Topic Summary Top words in the topic, sorted byp(word|topic)
0 New Year year, new, happy, 2008, best, everyone, great, years, wishing, prosperous, may, hope
1 Troops all, god, home, come, may, safe, s, us, bless, troops, bring, iraq, return, 2008, true, dreams
2 Election wish, end, no, more, 2008, war, stop, president, paul, not, ron, up, free, less, bush, vote
3 Life more, better, life, one, live, time, make, people, than, everyone, day, wish, every, each
4 Prosperity health, happiness, good, family, friends, all, love, prosperity, wealth, success, wish, peace
5 Love love, me, find, wish, true, life, meet, want, man, marry, call, someone, boyfriend, fall, him
6 Career get, wish, job, out, t, hope, school, better, house, well, want, back, don, college, married
7 Lottery wish, win, 2008, money, want, make, become, lottery, more, great, lots, see, big, times
8 Peace peace, world, all, love, earth, happiness, everyone, joy, may, 2008, prosperity, around
9 Religion love, forever, jesus, know, loves, together, u, always, 2, 3, 4, much, best, mom, christ
10 Family healthy, happy, wish, 2008, family, baby, life, children, long, safe, husband, stay, marriage
11 Health com, wish, s, me, lose, please, let, cancer, weight, cure, mom, www, mother, visit, dad

Table 2: Wish topics learned from Latent Dirichlet Allocation. Words are sorted byp(word|topic).

likely New Year’s wish. For this initial study, we do
assume that there are some labeled training data in
the target domains of interest.

To transfer the knowledge learned from the out-
of-domain WISH corpus to other domains, our key
insight is the following: while the content of wishes
(e.g., “world peace”) may not transfer across do-
mains, the ways wishes are expressed (e.g., “I wish
for ”) may. We call these expressionswish tem-
plates. Our novel contribution is an unsupervised
method for discovering candidate templates from the
WISH corpus which, when applied to other target
domains, improve wish detection in those domains.

3.1 Two Simple Wish Detectors

Before describing our template discovery method,
we first describe two simple wish detectors, which
serve as baselines.

1. [Manual] : It may seem easy to locate
wishes. Perhaps looking for sentences containing
the phrases “i wish,” “i hope,” or some other sim-
ple patterns is sufficient for identifying the vast ma-
jority of wishes in a domain. To test this hypothe-
sis, we asked two native English speakers (not the
annotators, nor affiliated with the project; no expo-
sure to any of the wish datasets) to come up with
text patterns that might be used to express wishes.
They were shown three dictionary definitions of “to
wish (v)” and “wish (n)”. They produced a ranked
list of 13 templates; see Table 3. The underscore
matches any string. These templates can be turned
into a simple rule-based classifier: If part of a sen-
tence matches one of the templates, the sentence is

i wish
i hope
i want
hopefully
if only
would be better if
would like if

should
would that
can’t believe didn’t
don’t believe didn’t

do want
i can has

Table 3: Manual templates for identifying wishes.

classified as a wish. By varying the depth of the list,
one can produce different precision/recall behaviors.
Overall, we expect [Manual] to have relatively high
precision but low recall.

2. [Words] : Another simple method for detecting
wishes is to train a standard word-based text clas-
sifier using the labeled training set in the target do-
main. Specifically, we represent each sentence as
a binary word-indicator vector, normalized to sum
to 1. We then train a linear Support Vector Ma-
chine (SVM). This method may have higher recall,
but precision may suffer. For instance, the sentence
“Her wish was carried out by her husband” is not a
wish, but could be misclassified as one because of
the word “wish.”

Note that neither of the two baseline methods uses
the WISH corpus.
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3.2 Automatically Discovering Wish Templates

We now present our method to automatically dis-
cover high quality wish templates using the WISH
corpus. The key idea is to exploit redundancy in
how the same wish content is expressed. For ex-
ample, as we see in Table 1, both “world peace” and
“i wish for world peace” are common wishes. Sim-
ilarly, both “health and happiness” and “i wish for
health and happiness” appear in the WISH corpus.
It is thus reasonable to speculate that “i wish for”
is a good wish template. Less obvious templates can
be discovered in this way, too, such as “let there be

” from “peace on earth” and “let there be peace
on earth.”

We formalize this intuition as a bipartite graph, il-
lustrated in Figure 4. LetW = {w1, . . . , wn} be the
set of unique wishes in the WISH corpus. The bi-
partite graph has two types of nodes: content nodes
C and template nodesT , and they are generated as
follows. If a wishwj (e.g., “i wish for world peace”)
contains another wishwi (e.g., “world peace”), we
create a content nodec1 = wi and a template node
t1 =“i wish for ”. We denote this relationship by
wj = c1 + t1. Note the order ofc1 andt1 is insignif-
icant, as how the two combine is determined by the
underscore int1, andwj = t1 + c1 is just fine. In
addition, we place a directed edge fromc1 to t1 with
edge weight count(wj), the frequency of wishwj in
the WISH corpus. Then, a template node appears to
be a good one if many heavy edges point to it.

On the other hand, a template is less desirable
if it is part of a content node. For example, when
wj =“health and happiness” andwi =“health”, we
create the templatet2 =“ and happiness” and the
content nodec3 = wi. If there is another wish
wk =“i wish for health and happiness”, then there
will be a content nodec2 = wj . The templatet2
thus contains some content words (since it matches
c2), and may not generalize well in a new domain.
We capture this by backward edges: if∃c′ ∈ C, and
∃ string s (s not necessarily inC or W ) such that
c′ = s+ t, we add a backward edge fromt to c′ with
edge weight count(c′).

Based on such considerations, we devised the fol-
lowing scheme for scoring templates:

score(t) = in(t)− out(t), (1)

health and happiness

c1

c2

c3

t1

t2

i wish for ___

___ and happiness

world peace

health

count(c1+t1)

count(c2)

Figure 4: The bipartite graph to create templates.

where in(t) is the in-degree of nodet, defined as the
sum of edge weights coming intot; out(t) is the out-
degree of nodet, defined similarly. In other words, a
template receives a high score if it is “used” by many
frequent wishes but does not match many frequent
content-only wishes. To create the final set of tem-
plate features, we apply the threshold score(t) ≥ 5.
This produces a final list of 811 templates. Table 4
lists some of the top templates ranked by score(t).
While some of these templates still contain time- or
scope-related words (“for my family”), they are de-
void of specific topical content. Notice that we have
automatically identified several of the manually de-
rived templates in Table 3, and introduce many new
variations that a learning algorithm can leverage.

Top 10 Others in Top 200
in 2008 i want to

i wish for for everyone
i wish i hope
i want my wish is

this year please
i wish in 2008 wishing for
i wish to may you

for my family i wish i had
i wish this year to finally

in the new year for my family to have

Table 4: Top templates according to Equation 1.

3.3 Learning with Wish Template Features

After discovering wish templates as described
above, we use them as features for learning in a new
domain (e.g., product reviews). For each sentence in
the new domain, we assign binary features indicat-
ing which templates match the sentence. Two types
of matching are possible.Strict matchingrequires
that the template must match an entire sentence from
beginning to end, with at least one word filling in for
the underscore. (All matching during the template
generation process was strict.)Non-strict matching
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Figure 5: Politics domain precision-recall curves.

requires only that template match somewhere within
a sentence. Rather than choose one type of match-
ing, we create both strict and non-strict template fea-
tures (1622 binary features total) and let the machine
learning algorithm decide what is most useful.

Our third wish detector,[Templates], is a linear
SVM with the 1622 binary wish template features.
Our fourth wish detector,[Words + Templates], is
a linear SVM with both template and word features.

4 Experimental Results

4.1 Target Domains and Experimental Setup

We experimented with two domains, manually la-
beled at the sentence-level as wishes or non-wishes.4

Example wishes are listed in Table 6.
Products. Consumer product reviews: 1,235 sen-

tences selected from a collection of amazon.com and
cnet.com reviews (Hu and Liu, 2004; Ding et al.,
2008). 12% of the sentences are labeled as wishes.

Politics. Political discussion board postings:
6,379 sentences selected from politics.com (Mullen
and Malouf, 2008). 34% are labeled as wishes.

We automatically split the corpora into sen-
tences using MxTerminator (Reynar and Ratna-
parkhi, 1997). As preprocessing before learning, we
tokenized the text in the Penn TreeBank style, down-

4These wish-annotated corpora are available for download
at http://pages.cs.wisc.edu/∼goldberg/wishdata.
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Figure 6: Products domain precision-recall curves.

cased, and removed all punctuation.
For all four wish detectors, we performed 10-fold

cross validation. We used the default parameter in
SVMlight for all trials (Joachims, 1999). As the
data sets are skewed, we compare the detectors us-
ing precision-recall curves and the area under the
curve (AUC). For the manual baseline, we produce
the curve by varying the number of templates ap-
plied (in rank order), which gradually predicts more
sentences as wishes (increasing recall at the expense
of precision). A final point is added at recall1.0,
corresponding to applying an empty template that
matches all sentences. For the SVM-based meth-
ods, we vary the threshold applied to the real-valued
margin prediction to produce the curves. All curves
are interpolated, and AUC measures are computed,
using the techniques of (Davis and Goadrich, 2006).

4.2 Results

Figure 5 shows the precision-recall curves for the
Politics corpus. All curves are averages over 10
folds (i.e., for each of 100 evenly spaced, interpo-
lated recall points, the 10 precision values are aver-
aged). As expected, [Manual] can be very precise
with low recall—only the very top few templates
achieve high precision and pick out a small num-
ber of wishes with “i wish” and “i hope.” As we
introduce more templates to cover more true wishes,
precision drops off quickly. [Templates] is similar,
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Corpus [Manual] [Words] [Templates] [Words + Templates]
Politics 0.67± 0.03 0.77± 0.03 0.73± 0.03 0.80± 0.03
Products 0.49± 0.13 0.52± 0.16 0.47± 0.16 0.56± 0.16

Table 5: AUC results (10-fold averages± one standard deviation).

Products:
the only area i wish apple had improved upon would be the screen
i just want music to eminate from it when i want how i want
the dial on the original zen was perfect and i wish it was on this model
i would like album order for my live albums and was just wondering

Politics:
all children should be allowed healthcare
please call on your representatives in dc and ask them to please stop the waste in iraq
i hope that this is a new beginning for the middle east
may god bless and protect the brave men and that we will face these dangers in the future

Table 6: Example target-domain wishes correctly identified by [Words + Templates].

with slightly better precision in low recall regions.
[Words] is the opposite: bad in high recall but good
in low recall regions. [Words + Templates] is the
best, taking the best from both kinds of features to
dominate other curves. Table 5 shows the average
AUC across 10 folds. [Words + Templates] is sig-
nificantly better than all other detectors under paired
t-tests (p = 1 × 10−7 vs. [Manual],p = 0.01 vs.
[Words], andp = 4 × 10−7 vs. [Templates]). All
other differences are statistically significant, too.

Figure 6 shows the precision-recall curves for
the Products corpus. Again, [Words + Templates]
mostly dominates other detectors. In terms of av-
erage AUC across folds (Table 5), [Words + Tem-
plates] is also the best. However, due to the small
size of this corpus, the AUC values have high vari-
ance, and the difference between [Words + Tem-
plates] and [Words] is not statistically significant un-
der a pairedt-test (p = 0.16).

Finally, to understand what is being learned in
more detail, we take a closer look at the SVM mod-
els’ weights for one fold of the Products corpus
(Table 7). The most positive and negative features
make intuitive sense. Note that [Words + Templates]
seems to rely on templates for selecting wishes and
words for excluding non-wishes. This partially ex-
plains the synergy of combining the feature types.

Sign [Words] [Templates]
[Words +
Templates]

+ wish i hope hoping
+ hope i wish i hope
+ hopefully hoping i just want
+ hoping i just want i wish
+ want i would like i would like
- money family micro
- find forever about
- digital let me fix
- again d digital
- you for my dad you

Table 7: Features with the largest magnitude weights in
the SVM models for one fold of the Products corpus.

5 Conclusions and Future Work

We have presented a novel study of wishes from
an NLP perspective. Using the first-of-its-kind
WISH corpus, we generated domain-independent
wish templates that improve wish detection perfor-
mance across product reviews and political discus-
sion posts. Much work remains in this new research
area, including the creation of more types of fea-
tures. Also, due to the difficulty in obtaining wish-
annotated training data, we plan to explore semi-
supervised learning for wish detection.

AcknowledgementsWe thank the Times Square Al-
liance for providing the WISH corpus, and the Wisconsin
Alumni Research Foundation. AG is supported in part by
a Yahoo! Key Technical Challenges Grant.
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Abstract

We address a text regression problem: given a
piece of text, predict a real-world continuous
quantity associated with the text’s meaning. In
this work, the text is an SEC-mandated finan-
cial report published annually by a publicly-
traded company, and the quantity to be pre-
dicted is volatility of stock returns, an empiri-
cal measure of financial risk. We apply well-
known regression techniques to a large cor-
pus of freely available financial reports, con-
structing regression models of volatility for
the period following a report. Our models ri-
val past volatility (a strong baseline) in pre-
dicting the target variable, and a single model
that uses both can significantly outperform
past volatility. Interestingly, our approach is
more accurate for reports after the passage of
the Sarbanes-Oxley Act of 2002, giving some
evidence for the success of that legislation in
making financial reports more informative.

1 Introduction

We consider a text regression problem: given a piece
of text, predict a R-valued quantity associated with
that text. Specifically, we use a company’s annual
financial report to predict the financial risk of invest-
ment in that company, as measured empirically by a
quantity known as stock return volatility.

Predicting financial risk is of clear interest to
anyone who invests money in stocks and central
to modern portfolio choice. Financial reports are
a government-mandated artifact of the financial
world that—one might hypothesize—contain a large
amount of information about companies and their
value. Indeed, it is an important question whether
mandated disclosures are informative, since they are
meant to protect investors but are costly to produce.

The intrinsic properties of the problem are attrac-
tive as a test-bed for NLP research. First, there is
no controversy about the usefulness or existential
reality of the output variable (volatility). Statisti-
cal NLP often deals in the prediction of variables
ranging from text categories to linguistic structures
to novel utterances. While many of these targets are
uncontroversially useful, they often suffer from eval-
uation difficulties and disagreement among annota-
tors. The output variable in this work is a statistic
summarizing facts about the real world; it is not sub-
ject to any kind of human expertise, knowledge, or
intuition. Hence this prediction task provides a new,
objective test-bed for any kind of linguistic analysis.

Second, many NLP problems rely on costly anno-
tated resources (e.g., treebanks or aligned bilingual
corpora). Because the text and historical financial
data used in this work are freely available (by law)
and are generated as a by-product of the American
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economy, old and new data can be obtained by any-
one with relatively little effort.

In this paper, we demonstrate that predicting fi-
nancial volatility automatically from a financial re-
port is a novel, challenging, and easily evaluated nat-
ural language understanding task. We show that a
very simple representation of the text (essentially,
bags of unigrams and bigrams) can rival and, in
combination, improve over a strong baseline that
does not use the text. Analysis of the learned models
provides insights about what can make this problem
more or less difficult, and suggests that disclosure-
related legislation led to more transparent reporting.

2 Stock Return Volatility

Volatility is often used in finance as a measure of
risk. It is measured as the standard deviation of
a stock’s returns over a finite period of time. A
stock will have high volatility when its price fluctu-
ates widely and low volatility when its price remains
more or less constant.

Let rt = Pt
Pt−1

− 1 be the return on a given stock
between the close of trading day t − 1 and day t,
where Pt is the (dividend-adjusted) closing stock
price at date t. The measured volatility over the time
period from day t− τ to day t is equal to the sample
s.d.:

v[t−τ,t] =

√√√√
τ∑

i=0

(rt−i − r̄)2
/

τ (1)

where r̄ is the sample mean of rt over the period. In
this work, the above estimate will be treated as the
true output variable on training and testing data.

It is important to note that predicting volatility is
not the same as predicting returns or value. Rather
than trying to predict how well a stock will perform,
we are trying to predict how stable its price will be
over a future time period. It is, by now, received
wisdom in the field of economics that predicting a
stock’s performance, based on easily accessible pub-
lic information, is difficult. This is an attribute of
well-functioning (or “efficient”) markets and a cor-
nerstone of the so-called “efficient market hypoth-
esis” (Fama, 1970). By contrast, the idea that one
can predict a stock’s level of risk using public in-
formation is uncontroversial and a basic assumption
made by many economically sound pricing mod-

els. A large body of research in finance suggests
that the two types of quantities are very different:
while predictability of returns could be easily traded
away by the virtue of buying/selling stocks that are
under- or over-valued (Fama, 1970), similar trades
are much more costly to implement with respect to
predictability of volatility (Dumas et al., 2007). By
focusing on volatility prediction, we avoid taking
a stance on whether or not the United States stock
market is informationally efficient.

3 Problem Formulation

Given a text document d, we seek to predict the
value of a continuous variable v. We do this via a
parameterized function f :

v̂ = f(d; w) (2)

where w ∈ Rd are the parameters or weights. Our
approach is to learn a human-interpretable w from
a collection of N training examples {〈di, vi〉}Ni=1,
where each di is a document and each vi ∈ R.

Support vector regression (Drucker et al., 1997)
is a well-known method for training a regression
model. SVR is trained by solving the following op-
timization problem:

min
w∈Rd

1
2
‖w‖2+

C

N

N∑

i=1

max
(

0,
∣∣∣vi − f(di; w)

∣∣∣− ε
)

︸ ︷︷ ︸
ε-insensitive loss function

(3)
where C is a regularization constant and ε controls
the training error.1 The training algorithm finds
weights w that define a function f minimizing the
(regularized) empirical risk.

Let h be a function from documents into some
vector-space representation⊆ Rd. In SVR, the func-
tion f takes the form:

f(d; w) = h(d)>w =
N∑

i=1

αiK(d,di) (4)

where Equation 4 re-parameterizes f in terms of a
kernel function K with “dual” weights αi. K can

1Given the embedding h of documents in Rd, ε defines
a “slab” (region between two parallel hyperplanes, some-
times called the “ε-tube”) in Rd+1 through which each
〈h(di), f(di;w)〉 must pass in order to have zero loss.
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year words documents words/doc.
1996 5.5M 1,408 3,893
1997 9.3M 2,260 4,132
1998 11.8M 2,462 4,808
1999 14.5M 2,524 5,743
2000 13.4M 2,425 5,541
2001 15.4M 2,596 5,928
2002 22.7M 2,846 7,983
2003 35.3M 3,612 9,780
2004 38.9M 3,559 10,936
2005 41.9M 3,474 12,065
2006 38.8M 3,308 11,736
total 247.7M 26,806 9,240

Table 1: Dimensions of the dataset used in this paper,
after filtering and tokenization. The near doubling in av-
erage document size during 2002–3 is possibly due to the
passage of the Sarbanes-Oxley Act of 2002 in the wake
of Enron’s accounting scandal (and numerous others).

be seen as a similarity function between two docu-
ments. At test time, a new example is compared to a
subset of the training examples (those with αi 6= 0);
typically with SVR this set is sparse. With the linear
kernel, the primal and dual weights relate linearly:

w =
N∑

i=1

αih(di) (5)

The full details of SVR and its implementation are
beyond the scope of this paper; interested readers are
referred to Schölkopf and Smola (2002). SVMlight

(Joachims, 1999) is a freely available implementa-
tion of SVR training that we used in our experi-
ments.2

4 Dataset

In the United States, the Securities Exchange Com-
mission mandates that all publicly-traded corpora-
tions produce annual reports known as “Form 10-
K.” The report typically includes information about
the history and organization of the company, equity
and subsidiaries, as well as financial information.
These reports are available to the public and pub-
lished on the SEC’s web site.3 The structure of the
10-K is specified in detail in the legislation. We have
collected 54,379 reports published over the period

2Available at http://svmlight.joachims.org.
3http://www.sec.gov/edgar.shtml

1996–2006 from 10,492 different companies. Each
report comes with a date of publication, which is im-
portant for tying the text back to the financial vari-
ables we seek to predict.

From the perspective of predicting future events,
one section of the 10-K is of special interest: Section
7, known as “management’s discussion and anal-
ysis of financial conditions and results of opera-
tions” (MD&A), and in particular Subsection 7A,
“quantitative and qualitative disclosures about mar-
ket risk.” Because Section 7 is where the most im-
portant forward-looking content is most likely to
be found, we filter other sections from the reports.
The filtering is done automatically using a short,
hand-written Perl script that seeks strings loosely
matching the Section 7, 7A, and 8 headers, finds the
longest reasonable “Section 7” match (in words) of
more than 1,000 whitespace-delineated tokens.

Section 7 typically begins with an introduction
like this (from ABC’s 1998 Form 10-K, before to-
kenization for readability; boldface added):

The following discussion and analysis of
ABC’s consolidated financial condition and
consolidated results of operation should be
read in conjunction with ABC’s Consoli-
dated Financial Statements and Notes thereto
included elsewhere herein. This discus-
sion contains certain forward-looking state-
ments which involve risks and uncertain-
ties. ABC’s actual results could differ mate-
rially from the results expressed in, or implied
by, such statements. See “Regarding Forward-
Looking Statements.”

Not all of the documents downloaded pass the fil-
ter at all, and for the present work we have only used
documents that do pass the filter. (One reason for the
failure of the filter is that many 10-K reports include
Section 7 “by reference,” so the text is not directly
included in the document.)

In addition to the reports, we used the Center
for Research in Security Prices (CRSP) US Stocks
Database to obtain the price return series along with
other firm characteristics.4 We proceeded to calcu-
late two volatilities for each firm/report observation:
the twelve months prior to the report (v(−12)) and
the twelve months after the report (v(+12)).

4The text and volatility data are publicly available at http:
//www.ark.cs.cmu.edu/10K.
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Tokenization was applied to the text, including
punctuation removal, downcasing, collapsing all
digit sequences,5 and heuristic removal of remnant
markup. Table 1 gives statistics on the corpora
used in this research; this is a subset of the cor-
pus for which there is no missing volatility informa-
tion. The drastic increase in length during the 2002–
2003 period might be explained by the passage by
the US Congress of the Sarbanes-Oxley Act of 2002
(and related SEC and exchange rules), which im-
posed revised standards on reporting practices of
publicly-traded companies in the US.

5 Baselines and Evaluation Method

Volatility displays an effect known as autoregressive
conditional heteroscedasticity (Engle, 1982). This
means that the variance in a stock’s return tends to
change gradually. Large changes in price are pre-
saged by other changes, and periods of stability tend
to continue. Volatility is, generally speaking, not
constant, yet prior volatility (e.g., v(−12)) is a very
good predictor of future volatility (e.g., v(+12)). At
the granularity of a year, which we consider here
because the 10-K reports are annual, there are no
existing models of volatility that are widely agreed
to be significantly more accurate than our histor-
ical volatility baseline. We tested a state-of-the-
art model known as GARCH(1, 1) (Engle, 1982;
Bollerslev, 1986) and found that it was no stronger
than our historical volatility baseline on this sample.

Throughout this paper, we will report perfor-
mance using the mean squared error between the
predicted and true log-volatilities:6

MSE =
1
N ′

N ′∑

i=1

(log(vi)− log(v̂i))
2 (6)

where N ′ is the size of the test set, given in Table 1.

6 Experiments

In our experiments, we vary h (the function that
maps inputs to a vector space) and the subset of the

5While numerical information is surely informative about
risk, recall that our goal is to find indicators of risk expressed in
the text; automatic predictors of risk from numerical data would
use financial data streams directly, not text reports.

6We work in the log domain because it is standard in finance,
due to the dynamic range of actual volatilities; the distribution
over log v across companies tends to have a bell shape.

data used for training. We will always report perfor-
mance over test sets consisting of one year’s worth
of data (the subcorpora described in Table 1). In
this work, we focus on predicting the volatility over
the year following the report (v(+12)). In all experi-
ments, ε = 0.1 and C is set using the default choice
of SVMlight , which is the inverse of the average of
h(d)>h(d) over the training data.7

6.1 Feature Representation
We first consider how to represent the 10-K reports.
We adopt various document representations, all us-
ing word features. Let M be the vocabulary size
derived from the training data.8 Let freq(xj ; d) de-
note the number of occurrences of the jth word in
the vocabulary in document d.

• TF: hj(d) = 1
|d| freq(xj ; d), ∀j ∈ {1, ...,M}.

• TFIDF: hj(d) = 1
|d| freq(xj ; d)× log(N/|{d :

freq(xj ; d) > 0}|), where N is the number of
documents in the training set. This is the classic
“TFIDF” score.

• LOG1P: hj(d) = log(1 + freq(xj ; d)). Rather
than normalizing word frequencies as for TF,
this score dampens them with a logarithm. We
also include a variant of LOG1P where terms
are the union of unigrams and bigrams.

Note that each of these preserves sparsity; when
freq(xj ; d) = 0, hj(d) = 0 in all cases.

For interpretability of results, we use a linear ker-
nel. The usual bias weight b is included. We found
it convenient to work in the logarithmic domain for
the predicted variable, predicting log v instead of v,
since volatility is always nonnegative. In this setting,
the predicted volatility takes the form:

log v̂ = b+
M∑

j=1

wjhj(d) (7)

Because the goal of this work is to explore how text
might be used to predict volatility, we also wish

7These values were selected after preliminary and cursory
exploration with 1996–2000 as training data and 2001 as the
test set. While the effects of ε and C were not large, further
improvements may be possible with more careful tuning.

8Preliminary experiments that filtered common or rare
words showed a negligible or deleterious effect on performance.
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features 2001 2002 2003 2004 2005 2006 micro-ave.

hi
st

or
y v(−12) (baseline) 0.1747 0.1600 0.1873 0.1442 0.1365 0.1463 0.1576

v(−12) (SVR with bias) 0.2433 0.4323 0.1869 0.2717 0.3184 5.6778 1.2061
v(−12) (SVR without bias) 0.2053 0.1653 0.2051 0.1337 0.1405 0.1517 0.1655

w
or

ds

TF 0.2219 0.2571 0.2588 0.2134 0.1850 0.1862 0.2197
TFIDF 0.2033 0.2118 0.2178 0.1660 0.1544 0.1599 0.1842
LOG1P 0.2107 0.2214 0.2040 0.1693 0.1581 0.1715 0.1873
LOG1P, bigrams 0.1968 0.2015 ∗0.1729 0.1500 0.1394 0.1532 0.1667

bo
th

TF+ 0.1885 0.1616 0.1925 ∗0.1230 ∗0.1272 ∗0.1402 ∗0.1541
TFIDF+ 0.1919 0.1618 0.1965 ∗0.1246 ∗0.1276 ∗0.1403 ∗0.1557
LOG1P+ 0.1846 0.1764 ∗0.1671 ∗0.1309 ∗0.1319 0.1458 ∗0.1542
LOG1P+, bigrams 0.1852 0.1792 ∗0.1599 ∗0.1352 ∗0.1307 0.1448 ∗0.1538

Table 2: MSE (Eq. 6) of different models on test data predictions. Lower values are better. Boldface denotes
improvements over the baseline, and ∗ denotes significance compared to the baseline under a permutation test (p <
0.05).

to see whether text adds information beyond what
can be predicted using historical volatility alone (the
baseline, v(−12)). We therefore consider models
augmented with an additional feature, defined as
hM+1 = log v(−12). Since this is historical informa-
tion, it is always available when the 10-K report is
published. These models are denoted TF+, TFIDF+,
and LOG1P+.

The performance of these models, compared to
the baseline from Section 5, is shown in Table 2.
We used as training examples all reports from the
five-year period preceding the test year (so six ex-
periments on six different training and test sets are
shown in the figure). We also trained SVR models
on the single feature v(−12), with and without bias
weights (b in Eq. 7); these are usually worse and
never signficantly better than the baseline.

Strikingly, the models that use only the text to
predict volatility come very close to the historical
baseline in some years. That a text-only method
(LOG1P with bigrams) for predicting future risk
comes within 5% of the error of a strong baseline
(2003–6) shows promise for the overall approach.
A combined model improves substantially over the
baseline in four out of six years (2003–6), and this
difference is usually robust to the representation
used. Table 3 shows the most strongly weighted
terms in each of the text-only LOG1P models (in-
cluding bigrams). These weights are recovered us-
ing the relationship expressed in Eq. 5.

6.2 Training Data Effects
It is well known that more training data tend to im-
prove the performance of a statistical method; how-

ever, the standard assumption is that the training
data are drawn from the same distribution as the test
data. In this work, where we seek to predict the
future based on data from past, that assumption is
obviously violated. It is therefore an open question
whether more data (i.e., looking farther into the past)
is helpful for predicting volatility, or whether it is
better to use only the most recent data.

Table 4 shows how performance varies when one,
two, or five years of historical training data are used,
averaged across test years. In most cases, using
more training data (from a longer historical period)
is helpful, but not always. One interesting trend,
not shown in the aggregate statistics of Table 4,
is that recency of the training set affected perfor-
mance much more strongly in earlier train/test splits
(2001–3) than later ones (2004–6). This experiment
leads us to conclude that temporal changes in fi-
nancial reporting make training data selection non-
trivial. Changes in the macro economy and spe-
cific businesses make older reports less relevant for
prediction. For example, regulatory changes like
Sarbanes-Oxley, variations in the business cycle,
and technological innovation like the Internet influ-
ence both the volatility and the 10-K text.

6.3 Effects of Sarbanes-Oxley
We noted earlier that the passage of the Sarbanes-
Oxley Act of 2002, which sought to reform financial
reporting, had a clear effect on the lengths of the
10-K reports in our collection. But are the reports
more informative? This question is important, be-
cause producing reports is costly; we present an em-
pirical argument based on our models that the legis-
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e. features 1 2 5
TF+ 0.1509 0.1450 0.1541
TFIDF+ 0.1512 0.1455 0.1557
LOG1P+ 0.1621 0.1611 0.1542
LOG1P+, bigrams 0.1617 0.1588 0.1538

Table 4: MSE of volatility predictions using reports from
varying historical windows (1, 2, and 5 years), micro-
averaged across six train/test scenarios. Boldface marks
best in a row. The historical baseline achieves 0.1576
MSE (see Table 2).

lation has actually been beneficial.
Our experimental results in Section 6.1, in which

volatility in the years 2004–2006 was more accu-
rately predicted from the text than in 2001–2002,
suggest that the Sarbanes-Oxley Act led to more in-
formative reports. We compared the learned weights
(LOG1P+, unigrams) between the six overlapping
five-year windows ending in 2000–2005; measured
in L1 distance, these were, in consecutive order,
〈52.2, 59.9, 60.7, 55.3, 52.3〉; the biggest differ-
ences came between 2001 and 2002 and between
2002 and 2003. (Firms are most likely to have be-
gun compliance with the new law in 2003 or 2004.)
The same pattern held when only words appearing
in all five models were considered. Variation in the
recency/training set size tradeoff (§6.2), particularly
during 2002–3, also suggests that there were sub-
stantial changes in the reports during that time.

6.4 Qualitative Evaluation
One of the advantages of a linear model is that we
can explore what each model discovers about dif-
ferent unigram and bigram terms. Some manually
selected examples of terms whose learned weights
(w) show interesting variation patterns over time are
shown in Figure 1, alongside term frequency pat-
terns, for the text-only LOG1P model (with bigrams).
These examples were suggested by experts in fi-
nance from terms with weights that were both large
and variable (across training sets).

A particularly interesting case, in light of
Sarbanes-Oxley, is the term accounting policies.
Sarbanes-Oxley mandated greater discussion of ac-
counting policy in the 10-K MD&A section. Be-
fore 2002 this term indicates high volatility, per-
haps due to complicated off-balance sheet transac-
tions or unusual accounting policies. Starting in
2002, explicit mention of accounting policies indi-
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Figure 1: Left:
learned weights for
selected terms across
models trained on
data from different
time periods (x-axis).
These weights are
from the LOG1P
(unigrams and
bigrams) models
trained on five-year
periods, the same
models whose
extreme weights are
summarized in
Tab. 3. Note that all
weights are within
0± 0.026. Right: the
terms’ average
frequencies (by
document) over the
same periods.

cates lower volatility. The frequency of the term
also increases drastically over the same period, sug-
gesting that the earlier weights may have been in-
flated. A more striking example is estimates, which
averages one occurrence per document even in the
1996–2000 period, experiences the same term fre-
quency explosion, and goes through a similar weight
change, from strongly indicating high volatility to
strongly indicating low volatility.

As a second example, consider the terms mort-
gages and reit (Real Estate Investment Trust, a tax
designation for businesses that invest in real estate).
Given the importance of the housing and mortgage
market over the past few years, it is interesting to
note that the weight on both of these terms increases
over the period from a strong low volatility term to a
weak indicator of high volatility. It will be interest-
ing to see how the dramatic decline in housing prices
in late 2007, and the fallout created in credit markets
in 2008, is reflected in future models.

Finally, notice that high margin and low mar-
gin, whose frequency patterns are fairly flat “switch
places,” over the sample: first indicating high and
low volatility, respectively, then low and high. There
is no a priori reason to expect high or low margins

would be associated with high or low stock volatil-
ity. However, this is an interesting example where
bigrams are helpful (the word margin by itself is
uninformative) and indicates that predicting risk is
highly time-dependent.

6.5 Delisting

An interesting but relatively infrequent phenomenon
is the delisting of a company, i.e., when it ceases to
be traded on a particular exchange due to dissolution
after bankruptcy, a merger, or violation of exchange
rules. The relationship between volatility and delist-
ing has been studied by Merton (1974), among oth-
ers. Our dataset includes a small number of cases
where the volatility figures for the period following
the publication of a 10-K report are unavailable be-
cause the company was delisted. Learning to predict
delisting is extremely difficult because fewer than
4% of the 2001–6 10-K reports precede delisting.

Using the LOG1P representation, we built a lin-
ear SVM classifier for each year in 2001–6 (trained
on the five preceding years’ data) to predict whether
a company will be delisted following its 10-K re-
port. Performance for various precision measures is
shown in Table 5. Notably, for 2001–4 we achieve
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precision (%) at ... ’01 ’02 ’03 ’04 ’05 ’06
recall = 10% 80 93 79 100 47 21
n = 5 100 100 40 100 60 80
n = 10 80 90 70 90 60 70
n = 100 38 48 53 29 24 20
oracle F1 (%) 35 42 44 36 31 16

6 bulletin, creditors, dip, otc
5 court
4 chapter, debtors, filing, prepetition
3 bankruptcy
2 concern, confirmation, going, liquidation
1 debtorinpossession, delisted, nasdaq, petition

Table 5: Left: precision of delisting predictions. The “oracle F1” row shows the maximal F1 score obtained for any
n. Right: Words most strongly predicting delisting of a company. The number is how many of the six years (2001–6)
the word is among the ten most strongly weighted. There were no clear patterns across years for words predicting that
a company would not be delisted. The word otc refers to “over-the-counter” trading, a high-risk market.

above 75% precision at 10% recall. Our best (or-
acle) F1 scores occur in 2002 and 2003, suggesting
again a difference in reports around Sarbanes-Oxley.
Table 5 shows words associated with delisting.

7 Related Work

In NLP, regression is not widely used, since most
natural language-related data are discrete. Regres-
sion methods were pioneered by Yang and Chute
(1992) and Yang and Chute (1993) for information
retrieval purposes, but the predicted continuous vari-
able was not an end in itself in that work. Blei
and McAuliffe (2007) used latent “topic” variables
to predict movie reviews and popularity from text.
Lavrenko et al. (2000b) and Lavrenko et al. (2000a)
modeled influences between text and time series fi-
nancial data (stock prices) using language models.
Farther afield, Albrecht and Hwa (2007) used SVR
to train machine translation evaluation metrics to
match human evaluation scores and compared tech-
niques using correlation. Regression has also been
used to order sentences in extractive summarization
(Biadsy et al., 2008).

While much of the information relevant for in-
vestors is communicated through text (rather than
numbers), only recently is this link explored. Some
papers relate news articles to earning forecasts, stock
returns, volatility, and volume (Koppel and Shtrim-
berg, 2004; Tetlock, 2007; Tetlock et al., 2008; Gaa,
2007; Engelberg, 2007). Das and Chen (2001) and
Antweiler and Frank (2004) ask whether messages
posted on message boards can help explain stock
performance, while Li (2005) measures the associ-
ation between frequency of words associated with
risk and subsequent stock returns. Weiss-Hanley and
Hoberg (2008) study initial public offering disclo-
sures using word statistics. Many researchers have
focused the related problem of predicting sentiment

and opinion in text (Pang et al., 2002; Wiebe and
Riloff, 2005), sometimes connected to extrinsic val-
ues like prediction markets (Lerman et al., 2008).

In contrast to text regression, text classification
comprises a widely studied set of problems involv-
ing the prediction of categorial variables related to
text. Applications have included the categorization
of documents by topic (Joachims, 1998), language
(Cavnar and Trenkle, 1994), genre (Karlgren and
Cutting, 1994), author (Bosch and Smith, 1998),
sentiment (Pang et al., 2002), and desirability (Sa-
hami et al., 1998). Text categorization has served as
a test application for nearly every machine learning
technique for discrete classification.

8 Conclusion

We have introduced and motivated a new kind of
task for NLP: text regression, in which text is used
to make predictions about measurable phenomena
in the real world. We applied the technique to pre-
dicting financial volatility from companies’ 10-K re-
ports, and found text regression model predictions
to correlate with true volatility nearly as well as his-
torical volatility, and a combined model to perform
even better. Further, improvements in accuracy and
changes in models after the passage of the Sarbanes-
Oxley Act suggest that financial reporting reform
has had interesting and measurable effects.
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Abstract

Domain adaptation is an important problem in
named entity recognition (NER). NER classi-
fiers usually lose accuracy in the domain trans-
fer due to the different data distribution be-
tween the source and the target domains. The
major reason for performance degrading is
that each entity type often has lots of domain-
specific term representations in the different
domains. The existing approaches usually
need an amount of labeled target domain data
for tuning the original model. However, it
is a labor-intensive and time-consuming task
to build annotated training data set for every
target domain. We present a domain adapta-
tion method with latent semantic association
(LaSA). This method effectively overcomes
the data distribution difference without lever-
aging any labeled target domain data. LaSA
model is constructed to capture latent seman-
tic association among words from the unla-
beled corpus. It groups words into a set of
concepts according to the related context snip-
pets. In the domain transfer, the original term
spaces of both domains are projected to a con-
cept space using LaSA model at first, then the
original NER model is tuned based on the se-
mantic association features. Experimental re-
sults on English and Chinese corpus show that
LaSA-based domain adaptation significantly
enhances the performance of NER.

1 Introduction

Named entities (NE) are phrases that contain names
of persons, organizations, locations, etc. NER is an

important task in information extraction and natu-
ral language processing (NLP) applications. Super-
vised learning methods can effectively solve NER
problem by learning a model from manually labeled
data (Borthwick, 1999; Sang and Meulder, 2003;
Gao et al., 2005; Florian et al., 2003). However, em-
pirical study shows that NE types have different dis-
tribution across domains (Guo et al., 2006). Trained
NER classifiers in the source domain usually lose
accuracy in a new target domain when the data dis-
tribution is different between both domains.

Domain adaptation is a challenge for NER and
other NLP applications. In the domain transfer,
the reason for accuracy loss is that each NE type
often has various specific term representations and
context clues in the different domains. For ex-
ample,{“economist”, “singer”, “dancer”, “athlete”,
“player”, “philosopher”, ...} are used as context
clues for NER. However, the distribution of these
representations are varied with domains. We expect
to do better domain adaptation for NER by exploit-
ing latent semantic association among words from
different domains. Some approaches have been pro-
posed to group words into “topics” to capture im-
portant relationships between words, such as Latent
Semantic Indexing (LSI) (Deerwester et al., 1990),
probabilistic Latent Semantic Indexing (pLSI) (Hof-
mann, 1999), Latent Dirichlet Allocation (LDA)
(Blei et al., 2003). These models have been success-
fully employed in topic modeling, dimensionality
reduction for text categorization (Blei et al., 2003),
ad hoc IR (Wei and Croft., 2006), and so on.

In this paper, we present a domain adaptation
method with latent semantic association. We focus
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on capturing the hidden semantic association among
words in the domain adaptation. We introduce the
LaSA model to overcome the distribution difference
between the source domain and the target domain.
LaSA model is constructed from the unlabeled cor-
pus at first. It learns latent semantic association
among words from their related context snippets.
In the domain transfer, words in the corpus are as-
sociated with a low-dimension concept space using
LaSA model, then the original NER model is tuned
using these generated semantic association features.
The intuition behind our method is that words in one
concept set will have similar semantic features or
latent semantic association, and share syntactic and
semantic context in the corpus. They can be consid-
ered as behaving in the same way for discriminative
learning in the source and target domains. The pro-
posed method associates words from different do-
mains on a semantic level rather than by lexical oc-
currence. It can better bridge the domain distribu-
tion gap without any labeled target domain samples.
Experimental results on English and Chinese corpus
show that LaSA-based adaptation significantly en-
hances NER performance across domains.

The rest of this paper is organized as follows. Sec-
tion 2 briefly describes the related works. Section 3
presents a domain adaptation method based on latent
semantic association. Section 4 illustrates how to
learn LaSA model from the unlabeled corpus. Sec-
tion 5 shows experimental results on large-scale En-
glish and Chinese corpus across domains, respec-
tively. The conclusion is given in Section 6.

2 Related Works

Some domain adaptation techniques have been em-
ployed in NLP in recent years. Some of them
focus on quantifying the generalizability of cer-
tain features across domains. Roark and Bacchiani
(2003) use maximum a posteriori (MAP) estimation
to combine training data from the source and target
domains. Chelba and Acero (2004) use the param-
eters of the source domain maximum entropy clas-
sifier as the means of a Gaussian prior when train-
ing a new model on the target data. Daume III and
Marcu (2006) use an empirical Bayes model to esti-
mate a latent variable model grouping instances into
domain-specific or common across both domains.

Daume III (2007) further augments the feature space
on the instances of both domains. Jiang and Zhai
(2006) exploit the domain structure contained in the
training examples to avoid over-fitting the training
domains. Arnold et al. (2008) exploit feature hier-
archy for transfer learning in NER. Instance weight-
ing (Jiang and Zhai, 2007) and active learning (Chan
and Ng, 2007) are also employed in domain adap-
tation. Most of these approaches need the labeled
target domain samples for the model estimation in
the domain transfer. Obviously, they require much
efforts for labeling the target domain samples.

Some approaches exploit the common structure of
related problems. Ando et al. (2005) learn pred-
icative structures from multiple tasks and unlabeled
data. Blitzer et al. (2006, 2007) employ structural
corresponding learning (SCL) to infer a good fea-
ture representation from unlabeled source and target
data sets in the domain transfer. We present LaSA
model to overcome the data gap across domains by
capturing latent semantic association among words
from unlabeled source and target data.

In addition, Miller et al. (2004) and Freitag
(2004) employ distributional and hierarchical clus-
tering methods to improve the performance of NER
within a single domain. Li and McCallum (2005)
present a semi-supervised sequence modeling with
syntactic topic models. In this paper, we focus on
capturing hidden semantic association among words
in the domain adaptation.

3 Domain Adaptation Based on Latent
Semantic Association

The challenge in domain adaptation is how to cap-
ture latent semantic association from the source and
target domain data. We present a LaSA-based do-
main adaptation method in this section.

NER can be considered as a classification prob-
lem. LetX be a feature space to represent the ob-
served word instances, and letY be the set of class
labels. Letps(x, y) andpt(x, y) be the true under-
lying distributions for the source and the target do-
mains, respectively. In order to minimize the efforts
required in the domain transfer, we often expect to
useps(x, y) to approximatept(x, y).

However, data distribution are often varied with
the domains. For example, in the economics-to-
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entertainment domain transfer, although many NE
triggers (e.g. “company” and “Mr.”) are used in
both domains, some are totally new, like “dancer”,
“singer”. Moreover, many useful words (e.g.
“economist”) in the economics NER are useless in
the entertainment domain. The above examples
show that features could change behavior across do-
mains. Some useful predictive features from one do-
main are not predictive or do not appear in another
domain. Although some triggers (e.g. “singer”,
“economist”) are completely distinct for each do-
main, they often appear in the similar syntactic and
semantic context. For example, triggers of per-
son entity often appear as the subject of “visited”,
“said”, etc, or are modified by “excellent”, “popu-
lar”, “famous” etc. Such latent semantic association
among words provides useful hints for overcoming
the data distribution gap of both domains.

Hence, we present a LaSA modelθs,t to cap-
ture latent semantic association among words in the
domain adaptation.θs,t is learned from the unla-
beled source and target domain data. Each instance
is characterized by its co-occurred context distribu-
tion in the learning. Semantic association feature
in θs,t is a hidden random variable that is inferred
from data. In the domain adaptation, we transfer the
problem of semantic association mapping to a pos-
terior inference task using LaSA model. Latent se-
mantic concept association set of a word instancex
(denoted bySA(x)) is generated byθs,t. Instances
in the same concept set are considered as behaving
in the same way for discriminative learning in both
domains. Even though word instances do not ap-
pear in a training corpus (or appear rarely) but are in
similar context, they still might have relatively high
probability in the same semantic concept set. Obvi-
ously,SA(x) can better bridge the gap between the
two distributionsps(y|x) andpt(y|x). Hence, LaSA
model can enhance the estimate of the source do-
main distributionps(y|x; θs,t) to better approximate
the target domain distributionpt(y|x; θs,t).

4 Learning LaSA Model from Virtual
Context Documents

In the domain adaptation, LaSA model is employed
to find the latent semantic association structures of
“words” in a text corpus. We will illustrate how

to build LaSA model from words and their context
snippets in this section. LaSA model actually can
be considered as a general probabilistic topic model.
It can be learned on the unlabeled corpus using the
popular hidden topic models such as LDA or pLSI.

4.1 Virtual Context Document

The distribution of content words (e.g. nouns, adjec-
tives) is usually varied with domains. Hence, in the
domain adaptation, we focus on capturing the latent
semantic association among content words. In or-
der to learn latent relationships among words from
the unlabeled corpus, each content word is charac-
terized by a virtual context document as follows.

Given a content wordxi, the virtual context docu-
ment ofxi (denoted byvdxi) consists of all the con-
text units aroundxi in the corpus. Letn be the total
number of the sentences which containxi in the cor-
pus.vdxi is constructed as follows.

vdxi
= {F (xs1

i ), ..., F (xsk
i ), ..., F (xsn

i )}
where,F (xsk

i ) denotes the context feature set of
xi in the sentencesk, 1 ≤ k ≤ n.

Given the context window size{-t, t} (i.e. pre-
vious t words and nextt words aroundxi in sk).
F (xsk

i ) usually consists of the following features.

1. Anchor unitAxi

C : the current focused word unitxi.

2. Left adjacent unitAxi

L : The nearest left adjacent
unit xi−1 aroundxi, denoted byAL(xi−1).

3. Right adjacent unitAxi

R : The nearest right adjacent
unit xi+1 aroundxi, denoted byAR(xi+1).

4. Left context setCxi

L : the other left adjacent units
{xi−t, ...,xi−j , ...,xi−2} (2≤ j ≤ t) aroundxi, de-
noted by{CL(xi−t), ...,CL(xi−j), ...,CL(xi−2)}.

5. Right context setCxi

R : the other right adjacent units
{xi+2, ...,xi+j , ...,xi+t} (2≤ j ≤ t ) aroundxi, de-
noted by{CR(xi+2), ...,CR(xi+j), ...,CR(xi+t)}.

For example, givenxi=“singer” , sk=“This popu-
lar new singer attended the new year party”. Let
the context window size be{-3,3}. F (singer)
= {singer, AL(new), AR(attend(ed)), CL(this),
CL(popular), CR(the), CR(new) }.

vdxi actually describes the semantic and syntac-
tic feature distribution ofxi in the domains. We
construct the feature vector ofxi with all the ob-
served context features invdxi . Given vdxi =
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{f1, ..., fj , ..., fm}, fj denotesjth context feature
aroundxi, 1 ≤ j ≤ m, m denotes the total num-
ber of features invdxi . The value offj is calculated
by Mutual Information (Church and Hanks, 1990)
betweenxi andfj .

Weight(fj , xi) = log2

P (fj , xi)
P (fj)P (xi)

(1)

where,P (fj , xi) is the joint probability ofxi and
fj co-occurred in the corpus,P (fj) is the probabil-
ity of fj occurred in the corpus.P (xi) is the proba-
bility of xi occurred in the corpus.

4.2 Learning LaSA Model

Topic models are statistical models of text that posit
a hidden space of topics in which the corpus is em-
bedded (Blei et al., 2003). LDA (Blei et al., 2003) is
a probabilistic model that can be used to model and
discover underlying topic structures of documents.
LDA assumes that there areK “topics”, multinomial
distributions over words, which describes a collec-
tion. Each document exhibits multiple topics, and
each word in each document is associated with one
of them. LDA imposes a Dirichlet distribution on
the topic mixture weights corresponding to the doc-
uments in the corpus. The topics derived by LDA
seem to possess semantic coherence. Those words
with similar semantics are likely to occur in the same
topic. Since the number of LDA model parameters
depends only on the number of topic mixtures and
vocabulary size, LDA is less prone to over-fitting
and is capable of estimating the probability of un-
observed test documents. LDA is already success-
fully applied to enhance document representations
in text classification (Blei et al., 2003), information
retrieval (Wei and Croft., 2006).

In the following, we illustrate how to construct
LDA-style LaSA modelθs,t on the virtual con-
text documents. Algorithm 1 describes LaSA
model training method in detail, where, Function
AddTo(data, Set) denotes thatdata is added to
Set. Given a large-scale unlabeled data setDu

which consists of the source and target domain data,
virtual context document for each candidate content
word is extracted fromDu at first, then the value of
each feature in a virtual context document is calcu-
lated using its Mutual Information ( see Equation 1
in Section 4.1) instead of the counts when running

Algorithm 1: LaSA Model Training
Inputs:1
• Unlabeled data set:Du ;2
Outputs:3
•LaSA model:θs,t;4
Initialization:5
• Virtual context document set:V Ds,t = ∅;6
• Candidate content word set:Xs,t = ∅;7
Steps:8
begin9

foreach content wordxi ∈Du do10
if Frequency(xi)≥ the predefined thresholdthen11

AddTo(xi, Xs,t);12
foreach xk ∈Xs,t do13

foreach sentenceSi ∈Du do14
if xk ∈ Si then15

F (x
Si
k

) ←−16
{xk, A

xk
L

, A
xk
R

, C
xk
L

, C
xk
R
};

AddTo(F (x
Si
k

), vdxk
);

AddTo(vdxk
, V Ds,t);17

• Generate LaSA modelθs,t with Dirichlet distribution onV Ds,t.18
end19

LDA. LaSA modelθs,t with Dirichlet distribution is
generated on the virtual context document setV Ds,t

using the algorithm presented by Blei et al (2003).

1 2 3 4 5
customer theater company Beijing music
president showplace government Hongkong film
singer courtyard university China arts
manager center community Japan concert
economist city team Singapore party
policeman gymnasium enterprise New York Ballet
reporter airport bank Vienna dance
director square market America song
consumer park organization Korea band
dancer building agency international opera

Table 1: Top 10 nouns from 5 randomly selected topics
computed on the economics and entertainment domains

LaSA model learns the posterior distribution to
decompose words and their corresponding virtual
context documents into topics. Table 1 lists top 10
nouns from a random selection of 5 topics computed
on the unlabeled economics and entertainment do-
main data. As shown, words in the same topic are
representative nouns. They actually are grouped into
broad concept sets. For example, set 1, 3 and 4
correspond to nominal person, nominal organization
and location, respectively. With a large-scale unla-
beled corpus, we will have enough words assigned
to each topic concept to better approximate the un-
derlying semantic association distribution.

In LDA-style LaSA model, the topic mixture
is drawn from a conjugate Dirichlet prior that re-
mains the same for all the virtual context docu-
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ments. Hence, given a wordxi in the corpus, we
may perform posterior inference to determine the
conditional distribution of the hidden topic feature
variables associated withxi. Latent semantic asso-
ciation set ofxi (denoted bySA(xi)) is generated
using Algorithm 2. Here, Multinomial(θs,t(vdxi))
refers to sample from the posterior distribution over
topics given a virtual documentvdxi . In the domain
adaptation, we do semantic association inference on
the source domain training data using LaSA model
at first, then the original source domain NER model
is tuned on the source domain training data set by
incorporating these generated semantic association
features.

Algorithm 2: Generate Latent Semantic As-
sociation Set of Wordxi Using K-topic
LaSA Model

Inputs:1
• θs,t: LaSA model with multinomial distribution;2
•Dirichlet(α): Dirichlet distribution with parameterα;3
• xi: Content word;4
Outputs:5
• SA(xi): Latent semantic association set ofxi ;6
Steps:7
begin8

• Extractvdxi
from the corpus.9

• Draw topic weightsθs,t(vdxi
) from Dirichlet(α);10

• foreach fj in vdxi
do11

draw a topiczj∈{ 1,...,K} from Multinomial(θs,t(vdxi
));12

AddTo(zj , Topics(vdxi
));13

• Rank all the topics inTopics(vdxi
);14

• SA(xi)←− topn topics inTopics(vdxi
);15

end16

LaSA model better models latent semantic asso-
ciation distribution in the source and the target do-
mains. By grouping words into concepts, we effec-
tively overcome the data distribution difference of
both domains. Thus, we may reduce the number
of parameters required to model the target domain
data, and improve the quality of the estimated pa-
rameters in the domain transfer. LaSA model ex-
tends the traditional bag-of-words topic models to
context-dependence concept association model. It
has potential use for concept grouping.

5 Experiments

We evaluate LaSA-based domain adaptation method
on both English and Chinese corpus in this section.
In the experiments, we focus on recognizing person
(PER), location (LOC) and organization (ORG) in
the given four domains, including economics (Eco),
entertainment (Ent), politics (Pol) and sports (Spo).

5.1 Experimental setting

In the NER domain adaptation, nouns and adjectives
make a significant impact on the performance. Thus,
we focus on capturing latent semantic association
for high-frequency nouns and adjectives (i.e. occur-
rence count≥ 50 ) in the unlabeled corpus. LaSA
models for nouns and adjectives are learned from
the unlabeled corpus using Algorithm 1 (see section
4.2), respectively. Our empirical study shows that
better adaptation is obtained with a 50-topic LaSA
model. Therefore, we set the number of topicsN as
50, and define the context view window size as{-
3,3} (i.e. previous 3 words and next 3 words) in the
LaSA model learning. LaSA features for other irre-
spective words (e.g. token unit “the”) are assigned
with a default topic valueN+1.

All the basic NER models are trained on the
domain-specific training data using RRM classifier
(Guo et al., 2005). RRM is a generalization Winnow
learning algorithm (Zhang et al., 2002). We set the
context view window size as{-2,2} in NER. Given a
word instancex, we employ local linguistic features
(e.g. word unit, part of speech) ofx and its context
units ( i.e. previous 2 words and next 2 words ) in
NER. All Chinese texts in the experiments are auto-
matically segmented into words using HMM.

In LaSA-based domain adaptation, the semantic
association features of each unit in the observation
window{-2,2} are generated by LaSA model at first,
then the basic source domain NER model is tuned on
the original source domain training data set by incor-
porating the semantic association features. For ex-
ample, given the sentence“This popular new singer
attended the new year party”, Figure 1 illustrates
various features and views at the current wordwi=
“singer” in LaSA-based adaptation.

→ Tagging →
Position wi−2 wi−1 wi wi+1 wi+2

Word popular new singer attend the
POS adj adj noun verb article
SA SA(popular) SA(new) SA(singer) SA(attend) SA(the)
.....

Tag ti−2 ti−1 ti

Figure 1: Feature window in LaSA-based adaptation

In the viewing window at the word“singer” (see
Figure 1), each word unit around“singer” is codi-
fied with a set of primitive features (e.g.POS, SA,
Tag), together with its relative position to“singer”.
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Here,“SA” denotes semantic association feature set
which is generated by LaSA model.“Tag” denotes
NE tags labeled in the data set.

Given the input vector constructed with the above
features, RRM method is then applied to train linear
weight vectors, one for each possible class-label. In
the decoding stage, the class with the maximum con-
fidence is then selected for each token unit.

In our evaluation, only NEs with correct bound-
aries and correct class labels are considered as the
correct recognition. We use the standard Precision
(P), Recall (R), and F-measure (F = 2PR

P+R ) to mea-
sure the performance of NER models.

5.2 Data

We built large-scale English and Chinese anno-
tated corpus. English corpus are generated from
wikipedia while Chinese corpus are selected from
Chinese newspapers. Moreover, test data do not
overlap with training data and unlabeled data.

5.2.1 Generate English Annotated Corpus
from Wikipedia

Wikipedia provides a variety of data resources for
NER and other NLP research (Richman and Schone,
2008). We generate all the annotated English corpus
from wikipedia. With the limitation of efforts, only
PER NEs in the corpus are automatically tagged us-
ing an English person gazetteer. We automatically
extract an English Person gazetteer from wikipedia
at first. Then we select the articles from wikipedia
and tag them using this gazetteer.

In order to build the English Person gazetteer
from wikipdedia, we manually selected several key
phrases, including “births”, “deaths”, “surname”,
“given names” and “human names” at first. For
each article title of interest, we extracted the cate-
gories to which that entry was assigned. The en-
try is considered as a person name if its related
explicit category links contain any one of the key
phrases, such as “Category: human names”. We to-
tally extracted 25,219 person name candidates from
204,882 wikipedia articles. And we expanded this
gazetteer by adding the other available common
person names. Finally, we obtained a large-scale
gazetteer of 51,253 person names.

All the articles selected from wikipedia are further
tagged using the above large-scale gazetteer. Since

human annotated set were not available, we held out
more than 100,000 words of text from the automat-
ically tagged corpus to as a test set in each domain.
Table 2 shows the data distribution of the training
and test data sets.

Domains Training Data Set Test Data Set
Size PERs Size PERs

Pol 0.45M 9,383 0.23M 6,067
Eco 1.06M 21,023 0.34M 6,951
Spo 0.47M 17,727 0.20M 6,075
Ent 0.36M 12,821 0.15M 5,395

Table 2: English training and test data sets

We also randomly select 17M unlabeled English
data (see Table 3) from Wikipedia. These unlabeled
data are used to build the English LaSA model.

All Domain
Pol Eco Spo Ent

Data Size(M) 17.06 7.36 2.59 3.65 3.46

Table 3: Domain distribution in the unlabeled English
data set

5.2.2 Chinese Data

We built a large-scale high-quality Chinese NE
annotated corpus. All the data are news articles from
several Chinese newspapers in 2001 and 2002. All
the NEs (i.e. PER, LOC and ORG ) in the corpus are
manually tagged. Cross-validation checking is em-
ployed to ensure the quality of the annotated corpus.

Domain Size NEs in the training data set
(M) PER ORG LOC Total

Pol 0.90 11,388 6,618 14,350 32,356
Eco 1.40 6,821 18,827 14,332 39,980
Spo 0.60 11,647 8,105 7,468 27,220
Ent 0.60 12,954 2,823 4,665 20,442

Domain Size NEs in the test data set
(M) PER ORG LOC Total

Pol 0.20 2,470 1,528 2,540 6,538
Eco 0.26 1,098 2,971 2,362 6,431
Spo 0.10 1,802 1,323 1,246 4,371
Ent 0.10 2,458 526 738 3,722

Table 4: Chinese training and test data sets

All the domain-specific training and test data are
selected from this annotated corpus according to the
domain categories (see Table 4). 8.46M unlabeled
Chinese data (see Table 5) are randomly selected
from this corpus to build the Chinese LaSA model.

5.3 Experimental Results

All the experiments are conducted on the above
large-scale English and Chinese corpus. The overall
performance enhancement of NER by LaSA-based
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All Domain
Pol Eco Spo Ent

Data Size(M) 8.46 2.34 1.99 2.08 2.05

Table 5: Domain distribution in the unlabeled Chinese
data set

domain adaptation is evaluated at first. Since the
distribution of each NE type is different across do-
mains, we also analyze the performance enhance-
ment on each entity type by LaSA-based adaptation.

5.3.1 Performance Enhancement of NER by
LaSA-based Domain Adaptation

Table 6 and 7 show the experimental results for
all pairs of domain adaptation on both English and
Chinese corpus, respectively. In the experiment,
the basic source domain NER modelMs is learned
from the specific domain training data setDdom

(see Table 2 and 4 in Section 5.2). Here,dom ∈
{Eco, Ent, Pol, Spo}. F in

dom denotes the top-line
F-measure ofMs in the source trained domaindom.
When Ms is directly applied in a new target do-
main, its F-measure in this basic transfer is consid-
ered as baseline (denoted byFBase). FLaSA de-
notes F-measure ofMs achieved in the target do-
main with LaSA-based domain adaptation.δ(F ) =
FLaSA−FBase

FBase
, which denotes the relative F-measure

enhancement by LaSA-based domain adaptation.

Source→ Performance in the domain transfer
Target

FBase FLaSA δ(F ) δ(loss) FT op

Eco→Ent 57.61% 59.22% +2.79% 17.87% F in
Ent

=66.62%

Pol→Ent 57.5 % 59.83% +4.05% 25.55% F in
Ent=66.62%

Spo→Ent 58.66% 62.46% +6.48% 47.74% F in
Ent

=66.62%

Ent→Eco 70.56 % 72.46% +2.69% 19.33% F in
Eco

=80.39%

Pol→Eco 63.62% 68.1% +7.04% 26.71% F in
Eco=80.39%

Spo→Eco 70.35% 72.85% +3.55% 24.90% F in
Eco

=80.39%

Eco→Pol 50.59% 52.7% +4.17% 15.81% F in
P ol

=63.94%

Ent→Pol 56.12% 59.82% +6.59% 47.31% F in
P ol

=63.94%

Spo→Pol 60.22% 62.6% +3.95% 63.98% F in
P ol

=63.94%

Eco→Spo 60.28% 61.21% +1.54% 9.93% F in
Spo

=69.65%

Ent→Spo 60.28% 62.68% +3.98% 25.61% F in
Spo

=69.65%

Pol→Spo 56.94% 60.48% +6.22% 27.85% F in
Spo

=69.65%

Table 6: Experimental results on English corpus

Experimental results on English and Chinese cor-
pus indicate that the performance ofMs signifi-
cantly degrades in each basic domain transfer with-
out using LaSA model (see Table 6 and 7). For ex-
ample, in the “Eco→Ent” transfer on Chinese cor-
pus (see Table 7),F in

eco of Ms is 82.28% whileFBase

of Ms is 60.45% in the entertainment domain. F-
measure ofMs significantly degrades by 21.83 per-

Source→ Performance in the domain transfer
Target

FBase FLaSA δ(F ) δ(loss) FT op

Eco→Ent 60.45% 66.42% +9.88% 26.29% F in
Ent

=83.16%

Pol→Ent 69.89% 73.07% +4.55% 23.96% F in
Ent =83.16%

Spo→Ent 68.66% 70.89% +3.25% 15.38% F in
Ent

=83.16%

Ent→Eco 58.50% 61.35% + 4.87% 11.98% F in
Eco

=82.28%

Pol→Eco 62.89% 64.93% +3.24% 10.52% F in
Eco=82.28%

Spo→Eco 60.44% 63.20% + 4.57 % 12.64% F in
Eco

=82.28%

Eco→Pol 67.03% 70.90 % +5.77% 27.78% F in
P ol

=80.96%

Ent→Pol 66.64 % 68.94 % +3.45% 16.06% F in
P ol

=80.96%

Spo→Pol 65.40% 67.20% +2.75% 11.57% F in
P ol

=80.96%

Eco→Spo 67.20% 70.77% +5.31% 15.47% F in
Spo

=90.24%

Ent→Spo 70.05% 72.20% +3.07% 10.64% F in
Spo

=90.24%

Pol→Spo 70.99% 73.86% +4.04% 14.91% F in
Spo

=90.24%

Table 7: Experimental results on Chinese corpus

cent points in this basic transfer. Significant perfor-
mance degrading ofMs is observed in all the basic
transfer. It shows that the data distribution of both
domains is very different in each possible transfer.

Experimental results on English corpus show that
LaSA-based adaptation effectively enhances the per-
formance in each domain transfer (see Table 6).
For example, in the “Pol→Eco” transfer,FBase is
63.62% whileFLaSA achieves 68.10%. Compared
with FBase, LaSA-based method significantly en-
hances F-measure by 7.04%. We perform t-tests on
F-measure of all the comparison experiments on En-
glish corpus. The p-value is 2.44E-06, which shows
that the improvement is statistically significant.

Table 6 also gives the accuracy loss due to transfer
in each domain adaptation on English corpus. The
accuracy loss is defined asloss = 1 − F

F in
dom

. And

the relative reduction in error is defined asδ(loss)=
|1 − lossLaSA

lossBase
|. Experimental results indicate that

the relative reduction in error is above 9.93% with
LaSA-based transfer in each test on English cor-
pus. LaSA model significantly decreases the ac-
curacy loss by 29.38% in average. Especially for
“Spo→Pol” transfer,δ(loss) achieves 63.98% with
LaSA-based adaptation. All the above results show
that LaSA-based adaptation significantly reduces the
accuracy loss in the domain transfer for English
NER without any labeled target domain samples.

Experimental results on Chinese corpus also show
that LaSA-based adaptation effectively increases the
accuracy in all the tests (see Table 7). For example,
in the “Eco→Ent” transfer, compared withFBase,
LaSA-based adaptation significantly increases F-
measure by 9.88%. We also perform t-tests on F-
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measure of 12 comparison experiments on Chinese
corpus. The p-value is 1.99E-06, which shows that
the enhancement is statistically significant. More-
over, the relative reduction in error is above 10%
with LaSA-based method in each test. LaSA model
decreases the accuracy loss by 16.43% in average.
Especially for the “Eco→Ent” transfer (see Table 7),
δ(loss) achieves 26.29% with LaSA-based method.

All the above experimental results on English and
Chinese corpus show that LaSA-based domain adap-
tation significantly decreases the accuracy loss in the
transfer without any labeled target domain data. Al-
though automatically tagging introduced some er-
rors in English source training data, the relative re-
duction in errors in English NER adaptation seems
comparable to that one in Chinese NER adaptation.

5.3.2 Accuracy Enhancement for Each NE
Type Recognition

Our statistic data (Guo et al., 2006) show that the
distribution of NE types varies with domains. Each
NE type has different domain features. Thus, the
performance stability of each NE type recognition is
very important in the domain transfer.

Figure 2 gives F-measure of each NE type recog-
nition achieved by LaSA-based adaptation on En-
glish and Chinese corpus. Experimental results
show that LaSA-based adaptation effectively in-
creases the accuracy of each NE type recognition in
the most of the domain transfer tests. We perform
t-tests on F-measure of the comparison experiments
on each NE type, respectively. All the p-value is
less than 0.01, which shows that the improvement
on each NE type recognition is statistically signifi-
cant. Especially, the p-value of English and Chinese
PER is 2.44E-06 and 9.43E-05, respectively, which
shows that the improvement on PER recognition is
very significant. For example, in the “Eco→Pol”
transfer on Chinese corpus, compared withFBase,
LaSA-based adaptation enhances F-measure of PER
recognition by 9.53 percent points. Performance en-
hancement for ORG recognition is less than that one
for PER and LOC recognition using LaSA model
since ORG NEs usually contain much more domain-
specific information than PER and LOC.

The major reason for error reduction is that exter-
nal context and internal units are better semantically
associated using LaSA model. For example, LaSA

Figure 2: PER, LOC and ORG recognition in the transfer

model better groups various titles from different do-
mains (see Table 1 in Section 4.2). Various industry
terms in ORG NEs are also grouped into the seman-
tic sets. These semantic associations provide useful
hints for detecting the boundary of NEs in the new
target domain. All the above results show that LaSA
model better compensates for the feature distribution
difference of each NE type across domains.

6 Conclusion

We present a domain adaptation method with LaSA
model in this paper. LaSA model captures latent se-
mantic association among words from the unlabeled
corpus. It better groups words into a set of concepts
according to the related context snippets. LaSA-
based domain adaptation method projects words to
a low-dimension concept feature space in the trans-
fer. It effectively overcomes the data distribution gap
across domains without using any labeled target do-
main data. Experimental results on English and Chi-
nese corpus show that LaSA-based domain adapta-
tion significantly enhances the performance of NER
across domains. Especially, LaSA model effectively
increases the accuracy of each NE type recogni-
tion in the domain transfer. Moreover, LaSA-based
domain adaptation method works well across lan-
guages. To further reduce the accuracy loss, we will
explore informative sampling to capture fine-grained
data difference in the domain transfer.
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Abstract 

State of the art set expansion algorithms pro-
duce varying quality expansions for different 
entity types. Even for the highest quality ex-
pansions, errors still occur and manual re-
finements are necessary for most practical 
uses. In this paper, we propose algorithms to 
aide this refinement process, greatly reducing 
the amount of manual labor required. The me-
thods rely on the fact that most expansion er-
rors are systematic, often stemming from the 
fact that some seed elements are ambiguous. 
Using our methods, empirical evidence shows 
that average R-precision over random entity 
sets improves by 26% to 51% when given 
from 5 to 10 manually tagged errors. Both 
proposed refinement models have linear time 
complexity in set size allowing for practical 
online use in set expansion systems. 

1 Introduction 

Sets of named entities are extremely useful in a 
variety of natural language and information re-
trieval tasks. For example, companies such as Ya-
hoo! and Google maintain sets of named entities 
such as cities, products and celebrities to improve 
search engine relevance. 

Manually creating and maintaining large sets of 
named entities is expensive and laborious. In re-
sponse, many automatic and semi-automatic me-
thods of creating sets of named entities have been 
proposed, some are supervised (Zhou and Su, 
2001), unsupervised (Pantel and Lin 2002, Nadeau 
et al. 2006), and others semi-supervised (Kozareva 

et al. 2008). Semi-supervised approaches are often 
used in practice since they allow for targeting spe-
cific entity classes such as European Cities and 
French Impressionist Painters. Methods differ in 
complexity from simple ones using lexico-
syntactic patterns (Hearst 1992) to more compli-
cated techniques based on distributional similarity 
(Paşca 2007a). 

Even for state of the art methods, expansion er-
rors inevitably occur and manual refinements are 
necessary for most practical uses requiring high 
precision (such as for query interpretation at com-
mercial search engines). Looking at expansions 
from state of the art systems such as GoogleSets1 , 
we found systematic errors such as those resulting 
from ambiguous seed instances. For example, con-
sider the following seed instances for the target set 
Roman Gods: 

Minerva, Neptune, Baccus, Juno, 
Apollo 

GoogleSet’s expansion as well others employing 
distributional expansion  techniques consists of a 
mishmash of Roman Gods and celestial bodies, 
originating most likely from the fact that Neptune 
is both a Roman God and a Planet. Below is an 
excerpt of the GoogleSet expansion: 

Mars, Venus, *Moon, Mercury, 
*asteroid, Jupiter, *Earth, 
*comet, *Sonne, *Sun, … 

The inherent semantic similarity between the errors 
can be leveraged to quickly clean up the expan-
sion. For example, given a manually tagged error 
“asteroid”, a distributional similarity thesaurus 

                                                 
1 http://labs.google.com/sets 
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such as (Lin 1998)2 can identify comet as similar to 
asteroid and therefore potentially also as an error. 
This method has its limitations since a manually 
tagged error such as Earth would correctly remove 
Moon and Sun, but it would also incorrectly re-
move Mars, Venus and Jupiter since they are also 
similar to Earth3. 

In this paper, we propose two algorithms to im-
prove the precision of automatically expanded enti-
ty sets by using minimal human negative 
judgments. The algorithms leverage the fact that 
set expansion errors are systematically caused by 
ambiguous seed instances which attract incorrect 
instances of an unintended entity type. We use dis-
tributional similarity and sense feature modeling to 
identify such unintended entity types in order to 
quickly clean up errors with minimal manual labor. 
We show empirical evidence that average R-
precision over random entity sets improves by 26% 
to 51% when given from 5 to 10 manually tagged 
errors. Both proposed refinement models have li-
near time complexity in set size allowing for prac-
tical online use in set expansion systems. 

The remainder of this paper is organized as fol-
lows. In the next section we review related work 
and position our contribution within its landscape. 
Section 3 presents our task of dynamically model-
ing the similarity of a set of words and describes 
algorithms for refining sets of named entities. The 
datasets and our evaluation methodology used to 
perform our experiments are presented in Section 4 
and in Section 5 we describe experimental results. 
Finally, we conclude with some discussion and 
future work. 

2 Related Work 

There is a large body of work for automatically 
building sets of named entities using various tech-
niques including supervised, unsupervised and 
semi-supervised methods. Supervised techniques 
use large amounts of training data to detect and 
classify entities into coarse grained classes such as 
People, Organizations, and Places (Bunescu and 
Mooney 2004; Etzioni et al. 2005). On the other 
hand, unsupervised methods require no training 
                                                 
2 See http://demo.patrickpantel.com/ for a demonstration of 
the distributional thesaurus.  
3 In practice, this problem is rare since most terms that are 
similar in one of their senses tend not to be similar in their 
other senses. 

data and rely on approaches such as clustering, 
targeted patterns and co-occurrences to extract sets 
of entities (Pantel and Lin 2002; Downey et al. 
2007). 

Semi-supervised approaches are often used in 
practice since they allow for targeting specific enti-
ty classes. These methods rely on a small set of 
seed examples to extract sets of entities. They ei-
ther are based on distributional approaches or em-
ploy lexico-syntactic patterns to expand a small set 
of seeds to a larger set of candidate expansions. 
Some methods such as (Riloff and Shepherd 1997; 
Riloff and Jones 1999; Banko et al. 2007;Paşca 
2007a)  use lexico-syntactic patterns to expand a 
set of seeds from web text and query logs. Others 
such as (Paşca et al. 2006; Paşca 2007b; Paşca and 
Durme 2008) use distributional approaches. Wang 
and Cohen (2007) use structural cues in semi-
structured text to expand sets of seed elements. In 
all methods however, expansion errors inevitably 
occur. This paper focuses on the task of post 
processing any such system’s expansion output 
using minimal human judgments in order to re-
move expansion errors. 

Using user feedback to improve a system’s per-
formance is a common theme within many infor-
mation retrieval and machine learning tasks. One 
form of user feedback is active learning (Cohn et 
al. 1994), where one or more classifiers are used to 
focus human annotation efforts on the most benefi-
cial test cases. Active learning has been successful-
ly applied to various natural language tasks such as 
parsing (Tang et al. 2001), POS tagging (Dagan 
and Engelson 1995) and providing large amounts 
of annotations for common natural language 
processing tasks such as word sense disambigua-
tion (Banko and Brill 2001). Relevance feedback is 
another popular feedback paradigm commonly 
used in information retrieval (Harman 1992), 
where user feedback (either explicit or implicit) is 
used to refine the search results of an IR system. 
Relevance feedback has been successfully applied 
to many IR applications including content-based 
image retrieval (Zhouand Huang 2003) and web 
search (Vishwa et al. 2005). Within NLP applica-
tions relevance feedback has also been used to 
generate sense tagged examples for WSD tasks 
(Stevenson et al. 2008), and Question Answering 
(Negri 2004). Our methods use relevance feedback 
in the form of negative examples to refine the re-
sults of a set expansion system. 
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3 Dynamic Similarity Modeling 

The set expansion algorithms discussed in Section 
2 often produce high quality entity sets, however 
inevitably errors are introduced. Applications re-
quiring high precision sets must invest significant-
ly in editorial efforts to clean up the sets. Although 
companies like Yahoo! and Google can afford to 
routinely support such manual labor, there is a 
large opportunity to reduce the refinement cost 
(i.e., number of required human judgments).  

Recall the set expansion example of Roman 
Gods from Section 1. Key to our approach is the 
hypothesis that most expansion errors result from 
some systematic cause. Manual inspection of ex-
pansions from GoogleSets and distributional set 
expansion techniques revealed that most errors are 
due to the inherent ambiguity of seed terms (such 
as Neptune in our example) and data sparseness 
(such as Sonne in our example, a very rare term). 
The former kind of error is systematic and can be 
leveraged by an automatic method by assuming 
that any entity semantically similar to an identified 
error will also be erroneous. 

In this section, we propose two methods for le-
veraging this hypothesis. In the first method, de-
scribed in Section 3.1, we use a simple 
distributional thesaurus and remove all entities 
which are distributionally similar to manually iden-
tified errors. In the second method, described in 
Section 3.2, we model the semantics of the seeds 
using distributional features and then dynamically 
change the feature space according to the manually 
identified errors and rerank the entities in the set. 
Both methods rely on the following two observa-
tions: 

a) Many expansion errors are systematically 
caused by ambiguous seed examples which 
draw in several incorrect entities of its unin-
tended senses (such as seed Neptune in our 
Roman Gods example which drew in celestial 
bodies such as Earth and Sun); 

b) Entities which are similar in one sense are 
usually not similar in their other senses. For 
example, Apple and Sun are similar in their 
Company sense but their other senses (Fruit 
and Celestial Body) are not similar. Our exam-
ple in Section 1 illustrates a rare counterexam-
ple where Neptune and Mercury are similar in 
both their Planets and Roman Gods senses. 

Task Outline: Our task is to remove errors from 
entity sets by using a minimal amount of manual 
judgments. Incorporating feedback into this 
process can be done in multiple ways. The most 
flexible system would allow a judge to iteratively 
remove as many errors as desired and then have 
the system automatically remove other errors in 
each iteration. Because it is intractable to test arbi-
trary numbers of manually identified errors in each 
iteration, we constrain the judge to identify at most 
one error in each iteration. 

Although this paper focuses solely on removing 
errors in an entity set, it is also possible to improve 
expanded sets by using feedback to add new ele-
ments to the sets. We consider this task out of 
scope for this paper.  

3.1 Similarity Method (SIM) 

Our first method directly models observation a) in 
the previous section. Following Lin (1998), we 
model the similarity between entities using the dis-
tributional hypothesis, which states that similar 
terms tend to occur in similar contexts (Harris 
1985). A semantic model can be obtained by re-
cording the surrounding contexts for each term in a 
large collection of unstructured text. Methods dif-
fer in their definition of a context (e.g., text win-
dow or syntactic relations), or a means to weigh 
contexts (e.g., frequency, tf-idf, pointwise mutual 
information), or ultimately in measuring the simi-
larity between two context vectors (e.g., using Euc-
lidean distance, Cosine, Dice). In this paper, we 
use a text window of size 1, we weigh our contexts 
using pointwise mutual information, and we use 
the cosine score to compute the similarity between 
context vectors (i.e., terms). Section 5.1 describes 
our source corpus and extraction details. Compu-
ting the full similarity matrix for many terms over 
a very large corpus is computationally intensive. 
Our specific implementation follows the one pre-
sented in (Bayardo et al. 2007). 

The similarity matrix computed above is then 
directly used to refine entity sets. Given a manual-
ly identified error at each iteration, we automatical-
ly remove each entity in the set that is found to be 
semantically similar to the error. The similarity 
threshold was determined by manual inspection 
and is reported in Section 5.1. 

Due to observation b) in the previous section, 
we expect that this method will perform poorly on 
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entity sets such as the one presented in our exam-
ple of Section 1 where the manual removal of 
Earth would likely remove correct entities such as 
Mars, Venus and Jupiter. The method presented in 
the next section attempts to alleviate this problem. 

3.2 Feature Modification Method (FMM) 

Under the distributional hypothesis, the semantics 
of a term are captured by the contexts in which it 
occurs. The Feature Modification Method (FMM), 
in short, attempts to automatically discover the 
incorrect contexts of the unintended senses of seed 
elements and then filters out expanded terms 
whose contexts do not overlap with the other con-
texts of the seed elements. 

Consider the set of seed terms S and an errone-
ous expanded instance e. In the SIM method of 
Section 3.1 all set elements that have a feature vec-
tor (i.e., context vector) similar to e are removed. 
The Feature Modification Method (FMM) instead 
tries to identify the subset of features of the error e 
which represent the unintended sense of the seed 
terms S. For example, let S = {Minerva, Neptune, 
Baccus, Juno, Apollo}. Looking at the contexts of 
these words in a large corpus, we construct a cen-
troid context vector for S by taking a weighted av-
erage of the contexts of the seeds in S. In 
Wikipedia articles we see contexts (i.e., features) 
such as4: 

attack, kill, *planet, destroy, 
Goddess, *observe, statue, *launch, 
Rome, *orbit, … 

Given an erroneous expansion such as e = Earth, 
we postulate that removing the intersecting fea-
tures from Earth’s feature vector and the above 
feature vector will remove the unintended Planet 
sense of the seed set caused by the seed element 
Neptune. The intersecting features that are re-
moved are bolded in the above feature vector for S. 
The similarity between this modified feature vector 
for S and all entities in the expansion set can be 
recomputed as described in Section 3.1. Entities 
with a low similarity score are removed from the 
expanded set since they are assumed to be part of 
the unintended semantic class (Planet in this ex-
ample). 

Unlike the SIM method from Section 3.1, this 
method is more stable with respect to observation 
                                                 
4 The full feature vector for these and all other terms in Wiki-
pedia can be found at http://demo.patrickpantel.com/.. 

b) in Section 3. We showed that SIM would incor-
rectly remove expansions such as Mars, Venus and 
Jupiter given the erroneous expansion Earth. The 
FMM method would instead remove the Planet 
features from the seed feature vectors and the re-
maining features would still overlap with Mars, 
Venus and Jupiter’s Roman God sense. 

Efficiency: FMM requires online similarity com-
putations between centroid vectors and all ele-
ments of the expanded set. For large corpora such 
as Wikipedia articles or the Web, feature vectors 
are large and storing them in memory and perform-
ing similarity computations repeatedly for each 
editorial judgment is computationally intensive. 
For example, the size of the feature vector for a 
single word extracted from Wikipedia can be in the 
order of a few gigabytes. Storing the feature vec-
tors for all candidate expansions and the seed set is 
inefficient and too slow for an interactive system. 
The next section proposes a solution that makes 
this computation very fast, requires little memory, 
and produces near perfect approximations of the 
similarity scores. 

3.3 Approximating Cosine Similarity 

There are engineering optimizations that are avail-
able that allow us to perform a near perfect approx-
imation of the similarity computation from the 
previous section. The proposed method requires us 
to only store the shared features between the cen-
troid and the words rather than the complete fea-
ture vectors, thus reducing our space requirements 
dramatically. Also, FMM requires us to repeatedly 
calculate the cosine similarity between a modified 
centroid feature vector and each candidate expan-
sion at each iteration. Without the full context vec-
tors of all candidate expansions, computing the 
exact cosine similarity is impossible. Given, how-
ever, the original cosine scores between the seed 
elements and the candidate expansions before the 
first refinement iteration as well as the shared fea-
tures, we can approximate with very high accuracy 
the updated cosine score between the modified 
centroid and each candidate expansion. Our me-
thod relies on the fact that features (i.e., contexts) 
are only ever removed from the original centroid – 
no new features are ever added. 

Let μ be the original centroid representing the 
seed instances. Given an expansion error e, FMM 
creates a modified centroid by removing all fea-
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tures intersecting between e and μ. Let μ' be this 
modified centroid. FMM requires us to compute 
the similarity between μ' and all candidate expan-
sions x as: 

cos x, ′ μ ( )=
xi ′ μ i∑

x ⋅ ′ μ 
 

where  i iterates over the feature space. 
In our efficient setting, the only element that we 

do not have for calculating the exact cosine simi-
larity is the norm of x, x . Given that we have the 
original cosine similarity score, cos(x, μ) and that 
we have the shared features between the original 
centroid μ and the candidate expansion x we can 
calculate x  as: 

x =
xiμi∑

μ ⋅ cos x,μ( )
 

Combining the two equations, have: 

cos x, ′ μ ( )= cos x,μ( )⋅
xi ′ μ i∑
xiμi∑

⋅
μ
′ μ 

 

In the above equation, the modified cosine score 
can be considered as an update to the original co-
sine score, where the update depends only on the 
shared features and the original centroid. The 
above update equation can be used to recalculate 
the similarity scores without resorting to an expen-
sive computation involving complete feature vec-
tors. 

Storing the original centroid is expensive and 
can be approximated instead from only the shared 
features between the centroid and all instances in 
the expanded set. We empirically tested this ap-
proximation by comparing the cosine scores be-
tween the candidate expansions and both the true 
centroid and the approximated centroid. The aver-
age error in cosine score was 9.5E-04 ± 7.83E-05 
(95% confidence interval). 

4 Datasets and Baseline Algorithm 

We evaluate our algorithms against manually 
scraped gold standard sets, which were extracted 
from Wikipedia to represent a random collection of 
concepts. Section 4.1 discusses the gold standard 
sets and the criteria behind their selection. To 
present a statistically significant view of our results 
we generated a set of trials from gold standard sets 

to use as seeds for our seed set expansion algo-
rithm. Also, in section 4.2 we discuss how we can 
simulate editorial feedback using our gold standard 
sets. 

4.1 Gold Standard Entity Sets 

The gold standard sets form an essential part of our 
evaluation. These sets were chosen to represent a 
single concept such as Countries and Archbishops 
of Canterbury. These sets were selected from the 
List of pages from Wikipedia5. We randomly 
sorted the list of every noun occurring in Wikipe-
dia. Then, for each noun we verified whether or 
not it existed in a Wikipedia list, and if so we ex-
tracted this list – up to a maximum of 50 lists. If a 
noun belonged to multiple lists, the authors chose 
the list that seemed most appropriate. Although 
this does not generate a perfect random sample, 
diversity is ensured by the random selection of 
nouns and relevancy is ensured by the author adju-
dication. 

Lists were then scraped from the Wikipedia 
website and they went through a manual cleanup 
process which included merging variants. . The 50 
sets contain on average 208 elements (with a min-
imum of 11 and a maximum of 1116 elements) for 
a total of 10,377 elements. The final gold standard 
lists contain 50 sets including classical pianists, 
Spanish provinces, Texas counties, male tennis 
players, first ladies, cocktails, bottled water 
brands, and Archbishops of Canterbury6. 

4.2 Generation of Experimental Trials 

To provide a statistically significant view of the 
performance of our algorithm, we created more 
than 1000 trials as follows. For each of the gold 
standard seed sets, we created 30 random sortings. 
These 30 random sortings were then used to gener-
ate trial seed sets with a maximum size of 20 
seeds. 

4.3 Simulating User Feedback and Baseline 
Algorithm 

User feedback forms an integral part of our algo-
rithm. We used the gold standard sets to judge the 
                                                 
5 In this paper, extractions from Wikipedia are taken from a 
snapshot of the resource in December 2007. 
6 The gold standard is available for download at 
http://www.patrickpantel.com/cgi-bin/Web/Tools/getfile.pl? 
type=data&id=sse-gold/wikipedia.20071218.goldsets.tgz 
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candidate expansions. The judged expansions were 
used to simulate user feedback by marking those 
candidate expansions that were incorrect. The first 
candidate expansion that was marked incorrect in 
each editorial iteration was used as the editor’s 
negative example and was given to the system as 
an error. 

In the next section, we report R-precision gains 
at each iteration in the editorial process for our two 
methods described in Section 3. Our baseline me-
thod simply measures the gains obtained by re-
moving the first incorrect entry in a candidate 
expansion set at each iteration. This simulates the 
process of manually cleaning a set by removing 
one error at a time. 

5 Experimental Results 

5.1 Experimental Setup 

Wikipedia5 served as the source corpus for our al-
gorithms described in Sections 3.1 and 3.2. All 
articles were POS-tagged using (Brill 1995) and 
later chunked using a variant of (Abney 1991). 
Corpus statistics from this processed text were col-
lected to build the similarity matrix for the SIM 
method (Section 3.1) and to extract the features 
required for the FMM method (Section 3.2). In 
both cases corpus statistics were extracted over the 
semi-syntactic contexts (chunks) to approximate  
term meanings. The minimum similarity thresholds 
were experimentally set to 0.15 and 0.11 for the 
SIM and FMM algorithms respectively. 

Each experimental trial described in Section 
4.2, which consists of a set of seed instances of one 
of our 50 random semantic classes, was expanded 
using a variant of the distributional set expansion 
algorithm from Sarmento et al. (2007). The expan-
sions were judged against the gold standard and 
each candidate expansion was marked as either 
correct or incorrect. This set of expanded and 
judged candidate files were used as inputs to the 
algorithms described in Sections 3.1 and 3.2. 
Choosing the first candidate expansion that was 
judged as incorrect simulated our user feedback. 
This process was repeated for each iteration of the 
algorithm and results are reported for 10 iterations. 

The outputs of our algorithms were again 
judged against the gold standard lists and the per-
formance was measured in terms of precision gains 
over the baseline at various ranks. Precision gain 

for an algorithm over a baseline is the percentage 
increase in precision for the same values of para-
meters of the algorithm over the baseline. Also, as 
the size of our gold standard lists vary, we report 
another commonly used statistic, R-precision. R-
precision for any set is the precision at the size of 
the gold standard set. For example, if a gold stan-
dard set contains 20 elements, then R-precision for 
any set expansion is measured as the precision at 
rank 20. The average R-precision over each set is 
then reported. 

5.2 Quantitative Analysis 

Table 1 lists the performance of our baseline algo-
rithm (Section 4.3) and our proposed methods SIM 
and FMM (Sections 3.1 and 3.2) in terms of their 
R-precision with 95% confidence bounds over 10 
iterations of each algorithm. 

The FMM of Section 3.2 is the best performing 
method in terms of R-precision reaching a maxi-
mum value of 0.322 after the 10th iteration. For 
small numbers of iterations, however, the SIM me-
thod outperforms FMM since it is bolder in its re-
finements by removing all elements similar to the 
tagged error. Inspection of FMM results showed 
that bad instances get ranked lower in early itera-
tions but it is only after 4 or 5 iterations that they 
get pushed passed the similarity threshold (ac-
counting for the low marginal increase in precision 
gain for FMM in the first 4 to 5 iterations). 

FMM outperforms the SIM method by an aver-
age of 4% increase in performance (13% im-
provement after 10 iterations). However both the 
FMM and the SIM method are able to outperform 

Table 1. R-precision of the three methods with 95% confi-
dence bounds. 

ITERATION BASELINE SIM FMM 

1 0.219±0.012 0.234±0.013 0.220±0.015 

2 0.223±0.013 0.242±0.014 0.227±0.017 

3 0.227±0.013 0.251±0.015 0.235±0.019 

4 0.232±0.013 0.26±0.016 0.252±0.021 

5 0.235±0.014 0.266±0.017 0.267±0.022 

6 0.236±0.014 0.269±0.017 0.282±0.023 

7 0.238±0.014 0.273±0.018 0.294±0.023 

8 0.24±0.014 0.28±0.018 0.303±0.024 

9 0.242±0.014 0.285±0.018 0.315±0.025 

10 0.243±0.014 0.286±0.018 0.322±0.025 

295



the baseline method. Using the FMM method one 
would achieve an average of 17% improvement in 
R-precision over manually cleaning up the set 
(32.5% improvement after 10 iterations). Using the 
SIM method one would achieve an average of 13% 
improvement in R-precision over manually clean-
ing up the set (17.7% improvement after 10 itera-
tions). 

5.3 Intrinsic Analysis of the SIM Algorithm 

Figure 1 shows the precision gain of the similarity 
matrix based algorithm over the baseline algo-
rithm. The results are shown for precision at ranks 
1, 2, 5, 10, 25, 50 and 100, as well as for R-
precision. The results are also shown for the first 
10 iterations of the algorithm.  

SIM outperforms the baseline algorithm for all 
ranks and increases in gain throughout the 10 itera-
tions. As the number of iterations increases the 
change in precision gain levels off. This behavior 
can be attributed to the fact that we start removing 
errors from top to bottom and in each iteration the 
rank of the error candidate provided to the algo-
rithm is lower than in the previous iteration. This 
results in errors which are not similar to any other 
candidate expansions. These are random errors and 
the discriminative capacity of this method reduces 
severely. 

Figure 1 also shows that the precision gain of 
the similarity matrix algorithm over the baseline 
algorithm is higher at ranks 1, 2 and 5.  Also, the 
performance increase drops at ranks 50 and 100. 
This is because low ranks contain candidate expan-

sions that are random errors introduced due to data 
sparsity. Such unsystematic errors are not detecta-
ble by the SIM method. 

5.4 Intrinsic Analysis of the FMM Algorithm 

The feature modification method of Section 3.2 
shows similar behavior to the SIM method, how-
ever as Figure 2 shows, it outperforms SIM me-
thod in terms of precision gain for all values of 
ranks tested. This is because the FMM method is 
able to achieve fine-grained control over what it 
removes and what it doesn’t, as described in Sec-
tion 5.2. 

Another interesting aspect of FMM is illu-
strated in the R-precision curve. There is a sudden 
jump in precision gain after the fifth iteration of 
the algorithm. In the first iterations only few errors 
are pushed beneath the similarity threshold as cen-
troid features intersecting with tagged errors are 
slowly removed. As the feature vector for the cen-
troid gets smaller and smaller, remaining features 
look more and more unambiguous to the target 
entity type and erroneous example have less 
chance of overlapping with the centroid causing 
them to be pushed pass the conservative similarity 
threshold. Different conservative thresholds 
yielded similar curves. High thresholds yield bad 
performance since all but the only very prototypi-
cal set instances are removed as errors. 

The R-precision measure indirectly models re-
call as a function of the target coverage of each set. 
We also directly measured recall at various ranks 

 
Figure 1. Precision gain over baseline algorithm for SIM 
method. 

Figure 2. Precision gain over baseline algorithm for FMM 
method.
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and FMM outperformed SIM at all ranks and itera-
tions. 

5.5 Discussion 

In this paper we proposed two techniques which 
use user feedback to remove systematic errors in 
set expansion systems caused by ambiguous seed 
instances. Inspection of expansion errors yielded 
other types of errors. 

First, model errors are introduced in candidate 
expansion sets by noise from various pre-
processing steps involved in generating the expan-
sions. Such errors cause incorrect contexts (or fea-
tures) to be extracted for seed instances and 
ultimately can cause erroneous expansions to be 
produced. These errors do not seem to be systemat-
ic and are hence not discoverable by our proposed 
method. 

Other errors are due to data sparsity. As the fea-
ture space can be very large, the difference in simi-
larity between a correct candidate expansion and 
an incorrect expansion can be very small for sparse 
entities. Previous approaches have suggested re-
moving candidate expansions for which too few 
statistics can be extracted, however at the great 
cost of recall (and lower R-precision). 

6 Conclusion 

In this paper we presented two algorithms for im-
proving the precision of automatically expanded 
entity sets by using minimal human negative 
judgments. We showed that systematic errors 
which arise from the semantic ambiguity inherent 
in seed instances can be leveraged to automatically 
refine entity sets. We proposed two techniques: 
SIM which boldly removes instances that are dis-
tributionally similar to errors, and FMM which 
more conservatively removes features from the 
seed set representing its unintended (ambiguous) 
concept in order to rank lower potential errors. 

We showed empirical evidence that average R-
precision over random entity sets improves by 26% 
to 51% when given from 5 to 10 manually tagged 
errors. These results were reported by testing the 
refinement algorithms on a set of 50 randomly 
chosen entity sets expanded using a state of the art 
expansion algorithm. Given very small amounts of 
manual judgments, the SIM method outperformed 
FMM (up to 4 manual judgments). FMM outper-
formed the SIM method given more than 6 manual 

judgments. Both proposed refinement models have 
linear time complexity in set size allowing for 
practical online use in set expansion systems. 

This paper only addresses techniques for re-
moving erroneous entities from expanded entity 
sets. A complimentary way to improve perfor-
mance would be to investigate the addition of rele-
vant candidate expansions that are not already in 
the initial expansion. We are currently investigat-
ing extensions to FMM that can efficiently add 
new candidate expansions to the set by computing 
the similarity between modified centroids and all 
terms occurring in a large body of text. 

We are also investigating ways to use the find-
ings of this work to a priori remove ambiguous 
seed instances (or their ambiguous contexts) before 
running the initial expansion algorithm. It is our 
hope that most of the errors identified in this work 
could be automatically discovered without any 
manual judgments. 
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Abstract

This paper introduces a novel unsupervised
constraint-driven learning algorithm for iden-
tifying named-entity (NE) transliterations in
bilingual corpora. The proposed method does
not require any annotated data or aligned cor-
pora. Instead, it is bootstrapped using a simple
resource – a romanization table. We show that
this resource, when used in conjunction with
constraints, can efficiently identify translitera-
tion pairs. We evaluate the proposed method
on transliterating English NEs to three differ-
ent languages - Chinese, Russian and Hebrew.
Our experiments show that constraint driven
learning can significantly outperform existing
unsupervised models and achieve competitive
results to existing supervised models.

1 Introduction

Named entity (NE) transliteration is the process of
transcribing a NE from a source language to some
target language while preserving its pronunciation in
the original language. Automatic NE transliteration
is an important component in many cross-language
applications, such as Cross-Lingual Information Re-
trieval (CLIR) and Machine Translation(MT) (Her-
mjakob et al., 2008; Klementiev and Roth, 2006a;
Meng et al., 2001; Knight and Graehl, 1998).

It might initially seem that transliteration is an
easy task, requiring only finding a phonetic mapping
between character sets. However simply matching
every source language character to its target lan-
guage counterpart is not likely to work well as in
practice this mapping depends on the context the

characters appear in and on transliteration conven-
tions which may change across domains. As a result,
current approaches employ machine learning meth-
ods which, given enough labeled training data learn
how to determine whether a pair of words consti-
tute a transliteration pair. These methods typically
require training data and language-specific expertise
which may not exist for many languages. In this pa-
per we try to overcome these difficulties and show
that when the problem is modeled correctly, a sim-
ple character level mapping is a sufficient resource.

In our experiments, English was used as the
source language, allowing us to use romanization ta-
bles, a resource commonly-available for many lan-
guages1. These tables contain an incomplete map-
ping between character sets, mapping every charac-
ter to its most common counterpart.

Our transliteration model takes a discriminative
approach. Given a word pair, the model determines
if one word is a transliteration of the other. The
features used by this model are character n-gram
matches across the two strings. For example, Fig-
ure 1 describes the decomposition of a word pair into
unigram features as a bipartite graph in which each
edge represents an active feature.

We enhance the initial model with constraints, by
framing the feature extraction process as a struc-
tured prediction problem - given a word pair, the set
of possible active features is defined as a set of latent
binary variables. The contextual dependency be-

1The romanization tables available at the Library of
Congress website (http://www.loc.gov/catdir/cpso/roman.html)
cover more than 150 languages written in various non-Roman
scripts
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Figure 1: Top: The space of all possible features that can be
generated given the word pair. Bottom: A pruned features rep-
resentation generated by the inference process.

tween features is encoded as a set of constraints over
these variables. Features are extracted by finding
an assignment that maximizes the similarity score
between the two strings and conforms to the con-
straints. The model is bootstrapped using a roman-
ization table and uses a discriminatively self-trained
classifier as a way to improve over several training
iterations. Furthermore, when specific knowledge
about the source and target languages exists, it can
be directly injected into the model as constraints.

We tested our approach on three very differ-
ent languages - Russian, a Slavic language, He-
brew a Semitic language, and Chinese, a Sino-
Tibetan language. In all languages, using this sim-
ple resource in conjunction with constraints pro-
vided us with a robust transliteration system which
significantly outperforms existing unsupervised ap-
proaches and achieves comparable performance to
supervised methods.

The rest of the paper is organized as follows.
Sec. 2 briefly examines more related work. Sec. 3
explains our model and Sec. 4 provide a linguistic
intuition for it. Sec. 5 describes our experiments and
evaluates our results followed by sec. 6 which con-
cludes our paper.

2 Related Works

Transliteration methods typically fall into two cate-
gories: generative approaches (Li et al., 2004; Jung
et al., 2000; Knight and Graehl, 1998) that try to
produce the target transliteration given a source lan-
guage NE, and discriminative approaches (Gold-
wasser and Roth, 2008b; Bergsma and Kondrak,
2007; Sproat et al., 2006; Klementiev and Roth,
2006a), that try to identify the correct translitera-

tion for a word in the source language given several
candidates in the target language. Generative meth-
ods encounter the Out-Of-Vocabulary (OOV) prob-
lem and require substantial amounts of training data
and knowledge of the source and target languages.
Discriminative approaches, when used to for dis-
covering NE in a bilingual corpora avoid the OOV
problem by choosing the transliteration candidates
from the corpora. These methods typically make
very little assumptions about the source and target
languages and require considerably less data to con-
verge. Training the transliteration model is typi-
cally done under supervised settings (Bergsma and
Kondrak, 2007; Goldwasser and Roth, 2008b), or
weakly supervised settings with additional tempo-
ral information (Sproat et al., 2006; Klementiev and
Roth, 2006a). Our work differs from these works
in that it is completely unsupervised and makes no
assumptions about the training data.

Incorporating knowledge encoded as constraints
into learning problems has attracted a lot of atten-
tion in the NLP community recently. This has been
shown both in supervised settings (Roth and Yih,
2004; Riedel and Clarke, 2006) and unsupervised
settings (Haghighi and Klein, 2006; Chang et al.,
2007) in which constraints are used to bootstrap the
model. (Chang et al., 2007) describes an unsuper-
vised training of a Constrained Conditional Model
(CCM), a general framework for combining statisti-
cal models with declarative constraints. We extend
this work to include constraints over possible assign-
ments to latent variables which, in turn, define the
underlying representation for the learning problem.

In the transliteration community there are sev-
eral works (Ristad and Yianilos, 1998; Bergsma and
Kondrak, 2007; Goldwasser and Roth, 2008b) that
show how the feature representation of a word pair
can be restricted to facilitate learning a string sim-
ilarity model. We follow the approach discussed
in (Goldwasser and Roth, 2008b), which considers
the feature representation as a structured prediction
problem and finds the set of optimal assignments (or
feature activations), under a set of legitimacy con-
straints. This approach stresses the importance of
interaction between learning and inference, as the
model iteratively uses inference to improve the sam-
ple representation for the learning problem and uses
the learned model to improve the accuracy of the in-
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ference process. We adapt this approach to unsu-
pervised settings, where iterating over the data im-
proves the model in both of these dimensions.

3 Unsupervised Constraint Driven
Learning

In this section we present our Unsupervised Con-
straint Driven Learning (UCDL) model for discov-
ering transliteration pairs. Our task is in essence a
ranking task. Given a NE in the source language and
a list of candidate transliterations in the target lan-
guage, the model is supposed to rank the candidates
and output the one with the highest score. The model
is bootstrapped using two linguistic resources: a ro-
manization table and a set of general and linguistic
constraints. We use several iterations of self training
to learn the model. The details of the procedure are
explained in Algorithm 1.

In our model features are character pairs (cs, ct),
where cs ∈ Cs is a source word character and
ct ∈ Ct is a target word character. The feature
representation of a word pair vs, vt is denoted by
F (vs, vt). Each feature (cs, ct) is assigned a weight
W (cs, ct) ∈ R. In step 1 of the algorithm we initial-
ize the weights vector using the romanization table.

Given a pair (vs, vt), a feature extraction process
is used to determine the feature based representation
of the pair. Once features are extracted to represent
a pair, the sum of the weights of the extracted fea-
tures is the score assigned to the target translitera-
tion candidate. Unlike traditional feature extraction
approaches, our feature representation function does
not produce a fixed feature representation. In step
2.1, we formalize the feature extraction process as a
constrained optimization problem that captures the
interdependencies between the features used to rep-
resent the sample. That is, obtaining F (vs, vt) re-
quires solving an optimization problem. The techni-
cal details are described in Sec. 3.1. The constraints
we use are described in Sec. 3.2.

In step 2.2 the different candidates for every
source NE are ranked according to the similarity
score associated with their chosen representation.
This ranking is used to ”label” examples for a dis-
criminative learning process that learns increasingly
better weights, and thus improve the representation
of the pair: each source NE paired with its top
ranked transliteration is labeled as a positive exam-

ples (step 2.3) and the rest of the samples are consid-
ered as negative samples. In order to focus the learn-
ing process, we removed from the training set all
negative examples ruled-out by the constraints (step
2.4). As the learning process progresses, the initial
weights are replaced by weights which are discrimi-
natively learned (step 2.5). This process is repeated
several times until the model converges, and repeats
the same ranking over several iterations.

Input: Romanization table T : Cs → Ct, Constraints
C, Source NEs: Vs, Target words: Vt

1. Initialize Model

LetW : Cs × Ct → R be a weight vector.
InitializeW using T by the following procedure

∀(cs, ct), (cs, ct) ∈ T ⇒ W(cs, ct) = 0,
∀(cs, ct),¬((cs, ct) ∈ T )⇒W(cs, ct) = −1,
∀cs,W(cs, ) = −1, ∀ct,W( , ct) = −1.

2. Constraints driven unsupervised training

while not converged do

1. ∀vs ∈ Vs, vt ∈ Vt, use C andW
to generate a representation F (vs, vt)

2. ∀vs ∈ Vs, find the top ranking transliteration
pair (vs, v

∗
t ) by solving

v∗t = arg maxvt score(F (vs, vt)).

3. D = {(+, F (vs, v
∗
t )) | ∀vs ∈ Vs}.

4. ∀vs ∈ Vs, vt ∈ Vt, if vt 6= v∗t and
score(F (vs, vt)) 6= −∞, then
D = D ∪ {(−, F (vs, vt))}.

5. W ← train(D)
end
Algorithm 1: UCDL Transliteration Framework.

In the rest of this section we explain this process
in detail. We define the feature extraction inference
process in Sec. 3.1, the constraints used in Sec. 3.2
and the inference algorithm in Sec. 3.3. The linguis-
tic intuition for our model is described in Sec. 4.

3.1 Finding Feature Representation as
Constrained Optimization

We use the formulation of Constrainted Conditional
Models (CCMs) (Roth and Yih, 2004; Roth and Yih,
2007; Chang et al., 2008). Previous work on CCM
models dependencies between different decisions in
structured prediction problems. Transliteration dis-
covery is a binary classification problem, however,
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the underlying representation of each sample can be
modeled as a CCM, defined as a set of latent vari-
ables corresponding to the set of all possible features
for a given sample. The dependencies between the
features are captured using constraints.

Given a word pair, the set of all possible features
consists of all character mappings from the source
word to the target word. Since in many cases the
size of the words differ we augment each of the
words with a blank character (denoted as ’ ’). We
model character omission by mapping the character
to the blank character. This process is formally de-
fined as an operator mapping a transliteration can-
didate pair to a set of binary variables, denoted as
All-Features (AF ).

AF = {(cs, ct)|cs ∈ vs ∪ { }, ct ∈ vt ∪ { }}

This representation is depicted at the top of Figure 1.
The initial sample representation (AF ) gener-

ates features by coupling substrings from the two
terms without considering the dependencies be-
tween the possible combinations. This representa-
tion is clearly noisy and in order to improve it we
select a subset F ⊂ AF of the possible features.
The selection process is formulated as a linear op-
timization problem over binary variables encoding
feature activations in AF . Variables assigned 1 are
selected to be in F , and those assigned 0 are not.
The objective function maximized is a linear func-
tion over the variables inAF , each with its weight as
a coefficient, as in the left part of Equation 1 below.
We seek to maximize this linear sum subject to a set
of constraints. These represent the dependencies be-
tween selections and prior knowledge about possible
legitimate character mappings and correspond to the
right side of Equation 1. In our settings only hard
constraints are used and therefore the penalty (ρ) for
violating any of the constraints is set to∞. The spe-
cific constraints used are discussed in Sec. 3.2. The
score of the mapping F (vs, vt) can be written as fol-
lows:

1
|vt|

(W · F (vs, vt)−
∑

ci∈C
ρci(F (vs, vt)) (1)

We normalize this score by dividing it by the size of
the target word, since the size of candidates varies,
normalization improved the ranking of candidates.

The result of the optimization process is a set F of
active features, defined in Equation 2. The result of
this process is described at the bottom of Figure 1.

F ∗(vs, vt) = arg maxF⊂AF (vs,vt)score(F ). (2)

The ranking process done by our model can now be
naturally defined - given a source word vs, and a
set of candidates target words v0

t , . . . , v
n
t , find the

candidate whose optimal representation maximizes
Equation 1. This process is defined in Equation 3.

v∗t = arg max
vi

t

score(F (vs, vit)). (3)

3.2 Incorporating Mapping Constraints
We consider two types of constraints: language spe-
cific and general constraints that apply to all lan-
guages. Language specific constraints typically im-
pose a local restriction such as individually forcing
some of the possible character mapping decisions.
The linguistic intuition behind these constraints is
discussed in Section 4. General constraints encode
global restrictions, capturing the dependencies be-
tween different mapping decisions.

General constraints: To facilitate readability we
denote the feature mapping the i-th source word
character to the j-th target word character as a
Boolean variable aij that is 1 if that feature is active
and 0 otherwise.
• Coverage - Every character must be mapped

only to a single character or to the blank char-
acter. We can formulate this as:

∑
j aij = 1

and
∑

i aij = 1.
• No Crossing - Every character mapping, except

mapping to blank character, should preserve the
order of appearance in the source and target
words, or formally - ∀i, j s.t. aij = 1 ⇒ ∀l <
i, ∀k > j, alk = 0. Another constraint is ∀i, j
s.t. aij = 1⇒ ∀l > i, ∀k < j, alk = 0.

Language specific constraints
• Restricted Mapping: These constraints restrict

the possible local mappings between source
and target language characters. We maintain a
set of possible mappings {cs → Θcs}, where
Θcs ⊆ Ct and {ct → Θct}, where Θct ⊆ Cs.
Any feature (cs, ct) such that cs /∈ Θct or
ct /∈ Θcs is penalized in our model.
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• Length restriction: An additional constraint
restricts the size difference between the two
words. We formulate this as follows: ∀vs ∈
Vs,∀vt ∈ Vt, if γ|vt| > |vs| and γ|vs| > |vt|,
score(F (vs, vt)) = −∞. Although γ can
take different values for different languages, we
simply set γ to 2 in this paper.

In addition to biasing the model to choose the
right candidate, the constraints also provide a com-
putational advantage: a given a word pair is elimi-
nated from consideration when the length restriction
is not satisfied or there is no way to satisfy the re-
stricted mapping constraints.

3.3 Inference
The optimization problem defined in Equation 2 is
an integer linear program (ILP). However, given
the structure of the problem it is possible to de-
velop an efficient dynamic programming algorithm
for it, based on the algorithm for finding the mini-
mal edit distance of two strings. The complexity of
finding the optimal set of features is only quadratic
in the size of the input pair, a clear improvement
over the ILP exponential time algorithm. The al-
gorithm minimizes the weighted edit distance be-
tween the strings, and produces a character align-
ment that satisfies the general constraints (Sec. 3.2).
Our modifications are only concerned with incorpo-
rating the language-specific constraints into the al-
gorithm. This can be done simply by assigning a
negative infinity score to any alignment decision not
satisfying these constraints.

4 Bootstrapping with Linguistic
Information

Our model is bootstrapped using two resources - a
romanization table and mapping constraints. Both
resources capture the same information - character
mapping between languages. The distinction be-
tween the two represents the difference in the con-
fidence we have in these resources - the romaniza-
tion table is a noisy mapping covering the character
set and is therefore better suited as a feature. Con-
straints, represented by pervasive, correct character
mapping, indicate the sound mapping tendency be-
tween source and target languages. For example,
certain n-gram phonemic mappings, such as r → l

from English to Chinese, are language specific and
can be captured by language specific sound change
patterns.

Phonemes Constraints
Vowel i → y; u → w; a → a

Nasal m ↔ m; m,n ← m

Approximant
r → l; l, r ↔ l
l ← l; w → h, w, f
h, o, u, v ← w; y → y

Fricative
v → w, b, f
s → s, x, z; s, c ← s

Plosive
p → b, p; p ← p
b → b; t ← t
t, d ← d; q → k

Table 1: All language specific constraints used in our English
to Chinese transliteration (see Sec. 3.2 for more details). Con-
straints in boldface apply to all positions, the rest apply only to
characters appearing in initial position.

These patterns have been used by other systems
as features or pseudofeatures (Yoon et al., 2007).
However, in our system these language specific rule-
of-thumbs are systematically used as constraints to
exclude impossible alignments and therefore gener-
ate better features for learning. We listed in Table 1
all 20 language specific constraints we used for Chi-
nese. There is a total of 24 constraints for Hebrew
and 17 for Russian.

The constraints in Table 1 indicate a systematic
sound mapping between English and Chinese un-
igram character mappings. Arranged by manners
of articulation each row of the table indicates the
sound change tendency among vowels, nasals, ap-
proximants (retroflex and glides), fricatives and plo-
sives. For example, voiceless plosive sounds such as
p, t in English, tend to map to both voiced (such as b,
d) and voiceless sounds in Chinese. However, if the
sound is voiceless in Chinese, its backtrack English
sound must be voiceless. This voice-voiceless sound
change tendency is captured by our constraints such
as p→ b, p and p← p; t← t.

5 Experiments and Analysis

In this section, we demonstrate the effectiveness
of constraint driven learning empirically. We start
by describing the datasets and experimental settings
and then proceed to describe the results. We eval-
uated our method on three very different target lan-
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Figure 2: Comparison between our models and weakly su-
pervised learning methods (Klementiev and Roth, 2006b).
Note that one of the models proposed in (Klementiev and Roth,
2006b) takes advantage of the temporal information. Our best
model, the unsupervised learning with all constraints, outper-
forms both models in (Klementiev and Roth, 2006b), even
though we do not use any temporal information.

guages: Russian, Chinese, and Hebrew, and com-
pared our results to previously published results.

5.1 Experimental Settings

In our experiments the system is evaluated on its
ability to correctly identify the gold transliteration
for each source word. We evaluated the system’s
performance using two measures adopted in many
transliteration works. The first one is Mean Recip-
rocal Rank (MRR), used in (Tao et al., 2006; Sproat
et al., 2006), which is the average of the multiplica-
tive inverse of the rank of the correct answer. For-
mally, Let n be the number of source NEs. Let Gol-
dRank(i) be the rank the algorithm assigns to the
correct transliteration. Then, MRR is defined by:

MRR =
1
n

n∑

i=1

1
goldRank(i)

.

Another measure is Accuracy (ACC) used in (Kle-
mentiev and Roth, 2006a; Goldwasser and Roth,
2008a), which is the percentage of the top rank can-
didates being the gold transliteration. In our im-
plementation we used the support vector machine
(SVM) learning algorithm with linear kernel as our
underlying learning algorithm (mentioned in part
2.5 of Algorithm 1) . We used the package LIB-
LINEAR (Hsieh et al., 2008) in our experiments.
Through all of our experiments, we used the 2-norm
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Figure 3: Comparison between our works and supervised
models in (Goldwasser and Roth, 2008b). We show the learn-
ing curves for Hebrew under two different settings: unsuper-
vised learning with general and all constraints. The results of
two supervised models (Goldwasser and Roth, 2008b) are also
included here. Note that our unsupervised model with all con-
straints is competitive to the supervised model with 250 labeled
examples. See the text for more comparisons and details.

hinge loss as our loss function and fixed the regular-
ization parameter C to be 0.5.

5.2 Datasets
We experimented using three different target lan-
guages Russian, Chinese, and Hebrew. We used En-
glish as the source language in all these experiments.

The Russian data set2, originally introduced in
(Klementiev and Roth, 2006b), is comprised of tem-
porally aligned news articles. The dataset contains
727 single word English NEs with a correspond-
ing set of 50,648 potential Russian candidate words
which include not only name entities, but also other
words appearing in the news articles.

The Chinese dataset is taken directly from an
English-Chinese transliteration dictionary, derived
from LDC Gigaword corpus3. The entire dictionary
consists of 74,396 pairs of English-Chinese NEs,
where Chinese NEs are written in Pinyin, a roman-
ized spelling system of Chinese. In (Tao et al., 2006)
a dataset which contains about 600 English NEs and
700 Chinese candidates is used. Since the dataset
is not publicly available, we created a dataset in a
similar way. We randomly selected approximately
600 NE pairs and then added about 100 candidates
which do not correspond to any of the English NE

2The corpus is available http://L2R.cs.uiuc.edu/∼cogcomp.
3http://www.ldc.upenn.edu
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Language UCDL Prev. works
Rus. (ACC) 73 63 (41) (KR’06)
Heb. (MRR) 0.899 0.894 (GR’08)

Table 2: Comparison to previously published results. UCDL
is our method, KR’06 is described in (Klementiev and Roth,
2006b) and GR’08 in (Goldwasser and Roth, 2008b). Note that
our results for Hebrew are comparable with a supervised sys-
tem.

previously selected.
The Hebrew dataset, originally introduced in

(Goldwasser and Roth, 2008a), consists of 300
English-Hebrew pairs extracted from Wikipedia.

5.3 Results
We begin by comparing our model to previously
published models tested over the same data, in two
different languages, Russian and Hebrew. For Rus-
sian, we compare to the model presented in (Kle-
mentiev and Roth, 2006b), a weakly supervised al-
gorithm that uses both phonetic information and
temporal information. The model is bootstrapped
using a set of 20 labeled examples. In their setting
the candidates are ranked by combining two scores,
one obtained using the transliteration model and a
second by comparing the relative occurrence fre-
quency of terms over time in both languages. Due
to computational tractability reasons we slightly
changed Algorithm 1 to use only a small subset of
the possible negative examples.

For Hebrew, we compare to the model presented
in (Goldwasser and Roth, 2008b), a supervised
model trained using 250 labeled examples. This
model uses a bigram model to represent the translit-
eration samples (i.e., features are generated by pair-
ing character unigrams and bigrams). The model
also uses constraints to restrict the feature extrac-
tion process, which are equivalent to the coverage
constraint we described in Sec. 3.2.

The results of these experiments are reported us-
ing the evaluation measures used in the original pa-
pers and are summarized in Table 2. The results
show a significant improvement over the Russian
data set and comparable performance to the super-
vised method used for Hebrew.

Figure 2 describes the learning curve of our
method over the Russian dataset. We compared our
algorithm to two models described in (Klementiev

and Roth, 2006b) - one uses only phonetic simi-
larity and the second also considers temporal co-
occurrence similarity when ranking the translitera-
tion candidates. Both models converge after 50 it-
erations. When comparing our model to their mod-
els, we found that even though our model ignores
the temporal information it achieves better results
and converges after fewer iterations. Their results
report a significant improvement when using tempo-
ral information - improving an ACC score of 41%
without temporal information to 63% when using
it. Since the temporal information is orthogonal to
the transliteration model, our model should similarly
benefit from incorporating the temporal information.

Figure 3 compares the learning curve of our
method to an existing supervised method over the
Hebrew data and shows we get comparable results.

Unfortunately, we could not find a published Chi-
nese dataset. However, our system achieved similar
results to other systems, over a different dataset with
similar number of training examples. For example,
(Sproat et al., 2006) presents a supervised system
that achieves a MRR score of 0.89, when evaluated
over a dataset consisting of 400 English NE and 627
Chinese words. Our results for a different dataset of
similar size are reported in Table 3.

5.4 Analysis
The resources used in our framework consist of
- a romanization table, general and language spe-
cific transliteration constraints. To reveal the impact
of each component we experimented with different
combination of the components, resulting in three
different testing configurations.
Romanization Table: We initialized the weight
vector using a romanization table and did not use any
constraints. To generate features we use a modified
version of our AF operator (see Sec. 3), which gen-
erates features by coupling characters in close posi-
tions in the source and target words. This configura-
tion is equivalent to the model used in (Klementiev
and Roth, 2006b).
+General Constraints: This configuration uses the
romanization table for initializing the weight vector
and general transliteration constraints (see Sec. 3.2)
for feature extraction.
+All Constraints: This configuration uses lan-
guage specific constraints in addition to the gen-
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Settings Chinese Russian Hebrew
Romanization table 0.019 (0.5) 0.034 (1.0) 0.046 (1.7)
Romanization table +learning 0.020 (0.3) 0.048 (1.3) 0.028 (0.7)
+Gen Constraints 0.746 (67.1) 0.809 (74.3) 0.533 (45.0)
+Gen Constraints +learning 0.867 (82.2) 0.906 (86.7) 0.834 (76.0)
+All Constraints 0.801 (73.4) 0.849 (79.3) 0.743 (66.0)
+All Constraints +learning 0.889 (84.7) 0.931 (90.0) 0.899 (85.0)

Table 3: Results of an ablation study of unsupervised method for three target languages. Results for ACC are inside parentheses,
and for MRR outside. When the learning algorithm is used, the results after 20 rounds of constraint driven learning are reported.
Note that using linguistic constraints has a significant impact in the English-Hebrew experiments. Our results show that a small
amount of constraints can go a long way, and better constraints lead to better learning performance.

eral transliteration constraints to generate the feature
representation. (see Sec. 4).
+Learning: Indicates that after initializing the
weight vector, we update the weight using Algo-
rithm 1. In all of the experiments, we report the
results after 20 training iterations.

The results are summarized in Table 3. Due to the
size of the Russian dataset, we used a subset consist-
ing of 300 English NEs and their matching Russian
transliterations for the analysis presented here. Af-
ter observing the results, we discovered the follow-
ing regularities for all three languages. Using the
romanization table directly without constraints re-
sults in very poor performance, even after learning.
This can be used as an indication of the difficulty of
the transliteration problem and the difficulties ear-
lier works have had when using only romanization
tables, however, when used in conjunction with con-
straints results improve dramatically. For example,
in the English-Chinese data set, we improve MRR
from 0.02 to 0.746 and for the English-Russian data
set we improve 0.03 to 0.8. Interestingly, the results
for the English-Hebrew data set are lower than for
other languages - we achieve 0.53 MRR in this set-
ting. We attribute the difference to the quality of
the mapping in the romanization table for that lan-
guage. Indeed, the weights learned after 20 train-
ing iterations improve the results to 0.83. This im-
provement is consistent across all languages, after
learning we are able to achieve a MRR score of 0.87
for the English-Chinese data set and 0.91 for the
English-Russian data set. These results show that
romanization table contains enough information to
bootstrap the model when used in conjunction with
constraints. We are able to achieve results compa-

rable to supervised methods that use a similar set of
constraints and labeled examples.

Bootstrapping the weight vector using language
specific constraints can further improve the results.
They provide several advantages: a better starting
point, an improved learning rate and a better final
model. This is clear in all three languages, for exam-
ple results for the Russian and Chinese bootstrapped
models improve by 5%, and by over 20% for He-
brew. After training the difference is smaller- only
3% for the first two and 6% for Hebrew. Figure 3 de-
scribes the learning curve for models with and with-
out language specific constraints for the English-
Hebrew data set, it can be observed that using these
constraints the model converges faster and achieves
better results.

6 Conclusion

In this paper we develop a constraints driven ap-
proach to named entity transliteration. In doing it
we show that romanization tables are a very useful
resource for transliteration discovery if proper con-
straints are included. Our framework does not need
labeled data and does not assume that bilingual cor-
pus are temporally aligned. Even without using any
labeled data, our model is competitive to existing
supervised models and outperforms existing weakly
supervised models.
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Abstract

Syllables play an important role in speech
synthesis and recognition. We present sev-
eral different approaches to the syllabifica-
tion of phonemes. We investigate approaches
based on linguistic theories of syllabification,
as well as a discriminative learning technique
that combines Support Vector Machine and
Hidden Markov Model technologies. Our
experiments on English, Dutch and German
demonstrate that our transparent implemen-
tation of the sonority sequencing principle
is more accurate than previous implemen-
tations, and that our language-independent
SVM-based approach advances the current
state-of-the-art, achieving word accuracy of
over 98% in English and 99% in German and
Dutch.

1 Introduction

Syllabification is the process of dividing a word
into its constituent syllables. Although some work
has been done on syllabifying orthographic forms
(Müller et al., 2000; Bouma, 2002; Marchand and
Damper, 2007; Bartlett et al., 2008), syllables are,
technically speaking, phonological entities that can
only be composed of strings of phonemes. Most
linguists view syllables as an important unit of
prosody because many phonological rules and con-
straints apply within syllables or at syllable bound-
aries (Blevins, 1995).

Apart from their purely linguistic significance,
syllables play an important role in speech synthesis
and recognition (Kiraz and Möbius, 1998; Pearson
et al., 2000). The pronunciation of a given phoneme
tends to vary depending on its location within a syl-

lable. While actual implementations vary, text-to-
speech (TTS) systems must have, at minimum, three
components (Damper, 2001): a letter-to-phoneme
(L2P) module, a prosody module, and a synthesis
module. Syllabification can play a role in all three
modules.

Because of the productive nature of language, a
dictionary look-up process for syllabification is in-
adequate. No dictionary can ever contain all possi-
ble words in a language. For this reason, it is neces-
sary to develop systems that can automatically syl-
labify out-of-dictionary words.

In this paper, we advance the state-of-the-art
in both categorical (non-statistical) and supervised
syllabification. We outline three categorical ap-
proaches based on common linguistic theories of
syllabification. We demonstrate that when imple-
mented carefully, such approaches can be very ef-
fective, approaching supervised performance. We
also present a data-driven, discriminative solution:
a Support Vector Machine Hidden Markov Model
(SVM-HMM), which tags each phoneme with its
syllabic role. Given enough data, the SVM-HMM
achieves impressive accuracy thanks to its ability
to capture context-dependent generalizations, while
also memorizing inevitable exceptions. Our ex-
periments on English, Dutch and German demon-
strate that our SVM-HMM approach substantially
outperforms the existing state-of-the-art learning ap-
proaches. Although direct comparisons are difficult,
our system achieves over 99% word accuracy on
German and Dutch, and the highest reported accu-
racy on English.

The paper is organized as follows. We outline
common linguistic theories of syllabification in Sec-
tion 2, and we survey previous computational sys-
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tems in Section 3. Our linguistically-motivated ap-
proaches are described in Section 4. In Section 5,
we describe our system based on the SVM-HMM.
The experimental results are presented in Section 6.

2 Theories of Syllabification

There is some debate as to the exact structure of
a syllable. However, phonologists are in gen-
eral agreement that a syllable consists of a nucleus
(vowel sound), preceded by an optional onset and
followed by an optional coda. In many languages,
both the onset and the coda can be complex,i.e.,
composed of more than one consonant. For exam-
ple, the wordbreakfast[brEk-f�st] contains two syl-
lables, of which the first has a complex onset [br],
and the second a complex coda [st]. Languages dif-
fer with respect to various typological parameters,
such as optionality of onsets, admissibility of co-
das, and the allowed complexity of the syllable con-
stituents. For example, onsets are required in Ger-
man, while Spanish prohibits complex codas.

There are a number of theories of syllabification;
we present three of the most prevalent. TheLegal-
ity Principle constrains the segments that can be-
gin and end syllables to those that appear at the be-
ginning and end of words. In other words, a sylla-
ble is not allowed to begin with a consonant clus-
ter that is not found at the beginning of some word,
or end with a cluster that is not found at the end of
some word (Goslin and Frauenfelder, 2001). Thus,
a word like admit [�dmIt] must be syllabified [�d-
mIt] because [dm] never appears word-initially or
word-finally in English. A shortcoming of the le-
gality principle is that it does not always imply a
unique syllabification. For example, in a word like
askew[�skju], the principle does not rule out any of
[�-skju], [�s-kju], or [�sk-ju], as all three employ le-
gal onsets and codas.

The Sonority Sequencing Principle(SSP) pro-
vides a stricter definition of legality. The sonor-
ity of a sound is its inherent loudness, holding fac-
tors like pitch and duration constant (Crystal, 2003).
Low vowels like [a], the most sonorous sounds, are
high on the sonority scale, while plosive consonants
like [t] are at the bottom. When syllabifying a
word, SSP states that sonority should increase from
the first phoneme of the onset to the syllable’s nu-

cleus, and then fall off to the coda (Selkirk, 1984).
Consequently, in a word likevintage [vIntI�], we
can rule out a syllabification like [vI-ntI�] because
[n] is more sonorant than [t]. However, SSP does
not tell us whether to prefer [vIn-tI�] or [vInt-I�].
Moreover, when syllabifying a word likevintner
[vIntn�r], the theory allows both [vIn-tn�r] and [vInt-
n�r], even though [tn] is an illegal onset in English.

Both the Legality Principle and SSP tell us which
onsets and codas are permitted in legal syllables, and
which are not. However, neither theory gives us any
guidance when deciding between legal onsets. The
Maximal Onset Principle addresses this by stating
we should extend a syllable’s onset at the expense
of the preceding syllable’s coda whenever it is legal
to do so (Kahn, 1976). For example, the principle
gives preference to [�-skju] and [vIn-tI�] over their
alternatives.

3 Previous Computational Approaches

Unlike tasks such as part of speech tagging or syn-
tactic parsing, syllabification does not involve struc-
tural ambiguity. It is generally believed that syllable
structure is usually predictable in a language pro-
vided that the rules have access to all conditioning
factors: stress, morphological boundaries, part of
speech, etymology, etc. (Blevins, 1995). However,
in speech applications, the phonemic transcription of
a word is often the only linguistic information avail-
able to the system. This is the common assumption
underlying a number of computational approaches
that have been proposed for the syllabification of
phonemes.

Daelemans and van den Bosch (1992) present one
of the earliest systems on automatic syllabification:
a neural network-based implementation for Dutch.
Daelemans et al. (1997) also explore the application
of exemplar-based generalization (EBG), sometimes
called instance-based learning. EBG generally per-
forms a simple database look-up to syllabify a test
pattern, choosing the most common syllabification.
In cases where the test pattern is not found in the
database, the most similar pattern is used to syllab-
ify the test pattern.

Hidden Markov Models (HMMs) are another
popular approach to syllabification. Krenn (1997)
introduces the idea of treating syllabification as a
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tagging task. Working from a list of syllabified
phoneme strings, she automatically generates tags
for each phone. She uses a second-order HMM to
predict sequences of tags; syllable boundaries can be
trivially recovered from the tags. Demberg (2006)
applies a fourth-order HMM to the syllabification
task, as a component of a larger German text-to-
speech system. Schmid et al. (2007) improve on
Demberg’s results by applying a fifth-order HMM
that conditions on both the previous tags and their
corresponding phonemes.

Kiraz and Möbius (1998) present a weighted
finite-state-based approach to syllabification. Their
language-independent method builds an automaton
for each of onsets, nuclei, and codas, by count-
ing occurrences in training data. These automatons
are then composed into a transducer accepting se-
quences of one or more syllables. They do not report
quantitative results for their method.

Pearson et al. (2000) compare two rule-based sys-
tems (they do not elaborate on the rules employed)
with a CART decision tree-based approach and a
“global statistics” algorithm. The global statistics
method is based on counts of consonant clusters
in contexts such as word boundaries, short vow-
els, or long vowels. Each test word has syllable
boundaries placed according to the most likely lo-
cation given a cluster and its context. In experi-
ments performed with their in-house dataset, their
statistics-based method outperforms the decision-
tree approach and the two rule-based methods.

Müller (2001) presents a hybrid of a categori-
cal and data-driven approach. First, she manually
constructs a context-free grammar of possible sylla-
bles. This grammar is then made probabilistic using
counts obtained from training data. Müller (2006)
attempts to make her method language-independent.
Rather than hand-crafting her context-free grammar,
she automatically generates all possible onsets, nu-
clei, and codas, based on the phonemes existing in
the language. The results are somewhat lower than
in (Müller, 2001), but the approach can be more eas-
ily ported across languages.

Goldwater and Johnson (2005) also explore us-
ing EM to learn the structure of English and Ger-
man phonemes in an unsupervised setting, following
Müller in modeling syllable structure with PCFGs.
They initialize their parameters using a deterministic

parser implementing the sonority principle and esti-
mate the parameters for their maximum likelihood
approach using EM.

Marchand et al. (2007) apply their Syllabification
by Analogy (SbA) technique, originally developed
for orthographic forms, to the pronunciation do-
main. For each input word, SbA finds the most sim-
ilar substrings in a lexicon of syllabified phoneme
strings and then applies the dictionary syllabifica-
tions to the input word. Their survey paper also in-
cludes comparisons with a method broadly based on
the legality principle. The authors find their legality-
based implementation fares significantly worse than
SbA.

4 Categorical Approaches

Categorical approaches to syllabification are appeal-
ing because they are efficient and linguistically intu-
itive. In addition, they require little or no syllable-
annotated data. We present threecategorical al-
gorithms that implement the linguistic insights out-
lined in Section 2. All three can be viewed as vari-
ations on the basic pseudo-code shown in Figure 1.
Every vowel is labeled as a nucleus, and every con-
sonant is labeled as either an onset or a coda. The
algorithm labels all consonants as onsets unless it is
illegal to do so. Given the labels, it is straightfor-
ward to syllabify a word. The three methods differ
in how they determine a “legal” onset.

As a rough baseline, the MAX ONSET implemen-
tation considers all combinations of consonants to be
legal onsets. Only word-final consonants are labeled
as codas.

LEGALITY combines the Legality Principle with
onset maximization. In our implementation, we col-
lect all word-initial consonant clusters from the cor-
pus and deem them to be legal onsets. With this
method, no syllable can have an onset that does not
appear word-initially in the training data. We do not
test for the legality of codas. The performance of
LEGALITY depends on the number of phonetic tran-
scriptions that are available, but the transcriptions
need not be annotated with syllable breaks.

SONORITY combines the Sonority Sequencing
Principle with onset maximization. In this approach,
an onset is considered legal if every member of the
onset ranks lower on the sonority scale than ensuing
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until current phoneme is a vowel
label current phoneme as an onset

end loop
until all phonemes have been labeled

label current phoneme as a nucleus
if there are no more vowels in the word

label all remaining consonants as codas
else

onset := all consonants before next vowel
coda := empty
until onset is legal

coda := coda plus first phoneme of onset
onset := onset less first phoneme

end loop
end if

end loop
Insert syllable boundaries before onsets

Figure 1: Pseudo-code for syllabifying a string of
phonemes.

consonants. SONORITY requires no training data be-
cause it implements a sound linguistic theory. How-
ever, an existing development set for a given lan-
guage can help with defining and validating addi-
tional language-specific constraints.

Several sonority scales of varying complexity
have been proposed. For example, Selkirk (1984)
specifies a hierarchy of eleven distinct levels. We
adopt a minimalistic scale shown in Figure 2. which
avoids most of the disputed sonority contrasts (Jany
et al., 2007). We set the sonority distance parame-
ter to 2, which ensures that adjacent consonants in
the onset differ by at least two levels of the scale.
For example, [pr] is an acceptable onset because it
is composed of an obstruent and a liquid, but [pn] is
not, because nasals directly follow obstruents on our
sonority scale.

In addition, we incorporate several English-
specific constraints listed by Kenstowicz (1994,
pages 257–258). The constraints, orfilters, prohibit
complex onsets containing:

(i) two labials (e.g., [pw], [bw], [fw], [vw]),

(ii) a non-strident coronal followed by a lateral
(e.g., [tl], [dl], [Tl])

(iii) a voiced fricative (e.g., [vr], [zw], except [vj]),

(iv) a palatal consonant (e.g., [Sl], [Ùr], except [Sr]).

Sound Examples Level
Vowels u,�, . . . 4
Glides w, j, . . . 3
Liquids l, r, . . . 2
Nasals m,N, . . . 1
Obstruents g,T, . . . 0

Figure 2: The sonority scale employed by SONORITY.

A special provision allows for prepending the
phoneme [s] to onsets beginning with a voiceless
plosive. This reflects the special status of [s] in En-
glish, where onsets like [sk] and [sp] are legal even
though the sonority is not strictly increasing.

5 Supervised Approach: SVM-HMM

If annotated data is available, a classifier can be
trained to predict the syllable breaks. A Support
Vector Machine (SVM) is a discriminative super-
vised learning technique that allows for a rich fea-
ture representation of the input space. In principle,
we could use a multi-class SVM to classify each
phoneme according to its position in a syllable on
the basis of a set of features. However, a traditional
SVM would treat each phoneme in a word as an in-
dependent instance, preventing us from considering
interactions between labels. In order to overcome
this shortcoming, we employ an SVM-HMM1 (Al-
tun et al., 2003), an instance of the Structured SVM
formalism (Tsochantaridis et al., 2004) that has been
specialized for sequence tagging.

When training a structured SVM, each training
instancexi is paired with its labelyi, drawn from
the set of possible labels,Yi. In our case, the train-
ing instancesxi are words, represented as sequences
of phonemes, and their labelsyi are syllabifications,
represented as sequences of onset/nucleus/coda tags.
For each training example, a feature vectorΨ(x, y)
represents the relationship between the example and
a candidate tag sequence. The SVM finds a weight
vectorw, such thatw ·Ψ(x, y) separates correct tag-
gings from incorrect taggings by as large a margin
as possible. Hamming distanceDH is used to cap-
ture how close a wrong sequencey is to yi, which

1http://svmlight.joachims.org/svmstruct.html
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in turn impacts the required margin. Tag sequences
that share fewer tags in common with the correct se-
quence are separated by a larger margin.

Mathematically, a (simplified) statement of the
SVM learning objective is:

∀i∀y∈Yi,y 6=yi
:

[Ψ(xi, yi) · w > Ψ(xi, y) · w + DH(y, yi)]
(1)

This objective is only satisfied whenw tags all train-
ing examples correctly. In practice, slack variables
are introduced, which allow us to trade off training
accuracy and the complexity ofw via a cost parame-
ter. We tune this parameter on our development set.

The SVM-HMM training procedure repeatedly
uses the Viterbi algorithm to find, for the current
w and each(xi, yi) training pair, the sequencey
that most drastically violates the inequality shown in
Equation 1. These incorrect tag sequences are added
to a growing set, which constrains the quadratic op-
timization procedure used to find the nextw. The
process iterates until no new violating sequences are
found, producing an approximation to the inequality
over ally ∈ Yi. A complete explanation is given by
Tsochantaridis et al. (2004).

Given a weight vectorw, a structured SVM tags
new instancesx according to:

argmaxy∈Y [Ψ(x, y) · w] (2)

The SVM-HMM gets the HMM portion of its name
from its use of the HMM Viterbi algorithm to solve
thisargmax.

5.1 Features

We investigated several tagging schemes, described
in detail by Bartlett (2007). During development,
we found that tagging each phoneme with its syl-
labic role (Krenn, 1997) works better than the simple
binary distinction between syllable-final and other
phonemes (van den Bosch, 1997). We also dis-
covered that accuracy can be improved by number-
ing the tags. Therefore, in our tagging scheme, the
single-syllable wordstrengths[strENTs] would be la-
beled with the sequence{O1 O2 O3 N1 C1 C2 C3}.

Through the use of the Viterbi algorithm, our fea-
ture vectorΨ(x, y) is naturally divided into emis-
sion and transition features. Emission features link
an aspect of the input wordx with a single tag in the

Method English

MAX ONSET 61.38
LEGALITY 93.16
SONORITY 95.00
SVM-HMM 98.86

tsylb 93.72

Table 1: Word accuracy on the CELEX dataset.

sequencey. Unlike a generative HMM, these emis-
sion features do not require any conditional indepen-
dence assumptions. Transition features link tags to
tags. Our only transition features are counts of adja-
cent tag pairs occurring iny.

For the emission features, we use the current
phoneme and a fixed-size context window of sur-
rounding phonemes. Thus, the features for the
phoneme [k] inhockey[hAki] might include the [A]
preceding it, and the [i] following it. In experiments
on our development set, we found that the optimal
window size is nine: four phonemes on either side
of the focus phoneme. Because the SVM-HMM is a
linear classifier, we need to explicitly state any im-
portant conjunctions of features. This allows us to
capture more complex patterns in the language that
unigrams alone cannot describe. For example, the
bigram [ps] is illegal as an onset in English, but per-
fectly reasonable as a coda. Experiments on the de-
velopment set showed that performance peaked us-
ing all unigrams, bigrams, trigrams, and four-grams
found within our context window.

6 Syllabification Experiments

We developed our approach using the English por-
tion of the CELEX lexical database (Baayen et al.,
1995). CELEX provides the phonemes of a word
and its correct syllabification. It does not designate
the phonemes as onsets, nuclei, or codas, which is
the labeling we want to predict. Fortunately, extract-
ing the labels from a syllabified word is straightfor-
ward. All vowel phones are assigned to be nuclei;
consonants preceding the nucleus in a syllable are
assigned to be onsets, while consonants following
the nucleus in a syllable are assigned to be codas.

The results in Table 1 were obtained on a test set
of 5K randomly selected words. For training the
SVM-HMM, we randomly selected 30K words not
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appearing in the test set, while 6K training examples
were held out for development testing. We report
the performance in terms of word accuracy (entire
words syllabified correctly). Among the categori-
cal approaches, SONORITY clearly outperforms not
only LEGALITY , but alsotsylb (Fisher, 1996), an
implementation of the complex algorithm of Kahn
(1976), which makes use of lists of legal English
onsets. Overall, our SVM-based approach is a clear
winner.

The results of our discriminative method com-
pares favorably with the results of competing ap-
proaches on English CELEX. Since there are no
standard train-test splits for syllabification, the
comparison is necessarily indirect, but note that
our training set is substantially smaller. For
her language-independent PCFG-based approach,
Müller (2006) reports 92.64% word accuracy on the
set of 64K examples from CELEX using 10-fold
cross-validation. The Learned EBG approach of
van den Bosch (1997) achieves 97.78% word accu-
racy when training on approximately 60K examples.
Therefore, our results represent a nearly 50% reduc-
tion of the error rate.

Figure 3: Word accuracy on English CELEX as a func-
tion of the number of thousands of training examples.

Though the SVM-HMM’s training data require-
ments are lower than previous supervised syllabi-
fication approaches, they are still substantial. Fig-
ure 3 shows a learning curve over varying amounts
of training data. Performance does not reach accept-
able levels until 5K training examples are provided.

6.1 Error Analysis

There is a fair amount of overlap in the errors made
by the SVM-HMM and the SONORITY. Table 4
shows a few characteristic examples. The CELEX

syllabifications of tooth-acheand pass-portsfol-
low the morphological boundaries of the compound
words. Morphological factors are a source of er-
rors for both approaches, but significantly more so
for SONORITY. The performance difference comes
mainly from the SVM’s ability to handle many of
these morphological exceptions. The SVM gener-
ates the correct syllabification ofnortheast[norT-
ist], even though an onset of [T] is perfectly legal.
On the other hand, the SVM sometimes overgener-
alizes, as in the last example in Table 4.

SVM-HMM SONORITY

tu-Tek tu-Tek toothache
pae-sports pae-sports passports
norT-ist nor-Tist northeast
dIs-plizd dI-splizd displeased
dIs-koz dI-skoz discos

Figure 4: Examples of syllabification errors. (Correct
syllabifications are shown in bold.)

6.2 The NETtalk Dataset

Marchand et al. (2007) report a disappointing word
accuracy of 54.14% for their legality-based imple-
mentation, which does not accord with the results
of our categorical approaches on English CELEX.
Consequently, we also apply our methods to the
dataset they used for their experiments: the NETtalk
dictionary. NETtalk contains 20K English words; in
the experiments reported here, we use 13K training
examples and 7K test words.

As is apparent from Table 2, our performance
degrades significantly when switching to NETtalk.
The steep decline found in the categorical meth-
ods is particularly notable, and indicates significant
divergence between the syllabifications employed
in the two datasets. Phonologists do not always
agree on the correct syllable breaks for a word,
but the NETtalk syllabifications are often at odds
with linguistic intuitions. We randomly selected 50
words and compared their syllabifications against
those found in Merriam-Webster Online. We found
that CELEX syllabifications agree with Merriam-
Webster in 84% of cases, while NETtalk only agrees
52% of the time.

Figure 5 shows several words from the NETtalk
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Method English

MAX ONSET 33.64
SONORITY 52.80
LEGALITY 53.08
SVM-HMM 92.99

Table 2: Word accuracy on the NETtalk dataset.

and CELEX datasets. We see that CELEX fol-
lows the maximal onset principle consistently, while
NETtalk does in some instances but not others. We
also note that there are a number of NETtalk syllab-
ifications that are clearly wrong, such as the last two
examples in Figure 5. The variability of NETtalk
is much more difficult to capture with any kind of
principled approach. Thus, we argue that low per-
formance on NETtalk indicate inconsistent syllabi-
fications within that dataset, rather than any actual
deficiency of the methods.

NETtalk CELEXÙaes-taIz Ùae-staIz chastise
rEz-Id-�ns rE-zI-d�ns residence
dI-strOI dI-strOI destroy
fo-tAn fo-tAn photonAr-pE�-io Ar-pE-�i-o arpeggioDer-�-baU-t DE-r�-baUt thereabout

Figure 5: Examples of CELEX and NETtalk syllabifica-
tions.

NETtalk’s variable syllabification practices
notwithstanding, the SVM-HMM approach still
outperforms the previous benchmark on the dataset.
Marchand et al. (2007) report 88.53% word accu-
racy for their SbA technique using leave-one-out
testing on the entire NETtalk set (20K words). With
fewer training examples, we reduce the error rate by
almost 40%.

6.3 Other Languages

We performed experiments on German and Dutch,
the two other languages available in the CELEX lex-
ical database. The German and Dutch lexicons of
CELEX are larger than the English lexicon. For both
languages, we selected a 25K test set, and two dif-
ferent training sets, one containing 50K words and
the other containing 250K words. The results are

Method German Dutch

MAX ONSET 19.51 23.44
SONORITY 76.32 77.51
LEGALITY 79.55 64.31
SVM-HMM (50K words) 99.26 97.79
SVM-HMM (250K words) 99.87 99.16

Table 3: Word accuracy on the CELEX dataset.

presented in Table 3.

While our SVM-HMM approach is entirely lan-
guage independent, the same cannot be said about
other methods. The maximal onset principle appears
to hold much more strongly for English than for Ger-
man and Dutch (e.g.,patron: [pe-tr�n] vs. [pat-ron]).
LEGALITY and SONORITY also appear to be less
effective, possibly because of greater tendency for
syllabifications to match morphological boundaries
(e.g., Englishexclusive: [Ik-sklu-sIv] vs. Dutchex-
clusief[Eks-kly-zif]). SONORITY is further affected
by our decision to employ the constraints of Ken-
stowicz (1994), although they clearly pertain to En-
glish. We expect that adapting them to specific lan-
guages would bring the results closer to the level of
the English experiments.

Although our SVM system is tuned using an
English development set, the results on both Ger-
man and Dutch are excellent. We could not find
any quantitative data for comparisons on Dutch,
but the comparison with the previously reported re-
sults on German CELEX demonstrates the qual-
ity of our approach. The numbers that follow re-
fer to 10-fold cross-validation on the entire lex-
icon (over 320K entries) unless noted otherwise.
Krenn (1997) obtainstagaccuracy of 98.34%, com-
pared to our system’s tag accuracy of 99.97% when
trained on 250K words. With a hand-crafted gram-
mar, Müller (2002) achieves 96.88% word accuracy
on CELEX-derived syllabifications, with a training
corpus of two million tokens. Without a hand-
crafted grammar, she reports 90.45% word accu-
racy (Müller, 2006). Applying a standard smoothing
algorithm and fourth-order HMM, Demberg (2006)
scores 98.47% word accuracy. A fifth-order joint
N -gram model of Schmid et al. (2007) achieves
99.85% word accuracy with about 278K training
points. However, unlike generative approaches, our
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Method English German

SONORITY 97.0 94.2
SVM-HMM 99.9 99.4

Categorical Parser 94.9 92.7
Maximum Likelihood 98.1 97.4

Table 4: Word accuracy on the datasets of Goldwater and
Johnson (2005).

SVM-HMM can condition each emission on large
portions of the input using only a first-order Markov
model, which implies much faster syllabification
performance.

6.4 Direct Comparison with an MLE approach

The results of the competitive approaches that have
been quoted so far (with the exception oftsylb)
are not directly comparable, because neither the re-
spective implementations, nor the actual train-test
splits are publicly available. However, we managed
to obtain the English and German data sets used
by Goldwater and Johnson (2005) in their study,
which focused primarily on unsupervised syllabi-
fication. Their experimental framework is similar
to (Müller, 2001). They collect words from running
text and create a training set of 20K tokens and a
test set of 10K tokens. The running text was taken
from the Penn WSJ and ECI corpora, and the syl-
labified phonemic transcriptions were obtained from
CELEX. Table 4 compares our experimental results
with their reported results obtained with: (a) su-
pervised Maximum Likelihood training procedures,
and (b) a Categorical Syllable Parser implementing
the principles of sonority sequencing and onset max-
imization without Kenstowicz’s (1994) onset con-
straints.

The accuracy figures in Table 4 are noticeably
higher than in Table 1. This stems from fundamen-
tal differences in the experimental set-up; Goldwater
and Johnson (2005) test on tokens as found in text,
therefore many frequent short words are duplicated.
Furthermore, some words occur during both training
and testing, to the benefit of the supervised systems
(SVM-HMM and Maximum Likelihood). Neverthe-
less, the results confirm the level of improvement
obtained by both our categorical and supervised ap-
proaches.

7 Conclusion

We have presented several different approaches to
the syllabification of phonemes. The results of our
linguistically-motivated algorithms, show that it is
possible to achieve adequate syllabification word
accuracy in English with no little or no syllable-
annotated training data. We have demonstrated that
the poor performance of categorical methods on En-
glish NETtalk actually points to problems with the
NETtalk annotations, rather than with the methods
themselves.

We have also shown that SVM-HMMs can be
used to great effect when syllabifying phonemes.
In addition to being both efficient and language-
independent, they establish a new state-of-the-art for
English and Dutch syllabification. However, they
do require thousands of labeled training examples to
achieve this level of accuracy. In the future, we plan
to explore a hybrid approach, which would benefit
from both the generality of linguistic principles and
the smooth exception-handling of supervised tech-
niques, in order to make best use of whatever data is
available.
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Abstract

One of the reasons nonparametric Bayesian
inference is attracting attention in computa-
tional linguistics is because it provides a prin-
cipled way of learning the units of generaliza-
tion together with their probabilities. Adaptor
grammars are a framework for defining a va-
riety of hierarchical nonparametric Bayesian
models. This paper investigates some of
the choices that arise in formulating adap-
tor grammars and associated inference proce-
dures, and shows that they can have a dra-
matic impact on performance in an unsuper-
vised word segmentation task. With appro-
priate adaptor grammars and inference proce-
dures we achieve an 87% word token f-score
on the standard Brent version of the Bernstein-
Ratner corpus, which is an error reduction of
over 35% over the best previously reported re-
sults for this corpus.

1 Introduction

Most machine learning algorithms used in computa-
tional linguistics areparametric, i.e., they learn a nu-
merical weight (e.g., a probability) associated with
each feature, where the set of features is fixed be-
fore learning begins. Such procedures can be used
to learn features or structural units by embedding
them in a “propose-and-prune” algorithm: a feature
proposal component proposes potentially useful fea-
tures (e.g., combinations of the currently most useful
features), which are then fed to a parametric learner
that estimates their weights. After estimating fea-
ture weights and pruning “useless” low-weight fea-
tures, the cycle repeats. While such algorithms can
achieve impressive results (Stolcke and Omohundro,

1994), their effectiveness depends on how well the
feature proposal step relates to the overall learning
objective, and it can take considerable insight and
experimentation to devise good feature proposals.

One of the main reasons for the recent interest in
nonparametric Bayesian inference is that it offers a
systematic framework for structural inference, i.e.,
inferring the features relevant to a particular prob-
lem as well as their weights. (Here “nonparamet-
ric” means that the models do not have a fixed set of
parameters; our nonparametric models do have pa-
rameters, but the particular parameters in a model
are learned along with their values). Dirichlet Pro-
cesses and their associated predictive distributions,
Chinese Restaurant Processes, are one kind of non-
parametric Bayesian model that has received consid-
erable attention recently, in part because they can be
composed in hierarchical fashion to form Hierarchi-
cal Dirichlet Processes (HDP) (Teh et al., 2006).

Lexical acquisition is an ideal test-bed for explor-
ing methods for inferring structure, where the fea-
tures learned are the words of the language. (Even
the most hard-core nativists agree that the words of a
language must be learned). We use the unsupervised
word segmentation problem as a test case for eval-
uating structural inference in this paper. Nonpara-
metric Bayesian methods produce state-of-the-art
performance on this task (Goldwater et al., 2006a;
Goldwater et al., 2007; Johnson, 2008).

In a computational linguistics setting it is natu-
ral to try to align the HDP hierarchy with the hi-
erarchy defined by a grammar. Adaptor grammars,
which are one way of doing this, make it easy to ex-
plore a wide variety of HDP grammar-based mod-
els. Given an appropriate adaptor grammar, the fea-
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tures learned by adaptor grammars can correspond
to linguistic units such as words, syllables and col-
locations. Different adaptor grammars encode dif-
ferent assumptions about the structure of these units
and how they relate to each other. A generic adaptor
grammar inference program infers these units from
training data, making it easy to investigate how these
assumptions affect learning (Johnson, 2008).1

However, there are a number of choices in the de-
sign of adaptor grammars and the associated infer-
ence procedure. While this paper studies the im-
pact of these on the word segmentation task, these
choices arise in other nonparametric Bayesian infer-
ence problems as well, so our results should be use-
ful more generally. The rest of this paper is orga-
nized as follows. The next section reviews adaptor
grammars and presents three different adaptor gram-
mars for word segmentation that serve as running
examples in this paper. Adaptor grammars contain
a large number of adjustable parameters, and Sec-
tion 3 discusses how these can be estimated using
Bayesian techniques. Section 4 examines several
implementation options within the adaptor grammar
inference algorithm and shows that they can make
a significant impact on performance. Cumulatively
these changes make a significant difference in word
segmentation accuracy: our final adaptor grammar
performs unsupervised word segmentation with an
87% token f-score on the standard Brent version
of the Bernstein-Ratner corpus (Bernstein-Ratner,
1987; Brent and Cartwright, 1996), which is an er-
ror reduction of over 35% compared to the best pre-
viously reported results on this corpus.

2 Adaptor grammars

This section informally introduces adaptor gram-
mars using unsupervised word segmentation as a
motivating application; see Johnson et al. (2007b)
for a formal definition of adaptor grammars.

Consider the problem of learning language from
continuous speech: segmenting each utterance into
words is a nontrivial problem that language learn-
ers must solve. Elman (1990) introduced an ideal-
ized version of this task, and Brent and Cartwright
(1996) presented a version of it where the data
consists of unsegmented phonemic representations
of the sentences in the Bernstein-Ratner corpus of

1The adaptor grammar inference program is available for
download at http://www.cog.brown.edu/˜mj/Software.htm.

child-directed speech (Bernstein-Ratner, 1987). Be-
cause these phonemic representations are obtained
by looking up orthographic forms in a pronounc-
ing dictionary and appending the results, identifying
the word tokens is equivalent to finding the locations
of the word boundaries. For example, the phoneme
string corresponding to “you want to see the book”
(with its correct segmentation indicated) is as fol-
lows:

y △u Nw △a △n △t Nt △u Ns △i ND △6 Nb △U △k

We can represent any possible segmentation of any
possible sentence as a tree generated by the follow-
ing unigram grammar.

Sentence → Word+

Word → Phoneme+

The nonterminalPhoneme expands to each pos-
sible phoneme; the underlining, which identifies
“adapted nonterminals”, will be explained below. In
this paper “+” abbreviates right-recursion through a
dummy nonterminal, i.e., the unigram grammar ac-
tually is:

Sentence → Word
Sentence → Word Sentence
Word → Phonemes
Phonemes → Phoneme
Phonemes → Phoneme Phonemes

A PCFG with these productions can represent all
possible segmentations of anySentence into a se-
quence ofWords. But because it assumes that the
probability of a word is determined purely by mul-
tiplying together the probability of its individual
phonemes, it has no way to encode the fact that cer-
tain strings of phonemes (the words of the language)
have much higher probabilities than other strings
containing the same phonemes. In order to do this,
a PCFG would need productions like the following
one, which encodes the fact that “want” is aWord.

Word → w a n t

Adaptor grammars can be viewed as a way of for-
malizing this idea. Adaptor grammars learn the
probabilities of entire subtrees, much as in tree sub-
stitution grammar (Joshi, 2003) and DOP (Bod,
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1998). (For computational efficiency reasons adap-
tor grammars require these subtrees to expand to ter-
minals). The set of possible adapted tree fragments
is the set of all subtrees generated by the CFG whose
root label is a member of the set ofadapted non-
terminals A (adapted nonterminals are indicated by
underlining in this paper). For example, in the uni-
gram adaptor grammarA = {Word}, which means
that the adaptor grammar inference procedure learns
the probability of each possibleWord subtree. Thus
adaptor grammars are simple models of structure
learning in which adapted subtrees are the units of
generalization.

One might try to reduce adaptor grammar infer-
ence to PCFG parameter estimation by introducing
a context-free rule for each possible adapted subtree,
but such an attempt would fail because the number
of such adapted subtrees, and hence the number of
corresponding rules, is unbounded. However non-
parametric Bayesian inference techniques permit us
to sample from this infinite set of adapted subtrees,
and only require us to instantiate the finite number
of them needed to analyse the finite training data.

An adaptor grammar is a 7-tuple
(N, W, R, S, θ, A,C) where (N, W, R, S, θ) is
a PCFG with nonterminalsN , terminalsW , rules
R, start symbolS ∈ N and rule probabilitiesθ,
whereθr is the probability of ruler ∈ R, A ⊆ N is
the set ofadapted nonterminals andC is a vector
of adaptors indexed by elements ofA, soCX is the
adaptor for adapted nonterminalX ∈ A.

Informally, an adaptorCX nondeterministically
maps a stream of trees from abase distribution HX

whose support isTX (the set of subtrees whose root
node isX ∈ N generated by the grammar’s rules)
into another stream of trees whose support is also
TX . In adaptor grammars the base distributionsHX

are determined by the PCFG rules expandingX and
the other adapted distributions, as explained in John-
son et al. (2007b). When called upon to generate an-
other sample tree, the adaptor either generates and
returns a fresh tree fromHX or regenerates a tree
it has previously emitted, so in general the adapted
distribution differs from the base distribution.

This paper uses adaptors based on Chinese
Restaurant Processes (CRPs) or Pitman-Yor Pro-
cesses (PYPs) (Pitman, 1995; Pitman and Yor, 1997;
Ishwaran and James, 2003). CRPs and PYPs non-
deterministically generate infinite sequences of nat-

ural numbersz1, z2, . . ., wherez1 = 1 and each
zn+1 ≤ m + 1 wherem = max(z1, . . . , zn). In the
“Chinese Restaurant” metaphor samples produced
by the adaptor are viewed as “customers” andzn

is the index of the “table” that thenth customer is
seated at. In adaptor grammars each table in the
adaptorCX is labeled with a tree sampled from the
base distributionHX that is shared by all customers
at that table; thus thenth sample tree from the adap-
tor CX is theznth sample fromHX .

CRPs and PYPs differ in exactly how the
sequence{zk} is generated. Supposez =
(z1, . . . , zn) have already been generated andm =
max(z). Then a CRP generates the next table index
zn+1 according to the following distribution:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m
α if k = m + 1

wherenk(z) is the number of times tablek appears
in z andα > 0 is an adjustable parameter that deter-
mines how often a new table is chosen. This means
that if CX is a CRP adaptor then the next treetn+1

it generates is the same as a previously generated
tree t′ with probability proportional to the number
of timesCX has generatedt′ before, and is a “fresh”
tree t sampled fromHX with probability propor-
tional toαXHX(t). This leads to a powerful “rich-
get-richer” effect in which popular trees are gener-
ated with increasingly high probabilities.

Pitman-Yor Processes can control the strength of
this effect somewhat by moving mass from existing
tables to the base distribution. The PYP predictive
distribution is:

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m
ma + b if k = m + 1

wherea ∈ [0, 1] andb > 0 are adjustable parame-
ters. It’s easy to see that the CRP is a special case of
the PRP wherea = 0 andb = α.

Each adaptor in an adaptor grammar can be
viewed as estimating the probability of each adapted
subtreet; this probability can differ substantially
from t’s probabilityHX(t) under the base distribu-
tion. BecauseWords are adapted in the unigram
adaptor grammar it effectively estimates the proba-
bility of eachWord tree separately; the sampling es-
timators described in section 4 only instantiate those
Words actually used in the analysis ofSentences in
the corpus. While theWord adaptor will generally
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prefer to reuseWords that have been used elsewhere
in the corpus, it is always possible to generate a fresh
Word using the CFG rules expandingWord into a
string ofPhonemes.

We assume for now that all CFG rulesRX ex-
panding the nonterminalX ∈ N have the same
probability (although we will explore estimatingθ
below), so the base distributionHWord is a “mon-
keys banging on typewriters” model. That means the
unigram adaptor grammar implements the Goldwa-
ter et al. (2006a) unigram word segmentation model,
and in fact it produces segmentations of similar ac-
curacies, and exhibits the same characteristic under-
segmentation errors. As Goldwater et al. point out,
becauseWords are the only units of generalization
available to a unigram model it tends to misanal-
yse collocations as words, resulting in a marked ten-
dancy to undersegment.

Goldwater et al. demonstrate that modelling bi-
gram dependencies mitigates this undersegmenta-
tion. While adaptor grammars cannot express the
Goldwater et al. bigram model, they can get much
the same effect by directly modelling collocations
(Johnson, 2008). Acollocation adaptor grammar
generates aSentence as a sequence ofCollocations,
each of which expands to a sequence ofWords.

Sentence → Colloc+

Colloc → Word+

Word → Phoneme+

BecauseColloc is adapted, the collocation adap-
tor grammar learnsCollocations as well asWords.
(Presumably these approximate syntactic, semantic
and pragmatic interword dependencies). Johnson
reported that the collocation adaptor grammar seg-
ments as well as the Goldwater et al. bigram model,
which we confirm here.

Recently other researchers have emphasised the
utility of phonotactic constraints (i.e., modeling
the allowable phoneme sequences at word onsets
and endings) for word segmentation (Blanchard and
Heinz, 2008; Fleck, 2008). Johnson (2008) points
out that adaptor grammars that model words as se-
quences of syllables can learn and exploit these con-
straints, significantly improving segmentation accu-
racy. Here we present an adaptor grammar that mod-
els collocations together with these phonotactic con-
straints. This grammar is quite complex, permitting
us to study the effects of the various model and im-

plementation choices described below on a complex
hierarchical nonparametric Bayesian model.

The collocation-syllable adaptor grammar gen-
erates aSentence in terms of three levels of
Collocations (enabling it to capture a wider range
of interword dependencies), and generatesWords as
sequences of 1 to 4Syllables. Syllables are subcat-
egorized as to whether they are initial (I), final (F) or
both (IF).

Sentence → Colloc3+

Colloc3 → Colloc2+

Colloc2 → Colloc1+

Colloc1 → Word+

Word → SyllableIF
Word → SyllableI (Syllable) (Syllable) SyllableF
Syllable → Onset Rhyme
Onset → Consonant+

Rhyme → Nucleus Coda
Nucleus → Vowel+

Coda → Consonant+

SyllableIF → OnsetI RhymeF
OnsetI → Consonant+

RhymeF → Nucleus CodaF
CodaF → Consonant+

SyllableI → OnsetI Rhyme
SyllableF → Onset RhymeF

HereConsonant andVowel expand to all possible
consonants and vowels respectively, and the paren-
theses in the expansion ofWord indicate optional-
ity. BecauseOnsets andCodas are adapted, the
collocation-syllable adaptor grammar learns the pos-
sible consonant sequences that begin and end syl-
lables. Moreover, becauseOnsets andCodas are
subcategorized based on whether they are word-
peripheral, the adaptor grammar learns which con-
sonant clusters typically appear at word boundaries,
even though the input contains no explicit word
boundary information (apart from what it can glean
from the sentence boundaries).

3 Bayesian estimation of adaptor
grammar parameters

Adaptor grammars as defined in section 2 have a
large number of free parameters that have to be
chosen by the grammar designer; a rule probabil-
ity θr for each PCFG ruler ∈ R and either one or
two hyperparameters for each adapted nonterminal
X ∈ A, depending on whether Chinese Restaurant
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or Pitman-Yor Processes are used as adaptors. It’s
difficult to have intuitions about the appropriate set-
tings for the latter parameters, and finding the opti-
mal values for these parameters by some kind of ex-
haustive search is usually computationally impracti-
cal. Previous work has adopted an expedient such as
parameter tying. For example, Johnson (2008) set
θ by requiring all productions expanding the same
nonterminal to have the same probability, and used
Chinese Restaurant Process adaptors with tied pa-
rametersαX , which was set using a grid search.

We now describe two methods of dealing with the
large number of parameters in these models that are
both more principled and more practical than the ap-
proaches described above. First, we can integrate
outθ, and second, we can infer values for the adap-
tor hyperparameters using sampling. These meth-
ods (the latter in particular) make it practical to use
Pitman-Yor Process adaptors in complex grammars
such as the collocation-syllable adaptor grammar,
where it is impractical to try to find optimal parame-
ter values by grid search. As we will show, they also
improve segmentation accuracy, sometimes dramat-
ically.

3.1 Integrating out θ

Johnson et al. (2007a) describe Gibbs samplers for
Bayesian inference of PCFG rule probabilitiesθ,
and these techniques can be used directly with adap-
tor grammars as well. Just as in that paper, we
place Dirichlet priors onθ: hereθX is the subvector
of θ corresponding to rules expanding nonterminal
X ∈ N , andβX is a corresponding vector of posi-
tive real numbers specifying the hyperparameters of
the corresponding Dirichlet distributions:

P(θ | β) =
∏

X∈N

Dir(θX | βX)

Because the Dirichlet distribution is conjugate to the
multinomial distribution, it is possible to integrate
out the rule probabilitiesθ, producing the “collapsed
sampler” described in Johnson et al. (2007a).

In our experiments we chose an uniform prior
βr = 1 for all rules r ∈ R. As Table 1 shows,
integrating outθ only has a major effect on re-
sults when the adaptor hyperparameters themselves
are not sampled, and even then it did not have
a large effect on the collocation-syllable adaptor
grammar. This is not too surprising: because the

Onset, Nucleus and Coda adaptors in this gram-
mar learn the probabilities of these building blocks
of words, the phoneme probabilities (which is most
of whatθ encodes) play less important a role.

3.2 Slice sampling adaptor hyperparameters

As far as we know, there are no conjugate priors for
the adaptor hyperparametersaX or bX (which cor-
responds toαX in a Chinese Restaurant Process),
so it is not possible to integrate them out as we did
with the rule probabilitiesθ. However, it is possible
to perform Bayesian inference by putting a prior on
them and sampling their values.

Because we have no strong intuitions about the
values of these parameters we chose uninformative
priors. We chose a uniformBeta(1, 1) prior onaX ,
and a “vague”Gamma(10, 0.1) prior on bX = αX

(MacKay, 2003). (We experimented with other pa-
rameters in the Gamma prior, but found no signifi-
cant difference in performance).

After each Gibbs sweep through the parse treest
we resampled each of the adaptor parameters from
the posterior distribution of the parameter using a
slice sampler 10 times. For example, we resample
eachbX from:

P(bX | t) ∝ P(t | bX) Gamma(bX | 10, 0.1)

HereP(t | bX) is the likelihood of the current se-
quence of sample parse trees (we only need the fac-
tors that depend onbX ) andGamma(bX | 10, 0.1)
is the prior. The same formula is used for sampling
aX , except that the prior is now a flatBeta(1, 1) dis-
tribution.

In general we cannot even compute the normaliz-
ing constants for these posterior distributions, so we
chose a sampler that does not require this. We use a
slice sampler here because it does not require a pro-
posal distribution (Neal, 2003). (We initially tried
a Metropolis-Hastings sampler but were unable to
find a proposal distribution that had reasonable ac-
ceptance ratios for all of our adaptor grammars).

As Table 1 makes clear, sampling the adaptor pa-
rameters makes a significant difference, especially
on the collocation-syllable adaptor grammar. This
is not surprising, as the adaptors in that grammar
play many different roles and there is no reason to
to expect the optimal values of their parameters to
be similar.
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• • • • • 0.55 0.74 0.85 0.56 0.76 0.87
• • • • 0.55 0.72 0.84 0.56 0.74 0.84
• • • 0.55 0.72 0.78 0.57 0.75 0.78
• • 0.54 0.66 0.75 0.56 0.69 0.76
• • • • 0.54 0.70 0.87 0.56 0.74 0.88
• • • • 0.55 0.42 0.54 0.57 0.51 0.55

• • • • 0.74 0.83 0.88 0.81 0.86 0.89
• • • 0.75 0.43 0.74 0.80 0.56 0.82

• • 0.71 0.41 0.76 0.77 0.49 0.82
• • • 0.71 0.73 0.87 0.77 0.75 0.88

Table 1: Word segmentation accuracy measured by word token f-scores on Brent’s version of the Bernstein-Ratner
corpus as a function of adaptor grammar, adaptor and estimation procedure. Pitman-Yor Process adaptors were used
whenaX was sampled, otherwise Chinese Restaurant Process adaptors were used. In runs whereθ was not integrated
out it was set uniformly, and allαX = bX were set to 100 they were not sampled.

4 Inference for adaptor grammars

Johnson et al. (2007b) describe the basic adaptor
grammar inference procedure that we use here. That
paper leaves unspecified a number of implemen-
tation details, which we show can make a crucial
difference to segmentation accuracy. The adaptor
grammar algorithm is basically a Gibbs sampler of
the kind widely used for nonparametric Bayesian in-
ference (Blei et al., 2004; Goldwater et al., 2006b;
Goldwater et al., 2006a), so it seems reasonable to
expect that at least some of the details discussed be-
low will be relevant to other applications as well.

The inference algorithm maintains a vectort =
(t1, . . . , tn) of sample parses, whereti ∈ TS is a
parse for theith sentencewi. It repeatedly chooses a
sentencewi at random and resamples the parse tree
ti for wi from P(ti | t−i, wi), i.e., conditioned onwi

and the parsest−i of all sentencesexcept wi.

4.1 Maximum marginal decoding

Sampling algorithms like ours produce a stream of
samples from the posterior distribution over parses
of the training data. It is standard to take the out-
put of the algorithm to be the last sample produced,

and evaluate those parses. In some other applica-
tions of nonparametric Bayesian inference involv-
ing latent structure (e.g., clustering) it is difficult to
usefully exploit multiple samples, but that is not the
case here.

In maximum marginal decoding we map each
sample parse treet onto its corresponding word seg-
mentations, marginalizing out irrelevant detail in
t. (For example, the collocation-syllable adaptor
grammar contains a syllabification and collocational
structure that is irrelevant for word segmentation).
Given a set of sample parse trees for a sentence we
compute the set of corresponding word segmenta-
tions, and return the one that occurs most frequently
(this is a sampling approximation to the maximum
probability marginal structure).

For each setting in the experiments described in
Table 1 we ran 8 samplers for 2,000 iterations (i.e.,
passes through the training data), and kept the sam-
ple parse trees from every 10th iteration after itera-
tion 1000, resulting in 800 sample parses for every
sentence. (An examination of the posterior proba-
bilities suggests that all of the samplers using batch
initialization and table label resampling had “burnt
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batch initialization, table label resampling
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batch initialization, no table label resampling
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Figure 1: Negative log posterior probability (lower is bet-
ter) as a function of iteration for 24 runs of the collo-
cation adaptor grammar samplers with Pitman-Yor adap-
tors. The upper 8 runs use batch initialization but no ta-
ble label resampling, the middle 8 runs use incremental
initialization and table label resampling, while the lower
8 runs use batch initialization and table label resampling.

in” by iteration 1000). We evaluated the word to-
ken f-score of the most frequent marginal word seg-
mentation, and compared that to average of the word
token f-score for the 800 samples, which is also re-
ported in Table 1. For each grammar and setting we
tried, the maximum marginal segmentation was bet-
ter than the sample average, sometimes by a large
margin. Given its simplicity, this suggests that max-
imum marginal decoding is probably worth trying
when applicable.

4.2 Batch initialization

The Gibbs sampling algorithm is initialized with a
set of sample parsest for each sentence in the train-
ing data. While the fundamental theorem of Markov
Chain Monte Carlo guarantees that eventually sam-
ples will converge to the posterior distribution, it
says nothing about how long the “burn in” phase
might last (Robert and Casella, 2004). In practice
initialization can make a huge difference to the per-
formance of Gibbs samplers (just as it can with other
unsupervised estimation procedures such as Expec-
tation Maximization).

There are many different ways in which we could
generate the initial treest; we only study two of the
obvious methods here.Batch initialization assigns
every sentence a random parse tree in parallel. In
more detail, the initial parse treeti for sentencewi

is sampled fromP(t | wi, G
′), whereG′ is the PCFG

obtained from the adaptor grammar by ignoring its
last two componentsA andC (i.e., the adapted non-
terminals and their adaptors), and seated at a new
table. This means that in batch initialization each
initial parse tree is randomly generated without any
adaptation at all.

Incremental initialization assigns the initial parse
treesti to sentenceswi in order, updating the adaptor
grammar as it goes. That is,ti is sampled fromP(t |
wi, t1, . . . , ti−1). This is easy to do in the context
of Gibbs sampling, since this distribution is a minor
variant of the distributionP(ti | t−i, wi) used during
Gibbs sampling itself.

Incremental initialization is greedier than batch
initialization, and produces initial sample trees with
much higher probability. As Table 1 shows, across
all grammars and conditions after 2,000 iterations
incremental initialization produces samples with
much better word segmentation token f-score than
does batch initialization, with the largest improve-
ment on the unigram adaptor grammar.

However, incremental initialization results in
sample parses with lower posterior probability for
the unigram and collocation adaptor grammars (but
not for the collocation-syllable adaptor grammar).
Figure 1 plots the posterior probabilities of the sam-
ple treest at each iteration for the collocation adap-
tor grammar, showing that even after 2,000 itera-
tions incremental initialization results in trees that
are much less likely than those produced by batch
initialization. It seems that with incremental initial-
ization the Gibbs sampler gets stuck in a local op-
timum which it is extremely unlikely to move away
from.

It is interesting that incremental initialization re-
sults in more accurate word segmentation, even
though the trees it produces have lower posterior
probability. This seems to be because the most prob-
able analyses produced by the unigram and, to a
lesser extent, the collocation adaptor grammars tend
to undersegment. Incremental initialization greed-
ily searches for common substrings, and because
such substrings are more likely to be short rather
than long, it tends to produce analyses with shorter
words than batch initialization does. Goldwater et
al. (2006a) show that Brent’s incremental segmenta-
tion algorithm (Brent, 1999) has a similar property.

We favor batch initialization because we are in-
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terested in understanding the properties of our mod-
els (expressed here as adaptor grammars), and batch
initialization does a better job of finding the most
probable analyses under these models. However, it
might be possible to justify incremental initializa-
tion as (say) cognitively more plausible.

4.3 Table label resampling

Unlike the previous two implementation choices
which apply to a broad range of algorithms, table
label resampling is a specialized kind of Gibbs step
for adaptor grammars and similar hierarchical mod-
els that is designed to improve mobility. The adap-
tor grammar algorithm described in Johnson et al.
(2007b) repeatedly resamples parses for thesen-
tences of the training data. However, the adaptor
grammar sampler itself maintains of a hierarchy of
Chinese Restaurant Processes or Pitman-Yor Pro-
cesses, one per adapted nonterminalX ∈ A, that
cache subtrees fromTX . In general each of these
subtrees will occur many times in the parses for the
training data sentences. Table label resampling re-
samples the trees in these adaptors (i.e., the table
labels, to use the restaurant metaphor), potentially
changing the analysis of many sentences at once.
For example, eachCollocation in the collocation
adaptor grammar can occur in manySentences, and
eachWord can occur in manyCollocations. Resam-
pling a singleCollocation can change the way it is
analysed intoWords, thus changing the analysis of
all of theSentences containing thatCollocation.

Table label resampling is an additional resam-
pling step performed after each Gibbs sweep
through the training data in which we resample the
parse trees labeling the tables in the adaptor for each
X ∈ A. Specifically, if the adaptorCX for X ∈ A
currently containsm tables labeled with the trees
t = (t1, . . . , tm) then table label resampling re-
places eachtj , j ∈ 1, . . . , m in turn with a tree sam-
pled fromP(t | t−j , wj), wherewj is the terminal
yield of tj . (Within each adaptor we actually resam-
ple all of the treest in a randomly chosen order).

Table label resampling is a kind of Gibbs sweep,
but at a higher level in the Bayesian hierarchy than
the standard Gibbs sweep. It’s easy to show that ta-
ble label resampling preserves detailed balance for
the adaptor grammars presented in this paper, so in-
terposing table label resampling steps with the stan-
dard Gibbs steps also preserves detailed balance.

We expect table label resampling to have the
greatest impact on models with a rich hierarchi-
cal structure, and the experimental results in Ta-
ble 1 confirm this. The unigram adaptor grammar
does not involve nested adapted nonterminals, so
we would not expect table label resampling to have
any effect on its analyses. On the other hand, the
collocation-syllable adaptor grammar involves a rich
hierarchical structure, and in fact without table la-
bel resampling our sampler did not burn in or mix
within 2,000 iterations. As Figure 1 shows, table
label resampling produces parses with higher pos-
terior probability, and Table 1 shows that table la-
bel resampling makes a significant difference in the
word segmentation f-score of the collocation and
collocation-syllable adaptor grammars.

5 Conclusion

This paper has examined adaptor grammar infer-
ence procedures and their effect on the word seg-
mentation problem. Some of the techniques inves-
tigated here, such as batch versus incremental ini-
tialization, are quite general and may be applica-
ble to a wide range of other algorithms, but some
of the other techniques, such as table label resam-
pling, are specialized to nonparametric hierarchi-
cal Bayesian inference. We’ve shown that sampling
adaptor hyperparameters is feasible, and demon-
strated that this improves word segmentation accu-
racy of the collocation-syllable adaptor grammar by
almost 10%, corresponding to an error reduction of
over 35% compared to the best results presented in
Johnson (2008). We also described and investigated
table label resampling, which dramatically improves
the effectiveness of Gibbs sampling estimators for
complex adaptor grammars, and makes it possible
to work with adaptor grammars with complex hier-
archical structure.
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B. Scḧolkopf, and J. Platt, editors,Advances in Neural
Information Processing Systems 18, pages 459–466,
Cambridge, MA. MIT Press.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2007. Distributional cues to word boundaries:
Context is important. In David Bamman, Tatiana
Magnitskaia, and Colleen Zaller, editors,Proceedings
of the 31st Annual Boston University Conference on
Language Development, pages 239–250, Somerville,
MA. Cascadilla Press.

H. Ishwaran and L. F. James. 2003. Generalized
weighted Chinese restaurant processes for species
sampling mixture models.Statistica Sinica, 13:1211–
1235.

Mark Johnson, Thomas Griffiths, and Sharon Goldwa-
ter. 2007a. Bayesian inference for PCFGs via Markov
chain Monte Carlo. InHuman Language Technologies
2007: The Conference of the North American Chap-
ter of the Association for Computational Linguistics;
Proceedings of the Main Conference, pages 139–146,
Rochester, New York, April. Association for Compu-
tational Linguistics.

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2007b. Adaptor Grammars: A framework
for specifying compositional nonparametric Bayesian
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Abstract

For many language technology applications,
such as question answering, the overall sys-
tem runs several independent processors over
the data (such as a named entity recognizer, a
coreference system, and a parser). This eas-
ily results in inconsistent annotations, which
are harmful to the performance of the aggre-
gate system. We begin to address this prob-
lem with a joint model of parsing and named
entity recognition, based on a discriminative
feature-based constituency parser. Our model
produces a consistent output, where the named
entity spans do not conflict with the phrasal
spans of the parse tree. The joint represen-
tation also allows the information from each
type of annotation to improve performance
on the other, and, in experiments with the
OntoNotes corpus, we found improvements of
up to 1.36% absolute F1 for parsing, and up to
9.0% F1 for named entity recognition.

1 Introduction

In order to build high quality systems for complex
NLP tasks, such as question answering and textual
entailment, it is essential to first have high quality
systems for lower level tasks. A good (deep analy-
sis) question answering system requires the data to
first be annotated with several types of information:
parse trees, named entities, word sense disambigua-
tion, etc. However, having high performing, low-
level systems is not enough; the assertions of the
various levels of annotation must beconsistent with
one another. When a named entity span has crossing
brackets with the spans in the parse tree it is usually
impossible to effectively combine these pieces of in-
formation, and system performance suffers. But, un-

fortunately, it is still common practice to cobble to-
gether independent systems for the various types of
annotation, and there is no guarantee that their out-
puts will be consistent.

This paper begins to address this problem by
building a joint model of both parsing and named
entity recognition. Vapnik has observed (Vapnik,
1998; Ng and Jordan, 2002) that “one should solve
the problem directly and never solve a more gen-
eral problem as an intermediate step,” implying that
building a joint model of two phenomena is more
likely to harm performance on the individual tasks
than to help it. Indeed, it has proven very diffi-
cult to build a joint model of parsing and seman-
tic role labeling, either with PCFG trees (Sutton and
McCallum, 2005) or with dependency trees. The
CoNLL 2008 shared task (Surdeanu et al., 2008)
was intended to be about joint dependency parsing
and semantic role labeling, but the top performing
systems decoupled the tasks and outperformed the
systems which attempted to learn them jointly. De-
spite these earlier results, we found that combining
parsing and named entity recognition modestly im-
proved performance on both tasks. Our joint model
produces an output which has consistent parse struc-
ture and named entity spans, and does a better job at
both tasks than separate models with the same fea-
tures.

We first present the joint, discriminative model
that we use, which is a feature-based CRF-CFG
parser operating over tree structures augmented with
NER information. We then discuss in detail how
we make use of the recently developed OntoNotes
corpus both for training and testing the model, and
then finally present the performance of the model
and some discussion of what causes its superior per-
formance, and how the model relates to prior work.
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Figure 1: An example of a (sub)tree which is modified for inputto our learning algorithm. Starting from the normalized
tree discussed in section 4.1, a newNamedEntity node is added, so that the named entity corresponds to a single
phrasal node. That node, and its descendents, have their labels augmented with the type of named entity. The* on the
NamedEntity node indicates that it is the root of the named entity.

2 The Joint Model

When constructing a joint model of parsing and
named entity recognition, it makes sense to think
about how the two distinct levels of annotation may
help one another. Ideally, a named entity should cor-
respond to a phrase in the constituency tree. How-
ever, parse trees will occasionally lack some explicit
structure, such as with right branching NPs. In these
cases, a named entity may correspond to a contigu-
ous set of children within a subtree of the entire
parse. The one thing that should never happen is for
a named entity span to have crossing brackets with
any spans in the parse tree.

For named entities, the joint model should help
with boundaries. The internal structure of the named
entity, and the structural context in which it ap-
pears, can also help with determining the type of
entity. Finding the best parse for a sentence can be
helped by the named entity information in similar
ways. Because named entitiesshould correspond
to phrases, information about them should lead to
better bracketing. Also, knowing that a phrase is a
named entity, and the type of entity, may help in get-
ting the structural context, and internal structure, of
that entity correct.

2.1 Joint Representation

After modifying the OntoNotes dataset to ensure
consistency, which we will discuss in Section 4, we
augment the parse tree with named entity informa-
tion, for input to our learning algorithm. In the cases
where a named entity corresponds to multiple con-
tiguous children of a subtree, we add a newName-
dEntity node, which is the new parent to those chil-
dren. Now, all named entities correspond to a single

phrasal node in the entire tree. We then augment the
labels of the phrasal node and its descendents with
the type of named entity. We also distinguish be-
tween the root node of an entity, and the descendent
nodes. See Figure 1 for an illustration. This repre-
sentation has several benefits, outlined below.

2.1.1 Nested Entities

The OntoNotes data does not contain any nested en-
tities. Consider the named entity portions of the
rules seen in the training data. These will look, for
instance, likenone→ none person, andorganization
→ organization organization. Because we only al-
low named entity derivations which we have seen in
the data, nested entities are impossible. However,
there is clear benefit in a representation allowing
nested entities. For example, it would be beneficial
to recognize that theUnited States Supreme Court is
a anorganization, but that it also contains a nested
GPE.1 Fortunately, if we encounter data which has
been annotated with nested entities, this representa-
tion will be able to handle them in a natural way.
In the given example, we would have a derivation
which includesorganization → GPE organization.
This information will be helpful for correctly la-
beling nested entities such asNew Jersey Supreme
Court, because the model will learn how nested en-
tities tend to decompose.

2.1.2 Feature Representation for Named
Entities

Currently, named entity recognizers are usually con-
structed using sequence models, with linear chain

1As far as we know, GENIA (Kim et al., 2003) is the only
corpus currently annotated with nested entities.
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conditional random fields (CRFs) being the most
common. While it is possible for CRFs to have links
that are longer distance than just between adjacent
words, most of the benefit is from local features,
over the words and labels themselves, and from fea-
tures over adjacent pairs of words and labels. Our
joint representation allows us to port both types of
features from such a named entity recognizer. The
local features can be computed at the same time the
features over parts of speech are computed. These
are the leaves of the tree, when only the named en-
tity for the current word is known.2 The pairwise
features, over adjacent labels, are computed at the
same time as features over binary rules. Binariza-
tion of the tree is necessary for efficient computa-
tion, so the trees consist solely of unary and bi-
nary productions. Because of this, for all pairs of
adjacent words within an entity, there will be a bi-
nary rule applied where one word will be under the
left child and the other word will be under the right
child. Therefore, we compute features over adjacent
words/labels when computing the features for the bi-
nary rule which joins them.

2.2 Learning the Joint Model

We construct our joint model as an extension to the
discriminatively trained, feature-rich, conditional
random field-based, CRF-CFG parser of (Finkel and
Manning, 2008). Their parser is similar to a chart-
based PCFG parser, except that instead of putting
probabilities over rules, it putsclique potentials over
local subtrees. These unnormalized potentials know
what span (and split) the rule is over, and arbitrary
features can be defined over the local subtree, the
span/split and the words of the sentence. The inside-
outside algorithm is run over the clique potentials to
produce the partial derivatives and normalizing con-
stant which are necessary for optimizing the log like-
lihood.

2.3 Grammar Smoothing

Because of the addition of named entity annota-
tions to grammar rules, if we use the grammar
as read off the treebank, we will encounter prob-
lems with sparseness which severely degrade per-
formance. This degradation occurs because of CFG

2Note that features can include information about other
words, because the entire sentence is observed. The features
cannot include information about the labels of those words.

rules which only occur in the training data aug-
mented with named entity information, and because
of rules which only occur without the named entity
information. To combat this problem, we added ex-
tra rules, unseen in the training data.

2.3.1 Augmenting the Grammar

For every rule encountered in the training data which
has been augmented with named entity information,
we add extra copies of that rule to the grammar. We
add one copy with all of the named entity informa-
tion stripped away, and another copy for each other
entity type, where the named entity augmentation
has been changed to the other entity type.

These additions help, but they are not sufficient.
Most entities correspond to noun phrases, so we took
all rules which had an NP as a child, and made
copies of that rule where the NP was augmented
with each possible entity type. These grammar ad-
ditions sufficed to improve overall performance.

2.3.2 Augmenting the Lexicon

The lexicon is augmented in a similar manner to
the rules. For every part of speech tag seen with a
named entity annotation, we also add that tag with
no named entity information, and a version which
has been augmented with each type of named entity.

It would be computationally infeasible to allow
any word to have any part of speech tag. We there-
fore limit the allowed part of speech tags for com-
mon words based on the tags they have been ob-
served with in the training data. We also augment
each word with a distributional similarity tag, which
we discuss in greater depth in Section 3, and al-
low tags seen with other words which belong to the
same distributional similarity cluster. When decid-
ing what tags are allowed for each word, we initially
ignore named entity information. Once we deter-
mine what base tags are allowed for a word, we also
allow that tag, augmented with any type of named
entity, if the augmented tag is present in the lexicon.

3 Features

We defined features over both the parse rules and the
named entities. Most of our features are over one or
the other aspects of the structure, but not both.

Both the named entity and parsing features utilize
the words of the sentence, as well as orthographic
and distributional similarity information. For each
word we computed aword shape which encoded
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information about capitalization, length, and inclu-
sion of numbers and other non-alphabetic charac-
ters. For the distributional similarity information,
we had to first train a distributional similarity model.
We trained the model described in (Clark, 2000),
with code downloaded from his website, on several
hundred million words from the British national cor-
pus, and the English Gigaword corpus. The model
we trained had 200 clusters, and we used it to assign
each word in the training and test data to one of the
clusters.

For the named entity features, we used a fairly
standard feature set, similar to those described in
(Finkel et al., 2005). For parse features, we used the
exact same features as described in (Finkel and Man-
ning, 2008). When computing those features, we re-
moved all of the named entity information from the
rules, so that these features were just over the parse
information and not at all over the named entity in-
formation.

Lastly, we have the joint features. We included as
features each augmented rule and each augmented
label. This allowed the model to learn that certain
types of phrasal nodes, such asNPs are more likely
to be named entities, and that certain entities were
more likely to occur in certain contexts and have par-
ticular types of internal structure.

4 Data

For our experiments we used the LDC2008T04
OntoNotes Release 2.0 corpus (Hovy et al., 2006).
The OntoNotes project leaders describe it as “a
large, multilingual richly-annotated corpus con-
structed at 90% internanotator agreement.” The cor-
pus has been annotated with multiple levels of anno-
tation, including constituency trees, predicate struc-
ture, word senses, coreference, and named entities.
For this work, we focus on the parse trees and named
entities. The corpus has English and Chinese por-
tions, and we used only the English portion, which
itself has been split into seven sections: ABC, CNN,
MNB, NBC, PRI, VOA, and WSJ. These sections
represent a mix of speech and newswire data.

4.1 Data Inconsistencies

While other work has utilized the OntoNotes corpus
(Pradhan et al., 2007; Yu et al., 2008), this is the
first work to our knowledge to simultaneously model
the multiple levels of annotation available. Because
this is a new corpus, still under development, it is

not surprising that we found places where the data
was inconsistently annotated, namely with crossing
brackets between named entity and tree annotations.

In the places where we found inconsistent anno-
tation it was rarely the case that the different lev-
els of annotation were inherently inconsistent, but
rather inconsistency results from somewhat arbitrary
choices made by the annotators. For example, when
the last word in a sentence ends with a period, such
asCorp., one period functions both to mark the ab-
breviation and the end of the sentence. The conven-
tion of the Penn Treebank is to separate the final pe-
riod and treat it as the end of sentence marker, but
when the final word is also part of an entity, that
final period was frequently included in the named
entity annotation, resulting in the sentence terminat-
ing period being part of the entity, and the entity not
corresponding to a single phrase. See Figure 2 for an
illustration from the data. In this case, we removed
the terminating period from the entity, to produce a
consistent annotation.

Overall, we found that 656 entities, out of 55,665
total, could not be aligned to a phrase, or multiple
contiguous children of a node. We identified and
corrected the following sources of inconsistencies:

Periods and abbreviations. This is the problem
described above with theCorp. example. We
corrected it by removing the sentence terminat-
ing final period from the entity annotation.

Determiners and PPs. Noun phrases composed of
a nested noun phrase and a prepositional phrase
were problematic when they also consisted of a
determiner followed by an entity. We dealt with
this by flattening the nested NP, as illustrated in
Figure 3. As we discussed in Section 2.1, this
tree will then be augmented with an additional
node for the entity (see Figure 1).

Adjectives and PPs. This problem is similar to the
previous problem, with the difference being
that there are also adjectives preceding the en-
tity. The solution is also similar to the solution
to the previous problem. We moved the adjec-
tives from the nested NP into the main NP.

These three modifications to the data solved most,
but not all, of the inconsistencies. Another source
of problems was conjunctions, such asNorth and
South Korea, whereNorth and South are a phrase,
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Figure 3: (a) Another example from the data of inconsistently labeled named entity and parse structure. In this
instance, we flatten the nested NP, resulting in (b), so that the named entity corresponds to a contiguous set of children
of the top-level NP.

but South Korea is an entity. The rest of the er-
rors seemed to be due to annotation errors and other
random weirdnesses. We ended up unable to make
0.4% of the entities consistent with the parses, so we
omitted those entities from the training and test data.

One more change we made to the data was with
respect to possessive NPs. When we encountered
noun phrases which ended with(POS ’s) or (POS ’),
we modified the internal structure of the NP. Origi-
nally, these NPs were flat, but we introduced a new
nested NP which contained the entire contents of the
original NP except for the POS. The original NP la-
bel was then changed to PossNP. This change is mo-
tivated by the status of’s as a phrasal affix or clitic:
It is the NP preceding’s that is structurally equiva-
lent to other NPs, not the larger unit that includes’s.
This change has the additional benefit in this context
that more named entities will correspond to a single
phrase in the parse tree, rather than a contiguous set
of phrases.

4.2 Named Entity Types

The data has been annotated with eighteen types of
entities. Many of these entity types do not occur
very often, and coupled with the relatively small
amount of data, make it difficult to learn accurate
entity models. Examples arework of art, product,
andlaw. Early experiments showed that it was dif-
ficult for even our baseline named entity recognizer,
based on a state-of-the-art CRF, to learn these types
of entities.3 As a result, we decided to merge all
but the three most dominant entity types into into
one general entity type calledmisc. The result was
four distinct entity types:person, organization, GPE
(geo-political entity, such as a city or a country), and
misc.

3The difficulties were compounded by somewhat inconsis-
tent and occasionally questionable annotations. For example,
the wordtoday was usually labeled as adate, but about 10% of
the time it was not labeled as anything. We also found several
strangework of arts, includingStanley Cup and theU.S.S. Cole.
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Training Testing
Range # Sent. Range # Sent.

ABC 0–55 1195 56–69 199
CNN 0–375 5092 376–437 1521
MNB 0–17 509 18–25 245
NBC 0–29 552 30–39 149
PRI 0–89 1707 90–112 394
VOA 0–198 1512 199–264 383

Table 1: Training and test set sizes for the six datasets in
sentences. The file ranges refer to the numbers within the
names of the original OntoNotes files.

5 Experiments

We ran our model on six of the OntoNotes datasets
described in Section 4,4 using sentences of length
40 and under (approximately 200,000 annotated En-
glish words, considerably smaller than the Penn
Treebank (Marcus et al., 1993)). For each dataset,
we aimed for roughly a 75% train / 25% test split.
See Table 1 for the the files used to train and test,
along with the number of sentences in each.

For comparison, we also trained the parser with-
out the named entity information (and omitted the
NamedEntity nodes), and a linear chain CRF using
just the named entity information. Both the base-
line parser and CRF were trained using the exact
same features as the joint model, and all were op-
timized using stochastic gradient descent. The full
results can be found in Table 2. Parse trees were
scored usingevalB (the extraNamedEntity nodes
were ignored when computing evalB for the joint
model), and named entities were scored using entity
F-measure (as in the CoNLL 2003conlleval).5

While the main benefit of our joint model is the
ability to get a consistent output over both types of
annotations, we also found that modeling the parse

4These datasets all consistently use the new conventions for
treebank annotation, while the seventh WSJ portion is currently
still annotated in the original 1990s style, and so we left the
WSJ portion aside.

5Sometimes the parser would be unable to parse a sentence
(less than 2% of sentences), due to restrictions in part of speech
tags. Because the underlying grammar (ignoring the additional
named entity information) was the same for both the joint and
baseline parsers, it is the case that whenever a sentence is un-
parseable by either the baseline or joint parser it is in factun-
parsable by both of them, and would affect the parse scores of
both models equally. However, the CRF is able to named entity
tag any sentence, so these unparsable sentences had an effect
on the named entity score. To combat this, we fell back on
the baseline CRF model to get named entity tags for unparsable
sentences.

and named entities jointly resulted in improved per-
formance on both. When looking at these numbers,
it is important to keep in mind that the sizes of the
training and test sets are significantly smaller than
the Penn Treebank. The largest of the six datasets,
CNN, has about one seventh the amount of training
data as the Penn Treebank, and the smallest, MNB,
has around 500 sentences from which to train. Parse
performance was improved by the joint model for
five of the six datasets, by up to 1.36%. Looking
at the parsing improvements on a per-label basis,
the largest gains came from improved identication
of NML consituents, from an F-score of 45.9% to
57.0% (on all the data combined, for a total of 420
NML constituents). This label was added in the new
treebank annotation conventions, so as to identify in-
ternal left-branching structure inside previously flat
NPs. To our surprise, performance on NPs only in-
creased by 1%, though over 12,949 constituents, for
the largest improvement in absolute terms. The sec-
ond largest gain was on PPs, where we improved by
1.7% over 3,775 constituents. We tested the signif-
icance of our results (on all the data combined) us-
ing Dan Bikel’s randomized parsing evaluation com-
parator6 and found that both the precision and recall
gains were significant atp≤ 0.01.

Much greater improvements in performance were
seen on named entity recognition, where most of
the domains saw improvements in the range of 3–
4%, with performance on theVOA data improving
by nearly 9%, which is a 45% reduction in error.
There was no clear trend in terms of precision ver-
sus recall, or the different entity types. The first
place to look for improvements is with the bound-
aries for named entities. Once again looking at all of
the data combined, in the baseline model there were
203 entities where part of the entity was found, but
one or both boundaries were incorrectly identified.
The joint model corrected 72 of those entities, while
incorrectly identifying the boundaries of 37 entities
which had previously been correctly identified. In
the baseline NER model, there were 243 entities for
which the boundaries were correctly identified, but
the type of entity was incorrect. The joint model cor-
rected 80 of them, while changing the labels of 39
entities which had previously been correctly identi-
fied. Additionally, 190 entities were found which
the baseline model had missed entirely, and 68 enti-

6Available athttp://www.cis.upenn.edu/ dbikel/software.html

331



Parse Labeled Bracketing Named Entities Training
Precision Recall F1 Precision Recall F1 Time

ABC Just Parse 70.18% 70.12%70.15% – 25m
Just NER – 76.84% 72.32% 74.51%
Joint Model 69.76% 70.23% 69.99% 77.70% 72.32%74.91% 45m

CNN Just Parse 76.92% 77.14% 77.03% – 16.5h
Just NER – 75.56% 76.00% 75.78%
Joint Model 77.43% 77.99% 77.71% 78.73% 78.67% 78.70% 31.7h

MNB Just Parse 63.97% 67.07% 65.49% – 12m
Just NER – 72.30% 54.59% 62.21%
Joint Model 63.82$ 67.46% 65.59% 71.35% 62.24% 66.49% 19m

NBC Just Parse 59.72% 63.67% 61.63% – 10m
Just NER – 67.53% 60.65% 63.90%
Joint Model 60.69% 65.34% 62.93% 71.43% 64.81% 67.96% 17m

PRI Just Parse 76.22% 76.49% 76.35% – 2.4h
Just NER – 82.07% 84.86% 83.44%
Joint Model 76.88% 77.95% 77.41% 86.13% 86.56% 86.34% 4.2h

VOA Just Parse 76.56% 75.74% 76.15% – 2.3h
Just NER – 82.79% 75.96% 79.23%
Joint Model 77.58% 77.45% 77.51% 88.37% 87.98% 88.18% 4.4h

Table 2: Full parse and NER results for the six datasets. Parse trees were evaluated using evalB, and named entities
were scored using macro-averaged F-measure (conlleval).

ties were lost. We tested the statistical significance
of the gains (of all the data combined) using the
same sentence-level, stratified shuffling technique as
Bikel’s parse comparator and found that both preci-
sion and recall gains were significant atp < 10−4.

An example from the data where the joint model
helped improve both parse structure and named en-
tity recognition is shown in Figure 4. The output
from the individual models is shown in part (a), with
the output from the named entity recognizer shown
in brackets on the words at leaves of the parse. The
output from the joint model is shown in part (b),
with the named entity information encoded within
the parse. In this example, the named entityEgyp-
tian Islamic Jihad helped the parser to get its sur-
rounding context correct, because it is improbable
to attach a PP headed bywith to an organization.
At the same time, the surrounding context helped
the joint model correctly identifyEgyptian Islamic
Jihad as anorganization and not aperson. The
baseline parser also incorrectly added an extra level
of structure to the person nameOsama Bin Laden,
while the joint model found the correct structure.

6 Related Work

A pioneering antecedent for our work is (Miller et
al., 2000), who trained a Collins-style generative

parser (Collins, 1997) over a syntactic structure aug-
mented with thetemplate entity and template rela-
tions annotations for the MUC-7 shared task. Their
sentence augmentations were similar to ours, but
they did not make use of features due to the gen-
erative nature of their model. This approach was not
followed up on in other work, presumably because
around this time nearly all the activity in named
entity and relation extraction moved to the use of
discriminative sequence models, which allowed the
flexible specification of feature templates that are
very useful for these tasks. The present model is
able to bring together both these lines of work, by
integrating the strengths of both approaches.

There have been other attempts in NLP to jointly
model multiple levels of structure, with varying de-
grees of success. Most work on joint parsing and se-
mantic role labeling (SRL) has been disappointing,
despite obvious connections between the two tasks.
Sutton and McCallum (2005) attempted to jointly
model PCFG parsing and SRL for the CoNLL 2005
shared task, but were unable to improve perfor-
mance on either task. The CoNLL 2008 shared task
(Surdeanu et al., 2008) was joint dependency pars-
ing and SRL, but the top performing systems de-
coupled the tasks, rather than building joint models.
Zhang and Clark (2008) successfully built a joint
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Figure 4: An example for which the joint model helped with both parse structure and named entity recognition. The
individual models (a) incorrectly attach the PP, labelEgyptian Islamic Jihad as aperson, and incorrectly add extra
internal structure toOsama Bin Laden. The joint model (b) gets both the structure and the named entity correct.

model of Chinese word segmentation and parts of
speech using a single perceptron.

An alternative approach to joint modeling is to
take a pipelined approach. Previous work on linguis-
tic annotation pipelines (Finkel et al., 2006; Holling-
shead and Roark, 2007) has enforced consistency
from one stage to the next. However, these models
are only used at test time; training of the compo-
nents is still independent. These models also have
the potential to suffer from search errors and are not
guaranteed to find the optimal output.

7 Conclusion
We presented a discriminatively trained joint model
of parsing and named entity recognition, which im-
proved performance on both tasks. Our model

is based on a discriminative constituency parser,
with the data, grammar, and features carefully con-
structed for the joint task. In the future, we would
like to add other levels of annotation available in
the OntoNotes corpus to our model, including word
sense disambiguation and semantic role labeling.
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Abstract

The extent to which the organization of nat-
ural language grammars reflects a drive to
minimize dependency length remains little
explored. We present the first algorithm
polynomial-time in sentence length for obtain-
ing the minimal-length linearization of a de-
pendency tree subject to constraints of mild
context sensitivity. For the minimally context-
sensitive case of gap-degree 1 dependency
trees, we prove several properties of minimal-
length linearizations which allow us to im-
prove the efficiency of our algorithm to the
point that it can be used on most naturally-
occurring sentences. We use the algorithm
to compare optimal, observed, and random
sentence dependency length for both surface
and deep dependencies in English and Ger-
man. We find in both languages that anal-
yses of surface and deep dependencies yield
highly similar results, and that mild context-
sensitivity affords very little reduction in min-
imal dependency length over fully projective
linearizations; but that observed linearizations
in German are much closer to random and far-
ther from minimal-length linearizations than
in English.

1 Introduction

This paper takes up the relationship between two
hallmarks of natural language dependency structure.
First, there seem to be qualitative constraints on the
relationship between the dependency structure of the
words in a sentence and their linear ordering. In par-
ticular, this relationship seems to be such that any

natural language sentence, together with its depen-
dency structure, should be generable by a mildly
context-sensitivity formalism (Joshi, 1985), in par-
ticular a linear context-free rewrite system in which
the right-hand side of each rule has a distinguished
head (Pollard, 1984; Vijay-Shanker et al., 1987;
Kuhlmann, 2007). This condition places strong con-
straints on the linear contiguity of word-word de-
pendency relations, such that only limited classes of
crossing context-free dependency structures may be
admitted.

The second constraint is a softer preference for
words in a dependency relation to occur in close
proximity to one another. This constraint is perhaps
best documented in psycholinguistic work suggest-
ing that large distances between governors and de-
pendents induce processing difficulty in both com-
prehension and production (Hawkins, 1994, 2004;
Gibson, 1998; Jaeger, 2006). Intuitively there is
a relationship between these two constraints: con-
sistently large dependency distances in a sentence
would require many crossing dependencies. How-
ever, it is not the case that crossing dependencies
always mean longer dependency distances. For ex-
ample, (1) below has no crossing dependencies, but
the distance between arrived and its dependent Yes-
terday is large. The overall dependency length of the
sentence can be reduced by extraposing the relative
clause who was wearing a hat, resulting in (2), in
which the dependency Yesterday→arrived crosses
the dependency woman←who.

(1) Yesterday a woman who was wearing a hat arrived.

(2) Yesterday a woman arrived who was wearing a hat.
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There has been some recent work on dependency
length minimization in natural language sentences
(Gildea and Temperley, 2007), but the relationship
between the precise constraints on available lin-
earizations and dependency length minimization re-
mains little explored. In this paper, we introduce
the first efficient algorithm for obtaining lineariza-
tions of dependency trees that minimize overall de-
pendency lengths subject to the constraint of mild
context-sensitivity, and use it to investigate the rela-
tionship between this constraint and the distribution
of dependency length actually observed in natural
languages.

2 Projective and mildly non-projective
dependency-tree linearizations

In the last few years there has been a resurgence
of interest in computation on dependency-tree struc-
tures for natural language sentences, spurred by
work such as McDonald et al. (2005a,b) show-
ing that working with dependency-tree syntactic
representations in which each word in the sen-
tence corresponds to a node in the dependency tree
(and vice versa) can lead to algorithmic benefits
over constituency-structure representations. The lin-
earization of a dependency tree is simply the linear
order in which the nodes of the tree occur in a sur-
face string. There is a broad division between two
classes of linearizations: projective linearizations
that do not lead to any crossing dependencies in the
tree, and non-projective linearizations that involve
at least one crossing dependency pair. Example (1),
for example, is projective, whereas Example (2) is
non-projective due to the crossing between the Yes-
terday→arrived and woman←who dependencies.

Beyond this dichotomy, however, the homomor-
phism from headed tree structures to dependency
structures (Miller, 2000) can be used together with
work on the mildly context-sensitive formalism lin-
ear context-free rewrite systems (LCFRSs) (Vijay-
Shanker et al., 1987) to characterize various classes
of mildly non-projective dependency-tree lineariza-
tions (Kuhlmann and Nivre, 2006). The LCFRSs are
an infinite sequence of classes of formalism for gen-
erating surface strings through derivation trees in a
rule-based context-free rewriting system. The i-th
LCFRS class (for i = 0, 1, 2, . . . ) imposes the con-

Figure 1: Sample dependency subtree for Figure 2

straint that every node in the derivation tree maps to
to a collection of at most i+1 contiguous substrings.
The 0-th class of LCFRS, for example, corresponds
to the context-free grammars, since each node in the
derivation tree must map to a single contiguous sub-
string; the 1st class of LCFRS corresponds to Tree-
Adjoining Grammars (Joshi et al., 1975), in which
each node in the derivation tree must map to at most
a pair of contiguous substrings; and so forth. The
dependency trees induced when each rewrite rule in
an i-th order LCFRS distinguish a unique head can
similarly be characterized by being of gap-degree i,
so that i is the maximum number of gaps that may
appear between contiguous substrings of any subtree
in the dependency tree (Kuhlmann and Möhl, 2007).
The dependency tree for Example (2), for example,
is of gap-degree 1. Although there are numerous
documented cases in which projectivity is violated
in natural language, there are exceedingly few doc-
umented cases in which the documented gap degree
exceeds 1 (though see, for example, Kobele, 2006).

3 Finding minimal dependency-length
linearizations

Even under the strongest constraint of projectivity,
the number of possible linearizations of a depen-
dency tree is exponential in both sentence length
and arity (the maximum number of dependencies
for any word). As pointed out by Gildea and Tem-
perley (2007), however, finding the unconstrained
minimal-length linearization is a well-studied prob-
lem with an O(n1.6) solution (Chung, 1984). How-
ever, this approach does not take into account con-
straints of projectivity or mild context-sensitivity.

Gildea and Temperley themselves introduced a
novel efficient algorithm for finding the minimized
dependency length of a sentence subject to the con-
straint that the linearization is projective. Their al-
gorithm can perhaps be most simply understood by
making three observations. First, the total depen-
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Figure 2: Dependency length factorization for efficient
projective linearization, using the dependency subtree of
Figure 1

dency length of a projective linearization can be
written as

∑

wi

⎡
⎢⎣D(wi, Ei) +

∑

wj
dep→wi

D(wi, Ej)

⎤
⎥⎦ (1)

where Ei is the boundary of the contiguous substring
corresponding to the dependency subtree rooted at
wi which stands between wi and its governor, and
D(wi, Ej) is the distance from wi to Ej , with the
special case of D(wroot, Eroot) = 0 (Figures 1
and 2). Writing the total dependency length this
way makes it clear that each term in the outer sum
can be optimized independently, and thus one can
use dynamic programming to recursively find op-
timal subtree orderings from the bottom up. Sec-
ond, for each subtree, the optimal ordering can be
obtained by placing dependent subtrees on alternat-
ing sides of w from inside out in order of increas-
ing length. Third, the total dependency lengths be-
tween any words withing an ordering stays the same
when the ordering is reversed, letting us assume that
D(wi, Ei) will be the length to the closest edge.
These three observations lead to an algorithm with
worst-case complexity of O(n log m) time, where
n is sentence length and m is sentence arity. (The
log m term arises from the need to sort the daugh-
ters of each node into descending order of length.)

When limited subclasses of nonprojectivity are
admitted, however, the problem becomes more diffi-
cult because total dependency length can no longer
be written in such a simple form as in Equation (1).
Intuitively, the size of the effect on dependency
length of a decision to order a given subtree discon-
tiguously, as in a woman. . . who was wearing a hat
in Example (2), cannot be calculated without con-
sulting the length of the string that the discontiguous

kh|c1| |c2|
hd12 d11 d21 d22d31d32

Figure 3: Factorizing dependency length at node w i of
a mildly context-sensitive dependency tree. This partial
linearization of head with dependent components makes
c1 the head component and leads to l = 2 links crossing
between c1 and c2.

subtree would be wrapped around. Nevertheless, for
any limited gap degree, it is possible to use a dif-
ferent factorization of dependency length that keeps
computation polynomial in sentence length. We in-
troduce this factorization in the next section.

4 Minimization with limited gap degree

We begin by defining some terms. We use the word
component to refer to a full linearization of a sub-
tree in the case where it is realized as a single con-
tiguous string, or to refer to any of of the contigu-
ous substrings produced when a subtree is realized
discontiguously. We illustrate the factorization for
gap-degree 1, so that any subtree has at most two
components. We refer to the component contain-
ing the head of the subtree as the head component,
the remaining component as the dependent compo-
nent, and for any given (head component, depen-
dent component) pair, we use pair component to re-
fer to the other component in the pair. We refer to
the two components of dependent dj as dj1 and dj2

respectively, and assume that dj1 is the head com-
ponent. When dependencies can cross, total depen-
dency length cannot be factorized as simply as in
Equation (1) for the projective case. However, we
can still make use of a more complex factorization
of the total dependency length as follows:

∑

wi

⎡
⎢⎣D(wi, Ei) +

∑

wj
dep→wi

[
D(wi, Ej) + ljkj

]
⎤
⎥⎦

(2)

where lj is the number of links crossing between the
two components of dj , and kj is the distance added
between these two components by the partial lin-
earization at wi. Figure 3 illustrates an example of
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such a partial linearization, where k2 is |d31|+ |d32|
due to the fact that the links between d21 and d22

have to cross both components of d3. The factor-
ization in Equation (2) allows us to use dynamic
programming to find minimal-length linearizations,
so that worst-case complexity is polynomial rather
than exponential in sentence length. However, the
additional term in the factorization means that we
need to track the number of links l crossing between
the two components of the subtree Si headed by wi

and the component lengths |c1| and |c2|. Addition-
ally, the presence of crossing dependencies means
that Gildea and Temperley’s proof that ordering de-
pendent components from the inside out in order
of increasing length no longer goes through. This
means that at each node wi we need to hold on to the
minimal-length partial linearization for each combi-
nation of the following quantities:

• |c2| (which also determines |c1|);

• the number of links l between c1 and c2;

• and the direction of the link between wi and its
governor.

We shall refer to a combination of these factors
as a status set. The remainder of this section de-
scribes a dynamic-programming algorithm for find-
ing optimal linearizations based on the factorization
in Equation (2), and continues with several further
findings leading to optimizations that make the al-
gorithm tractable for naturally occurring sentences.

4.1 Algorithm 1

Our first algorithm takes a tree and recursively finds
the optimal orderings for each possible status set of
each of its child subtrees, which it then uses to cal-
culate the optimal ordering of the tree. To calcu-
late the optimal orderings for each possible status
set of a subtree S, we use the brute-force method
of choosing all combinations of one status set from
each child subtree, and for each combination, we try
all possible orderings of the components of the child
subtrees, calculate all possible status sets for S, and
store the minimal dependency value for each appear-
ing status set of S. The number of possible length
pairings |c1|, |c2| and number of crossing links l
are each bounded above by the sentence length n,

so that the maximum number of status sets at each
node is bounded above by n2. Since the sum of the
status sets of all child subtrees is also bounded by
n2, the maximum number of status set combinations
is bounded by (n2

m )m (obtainable from the inequal-
ity of arithmetic and geometric means). There are
(2m+1)!m possible arrangements of head word and
dependent components into two components. Since
there are n nodes in the tree and each possible com-
bination of status sets from each dependent sub tree
must be tried, this algorithm has worst-case com-
plexity of O((2m + 1)!mn(n2

m )m). This algorithm
could be generalized for mildly context-sensitive
linearizations polynomial in sentence length for any
gap degree desired, by introducing additional l terms
denoting the number of links between pairs of com-
ponents. However, even for gap degree 1 this bound
is incredibly large, and as we show in Figure 7, al-
gorithm 1 is not computationally feasible for batch
processing sentences of arity greater than 5.

4.2 Algorithm 2

We now show how to speed up our algorithm by
proving by contradiction that for any optimal or-
dering which minimizes the total dependency length
with the two-cluster constraint, for any given sub-
tree S and its child subtree C , the pair components
c1 and c2 of a child subtree C must be placed on
opposite sides of the head h of subtree S.

Let us assume that for some dependency tree
structure, there exists an optimal ordering where c1
and c2 are on the same side of h. Let us refer to the
ordered set of words between c1 and c2 as v. None of
the words in v will have dependency links to any of
the words in c1 and c2, since the dependencies of the
words in c1 and c2 are either between themselves or
the one link to h, which is not between the two com-
ponents by our assumption. There will be j1 ≥ 0
links from v going over c1, j2 ≥ 0 dependency links
from v going over c2, and l ≥ 1 links between c1 and
c2. Without loss of generality, let us assume that h is
on the right side of c2. Let us consider the effect on
total dependency length of swapping c1 with v, so
that the linear ordering is v c1 c2 ≺ h. The total de-
pendency length of the new word ordering changes
by−j1|c1|−l|v|+j2|c1| if c2 is the head component,
and decreases by another |v| if c1 is the head com-
ponent. Thus the total change in dependency length
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is less than or equal to

(j2 − j1)|c1| − l × |v| < (j2 − j1)|c1| (3)

If instead we swap places of v with c2 instead of c1
so that we have c1 c2 v ≺ h, we find that the total
change in dependency length is less than or equal to

(j1 − j2)|c2| − (l − 1)|v| ≤ (j1 − j2)|c2| (4)

It is impossible for the right-hand sides of (3) and (4)
to be positive at the same time, so swapping v with
either c1 or c2 must lead to a linearization with lower
overall dependency length. But this is a contradic-
tion to our original assumption, so we see that for
any optimal ordering, all split child subtree compo-
nents c1 and c2 of the child subtree of S must be
placed on opposite sides of the head h.

This constraint allows us to simplify our algo-
rithm for finding the minimal-length linearization.
Instead of going through all logically possible or-
derings of components of the child subtrees, we can
now decide on which side the head component will
be on, and go through all possible orderings for each
side. This changes the factorial part of our algorithm
run time from (2m + 1)!m to 2m(m!)2m, giving us
O(2m(m!)2mn(n2

m )m), greatly reducing actual pro-
cessing time.

4.3 Algorithm 3

We now present two more findings for further in-
creasing the efficiency of the algorithm. First, we
look at the status sets which need to be stored for the
dynamic programming algorithm. In the straightfor-
ward approach we first presented, we stored the op-
timal dependency lengths for all cases of possible
status sets. We now know that we only need to con-
sider cases where the pair components are on op-
posite sides. This means the direction of the link
from the head to the parent will always be toward
the inside direction of the pair components, so we
can re-define the status set as (p, l) where p is again
the length of the dependent component, and l is the
number of links between the two pair components.
If the p values for sets s1 and s2 are equal, s1 has
a smaller number of links than s2 (ls1 ≤ ls2) and
s1 has a smaller or equal total dependency length
to s2, then replacing the components of s2 with s1

will always give us the same or more optimal total

Figure 4: Initial setup for latter part of optimization proof
in section 4.4. To the far left is the head h of subtree S.
The component pair C1 and C2 makes up S, and g is the
governor of h. The length of the substring v between C 1

and C2 is k. ci and ci+1 are child subtree components.

dependency length. Thus, we do not have to store
instances of these cases for our algorithm.

Next, we prove by contradiction that for any two
status sets s1 and s2, if ps1 > ps2 > 0, ls1 = ls2 , and
the TOTAL INTERNAL DEPENDENCY LENGTH t1 of
s1—defined as the sum in Equation (2) over only
those words inside the subtree headed by h—is less
than or equal to t2 of s2, then using s1 will be at least
as good as s2, so we can ignore s2. Let us suppose
that the optimal linearization can use s2 but not s1.
Then in the optimal linearization, the two pair com-
ponents cs2,1 and cs2,2 of s2 are on opposite sides
of the parent head h. WLOG, let us assume that
components cs1,1 and cs2,1 are the dependent com-
ponents. Let us denote the total number of links go-
ing over cs2,1 as j1 and the words between cs2,1 and
cs2,2 as v (note that v must contain h). If we swap
cs2,1 with v, so that cs2,1 lies adjacent to cs2,2, then
there would be j2+1 links going over cs2,1. By mov-
ing cs2,1 from opposite sides of the head to be right
next to cs2,2, the total dependency length of the sen-
tence changes by−j1|cs2,1|− ls2|v|+(j2 +1)|cs2,1|.
Since the ordering was optimal, we know that

(j2 − j1 + 1)|cs2,1| − ls2 |v| ≥ 0

Since l > 0, we can see that j1 − j2 ≤ 0. Now, in-
stead of swapping v with cs2,1, let us try substituting
the components from s1 instead of s2. The change
of the total dependency length of the sentence will
be:

j1 × (|cs1,1| − |cs2,1|) + j2 × (|cs1,2|
−|cs2,2|) + t1 − t2

= (j1 − j2)× (ps1 − ps2) + (t1 − t2)

Since j1 − j2 ≤ 0 and ps1 > ps2 , the first term
is less than or equal to 0 and since t1 − t2 ≤ 0, the
total dependency length will have been be equal or
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Figure 5: Moving ci+1 to C1

Figure 6: Moving ci to C2

have decreased. But this contradicts our assumption
that only s2 can be part of an optimal ordering.

This finding greatly reduces the number of sta-
tus sets we need to store and check higher up in
the algorithm. The worst-case complexity remains
O(2mm!2mn(n2

m )m), but the actual runtime is re-
duced by several orders of magnitude.

4.4 Algorithm 4

Our last optimization is on the ordering among the
child subtree components on each side of the sub-
tree head h. The initially proposed algorithm went
through all combinations of possible orderings to
find the optimal dependency length for each status
set. By the first optimization in section 4.2 we have
shown that we only need to consider the orderings
in which the components are on opposite sides of
the head. We now look into the ordering of the com-
ponents on each side of the head. We first define the
rank value r for each component c as follows:

|c|
# links between c and its pair component+I(c)

where I(c) is the indicator function having value 1 if
c is a head component and 0 otherwise . Using this
definition, we prove by contradiction that the order-
ing of the components from the head outward must
be in order of increasing rank value.

Let us suppose that at some subtree S headed by
h and with head component C1 and dependent com-
ponent C2, there is an optimal linearization in which
there exist two components ci and ci+1 of immedi-
ate subtrees of S such that ci is closer to h, the com-
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Figure 7: Timing comparison of first and fully optimized
algorithms

ponents have rank values ri and ri+1 respectively,
ri > ri+1, and no other component of the imme-
diate subtrees of S intervenes between ci and ci+1.
We shall denote the number of links between each
component and its pair component as li, li+1. Let
l′i = li + I(ci) and l′i+1 = li+1 + I(ci+1). There
are two cases to consider: either (1) ci and ci+1 are
within the same component of S, or (2) ci is at the
edge of C1 nearest C2 and ci+1 is at the edge of C2

neareast C1.
Consider case 1, and let us swap ci with ci+1; this

affects only the lengths of links involving connec-
tions to ci or ci+1. The total dependency length of
the new linearization will change by

−l′i+1|ci|+ l′i|ci+1| = −l′il
′
i+1(ri − ri+1) < 0

This is a contradiction to the assumption that we had
an optimal ordering.

Now consider case 2, which is illustrated in Fig-
ure 4. We denote the number of links going over
ci and ci+1, excluding links to ci, ci+1 as α1 and
α2 respectively, and the length of words between
the edges of C1 and C2 as k. Let us move ci+1

to the outermost position of C1, as shown in Fig-
ure 5. Since the original linearization was optimal,
we have:

−α2|ci+1|+ α1|ci+1| − l′i+1k ≥ 0
(α1 − α2)|ci+1| ≥ l′i+1k

(α1 − α2)ri+1 ≥ k

Let us also consider the opposite case of mov-
ing ci to the inner edge of C2, as shown in Fig-
ure 6. Once again due to optimality of the original
linearization, we have
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DLA
English German

Surface Deep Surface Deep
Optimal with one crossing dependency 32.7 33.0 24.5 23.3
Optimal with projectivity constraint 34.1 34.4 25.5 24.2
Observed 46.6 48.0 43.6 43.1
Random with projectivity constraint 82.4 82.8 50.6 49.2
Random with two-cluster constraint 84.0 84.3 50.7 49.5
Random ordering with no constraint 183.2 184.2 106.9 101.1

Table 1: Average sentence dependency lengths(with max arity of 10)

−α1|ci|+ α2|ci|+ l′ik ≥ 0
(α2 − α1)|ci| ≥ −l′ik

(α1 − α2)ri ≤ k

But this is a contradiction, since ri > ri+1. Com-
bining the two cases, we can see that regardless of
where the components may be split, in an optimal
ordering the components going outwards from the
head must have an increasing rank value.

This result allows us to simplify our algorithm
greatly, because we no longer need to go through
all combinations of orderings. Once it has been de-
cided which components will come on each side of
the head, we can sort the components by rank value
and place them from the head out. This reduces the
factorial component of the algorithm’s complexity
to m log m, and the overall worst-case complexity
to O(nm2 log m(2n2

m )m). Although this is still ex-
ponential in the arity of the tree, nearly all sentences
encountered in treebanks have an arity low enough
to make the algorithm tractable and even very effi-
cient, as we show in the following section.

5 Empirical results

Using the above algorithm, we calculated minimal
dependency lengths for English sentences from the
WSJ portion of the Penn Treebank, and for German
sentences from the NEGRA corpus. The English-
German comparison is of interest because word or-
der is freer, and crossing dependencies more com-
mon, in German than in English (Kruijff and Va-
sishth, 2003). We extracted dependency trees from
these corpora using the head rules of Collins (1999)
for English, and the head rules of Levy and Man-
ning (2004) for German. Two dependency trees
were extracted from each sentence, the surface tree
extracted by using the head rules on the context-

free tree representation (i.e. no crossing dependen-
cies), and the deep tree extracted by first return-
ing discontinuous dependents (marked by *T* and
*ICH* in WSJ, and by *T* in the Penn-format ver-
sion of NEGRA) before applying head rules. Fig-
ure 7 shows the average time it takes to calculate
the minimal dependency length with crossing depen-
dencies for WSJ sentences using the unoptimized al-
gorithm of Section 4.1 and the fully optimized al-
gorithm of Section 4.4. Timing tests were imple-
mented and performed using Java 1.6.0 10 on a sys-
tem running Linux 2.6.18-6-amd64 with a 2.0 GHz
Intel Xeon processor and 16 gigs of memory, run on
a single core. We can see from Figure 7 that the
straight-forward dynamic programming algorithm
takes many more magnitudes of time than our op-
timized algorithm, making it infeasible to calculate
the minimal dependency length for larger sentences.
The results we present below were obtained with the
fully optimized algorithm from the sentences with
a maximum arity of 10, using 49,176 of the 49,208
WSJ sentences and 20,563 of the 20,602 NEGRA
sentences.

Summary results over all sentences from each cor-
pus are shown in Table 1. We can see that for both
corpora, the oberved dependency length is smaller
than the dependency length of random orderings,
even when the random ordering is subject to the
projectivity constraint. Relaxing the projectivity
constraint by allowing crossing dependencies intro-
duces a slightly lower optimal dependency length.
The average sentence dependency lengths for the
three random orderings are significantly higher than
the observed values. It is interesting to note that the
random orderings given the projectivity constraint
and the two-cluster constraint have very similar de-
pendency lengths, where as a total random ordering
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Figure 8: Average sentence DL as a function of sentence length. Legend is ordered top curve to bottom curve.
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Figure 9: Average sentence DL as a function of sentence arity. Legend is ordered top curve to bottom curve.

increases the dependency length significantly.
NEGRA generally has shorter sentences than

WSJ, so we need a more detailed picture of depen-
dency length as a function of sentence length; this
is shown in Figure 8. As in Table 1, we see that
English, which has less crossing dependency struc-
tures than German, has observed DL closer to opti-
mal DL and farther from random DL. We also see
that the random and observed DLs behave very sim-
ilarly across different sentence lengths in English
and German, but observed DL grows faster in Ger-
man. Perhaps surprisingly, optimal projective DL
and gap-degree 1 DL tend to be very similar even
for longer sentences. The picture as a function of
sentence arity is largely the same (Figure 9).

6 Conclusion

In this paper, we have presented an efficient dynamic
programming algorithm which finds minimum-
length dependency-tree linearizations subject to
constraints of mild context-sensitivity. For the gap-
degree 1 case, we have proven several properties of
these linearizations, and have used these properties
to optimize our algorithm. This made it possible to
find minimal dependency lengths for sentences from

the English Penn Treebank WSJ and German NE-
GRA corpora. The results show that for both lan-
guages, using surface dependencies and deep de-
pendencies lead to generally similar conclusions,
but that minimal lengths for deep dependencies are
consistently slightly higher for English and slightly
lower for German. This may be because German
has many more crossing dependencies than English.
Another finding is that the difference between aver-
age sentence DL does not change much between op-
timizing for the projectivity constraint and the two-
cluster constraint: projectivity seems to give nat-
ural language almost all the flexibility it needs to
minimize DL. For both languages, the observed lin-
earization is much closer in DL to optimal lineariza-
tions than to random linearizations; but crucially, we
see that English is closer to the optimal linearization
and farther from random linearization than German.
This finding is resonant with the fact that German
has richer morphology and overall greater variability
in observed word order, and with psycholinguistic
results suggesting that dependencies of greater lin-
ear distance do not always pose the same increased
processing load in German sentence comprehension
as they do in English (Konieczny, 2000).
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Abstract

Statistical parsing models have recently been
proposed that employ a bounded stack in time-
series (left-to-right) recognition, using a right-
corner transform defined over training trees to
minimize stack use (Schuler et al., 2008). Cor-
pus results have shown that a vast majority
of naturally-occurring sentences can be parsed
in this way using a very small stack bound
of three to four elements. This suggests that
the standard cubic-time CKY chart-parsing
algorithm, which implicitly assumes anun-
bounded stack, may be wasting probability
mass on trees whose complexity is beyond hu-
man recognition or generation capacity. This
paper first describes a version of the right-
corner transform that is defined over entire
probabilistic grammars (cast as infinite sets
of generable trees), in order to ensure a fair
comparison between bounded-stack and un-
bounded PCFG parsing using a common un-
derlying model; then it presents experimental
results that show a bounded-stack right-corner
parser using a transformed version of a gram-
mar significantly outperforms an unbounded-
stack CKY parser using the original grammar.

1 Introduction

Statistical parsing models have recently been pro-
posed that employ a bounded stack in time-series
(left-to-right) recognition, in order to directly and
tractably incorporate incremental phenomena such
as (co-)reference or disfluency into parsing deci-
sions (Schuler et al., 2008; Miller and Schuler,
2008). These models make use of a right-corner
tree transform, based on the left-corner transform
described by Johnson (1998), and are supported by

corpus results suggesting that most sentences (in En-
glish, at least) can be parsed using a very small
stack bound of three to four elements (Schuler et
al., 2008). This raises an interesting question: if
most sentences can be recognized with only three
or four elements of stack memory, is the standard
cubic-time CKY chart-parsing algorithm, which im-
plicitly assumes anunbounded stack, wasting prob-
ability mass on trees whose complexity is beyond
human recognition or generation capacity?

This paper presents parsing accuracy results us-
ing transformed and untransformed versions of a
corpus-trained probabilistic context-free grammar
suggesting that this is indeed the case. Experimental
results show a bounded-memory time-series parser
using a transformed version of a grammar signifi-
cantly outperforms an unbounded-stack CKY parser
using the original grammar.

Unlike the tree-based transforms described previ-
ously, the model-based transform described in this
paper does not introduce additional context from
corpus data beyond that contained in the origi-
nal probabilistic grammar, making it possible to
present a fair comparison between bounded- and
unbounded-stack versions of the same model. Since
this transform takes a probabilistic grammar as in-
put, it can also easily accommodate horizontal and
vertical Markovisation (annotating grammar sym-
bols with parent and sibling categories) as described
by Collins (1997) and subsequently.

The remainder of this paper is organized as fol-
lows: Section 2 describes related approaches to pars-
ing with stack bounds; Section 3 describes an exist-
ing bounded-stack parsing framework using a right-
corner transform defined over individual trees; Sec-
tion 4 describes a redefinition of this transform to ap-
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ply to entire probabilistic grammars, cast as infinite
sets of generable trees; and Section 5 describes an
evaluation of this transform on the Wall Street Jour-
nal corpus of the Penn Treebank showing improved
results for a transformed bounded-stack version of a
probabilistic grammar over the original unbounded
grammar.

2 Related Work

The model examined here is formally similar to
Combinatorial Categorial Grammar (CCG) (Steed-
man, 2000). But the CCG account is a competence
model as well as a performance model, in that it
seeks to unify category representations used in pro-
cessing with learned generalizations about argument
structure; whereas the model described in this paper
is exclusively a performance model, allowing gen-
eralizations about lexical argument structures to be
learned in some other representation, then combined
with probabilistic information about parsing strate-
gies to yield a set of derived incomplete constituents.
As a result, the model described in this paper has a
freer hand to satisfy strict working memory bounds,
which may not permit some of the alternative com-
position operations proposed in the CCG account,
thought to be associated with available prosody and
quantifier scope analyses.1

Other models (Abney and Johnson, 1991; Gibson,
1991) seek to explain human processing difficulties
as a result of memory capacity limits in parsing or-
dinary phrase structure trees. The Abney-Johnson
and Gibson models adopt a left-corner parsing strat-
egy, of which the right-corner transform described in
this paper is a variant, in order to minimize memory
usage. But the transform-based model described in
this paper exploits a conception of chunking (Miller,
1956) — in this case, grouping recognized words
into stacked-up incomplete constituents — to oper-
ate within much stricter estimates of human short-
term memory bounds (Cowan, 2001) than assumed
by Abney and Johnson.

1The lack of support for some of these available scope anal-
yses may not necessarily be problematic for the present model.
The complexity of interpreting nested raised quantifiers may
place them beyond the capability of human interactive incre-
mental interpretation, but not beyond the capability of post-hoc
interpretation (understood after the listener has had time to think
about it).

Several existing incremental systems are orga-
nized around a left-corner parsing strategy (Roark,
2001; Henderson, 2004). But these systems gen-
erally keep large numbers of constituents open for
modifier attachment in each hypothesis. This al-
lows modifiers to be attached as right children of any
such open constituent. But if any number of open
constituents are allowed, then either the assumption
that stored elements have fixed syntactic (and se-
mantic) structure will be violated, or the assump-
tion that syntax operates within a bounded mem-
ory store will be violated, both of which are psy-
cholinguistically attractive as simplifying assump-
tions. The HHMM model examined in this pa-
per upholds both the fixed-element and bounded-
memory assumptions by hypothesizing fixed reduc-
tions of right child constituents into incomplete par-
ents in the same memory element, to make room for
new constituents that may be introduced at a later
time. These in-element reductions are defined natu-
rally on phrase structure trees as the result of align-
ing right-corner transformed constituent structures
to sequences of random variables in a factored time-
series model.

3 Background

The recognition model examined in this paper is a
factored time-series model, based on a Hierarchic
Hidden Markov Model (Murphy and Paskin, 2001),
which probabilistically estimates the contents of a
memory store of three to four partially-completed
constituents over time. Probabilities for expansions,
transitions and reductions in this model can be de-
fined over trees in a training corpus, transformed
and mapped to the random variables in an HHMM
(Schuler et al., 2008). In Section 4 these probabil-
ities will be computed directly from a probabilistic
context-free grammar, in order to evaluate the con-
tribution of stack bounds without introducing addi-
tional corpus context into the model.

3.1 A Bounded-Stack Model

HHMMs are factored HMMs which mimic a
bounded-memory pushdown automaton (PDA), sup-
porting simple push and pop operations on a
bounded stack-like memory store.

HMMs characterize speech or text as a sequence
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of hidden statesqt (in this case, stacked-up syntac-
tic categories) and observed statesot (in this case,
words) at corresponding time stepst. A most likely
sequence of hidden statesq̂1..T can then be hypothe-
sized given any sequence of observed stateso1..T :

q̂1..T = argmax
q1..T

P(q1..T | o1..T ) (1)

= argmax
q1..T

P(q1..T )·P(o1..T | q1..T ) (2)

def= argmax
q1..T

T∏

t=1

PΘA
(qt | qt-1)·PΘB

(ot | qt) (3)

using Bayes’ Law (Equation 2) and Markov in-
dependence assumptions (Equation 3) to define
a full P(q1..T | o1..T ) probability as the product
of a Transition Model (ΘA) prior probability

P(q1..T ) def=
∏

t PΘA
(qt | qt-1) and anObservation

Model (ΘB) likelihood probabilityP(o1..T | q1..T ) def=∏
t PΘB

(ot | qt).
Transition probabilitiesPΘA

(qt | qt-1) over com-
plex hidden statesqt can be modeled using synchro-
nized levels of stacked-up component HMMs in an
HHMM. HHMM transition probabilities are calcu-
lated in two phases: areduce phase (resulting in an
intermediate, marginalized stateft), in which com-
ponent HMMs may terminate; and ashift phase (re-
sulting in a modeled stateqt), in which unterminated
HMMs transition, and terminated HMMs are re-
initialized from their parent HMMs. Variables over
intermediateft and modeledqt states are factored
into sequences of depth-specific variables – one for
each ofD levels in the HHMM hierarchy:

ft = 〈f1
t . . . fD

t 〉 (4)

qt = 〈q1
t . . . qD

t 〉 (5)

Transition probabilities are then calculated as a
product of transition probabilities at each level, us-
ing level-specificreduce ΘR,d andshift ΘS,d models:

PΘA
(qt|qt-1) =

∑

ft

P(ft|qt-1)·P(qt|ft qt-1) (6)

def=
∑

f1..D
t

D∏

d=1

PΘR,d
(fd

t |fd+1
t qd

t-1q
d-1
t-1 )·

PΘS,d
(qd

t |fd+1
t fd

t qd
t-1q

d-1
t ) (7)

with fD+1
t and q0

t defined as constants. In Viterbi
decoding, the sums are replaced with argmax opera-
tors. This decoding process preserves ambiguity by

. . .

. . .

. . .

. . .

f3
t−1

f2
t−1

f1
t−1

q1
t−1

q2
t−1

q3
t−1

ot−1

f3
t

f2
t

f1
t

q1
t

q2
t

q3
t

ot

Figure 1: Graphical representation of a Hierarchic Hid-
den Markov Model. Circles denote random variables, and
edges denote conditional dependencies. Shaded circles
are observations.

maintaining competing analyses of the entire mem-
ory store. A graphical representation of an HHMM
with three levels is shown in Figure 1.

Shift and reduce probabilities can then be defined
in terms of finitely recursive Finite State Automata
(FSAs) with probability distributions over transition,
recursive expansion, and final-state status of states at
each hierarchy level. In the version of HHMMs used
in this paper, each intermediate variable is a reduc-
tion or non-reduction statefd

t ∈ G∪{1,0} (indi-
cating, respectively, a complete reduced constituent
of some grammatical category from domainG, or
a failure to reduce due to an ‘active’ transition be-
ing performed, or a failure to reduce due to an
‘awaited’ transition being performed, as defined in
Section 4.3); and each modeled variable is a syn-
tactic stateqd

t ∈ G×G (describing an incomplete
constituent consisting of an active grammatical cat-
egory from domainG and an awaited grammatical
category from domainG). An intermediate vari-
ablefd

t at depthd may indicate reduction or non-
reduction according toΘF-Rd,d if there is a reduction
at the depth level immediately belowd, but must in-
dicate non-reduction (0) with probability 1 if there
was no reduction below:2

PΘR,d
(fd

t | fd+1
t qd

t-1q
d-1
t-1 ) def=

{
if fd+1

t 6∈G : [fd
t =0]

if fd+1
t ∈G : PΘF-Rd,d(f

d
t | qd

t-1, q
d-1
t-1 )

(8)

2Here [·] is an indicator function:[φ] = 1 if φ is true,0
otherwise.

346



wherefD+1
t ∈G andq0

t = ROOT.
Shift probabilities over the modeled variableqd

t

at each level are defined using level-specific transi-
tion ΘQ-Tr,d and expansionΘQ-Ex,d models:

PΘS,d
(qd

t | fd+1
t fd

t qd
t-1q

d-1
t ) def=





if fd+1
t 6∈G, fd

t 6∈G : [qd
t = qd

t-1]
if fd+1

t ∈G, fd
t 6∈G : PΘQ-Tr,d(q

d
t | fd+1

t fd
t qd

t-1q
d-1
t )

if fd+1
t ∈G, fd

t ∈G : PΘQ-Ex,d(q
d
t | qd-1

t )
(9)

wherefD+1
t ∈G and q0

t = ROOT. This model is
conditioned on reduce variables at and immediately
below the current FSA level. If there is no reduc-
tion immediately below the current level (the first
case above), it deterministically copies the current
FSA state forward to the next time step. If there
is a reduction immediately below the current level
but no reduction at the current level (the second case
above), it transitions the FSA state at the current
level, according to the distributionΘQ-Tr,d. And if
there is a reduction at the current level (the third case
above), it re-initializes this state given the state at the
level above, according to the distributionΘQ-Ex,d.
The overall effect is that higher-level FSAs are al-
lowed to transition only when lower-level FSAs ter-
minate. An HHMM therefore behaves like a prob-
abilistic implementation of a pushdown automaton
(or shift–reduce parser) with a finite stack, where the
maximum stack depth is equal to the number of lev-
els in the HHMM hierarchy.

3.2 Tree-Based Transforms

The right-corner transform used in this paper is sim-
ply the left-right dual of a left-corner transform
(Johnson, 1998). It transforms all right branching
sequences in a phrase structure tree into left branch-
ing sequences of symbols of the formAη/Aη·µ, de-
noting an incomplete instance of an ‘active’ category
Aη lacking an instance of an ‘awaited’ categoryAη·µ
yet to come.3 These incomplete constituent cate-
gories have the same form and much of the same
meaning as non-constituent categories in a Combi-
natorial Categorial Grammar (Steedman, 2000).

3Hereη andµ are node addresses in a binary-branching tree,
defined as paths of left (0) or right (1) branches from the root.

Rewrite rules for the right-corner transform are
shown below:4

• Beginning case: the top of a right-expanding
sequence in an ordinary phrase structure tree is
mapped to the bottom of a left-expanding se-
quence in a right-corner transformed tree:

Aη

Aη·0

α

Aη·1

β

⇒

Aη

Aη/Aη·1

Aη·0

α

β
(10)

This case of the right-corner transform may be
considered a constrained version of CCG type
raising.

• Middle case: each subsequent branch in a
right-expanding sequence of an ordinary phrase
structure tree is mapped to a branch in a left-
expanding sequence of the transformed tree:

Aη

α Aη·µ

Aη·µ·0

β

Aη·µ·1

γ

⇒

Aη

Aη/Aη·µ·1

Aη/Aη·µ

α

Aη·µ·0

β

γ

(11)
This case of the right-corner transform may be
considered a constrained version of CCG for-
ward function composition.

• Ending case: the bottom of a right-expanding
sequence in an ordinary phrase structure tree is
mapped to the top of a left-expanding sequence
in a right-corner transformed tree:

Aη

α Aη·µ

aη·µ

⇒
Aη

Aη/Aη·µ

α

Aη·µ

aη·µ

(12)

This case of the right-corner transform may be
considered a constrained version of CCG for-
ward function application.

4These rules can be applied recursively from bottom up
on a source tree, synchronously associating subtree structures
matched to variablesα, β, andγ on the left side of each rule
with transformed representations of these subtree structures on
the right.
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a) binary-branching phrase structure tree:

S

NP

NP

JJ

strong

NN

demand

PP

IN

for

NP

NPpos

NNP

NNP

new

NNP

NNP

york

NNP

city

POS

’s

NNS

JJ

general

NNS

NN

obligation

NNS

bonds

VP

VBN

VBN

propped

PRT

up

NP

DT

the

NN

JJ

municipal

NN

market

b) result of right-corner transform:

S

S/NN

S/NN

S/NP

S/VP

NP

NP/NNS

NP/NNS

NP/NNS

NP/NP

NP/PP

NP

NP/NN

JJ

strong

NN

demand

IN

for

NPpos

NPpos/POS

NNP

NNP/NNP

NNP/NNP

NNP

new

NNP

york

NNP

city

POS

’s

JJ

general

NN

obligation

NNS

bonds

VBN

VBN/PRT

VBN

propped

PRT

up

DT

the

JJ

municipal

NN

market

Figure 2: Trees resulting from a) a sample phrase structure tree for the sentenceStrong demand for New York City’s
general obligations bonds propped up the municipal market, and b) a right-corner transform of this tree. Sequences of
left children are recognized from the bottom up through in-element transitions in a Hierarchic Hidden Markov Model.
Right children are recognized by expanding to additional stack elements.

The completeness of the above transform rules can
be demonstrated by the fact that they cover all pos-
sible subtree configurations (with the exception of
bare terminals, which are simply copied). The
soundness of the above transform rules can be
demonstrated by the fact that each rule transforms
a right-branching subtree into a left-branching sub-
tree labeled with an incomplete constituent.

An example of a right-corner transformed tree is
shown in Figure 2(b). An important property of this
transform is that it is reversible. Rewrite rules for re-
versing a right-corner transform are simply the con-
verse of those shown above.

Sequences of left children in the resulting mostly-
left-branching trees are recognized from the bot-
tom up, through transitions at the same stack ele-
ment. Right children, which are much less frequent
in the resulting trees, are recognized through cross-
element expansions in a bounded-stack recognizer.

4 Model-Based Transforms

In order to compare bounded- and unbounded-stack
versions of the same model, the formulation of
the right-corner and bounded-stack transforms in-
troduced in this paper does not map trees to trees,
but rather maps probability models to probability
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models. This eliminates complications in comparing
models with different numbers of dependent vari-
ables — and thus different numbers of free parame-
ters — because the model which ordinarily has more
free parameters (the HHMM, in this case) is derived
from the model that has fewer (the PCFG). Since
they are derived from a simpler underlying model,
the additional parameters of the HHMM are not free.

Mapping probability models from one format to
another can be thought of as mapping the infinite
sets of trees that are defined by these models from
one format to another. Probabilities in the trans-
formed model are therefore defined by calculating
probabilities for the relevant substructures in the
source model, then marginalizing out the values of
nodes in these structures that do not appear in the
desired expression in the target model.

A bounded-stack HHMMΘQ,F can therefore be
derived from an unbounded PCFGΘG by:

1. organizing the rules in the source PCFG
modelΘG into direction-specific versions (dis-
tinguishing rules for expanding left and right
children, which occur respectively as active and
awaited constituent categories in incomplete
constituent labels);

2. enforcing depth limits on these direction-
specific rules; and

3. mapping these probabilities to HHMM random
variable positions at the appropriate depth.

4.1 Direction-specific rules

An inspection of the tree-based right-corner trans-
form rewrites defined in Section 3.2 will show two
things: first, that constituents occurring as left chil-
dren in an original tree (with addresses ending in
‘0’) always become active constituents (occurring
before the slash, or without a slash) in incomplete
constituent categories, and constituents occurring as
right children in an original tree (with addresses end-
ing in ‘1’) always become awaited constituents (oc-
curring after the slash); and second, that left chil-
dren expand locally downward in the transformed
tree (so eachAη·0/... locally dominatesAη·0·0/...),
whereas right children expand locally upward (so
each .../Aη·1 is locally dominated by.../Aη·1·1).
This means that rules from the original grammar —

if distinguished into rules applying only to left and
right children (active and awaited constituents) —
can still be locally modeled following a right-corner
transform. A transformed tree can be generated
in this way by expanding downward along the ac-
tive constituents in a transformed tree, then turning
around and expanding upward to fill in the awaited
constituents, then turning around again to generate
the active constituents at the next depth level, and so
on.

4.2 Depth bounds

The locality of the original grammar rules in a right-
corner transformed tree allows memory limits on in-
complete constituents to be applied directly as depth
bounds in the zig-zag generation traversal defined
above. These depth limits correspond directly to the
depth levels in an HHMM.

In the experiments described in Section 5,
direction-specific and depth-specific versions of the
original grammar rules are implemented in an ordi-
nary CKY-style dynamic-programming parser, and
can therefore simply be cut off at a particular depth
level with no renormalization.

But in an HHMM, this will result inlabel-bias ef-
fects, in which expanded constituents may have no
valid reduction, forcing the system to define distri-
butions for composing constituents that are not com-
patible. For example, if a constituent is expanded at
depthD, and that constituent has no expansions that
can be completely processed within depthD, it will
not be able to reduce, and will remain incompatible
with the incomplete constituent above it. Probabili-
ties for depth-bounded rules must therefore be renor-
malized to the domain of allowable trees that can be
generated withinD depth levels, in order to guaran-
tee consistent probabilities for HHMM recognition.

This is done by determining the (depth- and
direction-specific) probability PΘB-L,d(1 |Aη·0)
or PΘB-R,d(1 |Aη·1) that a tree generated at each
depthd and rooted by a left or right child will fit
within depthD. These probabilities are then esti-
mated using an approximate inference algorithm,
similar to that used in value iteration (Bellman,
1957), which estimates probabilities of infinite trees
by exploiting the fact that increasingly longer trees
contribute exponentially decreasing probability
mass (since each non-terminal expansion must
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avoid generating a terminal with some probability
at each step from the top down), so a sum over
probabilities of trees with increasing lengthk is
guaranteed to converge. The algorithm calculates
probabilities of trees with increasing lengthk until
convergence, or to some arbitrary limitK:

PΘB-L,d,k
(1 |Aη·0)

def=∑

Aη·1·0,
Aη·1·1

PΘG(Aη·0 � Aη·0·0 Aη·0·1)
· PΘB-L,d,k−1

(1 |Aη·0·0)

· PΘB-R,d,k−1
(1 |Aη·0·1) (13)

PΘB-R,d,k
(1 |Aη·1)

def=∑

Aη·1·0,
Aη·1·1

PΘG(Aη·1 � Aη·1·0 Aη·1·1)
· PΘB-L,d+1,k−1

(1 |Aη·1·0)

· PΘB-R,d,k−1
(1 |Aη·1·1) (14)

Normalized probability distributions for depth-
bounded expansionsΘG-L,d andΘG-R,d can now be
calculated using convergedΘB-L,d andΘB-R,d esti-
mates:

PΘG-L,d(Aη·0 � Aη·0·0 Aη·0·1)
def=

PΘG(Aη·0 � Aη·0·0 Aη·0·1)
· PΘB-L,d(1 |Aη·0·0) · PΘB-R,d(1 |Aη·0·1) (15)

PΘG-R,d(Aη·1 � Aη·1·0 Aη·1·1)
def=

PΘG(Aη·1 � Aη·1·0 Aη·1·1)
· PΘB-L,d+1

(1 |Aη·1·0) · PΘB-R,d(1 |Aη·1·1) (16)

4.3 HHMM probabilities

Converting PCFGs to HHMMs requires the calcu-
lation of expected frequenciesFΘG-L*,d(Aη

∗� Aη·µ)
of generating symbolsAη·µ in the left-progeny of a
nonterminal symbolAη (in other words, ofAη·µ be-
ing a left child ofAη, or a left child of a left child
of Aη, etc.). This is done by summing over sub-
trees of increasing lengthk using the same approx-
imate inference technique described in Section 4.2,
which guarantees convergence since each subtree of
increasing length contributes exponentially decreas-
ing probability mass to the sum:

FΘG-L*,d(Aη
∗� Aη·µ) =

∞∑

k=0

FΘG-L*,d(Aη
k� Aη·µ)

(17)

where:

FΘG-L*,d(Aη
k� Aη·0k) =

∑

A
η·0k−1 ,

A
η·0k−1·1

PΘG-L*,d(Aη
k−1� Aη·0k−1)

· PΘG-L,d(Aη·0k−1 � Aη·0k Aη·0k−1·1) (18)

andPΘG-L*,d(Aη
0� A′

η) = [Aη =A′
η].

A complete HHMM can now be defined us-
ing depth-bounded right-corner PCFG probabilities.
HHMM probabilities will be defined over syntac-
tic states consisting of incomplete constituent cat-
egoriesAη/Aη·µ.

Expansions depend on only the incomplete con-
stituent category../Aη (for any active category ‘..’)
at qd−1

t :

PΘQ-Ex,d(aη·0·µ | ../Aη) =
∑

Aη·0,
Aη·1

PΘG-R,d−1
(Aη � Aη·0 Aη·1)·

FΘG-L*,d(Aη·0
∗� aη·0·µ)

∑
Aη·0,
Aη·1,
aη·0·µ

PΘG-R,d−1
(Aη � Aη·0 Aη·1)·

FΘG-L*,d(Aη·0
∗� aη·0·µ)

(19)

Transitions depend on whether an ‘active’ or
‘awaited’ transition was performed at the current
level. If an active transition was performed (where
fd

t = 1), the transition depends on only the in-
complete constituent categoryAη·0·µ·0/.. (for any
awaited category ‘..’) at qd

t−1, and the incomplete
constituent category../Aη (for any active category
‘ ..’) at qd−1

t−1 :

PΘQ-Tr,d(Aη·0·µ/Aη·0·µ·1 |1, Aη·0·µ·0/.., ../Aη) =∑

Aη·0,
Aη·1

PΘG-R,d−1
(Aη � Aη·0 Aη·1)·

FΘG-L*,d
(Aη·0

∗�Aη·0·µ)

FΘG-L*,d
(Aη0

∗�Aη0µ0)−FΘG-L*,d
(Aη0

0�Aη0µ0)
·

PΘG-L,d(Aη·0·µ � Aη·0·µ·0 Aη·0·µ·1)∑

Aη·0,
Aη·1,

Aη·0·µ,
Aη·0·µ·1

PΘG-R,d−1
(Aη � Aη·0 Aη·1)·

FΘG-L*,d
(Aη·0

∗�Aη·0·µ)

FΘG-L*,d
(Aη0

∗�Aη0µ0)−FΘG-L*,d
(Aη0

0�Aη0µ0)
·

PΘG-L,d(Aη·0·µ � Aη·0·µ·0 Aη·0·µ·1)
(20)

If an awaited transition was performed (wherefd
t =

0), the transition depends on only the complete con-
stituent categoryAη·µ·0 at fd+1

t , and the incomplete
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constituent categoryAη/Aη·µ at qd
t−1:

PΘQ-Tr,d(Aη/Aη·µ·1 |0, Aη·µ·0, Aη/Aη·µ) =
PΘG-R,d(Aη·µ � Aη·µ·0 Aη·µ·1)∑

Aη·µ·1 PΘG-R,d(Aη·µ � Aη·µ·0 Aη·µ·1)
(21)

Reduce probabilities depend on the complete con-
stituent category atfd+1

t , and the incomplete con-
stituent categoryAη·0·µ·0/.. (for any awaited cate-
gory ‘..’) at qd

t−1, and the incomplete constituent cat-
egory../Aη (for any active category ‘..’) at qd−1

t−1 . If
the complete constituent category atfd+1

t does not
match the awaited category ofqd

t−1, the probability
is [fd

t =f0]. If the complete constituent category
atfd+1

t does match the awaited category ofqd
t−1:

PΘF-Rd,d(1 |Aη·0·µ/.., ../Aη) =
∑

Aη·0,Aη·1 PΘG-R,d−1
(Aη � Aη·0 Aη·1)·(

FΘG-L*,d(Aη·0
∗� Aη·0·µ)

−FΘG-L*,d(Aη·0
0� Aη·0·µ)

)

∑
Aη·0,Aη·1 PΘG-R,d−1

(Aη � Aη·0 Aη·1)·
FΘG-L*,d(Aη·0

∗� Aη·0·µ)

(22)

and:

PΘF-Rd,d(Aη·0·µ |Aη·0·µ/.., ../Aη) =
∑

Aη·0,Aη·1 PΘG-R,d−1
(Aη � Aη·0 Aη·1)·

FΘG-L*,d(Aη·0
0� Aη·0·µ)

∑
Aη·0,Aη·1 PΘG-R,d−1

(Aη � Aη·0 Aη·1)·
FΘG-L*,d(Aη·0

∗� Aη·0·µ)

(23)

The correctness of the above distributions can be
demonstrated by the fact that all terms other than
ΘG-L,d and ΘG-R,d probabilities will cancel out in
any sequence of transitions between an expansion
and a reduction, leaving only those terms that would
appear as factors in an ordinary PCFG parse.5

5 Results

A PCFG model was extracted from sections 2–21
of the Wall Street Journal Treebank. In order to
keep the transform process manageable, punctua-
tion was removed from the corpus, and rules oc-
curring less frequently than 10 times in the corpus

5It is important to note, however, that these probabilities are
not necessarily incrementally balanced, so this correctness only
applies to parsing with an infinite beam.

model (sect 22–24, len>40) F
unbounded PCFG 66.03
bounded PCFG (D=4) 66.08

Table 1: Results of CKY parsing using bounded and un-
bounded PCFG.

were deleted from the PCFG. The right-corner and
bounded-stack transforms described in the previous
section were then applied to the PCFG. The origi-
nal and bounded PCFG models were evaluated in a
CKY recognizer on sections 22–24 of the Treebank,
with results shown in Table 1.6 Results were signif-
icant only for sentences longer than 40 words. On
these sentences, the bounded PCFG model achieves
about a .15% reduction of error over the original
PCFG (p < .1 using one-tailed pairwise t-test). This
suggests that on long sentences the probability mass
wasted due to parsing with an unbounded stack is
substantial enough to impact parsing accuracy.

6 Conclusion

Previous work has explored bounded-stack parsing
using a right-corner transform defined on trees to
minimize stack usage. HHMM parsers trained on
applications of this tree-based transform of train-
ing corpora have shown improvements over ordinary
PCFG models, but this may have been attributable to
the richer dependencies of the HHMM.

This paper has presented an approximate in-
ference algorithm for transforming entire PCFGs,
rather than individual trees, into equivalent right-
corner bounded-stack HHMMs. Moreover, a com-
parison with an untransformed PCFG model sug-
gests that the probability mass wasted due to pars-
ing with an unbounded stack is substantial enough
to impact parsing accuracy.
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Abstract
This paper presents a novel unsupervised
method for hierarchical topic segmentation.
Lexical cohesion – the workhorse of unsu-
pervised linear segmentation – is treated as
a multi-scale phenomenon, and formalized
in a Bayesian setting. Each word token is
modeled as a draw from a pyramid of la-
tent topic models, where the structure of the
pyramid is constrained to induce a hierarchi-
cal segmentation. Inference takes the form
of a coordinate-ascent algorithm, iterating be-
tween two steps: a novel dynamic program
for obtaining the globally-optimal hierarchi-
cal segmentation, and collapsed variational
Bayesian inference over the hidden variables.
The resulting system is fast and accurate, and
compares well against heuristic alternatives.

1 Introduction

Recovering structural organization from unformat-
ted texts or transcripts is a fundamental problem
in natural language processing, with applications to
classroom lectures, meeting transcripts, and chat-
room logs. In the unsupervised setting, a variety
of successful systems have leveraged lexical cohe-
sion (Halliday and Hasan, 1976) – the idea that
topically-coherent segments display consistent lex-
ical distributions (Hearst, 1994; Utiyama and Isa-
hara, 2001; Eisenstein and Barzilay, 2008). How-
ever, such systems almost invariably focus on linear
segmentation, while it is widely believed that dis-
course displays a hierarchical structure (Grosz and
Sidner, 1986). This paper introduces the concept of
multi-scale lexical cohesion, and leverages this idea
in a Bayesian generative model for hierarchical topic
segmentation.

The idea of multi-scale cohesion is illustrated
by the following two examples, drawn from the
Wikipedia entry for the city of Buenos Aires.

There are over 150 city bus lines called Colec-
tivos ... Colectivos in Buenos Aires do not
have a fixed timetable, but run from 4 to sev-
eral per hour, depending on the bus line and
time of the day.

The Buenos Aires metro has six lines, 74 sta-
tions, and 52.3 km of track. An expansion
program is underway to extend existing lines
into the outer neighborhoods. Track length is
expected to reach 89 km...

The two sections are both part of a high-level seg-
ment on transportation. Words in bold are charac-
teristic of the subsections (buses and trains, respec-
tively), and do not occur elsewhere in the transporta-
tion section; words in italics occur throughout the
high-level section, but not elsewhere in the article.
This paper shows how multi-scale cohesion can be
captured in a Bayesian generative model and ex-
ploited for unsupervised hierarchical topic segmen-
tation.

Latent topic models (Blei et al., 2003) provide a
powerful statistical apparatus with which to study
discourse structure. A consistent theme is the treat-
ment of individual words as draws from multinomial
language models indexed by a hidden “topic” asso-
ciated with the word. In latent Dirichlet allocation
(LDA) and related models, the hidden topic for each
word is unconstrained and unrelated to the hidden
topic of neighboring words (given the parameters).
In this paper, the latent topics are constrained to pro-
duce a hierarchical segmentation structure, as shown
in Figure 1.
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Figure 1: Each word wt is drawn from a mixture of the
language models located above t in the pyramid.

These structural requirements simplify inference,
allowing the language models to be analytically
marginalized. The remaining hidden variables are
the scale-level assignments for each word token.
Given marginal distributions over these variables, it
is possible to search the entire space of hierarchical
segmentations in polynomial time, using a novel dy-
namic program. Collapsed variational Bayesian in-
ference is then used to update the marginals. This
approach achieves high quality segmentation on
multiple levels of the topic hierarchy.

Source code is available at http://people.
csail.mit.edu/jacobe/naacl09.html.

2 Related Work

The use of lexical cohesion (Halliday and Hasan,
1976) in unsupervised topic segmentation dates back
to Hearst’s seminal TEXTTILING system (1994).
Lexical cohesion was placed in a probabilistic
(though not Bayesian) framework by Utiyama and
Isahara (2001). The application of Bayesian topic
models to text segmentation was investigated first
by Blei and Moreno (2001) and later by Purver et
al. (2006), using HMM-like graphical models for
linear segmentation. Eisenstein and Barzilay (2008)
extend this work by marginalizing the language
models using the Dirichlet compound multinomial
distribution; this permits efficient inference to be
performed directly in the space of segmentations.
All of these papers consider only linear topic seg-
mentation; we introduce multi-scale lexical cohe-
sion, which posits that the distribution of some

words changes slowly with high-level topics, while
others change rapidly with lower-level subtopics.
This gives a principled mechanism to model hier-
archical topic segmentation.

The literature on hierarchical topic segmentation
is relatively sparse. Hsueh et al. (2006) describe a
supervised approach that trains separate classifiers
for topic and sub-topic segmentation; more relevant
for the current work is the unsupervised method
of Yaari (1997). As in TEXTTILING, cohesion is
measured using cosine similarity, and agglomerative
clustering is used to induce a dendrogram over para-
graphs; the dendrogram is transformed into a hier-
archical segmentation using a heuristic algorithm.
Such heuristic approaches are typically brittle, as
they include a number of parameters that must be
hand-tuned. These problems can be avoided by
working in a Bayesian probabilistic framework.

We note two orthogonal but related approaches
to extracting nonlinear discourse structures from
text. Rhetorical structure theory posits a hierarchi-
cal structure of discourse relations between spans of
text (Mann and Thompson, 1988). This structure is
richer than hierarchical topic segmentation, and the
base level of analysis is typically more fine-grained
– at the level of individual clauses. Unsupervised
approaches based purely on cohesion are unlikely to
succeed at this level of granularity.

Elsner and Charniak (2008) propose the task of
conversation disentanglement from internet chat-
room logs. Unlike hierarchical topic segmentation,
conversational threads may be disjoint, with un-
related threads interposed between two utterances
from the same thread. Elsner and Charniak present a
supervised approach to this problem, but the devel-
opment of cohesion-based unsupervised methods is
an interesting possibility for future work.

3 Model

Topic modeling is premised on a generative frame-
work in which each word wt is drawn from a multi-
nomial θyt , where yt is a hidden topic indexing the
language model that generates wt. From a modeling
standpoint, linear topic segmentation merely adds
the constraint that yt ∈ {yt−1, yt−1 + 1}. Segmen-
tations that draw boundaries so as to induce com-
pact, low-entropy language models will achieve a
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high likelihood. Thus topic models situate lexical
cohesion in a probabilistic setting.

For hierarchical segmentation, we take the hy-
pothesis that lexical cohesion is a multi-scale phe-
nomenon. This is represented with a pyramid of lan-
guage models, shown in Figure 1. Each word may be
drawn from any language model above it in the pyra-
mid. Thus, the high-level language models will be
required to explain words throughout large parts of
the document, while the low-level language models
will be required to explain only a local set of words.
A hidden variable zt indicates which level is respon-
sible for generating the word wt.

Ideally we would like to choose the segmentation
ŷ = argmaxyp(w|y)p(y). However, we must deal
with the hidden language models Θ and scale-level
assignments z. The language models can be inte-
grated out analytically (Section 3.1). Given marginal
likelihoods for the hidden variables z, the globally
optimal segmentation ŷ can be found using a dy-
namic program (Section 4.1). Given a segmentation,
we can estimate marginals for the hidden variables,
using collapsed variational inference (Section 4.2).
We iterate between these procedures in an EM-like
coordinate-ascent algorithm (Section 4.4) until con-
vergence.

3.1 Language models

We begin the formal presentation of the model with
some notation. Each word wt is modeled as a single
draw from a multinomial language model θj . The
language models in turn are drawn from symmetric
Dirichlet distributions with parameter α. The num-
ber of language models is written K; the number of
words is W ; the length of the document is T ; and
the depth of the hierarchy is L.

For hierarchical segmentation, the vector yt indi-
cates the segment index of t at each level of the topic
hierarchy; the specific level of the hierarchy respon-
sible for wt is given by the hidden variable zt. Thus,
y

(zt)
t is the index of the language model that gener-

ates wt.

With these pieces in place, we can write the ob-
servation likelihood,

p(w|y, z,Θ) =
T∏

t

p(wt|θy(zt)
t

)

=
K∏

j

∏

{t:y(zt)
t =j}

p(wt|θj),

where we have merely rearranged the product to
group terms that are drawn from the same language
model. As the goal is to obtain the hierarchical seg-
mentation and not the language models, the search
space can be reduced by marginalizing Θ. The
derivation is facilitated by a notational convenience:
xj represents the lexical counts induced by the set
of words {wt : y(zt)

t = j}.

p(w|y, z, α) =
K∏

j

∫
dθjp(θj |α)p(xj |θj)

=
K∏

j

pdcm(xj ;α)

=
K∏

j

Γ(Wα)

Γ(
∑W

i xji + α)

W∏

i

Γ(xji + α)
Γ(α)

.

(1)

Here, pdcm indicates the Dirichlet compound
multinomial distribution (Madsen et al., 2005),
which is the closed form solution to the integral over
language models. Also known as the multivariate
Polya distribution, the probability density function
can be computed exactly as a ratio of gamma func-
tions. Here we use a symmetric Dirichlet prior α,
though asymmetric priors can easily be applied.

Thus far we have treated the hidden variables
z as observed. In fact we will compute approxi-
mate marginal probabilities Qzt(zt), written γt` ≡
Qzt(zt = `). Writing 〈x〉Qz for the expectation of x
under distribution Qz , we approximate,

〈pdcm(xj ;α)〉Qz ≈ pdcm(〈xj〉Qz ;α)

〈xj(i)〉Qz =
∑

{t:j∈yt}

L∑

`

δ(wt = i)δ(y(`)
t = j)γt`,
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where xj(i) indicates the count for word type i gen-
erated from segment j. In the outer sum, we con-
sider all t for possibly drawn from segment j. The
inner sum goes over all levels of the pyramid. The
delta functions take the value one if the enclosed
Boolean expression is true and zero otherwise, so
we are adding the fractional counts γt` only when
wt = i and y(`)

t = j.

3.2 Prior on segmentations

Maximizing the joint probability p(w,y) =
p(w|y)p(y) leaves the term p(y) as a prior on seg-
mentations. This prior can be used to favor segmen-
tations with the desired granularity. Consider a prior
of the form p(y) =

∏L
`=1 p(y

(`)|y(`−1)); for nota-
tional convenience, we introduce a base level such
that y(0)

t = t, where every word is a segmentation
point. At every level ` > 0, the prior is a Markov
process, p(y(`)|y(`−1)) =

∏T
t p(y

(`)
t |y

(`)
t−1,y

(`−1)).

The constraint y(`)
t ∈ {y

(`)
t−1, y

(`)
t−1 + 1} ensures a

linear segmentation at each level. To enforce hierar-
chical consistency, each y(`)

t can be a segmentation
point only if t is also a segmentation point at the
lower level ` − 1. Zero probability is assigned to
segmentations that violate these constraints.

To quantify the prior probability of legal segmen-
tations, assume a set of parameters d`, indicating
the expected segment duration at each level. If t
is a valid potential segmentation point at level `
(i.e., y(`−1)

t = 1 + y
(`−1)
t−1 ), then the prior probabil-

ity of a segment transition is r` = d`−1/d`, with
d0 = 1. If there are N segments in level ` and
M ≥ N segments in level ` − 1, then the prior
p(y(`)|y(`−1)) = rN` (1 − r`)M−N , as long as the
hierarchical segmentation constraint is obeyed.

For the purposes of inference it will be prefer-
able to have a prior that decomposes over levels and
segments. In particular, we do not want to have to
commit to a particular segmentation at level ` be-
fore segmenting level ` + 1. The above prior can
be approximated by replacing M with its expecta-
tion 〈M〉d`−1

= T/d`−1. Then a single segment
ranging from wu to wv (inclusive) will contribute
log r` + v−u

d`−1
log(1− r`) to the log of the prior.

4 Inference

This section describes the inference for the segmen-
tation y, the approximate marginals QZ , and the hy-
perparameter α.

4.1 Dynamic programming for hierarchical
segmentation

While the model structure is reminiscent of a facto-
rial hidden Markov model (HMM), there are impor-
tant differences that prevent the direct application of
HMM inference. Hidden Markov models assume
that the parameters of the observation likelihood dis-
tributions are available directly, while we marginal-
ize them out. This has the effect of introducing de-
pendencies throughout the state space: the segment
assignment for each yt contributes to lexical counts
which in turn affect the observation likelihoods for
many other t′. However, due to the left-to-right na-
ture of segmentation, efficient inference of the opti-
mal hierarchical segmentation (given the marginals
QZ) is still possible.

Let B(`)[u, v] represent the log-likelihood of
grouping together all contiguous words wu . . . wv−1

at level ` of the segmentation hierarchy. Using xt
to indicate a vector of zeros with one at the position
wt, we can express B more formally:

B(`)[u, v] = log pdcm

(
v∑

t=u

xtγt`

)

+ log r` +
v − u− 1
d`−1

log(1− r`).

The last two terms are from the prior p(y), as ex-
plained in Section 3.2. The value of B(`)[u, v] is
computed for all u, all v > u, and all `.

Next, we compute the log-likelihood of the op-
timal segmentation, which we write as A(L)[0, T ].
This matrix can be filled in recursively:

A(`)[u, v] = max
u≤t<v

B(`)[t, v] +A(`−1)[t, v] +A(`)[u, t].

The first term adds in the log probability of the
segment from t to v at level `. The second term re-
turns the best score for segmenting this same interval
at a more detailed level of segmentation. The third
term recursively segments the interval from u to t at
the same level `. The boundary case A(`)[u, u] = 0.
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4.1.1 Computational complexity

The sizes of A and B are each O(LT 2). The ma-
trix A can be constructed by iterating through the
layers and then iterating: u from 1 to T ; v from u+1
to T ; and t from u to v + 1. Thus, the time cost for
filling A is O(LT 3). For computing the observation
likelihoods in B, the time complexity isO(LT 2W ),
where W is the size of the vocabulary – by keeping
cumulative lexical counts, we can compute B[u, v]
without iterating from u to v.

Eisenstein and Barzilay (2008) describe a dy-
namic program for linear segmentation with a
space complexity of O(T ) and time complexities of
O(T 2) to compute the A matrix and O(TW ) to fill
the B matrix.1 Thus, moving to hierarchical seg-
mentation introduces a factor of TL to the complex-
ity of inference.

4.1.2 Discussion

Intuitively, efficient inference is possible because
the location of each segment boundary affects the
likelihood of only the adjoining segments at the
same level of the hierarchy, and their “children” at
the lower levels of the hierarchy. Thus, the observa-
tion likelihood at each level decomposes across the
segments of the level. This is due to the left-to-right
nature of segmentation – in general it is not possible
to marginalize the language models and still perform
efficient inference in HMMs. The prior (Section 3.2)
was designed to decompose across segments – if, for
example, p(y) explicitly referenced the total number
of segments, inference would be more difficult.

A simpler inference procedure would be a greedy
approach that makes a fixed decision about the top-
level segmentation, and then applies recursion to
achieve segmentation at the lower levels. The greedy
approach will not be optimal if the best top-level
segmentation leads to unsatisfactory results at the
lower levels, or if the lower levels could help to
disambiguate high-level segmentation. In contrast,
the algorithm presented here maximizes the overall
score across all levels of the segmentation hierarchy.

1The use of dynamic programming for linear topic segmen-
tation goes back at least to (Heinonen, 1998); however, we are
aware of no prior work on dynamic programming for hierarchi-
cal segmentation.

4.2 Scale-level marginals

The hidden variable zt represents the level of the
segmentation hierarchy from which the word wt is
drawn. Given language models Θ, each wt can
be thought of as a draw from a Bayesian mixture
model, with zt as the index of the component that
generates wt. However, as we are marginalizing
the language models, standard mixture model infer-
ence techniques do not apply. One possible solu-
tion would be to instantiate the maximum a posteri-
ori language models after segmenting, but we would
prefer not to have to commit to specific language
models. Collapsed Gibbs sampling (Griffiths and
Steyvers, 2004) is another possibility, but sampling-
based solutions may not be ideal from a performance
standpoint.

Recent papers by Teh et al. (2007) and Sung et
al. (2008) point to an appealing alternative: col-
lapsed variational inference (called latent-state vari-
ational Bayes by Sung et al.). Collapsed variational
inference integrates over the parameters (in this
case, the language models) and computes marginal
distributions for the latent variables, Qz. However,
due to the difficulty of computing the expectation
of the normalizing term, these marginal probabili-
ties are available only in approximation.

More formally, we wish to compute the approx-
imate distribution Qz(z) =

∏T
t Qzt(zt), factoriz-

ing across all latent variables. As is typical in vari-
ational approaches, we fit this distribution by opti-
mizing a lower bound on the data marginal likeli-
hood p(w, z|y) – we condition on the segmentation
y because we are treating it as fixed in this part of
the inference. The lower bound can be optimized by
iteratively setting,

Qzt(zt) ∝ exp
{
〈logP (x, z|y)〉∼Qzt

}
,

indicating the expectation under Qz′t for all t′ 6= t.
Due to the couplings across z, it is not possible
to compute this expectation directly, so we use the
first-order approximation described in (Sung et al.,
2008). In this approximation, the value Qzt(zt = `)
– which we abbreviate as γt` – takes the form of
the likelihood of the observation wt, given a mod-
ified mixture model. The parameters of the mixture
model are based on the priors and the counts of w
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and γ for all t′ 6= t:

γt` ∝ β`
x̃¬t` (wt)∑W
i x̃¬t` (i)

(2)

x̃¬t` (i) = α`(i) +
∑

t′ 6=t
γt′`δ(wt′ = i). (3)

The first term in equation 2 is the set of compo-
nent weights β`, which are fixed at 1/L for all `. The
fraction represents the posterior estimate of the lan-
guage models: standard Dirichlet-multinomial con-
jugacy gives a sum of counts plus a Dirichlet prior
(equation 3). Thus, the form of the update is ex-
tremely similar to collapsed Gibbs sampling, except
that we maintain the full distribution over zt rather
than sampling a specific value. The derivation of this
update is beyond the scope of this paper, but is sim-
ilar to the mixture of Bernoullis model presented in
Section 5 of (Sung et al., 2008).

Iterative updates of this form are applied until the
change in the lower bound is less than 10−3. This
procedure appears at step 5a of algorithm 1.

4.3 Hyperparameter estimation

The inference procedure defined here includes two
parameters: α, the symmetric Dirichlet prior on the
language models; and d, the expected segment du-
rations. The granularity of segmentation is consid-
ered to be a user-defined characteristic, so there is
no “right answer” for how to set this parameter. We
simply use the oracle segment durations, and pro-
vide the same oracle to the baseline methods where
possible. As discussed in Section 6, this parameter
had little effect on system performance.

The α parameter controls the expected sparsity of
the induced language models; it will be set automat-
ically. Given a segmentation y and hidden-variable
marginals γ, we can maximize p(α,w|y, γ) =
pdcm(w|y, γ, α)p(α) through gradient descent. The
Dirichlet compound multinomial has a tractable gra-
dient, which can be computed using scaled counts,
x̃j =

∑
t:y

(zt)
t =j

γtjxt (Minka, 2003). The scaled
counts are taken for each segment j across the entire
segmentation hierarchy. The likelihood p(x̃|α) then
has the same form as equation 1, with the xji terms
replaced by x̃ji. The gradient of the log-likelihood

Algorithm 1 Complete segmentation inference
1. Input text w; expected durations d.
2. γ ← INITIALIZE-GAMMA(w)
3. ŷ← EQUAL-WIDTH-SEG(w, d)
4. α← .1
5. Do

(a) γ ← ESTIMATE-GAMMA(ŷ,w, γ, α)
(b) α← ESTIMATE-ALPHA(ŷ,w, γ)
(c) y← SEGMENT(w, γ, α, d)
(d) If y = ŷ then return y
(e) Else ŷ← y

is thus a sum across segments,

d`/dα =
K∑

j

W (Ψ(Wα)−Ψ(α))

+
W∑

i

Ψ(x̃ji + α)−Ψ(Wα+
W∑

i

x̃ji).

Here, Ψ indicates the digamma function, which
is the derivative of the log gamma function. The
prior p(α) takes the form of a Gamma distribution
with parameters G(1, 1), which has the effect of dis-
couraging large values of α. With these parame-
ters, the gradient of the Gamma distribution with re-
spect to α is negative one. To optimize α, we inter-
pose an epoch of L-BFGS (Liu and Nocedal, 1989)
optimization after maximizing γ (Step 5b of algo-
rithm 1).

4.4 Combined inference procedure
The final inference procedure alternates between up-
dating the marginals γ, the Dirichlet prior α, and the
MAP segmentation ŷ. Since the procedure makes
hard decisions on α and the segmentations y, it
can be thought of as a form of Viterbi expectation-
maximization (EM). When a repeated segmentation
is encountered, the procedure terminates. Initializa-
tion involves constructing a segmentation ŷ in which
each level is segmented uniformly, based on the ex-
pected segment duration d`. The hidden variable
marginals γ are initialized randomly. While there
is no guarantee of finding the global maximum, lit-
tle sensitivity to the random initialization of γ was
observed in preliminary experiments.

The dynamic program described in this section
achieves polynomial time complexity, but O(LT 3)
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can still be slow when T is the number of word to-
kens in a large document such as a textbook. For
this reason, we only permit segment boundaries to
be placed at gold-standard sentence boundaries. The
only change to the algorithm is that the tables A
and B need contain only cells for each sentence
rather than for each word token – hidden variable
marginals are still computed for each word token.
Implemented in Java, the algorithm runs in roughly
five minutes for a document with 1000 sentences on
a dual core 2.4 GHz machine.

5 Experimental Setup

Corpora The dataset for evaluation is drawn from
a medical textbook (Walker et al., 1990).2 The text
contains 17083 sentences, segmented hierarchically
into twelve high-level parts, 150 chapters, and 520
sub-chapter sections. Evaluation is performed sep-
arately on each of the twelve parts, with the task of
correctly identifying the chapter and section bound-
aries. Eisenstein and Barzilay (2008) use the same
dataset to evaluate linear topic segmentation, though
they evaluated only at the level of sections, given
gold standard chapter boundaries.

Practical applications of topic segmentation typ-
ically relate to more informal documents such as
blogs or speech transcripts (Hsueh et al., 2006), as
formal texts such as books already contain segmen-
tation markings provided by the author. The premise
of this evaluation is that textbook corpora provide a
reasonable proxy for performance on less structured
data. However, further clarification of this point is
an important direction for future research.
Metrics All experiments are evaluated in terms
of the commonly-used Pk and WindowDiff met-
rics (Pevzner and Hearst, 2002). Both metrics pass a
window through the document, and assess whether
the sentences on the edges of the window are prop-
erly segmented with respect to each other. Win-
dowDiff is stricter in that it requires that the number
of intervening segments between the two sentences
be identical in the hypothesized and the reference
segmentations, while Pk only asks whether the two
sentences are in the same segment or not. This eval-

2The full text of this book is available for free download at
http://onlinebooks.library.upenn.edu.

uation uses source code provided by Malioutov and
Barzilay (2006).

Experimental system The joint hierarchical
Bayesian model described in this paper is called
HIERBAYES. It performs a three-level hierarchical
segmentation, in which the lowest level is for sub-
chapter sections, the middle level is for chapters, and
the top level spans the entire part. This top-level has
the effect of limiting the influence of words that are
common throughout the document.

Baseline systems As noted in Section 2, there is
little related work on unsupervised hierarchical seg-
mentation. However, a straightforward baseline is
a greedy approach: first segment at the top level,
and then recursively feed each top-level segment to
the segmenter again. Any linear segmenter can be
plugged into this baseline as a “black box.”

To isolate the contribution of joint inference, the
greedy framework can be combined with a one-level
version of the Bayesian segmentation algorithm de-
scribed here. This is equivalent to BAYESSEG,
which achieved the best reported performance on the
linear segmentation of this same dataset (Eisenstein
and Barzilay, 2008). The hierarchical segmenter
built by placing BAYESSEG in a greedy algorithm
is called GREEDY-BAYES.

To identify the contribution of the Bayesian
segmentation framework, we can plug in alter-
native linear segmenters. Two frequently-cited
systems are LCSEG (Galley et al., 2003) and
TEXTSEG (Utiyama and Isahara, 2001). LC-
SEG optimizes a metric of lexical cohesion based
on lexical chains. TEXTSEG employs a probabilis-
tic segmentation objective that is similar to ours,
but uses maximum a posteriori estimates of the lan-
guage models, rather than marginalizing them out.
Other key differences are that they set α = 1, and
use a minimum description length criterion to deter-
mine segmentation granularity. Both of these base-
lines were run using their default parametrization.

Finally, as a minimal baseline, UNIFORM pro-
duces a hierarchical segmentation with the ground
truth number of segments per level and uniform du-
ration per segment at each level.

Preprocessing The Porter (1980) stemming algo-
rithm is applied to group equivalent lexical items. A
set of stop-words is also removed, using the same

359



chapter section average
# segs Pk WD # segs Pk WD Pk WD

HIERBAYES 5.0 .248 .255 8.5 .312 .351 .280 .303
GREEDY-BAYES 19.0 .260 .372 19.5 .275 .340 .268 .356
GREEDY-LCSEG 7.8 .256 .286 52.2 .351 .455 .304 .371
GREEDY-TEXTSEG 11.5 .251 .277 88.4 .473 .630 .362 .454
UNIFORM 12.5 .487 .491 43.3 .505 .551 .496 .521

Table 1: Segmentation accuracy and granularity. Both the Pk and WindowDiff (WD) metrics are penalties, so lower
scores are better. The # segs columns indicate the average number of segments at each level; the gold standard
segmentation granularity is given in the UNIFORM row, which obtains this granularity by construction.

list originally employed by several competitive sys-
tems (Utiyama and Isahara, 2001).

6 Results

Table 1 presents performance results for the joint
hierarchical segmenter and the three greedy base-
lines. As shown in the table, the hierarchical system
achieves the top overall performance on the harsher
WindowDiff metric. In general, the greedy seg-
menters each perform well at one of the two levels
and poorly at the other level. The joint hierarchical
inference of HIERBAYES enables it to achieve bal-
anced performance at the two levels.

The GREEDY-BAYES system achieves a slightly
better average Pk than HIERBAYES, but has a very
large gap between its Pk and WindowDiff scores.
The Pk metric requires only that the system cor-
rectly classify whether two points are in the same
or different segments, while the WindowDiff metric
insists that the exact number of interposing segments
be identified correctly. Thus, the generation of spu-
rious short segments may explain the gap between
the metrics.

LCSEG and TEXTSEG use heuristics to deter-
mine segmentation granularity; even though these
methods did not score well in terms of segmentation
accuracy, they were generally closer to the correct
granularity. In the Bayesian methods, granularity
is enforced by the Markov prior described in Sec-
tion 3.2. This prior was particularly ineffective for
GREEDY-BAYES, which gave nearly the same num-
ber of segments at both levels, despite the different
settings of the expected duration parameter d.

The Dirichlet prior α was selected automatically,
but informal experiments with manual settings sug-
gest that this parameter exerts a stronger influence

on segmentation granularity. Low settings reflect an
expectation of sparse lexical counts and thus encour-
age short segments, while high settings reflect an ex-
pectation of evenly-distributed counts and thus lead
to long segments. Further investigation is needed
on how best to control segmentation granularity in a
Bayesian setting.

7 Discussion

While it is widely agreed that language often dis-
plays hierarchical topic structure (Grosz, 1977),
there have been relatively few attempts to extract
such structure automatically. This paper shows
that the lexical features that have been successfully
exploited in linear segmentation can also be used
to extract a hierarchical segmentation, due to the
phenomenon of multi-scale lexical cohesion. The
Bayesian methodology offers a principled proba-
bilistic formalization of multi-scale cohesion, yield-
ing an accurate and fast segmentation algorithm with
a minimal set of tunable parameters.

It is interesting to consider how multi-scale seg-
mentation might be extended to finer-grain seg-
ments, such as paragraphs. The lexical counts at the
paragraph level will be sparse, so lexical cohesion
alone is unlikely to be sufficient. Rather it may be
necessary to model discourse connectors and lexical
semantics explicitly. The development of more com-
prehensive Bayesian models for discourse structure
seems an exciting direction for future research.
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Abstract

We present an exploration of generative prob-
abilistic models for multi-document summa-
rization. Beginning with a simple word fre-
quency based model (Nenkova and Vander-
wende, 2005), we construct a sequence of
models each injecting more structure into the
representation of document set content and ex-
hibiting ROUGE gains along the way. Our
final model, HIERSUM, utilizes a hierarchi-
cal LDA-style model (Blei et al., 2004) to
represent content specificity as a hierarchy of
topic vocabulary distributions. At the task
of producing generic DUC-style summaries,
HIERSUM yields state-of-the-art ROUGE per-
formance and in pairwise user evaluation
strongly outperforms Toutanova et al. (2007)’s
state-of-the-art discriminative system. We
also explore HIERSUM’s capacity to produce
multiple ‘topical summaries’ in order to facil-
itate content discovery and navigation.

1 Introduction

Over the past several years, there has been much in-
terest in the task of multi-document summarization.
In the common Document Understanding Confer-
ence (DUC) formulation of the task, a system takes
as input a document set as well as a short descrip-
tion of desired summary focus and outputs a word
length limited summary.1 To avoid the problem of
generating cogent sentences, many systems opt for
an extractive approach, selecting sentences from the
document set which best reflect its core content.2

1In this work, we ignore the summary focus. Here, the word
topic will refer to elements of our statistical model rather than
summary focus.

2Note that sentence extraction does not solve the problem of
selecting and ordering summary sentences to form a coherent

There are several approaches to modeling docu-
ment content: simple word frequency-based meth-
ods (Luhn, 1958; Nenkova and Vanderwende,
2005), graph-based approaches (Radev, 2004; Wan
and Yang, 2006), as well as more linguistically mo-
tivated techniques (Mckeown et al., 1999; Leskovec
et al., 2005; Harabagiu et al., 2007). Another strand
of work (Barzilay and Lee, 2004; Daumé III and
Marcu, 2006; Eisenstein and Barzilay, 2008), has
explored the use of structured probabilistic topic
models to represent document content. However, lit-
tle has been done to directly compare the benefit of
complex content models to simpler surface ones for
generic multi-document summarization.

In this work we examine a series of content
models for multi-document summarization and ar-
gue that LDA-style probabilistic topic models (Blei
et al., 2003) can offer state-of-the-art summariza-
tion quality as measured by automatic metrics (see
section 5.1) and manual user evaluation (see sec-
tion 5.2). We also contend that they provide con-
venient building blocks for adding more structure
to a summarization model. In particular, we uti-
lize a variation of the hierarchical LDA topic model
(Blei et al., 2004) to discover multiple specific ‘sub-
topics’ within a document set. The resulting model,
HIERSUM (see section 3.4), can produce general
summaries as well as summaries for any of the
learned sub-topics.

2 Experimental Setup

The task we will consider is extractive multi-
document summarization. In this task we assume
a document collection D consisting of documents
D1, . . . , Dn describing the same (or closely related)

narrative (Lapata, 2003).
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set of events. Our task will be to propose a sum-
mary S consisting of sentences inD totaling at most
L words.3 Here as in much extractive summariza-
tion, we will view each sentence as a bag-of-words
or more generally a bag-of-ngrams (see section 5.1).
The most prevalent example of this data setting is
document clusters found on news aggregator sites.

2.1 Automated Evaluation
For model development we will utilize the DUC
2006 evaluation set4 consisting of 50 document sets
each with 25 documents; final evaluation will utilize
the DUC 2007 evaluation set (section 5).

Automated evaluation will utilize the standard
DUC evaluation metric ROUGE (Lin, 2004) which
represents recall over various n-grams statistics from
a system-generated summary against a set of human-
generated peer summaries.5 We compute ROUGE
scores with and without stop words removed from
peer and proposed summaries. In particular, we
utilize R-1 (recall against unigrams), R-2 (recall
against bigrams), and R-SU4 (recall against skip-4
bigrams)6. We present R-2 without stop words in the
running text, but full development results are pre-
sented in table 1. Official DUC scoring utilizes the
jackknife procedure and assesses significance using
bootstrapping resampling (Lin, 2004). In addition to
presenting automated results, we also present a user
evaluation in section 5.2.

3 Summarization Models

We present a progression of models for multi-
document summarization. Inference details are
given in section 4.

3.1 SumBasic
The SUMBASIC algorithm, introduced in Nenkova
and Vanderwende (2005), is a simple effective pro-
cedure for multi-document extractive summariza-
tion. Its design is motivated by the observation that
the relative frequency of a non-stop word in a doc-
ument set is a good predictor of a word appearing
in a human summary. In SUMBASIC, each sentence

3For DUC summarization tasks, L is typically 250.
4http://www-nlpir.nist.gov/projects/duc/data.html
5All words from peer and proposed summaries are lower-

cased and stemmed.
6Bigrams formed by skipping at most two words.

S is assigned a score reflecting how many high-
frequency words it contains,

Score(S) =
∑

w∈S

1
|S|PD(w) (1)

where PD(·) initially reflects the observed unigram
probabilities obtained from the document collection
D. A summary S is progressively built by adding
the highest scoring sentence according to (1).7

In order to discourage redundancy, the words
in the selected sentence are updated PnewD (w) ∝
P oldD (w)2. Sentences are selected in this manner un-
til the summary word limit has been reached.

Despite its simplicity, SUMBASIC yields 5.3 R-2
without stop words on DUC 2006 (see table 1).8 By
comparison, the highest-performing ROUGE sys-
tem at the DUC 2006 evaluation, SUMFOCUS, was
built on top of SUMBASIC and yielded a 6.0, which
is not a statistically significant improvement (Van-
derwende et al., 2007).9

Intuitively, SUMBASIC is trying to select a sum-
mary which has sentences where most words have
high likelihood under the document set unigram dis-
tribution. One conceptual problem with this objec-
tive is that it inherently favors repetition of frequent
non-stop words despite the ‘squaring’ update. Ide-
ally, a summarization criterion should be more recall
oriented, penalizing summaries which omit moder-
ately frequent document set words and quickly di-
minishing the reward for repeated use of word.

Another more subtle shortcoming is the use of the
raw empirical unigram distribution to represent con-
tent significance. For instance, there is no distinc-
tion between a word which occurs many times in the
same document or the same number of times across
several documents. Intuitively, the latter word is
more indicative of significant document set content.

3.2 KLSum
The KLSUM algorithm introduces a criterion for se-
lecting a summary S given document collection D,

S∗ = min
S:words(S)≤L

KL(PD‖PS) (2)

7Note that sentence order is determined by the order in
which sentences are selected according to (1).

8This result is presented as 0.053 with the official ROUGE
scorer (Lin, 2004). Results here are scaled by 1,000.

9To be fair obtaining statistical significance in ROUGE
scores is quite difficult.

363



φB Z

W

φC

φD

ψt

Document Set

Document

Sentence

Word

Figure 1: Graphical model depiction of TOPIC-
SUM model (see section 3.3). Note that many hyper-
parameter dependencies are omitted for compactness.

where PS is the empirical unigram distribution of
the candidate summary S and KL(P‖Q) repre-
sents the Kullback-Lieber (KL) divergence given by∑
w P (w) log P (w)

Q(w) .10 This quantity represents the
divergence between the true distribution P (here the
document set unigram distribution) and the approx-
imating distribution Q (the summary distribution).
This criterion casts summarization as finding a set
of summary sentences which closely match the doc-
ument set unigram distribution. Lin et al. (2006)
propose a related criterion for robust summarization
evaluation, but to our knowledge this criteria has
been unexplored in summarization systems. We ad-
dress optimizing equation (2) as well as summary
sentence ordering in section 4.

KLSUM yields 6.0 R-2 without stop words, beat-
ing SUMBASIC but not with statistical significance. It
is worth noting however that KLSUM’s performance
matches SUMFOCUS (Vanderwende et al., 2007), the
highest R-2 performing system at DUC 2006.

3.3 TopicSum

As mentioned in section 3.2, the raw unigram dis-
tribution PD(·) may not best reflect the content of
D for the purpose of summary extraction. We
propose TOPICSUM, which uses a simple LDA-like
topic model (Blei et al., 2003) similar to Daumé
III and Marcu (2006) to estimate a content distribu-

10In order to ensure finite values of KL-divergence we
smoothe PS(·) so that it has a small amount of mass on all doc-
ument set words.

System ROUGE -stop ROUGE all
R-1 R-2 R-SU4 R-1 R-2 R-SU4

SUMBASIC 29.6 5.3 8.6 36.1 7.1 12.3
KLSUM 30.6 6.0 8.9 38.9 8.3 13.7

TOPICSUM 31.7 6.3 9.1 39.2 8.4 13.6
HIERSUM 30.5 6.4 9.2 40.1 8.6 14.3

Table 1: ROUGE results on DUC2006 for models pre-
sented in section 3. Results in bold represent results sta-
tistically significantly different from SUMBASIC in the
appropriate metric.

tion for summary extraction.11 We extract summary
sentences as before using the KLSUM criterion (see
equation (2)), plugging in a learned content distribu-
tion in place of the raw unigram distribution.

First, we describe our topic model (see figure 1)
which generates a collection of document sets. We
assume a fixed vocabulary V :12

1. Draw a background vocabulary distribution φB
from DIRICHLET(V ,λB) shared across docu-
ment collections13 representing the background
distribution over vocabulary words. This distri-
bution is meant to flexibly model stop words
which do not contribute content. We will refer
to this topic as BACKGROUND.

2. For each document set D, we draw a content
distribution φC from DIRICHLET(V ,λC) repre-
senting the significant content of D that we
wish to summarize. We will refer to this topic
as CONTENT.

3. For each document D in D, we draw a
document-specific vocabulary distribution φD
from DIRICHLET(V ,λD) representing words
which are local to a single document, but do
not appear across several documents. We will
refer to this topic as DOCSPECIFIC.

11A topic model is a probabilistic generative process that gen-
erates a collection of documents using a mixture of topic vo-
cabulary distributions (Steyvers and Griffiths, 2007). Note this
usage of topic is unrelated to the summary focus given for doc-
ument collections; this information is ignored by our models.

12In contrast to previous models, stop words are not removed
in pre-processing.

13DIRICHLET(V ,λ) represents the symmetric Dirichlet
prior distribution over V each with a pseudo-count of λ. Con-
crete pseudo-count values will be given in section 4.
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{ star: 0.21, wars: 0.15, phantom: 0.10, ... }  

General Content Topic φC1

{ $: 0.39, million: 0.15, record: 0.8, ... }  

Specific Content Topic               "Financial"φC1

{ toys: 0.22, spend: 0.18, sell: 0.10, ... }  

{ fans: 0.16, line: 0.12, film: 0.09, ... }  

Specific Content Topic               "Merchandise"

Specific Content Topic               "Fans"

φC2

φC3

Document Set
φC0

φCKφC1

ZS

φD

Document

Sentence

Word

Z

W

ψT

ψG

.........

φB

(a) Content Distributions (b) HIERSUM Graphical Model

Figure 2: (a): Examples of general versus specific content distributions utilized by HIERSUM (see section 3.4). The
general content distribution φC0 will be used throughout a document collection and represents core concepts in a
story. The specific content distributions represent topical ‘sub-stories’ with vocabulary tightly clustered together but
consistently used across documents. Quoted names of specific topics are given manually to facilitate interpretation. (b)
Graphical model depiction of the HIERSUM model (see section 3.4). Similar to the TOPICSUM model (see section 3.3)
except for adding complexity in the content hierarchy as well as sentence-specific prior distributions between general
and specific content topics (early sentences should have more general content words). Several dependencies are
missing from this depiction; crucially, each sentence’s specific topic ZS depends on the last sentence’s ZS .

4. For each sentence S of each document
D, draw a distribution ψT over topics
(CONTENT,DOCSPECIFIC, BACKGROUND)
from a Dirichlet prior with pseudo-counts
(1.0, 5.0, 10.0).14 For each word position in
the sentence, we draw a topic Z from ψT ,
and a word W from the topic distribution Z
indicates.

Our intent is that φC represents the core con-
tent of a document set. Intuitively, φC does
not include words which are common amongst
several document collections (modeled with the
BACKGROUND topic), or words which don’t appear
across many documents (modeled with the DOCSPE-
CIFIC topic). Also, because topics are tied together
at the sentence level, words which frequently occur
with other content words are more likely to be con-
sidered content words.

We ran our topic model over the DUC 2006
document collections and estimated the distribution
φC(·) for each document set.15 Then we extracted

14The different pseudo-counts reflect the intuition that most
of the words in a document come from the BACKGROUND and
DOCSPECIFIC topics.

15While possible to obtain the predictive posterior CON-

a summary using the KLSUM criterion with our es-
timated φC in place of the the raw unigram distribu-
tion. Doing so yielded 6.3 R-2 without stop words
(see TOPICSUM in table 1); while not a statistically
significant improvement over KLSUM, it is our first
model which outperforms SUMBASIC with statistical
significance.

Daumé III and Marcu (2006) explore a topic
model similar to ours for query-focused multi-
document summarization.16 Crucially however,
Daumé III and Marcu (2006) selected sentences with
the highest expected number of CONTENT words.17

We found that in our model using this extraction
criterion yielded 5.3 R-2 without stop words, sig-
nificantly underperforming our TOPICSUM model.
One reason for this may be that Daumé III and
Marcu (2006)’s criterion encourages selecting sen-
tences which have words that are confidently gener-
ated by the CONTENT distribution, but not necessar-
ily sentences which contain a plurality of it’s mass.

TENT distribution by analytically integrating over φC (Blei et
al., 2003), doing so gave no benefit.

16Daumé III and Marcu (2006) note their model could be
used outside of query-focused summarization.

17This is phrased as selecting the sentence which has the
highest posterior probability of emitting CONTENT topic
words, but this is equivalent.
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(a) HIERSUM output
The French government
Saturday announced sev-
eral emergency measures
to support the jobless
people, including sending
an additional 500 million
franc (84 million U.S. dol-
lars) unemployment aid
package. The unem-
ployment rate in France
dropped by 0.3 percent
to stand at 12.4 percent
in November, said the
Ministry of Employment
Tuesday.

(b) PYTHY output
Several hundred people
took part in the demon-
stration here today against
the policies of the world’s
most developed nations.
The 12.5 percent unem-
ployment rate is haunt-
ing the Christmas sea-
son in France as militants
and unionists staged sev-
eral protests over the past
week against unemploy-
ment.

(c) Ref output
High unemployment is
France’s main economic
problem, despite recent
improvements. A top
worry of French people,
it is a factor affecting
France’s high suicide rate.
Long-term unemployment
causes social exclusion
and threatens France’s
social cohesion.

(d) Reference Unigram Coverage
word Ref PYTHY HIERSUM

unemployment 8 9 10
france’s 6 1 4
francs 4 0 1
high 4 1 2

economic 2 0 1
french 2 1 3

problem 2 0 1
benefits 2 0 0
social 2 0 2
jobless 2 1 2

Table 2: Example summarization output for systems compared in section 5.2. (a), (b), and (c) represent the first two
sentences output from PYTHY, HIERSUM, and reference summary respectively. In (d), we present the most frequent
non-stop unigrams appearing in the reference summary and their counts in the PYTHY and HIERSUM summaries.
Note that many content words in the reference summary absent from PYTHY’s proposal are present in HIERSUM’s.

3.4 HIERSUM

Previous sections have treated the content of a doc-
ument set as a single (perhaps learned) unigram dis-
tribution. However, as Barzilay and Lee (2004) ob-
serve, the content of document collections is highly
structured, consisting of several topical themes, each
with its own vocabulary and ordering preferences.
For concreteness consider the DUC 2006 docu-
ment collection describing the opening of Star Wars:
Episode 1 (see figure 2(a)).

While there are words which indicate the general
content of this document collection (e.g. star, wars),
there are several sub-stories with their own specific
vocabulary. For instance, several documents in this
collection spend a paragraph or two talking about
the financial aspect of the film’s opening and use a
specific vocabulary there (e.g. $, million, record). A
user may be interested in general content of a docu-
ment collection or, depending on his or her interests,
one or more of the sub-stories. We choose to adapt
our topic modeling approach to allow modeling this
aspect of document set content.

Rather than drawing a single CONTENT distribu-
tion φC for a document collection, we now draw
a general content distribution φC0 from DIRICH-
LET(V ,λG) as well as specific content distribu-
tions φCi for i = 1, . . . ,K each from DIRICH-
LET(V ,λS).18 Our intent is that φC0 represents the

18We choose K=3 in our experiments, but one could flexibly

general content of the document collection and each
φCi represents specific sub-stories.

As with TOPICSUM, each sentence
has a distribution ψT over topics
(BACKGROUND,DOCSPECIFIC, CONTENT). When
BACKGROUND or DOCSPECIFIC topics are chosen,
the model works exactly as in TOPICSUM. However
when the CONTENT topic is drawn, we must decide
whether to emit a general content word (from φC0)
or from one of the specific content distributions
(from one of φCi for i = 1, . . . ,K). The generative
story of TOPICSUM is altered as follows in this case:

• General or Specific? We must first decide
whether to use a general or specific content
word. Each sentence draws a binomial distribu-
tion ψG determining whether a CONTENT word
in the sentence will be drawn from the general
or a specific topic distribution. Reflecting the
intuition that the earlier sentences in a docu-
ment19 describe the general content of a story,
we bias ψG to be drawn from BETA(5,2), pre-
ferring general content words, and every later
sentence from BETA(1,2).20

• What Specific Topic? If ψG decides we are

choose K as Blei et al. (2004) does.
19In our experiments, the first 5 sentences.
20BETA(a,b) represents the beta prior over binomial random

variables with a and b being pseudo-counts for the first and sec-
ond outcomes respectively.
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emitting a topic specific content word, we must
decide which of φC1 , . . . , φCK

to use. In or-
der to ensure tight lexical cohesion amongst the
specific topics, we assume that each sentence
draws a single specific topic ZS used for every
specific content word in that sentence. Reflect-
ing intuition that adjacent sentences are likely
to share specific content vocabulary, we uti-
lize a ‘sticky’ HMM as in Barzilay and Lee
(2004) over the each sentences’ ZS . Con-
cretely, ZS for the first sentence in a docu-
ment is drawn uniformly from 1, . . . ,K, and
each subsequent sentence’s ZS will be identi-
cal to the previous sentence with probability σ,
and with probability 1 − σ we select a succes-
sor topic from a learned transition distribution
amongst 1, . . . ,K.21

Our intent is that the general content distribution
φC0 now prefers words which not only appear in
many documents, but also words which appear con-
sistently throughout a document rather than being
concentrated in a small number of sentences. Each
specific content distribution φCi is meant to model
topics which are used in several documents but tend
to be used in concentrated locations.

HIERSUM can be used to extract several kinds
of summaries. It can extract a general summary
by plugging φC0 into the KLSUM criterion. It can
also produce topical summaries for the learned spe-
cific topics by extracting a summary over each φCi

distribution; this might be appropriate for a user
who wants to know more about a particular sub-
story. While we found the general content distribu-
tion (from φC0) to produce the best single summary,
we experimented with utilizing topical summaries
for other summarization tasks (see section 6.1). The
resulting system, HIERSUM yielded 6.4 R-2 without
stop words. While not a statistically significant im-
provement in ROUGE over TOPICSUM, we found the
summaries to be noticeably improved.

4 Inference and Model Details

Since globally optimizing the KLSUM criterion in
equation (equation (2)) is exponential in the total
number of sentences in a document collection, we

21We choose σ = 0.75 in our experiments.

opted instead for a simple approximation where sen-
tences are greedily added to a summary so long as
they decrease KL-divergence. We attempted more
complex inference procedures such as McDonald
(2007), but these attempts only yielded negligible
performance gains. All summary sentence order-
ing was determined as follows: each sentence in the
proposed summary was assigned a number in [0, 1]
reflecting its relative sentence position in its source
document, and sorted by this quantity.

All topic models utilize Gibbs sampling for in-
ference (Griffiths, 2002; Blei et al., 2004). In gen-
eral for concentration parameters, the more specific
a distribution is meant to be, the smaller its con-
centration parameter. Accordingly for TOPICSUM,
λG = λD = 1 and λC = 0.1. For HIERSUM we
used λG = 0.1 and λS = 0.01. These parameters
were minimally tuned (without reference to ROUGE
results) in order to ensure that all topic distribution
behaved as intended.

5 Formal Experiments

We present formal experiments on the DUC 2007
data main summarization task, proposing a general
summary of at most 250 words22 which will be eval-
uated automatically and manually in order to simu-
late as much as possible the DUC evaluation envi-
ronment.23 DUC 2007 consists of 45 document sets,
each consisting of 25 documents and 4 human refer-
ence summaries.

We primarily evaluate the HIERSUM model, ex-
tracting a single summary from the general con-
tent distribution using the KLSUM criterion (see sec-
tion 3.2). Although the differences in ROUGE be-
tween HIERSUM and TOPICSUM were minimal, we
found HIERSUM summary quality to be stronger.

In order to provide a reference for ROUGE
and manual evaluation results, we compare against
PYTHY, a state-of-the-art supervised sentence ex-
traction summarization system. PYTHY uses human-
generated summaries in order to train a sentence
ranking system which discriminatively maximizes

22Since the ROUGE evaluation metric is recall-oriented, it is
always advantageous - with respect to ROUGE - to use all 250
words.

23Although the DUC 2007 main summarization task provides
an indication of user intent through topic focus queries, we ig-
nore this aspect of the data.
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System ROUGE w/o stop ROUGE w/ stop
R-1 R-2 R-SU4 R-1 R-2 R-SU4

HIERSUM unigram 34.6 7.3 10.4 43.1 9.7 15.3
HIERSUM bigram 33.8 9.3 11.6 42.4 11.8 16.7
PYTHY w/o simp 34.7 8.7 11.8 42.7 11.4 16.5
PYTHY w/ simp 35.7 8.9 12.1 42.6 11.9 16.8

Table 3: Formal ROUGE experiment results on DUC 2007 document set collection (see section 5.1). While HIER-
SUM unigram underperforms both PYTHY systems in statistical significance (for R-2 and RU-4 with and without stop
words), HIERSUM bigram’s performance is comparable and statistically no worse.

ROUGE scores. PYTHY uses several features to
rank sentences including several variations of the
SUMBASIC score (see section 3.1). At DUC 2007,
PYTHY was ranked first overall in automatic ROUGE
evaluation and fifth in manual content judgments.
As PYTHY utilizes a sentence simplification com-
ponent, which we do not, we also compare against
PYTHY without sentence simplification.

5.1 ROUGE Evaluation
ROUGE results comparing variants of HIERSUM and
PYTHY are given in table 3. The HIERSUM system
as described in section 3.4 yields 7.3 R-2 without
stop words, falling significantly short of the 8.7 that
PYTHY without simplification yields. Note that R-2
is a measure of bigram recall and HIERSUM does not
represent bigrams whereas PYTHY includes several
bigram and higher order n-gram statistics.

In order to put HIERSUM and PYTHY on equal-
footing with respect to R-2, we instead ran HIER-
SUM with each sentence consisting of a bag of bi-
grams instead of unigrams.24 All the details of the
model remain the same. Once a general content
distribution over bigrams has been determined by
hierarchical topic modeling, the KLSUM criterion
is used as before to extract a summary. This sys-
tem, labeled HIERSUM bigram in table 3, yields 9.3
R-2 without stop words, significantly outperform-
ing HIERSUM unigram. This model outperforms
PYTHY with and without sentence simplification, but
not with statistical significance. We conclude that
both PYTHY variants and HIERSUM bigram are com-
parable with respect to ROUGE performance.

24Note that by doing topic modeling in this way over bi-
grams, our model becomes degenerate as it can generate incon-
sistent bags of bigrams. Future work may look at topic models
over n-grams as suggested by Wang et al. (2007).

Question PYTHY HIERSUM

Overall 20 49
Non-Redundancy 21 48

Coherence 15 54
Focus 28 41

Table 4: Results of manual user evaluation (see sec-
tion 5.2). 15 participants expressed 69 pairwise prefer-
ences between HIERSUM and PYTHY. For all attributes,
HIERSUM outperforms PYTHY; all results are statisti-
cally significant as determined by pairwise t-test.

5.2 Manual Evaluation

In order to obtain a more accurate measure of sum-
mary quality, we performed a simple user study. For
each document set in the DUC 2007 collection, a
user was given a reference summary, a PYTHY sum-
mary, and a HIERSUM summary;25 note that the orig-
inal documents in the set were not provided to the
user, only a reference summary. For this experiment
we use the bigram variant of HIERSUM and compare
it to PYTHY without simplification so both systems
have the same set of possible output summaries.

The reference summary for each document set
was selected according to highest R-2 without stop
words against the remaining peer summaries. Users
were presented with 4 questions drawn from the
DUC manual evaluation guidelines:26 (1) Overall
quality: Which summary was better overall? (2)
Non-Redundancy: Which summary was less redun-
dant? (3) Coherence: Which summary was more
coherent? (4) Focus: Which summary was more

25The system identifier was of course not visible to the user.
The order of automatic summaries was determined randomly.

26http://www-nlpir.nist.gov/projects/duc/duc2007/quality-
questions.txt
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Figure 3: Using HIERSUM to organize content of document set into topics (see section 6.1). The sidebar gives key
phrases salient in each of the specific content topics in HIERSUM (see section 3.4). When a topic is clicked in the right
sidebar, the main frame displays an extractive ‘topical summary’ with links into document set articles. Ideally, a user
could use this interface to quickly find content in a document collection that matches their interest.

focused in its content, not conveying irrelevant de-
tails? The study had 16 users and each was asked
to compare five summary pairs, although some did
fewer. A total of 69 preferences were solicited. Doc-
ument collections presented to users were randomly
selected from those evaluated fewest.

As seen in table 5.2, HIERSUM outperforms
PYTHY under all questions. All results are statis-
tically significant as judged by a simple pairwise
t-test with 95% confidence. It is safe to conclude
that users in this study strongly preferred the HIER-
SUM summaries over the PYTHY summaries.

6 Discussion

While it is difficult to qualitatively compare one
summarization system over another, we can broadly
characterize HIERSUM summaries compared to some
of the other systems discussed. For example out-
put from HIERSUM and PYTHY see table 2. On the
whole, HIERSUM summaries appear to be signifi-
cantly less redundant than PYTHY and moderately
less redundant than SUMBASIC. The reason for this
might be that PYTHY is discriminatively trained to
maximize ROUGE which does not directly penalize
redundancy. Another tendency is for HIERSUM to se-
lect longer sentences typically chosen from an early
sentence in a document. As discussed in section 3.4,
HIERSUM is biased to consider early sentences in
documents have a higher proportion of general con-
tent words and so this tendency is to be expected.

6.1 Content Navigation

A common concern in multi-document summariza-
tion is that without any indication of user interest or
intent providing a single satisfactory summary to a
user may not be feasible. While many variants of
the general summarization task have been proposed
which utilize such information (Vanderwende et al.,
2007; Nastase, 2008), this presupposes that a user
knows enough of the content of a document collec-
tion in order to propose a query.

As Leuski et al. (2003) and Branavan et al. (2007)
suggest, a document summarization system should
facilitate content discovery and yield summaries rel-
evant to a user’s interests. We may use HIERSUM in
order to facilitate content discovery via presenting
a user with salient words or phrases from the spe-
cific content topics parametrized by φC1 , . . . , φCK

(for an example see figure 3). While these topics are
not adaptive to user interest, they typically reflect
lexically coherent vocabularies.

Conclusion

In this paper we have presented an exploration of
content models for multi-document summarization
and demonstrated that the use of structured topic
models can benefit summarization quality as mea-
sured by automatic and manual metrics.
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Abstract

We present a novel Bayesian topic model for
learning discourse-level document structure.
Our model leverages insights from discourse
theory to constrain latent topic assignments in
a way that reflects the underlying organiza-
tion of document topics. We propose a global
model in which both topic selection and order-
ing are biased to be similar across a collection
of related documents. We show that this space
of orderings can be elegantly represented us-
ing a distribution over permutations called the
generalized Mallows model. Our structure-
aware approach substantially outperforms al-
ternative approaches for cross-document com-
parison and single-document segmentation.1

1 Introduction

In this paper, we introduce a novel latent topic model
for the unsupervised learning of document structure.
Traditional topic models assume that topics are ran-
domly spread throughout a document, or that the
succession of topics in a document is Markovian.
In contrast, our approach takes advantage of two
important discourse-level properties of text in de-
termining topic assignments: first, that each docu-
ment follows a progression of nonrecurring coher-
ent topics (Halliday and Hasan, 1976); and sec-
ond, that documents from the same domain tend
to present similar topics, in similar orders (Wray,
2002). We show that a topic model incorporat-
ing these long-range dependencies outperforms al-

1Code, data, and annotations used in this work are available
at http://groups.csail.mit.edu/rbg/code/mallows/

ternative approaches for segmentation and cross-
document comparison.

For example, consider a collection of encyclope-
dia articles about cities. The first constraint captures
the notion that a single topic, such as Architecture,
is expressed in a contiguous block within the docu-
ment, rather than spread over disconnected sections.
The second constraint reflects our intuition that all
of these related articles will generally mention some
major topics associated with cities, such as History
and Culture, and will often exhibit similar topic or-
derings, such as placing History before Culture.

We present a Bayesian latent topic model over re-
lated documents that encodes these discourse con-
straints by positing a single distribution over a doc-
ument’s entire topic structure. This global view on
ordering is able to elegantly encode discourse-level
properties that would be difficult to represent using
local dependencies, such as those induced by hid-
den Markov models. Our model enforces that the
same topic does not appear in disconnected portions
of the topic sequence. Furthermore, our approach
biases toward selecting sequences with similar topic
ordering, by modeling a distribution over the space
of topic permutations.

Learning this ordering distribution is a key tech-
nical challenge in our proposed approach. For this
purpose, we employ the generalized Mallows model,
a permutation distribution that concentrates proba-
bility mass on a small set of similar permutations.
It directly captures the intuition of the second con-
straint, and uses a small parameter set to control how
likely individual topics are to be reordered.

We evaluate our model on two challenging
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document-level tasks. In the alignment task, we aim
to discover paragraphs across different documents
that share the same topic. We also consider the seg-
mentation task, where the goal is to partition each
document into a sequence of topically coherent seg-
ments. We find that our structure modeling approach
substantially outperforms state-of-the-art baselines
for both tasks. Furthermore, we demonstrate the im-
portance of explicitly modeling a distribution over
topic permutations; our model yields significantly
better results than variants that either use a fixed or-
dering, or are order-agnostic.

2 Related Work

Topic and Content Models Our work is grounded
in topic modeling approaches, which posit that la-
tent state variables control the generation of words.
In earlier topic modeling work such as latent Dirich-
let allocation (LDA) (Blei et al., 2003; Griffiths and
Steyvers, 2004), documents are treated as bags of
words, where each word receives a separate topic
assignment; the topic assignments are auxiliary vari-
ables to the main task of language modeling.

More recent work has attempted to adapt the con-
cepts of topic modeling to more sophisticated repre-
sentations than a bag of words; they use these rep-
resentations to impose stronger constraints on topic
assignments (Griffiths et al., 2005; Wallach, 2006;
Purver et al., 2006; Gruber et al., 2007). These
approaches, however, generally model Markovian
topic or state transitions, which only capture lo-
cal dependencies between adjacent words or blocks
within a document. For instance, content mod-
els (Barzilay and Lee, 2004; Elsner et al., 2007)
are implemented as HMMs, where the states cor-
respond to topics of domain-specific information,
and transitions reflect pairwise ordering prefer-
ences. Even approaches that break text into con-
tiguous chunks (Titov and McDonald, 2008) as-
sign topics based on local context. While these
locally constrained models can implicitly reflect
some discourse-level constraints, they cannot cap-
ture long-range dependencies without an explosion
of the parameter space. In contrast, our model cap-
tures the entire sequence of topics using a compact
representation. As a result, we can explicitly and
tractably model global discourse-level constraints.

Modeling Ordering Constraints Sentence order-
ing has been extensively studied in the context of
probabilistic text modeling for summarization and
generation (Barzilay et al., 2002; Lapata, 2003;
Karamanis et al., 2004). The emphasis of that body
of work is on learning ordering constraints from
data, with the goal of reordering new text from the
same domain. Our emphasis, however, is on ap-
plications where ordering is already observed, and
how that ordering can improve text analysis. From
the methodological side, that body of prior work is
largely driven by local pairwise constraints, while
we aim to encode global constraints.

3 Problem Formulation

Our document structure learning problem can be for-
malized as follows. We are given a corpus of D
related documents. Each document expresses some
subset of a common set of K topics. We assign a
single topic to each paragraph,2 incorporating the
notion that paragraphs are internally topically con-
sistent (Halliday and Hasan, 1976). To capture the
discourse constraint on topic progression described
in Section 1, we require that topic assignments be
contiguous within each document.3 Furthermore,
we assume that the underlying topic sequences ex-
hibit similarity across documents. Our goal is to re-
cover a topic assignment for each paragraph in the
corpus, subject to these constraints.

Our formulation shares some similarity with the
standard LDA setup, in that a common set of topics
is assigned across a collection of documents. How-
ever, in LDA each word’s topic assignment is con-
ditionally independent, following the bag of words
view of documents. In contrast, our constraints on
how topics are assigned let us connect word distri-
butional patterns to document-level topic structure.

4 Model

We propose a generative Bayesian model that ex-
plains how a corpus of D documents, given as se-
quences of paragraphs, can be produced from a set
of hidden topic variables. Topic assignments to each

2Note that our analysis applies equally to other levels of tex-
tual granularity, such as sentences.

3That is, if paragraphs i and j are assigned the same topic,
every paragraph between them must have that topic.
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paragraph, ranging from 1 to K, are the model’s
final output, implicitly grouping topically similar
paragraphs. At a high level, the process first selects
the bag of topics to be expressed in the document,
and how they are ordered; these topics then deter-
mine the selection of words for each paragraph.

For each document dwithNd paragraphs, we sep-
arately generate a bag of topics td and a topic order-
ing πd. The unordered bag of topics, which contains
Nd elements, expresses how many paragraphs of the
document are assigned to each of theK topics. Note
that some topics may not appear at all. Variable td
is constructed by taking Nd samples from a distri-
bution over topics τ , a multinomial representing the
probability of each topic being expressed. Sharing
τ between documents captures the intuition that cer-
tain topics are more likely across the entire corpus.

The topic ordering variable πd is a permutation
over the numbers 1 through K that defines the order
in which topics appear in the document. We draw πd
from the generalized Mallows model, a distribution
over permutations that we explain in Section 4.1. As
we will see, this particular distribution biases the
permutation selection to be close to a single cen-
troid, reflecting the discourse constraint of prefer-
ring similar topic structures across documents.

Together, a document’s bag of topics td and or-
dering πd determine the topic assignment zd,p for
each of its paragraphs. For example, in a corpus
with K = 4, a seven-paragraph document d with
td = {1, 1, 1, 1, 2, 4, 4} and πd = (2 4 3 1) would
induce the topic sequence zd = (2 4 4 1 1 1 1). The
induced topic sequence zd can never assign the same
topic to two unconnected portions of a document,
thus satisfying the constraint of topic contiguity.

As with LDA, we assume that each topic k is as-
sociated with a language model θk. The words of a
paragraph assigned to topic k are then drawn from
that topic’s language model θk.

Before turning to a more formal discussion of the
generative process, we first provide background on
the permutation model for topic ordering.

4.1 The Generalized Mallows Model
A central challenge of the approach we take is mod-
eling the distribution over possible topic permuta-
tions. For this purpose we use the generalized Mal-
lows model (GMM) (Fligner and Verducci, 1986;

Lebanon and Lafferty, 2002; Meilă et al., 2007),
which exhibits two appealing properties in the con-
text of this task. First, the model concentrates proba-
bility mass on some “canonical” ordering and small
perturbations of that ordering. This characteris-
tic matches our constraint that documents from the
same domain exhibit structural similarity. Second,
its parameter set scales linearly with the permuta-
tion length, making it sufficiently constrained and
tractable for inference. In general, this distribution
could potentially be applied to other NLP applica-
tions where ordering is important.

Permutation Representation Typically, permuta-
tions are represented directly as an ordered sequence
of elements. The GMM utilizes an alternative rep-
resentation defined as a vector (v1, . . . , vK−1) of in-
version counts with respect to the identity permuta-
tion (1, . . . ,K). Term vj counts the number of times
a value greater than j appears before j in the permu-
tation.4 For instance, given the standard-form per-
mutation (3 1 5 2 4), v2 = 2 because 3 and 5 appear
before 2; the entire inversion count vector would be
(1 2 0 1). Every vector of inversion counts uniquely
identifies a single permutation.

The Distribution The GMM assigns proba-
bility mass according to the distance of a
given permutation from the identity permutation
{1, . . . ,K}, based on K − 1 real-valued parameters
(ρ1, . . . ρK−1).5 Using the inversion count represen-
tation of a permutation, the GMM’s probability mass
function is expressed as an independent product of
probabilities for each vj :

GMM(v | ρ) =
e−

∑
j ρjvj

ψ(ρ)

=
n−1∏

j=1

e−ρjvj

ψj(ρj)
, (1)

where ψj(ρj) is a normalization factor with value:

ψj(ρj) =
1− e−(K−j+1)ρj

1− e−ρj .

4The sum of a vector of inversion counts is simply that per-
mutation’s Kendall’s τ distance to the identity permutation.

5In our work we take the identity permutation to be the fixed
centroid, which is a parameter in the full GMM. As we explain
later, our model is not hampered by this apparent restriction.
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Due to the exponential form of the distribution, re-
quiring that ρj > 0 constrains the GMM to assign
highest probability mass to each vj being zero, cor-
responding to the identity permutation. A higher
value for ρj assigns more probability mass to vj be-
ing close to zero, biasing j to have fewer inversions.

The GMM elegantly captures our earlier require-
ment for a probability distribution that concentrates
mass around a global ordering, and uses few param-
eters to do so. Because the topic numbers in our
task are completely symmetric and not linked to any
extrinsic observations, fixing the identity permuta-
tion to be that global ordering does not sacrifice any
representational power. Another major benefit of
the GMM is its membership in the exponential fam-
ily of distributions; this means that it is particularly
amenable to a Bayesian representation, as it admits
a natural conjugate prior:

GMM0(ρj | vj,0, ν0) ∝ e(−ρjvj,0−logψj(ρj))ν0 . (2)

Intuitively, this prior states that over ν0 prior trials,
the total number of inversions was ν0vj,0. This dis-
tribution can be easily updated with the observed vj
to derive a posterior distribution.6

4.2 Formal Generative Process
We now fully specify the details of our model. We
observe a corpus of D documents, each an ordered
sequence of paragraphs, and a specification of a
number of topics K. Each paragraph is represented
as a bag of words. The model induces a set of hid-
den variables that probabilistically explain how the
words of the corpus were produced. Our final de-
sired output is the distributions over the paragraphs’
hidden topic assignment variables. In the following,
variables subscripted with 0 are fixed prior hyperpa-
rameters.

1. For each topic k, draw a language model θk ∼
Dirichlet(θ0). As with LDA, these are topic-
specific word distributions.

2. Draw a topic distribution τ ∼ Dirichlet(τ0),
which expresses how likely each topic is to ap-
pear regardless of position.

6Because each vj has a different range, it is inconvenient
to set the prior hyperparameters vj,0 directly. In our work, we
instead fix the mode of the prior distribution to a value ρ0, which
works out to setting vj,0 = 1

exp(ρ0)−1
− K−j+1

exp((K−j+1)ρ0)−1
.

3. Draw the topic ordering distribution parame-
ters ρj ∼ GMM0(ρ0, ν0) for j = 1 to K − 1.
These parameters control how rapidly probabil-
ity mass decays for having more inversions for
each topic. A separate ρj for every topic allows
us to learn that some topics are more likely to
be reordered than others.

4. For each document d with Nd paragraphs:
(a) Draw a bag of topics td by sampling Nd

times from Multinomial(τ).

(b) Draw a topic ordering πd by sampling a
vector of inversion counts vd ∼ GMM(ρ).

(c) Compute the vector of topic assignments
zd for document d’s paragraphs, by sorting
td according to πd.7

(d) For each paragraph p in document d:
i. Sample each word wd,p,j according to

the language model of p: wd,p,j ∼
Multinomial(θzd,p).

5 Inference

The variables that we aim to infer are the topic as-
signments z of each paragraph, which are deter-
mined by the bag of topics t and ordering π for each
document. Thus, our goal is to estimate the marginal
distributions of t and π given the document text.

We accomplish this inference task through Gibbs
sampling (Bishop, 2006). A Gibbs sampler builds
a Markov chain over the hidden variable state space
whose stationary distribution is the actual posterior
of the joint distribution. Each new sample is drawn
from the distribution of a single variable conditioned
on previous samples of the other variables. We can
“collapse” the sampler by integrating over some of
the hidden variables in the model, in effect reducing
the state space of the Markov chain. Collapsed sam-
pling has been previously demonstrated to be effec-
tive for LDA and its variants (Griffiths and Steyvers,
2004; Porteous et al., 2008; Titov and McDonald,
2008). Our sampler integrates over all but three sets

7Multiple permutations can contribute to the probability of a
single document’s topic assignments zd, if there are topics that
do not appear in td. As a result, our current formulation is bi-
ased toward assignments with fewer topics per document. In
practice, we do not find this to negatively impact model perfor-
mance.
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of hidden variables: bags of topics t, orderings π,
and permutation inversion parameters ρ. After a
burn-in period, we treat the last samples of t and
π as a draw from the true posterior.

Document Probability As a preliminary step,
consider how to calculate the probability of a single
document’s words wd given the document’s para-
graph topic assignments zd, and other documents
and their topic assignments. Note that this proba-
bility is decomposable into a product of probabil-
ities over individual paragraphs, where paragraphs
with different topics have conditionally independent
word probabilities. Let w−d and z−d indicate the
words and topic assignments to documents other
than d, and W be the vocabulary size. The proba-
bility of the words in d is then:

P (wd | z,w−d, θ0)

=
K∏

k=1

∫

θk

P (wd | zd, θk)P (θk | z,w−d, θ0)dθk

=
K∏

k=1

DCM({wd,i : zd,i = k}

| {w−d,i : z−d,i = k}, θ0), (3)

where DCM(·) refers to the Dirichlet compound
multinomial distribution, the result of integrat-
ing over multinomial parameters with a Dirichlet
prior (Bernardo and Smith, 2000). For a Dirichlet
prior with parameters α = (α1, . . . , αW ), the DCM
assigns the following probability to a series of ob-
servations x = {x1, . . . , xn}:

DCM(x | α) =
Γ(
∑

j αj)∏
j Γ(αj)

W∏

i=1

Γ(N(x, i) + αi)
Γ(|x|+∑j αj)

,

where N(x, i) refers to the number of times word
i appears in x. Here, Γ(·) is the Gamma function,
a generalization of the factorial for real numbers.
Some algebra shows that the DCM’s posterior prob-
ability density function conditioned on a series of
observations y = {y1, . . . , yn} can be computed by
updating each αi with counts of how often word i
appears in y:

DCM(x | y, α)
= DCM(x | α1 +N(y, 1), . . . , αW +N(y,W )).

(4)

Equation 3 and 4 will be used again to compute the
conditional distributions of the hidden variables.

We now turn to a discussion of how each individ-
ual random variable is resampled.

Bag of Topics First we consider how to resample
td,i, the ith topic draw for document d conditioned
on all other parameters being fixed (note this is not
the topic of the ith paragraph, as we reorder topics
using πd):

P (td,i = t | . . .)
∝ P (td,i = t | t−(d,i), τ0)P (wd | td, πd,w−d, z−d, θ0)

∝
N(t−(d,i), t) + τ0

|t−(d,i)|+Kτ0
P (wd | z,w−d, θ0),

where td is updated to reflect td,i = t, and zd is de-
terministically computed by mapping td and πd to
actual paragraph topic assignments. The first step
reflects an application of Bayes rule to factor out the
term for wd. In the second step, the first term arises
out of the DCM, by updating the parameters τ0 with
observations t−(d,i) as in equation 4 and dropping
constants. The document probability term is com-
puted using equation 3. The new td,i is selected
by sampling from this probability computed over all
possible topic assignments.

Ordering The parameterization of a permutation
π as a series of inversion values vj reveals a natural
way to decompose the search space for Gibbs sam-
pling. For a single ordering, each vj can be sampled
independently, according to:

P (vj = v | . . .)
∝ P (vj = v | ρj)P (wd | td, πd,w−d, z−d, θ0)
= GMMj(v | ρj)P (wd | zd,w−d, z−d, θ0),

where πd is updated to reflect vj = v, and zd is com-
puted according to td and πd. The first term refers
to the jth multiplicand of equation 1; the second is
computed using equation 3. Term vj is sampled ac-
cording to the resulting probabilities.

GMM Parameters For each j = 1 to K − 1, we
resample ρj from its posterior distribution:

P (ρj | . . .)

= GMM0

(
ρj

∣∣∣∣
∑

i vj,i + vj,0ν0

N + ν0
, N + ν0

)
,
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where GMM0 is evaluated according to equation 2.
The normalization constant of this distribution is un-
known, meaning that we cannot directly compute
and invert the cumulative distribution function to
sample from this distribution. However, the distri-
bution itself is univariate and unimodal, so we can
expect that an MCMC technique such as slice sam-
pling (Neal, 2003) should perform well. In practice,
the MATLAB black-box slice sampler provides a ro-
bust draw from this distribution.

6 Experimental Setup

Data Sets We evaluate our model on two data sets
drawn from the English Wikipedia. The first set
is 100 articles about large cities, with topics such
as History, Culture, and Demographics. The sec-
ond is 118 articles about chemical elements in the
periodic table, including topics such as Biological
Role, Occurrence, and Isotopes. Within each cor-
pus, articles often exhibit similar section orderings,
but many have idiosyncratic inversions. This struc-
tural variability arises out of the collaborative nature
of Wikipedia, which allows articles to evolve inde-
pendently. Corpus statistics are summarized below.

Corpus Docs Paragraphs Vocab Words
Cities 100 6,670 41,978 492,402
Elements 118 2,810 18,008 191,762

In each data set, the articles’ noisy section head-
ings induce a reference structure to compare against.
This reference structure assumes that two para-
graphs are aligned if and only if their section head-
ings are identical, and that section boundaries pro-
vide the correct segmentation of each document.
These headings are only used for evaluation, and are
not provided to any of the systems.

Using the section headings to build the reference
structure can be problematic, as the same topic may
be referred to using different titles across different
documents, and sections may be divided at differing
levels of granularity. Thus, for the Cities data set, we
manually annotated each article’s paragraphs with a
consistent set of section headings, providing us an
additional reference structure to evaluate against. In
this clean section headings set, we found approxi-
mately 18 topics that were expressed in more than
one document.

Tasks and Metrics We study performance on the
tasks of alignment and segmentation. In the former
task, we measure whether paragraphs identified to
be the same topic by our model have the same sec-
tion headings, and vice versa. First, we identify the
“closest” topic to each section heading, by finding
the topic that is most commonly assigned to para-
graphs under that section heading. We compute the
proportion of paragraphs where the model’s topic as-
signment matches the section heading’s topic, giv-
ing us a recall score. High recall indicates that
paragraphs of the same section headings are always
being assigned to the same topic. Conversely, we
can find the closest section heading to each topic,
by finding the section heading that is most com-
mon for the paragraphs assigned to a single topic.
We then compute the proportion of paragraphs from
that topic whose section heading is the same as the
reference heading for that topic, yielding a preci-
sion score. High precision means that paragraphs
assigned to a single topic usually correspond to the
same section heading. The harmonic mean of recall
and precision is the summary F-score.

Statistical significance in this setup is measured
with approximate randomization (Noreen, 1989), a
nonparametric test that can be directly applied to
nonlinear metrics such as F-score. This test has been
used in prior evaluations for information extraction
and machine translation (Chinchor, 1995; Riezler
and Maxwell, 2005).

For the second task, we take the boundaries at
which topics change within a document to be a
segmentation of that document. We evaluate us-
ing the standard penalty metrics Pk and WindowD-
iff (Beeferman et al., 1999; Pevzner and Hearst,
2002). Both pass a sliding window over the doc-
uments and compute the probability of the words
at the ends of the windows being improperly seg-
mented with respect to each other. WindowDiff re-
quires that the number of segmentation boundaries
between the endpoints be correct as well.8

Our model takes a parameter K which controls
the upper bound on the number of latent topics. Note
that our algorithm can select fewer thanK topics for
each document, soK does not determine the number

8Statistical significance testing is not standardized and usu-
ally not reported for the segmentation task, so we omit these
tests in our results.
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of segments in each document. We report results
using both K = 10 and 20 (recall that the cleanly
annotated Cities data set had 18 topics).

Baselines and Model Variants We consider base-
lines from the literature that perform either align-
ment or segmentation. For the first task, we
compare against the hidden topic Markov model
(HTMM) (Gruber et al., 2007), which represents
topic transitions between adjacent paragraphs in a
Markovian fashion, similar to the approach taken in
content modeling work. Note that HTMM can only
capture local constraints, so it would allow topics to
recur noncontiguously throughout a document.

We also compare against the structure-agnostic
approach of clustering the paragraphs using the
CLUTO toolkit,9 which uses repeated bisection to
maximize a cosine similarity-based objective.

For the segmentation task, we compare to
BayesSeg (Eisenstein and Barzilay, 2008),10

a Bayesian topic-based segmentation model
that outperforms previous segmentation ap-
proaches (Utiyama and Isahara, 2001; Galley et al.,
2003; Purver et al., 2006; Malioutov and Barzilay,
2006). BayesSeg enforces the topic contiguity
constraint that motivated our model. We provide
this baseline with the benefit of knowing the correct
number of segments for each document, which is
not provided to our system. Note that BayesSeg
processes each document individually, so it cannot
capture structural relatedness across documents.

To investigate the importance of our ordering
model, we consider two variants of our model that
alternately relax and tighten ordering constraints. In
the constrained model, we require all documents to
follow the same canonical ordering of topics. This
is equivalent to forcing the topic permutation distri-
bution to give all its probability to one ordering, and
can be implemented by fixing all inversion counts v
to zero during inference. At the other extreme, we
consider the uniform model, which assumes a uni-
form distribution over all topic permutations instead
of biasing toward a small related set. In our im-
plementation, this can be simulated by forcing the

9http://glaros.dtc.umn.edu/gkhome/views/cluto/
10We do not evaluate on the corpora used in their work, since

our model relies on content similarity across documents in the
corpus.

GMM parameters ρ to always be zero. Both variants
still enforce topic contiguity, and allow segments
across documents to be aligned by topic assignment.

Evaluation Procedures For each evaluation of
our model and its variants, we run the Gibbs sampler
from five random seed states, and take the 10,000th
iteration of each chain as a sample. Results shown
are the average over these five samples. All Dirich-
let prior hyperparameters are set to 0.1, encouraging
sparse distributions. For the GMM, we set the prior
decay parameter ρ0 to 1, and the sample size prior
ν0 to be 0.1 times the number of documents.

For the baselines, we use implementations pub-
licly released by their authors. We set HTMM’s pri-
ors according to values recommended in the authors’
original work. For BayesSeg, we use its built-in hy-
perparameter re-estimation mechanism.

7 Results

Alignment Table 1 presents the results of the
alignment evaluation. In every case, the best per-
formance is achieved using our full model, by a sta-
tistically significant and usually substantial margin.

In both domains, the baseline clustering method
performs competitively, indicating that word cues
alone are a good indicator of topic. While the sim-
pler variations of our model achieve reasonable per-
formance, adding the richer GMM distribution con-
sistently yields superior results.

Across each of our evaluations, HTMM greatly
underperforms the other approaches. Manual ex-
amination of the actual topic assignments reveals
that HTMM often selects the same topic for discon-
nected paragraphs of the same document, violating
the topic contiguity constraint, and demonstrating
the importance of modeling global constraints for
document structure tasks.

We also compare performance measured on the
manually annotated section headings against the ac-
tual noisy headings. The ranking of methods by per-
formance remains mostly unchanged between these
two evaluations, indicating that the noisy headings
are sufficient for gaining insight into the compara-
tive performance of the different approaches.

Segmentation Table 2 presents the segmentation
experiment results. On both data sets, our model
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Cities: clean headings Cities: noisy headings Elements: noisy headings
Recall Prec F-score Recall Prec F-score Recall Prec F-score

K
=

1
0

Clustering 0.578 0.439 ∗ 0.499 0.611 0.331 ∗ 0.429 0.524 0.361 ∗ 0.428
HTMM 0.446 0.232 ∗ 0.305 0.480 0.183 ∗ 0.265 0.430 0.190 ∗ 0.264
Constrained 0.579 0.471 ∗ 0.520 0.667 0.382 ∗ 0.485 0.603 0.408 ∗ 0.487
Uniform 0.520 0.440 ∗ 0.477 0.599 0.343 ∗ 0.436 0.591 0.403 ∗ 0.479
Our model 0.639 0.509 0.566 0.705 0.399 0.510 0.685 0.460 0.551

K
=

2
0

Clustering 0.486 0.541 ∗ 0.512 0.527 0.414 ∗ 0.464 0.477 0.402 ∗ 0.436
HTMM 0.260 0.217 ∗ 0.237 0.304 0.187 ∗ 0.232 0.248 0.243 ∗ 0.246
Constrained 0.458 0.519 ∗ 0.486 0.553 0.415 ∗ 0.474 0.510 0.421 ∗ 0.461
Uniform 0.499 0.551 ∗ 0.524 0.571 0.423 ∗ 0.486 0.550 0.479 � 0.512
Our model 0.578 0.636 0.606 0.648 0.489 0.557 0.569 0.498 0.531

Table 1: Comparison of the alignments produced by our model and a series of baselines and model variations, for both
10 and 20 topics, evaluated against clean and noisy sets of section headings. Higher scores are better. Within the same
K, the methods which our model significantly outperforms are indicated with ∗ for p < 0.001 and � for p < 0.01.

Cities: clean headings Cities: noisy headings Elements: noisy headings
Pk WD # Segs Pk WD # Segs Pk WD # Segs

BayesSeg 0.321 0.376 † 12.3 0.317 0.376 † 13.2 0.279 0.316 † 7.7

K
=

1
0 Constrained 0.260 0.281 7.7 0.267 0.288 7.7 0.227 0.244 5.4

Uniform 0.268 0.300 8.8 0.273 0.304 8.8 0.226 0.250 6.6
Our model 0.253 0.283 9.0 0.257 0.286 9.0 0.201 0.226 6.7

K
=

2
0 Constrained 0.274 0.314 10.9 0.274 0.313 10.9 0.231 0.257 6.6

Uniform 0.234 0.294 14.0 0.234 0.290 14.0 0.209 0.248 8.7
Our model 0.221 0.278 14.2 0.222 0.278 14.2 0.203 0.243 8.6

Table 2: Comparison of the segmentations produced by our model and a series of baselines and model variations, for
both 10 and 20 topics, evaluated against clean and noisy sets of section headings. Lower scores are better. †BayesSeg
is given the true number of segments, so its segments count reflects the reference structure’s segmentation.

outperforms the BayesSeg baseline by a substantial
margin regardless of K. This result provides strong
evidence that learning connected topic models over
related documents leads to improved segmentation
performance. In effect, our model can take advan-
tage of shared structure across related documents.

In all but one case, the best performance is ob-
tained by the full version of our model. This result
indicates that enforcing discourse-motivated struc-
tural constraints allows for better segmentation in-
duction. Encoding global discourse-level constraints
leads to better language models, resulting in more
accurate predictions of segment boundaries.

8 Conclusions

In this paper, we have shown how an unsupervised
topic-based approach can capture document struc-
ture. Our resulting model constrains topic assign-
ments in a way that requires global modeling of en-
tire topic sequences. We showed that the generalized

Mallows model is a theoretically and empirically ap-
pealing way of capturing the ordering component
of this topic sequence. Our results demonstrate the
importance of augmenting statistical models of text
analysis with structural constraints motivated by dis-
course theory.
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Abstract

In incremental spoken dialogue systems, par-

tial hypotheses about what was said are re-

quired even while the utterance is still ongo-

ing. We define measures for evaluating the

quality of incremental ASR components with

respect to the relative correctness of the par-

tial hypotheses compared to hypotheses that

can optimize over the complete input, the tim-

ing of hypothesis formation relative to the por-

tion of the input they are about, and hypothesis

stability, defined as the number of times they

are revised. We show that simple incremen-

tal post-processing can improve stability dra-

matically, at the cost of timeliness (from 90%

of edits of hypotheses being spurious down to

10% at a lag of 320ms). The measures are

not independent, and we show how system de-

signers can find a desired operating point for

their ASR. To our knowledge, we are the first

to suggest and examine a variety of measures

for assessing incremental ASR and improve

performance on this basis.

1 Introduction

Incrementality, that is, the property of beginning to

process input before it is complete, is often seen as a

desirable property of dialogue systems (e.g., Allen

et al. (2001)), as it allows the system to (a) fold

processing time (of modules such as parsers, or di-

alogue managers) into the time taken by the utter-

ance, and (b) react to partial results, for example by

generating back-channel utterances or speculatively

initiating potentially relevant database queries.

Input to a spoken dialogue system normally

passes an automatic speech recognizer (ASR) as a

first processing module, thus the module’s incre-

mentality determines the level of incrementality that

can be reached by the system as a whole. Using

an ASR system incrementally poses interesting chal-

lenges, however. Typically, ASRs use dynamic pro-

gramming and the maximum likelihood hypothesis

to find the word sequence with the lowest expected

likelihood of the sequence containing errors (sen-

tence error). Due to the dynamic programming ap-

proach, what is considered the best hypothesis about

a given stretch of the input signal can change during

the recognition process, as more right context which

can be used as evidence becomes available.

In this paper, we argue that normally used met-

rics for ASR evaluation such as word error rate must

be complemented with metrics specifically designed

for measuring incremental performance, and offer

some such metrics. We show that there are various

subproperties that are not independent of each other,

and that trade-offs are involved if either of those is

to be optimized. Finally, we propose ways to im-

prove incremental performance (as measured by our

metrics) through the use of smoothing techniques.

To our knowledge, incremental evaluation met-

rics of ASR for incremental systems have not yet

been covered in the literature. Most closely related,

Wachsmuth et al. (1998) show results for an ASR

which fixes its results after a given time ∆ and re-

port the corresponding word error rate (WER). This

unfortunately confounds the incremental and non-

incremental properties of their ASR’s performance.

The remainder of this paper is structured as fol-

lows: In section 2, we give an overview of increme-

nality with respect to ASR, and develop our evalua-
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tion metrics. Section 3 describes the setup and data

that we used in our experiments, and reports and dis-

cusses some basic measures for different variants of

the setup. In section 4 we propose and discuss two

orthogonal methods that improve incremental per-

formance: using right context and using message

smoothing, which show different properties with re-

gard to our measures. Finally, in section 5 we sum

up and point to future directions.

2 Incrementality and Evaluation Measures

for Incremental ASR

In a modular system, an incremental module is one

that generates (partial) responses while input is still

ongoing and makes these available to other mod-

ules (Kilger and Finkler, 1995). ASR modules that

use token passing (Young et al., 1989) can easily

be adapted to output a new, live hypothesis after

processing of every input frame (often that is ev-

ery 10ms). In an incremental system we are able

to get partial results from these hypotheses as soon

as they become available – or rather as soon as they

can be trusted. As mentioned above, hypotheses are

only tentative, and may be revised when more right

context becomes available. Modules consuming the

output of an incremental ASR hence must be able

to deal with such revisions. There is a first trade-off

here: Depending on how costly revision is for later

modules (which after all may need to revise any hy-

potheses which they themselves based on the now-

revised input), it may be better to reduce the incre-

mentality a bit – in the sense that partial informa-

tion is produced less often, and hence new words for

example are recognised later – if that buys stability

(fewer revisions). Also, ignoring some incremen-

tal results that are likely to be wrong may increase

system performance. Defining these notions more

precisely is the aim of this section.

2.1 Relative Correctness

We define a hypothesis at time t (hypt) as consist-

ing of a sequence whypt of words predicted by the

ASR at time t.1 As an example figure 1 shows

1In this paper, we only deal with one-best ASR. We believe

that there are no principled differences when generalising to n-

best hypotheses, but will explore this in detail in future work.

We also abstract away from changes in the hypothesised start

and end times of the words in the sequence. It often happens that

Figure 1: Live ASR hypotheses during incremental

recognition. Edit messages (see section 2.2) are shown

on the right when words are added (⊕) or revoked (⊖).
For the word “zwei” WFC and WFF (see section 2.3) are

shown at the bottom.

a sequence of incrementally produced hypotheses.

(Note that this is an artificial example, showing only

a few illustratory and interesting hypotheses. In a

real recognition system, the hypothesis frequency is

of course much higher, with much repetition of sim-

ilar hypotheses at consecutive frames.)

The question now is how we can evaluate the

quality of a hypothesis at the time t it is produced.
It is reasonable to only expect this hypothesis to say

something (correct or not) about the input up to time

t – unless we want the ASR to predict, in which case

we want it to make assumptions about times beyond

t (see section 4.1). There are two candidates for the

yardstick against which the partial hypotheses could

be compared: First, one could take the actually spo-

ken words, computing measures such as word error

rate. The other option, which is the one taken here,

is to take as the gold standard the final hypothesis

produced by the ASR when it has all evidence avail-

the ASR’s assumptions about the position of the word bound-

aries change, even if the word sequence stays constant. If, as we

assume here, later modules do not use this timing information,

we can consider two hypotheses that only differ in boundary

placement as identical.
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able (i.e., when the utterance is complete). This is

more meaningful for our purpose, as it relates the in-

formativity of the partial hypothesis to what can be

expected if the ASR can do all its internal optimisa-

tions, and not to the factually correct sequence that

the ASR might not be able to recognise even with

all information present. This latter problem is al-

ready captured in the conventional non-incremental

performance measures.

In our metrics in this paper, we hence take as gold

standard (wgold) the final, non-incremental hypothe-

sis of the ASR (which, to reiterate this point, might

be factually incorrect, that is, might contain word

errors). We define a module’s incremental response

at time t (whypt) as relatively correct (r-correct), iff

it is equal to the non-incremental hypothesis up to

time t: whypt t = wgoldt. Hence, in figure 1 above,

hypotheses 1, 2, 6, 7, 9 and 12 are r-correct.2 We

call the normalised rate of r-correct responses of a

module its (average) r-correctness.

As defined above, the criterion for r-correctness

is still pretty strict, as it demands of the ASR that

words on the right edge are recognised even from

the first frame on. For example, whyp10 in figure 1

is not r-correct, because wgold10 (that part of wgold

that ends where whyp10 ends) already spans parts of

the word “drei” which has not yet been picked up

by the incremental recognition. A relaxed notion

of correctness hence is prefix-correctness, which re-

quires only that whypt be a prefix of wgoldt. (Hy-

potheses 3 and 10 in figure 1 are p-correct, as are all

r-correct hypotheses.) It should be noted though that

p-correctness is too forgiving to be used directly as

an optimization target: in the example in figure 1,

a module that only ever produces empty hypotheses

would trivally achieve perfect p-correctness (as this

is always a prefix of wgold).

2.2 Edit Overhead

The measures defined so far capture only static as-

pects of the incremental performance of a module

and do not say anything about the dynamics of the

recognition process. To capture this, we look at

the changes between subsequent partial hypotheses.

There are three ways in which an hypothesis hypt+1

2The timing in hypothesis 7 is not correct – but this does not

matter to our notion of correctness (see footnote 1).

can be different from hypt: there can be an extension

of the word sequence, a revokation, or a revision of

the last words in the sequence.3 These differences

can be expressed as edit messages, where extending

a sequence by one word would require an add mes-

sage (⊕), deleting the last word in the sequence a

revoke message (⊖), and exchange of the last word

would require two messages, one to revoke the old

and one to add the new word.4

Now, an incrementally perfect ASR would only

generate extensions, adding new words at the right

edge; thus, there would be exactly as many edit mes-

sages as there are words in wgold. In reality, there

are typically many more changes, and hence many

spurious edits (see below for characteristic rates in

our data). We call the rate of spurious edits the edit

overhead (EO). For figure 1 above, this is 8
11 : There

are 11 edits (as shown in the figure), while we’d ex-

pect only 3 (one ⊕ for each word in the final result).

Hence, 8 edits are spurious.

This measure corresponds directly to the amount

of unnecessary activity a consumer of the ASR’s

output performs when it reacts swiftly to words that

may be revoked later on. If the consumer is able to

robustly cope with parallel hypotheses (for example

by building a lattice-like structure), a high EO may

not be problematic, but if revisions are costly for

later modules (or even impossible because action has

already been taken), we would like EO to be as low

as possible. This can be achieved by not sending edit

messages unconditionally as soon as words change

in the ASR’s current hypothesis, using strategies as

outlined in section 4. Obviously, deferring or sup-

pressing messages results in delays, a topic to which

we turn in the following section, where we define

measures for the response time of ASR.

2.3 Timing Measures

So far, our measures capture characteristics about

the complete recognition process. We now turn to

the timing of the recognition of individual words.

For this, we again take the output of the ASR when

all signal is present (i.e., wgold) as the basis. There

3As fourth and most frequent alternative, consecutive hy-

potheses do not change at all.
4Revision could also be seen as a third atomic operation,

as in standard ASR evaluation (then called “substitution”). To

keep things simple, we only regard two atomic operations.
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are two things we may be interested in. First, we

may want to know when is the first time that a certain

word appears in the correct position in the sequence

(or equivalently, when its first correct add edit mes-

sage is sent), expressed in relation to its boundaries

in wgold. We measure this event, the first time that

the ASR was right about a word, relative to its gold

beginning. We call the measure word first correct

response (WFC). As a concrete example take hyp7

in figure 1. At this point, the word “zwei” is first hy-

pothesised. Compared to the beginning of the word

in wgold, this point (t7) has a delay of 1 frame (the

frames are illustrated by the dashed lines).

As explained above, it may very well be the

case that for a brief while another hypothesis, not

r-correct w.r.t. wgold, may be favoured (cf. the word

“zwar” in the example in the figure). Another mea-

sure we hence might also be interested in is when our

word hypothesis starts remaining stable or, in other

words, becomes final. We measure this event rela-

tive to the end of the word in the gold standard. We

call it word first final response (WFF). In our exam-

ple, again for “zwei”, this is t9, which has a distance
of 0 to the right boundary of the word in wgold.

In principle, we could use both anchor points (the

left vs. the right edge of a word) for either measure

or use a word-relative scale, but for simplicity’s sake

we restrict ourselves to one anchor point each.

Under normal conditions, we expect WFC to be

positive. The better the incremental ASR, the closer

to 0 it will be. WFC is not a measure we can eas-

ily optimize. We would either have to enumerate

the whole language model or use external non-ASR

knowledge to predict continuations of the word se-

quence before the word in question has started. This

would increase EO. In principle, we are rather in-

terested in accepting an increase in WFC, when we

delay messages in order to decrease EO.

WFF however, can reach values below 0. It

converges towards the negative average of word

length as an incremental ASR improves. For non-

incremental ASR it would be positive: the average

distance beween the sentence end and word end.

WFF is a measure we can strive to reduce by sending

fewer (especially fewer wrong) messages.

Another property we might be interested in opti-

mizing is the time it takes from the first correct hy-

pothesis to stabilize to a final hypothesis. We com-

pute this correction time as the difference in time

between WFF and WFC.5 A correction time of 0 in-

dicates that there was no correction, i.e. the ASRwas

immediately correct about a word, something which

we would like to happen as often as possible.

Note that these are measures for each word in

each processed utterance, and we will use distribu-

tional parameters of these timing measures (means

and standard deviations) as metrics for the perfor-

mance of the incremental setups described later.

2.4 Summary of Measures

In this section, we first described measures that eval-

uate the overall correctness of incrementally pro-

duced ASR hypotheses, not taking into account their

sequential nature. We then turned to the dynamics of

how the current hypothesis evolves in a way which

we consider important for a consumer of incremen-

tal ASR, namely the overhead that results from edits

to the hypothesis. Finally, we looked at the timing

of individual messages with regard to first correct

(potentially unstable) occurrence (WFC) and stabil-

ity (WFF). In the next section, we use the measures

defined here to characterize the incremental perfor-

mance of our ASR, before we discuss ways to im-

prove incremental performance in section 4.

3 Setup, Corpora and Base Measurements

We use the large-vocabulary continuous-speech

recognition framework Sphinx-4 (Walker et al.,

2004) for our experiments, using the built-in Lex-

Tree decoder, extended by us to provide incremen-

tal results. We built acoustic models for German,

based on a small corpus of spontaneous instructions

in a puzzle building domain,6 and the Kiel corpus

of read speech (IPDS, 1994). We use a trigram lan-

guage model that is based on the puzzle domain tran-

scriptions. As test data we use 85 recordings of two

speakers (unknown to the acoustic model) that speak

sentences similar to those in the puzzle domain.

We do not yet use recognition rescoring to opti-

mize for word error rate, but just the ASR’s best

hypotheses which optimize for low sentence error.

Incremental rescoring mechanisms such as that of

5In figure 1, the correction time for “zwei” is 9− 7 = 2.
6Available from http://www.voxforge.org/

home/downloads/speech/

383



SER (non-incremental) 68.2%

WER (non-incremental) 18.8%

r-correct (cropped) 30.9%

p-correct (cropped) 53.1%

edit overhead 90.5%

mean word duration 0.378 s

WFC: mean, stddev, median 0.276 s, 0.186 s, 0.230 s

WFF: mean, stddev, median 0.004 s, 0.268 s, –0.06 s

immediately correct 58.6%

Table 1: Base measurements on our data

Razik et al. (2008) to optimize ASR performance are

orthogonal to the approaches presented in section 4

and could well be incorporated to further improve

incremental performance.

The individual recordings in our corpus are fairly

short (5.5 seconds on average) and include a bit of si-

lence at the beginning and end. Obviously, recogniz-

ing silence is much easier than recognizing words.

To make our results more meaningful for continuous

speech, we crop away all ASR hypotheses from be-

fore and after the active recognition process.7 While

this reduces our performance in terms of correctness

(we crop away areas with nearly 100% correctness),

it has no impact on the edit overhead, as the number

of changes in wcurr remains unchanged, and also no

impact on the timing measures as all word bound-

aries remain the same.

3.1 Base Measurements

Table 1 characterises our ASR module (on our data)

in terms of the metrics defined in section 2. Addi-

tionally we state sentence error rate, as the rate of

sentences that contain at least one error, and word

error rate computed in the usual way, as well as

the mean duration of words in our corpus (as non-

incrementally measured for our ASR).

We see that correctness is quite low. This is

mostly due to the jitter that the evolving current hy-

pothesis shows in its last few frames, jumping back

and forth between highly-ranked alternatives. Also,

our ASR only predicts words once there is acoustic

evidence for several phonemes and every phoneme

(being modelled by 3 HMM states) must have a du-

ration of at least 3 frames. Thus, some errors rela-

tive to the final hypothesis occur because the ASR

7In figure 1, hypotheses 1, 2 and 3 would be cropped away.
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Figure 2: Distribution of correction times (WFF−WFC).

only hypothesizes about words once they already

have a certain duration (and hence preceding hy-

potheses are not r-correct). The difference between

r-correctness and p-correctness (20% in our case)

may be largely attributed to this fact.

The edit overhead of 90.5% means that for ev-

ery neccessary add message, there are nine superflu-

ous (add or revoke) messages. Thus, a consumer of

the ASR output would have to recompute its results

ten times on average. In an incremental system, this

consumer might itself output messages and further

revise decisions as information from other modules

becomes available, leading to a tremendous amount

of changes in the system state. As ASR is the first

module in an incremental spoken dialogue system,

reducing the edit overhead is essential for overall

system performance.

On average, the correct hypothesis about a word

becomes available 276ms after the word has started

(WFC). With a mean word duration of 378ms

this means that information becomes available af-

ter roughly 3
4 of the word have been spoken. No-

tice though that the median is somewhat lower than

the mean, implying that this time is lower for most

words and much higher for some words. In fact, the

maximum for WFC in our data is 1.38 s.

On average, a word becomes final (i.e. is

not changed anymore) when it has ended

(mean(WFF) = 0.004). Again, the median is

lower, indicating the unnormal distribution of WFF

(more often lower, sometimes much higher).

Of all words, 58.6% were immediately correctly
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Figure 3: Correctness, Edit Overhead and Word Error

Rate (WER) with varied language model weight and un-

altered audio.

hypothesized by the ASR. Figure 2 plots the per-

centage of words with correction times equal to or

lower than the time on the x-axis. While this starts

at the initial 58.6% of words that were immediately

correct, it rises above 90% for a correction time of

320ms and above 95% for 550ms. Inversely this

means that we can be certain to 90% (or 95%) that

a current correct hypothesis about a word will not

change anymore once it has not been revoked for

320ms (or 550ms respectively).

Knowing (or assuming with some certainty) that

a hypothesis is final allows us, to commit ourselves

to this hypothesis. This allows for reduced compu-

tational overhead (as alternative hypotheses can be

abandoned) and is crucial if action is to be taken that

cannot be revoked later on (as for example, initiat-

ing a response from the dialogue system). Figure 2

allows us to choose an operating point for commit-

ment with respect to hypothesis age and certainty.

3.2 Variations of the Setup

In setting up our system we did not yet strive for best

(non-incremental) performance; this would have re-

quired much more training material and parameter

tweaking. We were more interested here in explor-

ing general questions related to incremental ASR,

and in developing approaches to improve incremen-

tal performance (see section 4), which we see as a

problem that is independent from that of improving

performance measures like (overall) accuracy.

To test how independent our measures are on de-

 0

 20

 40

 60

 80

 100

orig -20 -15 -10 -5 0

signal to noise ratio in dB

R-Correctness
P-Correctness
Edit Overhead

WER

Figure 4: Correctness, Edit Overhead and Word Error

Rate (WER) with additive noise (LM weight set to 8).

tails of the specific setting, such as quality of the

audio material and of the language model, we var-

ied these factors systematically, by adding white

noise to the audio and changing the language model

weight relative to the acoustic model. We varied the

noise to produce signal to noise ratios ranging from

hardly audible (−20 dB), through annoying noise

(−10 dB) to barely understandable audio (0 dB).

Figure 3 gives an overview of the ASR-

performance with different LM weights and figure 4

with degraded audio signals. Overall, we see that

r-correctness and EO change little with different

LM and AM performance and correspondigly de-

graded WER. A tendency can be seen that larger LM

weights result in higher correctness and lower EO. A

larger LM weight leads to less influence of acoustic

events which dynamically change hypotheses, while

the static knowledge from the LM becomes more

important. Surprisingly, WER improved with the

addition of slight noise, which we assume is due to

differences in recording conditions between our test

data and the training data of the acoustic model.

In the following experiments as well as in the data

in table 1 above, we use a language model weight of

8 and unaltered audio.

4 Improving Incremental Performance

In the previous section we have shown how a stan-

dard ASR that incrementally outputs partial hy-

potheses after each frame processed performs with

regard to our measures and showed that they remain
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stable in different acoustic conditions and with dif-

fering LM weights. We now discuss ways of incre-

mentally post-processing ASR hypotheses in order

to improve selected measures.

We particularly look for ways to improve EO;

that is, we want to reduce the amount of wrong hy-

potheses and resulting spurious edits that deterio-

rate later modules’ performance, while still being as

quick as possible with passing on relevant hypothe-

ses. We are less concerned with correctness mea-

sures, as they do not capture well the dynamic evo-

lution, which is important for further processing of

the incremental hypothesis. We also discuss trade-

offs that are involved in the optimization decisions.

4.1 Right Context

Allowing the use of some right context is a com-

mon strategy to cope with incremental data. For

example, our ASR already uses this strategy (with

very short right contexts) internally at word bound-

aries to restrict the language model hypotheses to

an acoustically plausible subset (Ortmanns and Ney,

2000). In the experiment described here, we allow

the ASR a larger right context of size ∆ by taking

into account at time t the output of the ASR up to

time t − ∆ only. That is, what the ASR hypothe-

sizes about the interval ]t − ∆, t] is considered to

be too immature and is discarded, and the hypothe-

ses about the input up to t−∆ have the benefit of a

lookahead up to t. This reduces jitter, which is found
mostly to the very right of the incremental hypothe-

ses. Thus, we expect to reduce the edit overhead in

proportion with ∆. On the other hand, allowing the

use of a right context leads to the current hypothe-

sis lagging behind the gold standard. Correspond-

ingly, WFC increases by ∆. Obviously, using only

information up to t − ∆ has averse effects on cor-

rectness as well, as this measure evaluates the word

sequences up to wgoldt which may already contain

more words (those recognised in ]t − ∆, t]). Thus,
to be more fair and to account for the lag when mea-

suring the module’s correctness, we additionally de-

fine fair r-correctness which restricts the evaluation

up to time t−∆: whyptt−∆ = wgoldt−∆.

Figure 5 details the results for our data with right

context between 1.5 s and −0.2 s. (The x-axis plots
∆ as negative values, with 0 being “now”. Results

for a right context (∆) of 1.2 can thus be found 1.2 to
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Figure 5: Correctness (see text), Edit Overhead and

fixed-WER for varying right contexts ∆.

the left of 0, at −1.2.) We see that at least in the fair

measure, fixed lag performs quite well at improving

both the module’s correctness and EO. This is due

to the fact that ASR hypotheses become more and

more stable when given more right context. Still,

even for fairly long lags, many late edits still occur.

To illustrate the effects of a system that does not

support edits of hypotheses, but instead commits

right away, we plot WER that would be reached by a

system that always commits after a right context of

∆. As can be seen in the figure, the WER remains

higher than the non-incremental WER (18.8%) even

for fairly large right contexts. Also, the WER plot by

Wachsmuth et al. (1998) looks very similar to ours

and likewise shows a sweet spot suitable as an oper-

ating point with a right context of about 800ms.

As expected, the analysis of timing measures

shows an increase with larger right contexts with

their mean values quickly approaching ∆ (or

∆−meanword duration for WFF), which are the

lower bounds when using right context. Correspond-

ingly, the percentage of immediately correct hy-

potheses increases with right context reaching 90%

for ∆ = 580ms and 98% for ∆ = 1060ms.

Finally, we can extend the concept of right con-

text into negative values, predicting the future, as it

were. By choosing a negative right context, in which

we extrapolate the last hypothesis state by ∆ into the

future, we can measure the correctness of our hy-

potheses correctly predicting the close future, which

is always the case when the current word is still be-
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ing spoken. The graph shows that 15% of our hy-

potheses will still be correct 100ms in the future and

10% will still be correct for 170ms. Unfortunately,

there is little way to tell apart hypotheses that will

survive and those which will soon be revised.

4.2 Message Smoothing

In the previous section we reduced wrong edit mes-

sages by avoiding most of the recognition jitter by

allowing the ASR a right context of size ∆, which

directly hurt timing measures by roughly the same

amount. In this section, we look at the sequence of

partial hypotheses from the incremental ASR, using

the dynamic properties as cues. We accomplish this

by looking at the edit messages relative to the cur-

rently output word sequence. But instead of sending

them to a consumer directly (updating the external

word sequence), we require that an edit message be

the result of N consecutive hypotheses. To illustrate

the process with N = 2 we return to figure 1. None

of the words “an”, “ein” or “zwar” would ever be

output, because they are only present for one time-

interval each. Edit messages would be sent at the

following times: ⊕(eins) at t7, ⊕(zwei) at t10 (only
then is “zwei” the result of two consecutive hypothe-

ses) and ⊕(drei) at t13. While no words are revoked

in the example, this still occurs when a revocation is

consecutively hypothesized for N frames.

We get controversial results for this strategy, as

can be seen in figure 6: The edit overhead falls

rapidly, reaching 50% (for each message necessary,

there is one superfluous message) with only 110ms

(and correspondingly increasing WFC by the same

time) and 10% with 320ms. The same thresh-

olds are reached through the use of right context at

530ms and 1150ms respectively as shown in fig-

ure 5. Likewise, the prefix correctness improve-

ments are better than with using right context, but

the r-correctness is poor, even under the “fair” mea-

sure. We believe this is due to correct hypotheses

being held back too long due to the hypothesis se-

quence being interspersed with wrong hypotheses

(which only last for few consecutive hypotheses)

which reset the counter until the add message (for

the prevalent and potentially correct word) is sent.8

8This could be resolved by using some kind of majority

smoothing instead of requiring a message to be the result of all

consecutive hypotheses. We will investigate this in future work.
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5 Conclusions and Further Directions

We have presented the problem of speech recogni-

tion for incremental systems, outlined requirements

for incremental speech recognition and showed mea-

sures that capture how well an incremental ASR per-

forms with regard to these measures. We discussed

the measures and their implications in detail with

our baseline system and showed that the incremen-

tal measures remain stable regardless of the specific

ASR setting used.

Finally, we presented ways for the online post-

processing of incremental results, looking for ways

to improve some of the measures defined, while

hurting the other measures as little as possible.

Specifically, we were interested in generating less

wrong hypotheses at the cost of possible short de-

lays. While using right context shows improvements

with larger delays, using message smoothing seems

especially useful for fast processing. We think these

two approaches could be combined to good effect.

Together with more elaborate confidence handling a

system could quickly generate hypotheses and then

refine the associated confidences over time. We will

explore this in future work.
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Abstract

Voice search is increasingly popular, espe-
cially for local business directory assistance.
However, speech recognition accuracy on
business listing names is still low, leading to
user frustration. In this paper, we present a
new algorithm for geo-centric language model
generation for local business voice search for
mobile users. Our algorithm has several ad-
vantages: it provides a language model for
any user in any location; the geographic area
covered by the language model is adapted to
the local business density, giving high recog-
nition accuracy; and the language models can
be pre-compiled, giving fast recognition time.
In an experiment using spoken business list-
ing name queries from a business directory
assistance service, we achieve a 16.8% abso-
lute improvement in recognition accuracy and
a 3-fold speedup in recognition time with geo-
centric language models when compared with
a nationwide language model.

1 Introduction

Voice search is an increasingly popular application
of speech recognition to telephony. In particular,
in the last two years several companies have come
out with systems for local business voice search
(LBVS). In this type of application, the user pro-
vides a desired location (city/state) and a business
name, and the system returns one or more match-
ing business listings. The most traditional LBVS
applications are commercial 411 services, which are
implemented as a speech-only two-exchange dialog
such as the one in Figure 1. In this approach to

LBVS, the speech recognizer (ASR) uses one gram-
mar to recognize city/state, and then uses separate
grammars for recognizing listings in each local area.
This gives relatively high recognition accuracy.

Advancements in ASR and search technology
have made a more information retrieval-style LBVS
feasible. In this approach, the ASR typically uses
a large stochastic language model that permits the
user to specify location and listing name or cate-
gory together in a single utterance, and then sub-
mits recognition results to a search engine (Natara-
jan et al., 2002). This gives the user more flexibility
to “say anything at any time”. However, in recent
evaluations of one-exchange LBVS we have found
that locations are recognized with much higher ac-
curacy than listing names1. This may mean that the
user has to repeat both location and listing several
times (while in a traditional two-exchange interac-
tion only one piece of information would have to be
repeated). In effect, system developers have traded
recognition accuracy for interaction flexibility, po-
tentially increasing user frustration.

Advances in mobile phone technology make it
possible for us to combine the advantages of two-
exchange and one-exchange LBVS. The newest
smart phones come with global positioning system
(GPS) receivers and/or with the ability to determine
location through cell tower triangulation or wi-fi. If
we know the location of a LBVS user, we can use
a geo-centric language model to achieve improved
speech recognition accuracy and speed. This ap-
proach unobtrusively exploits the benefits of two-

1The vocabulary size for listing names is larger than that for
cities and states in the USA.
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S City and state?
U Glendale California
S What listing?
U pizza

Figure 1: Example 411-search dialog

exchange voice search applications, while maintain-
ing the flexibility of one-exchange systems.

In this paper, we present an efficient algorithm
for constructing geo-centric language models from
a business listing database and local business search
logs. Our algorithm has several advantages: it pro-
vides a language model for any user in any location;
the geographic area covered by the language model
is adapted to the local business density, giving high
recognition accuracy; and the language models can
be pre-compiled, giving fast recognition time. In
an experiment using LBVS queries, we achieve: a
16.8% absolute improvement in recognition accu-
racy and a 3-fold speedup in recognition time with
geo-centric language models when compared with a
nationwide language model (such as those used in
one-exchange LBVS); and a 4.4% absolute increase
in recognition accuracy and a 16% speedup in recog-
nition time with geo-centric language models when
compared with local area language models (such as
those used in two-exchange LBVS).

The rest of this paper is structured as follows: In
Section 2 we discuss related work on voice-driven
local search. In Section 3 we present the motivation
for and architecture of a LBVS application. In Sec-
tion 4 we present our algorithm for generating geo-
centric language models. In Section 5 we describe
an evaluation of the performance of our geo-centric
language models on business listing name queries
from a deployed voice-driven search application. In
Section 6 we conclude and present future work.

2 Related Work

LBVS is the most recent variation on automated di-
rectory assistance (Buntschuh et al., 1998). ASR
for directory assistance is difficult for several rea-
sons: the vocabulary is large and includes foreign
words; there may be multiple possible pronuncia-
tions for many words; and the frequency distribu-
tion of words in the vocabulary is unusual, with a
few words occurring very often and the rest, rarely.
These difficulties are compounded by directory size.

For example, Kamm et al. (1995), in experiments
on personal name directories, showed that ASR ac-
curacy decreases from 82% for a 200 name directory
to 16.5% for a 1.5 million name directory.

One way to reduce the directory size is to cover a
smaller geographic area. For example, early LBVS
covered only one city (Seide and Kellner, 1997;
Collingham et al., 1997). Later, two-exchange, ap-
plications required the user to specify their desired
location in the first exchange. This information was
then used to select a local area grammar or language
model for recognition of the listing name (Acero et
al., 2008; Bacchiani et al., 2008; Yu et al., 2007;
Georgila et al., 2003). In our research, we have cre-
ated a novel method for constructing language mod-
els that cover a very small geographic area specific
to the user’s geo-location.

Another way to reduce the directory size is to drop
listings that are unlikely to be requested. For exam-
ple, Kamm et al. (1995), in their analysis of 13,000
directory assistance calls, found that a mere 245 list-
ings covered 10% of the call volume, and 870 list-
ings covered 20%. Chang et al. (2008) found that in
their data sets, 19-25% of the call volume was cov-
ered by the top 200 listings. We take a different ap-
proach: we add frequent nationwide listings to our
geo-centric language models to increase coverage.

Other work related to ASR in automated direc-
tory assistance has looked at ways in which users
refer to locations (Gupta et al., 1998) and listings
(Li et al., 2008; Scharenborg et al., 2001; Yu et al.,
2007), confidence scoring for directory assistance
search results (Wang et al., 2007), and ways of han-
dling recognition errors through multimodal confir-
mation and correction (Acero et al., 2008; Chang et
al., 2008; Paek et al., 2008). We do not address these
issues here.

3 Local Business Voice Search

The current generation of smart phones contains
GPS and/or can run applications that can detect the
user’s geo-location using cell tower triangulation or
wi-fi. We hypothesize that this geo-location infor-
mation can be used in mobile LBVS to improve
recognition accuracy without sacrificing interaction
flexibility. Our analysis of a directory assistance
data set shows that in the majority of cases, users
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Figure 2: Architecture of a voice-driven local search ap-
plication

request local listings. It is frustrating for the user of
a LBVS who cannot retrieve information for a busi-
ness right around the corner. So, a LBVS should
maximize accuracy for local listings2.

Figure 2 shows the architecture of a mobile
LBVS. It includes ASR (in a speech-only or multi-
modal interface), search, and presentation of results
(through speech, text and/or graphics). It also in-
cludes location information from GPS, cell tower tri-
angulation or wi-fi, or the user’s query history (from
previous dialogs, or previous turns in this dialog).

4 Using Location to Tailor Language
Models

There are two ways to use geo-location informa-
tion in ASR for LBVS. One way is to use the user’s
geo-location to automatically determine the nearest
city. City and state can then be used to select a lo-
cal area language model (LM) for recognizing list-
ing names. The advantages of this approach include:
human knowledge about location can be included in
the design of the local areas; and local areas can be

2Of course, a LBVS should also give the user the option of
specifying a different location, and/or should be able to recog-
nize listings users are most likely to ask for that may not exist
in their local area.

designed to produce a minimal number of local area
LMs. However, if the user is near the edge of the
pre-defined local area, the selected LM may exclude
businesses close to the user and include businesses
far away from the user. Also, some local area LMs
contain many more directory listings than others.

Another way is to construct a geo-centric LM
covering businesses in a given radius around the
user’s geo-location. This approach has the advan-
tage that listings included in the language model
will certainly be close to the user. However, on-
the-fly computation of geo-centric language models
for large numbers of users is too computationally
demanding given current database and processing
technology. It is equally impractical to pre-compile
all possible geo-centric language models, since com-
mercial GPS provides coordinates accurate to about
20 feet. Here we present an algorithm for approxi-
mating true geo-centric language modeling in a way
that is computationally feasible and user relevant.

4.1 Local Area Language Models

Telecommunications companies have long under-
stood that customers may not know the exact town
in which a desired listing is, or may be interested in
listings from several nearby towns. Considerable ef-
fort has been devoted to defining local service areas
(LSAs) for telephone directories. In the directory
service that provided the database we use, business
listings are organized into about 2000 LSAs, each
consisting either of several adjacent small towns or
of one big city. For example, the Morristown, NJ
LSA includes Morristown itself as well as 53 ad-
jacent localities and neighborhoods spanning from
Pine Brook in the north-east to Mendham in the
south-west. By contrast, the New York, NY LSA
contains only New York City, which includes sev-
eral hundred neighborhoods. The Morristown, NJ
LSA contains 50000 business listings while the New
York, NY LSA contains more than 200000 listings.

We construct one LM for each LSA, giving
roughly 2000 local area LMs for the whole of the
USA.

4.2 Geo-Centric Language Models

To construct a a geo-centric LM for a user, we need
geo-coordinates (for the center of the LM) and a
search radius (to determine the extent of the LM). It
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Figure 3: Geo-centric areas in New York City

is computationally infeasible to either pre-compute
geo-centric LMs for each uniquely identifiable set
of geo-coordinates in the USA, or to compute them
on-the-fly for large numbers of users. Fortunately,
the number of business geo-coordinates in the USA
is much sparser than the number of possible user
geo-coordinates. There are about 17 million name-
address unique businesses in the USA; assuming 8-
digit geo-code accuracy they are located at about 8.5
million unique geo-coordinates3. So we build LMs
for business geo-coordinates rather than user geo-
coordinates, and at run-time we map a user’s geo-
coordinates to those of their closest business.

To determine the search radius, we need a work-
ing definition of “local listing”. However, “local”
varies depending on one’s location. In New York
City, a local listing may be one up to ten blocks
away (covering a smaller geographic area than the
LSA), while in Montana a local listing may be one
that one can drive to in 45 minutes (covering a larger
geographic area than the LSA). Compare Figures 3
and 4. “Local” is clearly related to business den-
sity at a particular location. So we compute business
density and use this to determine the radius of our
geo-centric LMs.

We can do even better than this, however. Busi-
nesses are clustered geographically (in towns, shop-
ping malls, etc.). This means that the set of listings
local to one business is likely to be very similar to
the set of listings local to a nearby business. So we
do not need to build a separate LM for each business
listing; instead, we can pre-determine the number of
businesses we want to be different from one LM to
another. Then we can “quantize” the business geo-

3The area of the USA with the highest business density is
New York, NY, where about 270000 businesses share about
43000 geo-coordinates.

Figure 4: Geo-centric area near Vaughn, Montana

coordinates so that those that have fewer than that
number of businesses different between their search
radii end up sharing a single LM.

Our algorithm for constructing geo-centric LMs
starts with LSAs. It proceeds in two stages: first, the
business centers for the LMs are found. Second, a
search radius is computed for each LM center; and
third, the data for the LM is extracted.

The LM center finding algorithm uses two param-
eters: r1 (radius within an LSA; should be a little
smaller than average LSA radius) and Nq (number
of businesses that should be different between two
different geo-centric LMs). For each LSA:

1. Find mean latitude and longitude for the LSA:
Compute mean and standard deviation for lati-
tude (µlb, σlb) and longitude (µgb, σgb) over all
businesses in the LSA.

2. Exclude national businesses which are listed in
the LSA with their out-of-LSA address and geo-
coordinates: Compute mean and standard de-
viation of latitude and longitude, (µl, σl) and
(µg, σg) respectively, using all geo-coordinates
(l, g) where: (l, g) is within a r1-mile radius of
(µlb, µgb); l is within σlb of µlb; and g is within
σgb of µgb.

3. Compute business density in the most business-
dense region in the LSA: find a minimum
and maximum longitude (gm, gM ) and lati-
tude (lm, lM ) for all businesses that are within
(±1

2σg) and (±1
2σl) of µg and µl respectively.

Business density per square mile (d2) is equal
to the number of businesses in the rectangle de-
fined by the low-left (gm, lm) and upper-right
(gM , lM ) corner. Business density per mile is
d1 =

√
d2.
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4. Compute geo-location quantization accuracy:
Choose a desired number of business listings
Nq that will fall to the same geo-coordinates
when the quantization is applied. This corre-
sponds roughly to the minimum desired num-
ber of different businesses in two adjacent
geo-centric LMs. Quantization accuracy, in
miles, δqm, then follows from the business den-
sity d1: δqm = Nq/d1. Quantization ac-
curacy for the longitude δg satisfies equation
distance((µg, µl), (µg+δg, µl)) = δqm. δl sat-
isfies a similar equation.

5. Quantize geo-coordinates for each business in
the LSA: Compute quantized geo-coordinates
(lq, gq) for each business in the LSA. gq =
int(g/δg)×δg; lq = int(l/δl)×δl. Each unique
(lq, gq) is a LM center.

The LM radius finding algorithm also uses two
parameters: r2 (maximum search radius for an LM);
and Np (minimum number of businesses within a
geo-centric language model, should be smaller than
average number of businesses per LSA). For each
LM center:

1. Count the number of businesses at 1-mile ra-
dius increments of the LM center

2. Choose the smallest radius containing at least
Np listings (or the r2 radius if there is no
smaller radius containing at least Np listings)

3. Extract data for all listings within the radius.
Build LM from this data.

The number of geo-centric LMs can be arbitrar-
ily small, depending on the parameter values. We
believe that any number between 10K and 100K
achieves good accuracy while maintaining tractabil-
ity for LM building and selection. In the experi-
ments reported here we used r1 = 3.5, Nq = 50,
r2 = 3 and Np = 1000, giving about 15000 LMs
for the whole USA.

To summarize: we have described an algorithm
for building geo-centric language models for voice-
driven business search that: gives a local language
model for any user anywhere in the country; uses
business density determine “local” for any location
in the country; can be pre-compiled; and can be

tuned (by modifying the parameters) to maximize
performance for a particular application

5 Experiments

In this section we report an evaluation of geo-centric
language models on spoken business listing queries
from an existing directory assistance application.
We compare the recognition accuracy and recogni-
tion speed for geo-centric LMs to those of local area
LMs, of a national LM, and of combined LMs.

5.1 Data
Our test data comes from an existing two-exchange
directory assistance application. It comprises 60,000
voice queries, each consisting of a city and state
in the first exchange, followed by a business listing
name in the second exchange.

We wanted to test using queries for which we
know there is a matching listing in the city/state pro-
vided by the caller. So we used only the 15000
queries for which there was a match in our nation-
wide business listing database4. We categorized
each query as nationwide or local by looking up
the listing name in our database. We considered any
listing name that occurred five or more times to be
nationwide; the remaining listings were considered
to be local. This method fails to distinguish between
national chains and different companies that happen
to have the same name. (However, from a recog-
nition point of view any listing name that occurs in
multiple locations across the country is in fact na-
tionwide, regardless of whether the businesses to
which it refers are separate businesses.) It is also
quite strict because we used string equality rather
than looser name matching heuristics. Example na-
tional queries include Wal-mart and Domino’s Pizza.
Example local queries include Sauz Taco (Glendale,
CA); Dempsey’s Restaurant (Adrian, MI); and Con-
cord Farmers Club (Saint Louis, MO). Some queries
contain street names, e.g. Conoco on South Divi-
sion; uh Wal-Mart on five thirty five; and Chuy’s
Mesquite Broiler off of Rosedale.

For each query in our data, we say that its local
area LM is the local area LM that comes from its

4A query matched an entry in our database if there was a
business listing in our database starting with the listing name
portion of the query, in the city/state from the location portion
of the query.
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city and state, and that contains its listing name. Its
geo-centric LM is defined similarly.

5.2 Language Model Construction
We constructed two baseline LMs. The first is a Na-
tional LM. To take advantage of the non-uniform
distribution of queries to listings (see Section 2), we
also build a Top 2000 LM containing only informa-
tion about the top 2000 most frequently requested
listing names nationwide5 . We expected this LM to
perform poorly on its own but potentially quite well
in combination with local LMs.

For national, top 2000, local area and geo-
centric LMs, we build trigram Katz backoff lan-
guage models using AT&T’s Watson language mod-
eling toolkit (Riccardi et al., 1996). The models
are built using the listing names and categories in
our nationwide listing database. Listing names are
converted to sentences containing the listing name,
street address, neighborhood and city/state.

We predict that location-specific LMs will
achieve high accuracy on local listings but will not
be very robust to national listings. So we also exper-
iment with combination LMs: local area combined
with top 2000; geo-centric combined with top 2000;
local area combined with national; and geo-centric
combined with national. We use two combination
stategies: count merging and LM union.

5.2.1 Count Merging
The count merging approach can be viewed as an

instance of maximum a posteriori (MAP) adapta-
tion. Let hw be a n-gram ending in word w and with
a certain context h, and let cL(hw) and CT (hw)
be its counts in the geo-centric/local area corpus L
and top 2000 corpus T respectively. Then p(w|h) is
computed as:

p(w|h) =
λLcL(hw) + (1− λL)cT (hw)
λLcL(h) + (1− λL)cT (h)

(1)

where λL is a constant that controls the contribution
of each corpus to the combined model. We applied
this combination strategy to local area/geo-centric
and top 2000 only, not to local area/geo-centric and
nationwide.

5We computed listing frequencies from query logs and used
listings from the left-hand side of the frequency distribution
curve before it flattens out; there were about 2000 of these.

5.2.2 LM Union

The LM union approach uses a union of language
models at runtime. Let W = w0w1 . . . w|W | be a
sentence, pL(W ) be the probability ofW in the geo-
centric/local area corpus L, and pT (W ) be the prob-
ability ofW in the top 2000/national corpus T . Then
p(W ) is computed as:

p(W ) = max(λLpL(W ), (1− λL)pT (W )) (2)

λL is a constant that controls the contribution of each
corpus to the combined model. We applied this com-
bination strategy to local area/geo-centric and top
2000, and to local area/geo-centric and nationwide.

Given the small size of our test set relative to the
large number of local LMs it is unfeasible to train
λL on held-out data. Instead, we selected a value
for λL such that the adjusted frequency of the top
business in the top 2000 corpus becomes similar to
the frequency of the top business in the local LM.
We anticipate that if we did have data for training λL
more weight would be given to the local area/geo-
centric LM.

5.3 Experimental Method

In our experiments we use AT&T’s Watson speech
recognizer with a general-purpose acoustic model
trained on telephone speech produced by American
English speakers (Goffin et al., 2005). We ran all
tests on a research server using standard settings for
our speech recognizer for large vocabulary speech
recognition. For each LM we report recognition ac-
curacy (string accuracy and word accuracy) overall,
on nationwide listings only, on local listings only,
and on queries that contain street names only. We
also report recognition time (as a fraction of real
time speed).

5.4 Results

Results are given in Table 1. Comparing the base-
line (National LM) to our geo-centric LMs, we see
that we achieve a 16.8% absolute increase in overall
sentence accuracy with a 3-fold speedup. Most of
the improvement in sentence accuracy is due to bet-
ter performance on local queries; however, we also
achieve a 2.9% absolute increase in sentence accu-
racy on nationwide queries.
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LM Recognition accuracy: String/Word [%] Real time speed
Overall Nationwide Local Queries with

queries queries street name
Nationwide language models

National 51.3/58.0 59.9/60.8 40.3/54.1 17.9/47.3 1.05
Top 2000 23.2/31.6 40.6/43.3 9.5/25.8 1.3/18.3 0.44

Local language models
Local area 63.7/69.7 60.8/63.2 69.5/77.2 22.4/53.4 0.42
Geo-centric 68.1/73.0 62.8/65.0 75.0/81.7 15.1/49.7 0.36

Combined language models, LM union
Local area, national 58.9/64.5 61.4/62.3 57.9/67.1 21.8/50.6 0.84
Geo-centric, national 64.7/69.1 63.6/64.5 67.2/74.5 23.2/52.1 0.78
Local area, top 2000 60.0/67.0 62.1/65.8 61.8/71.3 20.6/50.3 0.45
Geo-centric, top 2000 64.7/70.7 63.4/66.7 68.8/76.5 14.7/48.2 0.42

Combined language models, count merging
Local area, top 2000 66.7/72.2 69.2/71.5 67.8/75.7 22.5/54.0 0.50
Geo-centric, top 2000 67.7/72.6 68.3/70.5 70.4/77.7 13.2/46.9 0.44

Table 1: Results on mobile 411 data (total listings 14235; national listings 4679; local listings 2495; listings with street
addresses 1163)

Now we look at the performance of different ap-
proaches to nationwide and local language model-
ing. First we compare the two nationwide LMs. As
expected, we see that the overall sentence accuracy
for the National LM is more than twice as high as
that of the Top 2000 LM, but the recognition time is
more than twice as slow. Next we compare the two
local language modeling approaches. We see that
geo-centric LMs achieve a 4.4% absolute increase
in overall sentence accuracy compared to local area
LMs and a 5.5% increase in sentence accuracy on
local listings, while using less processing time.

Next we look at combination language models.
When we combine local and nationwide LMs us-
ing LM union, we get small increases in sentence
accuracy for nationwide queries compared to local
LMs alone. However, sentence accuracy for local
listings decreases. Also, these models use more pro-
cessing time than the local LMs. When we com-
bine local and national LMs using count merging,
we get larger increases in sentence accuracy for na-
tionwide queries over local LMs alone, and smaller
decreases for local queries, compared to using LM
union. LMs trained using count merging use more
processing time than those trained using LM union,
but still less than the National LM.

We conclude that: geo-centric language model-
ing leads to increased recognition accuracy and im-
provements in recognition time, compared to us-

ing a national language model; geo-centric language
modeling leads to increased recognition accuracy
and improvements in recognition time, compared to
using local area language models; and geo-centric
language models can be combined with a “most fre-
quently asked-for” nationwide language model to
get increased recognition accuracy on nationwide
queries, at the cost of a small increase in recognition
time and a slight decrease in recognition accuracy
for local listings.

Further analysis of our results showed another
interesting phenomenon. While geo-centric LMs
achieve higher recognition accuracy than the Na-
tional LM and local area LMs on nationwide and
local queries, recognition accuracy on queries that
contain a street name decreases. The likely reason
is that small local LMs do not have rich street name
coverage and people often do not refer to a street ad-
dress precisely. A person might use a route number
instead of a street name; if a single road has dif-
ferent names at different points they might use the
wrong name; or they might use a variation on the
actual name. For example, the query “Conoco on
South Divison” is correctly recognized by our na-
tional LM but not with a geo-centric LM. The clos-
est matching listing in our database for that loca-
tion is “Conoco Convenience Store on South Boule-
vard”. We note that we did not make any attempt
to generalize over the street names in our LMs, sim-
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ply pulling one street name for each listing from the
database. Slightly more robust handling of street
names may cause this phenomenon to disappear.

6 Conclusions and Future Work

Smart phones are able to give system developers
increasingly detailed information about their users.
This information can and should be exploited to give
improved robustness and performance in customer
services. In this paper, we explored the use of lo-
cation information (from GPS or cell tower triangu-
lation) to improve ASR accuracy in LBVS. We pre-
sented an algorithm for geo-centric language model
generation that: adapts to the local business density;
enables good local listing coverage; and requires
only a limited number of language models. We com-
pared the performance of our geo-centric language
modeling to an alternative “local” language model-
ing approach and to a nationwide language model-
ing approach, and showed that we achieve signifi-
cant improvements in recognition accuracy (a 4.4%
absolute increase in sentence accuracy compared to
local area language modeling, and a 16.8% absolute
increase compared to the use of a national language
model) with significant speedup.

We are currently testing our geo-centric language
models in a LBVS prototype. In future work, we
will optimize the parameters in our algorithm for
geo-centric LM computation and merging. We also
plan to explore the impact of integrating language
modeling with search, and to examine the impact
of these different language modeling approaches on
performance of a trainable dialog manager that takes
n-best output from the speech recognizer.
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Abstract

In this paper, we show that linguistically mo-
tivated pronunciation rules can improve phone
and word recognition results for Modern Stan-
dard Arabic (MSA). Using these rules and
the MADA morphological analysis and dis-
ambiguation tool, multiple pronunciations per
word are automatically generated to build two
pronunciation dictionaries; one for training
and another for decoding. We demonstrate
that the use of these rules can significantly
improve both MSA phone recognition and
MSA word recognition accuracies over a base-
line system using pronunciation rules typi-
cally employed in previous work on MSA Au-
tomatic Speech Recognition (ASR). We ob-
tain a significant improvement in absolute ac-
curacy in phone recognition of 3.77%–7.29%
and a significant improvement of 4.1% in ab-
solute accuracy in ASR.

1 Introduction

The correspondence between orthography and pro-
nunciation in Modern Standard Arabic (MSA) falls
somewhere between that of languages such as Span-
ish and Finnish, which have an almost one-to-one
mapping between letters and sounds, and languages
such as English and French, which exhibit a more
complex letter-to-sound mapping (El-Imam, 2004).
The more complex this mapping is, the more diffi-
cult the language is for Automatic Speech Recogni-
tion (ASR).

An essential component of an ASR system is its
pronunciation dictionary (lexicon), which maps the
orthographic representation of words to their pho-
netic or phonemic pronunciation variants. For lan-
guages with complex letter-to-sound mappings, such

dictionaries are typically written by hand. However,
for morphologically rich languages, such as MSA,1

pronunciation dictionaries are difficult to create by
hand, because of the large number of word forms,
each of which has a large number of possible pro-
nunciations. Fortunately, the relationship between
orthography and pronunciation is relatively regu-
lar and well understood for MSA. Moreover, re-
cent automatic techniques for morphological anal-
ysis and disambiguation (MADA) can also be useful
in automating part of the dictionary creation process
(Habash and Rambow, 2005; Habash and Rambow,
2007) Nonetheless, most documented Arabic ASR
systems appear to handle only a subset of Arabic
phonetic phenomena; very few use morphological
disambiguation tools.

In Section 2, we briefly describe related work, in-
cluding the baseline system we use. In Section 3, we
outline the linguistic phenomena we believe are crit-
ical to improving MSA pronunciation dictionaries.
In Section 4, we describe the pronunciation rules we
have developed based upon these linguistic phenom-
ena. In Section 5, we describe how these rules are
used, together with MADA, to build our pronuncia-
tion dictionaries for training and decoding automat-
ically. In Section 6, we present results of our eval-
uations of our phone- and word-recognition systems
(XPR and XWR) on MSA comparing these systems
to two baseline systems, BASEPR and BASEWR.

1MSA words have fourteen features: part-of-speech, person,
number, gender, voice, aspect, determiner proclitic, conjunctive
proclitic, particle proclitic, pronominal enclitic, nominal case,
nunation, idafa (possessed), and mood. MSA features are real-
ized using both concatenative (affixes and stems) and templatic
(root and patterns) morphology with a variety of morphological
and phonological adjustments that appear in word orthography
and interact with orthographic variations.
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We conclude in Section 7 and identify directions for
future research.

2 Related Work

Most recent work on ASR for MSA uses a sin-
gle pronunciation dictionary constructed by map-
ping every undiacritized word in the training cor-
pus to all of the diacritized Buckwalter analyses and
the diacritized versions of this word in the Arabic
Treebank (Maamouri et al., 2003; Afify et al., 2005;
Messaoudi et al., 2006; Soltau et al., 2007). In these
papers, each diacritized word is converted to a sin-
gle pronunciation with a one-to-one mapping using
“very few” unspecified rules. None of these systems
use morphological disambiguation to determine the
most likely pronunciation of the word given its con-
text. Vergyri et al. (2008)do use morphological in-
formation to predict word pronunciation. They se-
lect the top choice from the MADA (Morphological
Analysis and Disambiguation for Arabic) system for
each word to train their acoustic models. For the test
lexicon they used the undiacritized orthography, as
well as all diacritizations found for each word in the
training data as possible pronunciation variants. We
use this system as our baseline for comparison.

3 Arabic Orthography and Pronunciation

MSA is written in a morpho-phonemic orthographic
representation using theArabic script, an alphabet
accented with optional diacritical marks.2 MSA has
34 phonemes (28 consonants, 3 long vowels and 3
short vowels). The Arabic script has 36 basic let-
ters (ignoring ligatures) and 9 diacritics. Most Ara-
bic letters have a one-to-one mapping to an MSA
phoneme; however, there are a small number of
common exceptions (Habash et al., 2007; El-Imam,
2004) which we summarize next.

3.1 Optional Diacritics

Arabic script commonly uses nine optional diacrit-
ics: (a) three short-vowel diacritics representing the
vowels /a/, /u/ and /i/; (b) one long-vowel diacritic
(Dagger Alif ‘) representing the long vowel /A/ in a

2We provide Arabic script orthographic transliteration in
the Buckwalter transliteration scheme (Buckwalter, 2004). For
Modern Standard Arabic phonological transcription, we usea
variant of the Buckwalter transliteration with the following ex-
ceptions: glottal stops are represented as /G/ and long vowels as
/A/, /U/ and /I/. All Arabic script diacritics are phonologically
spelled out.

small number of words; (c) threenunation diacrit-
ics (F /an/,N /un/,K /in/) representing a combina-
tion of a short vowel and the nominal indefiniteness
marker /n/ in MSA; (d) one consonant lengthening
diacritic (called Shadda∼) which repeats/elongates
the previous consonant (e.g.,kat∼ab is pronounced
/kattab/); and (e) one diacritic for marking when
there is no diacritic (called Sukuno).

Arabic diacritics can only appearafter a let-
ter. Word-initial diacritics (in practice, only short
vowels) are handled by adding an extra AlifA A
(also called Hamzat-Wasl) at the beginning of the
word. Sentence/utterance initial Hamzat-Wasl is
pronounced like a glottal stop preceding the short
vowel; however, the sentence medial Hamzat-Wasl
is silent except for the short vowel. For exam-
ple, Ainkataba kitAbN is /Ginkataba kitAbun/ but
kitAbN Ainkataba is /kitAbun inkataba/. A ‘real’
Hamza (glottal stop) is always pronounced as a glot-
tal stop. The Hamzat-Wasl appears most commonly
as the Alif of the definite articleAl. It also appears
in specific words and word classes such as relative
pronouns (e.g.,Aly ‘who’ and verbs in pattern VII
(Ain1a2a3).

Arabic short vowel diacritics are used together
with the glide consonant lettersw andy to denote
the long vowels /U/ (asuw) and /I/ (iy). This makes
these two letters ambiguous.

Diacritics are largely restricted to religious texts
and Arabic language school textbooks. In other
texts, fewer than 1.5% of words contain a diacritic.
Some diacritics are lexical (where word meaning
varies) and others are inflectional (where nominal
case or verbal mood varies). Inflectional diacritics
are typically word final. Since nominal case, verbal
mood and nunation have all disappeared in spoken
dialectal Arabic, Arabic speakers do not always pro-
duce these inflections correctly or at all.

Much work has been done on automatic Arabic
diacritization (Vergyri and Kirchhoff, 2004; Anan-
thakrishnan et al., 2005; Zitouni et al., 2006; Habash
and Rambow, 2007). In this paper, we use the
MADA (Morphological Analysis and Disambigua-
tion for Arabic) system to diacritize Arabic (Habash
and Rambow, 2005; Habash and Rambow, 2007).
MADA, which uses the Buckwalter Arabic mor-
phological Analyzer databases (Buckwalter, 2004),
provides the necessary information to determine
Hamzat-Wasl through morphologically tagging the
definite article; in most other cases it outputs the spe-
cial symbol “{” for Hamzat-Wasl.
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3.2 Hamza Spelling

The consonant Hamza (glottal stop /G/) has multi-
ple forms in Arabic script:� ′, � >, � <, � &, ò
}, � |. There are complex rules for Hamza spelling
that primarily depend on its vocalic context. For ex-
ample,ò } is used word medially and finally when
preceded or followed by an /i/ vowel. Similarly, the
Hamza form� | is used when the Hamza is followed
by the long vowel /A/.

Hamza spelling is further complicated by the fact
that Arabic writers often replace hamzated letters
with the un-hamzated form (� > → A A) or use a
two-letter spelling, e.g.ò } → �ì Y ′. Due to
this variation, the un-hamzated forms (particularly
for � > and � <) are ignored in Arabic ASR evalua-
tion. The MADA system regularizes most of these
spelling variations as part of its analysis.

3.3 Morpho-phonemic Spelling

Arabic script includes a small number of mor-
phemic/lexical phenomena, some very common:

• Ta-Marbuta The Ta-Marbuta (p) is typically a
feminine ending. It appears word-finally, op-
tionally followed by a diacritic. In MSA it
is pronounced as /t/ when followed by a di-
acritic; otherwise it is silent. For example,
maktabapN ‘a library’ is pronounced / mak-
tabatun/.

• Alif-Maqsura The Alif-Maqsura (Y ) is a silent
derivational marker, which always follows a
short vowel /a/ at the end of a word. For ex-
ample,rawaY ‘to tell a story’ is pronounced
/rawa/.

• Definite Article The Arabic definite article is
a proclitic that assimilates to the first conso-
nant in the noun it modifies if this consonant
is alveolar or dental (except forj). These are
the so-called Sun Letters:t, v, d, *, r, z, s, $,
S, D, T, Z, l, and n. For example, the word
Al$ams ‘the sun’ is pronounced /a$$ams/ not
*/al$ams/. The definite article does not assimi-
late to the other consonants, the Moon Letters.
For example, the word Alqamar ‘the moon’ is
pronounced /alqamar/ not */aqqamar/.

• Silent Letters A silent Alif appears in the mor-
pheme+uwA /U/ which indicates masculine
plural conjugation in verbs. Another silent Alif

appears after some nunated nouns, e.g., ki-
taAbAF /kitAban/. In some poetic readings,
this Alif can be produced as the long vowel
/A/: /kitAbA/. Finally, a common odd spelling
is that of the proper nameEamrw /Eamr/
‘Amr’where the final w is silent.

4 Pronunciation Rules

As noted in Section 3, diacritization alone does not
predict actual pronunciation in MSA. In this section
we describe a set of rules based on MSA phonol-
ogy which will extend a diacritized word to a set
of possible pronunciations. It should be noted that
even MSA-trained speakers, such as broadcast news
anchors, may not follow the “proper” pronunciation
according to Arabic syntax and phonology. So we
attempt to accommodate these pronunciation vari-
ants in our pronunciation dictionary.

The following rules are applied on each dia-
critized word.3 These rules are divided into four
categories: (I) a shared set of rules used in all
systems compared (BASEPR, BASEWR, XPR
and XWR);4 (II) a set of rules in BASEPR and
BASEWR which we modified for XPR and XWR;
(III) a first set of new rules devised for our systems
XPR and XWR; and (IV) a second set of new rules
that generate additional pronunciation variants.
Below we indicate, for each rule, how many words
in the training corpus (335,324 words) had their
pronunciation affected by the rule.

I. Shared Pronunciation Rules

1. Dagger Alif: ‘ → /A/
(e.g., h‘*A → hA*A) (This rule affected 1.8%
of all the words in our training data)

2. Madda: | → /G A/
(e.g., Al|n→ AlGAn) (affected 1.9%)

3. Nunation: AF → /a n/, F→ /a n/, /K/→ /i n/,
N → /u n/
(e.g., kutubAF→ kutuban) (affected 9.7%)

4. Hamza: All Hamza forms:′, },&, <,> → /G/
(e.g.,>kala→ Gakala) (affected 21.3%)

3Our script that generates the pronunciation dictio-
naries from MADA output can be downloaded from
www.cs.columbia.edu/speech/software.cgi.

4We have attempted to replicate the baseline pronunciation
rules for (Vergyri et al., 2008) based on published work and
personal communications with the authors.
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5. Ta-Marbuta: p→ /t/
(e.g., madrasapa→ madrasata) (affected
15.3%)

II. Modified Pronunciation Rules

1. Alif-Maqsura: Y → /a/
(e.g., salomY → saloma) (affected 4.2%)
(Baseline: Y → /A/)

2. Shadda:Shadda is always removed
(e.g., ba$∼ara → ba$ara) (affected 23.8%)
(Baseline: the consonant was doubled)

3. U and I: uwo→ /U/, iyo → /I/
(e.g., makotuwob → makotUb) (affected
25.07%) (Baseline: same rule but it inaccu-
rately interacted with the baseline Shadda rule)

III. New Pronunciation Rules

1. Waw Al-jamaa: suffixes uwoA→ /U/
(e.g., katabuwoA→ katabU) (affected 0.4%)

2. Definite Article: Al → /a l/ (if tagged as Al+
by MADA)
(e.g., wAlkitAba → walkitAba) (affected
30.0%)

3. Hamzat-Wasl: { is always removed.
(affected 3.0%)

4. “Al” in relative pronouns: Al → /a l/
(affected 1.3%)

5. Sun letters: if the definite article (Al) is fol-
lowed by a sun letter, remove thel.
(e.g., Al$amsu→ A$amsu) (affected 8.1%)

IV. New Pronunciation Rules Generating Addi-
tional Variants

• Ta-Marbuta: if a word ends with Ta-Marbuta
(p) followed by any diacritic, remove the Ta-
Marbuta and its diacritic. Apply the rules above
(I-III) on the modified word and add the output
pronunciation.
(e.g., marbwTapF→ marbwTa) (affected
15.3%)

• Case ending:if a word ends with a short vowel
(a, u, i), remove the short vowel. Apply rules
(I-III) on the modified word, and add the output
pronunciation
(e.g., yaktubu→ yaktub (affected 60.9%)

As a post-processing step in all systems, we re-
move the Sukun diacritic and convert every letter X
to phoneme /X/. In XPR and XWR, we also remove
short vowels that precede or succeed a long vowel.

5 Building the Pronunciation Dictionaries

As noted above, pronunciation dictionaries map
words to one or more phonetically expressed pro-
nunciation variants. These dictionaries are used
for training and decoding in ASR systems. Typi-
cally, most data available to train large vocabulary
ASR systems is orthographically (not phonetically)
transcribed. There are two well-known alternatives
for training acoustic models in ASR: (1) bootstrap
training, when some phonetically annotated data is
available, and (2) flat-start, when such data is not
available (Young et al., 2006). In flat-start training,
for example, the pronunciation dictionary is used
to map the orthographic transcription of the train-
ing data to a sequence of phonetic labels to train
the initial monophone models. Next, the dictionary
is employed again to produce networks of possible
pronunciations which can be used in forced align-
ment to obtain the most likely phone sequence that
matches the acoustic data. Finally, the monophone
acoustic models are re-estimated. In our work, we
refer to this dictionary as thetraining pronuncia-
tion dictionary . The second usage of the pronun-
ciation dictionary is to generate the pronunciation
models while decoding. We refer to this dictionary
as thedecoding pronunciation dictionary.

For languages like English, no distinction be-
tween decoding and training pronunciation dictio-
naries is necessary. However, as noted in Section
3, short vowels and other diacritic markers are typi-
cally not orthographically represented in MSA texts.
Thus ASR systems typically do not output fully di-
acritized transcripts. Diacritization is generally not
necessary to make the transcript readable by Arabic-
literate readers. Therefore, entries in the decod-
ing pronunciation dictionary consist of undiacritized
words that are mapped to a set of phonetically-
represented diacritizations. However, every entry in
the training pronunciation dictionary is a fully dia-
critized word mapped to a set of possible context-
dependent pronunciations. Particularly in the train-
ing step, contextual information for each word is
available from the transcript, so, for our work, we
can use the MADA morphological tagger to obtain
the most likely diacritics. As a result, the speech
signal is mapped to a more accurate representation
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of the training transcript, which we hypothesize will
lead to a better estimation of the acoustic models.

As noted in Section 1, pronunciation dictionaries
for ASR systems are usually written by hand. How-
ever, Arabic’s morphological richness makes it dif-
ficult to create a pronunciation dictionary by hand
since there are a very large number of word forms,
each of which has a large number of possible pro-
nunciations. The relatively regular relationship be-
tween orthography and pronunciation and tools for
morphological analysis and disambiguation such as
MADA, however, make it possible to create such
dictionaries automatically with some success.5

5.1 Training Pronunciation Dictionary

In this section, we describe an automatic approach
to building a pronunciation dictionary for MSA that
covers all words in the orthographic transcripts of
the training data. First, for each word in each ut-
terance, we run MADA to disambiguate the word
based on its context in the transcript. MADA outputs
all possible fully-diacritized morphological analy-
ses, ranked by their likelihood, the MADA confi-
dence score.6 We thus obtain a fully-diacritized or-
thographic transcription for training. Second, we
map the highest-ranked diacritization of each word
to a set of pronunciations, which we obtain from the
pronunciation rules described in Section 4. Since
MADA may not always rank the best analysis as its
top choice, we also run the pronunciation rules on
the secondbest choice returned by MADA, when
the difference between the top two choices is less
than a threshold determined empirically (in our im-
plementation we chose 0.2). In Figure 1, the training
pronunciation dictionary maps the2nd column (the
entry keys) to the3rd column.

We generate the baseline training pronunciation
dictionary using only the baseline rules from Section
4. This dictionary also makes use of MADA, but it
maps the MADA-diacritized word to only one pro-
nunciation. The baseline training dictionary maps
the2nd column (the entry keys) toonly one pronun-
ciation in the3rd column in Figure 1.

5The MADA system (Habash and Rambow, 2005; Habash
and Rambow, 2007) reports 4.8% diacritic error rate (DER) on
all diacritics and 2.2% (DER) when ignoring the last (inflec-
tional) diacritic.

6In our training data, only about 1% of all words are not
diacritized because of lack of coverage in the morphological
analysis component.
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Figure 1: Mapping an undiacritized word to MADA out-
puts to possible pronunciations.

5.2 Decoding Pronunciation Dictionary

The decoding pronunciation dictionary is used in
ASR to build the pronunciation models while decod-
ing. Since, as noted above, it is standard to produce
unvocalized transcripts when recognizing MSA, we
must map word pronunciations to unvocalized ortho-
graphic output. Therefore, for each diacritized word
in our training pronunciation dictionary, we remove
diacritic markers and replace Hamzat-Wasl ({), <,
and > by the letter ‘A’, and then map the modified
word to the set of pronunciations for that word. For
example, in Figure 1 the undiacritized wordmdrsp
in the 1st column is mapped to the pronunciations
in the 3rd column. The baseline decoding pronun-
ciation dictionary is constructed similarly from the
baseline training pronunciation dictionary.

6 Evaluation

To determine whether our pronunciation rules are
useful in speech processing applications, we eval-
uated their impact on two tasks, automatic phone
recognition and ASR. For our experiments, we used
the broadcast news TDT4 corpus (Arabic Set 1), di-
vided into 47.61 hours of speech (89 news shows)
for training and 5.18 hours (11 shows); test and
training shows were selected at random. Both train-
ing and test data were segmented based on silence
and non-speech segments and down-sampled to
8Khz.7 This segmentation produced 20,707 speech
segments for our training data and 2,255 segments
for testing.

7One of our goals is phone recognition telephone conversa-
tion for Arabic dialect identifaction, hence the down-sampling.
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6.1 Acoustic Models

Our monophone acoustic models are built using 3-
state continuous HMMs without state-skipping with
a mixture of 12 Gaussians per state. We extract
standard MFCC (Mel Frequency Cepstral Coeffi-
cients) features from 25 ms frames, with a frame
shift of 10 ms. Each feature vector is 39D: 13 fea-
tures (12 cepstral features plus energy), 13 deltas,
and 13 double-deltas. The features are normalized
using cepstral mean normalization. For our ASR
experiments, tied context-dependent cross-word tri-
phone HMMs are created with the same settings as
monophones. The acoustic models are speaker- and
gender-independent, trained using ML (maximum
likelihood) with flat-start.8 We build our framework
using the HMM Toolkit (HTK) (Young et al., 2006).

6.2 Phone Recognition Evaluation

We hypothesize that improved pronunciation rules
will have a profound impact on phone recognition
accuracy. To compare our phone recognition (XPR)
system with the baseline (BASEPR), we train two
phone recognizers using HTK. The BASEPR rec-
ognizer uses the training-pronunciation dictionary
generated using the baseline rules; the XPR sys-
tem uses a pronunciation dictionary generated using
these rules plus our modified and new rules (cf. Sec-
tion 5). The two systems are identical except for
their pronunciation dictionaries.

We evaluate the two systems under two condi-
tions: (1) phone recognition with a bigram phone
language model (LM)9 and (2) phone recognition
with an open-loop phone recognizer, such that any
phoneme can follow any other phoneme with a uni-
form distribution. Results of this evaluation are pre-
sented in Table 1.

Ideally, we would like to compare the perfor-
mance of these systems against a common MSA
phonetically-transcribed gold standard. Unfortu-
nately, to our knowledge, such a data set does not
exist. So we approximate such a gold standard
on a blind test set through forced alignment, us-
ing the trained acoustic models and pronunciation

8Since our focus is a comparison of different approaches to
pronunciation modeling on Arabic recognition tasks, we have
not experimented with different features, parameters, anddiffer-
ent machine learning approaches (such as discriminative train-
ing and/or the combination of both).

9The bigram phoneme LM of each phone recognizer is
trained on the phonemes obtained from forced aligning the
training transcript to the speech data using that recognizer’s
training pronunciation dictionary and acoustic models.

dictionaries. Since our choice of acoustic model
(of BASEPR or XPR) and pronunciation dictionary
(again of BASEPR or XPR) can bias our results,
we consider fourgold variants (GV) with differ-
ent combinations of acoustic model and pronunci-
ation dictionary, to set expected lower and upper
bounds. These combinations are represented in Ta-
ble 1 as GV1–4, where the source of acoustic mod-
els is BASEPR or XPR and source of pronuncia-
tion rules are BASEPR, XPR or XPR and BASEPR
combined. These GV are described in more detail
below, as we describe our results.

Since BASEPR system uses a pronunciation dic-
tionary with a one-to-one mapping of orthography
to phones, the GV1 phone sequence for any test
utterance’s orthographical transcript according to
BASEPR can be obtained directly from the ortho-
graphic transcript. Note that if, in fact, GV1 does
represent the true gold standard (i.e., the correct
phone sequence for the test utterances) then if XPR
obtains a lower phone error rate using this gold stan-
dard than BASEPR does, we can conclude that in
fact XPR’s acoustic models are better estimated.
This is in fact the case. In Table 1, first line, we
see that XPR under both conditions (open-loop and
bigram LM) significantly (p-value< 2.2e−16) out-
performs the corresponding BASEPR phone recog-
nizer using GV1.10

If GV1 doesnot accurately represent the phone
sequences of the test data, then there must be some
phones in the GV1 sequences that should be deleted,
inserted, or substituted. On the hypothesis that our
training-pronunciation dictionary might improve the
BASEPR assignments, we enrich the baseline pro-
nunciation dictionary with XPR’s dictionary. Now,
we force-align the orthographic transcript using
this extended pronunciation dictionary, still using
BASEPR’s acoustic models, with the acoustic sig-
nal. We denote the output phone sequences as GV2.
If a pronunciation generated using the BASEPR dic-
tionary was already correct (in GV1) according to
the acoustic signal, this forced alignment process
still has the option of choosing it. We hypothesize
that the result, GV2, is a more accurate represen-
tation of the true phone sequences in the test data,
since it should be able to model the acoustic sig-
nal more accurately. On GV2, as on GV1, we see
that XPR, under both conditions, significantly (p-

10Throughout this discussion we use paired t-tests to measure
significant difference, where the sample values are the phone
recognizer accuracies on the utterances.
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Gold Variants Open-loop (Accuracy) Bigram Phone LM (Accuracy)
GV Acoustic Model of Pron. Dict. of BASEPR XPR BASEPR XPR

1 BASEPR BASEPR 37.40 39.21 41.56 45.17
2 BASEPR BASEPR+XPR 38.64 42.41 43.44 50.73
3 XPR XPR 37.06 42.38 42.21 51.41
4 XPR BASEPR+XPR 37.47 42.74 42.59 51.51

Table 1: Comparing the effect of BASEPR and XPR pronunciation rules, alone and in combination, using 4 Gold
Variants under two conditions (Open-loop and LM)

value< 2.2e − 16) outperforms the corresponding
BASEPR phone recognizers (see Table 1, second
line).

We also compared the performance of the two
systems using upper bound variants. For GV3 we
used the forced alignment of the orthographic tran-
scription using only XPR’s pronuncation dictionary
with XPR’s acoustic models. In GV4 we combine
the pronunciation dictionary of XPR with BASEPR
dictionary and use XPR’s acoustic models. Unsur-
prisingly, we find that the XPR recognizer signifi-
cantly (p-value<2.2e − 16) outperforms BASEPR
when using these two variants under both conditions
(see Table 1, third and fourth lines).

The results presented in Table 1 compare the ro-
bustness of the acoustic models as well as the pro-
nunciation components of the two systems. We also
want to evaluate the accuracy of our pronunciation
predictions in representing the actual acoustic sig-
nal. One way to do this is to see how often the forced
alignment process choose phone sequences using
the BASEPR pronunciation dictionary as opposed
to XPR’s. We forced aligned the test transcript —
using the XPR acoustic models and only the XPR
pronunciation dictionary — with the acoustic sig-
nal. We then compare the output sequences to the
output of the forced alignment process where the
combinedpronunciations from BASEPR+XPR and
the XPR acoustic models were used. We find that
the difference between the two is only 1.03% (with
246,376 phones, 557 deletions, 1696 substitutions,
and 277 insertions). Thus, adding the BASEPR rules
to XPR does not appear to contribute a great deal to
the representation chosen by forced alignment. In
a similar experiment, we use the BASEPR acous-
tic models instead of the XPR models and compare
the results of using BASEPR-pronunciation dictio-
nary with the combination of XPR+BASEPR’s dic-
tionaries for forced alignment. Interestingly, in this
experiment wedo find a significantly larger differ-
ence between the two outputs 17.04% (with 233,787

phones, 1404 deletions, 14013 substitutions, and
27040 insertions). We can hypothesize from these
experiments that the baseline pronunciation dictio-
nary alone is not sufficient to represent the acoustic
signal accurately, since large numbers of phonemes
are edited when adding the XPR pronunciations. In
contrast, adding the BASEPR’s pronunciation dic-
tionary to XPR’s shows a relatively small percent-
age of edits, which suggests that the XPR pronun-
ciation dictionary extends and covers more accu-
rately the pronunciations already contained in the
BASEPR dictionary.

6.3 Speech Recognition Evaluation

We have also conducted an ASR experiment to eval-
uate the usefulness of our pronunciation rules for
this application.11 We employ the baseline pro-
nunciation rules to generate the baseline training
and decoding pronunciation dictionaries. Using
these dictionaries, we build the baseline ASR sys-
tem (BASEWR). Using our extended pronunciation
rules, we generate our dictionaries and train our
ASR system (XWR). Both systems have the same
model settings, as described in Section 6.1. They
also share the same language model (LM), a trigram
LM trained on the undiacritized transcripts of the
training data and a subset of Arabic gigawords (ap-
proximately 281 million words, in total), using the
SRILM toolkit (Stolcke, 2002).

Table 2 presents the comparison of BASEWR
with the XWR system. In Section 5.1, we noted that
the top two choices from MADA may be included in
the XWR pronunciation dictionary when the differ-
ence in MADA confidence scores for these two is
less than a given threshold. So we analyze the im-
pact of including this second MADA option in both
the training and decoding dictionaries on ASR re-
sults. In all cases, whether the second MADA choice

11It should be noted that we have not attempted to build a
state-of-the-art Arabic speech recognizer; our goal is purely to
evaluate our approach to pronunciation modeling for Arabic.

403



is included or not, XWR significantly (p-values<
8.1e-15) outperforms BASEWR. Our best results are
obtained when we include the top first and second
MADA option in the decoding pronunciation dictio-
nary butonly the top MADA choice in the training
pronunciation dictionary. The difference between
this version of XWR and an XWR version which
includes the top second MADA choice in the train-
ing dictionary is significant (p-value =0.017).

To evaluate the impact of the set of rules that gen-
erate additional pronunciation variants (described in
Section 4 - IV) on word recognition, we built a
system, denoted as XWR_I-III, that uses only the
first three sets of rules (I–III) and compared its per-
formance to that of both BASEWR and the corre-
sponding XWR system. As shown in Table 2, we
observe that XWR_I-III significantly outperforms
BASEWR in 2.27 (p-value < 2.2e-16). Also, the
corresponding XWR that uses all the rules (includ-
ing IV set) significantly outperforms XWR_I-III in
1.24 (p-value < 2.2e-16).

The undiacritized vocabulary size used in our ex-
periment was 34,511. We observe that 6.38% of
the words in the test data were out of vocabulary
(OOV), which may partly explain our low absolute
recognition accuracy. The dictionary size statistics
(for entries generated from the training data only)
used in these experiments are shown in Table 3. We
have done some error analysis to understand the rea-
son behind high absolute error rate for both systems.
We observe that many of the test utterances are very
noisy. We wanted to see whether XWR still out-
performs BASEWR if we remove these utterances.
Removing all utterances for which BASEWR ob-
tains an accuracy of less than 25%, we are left with
1720/2255 utterances. On these remaining utter-
ances, the BASEWR accuracy is 64.4% and XWR’s
accuracy is 67.23% — a significant difference de-
spite the bias in favor of BASEWR.

7 Conclusion and Future Work

In this paper we have shown that the use of more
linguistically motivated pronunciation rules can im-
prove phone recognition and word recognition re-
sults for MSA. We have described some of the pho-
netic, phonological, and morphological features of
MSA that are rarely modeled in ASR systems and
have developed a set of pronunciation rules that en-
capsulate these features. We have demonstrated how
the use of these rules can significantly improve both
MSA phone recognition and MSA word recognition

System Acc Corr Del Sub Ins
BASEWR 52.78 65.36 360 12297 4598

XWR_I–III (1 TD/DD) 55.05 66.84 324 11791 4308

XWR (1 TD/DD) 56.29 69.06 274 11031 4665
XWR (2 TD, 2 DD) 56.28 69.12 274 11008 4694
XWR (2 TD, 1 DD) 55.53 68.55 285 11206 4759
XWR (1 TD, 2 DD) 56.88 69.42 284 10891 4579

Table 2: Comparing the performance of BASEWR to
XWR, where the top 1 or 2 MADA options are included
in the training dictionary (TD) and decoding dictionary
(DD). XWR I–III uses only the first three sets of pro-
nunciation rules in Section 4.Accuracy = (100 - WER);
Corr ect is Accuracy without counting insertions (%). To-
tal number of words is 36,538.

Dictionary # entries PPW
BASEPR TD 45,117 1
BASEPR DD 44,383 1.3
XPR TD (MADA top 1) 80,200 1.78
XPR TD (MADA top 1 and 2) 128,663 2.85
XWR DD (MADA top 1) 71,853 2.08
XWR DD (MADA top 1 and 2) 105,402 3.05

Table 3: Dictionary sizes generated fom the training data
only (PPW: pronunciations per word, TD: Training pro-
nunciation dictionary, DD: Decoding pronunciation dic-
tionary).

accuracy by a series of experiments comparing our
XPR and XWR systems to the corresponding base-
line systems BASEPR and BASEWR. We obtain an
improvement in absolute accuracy in phone recogni-
tion of 3.77%–7.29% and a significant improvement
of 4.1% in absolute accuracy in ASR.

In future work, we will address several issues
which appear to hurt our recognition accuracy, such
as handling the words that MADA fails to analyze.
We also will develop a similar approach to handling
dialectical Arabic speech using the MAGEAD mor-
phological analyzer (Habash and Rambow, 2006).
A larger goal is to employ the MSA and dialectical
phone recognizers to aid in spoken Arabic dialect
identification using phonotactic modeling (see (Bi-
adsy et al., 2009)).
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Abstract

Recent work has shown that translating seg-
mentation lattices (lattices that encode alterna-
tive ways of breaking the input to an MT sys-
tem into words), rather than text in any partic-
ular segmentation, improves translation qual-
ity of languages whose orthography does not
mark morpheme boundaries. However, much
of this work has relied on multiple segmenters
that perform differently on the same input to
generate sufficiently diverse source segmen-
tation lattices. In this work, we describe a
maximum entropy model of compound word
splitting that relies on a few general features
that can be used to generate segmentation lat-
tices for most languages with productive com-
pounding. Using a model optimized for Ger-
man translation, we present results showing
significant improvements in translation qual-
ity in German-English, Hungarian-English,
and Turkish-English translation over state-of-
the-art baselines.

1 Introduction

Compound words pose significant challenges to the
lexicalized models that are currently common in sta-
tistical machine translation. This problem has been
widely acknowledged, and the conventional solu-
tion, which has been shown to work well for many
language pairs, is to segment compounds into their
constituent morphemes using either morphological
analyzers or empirical methods and then to trans-
late from or to this segmented variant (Koehn et al.,
2008; Dyer et al., 2008; Yang and Kirchhoff, 2006).

But into what units should a compound word be
segmented? Taken as a stand-alone task, the goal of
a compound splitter is to produce a segmentation for
some input that matches the linguistic intuitions of a

native speaker of the language. However, there are
often advantages to using elements larger than sin-
gle morphemes as the minimal lexical unit for MT,
since they may correspond more closely to the units
of translation. Unfortunately, determining the op-
timal segmentation is challenging, typically requir-
ing extensive experimentation (Koehn and Knight,
2003; Habash and Sadat, 2006; Chang et al., 2008).
Recent work has shown that by combining a vari-
ety of segmentations of the input into a segmentation
lattice and effectively marginalizing over many dif-
ferent segmentations, translations superior to those
resulting from any single single segmentation of the
input can be obtained (Xu et al., 2005; Dyer et al.,
2008; DeNeefe et al., 2008). Unfortunately, this ap-
proach is difficult to utilize because it requires mul-
tiple segmenters that behave differently on the same
input.

In this paper, we describe a maximum entropy
word segmentation model that is trained to assign
high probability to possibly several segmentations of
an input word. This model enables generation of di-
verse, accurate segmentation lattices from a single
model that are appropriate for use in decoders that
accept word lattices as input, such as Moses (Koehn
et al., 2007). Since our model relies a small num-
ber of dense features, its parameters can be tuned
using very small amounts of manually created ref-
erence lattices. Furthermore, since these parame-
ters were chosen to have valid interpretation across
a variety of languages, we find that the weights esti-
mated for one apply quite well to another. We show
that these lattices significantly improve translation
quality when translating into English from three lan-
guages exhibiting productive compounding: Ger-
man, Turkish, and Hungarian.

The paper is structured as follows. In the next sec-
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tion, we describe translation from segmentation lat-
tices and give a motivating example, Section 3 de-
scribes our segmentation model and its tuning and
how it is used to generate segmentation lattices, Sec-
tion 5 presents experimental results, Section 6 re-
views relevant related work, and in Section 7 we
conclude and discuss future work.

2 Segmentation lattice translation

In this section we give a brief overview of lattice
translation and then describe the characteristics of
segmentation lattices that are appropriate for trans-
lation.

2.1 Lattice translation

Word lattices have been used to represent ambiguous
input to machine translation systems for a variety of
tasks, including translating automatic speech recog-
nition transcriptions and translating from morpho-
logically complex languages (Bertoldi et al., 2007;
Dyer et al., 2008). The intuition behind using lat-
tices in both approaches is to avoid the error propa-
gation effects that are found when a one-best guess
is used. By carrying a certain amount of uncertainty
forward in the processing pipeline, information con-
tained in the translation models can be leveraged to
help resolve the upstream ambiguity. In our case, we
want to propagate uncertainty about the proper seg-
mentation of a compound forward to the decoder,
which can use its full translation model to select
proper segmentation for translation. Mathemati-
cally, this can be understood as follows: whereas the
goal in conventional machine translation is to find
the sentence êI1 that maximizes Pr(eI1|fJ1 ), the lat-
tice adds a latent variable, the path f̄ from a des-
ignated start start to a designated goal state in the
lattice G:

êI1 = arg max
eI
1

Pr(eI1|G) (1)

= arg max
eI
1

∑

f̄∈G
Pr(eI1|f̄)Pr(f̄ |G) (2)

≈ arg max
eI
1

max
f̄∈G

Pr(eI1|f̄)Pr(f̄ |G) (3)

If the transduction formalism used is a synchronous
probabilistic context free grammar or weighted finite

tonband aufnahme

ton band auf nahme

tonbandaufnahme

wieder aufnahme

wie der auf nahme

wiederaufnahme

Figure 1: Segmentation lattice examples. The dotted
structure indicates linguistically implausible segmenta-
tion that might be generated using dictionary-driven ap-
proaches.

state transducer, the search represented by equation
(3) can be carried out efficiently using dynamic pro-
gramming (Dyer et al., 2008).

2.2 Segmentation lattices
Figure 1 shows two lattices that encode the
most linguistically plausible ways of segment-
ing two prototypical German compounds with
compositional meanings. However, while these
words are structurally quite similar, translating
them into English would seem to require differ-
ent amounts of segmentation. For example, the
dictionary fragment shown in Table 1 illustrates
that tonbandaufnahme can be rendered into En-
glish by following 3 different paths in the lat-
tice, ton/audio band/tape aufnahme/recording, ton-
band/tape aufnahme/recording, and tonbandauf-
nahme/tape recording. In contrast, wiederaufnahme
can only be translated correctly using the unseg-
mented form, even though in German the meaning
of the full form is a composition of the meaning of
the individual morphemes.1

It should be noted that phrase-based models can
translate multiple words as a unit, and therefore cap-
ture non-compositional meaning. Thus, by default if
the training data is processed such that, for example,
aufnahme, in its sense of recording, is segmented
into two words, then more paths in the lattices be-

1The English word resumption is likewise composed of two
morphemes, the prefix re- and a kind of bound morpheme
that never appears in other contexts (sometimes called a ‘cran-
berry’ morpheme), but the meaning of the whole is idiosyncratic
enough that it cannot be called compositional.
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German English
auf on, up, in, at, ...
aufnahme recording, entry
band reel, tape, band
der the, of the
nahme took (3P-SG-PST)
ton sound, audio, clay
tonband tape, audio tape
tonbandaufnahme tape recording
wie how, like, as
wieder again
wiederaufnahme resumption

Table 1: German-English dictionary fragment for words
present in Figure 1.

come plausible translations. However, using a strat-
egy of “over segmentation” and relying on phrase
models to learn the non-compositional translations
has been shown to degrade translation quality sig-
nificantly on several tasks (Xu et al., 2004; Habash
and Sadat, 2006). We thus desire lattices containing
as little oversegmentation as possible.

We have now have a concept of a “gold standard”
segmentation lattice for translation: it should con-
tain all linguistically motivated segmentations that
also correspond to plausible word-for-word transla-
tions into English. Figure 2 shows an example of the
reference lattice for the two words we just discussed.
For the experiments in this paper, we generated a
development and test set by randomly choosing 19
German newspaper articles, identifying all words
greater than 6 characters is length, and segmenting
each word so that the resulting units could be trans-
lated compositionally into English. This resulted in
489 training sentences corresponding to 564 paths
for the dev set (which was drawn from 15 articles),
and 279 words (302 paths) for the test set (drawn
from the remaining 4 articles).

3 A maximum entropy segmentation
model

We now turn to the problem of modeling word seg-
mentation in a way that facilitates lattice construc-
tion. As a starting point, we consider the work
of Koehn and Knight (2003) who observe that in
most languages that exhibit compounding, the mor-

tonband aufnahme

ton band

wiederaufnahme

Figure 2: Manually created reference lattices for the two
words from Figure 1. Although only a subset of all
linguistically plausible segmentations, each path corre-
sponds to a plausible segmentation for word-for-word
German-English translation.

phemes used to construct compounds frequently
also appear as individual tokens. Based on this ob-
servation, they propose a model of word segmenta-
tion that splits compound words into pieces found
in the dictionary based on a variety heuristic scoring
criteria. While these models have been reasonably
successful (Koehn et al., 2008), they are problem-
atic for two reasons. First, there is no principled way
to incorporate additional features (such as phonotac-
tics) which might be useful to determining whether
a word break should occur. Second, the heuristic
scoring offers little insight into which segmentations
should be included in a lattice.

We would like our model to consider a wide vari-
ety of segmentations of any word (including perhaps
hypothesized morphemes that are not in the dictio-
nary), to make use of a rich set of features, and to
have a probabilistic interpretation of each hypothe-
sized split (to incorporate into the downstream de-
coder). We decided to use the class of maximum
entropy models, which are probabilistically sound,
can make use of possibly many overlapping features,
and can be trained efficiently (Berger et al., 1996).
We thus define a model of the conditional proba-
bility distribution Pr(sN1 |w), where w is a surface
form and sN1 is the segmented form consisting of N
segments as:

Pr(sN1 |w) =
exp

∑
i λihi(s

N
1 , w)∑

s′ exp
∑

i λihi(s′, w)
(4)

To simplify inference and to make the lattice repre-
sentation more natural, we only make use of local
feature functions that depend on properties of each
segment:
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Pr(sN1 |w) ∝ exp
∑

i

λi

N∑

j

hi(sj , w) (5)

3.1 From model to segmentation lattice
The segmentation model just introduced is equiva-
lent to a lattice where each vertex corresponds to
a particular coverage (in terms of letters consumed
from left to right) of the input word. Since we only
make use of local features, the number of vertices
in a lattice for word w is |w| − m, where m is the
minimum segment length permitted. In all experi-
ments reported in this paper, we use m = 3. Each
edge is labeled with a morpheme s (corresponding
to the morpheme associated with characters delim-
ited by the start and end nodes of the edge) as well
as a weight,

∑
i λihi(s, w). The cost of any path

from the start to the goal vertex will be equal to the
numerator in equation (4). The value of the denomi-
nator can be computed using the forward algorithm.

In most of our experiments, s will be identical
to the substring of w that the edge is designated to
cover. However, this is not a requirement. For exam-
ple, German compounds frequently have so-called
Fugenelemente, one or two characters that “glue
together” the primary morphemes in a compound.
Since we permit these characters to be deleted, then
an edge where they are deleted will have fewer char-
acters than the coverage indicated by the edge’s
starting and ending vertices.

3.2 Lattice pruning
Except for the minimum segment length restriction,
our model defines probabilities for all segmentations
of an input word, making the resulting segmenta-
tion lattices are quite large. Since large lattices
are costly to deal with during translation (and may
lead to worse translations because poor segmenta-
tions are passed to the decoder), we prune them us-
ing forward-backward pruning so as to contain just
the highest probability paths (Sixtus and Ortmanns,
1999). This works by computing the score of the
best path passing through every edge in the lattice
using the forward-backward algorithm. By finding
the best score overall, we can then prune edges us-
ing a threshold criterion; i.e., edges whose score is
some factor α away from the global best edge score.

3.3 Maximum likelihood training
Our model defines a conditional probability distribu-
tion over virtually all segmentations of a word w. To
train our model, we wish to maximize the likelihood
of the segmentations contained in the reference lat-
tices by moving probability mass away from the seg-
mentations that are not in the reference lattice. Thus,
we wish to minimize the following objective (which
can be computed using the forward algorithm over
the unpruned hypothesis lattices):

L = − log
∑

i

∑

s∈Ri

p(s|wi) (6)

The gradient with respect to the feature weights for
a log linear model is simply:

∂L
∂λk

=
∑

i

Ep(s|wi)[hk]− Ep(s|wi,Ri)[hk] (7)

To compute these values, the first expectation is
computed using forward-backward inference over
the full lattice. To compute the second expecta-
tion, the full lattice is intersected with the reference
lattice Ri, and then forward-backward inference
is redone.2 We use the standard quasi-Newtonian
method L-BFGS to optimize the model (Liu et al.,
1989). Training generally converged in only a few
hundred iterations.

3.3.1 Training to minimize 1-best error
In some cases, such as when performing word

alignment for translation model construction, lat-
tices cannot be used easily. In these cases, a 1-
best segmentation (which can be determined from
the lattice using the Viterbi algorithm) may be de-
sired. To train the parameters of the model for this
condition (which is arguably slightly different from
the lattice generation case we just considered), we
used the minimum error training (MERT) algorithm
on the segmentation lattices to find the parameters
that minimized the error on our dev set (Macherey

2The second expectation corresponds to the empirical fea-
ture observations in a standard maximum entropy model. Be-
cause this is an expectation and not an invariant observation,
the log likelihood function is not guaranteed to be concave and
the objective surface may have local minima. However, exper-
imentation revealed the optimization performance was largely
invariant with respect to its starting point.
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et al., 2008). The error function we used was WER
(the minimum number of insertions, substitutions,
and deletions along any path in the reference lattice,
normalized by the length of this path). The WER on
the held-out test set for a system tuned using MERT
is 9.9%, compared to 11.1% for maximum likeli-
hood training.

3.4 Features

We remark that since we did not have the resources
to generate training data in all the languages we
wished to generate segmentation lattices for, we
have confined ourselves to features that we expect to
be reasonably informative for a broad class of lan-
guages. A secondary advantage of this is that we
used denser features than are often used in maxi-
mum entropy modeling, meaning that we could train
our model with relatively less training data than
might otherwise be required.

The features we used in our compound segmen-
tation model for the experiments reported below are
shown in Table 2. Building on the prior work that
relied heavily on the frequency of the hypothesized
constituent morphemes in a monolingual corpus, we
included features that depend on this value, f(si).
|si| refers to the number of letters in the ith hypothe-
sized segment. Binary predicates evaluate to 1 when
true and 0 otherwise. f(si) is the frequency of the
token si as an independent word in a monolingual
corpus. p(#|si1 · · · si4) is the probability of a word
start preceding the letters si1 · · · si4. We found it
beneficial to include a feature that was the probabil-
ity of a certain string of characters beginning a word,
for which we used a reverse 5-gram character model
and predicted the word boundary given the first five
letters of the hypothesized word split.3 Since we did
have expertise in German morphology, we did build
a special German model. For this, we permitted the
strings s, n, and es to be deleted between words.
Each deletion fired a count feature (listed as fugen
in the table). Analysis of errors indicated that the
segmenter would periodically propose an incorrect
segmentation where a single word could be divided
into a word and a nonword consisting of common in-

3In general, this helped avoid situations where a word may
be segemented into a frequent word and then a non-word string
of characters since the non-word typically violated the phono-
tactics of the language in some way.

Feature de-only neutral
†si ∈ N -3.55 –

f(si) > 0.005 -3.13 -3.31
f(si) > 0 3.06 3.64

log p(#|si1si2si3si4) -1.58 -2.11
segment penalty 1.18 2.04

|si| ≥ 12 -0.9 -0.79
oov -0.88 -1.09

†fugen -0.76 –
|si| ≤ 4 -0.66 -1.18

|si| ≤ 10, f(si) > 2−10 -0.51 -0.82
log f(si) -0.32 -0.36

2−10 < f(si) < 0.005 -0.26 -0.45

Table 2: Features and weights learned by maximum like-
lihood training, sorted by weight magnitude.

flectional suffixes. To address this, an additional fea-
ture was added that fired when a proposed segment
was one of a setN of 30 nonwords that we saw quite
frequently. The weights shown in Table 2 are those
learned by maximum likelihood training on models
both with and without the special German features,
which are indicated with †.

4 Model evalatuion

To give some sense of the performance of the model
in terms of its ability to generate lattices indepen-
dently of a translation task, we present precision and
recall of segmentations for pruning parameters (cf.
Section 3.2) ranging from α = 0 to α = 5. Pre-
cision measures the number of paths in the hypoth-
esized lattice that correspond to paths in the refer-
ence lattice; recall measures the number of paths in
the reference lattices that are found in the hypothesis
lattice. Figure 3 shows the effect of manipulating the
density parameter on the precision and recall of the
German lattices. Note that very high recall is possi-
ble; however, the German-only features have a sig-
nificant impact, especially on recall, because the ref-
erence lattices include paths where Fugenelemente
have been deleted.

5 Translation experiments

We now review experiments using segmentation lat-
tices produced by the segmentation model we just
introduced in German-English, Hungarian-English,
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Figure 3: The effect of the lattice density parameter on
precision and recall.

and Turkish-English translation tasks and then show
results elucidating the effect of the lattice density pa-
rameter. We begin with a description of our MT sys-
tem.

5.1 Data preparation and system description

For all experiments, we used a 5-gram English lan-
guage model trained on the AFP and Xinua por-
tions of the Gigaword v3 corpus (Graff et al., 2007)
with modified Kneser-Ney smoothing (Kneser and
Ney, 1995). The training, development, and test
data for German-English and Hungarian-English
systems used were distributed as part of the 2009
EACL Workshop on Machine Translation,4 and the
Turkish-English data corresponds to the training and
test sets used in the work of Oflazer and Durgar El-
Kahlout (2007). Corpus statistics for all language
pairs are summarized in Table 3. We note that in all
language pairs, the 1BEST segmentation variant of
the training data results in a significant reduction in
types.

Word alignment was carried out by running
Giza++ implementation of IBM Model 4 initialized
with 5 iterations of Model 1, 5 of the HMM aligner,
and 3 iterations of Model 4 (Och and Ney, 2003)
in both directions and then symmetrizing using the
grow-diag-final-and heuristic (Koehn et al.,
2003). For each language pair, the corpus was
aligned twice, once in its non-segmented variant and
once using the single-best segmentation variant.

For translation, we used a bottom-up parsing de-
coder that uses cube pruning to intersect the lan-

4http://www.statmt.org/wmt09

guage model with the target side of the synchronous
grammar. The grammar rules were extracted from
the word aligned parallel corpus and scored as de-
scribed in Chiang (2007). The features used by the
decoder were the English language model log prob-
ability, log f(ē|f̄), the ‘lexical translation’ log prob-
abilities in both directions (Koehn et al., 2003), and
a word count feature. For the lattice systems, we
also included the unnormalized log p(f̄ |G), as it is
defined in Section 3, as well as an input word count
feature. The feature weights were tuned on a held-
out development set so as to maximize an equally
weighted linear combination of BLEU and 1-TER

(Papineni et al., 2002; Snover et al., 2006) using the
minimum error training algorithm on a packed for-
est representation of the decoder’s hypothesis space
(Macherey et al., 2008). The weights were indepen-
dently optimized for each language pair and each ex-
perimental condition.

5.2 Segmentation lattice results

In this section, we report the results of an experiment
to see if the compound lattices constructed using our
maximum entropy model yield better translations
than either an unsegmented baseline or a baseline
consisting of a single-best segmentation.

For each language pair, we define three condi-
tions: BASELINE, 1BEST, and LATTICE. In the
BASELINE condition, a lowercased and tokenized
(but not segmented) version of the test data is
translated using the grammar derived from a non-
segmented training data. In the 1BEST condition,
the single best segmentation ŝN1 that maximizes
Pr(sN1 |w) is chosen for each word using the MERT-
trained model (the German model for German, and
the language-neutral model for Hungarian and Turk-
ish). This variant is translated using a grammar
induced from a parallel corpus that has also been
segmented according to the same decision rule. In
the LATTICE condition, we constructed segmenta-
tion lattices using the technique described in Sec-
tion 3.1. For all languages pairs, we used d = 2 as
the pruning density parameter (which corresponds to
the highest F-score on the held out test set). Addi-
tionally, if the unsegmented form of the word was
removed from the lattice during pruning, it was re-
stored to the lattice with zero weight.

Table 4 summarizes the results of the translation
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f -tokens f -types e-tokens. e-types
DE-BASELINE 38M 307k 40M 96k
DE-1BEST 40M 136k ” ”
HU-BASELINE 25M 646k 29M 158k
HU-1BEST 27M 334k ” ”
TR-BASELINE 1.0M 56k 1.3M 23k
TR-1BEST 1.1M 41k ” ”

Table 3: Training corpus statistics.

BLEU TER

DE-BASELINE 21.0 60.6
DE-1BEST 20.7 60.1
DE-LATTICE 21.6 59.8
HU-BASELINE 11.0 71.1
HU-1BEST 10.7 70.4
HU-LATTICE 12.3 69.1
TR-BASELINE 26.9 61.0
TR-1BEST 27.8 61.2
TR-LATTICE 28.7 59.6

Table 4: Translation results for German (DE)-English,
Hungarian (HU)-English, and Turkish (TR)-English.
Scores were computed using a single reference and are
case insensitive.

experiments comparing the three input variants. For
all language pairs, we see significant improvements
in both BLEU and TER when segmentation lattices
are used.5 Additionally, we also confirmed previous
findings that showed that when a large amount of
training data is available, moving to a one-best seg-
mentation does not yield substantial improvements
(Yang and Kirchhoff, 2006). Perhaps most surpris-
ingly, the improvements observed when using lat-
tices with the Hungarian and Turkish systems were
larger than the corresponding improvement in the
German system, but German was the only language
for which we had segmentation training data. The
smaller effect in German is probably due to there be-
ing more in-domain training data in the German sys-
tem than in the (otherwise comparably sized) Hun-
garian system.

5Using bootstrap resampling (Koehn, 2004), the improve-
ments in BLEU, TER, as well as the linear combination used in
tuning are statistically significant at at least p < .05.

Targeted analysis of the translation output shows
that while both the 1BEST and LATTICE systems
generally produce adequate translations of com-
pound words that are out of vocabulary in the BASE-
LINE system, the LATTICE system performs bet-
ter since it recovers from infelicitous splits that the
one-best segmenter makes. For example, one class
of error we frequently observe is that the one-best
segmenter splits an OOV proper name into two
pieces when a portion of the name corresponds to a
known word in the source language (e.g. tom tan-
credo→tom tan credo which is then translated as
tom tan belief ).6

5.3 The effect of the density parameter

Figure 4 shows the effect of manipulating the den-
sity parameter (cf. Section 3.2) on the performance
and decoding time of the Turkish-English transla-
tion system. It further confirms the hypothesis that
increased diversity of segmentations encoded in a
segmentation lattice can improve translation perfor-
mance; however, it also shows that once the den-
sity becomes too great, and too many implausible
segmentations are included in the lattice, translation
quality will be harmed.

6 Related work

Aside from improving the vocabulary coverage of
machine translation systems (Koehn et al., 2008;
Yang and Kirchhoff, 2006; Habash and Sadat,
2006), compound word segmentation (also referred
to as decompounding) has been shown to be help-
ful in a variety of NLP tasks including mono- and

6We note that our maximum entropy segmentation model
could easily address this problem by incorporating information
about whether a word is likely to be a named entity as a feature.
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Figure 4: The effect of the lattice density parameter on
translation quality and decoding time.

crosslingual IR (Airio, 2006) and speech recognition
(Hessen and Jong, 2003). A number of researchers
have demonstrated the value of using lattices to en-
code segmentation alternatives as input to a machine
translation system (Dyer et al., 2008; DeNeefe et al.,
2008; Xu et al., 2004), but this is the first work to
do so using a single segmentation model. Another
strand of inquiry that is closely related is the work on
adjusting the source language segmentation to match
the granularity of the target language as a way of im-
proving translation. The approaches suggested thus
far have been mostly of a heuristic nature tailored to
Chinese-English translation (Bai et al., 2008; Ma et
al., 2007).

7 Conclusions and future work

In this paper, we have presented a maximum entropy
model for compound word segmentation and used it
to generate segmentation lattices for input into a sta-
tistical machine translation system. These segmen-
tation lattices improve translation quality (over an
already strong baseline) in three typologically dis-
tinct languages (German, Hungarian, Turkish) when
translating into English. Previous approaches to
generating segmentation lattices have been quite la-
borious, relying either on the existence of multiple
segmenters (Dyer et al., 2008; Xu et al., 2005) or
hand-crafted rules (DeNeefe et al., 2008). Although
the segmentation model we propose is discrimina-
tive, we have shown that it can be trained using a
minimal amount of annotated training data. Further-
more, when even this minimal data cannot be ac-
quired for a particular language (as was the situa-

tion we faced with Hungarian and Turkish), we have
demonstrated that the parameters obtained in one
language work surprisingly well for others. Thus,
with virtually no cost, this model can be used with a
variety of diverse languages.

While these results are already quite satisfying,
there are a number of compelling extensions to this
work that we intend to explore in the future. First,
unsupervised segmentation approaches offer a very
compelling alternative to the manually crafted seg-
mentation lattices that we created. Recent work
suggests that unsupervised segmentation of inflec-
tional affixal morphology works quite well (Poon et
al., 2009), and extending this work to compounding
morphology should be feasible, obviating the need
for expensive hand-crafted reference lattices. Sec-
ond, incorporating target language information into
a segmentation model holds considerable promise
for inducing more effective translation models that
perform especially well for segmentation lattice in-
puts.
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Abstract

Statistical machine translation (SMT) mod-
els need large bilingual corpora for train-
ing, which are unavailable for some language
pairs. This paper provides the first serious ex-
perimental study of active learning for SMT.
We use active learning to improve the qual-
ity of a phrase-based SMT system, and show
significant improvements in translation com-
pared to a random sentence selection baseline,
when test and training data are taken from the
same or different domains. Experimental re-
sults are shown in a simulated setting using
three language pairs, and in a realistic situa-
tion for Bangla-English, a language pair with
limited translation resources.

1 Introduction

Statistical machine translation (SMT) systems have
made great strides in translation quality. However,
high quality translation output is dependent on the
availability of massive amounts of parallel text in
the source and target language. However, there are a
large number of languages that are considered “low-
density”, either because the population speaking the
language is not very large, or even if millions of peo-
ple speak the language, insufficientamounts of par-
allel textare available in that language.

A statistical translation system can be improved
or adapted by incorporating new training data in the
form of parallel text. In this paper, we propose sev-
eral novelactive learning (AL) strategies for statis-
tical machine translation in order to attack this prob-
lem. Conventional techniques for AL of classifiers
are problematic in the SMT setting. Selective sam-
pling of sentences for AL may lead to a parallel cor-
pus where each sentence does not share any phrase

∗We would like to thank Chris Callison-Burch for fruitful
discussions. This research was partially supported by NSERC,
Canada (RGPIN: 264905) and by an IBM Faculty Award to the
third author.

pairs with the others. Thus, new sentences cannot
be translated since we lack evidence for how phrase
pairs combine to form novel translations. In this pa-
per, we take the approach of exploration vs. exploita-
tion: where in some cases we pick sentences that
are not entirely novel to improve translation statis-
tics, while also injecting novel translation pairs to
improve coverage.

There may be evidence to show that AL is use-
ful even when we have massive amounts of parallel
training data. (Turchi et al., 2008) presents a com-
prehensive learning curve analysis of a phrase-based
SMT system, and one of the conclusions they draw
is, “The first obvious approach is an effort to iden-
tify or produce data sets on demand (active learning,
where the learning system can request translations of
specific sentences, to satisfy its information needs).”

Despite the promise of active learning for SMT
there has been very little experimental work pub-
lished on this issue (see Sec. 5). In this paper, we
make several novel contributions to the area of ac-
tive learning for SMT:
• We use a novel framework for AL, which to our
knowledge has not been used in AL experiments be-
fore. We assume a small amount of parallel text and
a large amount of monolingual source language text.
Using these resources, we create a large noisy par-
allel text which we then iteratively improve using
small injections of human translations.
• We provide many useful and novel features use-
ful for AL in SMT. In translation, we can leverage a
whole new set of features that were out of reach for
classification systems: we devise features that look
at the source language, but also devise features that
make an estimate of the potential utility of transla-
tions from the source, e.g. phrase pairs that could be
extracted.
• We show that AL can be useful in domain adapta-
tion. We provide the first experimental evidence in
SMT that active learning can be used to inject care-
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fully selected translations in order to improve SMT
output in a new domain.
•We compare our proposed features to a random se-
lection baseline in a simulated setting for three lan-
guage pairs. We also use a realistic setting: using hu-
man expert annotations in our AL system we create
an improved SMT system to translate from Bangla
to English, a language pair with very few resources.

2 An Active Learning Framework for SMT

Starting from an SMT model trained initially on
bilingual data, the problem is to minimize the hu-
man effort in translating new sentences which will
be added to the training data to make theretrained
SMT model achieves a certain level of performance.
Thus, given a bitextL := {(fi, ei)} and a mono-
lingual source textU := {fj}, the goal is to select
a subset of highly informative sentences fromU to
present to a human expert for translation. Highly in-
formative sentences are those which, together with
their translations, help the retrained SMT system
quickly reach a certain level of translation quality.
This learning scenario is known as active learning
with Selective Sampling (Cohn et al., 1994).

Algorithm 1 describes the experimental setup we
propose for active learning. We train our initial MT
system on the bilingual corpusL, and use it to trans-
lateall monolingual sentences inU . We denote sen-
tences inU together with their translations asU+

(line 4 of Algorithm 1). Then we retrain the SMT
system onL∪U+ and use the resulting model to de-
code the test set. Afterwards, we select and remove
a subset of highly informative sentences fromU ,
and add those sentences together with their human-
provided translations toL. This process is continued
iteratively until a certain level of translation quality,
which in our case is measured by the BLEU score, is
met. In the baseline, against which we compare our
sentence selection methods, the sentences are cho-
senrandomly.

When (re-)training the model, two phrase tables
are learned: one fromL and the other one from
U+. The phrase table obtained fromU+ is added
as a new feature function in the log-linear trans-
lation model. The alternative is to ignoreU+ as
in a conventional AL setting, however, in our ex-
periments we have found that using more bilingual
data, even noisy data, results in better translations.

Algorithm 1 AL-SMT
1: Given bilingual corpusL, and monolingual cor-

pusU .
2: MF→E = train (L, ∅)
3: for t = 1, 2, ... do
4: U+ = translate(U,MF→E)
5: Selectk sentence pairs fromU+, and ask a

human for theirtrue translations.
6: Remove thek sentences fromU , and add the

k sentence pairs (translated by human) toL
7: MF→E = train (L,U+)
8: Monitor the performance on the test setT
9: end for

Phrase tables fromU+ will get a 0 score in mini-
mum error rate training if they are not useful, so our
method is more general.Also, this method has been
shown empirically to be more effective (Ueffing et
al., 2007b) than (1) using the weighted combination
of the two phrase tables fromL andU+, or (2) com-
bining the two sets of data and training from the bi-
textL ∪ U+.

The setup in Algorithm 1 helps us to investigate
how to maximally take advantage of human effort
(for sentence translation) when learning an SMT
model from the available data, that includes bilin-
gual and monolingual text.

3 Sentence Selection Strategies

Our sentence selection strategies can be divided into
two categories: (1) those which are independent of
the target language and just look into the source lan-
guage, and (2) those which also take into account the
target language. From the description of the meth-
ods, it will be clear to which category they belong to.
We will see in Sec. 4 that the most promising sen-
tence selection strategies belong to the second cate-
gory.

3.1 The Utility of Translation Units

Phrases are basic units of translation in phrase-based
SMT models. The phrases potentially extracted
from a sentence indicate its informativeness. The
more new phrases a sentence can offer, the more
informative it is. Additionally phrase translation
probabilities need to be estimated accurately, which
means sentences that contain rare phrases are also
informative. When selecting new sentences for hu-
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man translation, we need to pay attention to this
tradeoff betweenexploration and exploitation, i.e.
selecting sentences to discover new phrases vs es-
timating accurately the phrase translation probabil-
ities. A similar argument can be made that empha-
sizes the importance of words rather than phrases for
any SMT model. Also we should take into account
that smoothing is a means for accurate estimation of
translation probabilities when events are rare. In our
work, we focus on methods that effectively expand
the lexicon or set of phrases of the model.

3.1.1 Phrases (Geom-Phrase, Arith-Phrase)1

The more frequent a phrase is in theunlabeled
data, the more important it is to know its translation;
since it is more likely to occur in the test data (es-
pecially when the test data is in-domain with respect
to unlabeled data). The more frequent a phrase is in
the labeled data, the more unimportant it is; since
probably we have observed most of its translations.

Based on the above observations, we measure the
importance score of a sentence as:

φp
g(s) :=

[ ∏

x∈Xp
s

P (x|U)
P (x|L)

] 1

|Xp
s | (1)

whereXp
s is the set of possible phrases that sentence

s can offer, andP (x|D) is the probability of observ-
ing x in the dataD: P (x|D) = Count(x)+ǫ

P

x∈X
p
D

Count(x)+ǫ .

The score (1) is the averagedprobability ratio of
the set of candidate phrases, i.e. the probability of
the candidate phrases under a probabilistic phrase
model based onU divided by that based onL. In ad-
dition to the geometric average in (1), we may also
consider the arithmetic average score:

φp
a(s) :=

1
|Xp

s |
∑

x∈Xp
s

P (x|U)
P (x|L)

(2)

Note that (1) can be re-written as
1

|Xp
s |

∑
x∈Xp

s
log P (x|U)

P (x|L) in the logarithm space,
which is similar to (2) with the difference of
additionallog.

In parallel dataL, phrases are the ones which are
extracted by the usual phrase extraction algorithm;
but what are the candidate phrases in the unlabeled

1The names in the parentheses are short names used to iden-
tify the method in the experimental results.

data? Considering thek-best list of translations can
tell us the possible phrases the input sentence may
offer. For each translation, we have access to the
phrases used by the decoder to produce that output.
However, there may be islands of out-of-vocabulary
(OOV) words that were not in the phrase table and
not translated by the decoder as a phrase. We group
together such groups of OOV words to form an OOV
phrase. The set of possible phrases we extract from
the decoder output contain those coming from the
phrase table (from labeled dataL) and those coming
from OOVs. OOV phrases are also used in our com-
putation, whereP (x | L) for an OOV phrasex is
the uniform probability over all OOV phrases.

3.1.2 n-grams (Geomn-gram, Arith n-gram)

As an alternative to phrases, we considern-grams
as basic units of generalization. The resulting score
is the weighted combination of then-gram based
scores:

φN
g (s) :=

N∑

n=1

wn

|Xn
s |

∑

x∈Xn
s

log
P (x|U, n)
P (x|L, n)

(3)

whereXn
s denotesn-grams in the sentences, and

P (x|D, n) is the probability ofx in the set ofn-
grams inD. The weightswn adjust the importance
of the scores ofn-grams with different lengths. In
addition to taking geometric average, we also con-
sider the arithmetic average:

φN
a (s) :=

N∑

n=1

wn

|Xn
s |

∑

x∈Xn
s

P (x|U, n)
P (x|L, n)

(4)

As a special case whenN = 1, the score motivates
selecting sentences which increase the number of
unique words with new words appearing with higher
frequency inU thanL.

3.2 Similarity to the Bilingual Training Data
(Similarity)

The simplest way to expand the lexicon set is to
choose sentences fromU which are as dissimilar
as possible toL. We measure the similarity using
weightedn-gram coverage (Ueffing et al., 2007b).

3.3 Confidence of Translations (Confidence)

The decoder produces an output translatione using
the probabilityp(e | f). This probability can be
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treated as a confidence score for the translation. To
make the confidence score for sentences with dif-
ferent lengths comparable, we normalize using the
sentence length (Ueffing et al., 2007b).

3.4 Feature Combination (Combined)

The idea is to take into account the information from
several simpler methods, e.g. those mentioned in
Sec. 3.1–3.3, when producing the final ranking of
sentences. We can either merge the output rankings
of those simpler models2, or use the scores gener-
ated by them as inputfeatures for a higher level
ranking model. We use a linear model:

F (s) =
∑

k

αkφk(s) (5)

whereαk are the model parameters, andφk(.) are
the feature functions from Sections 3.1–3.3, e.g.
confidence score, similarity to L, and score for the
utility of translation units. Using 20K of Spanish
unlabeled text we compared ther2 correlation co-
efficient between each of these scores which, apart
from the arithmetic and geometric versions of the
same score, showed low correlation. And so the in-
formation they provide should be complementary to
each other.

We train the parameters in (5) using two bilingual
development sets dev1 and dev2, the sentences in
dev1 can be ranked with respect to the amount by
which each particular sentence improves the BLEU
score of the retrained3 SMT model on dev2. Having
this ranking, we look for the weight vector which
produces the same ordering of sentences. As an al-
ternative to this method (or its computationally de-
manding generalization in which instead of a single
sentence, several sets of sentences of sizek are se-
lected and ranked) we use a hill climbing search on
the surface of dev2’s BLEU score. For a fixed value
of the weight vector, dev1 sentences are ranked and
then the top-k output is selected and the amount
of improvement the retrained SMT system gives on
dev2’s BLEU score is measured. Starting from a
random initial value forαk ’s, we improve one di-
mension at a time and traverse the discrete grid

2To see how different rankings can be combined, see (Re-
ichart et al., 2008) which proposes this for multi-task AL.

3Here the retrained SMT model is the one learned by adding
a particular sentence from dev1 intoL.

placed on the values of the weight vector. Starting
with a coarse grid, we make it finer when we get
stuck in local optima during hill climbing.

3.5 Hierarchical Adaptive Sampling (HAS)

(Dasgupta and Hsu, 2008) propose a technique for
sample selection that, under certain settings, is guar-
anteed to be no worse than random sampling.Their
method exploits the cluster structure (if there is any)
in the unlabeled data. Ideally, querying the label
of only one of the data points in a cluster would
be enough to determine the label of the other data
points in that cluster.Their method requires that the
data set is provided in the form of a tree represent-
ing a hierarchical clustering of the data. In AL for
SMT, such a unique clustering of the unlabeled data
would be inappropriate or ad-hoc. For this reason,
we present a new algorithm inspired by the ratio-
nale provided in (Dasgupta and Hsu, 2008) that can
be used in our setting, where we construct a tree-
based partition of the data dynamically4. This dy-
namic tree construction allows us to extend the HAS
algorithm from classifiers to the SMT task.

The algorithm adaptively samples sentences from
U while building a hierarchical clustering of the sen-
tences inU (see Fig. 1 and Algorithm 2). At any it-
eration, first we retrain the SMT model and translate
all monolingual sentences. At this point one mono-
lingual set of sentences represented by one of the
tree leaves is chosen for further partitioning: a leaf
H is chosen which has the lowest average decoder
confidence score for its sentence translations. We
then rank all sentences inH based on their similar-
ity to L and put the topα|H| sentences inH1 and
the rest inH2. To selectK sentences, we randomly
sampleβK sentences fromH1 and(1 − β)K sen-
tences fromH2 and ask a human for their transla-
tions.

3.6 Reverse Model (Reverse)

While a translation systemMF→E is built from lan-
guageF to languageE, we also build a translation
system in the reverse directionME→F . To mea-
sure how informative a monolingual sentencef is,
we translate it to English byMF→E and then project

4The dynamic nature of the hierarchy comes from two fac-
tors: (1) selecting a leaf node for splitting, and (2) splitting a
leaf node based on its similarity to the growingL.
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Algorithm 2 Hierarchical-Adaptive-Sampling
1: MF→E = train (L, ∅)
2: Initialize the treeT by setting its root toU
3: v := root(T )
4: for t = 1, 2, ... do
5: // rank and split sentence in v

X1, X2 := Partition(L, v, α)
6: // randomly sample and remove sents fromXi

Y1, Y2 := Sampling(X1, X2, β)
7: // make Xi children of nodev in the treeT

T := UpdateTree(X1, X2, v, T )
8: // Y +

i has sents inYi together with human trans
L := L ∪ Y +

1 ∪ Y +
2

9: MF→E = train (L, U)
10: for all leavesl ∈ T do
11: Z[l] := Average normalized confidence scores

of sentence translations inl
12: end for
13: v := BestLeaf(T, Z)
14: Monitor the performance on the test set
15: end for

H1H2

H22 H21

H := U

Figure 1: Adaptively sampling the sentences while con-
structing a hierarchical clustering ofU .

the translation back to French usingME→F . Denote
this reconstructed version of the original French
sentence bỹf . Comparingf with f̃ using BLEU (or
other measures) can tell us how much information
has been lost due to our direct and/or reverse transla-
tion systems. The sentences with higher information
loss are selected for translation by a human.

4 Experiments

The SMT system we applied in our experiments is
PORTAGE (Ueffing et al., 2007a). The models (or
features) which are employed by the decoder are:
(a) one or several phrase table(s), which model the
translation directionp(f | e), (b) one or several
n-gram language model(s) trained with the SRILM
toolkit (Stolcke, 2002); in the experiments reported
here, we used 4-gram models on the NIST data,
and a trigram model on EuroParl, (c) a distortion

corpus language use sentences

EuroParl Fr,Ge,Sp

in-domL 5K
in-domU 20K

in-dom dev 2K
in-dom test 2K

See Sec. 4.2 Bangla

in-domL 11K
in-domU 20K

in-dom dev 450
in-dom test 1K

Hansards Fr out-domL 5K
Table 1: Specification of different data sets we will use in
experiments. The target language is English in the bilin-
gual sets, and the source languages are either French (Fr),
German (Ge), Spanish (Sp), or Bangla.

model which assigns a penalty based on the number
of source words which are skipped when generating
a new target phrase, and (d) a word penalty. These
different models are combined log-linearly. Their
weights are optimized w.r.t. BLEU score using the
algorithm described in (Och, 2003). This is done on
a development corpus which we will call dev1 in this
paper.

The weight vectors inn-gram and similarity
methods are set to(.15, .2, .3, .35) to emphasize
longer n-grams. We setα = β = .35 for HAS,
and use the 100-best list of translations when identi-
fying candidate phraseswhile setting the maximum
phrase length to 10. We setǫ = .5 to smooth proba-
bilities when computing scores based on translation
units.

4.1 Simulated Low Density Language Pairs

We use three language pairs (French-English,
German-English, Spanish-English) to compare all of
the proposed sentence selection strategies in a simu-
lated AL setting. The training data comes from Eu-
roParl corpus as distributed for the shared task in
the NAACL 2006 workshop on statistical machine
translation (WSMT06). For each language pair, the
first 5K sentences from its bilingual corpus consti-
tuteL, and the next 20K sentences serve asU where
the target side translation is ignored. The size ofL
was taken to be 5K in order to be close to a real-
istic setting in SMT. We use the first 2K sentences
from the test sets provided for WSMT06, which are
in-domain, as our test sets. The corpus statistics are
summarized in Table 1. The results are shown in
Fig. 2. After building the initial MT systems, we se-
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Figure 2: BLEU scores for different sentence selection strategies per iteration of the AL algorithm. Plots at the top
show the performance of sentence selection methods which depend on the target language in addition to the source
language (hierarchical adaptive sampling, reverse model,decoder confidence, average and geometric phrase-based
score), and plots at the bottom show methods which are independent of the target language (geometric 4-gram and
1-gram, similarity toL, and random sentence selection baseline).

lect and remove 200 sentence fromU in each itera-
tion and add them together with translations toL for
25 iterations. Each experiment which involves ran-
domness, such as random sentence selection base-
line and HAS, is averaged over three independent
runs. Selecting sentences based on the phrase-based
utility score outperforms the strong random sentence
selection baseline and other methods (Table 2). De-
coder confidence performs poorly as a criterion for
sentence selection in this setting, and HAS which
is built on top of confidence and similarity scores
outperforms both of them. Although choosing sen-
tences based on theirn-gram score ignores the re-
lationship between source and target languages, this
methods outperforms random sentence selection.

4.2 Realistic Low Density Language Pair

We apply active learning to the Bangla-English ma-
chine translation task. Bangla is the official lan-
guage of Bangladesh and second most spoken lan-

guage in India. It has more than 200 million speak-
ers around the world. However, Bangla has few
available language resources, and lacks resources
for machine translation. In our experiments, we use
training data provided by the Linguistic Data Con-
sortium5 containing∼11k sentences. It contains
newswire text from the BBC Asian Network and
some other South Asian news websites. A bilingual
Bangla-English dictionary collected from different
websites was also used as part of the training set
which contains around 85k words. Our monolingual
corpus6 is built by collecting text from theProthom
Alo newspaper, and contains all the news available
for the year of 2005 – including magazines and pe-
riodicals. The corpus has 18,067,470 word tokens
and 386,639 word types. For our language model we
used data from the English section of EuroParl. The

5LDC Catalog No.: LDC2008E29.
6Provided by the Center for Research on Bangla Language

Processing, BRAC University, Bangladesh.
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development set used to optimize the model weights
in the decoder, and test set used for evaluation was
taken from the same LDC corpus mentioned above.

We applied our active learning framework to the
problem of creating a larger Bangla-English parallel
text resource. The second author is a native speaker
of Bangla and participated in the active learning
loop, translating 100 sentences in each iteration. We
compared a smaller number of alternative methods
to keep the annotation cost down. The results are
shown in Fig. 3. Unlike the simulated setting, in this
realistic setting for AL, adding more human transla-
tion does not always result in better translation per-
formance7. Geom 4-gram and Geom phrase are the
features that prove most useful in extracting useful
sentences for the human expert to translate.

4.3 Domain Adaptation

In this section, we investigate the behavior of the
proposed methods when unlabeled dataU and test
dataT are in-domain and parallel training textL is
out-of-domain.

We report experiments for French to English
translation task whereT and development sets are
the same as those in section 4.1 but the bilingual
training data come from Hansards8 corpus. The do-
main is similar to EuroParl, but the vocabulary is
very different. The results are shown in Fig. 4, and
summarized in Table 3. As expected, unigram based
sentence selection performs well in this scenario
since it quickly expands the lexicon set of the bilin-
gual data in an effective manner (Fig 5). By ignor-

7This is likely due to the fact that the translator in the AL
loop was not the same as the original translator for the labeled
data.

8The transcription of official records of the Cana-
dian Parliament as distributed at http://www.isi.edu/natural-
language/download/hansard

Lang. Geom Phrase Random (baseline)
Pair bleu% per% wer% bleu% per% wer%

Fr-En 22.49 27.99 38.45 21.97 28.31 38.80
Gr-En 17.54 31.51 44.28 17.25 31.63 44.41
Sp-En 23.03 28.86 39.17 23.00 28.97 39.21

Table 2: Phrase-based utility selection is compared
with random sentence selection baseline with respect to
BLEU, wer (worderror rate), and per (position indepen-
dent worderror rate) across three language pairs.

method bleu% per% wer%

Geom 1-gram 14.92 34.83 46.06
Confidence 14.74 35.02 46.11

Random (baseline) 14.11 35.28 46.47
Table 3: Comparison of methods in domain adaptation
scenario. The bold numbers show statistically significant
improvement with respect to the baseline.

ing sentences for which the translations are already
known based onL, it does not waste resources. On
the other hand, it raises the importance of high fre-
quency words inU . Interestingly, decoder confi-
dence is also a good criterion for sentence selection
in this particular case.

5 Related Work

Despite the promise of active learning for SMT
for domain adaptation and low-density/low-resource
languages, there has been very little work published
on this issue. A Ph.D. proposal by Chris Callison-
Burch (Callison-burch, 2003) lays out the promise
of AL for SMT and proposes some algorithms.
However, the lack of experimental results means that
performance and feasibility of those methods can-
not be compared to ours. (Mohit and Hwa, 2007)
provide a technique to classify phrases as difficult
to translate (DTP), and incorporate human transla-
tions for these phrases. Their approach is differ-
ent from AL: they use human translations for DTPs
in order to improve translation output in the de-
coder. There is work on sampling sentence pairs for
SMT (Kauchak, 2006; Eck et al., 2005) but the goal
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Figure 3: Improving Bangla to English translation perfor-
mance using active learning.
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Figure 4: Performance of different sentence selection
methods for domain adaptation scenario.

has been to limit the amount of training data in order
to reduce the memory footprint of the SMT decoder.
To compute this score, (Eck et al., 2005) usen-gram
features very different from then-gram features pro-
posed in this paper. (Kato and Barnard, 2007) imple-
ment an AL system for SMT for language pairs with
limited resources (En-Xhosa, En-Zulu, En-Setswana
and En-Afrikaans), but the experiments are on a very
small simulated data set. The only feature used is
the confidence score of the SMT system, which we
showed in our experiments is not a reliable feature.

6 Conclusions

We provided a novel active learning framework for
SMT which utilizes both labeled and unlabeled data.
Several sentence selection strategies were proposed
and comprehensively compared across three simu-
lated language pairs and a realistic setting of Bangla-
English translation with scarce resources. Based
on our experiments, we conclude that paying atten-
tion to units of translations, i.e. words and candi-
date phrases in particular, is essential to sentence se-

Fr2En Ge2En Sp2En Ha2En

Avg # of trans

1.30 1.26 1.27 1.30
1.24 1.25 1.20 1.26
1.22 1.23 1.19 1.24
1.22 1.24 1.19 1.24

Avg phrase len

2.85 2.56 2.85 2.85
3.47 2.74 3.54 3.17
3.95 3.34 3.94 3.48
3.58 2.94 3.63 3.36

# of phrases

27,566 29,297 30,750 27,566
78,026 64,694 93,593 108,787
79,343 63,191 93,276 115,177
77,394 65,198 94,597 115,671

# unique events

31,824 33,141 34,937 31,824
103,124 84,512 125,094 117,214
86,210 69,357 100,176 127,314
84,787 72,280 101,636 128,912

Table 4: Average number of english phrases per source
language phrase, average length of the source language
phrases, number of source language phrases, and number
of phrase pairs which has been seen once in the phrase ta-
bles across three language pairs (French text taken from
Hansard is abbreviated by ’Ha’). From top to bottom
in each row, the numbers belong to: before starting AL,
and after finishing AL based on ’Geom Phrase’, ’Confi-
dence’, and ’Random’.

lection in AL-SMT. Increasing the coverage of the
bilingual training data is important but is not the
only factor (see Table 4 and Fig. 5). For exam-
ple, decoder confidence for sentence selection has
low coverage (in terms of new words), but performs
well in the domain adaptation scenario and performs
poorly otherwise. In future work, we plan to ex-
plore selection methods based on potential phrases,
adaptive sampling using features other than decoder
confidence and the use of features from confidence
estimation in MT (Ueffing and Ney, 2007).

0 5 10 15 20 25

2000

4000

6000

8000

10000

12000

14000

16000

18000

Added Sentences (multiple of 200)

N
um

be
r 

of
 N

ew
 W

or
ds

                 
French to English

 

 
Geom 4−gram

HAS

Reverse

Confidence

Similarity

Random

Geom 1−gram

Geom Phrase

Figure 5: Number of words in domain adaptation sce-
nario.

422



References
Chris Callison-burch. 2003. Active learning for statisti-

cal machine translation. InPhD Proposal, Edinburgh
University.

David Cohn, Les Atlas, and Richard Ladner. 1994. Im-
proving generalization with active learning. InMa-
chine Learning Journal.

Sanjoy Dasgupta and Daniel Hsu. 2008. Hierarchical
sampling for active learning. Inproceedings of Inter-
national Conference on Machine Learning.

Matthias Eck, Stephan Vogel, and Alex Waibel. 2005.
Low cost portability for statistical machine translation
based in n-gram frequency and tf-idf. Inproceedings
of International Workshop on Spoken Language Trans-
lation (IWSLT).

R.S.M. Kato and E. Barnard. 2007. Statistical transla-
tion with scarce resources: a south african case study.
SAIEE Africa Research Journal, 98(4):136–140, De-
cember.

David Kauchak. 2006. Contribution to research on ma-
chine translation. InPhD Thesis, University of Cali-
fornia at San Diego.

Behrang Mohit and Rebecca Hwa. 2007. Localization
of difficult-to-translate phrases. Inproceedings of the
2nd ACL Workshop on Statistical Machine Transla-
tions.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. Inproceedings of
Annual Meeting of the Association for Computational
Linguistics (ACL).

Roi Reichart, Katrin Tomanek, Udo Hahn, and Ari Rap-
poport. 2008. Multi-task active learning for linguistic
annotations. Inproceedings of Annual Meeting of the
Association for Computational Linguistics (ACL).

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. Inproceedings of Interna-
tional Conference on Spoken Language Processing
(ICSLP).

Marco Turchi, Tijl De Bie, and Nello Cristianini. 2008.
Learning performance of a machine translation sys-
tem: a statistical and computational analysis. Inpro-
ceedings of the Third Workshop on Statistical Machine
Translation. Association for Computational Linguis-
tics (ACL).

Nicola Ueffing and Hermann Ney. 2007. Word-level
confidence estimation for machine translation.Com-
putational Linguistics, 33(1):9–40.

N. Ueffing, M. Simard, S. Larkin, and J. H. Johnson.
2007a. NRC’s Portage system for WMT 2007. In
Proc. ACL Workshop on SMT.

Nicola Ueffing, Gholamreza Haffari, and Anoop Sarkar.
2007b. Transductive learning for statistical machine
translation. Inproceedings of Annual Meeting of the
Association for Computational Linguistics (ACL).

423



Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 424–432,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Semi-Supervised Lexicon Mining from Parenthetical Expressions
in Monolingual Web Pages

Xianchao Wu† Naoaki Okazaki† Jun’ichi Tsujii†‡

†Computer Science, Graduate School of Information Science and Technology, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

‡School of Computer Science, University of Manchester
National Centre for Text Mining (NaCTeM)

Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK

{wxc, okazaki, tsujii}@is.s.u-tokyo.ac.jp
Abstract

This paper presents a semi-supervised learn-
ing framework for mining Chinese-English
lexicons from large amount of Chinese Web
pages. The issue is motivated by the ob-
servation that many Chinese neologisms are
accompanied by their English translations in
the form of parenthesis. We classify par-
enthetical translations into bilingual abbrevi-
ations, transliterations, and translations. A
frequency-based term recognition approach is
applied for extracting bilingual abbreviations.
A self-training algorithm is proposed for min-
ing transliteration and translation lexicons. In
which, we employ available lexicons in terms
of morpheme levels, i.e., phoneme correspon-
dences in transliteration and grapheme (e.g.,
suffix, stem, and prefix) correspondences in
translation. The experimental results verified
the effectiveness of our approaches.

1 Introduction

Bilingual lexicons, as lexical or phrasal parallel
corpora, are widely used in applications of multi-
lingual language processing, such as statistical ma-
chine translation (SMT) and cross-lingual informa-
tion retrieval. However, it is a time-consuming task
for constructing large-scale bilingual lexicons by
hand. There are many facts cumber the manual de-
velopment of bilingual lexicons, such as the contin-
uous emergence of neologisms (e.g., new technical
terms, personal names, abbreviations, etc.), the dif-
ficulty of keeping up with the neologisms for lexi-
cographers, etc. In order to turn the facts to a better
way, one of the simplest strategies is to automati-
cally mine large-scale lexicons from corpora such as
the daily updated Web.

Generally, there are two kinds of corpora used
for automatic lexicon mining. One is the purely
monolingual corpora, wherein frequency-based
expectation-maximization (EM, refer to (Dempster
et al., 1977)) algorithms and cognate clues play a
central role (Koehn and Knight, 2002). Haghighi
et al. (2008) presented a generative model based
on canonical correlation analysis, in which monolin-
gual features such as the context and orthographic
substrings of words were taken into account. The
other is multilingual parallel and comparable cor-
pora (e.g., Wikipedia1), wherein features such as co-
occurrence frequency and context are popularly em-
ployed (Cheng et al., 2004; Shao and Ng, 2004; Cao
et al., 2007; Lin et al., 2008).

In this paper, we focus on a special type of com-
parable corpus, parenthetical translations. The issue
is motivated by the observation that Web pages and
technical papers written in Asian languages (e.g.,
Chinese, Japanese) sometimes annotate named enti-
ties or technical terms with their translations in En-
glish inside a pair of parentheses. This is considered
to be a traditional way to annotate new terms, per-
sonal names or other named entities with their En-
glish translations expressed in brackets. Formally,
a parenthetical translation can be expressed by the
following pattern,

f1 f2 ... fJ (e1 e2 ... eI). (1)

Here, f1 f2 ... fJ (fJ1 ), the pre-parenthesis text, de-
notes the word sequence of some language other
than English; and e1 e2 ... eI (eI1), the in-parenthesis
text, denotes the word sequence of English. We sep-
arate parenthetical translations into three categories:

1http://en.wikipedia.org/wiki/Main Page
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Type Examples with translations in italic

对‖ 全球 气候 观测 系统 (GCOS)

to Global Climate Observing System (GCOS)

品牌 将 在‖ 辛普顿- 特尔曼(Shipton-Tilman)

brand will be among Shipton-Tilman (Shipton-Tilman)

定时炸弹，‖ 删除蝇(Cancelbots)

time bomb, Cancelbots (Cancelbots)

在 香港 上课 的 英国‖ 布拉福特 大学

(Bradford University)

the English Bradford University (Bradford University)

that holds lessons in Hongkong

Abbreviation

Transliteration

Translation

Mixture

Table 1: Parenthetical translation categories and exam-
ples extracted from Chinese Web pages. Mixture stands
for the mixture of translation (University) and translitera-
tion (Bradford). ‘‖’ denotes the left boundary of fJ

1 .

bilingual abbreviation, transliteration, and transla-
tion. Table 1 illustrates examples of these categories.

We address several characteristics of parenthetical
translations that differ from traditional comparable
corpora. The first is that they only appear in mono-
lingual Web pages or documents, and the context
information of eI1 is unknown. Second, frequency
and word number of eI1 are frequently small. This
is because parenthetical translations are only used
when the authors thought that fJ1 contained some
neologism(s) which deserved further explanation in
another popular language (e.g., English). Thus, tra-
ditional context based approaches are not applicable
and frequency based approaches may yield low re-
call while with high precision. Furthermore, cog-
nate clues such as orthographic features are not ap-
plicable between language pairs such as English and
Chinese.

Parenthetical translation mining faces the follow-
ing issues. First, we need to distinguish paren-
thetical translations from parenthetical expressions,
since parenthesis has many functions (e.g., defining
abbreviations, elaborations, ellipsis, citations, anno-
tations, etc.) other than translation. Second, the
left boundary (denoted as ‖ in Table 1) of the pre-
parenthesis text need to be determined to get rid of
the unrelated words. Third, we need further distin-
guish different translation types, such as bilingual
abbreviation, the mixture of translation and translit-
eration, as shown in Table 1.

In order to deal with these problems, supervised
(Cao et al., 2007) and unsupervised (Li et al., 2008)
methods have been proposed. However, supervised

approaches are restricted by the quality and quantity
of manually constructed training data, and unsuper-
vised approaches are totally frequency-based with-
out using any semantic clues. In contrast, we pro-
pose a semi-supervised framework for mining par-
enthetical translations. We apply a monolingual ab-
breviation extraction approach to bilingual abbrevia-
tion extraction. We construct an English-syllable to
Chinese-pinyin transliteration model which is self-
trained using phonemic similarity measurements.
We further employ our cascaded translation model
(Wu et al., 2008) which is self-trained based on
morpheme-level translation similarity.

This paper is organized as follows. We briefly
review the related work in the next section. Our
system framework and self-training algorithm is de-
scribed in Section 3. Bilingual abbreviation ex-
traction, self-trained transliteration models and cas-
caded translation models are described in Section 4,
5, and 6, respectively. In Section 7, we evaluate our
mined lexicons by Wikipedia. We conclude in Sec-
tion 8 finally.

2 Related Work

Numerous researchers have proposed a variety of
automatic approaches to mine lexicons from the
Web pages or other large-scale corpora. Shao and
Ng (2004) presented a method to mine new transla-
tions from Chinese and English news documents of
the same period from different news agencies, com-
bining both transliteration and context information.
Kuo et al. (2006) used active learning and unsu-
pervised learning for mining transliteration lexicon
from the Web pages, in which an EM process was
used for estimating the phonetic similarities between
English syllables and Chinese characters.

Cao et al. (2007) split parenthetical translation
mining task into two parts, transliteration detection
and translation detection. They employed a translit-
eration lexicon for constructing a grapheme-based
transliteration model and annotated boundaries man-
ually to train a classifier. Lin et al. (2008) applied
a frequency-based word alignment approach, Com-
petitive Link (Melanmed, 2000), to determine the
outer boundary (Section 7).

On the other hand, there have been many semi-
supervised approaches in numerous applications
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Parenthetical expression extra ction { C( E)}  

Chinese word se gmentation{ c…( e…)}  
S- MSRSeg 

Heuristic filtering { c…(e…)}  

Chinese Web pages  

Bilingual abbreviation mining  
Section 4 

Transliteration lexicon mining  
Section 5 

Translation lexicon mining  
Section 6 

(Lin et al., 2008)  

Figure 1: The system framework of mining lexicons from
Chinese Web pages.

(Zhu, 2007), such as self-training in word sense
disambiguation (Yarowsky, 2005) and parsing (Mc-
Closky et al., 2008). In this paper, we apply self-
training to a new topic, lexicon mining.

3 System Framework and Self-Training
Algorithm

Figure 1 illustrates our system framework for min-
ing lexicons from Chinese Web pages. First, par-
enthetical expressions matching Pattern 1 are ex-
tracted. Then, pre-parenthetical Chinese sequences
are segmented into word sequences by S-MSRSeg2

(Gao et al., 2006). The initial parenthetical transla-
tion corpus is constructed by applying the heuristic
rules defined in (Lin et al., 2008)3. Based on this
corpus, we mine three lexicons step by step, a bilin-
gual abbreviation lexicon, a transliteration lexicon,
and a translation lexicon. The abbreviation candi-
dates are extracted firstly by using a heuristic rule
(Section 4.1). Then, the transliteration candidates
are selected by employing a transliteration model
(Section 5.1). Specially, fJ1 (eI1) is taken as a translit-
eration candidate only if a word ei in eI1 can be
transliterated. In addition, a transliteration candidate
will also be considered as a translation candidate if
not all ei can be transliterated (refer to the mixture
example in Table1). Finally, after abbreviation filter-
ing and transliteration filtering, the remaining candi-

2http://research.microsoft.com/research/downloads/details/
7a2bb7ee-35e6-40d7-a3f1-0b743a56b424/details.aspx

3e.g., fJ
1 is predominantly in Chinese and eI

1 is predomi-
nantly in English

Algorithm 1 self-training algorithm
Require: L, U = {fJ

1 (eI
1)}, T , M ¤L, (labeled) train-

ing set; U , (unlabeled) candidate set; T , test set; M, the
transliteration or translation model.

1: Lexicon = {} ¤ new mined lexicon
2: repeat
3: N = {} ¤ new mined lexicon during one iteration
4: train M on L
5: evaluate M on T
6: for fJ

1 (eI
1) ∈ U do

7: topN = {C′|decode eI
1 by M}

8: N = N ∪ {(c, eI
1)|c ∈ fJ

1 ∧
∃C′ ∈ topN s.t. similarity{c, C′} ≥ θ}

9: end for
10: U = U −N
11: L = unified(L ∪N)
12: Lexicon = unified(Lexicon ∪N)
13: until |N | ≤ ε
14: return Lexicon ¤ the output

dates are used for translation lexicon mining.
Algorithm 1 addresses the self-training algorithm

for lexicon mining. The main part is a loop from
Line 2 to Line 13. A given seed lexicon is taken
as labeled data and is split into training and testing
sets (L and T ). U={fJ1 (eI1)}, stands for the (unla-
beled) parenthetical expression set. Initially, a trans-
lation/transliteration model (M) is trained on L and
evaluated on T (Line 4 and 5). Then, the English
phrase eI1 of each unlabeled entry is decoded byM,
and the top-N outputs are stored in set topN (Line
7∼8). A similarity function on c (a word substring
of fJ1 ) and a top-N output C ′ is employed to make
the decision of classification: the pair (c, eI1) will be
selected as a new entry if the similarity between c
and C ′ is no smaller than a threshold value θ (Line
8). After processing each entry in U , the new mined
lexicon N is deleted from U and unified with the
current training set L as the new training set (Line
10 and 11). Also, N is added to the final lexicon
(Line 12). When |N | is lower than a threshold, the
loop stops. Finally, the algorithm returns the mined
lexicon.

One of the open problems in Algorithm 1 is how
to append new mined entries into the existing seed
lexicon, considering they have different distribu-
tions. One way is to design and estimate a weight
function on the frequency of new mined entries. For
simplicity, we use a deficient strategy that takes the
weights of all new mined entries to be one.
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4 Bilingual Abbreviation Extraction

4.1 Methodology
The method that we use for extracting a bilingual
abbreviation lexicon from parenthetical expressions
is inspired by (Okzaki and Ananiadou, 2006). They
used a term recognition approach to build a monolin-
gual abbreviation dictionary from the Medical Liter-
ature Analysis and Retrieval System Online (MED-
LINE) abstracts, wherein acronym definitions (e.g.,
ADM is short for adriamycin, adrenomedullin, etc.)
are abundant. They reported 99% precision and 82-
95% recall. Through locating a textual fragment
with an acronym and its expanded form in pattern

long form (short form), (2)

they defined a heuristic formula to compute the long-
form likelihood LH(c) for a candidate c:

LH(c) = freq(c)−
∑

t∈Tc

freq(t)× freq(t)∑
t∈Tc

freq(t)
.

(3)
Here, c is a long-form candidate; freq(c) denotes the
frequency of co-occurrence of c with a short-form;
and Tc is a set of nested long-form candidates, each
of which consists of a preceding word followed by
the candidate c. Obviously, for t ∈ Tc, Equation 3
can be explained as:

LH(c) = freq(c)− E[freq(t)]. (4)

In this paper, we apply their method on the task
of bilingual abbreviation lexicon extraction. Now,
the long-form is a Chinese word sequence and the
short-form is an English acronym. We filter the par-
enthetical expressions in the Web pages with several
heuristic rules to meet the form of pattern 2 and to
save the computing time:

• the short-form (eI1) should contain only one En-
glish word (I = 1), and all letters in which
should be capital;

• similar with (Lin et al., 2008), the pre-
parenthesis text is trimmed with: |c| ≥ 10 ×
|eI1|+ 6 when |eI1| ≤ 6, and |c| ≥ 2× |eI1|+ 6,
otherwise. |c| and |eI1| are measured in bytes.
We further trim the remaining pre-parenthesis
text by punctuations other than hyphens and
dots, i.e., the right most punctuation and its left
subsequence are discarded.

�o. Chinese long-form candidates LH T/F

1 肿瘤 相关 抗原 172.5 T

Tumor-Associated Antigen

2 硫 代 乙酰 胺 79.9 T

thioacetamide

3 胺 33.8 F

amine

4 抗原 24.5 F

antigen

5 相关 抗原 21.2 F

associated antigen

6 的 肿瘤 相关 抗原 16.5 F

's Tumor-Associated Antigen

7 总 氨基酸 16.2 T

total amino acid

Table 2: Top-7 Chinese long-form candidates for the En-
glish acronym TAA, according to the LH score.

4.2 Experiment

We used SogouT Internet Corpus Version 2.04,
which contains about 13 billion original Web pages
(mainly Chinese) in the form of 252 gigabyte .txt
files. In addition, we used 55 gigabyte (.txt for-
mat) Peking University Chinese Paper Corpus. We
constructed a partially parallel corpus in the form
of Pattern 1 from the union of the two corpora us-
ing the heuristic rules defined in (Lin et al., 2008).
We gained a partially parallel corpus which contains
12,444,264 entries.

We extracted 107,856 distinct English acronyms.
Limiting LH score ≥ 1.0 in Equation 3, we gained
2,020,012 Chinese long-form candidates for the
107,856 English acronyms. Table 2 illustrates the
top-7 Chinese long-form candidates of the English
acronym TAA. Three candidates are correct (T) long-
forms while the other 4 are wrong (F). Wrong can-
didates from No. 3 to 5 are all subsequences of the
correct candidate No. 1. No. 6 includes No. 1 while
with a Chinese functional word de in the left most
side. These error types can be easily tackled with
some filtering patterns, such as ‘remove the left most
functional word in the long-form candidates’, ‘only
keep the relatively longer candidates with larger LH
score’, etc.

Since there does not yet exists a common eval-
uation data set for the bilingual abbreviation lexi-
con, we manually evaluated a small sample of it.

4http://www.sogou.com/labs/dl/t.html
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Of the 107,856 English acronyms, we randomly se-
lected 200 English acronyms and their top-1 Chi-
nese long-form candidates for manually evaluating.
We found, 92 candidates were correct including 3
transliteration examples. Of the 108 wrong candi-
dates, 96 candidates included the correct long-form
with some redundant words on the left side (i.e., c =
(word)+ correct long-form), the other 12 candidates
missed some words of the correct long-form or had
some redundant words right before the left paren-
thesis (i.e., c = (word)∗ correct long-form (word)+

or c = (word)∗ subsequence of correct long-form
word)∗). We classified the redundant word right be-
fore the correct long-form of each of the 96 candi-
dates, de occupied 32, noun occupied 7, verb occu-
pied 18, prepositions and conjunctions occupied the
remaining ones.

In total, the abbreviation translation accuracy is
44.5%. We improved the accuracy to 60.5% with
an additional de filtering pattern. According to for-
mer mentioned error analysis, the accuracy may fur-
ther be improved if a Chinese part-of-speech tagger
is employed and the non-nominal words in the long-
form are removed beforehand.

5 Self-Training for Transliteration Models

In this section, we first describe and compare three
transliteration models. Then, we select and train the
best model following Algorithm 1 for lexicon min-
ing. We investigate two things, the scalability of the
self-trained model given different amount of initial
training data, and the performance of several strate-
gies for selecting new training samples.

5.1 Model description

We construct and compare three forward translit-
eration models, a phoneme-based model (English
phonemes to Chinese pinyins), a grapheme-based
model (English syllables to Chinese characters)
and a hybrid model (English syllables to Chinese
pinyins). Similar models have been compared in
(Oh et al., 2006) for English-to-Korean and English-
to-Japanese transliteration. All the three models are
phrase-based, i.e., adjacent phonemes or graphemes
are allowable to form phrase-level transliteration
units. Building the correspondences on phrase
level can effectively tackle the missing or redundant

phoneme/grapheme problem during transliteration.
For example, when Aamodt is transliterated into a
mō tè5, a and d are missing. The problem can be
easily solved when taking Aa and dt as single units
for transliterating.

Making use of Moses (Koehn et al., 2007), a
phrase-based SMT system, Matthews (2007) has
shown that the performance was comparable to re-
cent state-of-the-art work (Jiang et al., 2007) in
English-to-Chinese personal name transliteration.
Matthews (2007) took transliteration as translation
at the surface level. Inspired by his idea, we also
implemented our transliteration models employing
Moses. The main difference is that, while Matthews
(2007) tokenized the English names into individual
letters before training in Moses, we split them into
syllables using the heuristic rules described in (Jiang
et al., 2007), such that one syllable only contains one
vowel letter or a combination of a consonant and a
vowel letter.

English syllable sequences are used in the
grapheme-based and hybrid models. In the
phoneme-based model, we transfer English names
into phonemes and Chinese characters into Pinyins
in virtue of the CMU pronunciation dictionary6 and
the LDC Chinese character-to-pinyin list7.

In the mass, the grapheme-based model is the
most robust model, since no additional resources are
needed. However, it suffers from the Chinese homo-
phonic character problem. For instance, pinyin ai
corresponds to numerous Chinese characters which
are applicable to personal names. The phoneme-
based model is the most suitable model that reflects
the essence of transliteration, while restricted by ad-
ditional grapheme to phoneme dictionaries. In or-
der to eliminate the confusion of Chinese homo-
phonic characters and alleviate the dependency on
additional resources, we implement a hybrid model
that accepts English syllables and Chinese pinyins
as formats of the training data. This model is called
hybrid, since English syllables are graphemes and
Chinese pinyins are phonemes.

5The tones of Chinese pinyins are ignored in our translitera-
tion models for simplicity.

6http://www.speech.cs.cmu.edu/cgi-bin/cmudict
7http://projects.ldc.upenn.edu/Chinese/docs/char2pinyin.txt
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Figure 2: The performances of the transliteration models
and their comparison on EMatch.

5.2 Experimental model selection

Similar to (Jiang et al., 2007), the transliteration
models were trained and tested on the LDC Chinese-
English Named Entity Lists Version 1.08. The origi-
nal list contains 572,213 English people names with
Chinese transliterations. We extracted 74,725 en-
tries in which the English names also appeared in
the CMU pronunciation dictionary. We randomly
selected 3,736 entries as an open testing set and the
remaining entries as a training set9. The results were
evaluated using the character/pinyin-based 4-gram
BLEU score (Papineni et al., 2002), word error rate
(WER), position independent word error rate (PER),
and exact match (EMatch).

Figure 2 reports the performances of the three
models and the comparison based on EMatch. From
the results, we can easily draw the conclusion that
the hybrid model performs the best under the maxi-
mal phrase length (mpl, the maximal phrase length
allowed in Moses) from 1 to 8. The performances
of the models converge at or right after mpl =
4. The pinyin-based WER of the hybrid model is
39.13%, comparable to the pinyin error rate 39.6%,
reported in (Jiang et al., 2007)10. Thus, our further

8Linguistic Data Consortium catalog number:
LDC2005T34 (former catalog number: LDC2003E01)

9Jiang et al. (2007) selected 25,718 personal name pairs
from LDC2003E01 as the experiment data: 200 as development
set, 200 as test set, and the remaining entries as training set.

10It should be notified that we achieved this result by using
larger training set (70,989 vs. 25,718) and larger test set (3,736
vs. 200) comparing with (Jiang et al., 2007), and we did not use

% 0t 1t 2t 3t 4t 5t Strategy
5 .3879 .3937 .3971 .3958 .3972 .3971 top1 em

.3911 .3979 .3954 .3974 .3965 top1 am

.4062 .4182 .4208 .4218 .4201 top5 em

.3987 .4177 .4190 .4192 .4189 top5 am
10 .4092 .4282 .4258 .4202 .4203 .4205 top1 em

.4121 .4190 .4180 .4174 .4200 top1 am

.4305 .4386 .4399 .4438 .4403 top5 em

.4289 .4263 .4292 .4291 .4288 top5 am
20 .4561 .4538 .4562 .4550 .4543 .4551 top1 em

.4532 .4578 .4544 .4545 .4541 top1 am

.4624 .4762 .4754 .4748 .4746 top5 em

.4605 .4677 .4677 .4674 .4679 top5 am
40 .4779 .4791 .4793 .4799 .4794 .4808 top1 em

.4774 .4794 .4779 .4789 .4784 top1 am

.4808 .4811 .4791 .4795 .4790 top5 em

.4775 .4778 .4781 .4785 .4779 top5 am
60 .5032 .4939 .5004 .5012 .5012 .5016 top1 em

.4919 .4988 .4990 .4994 .4990 top1 am

.5013 .5063 .5059 .5066 .5065 top5 em

.4919 .4960 .4970 .4977 .4962 top5 am
80 .5038 .4984 .4984 .5004 .5006 .4995 top1 em

.4916 .4916 .4914 .4915 .4916 top1 am

.5039 .5037 .5053 .5054 .5042 top5 em

.4950 .5028 .5027 .5032 .5032 top5 am
100 .5045 .5077 .5053 .5067 .5063 .5066 top1 em

.5045 .5054 .5046 .5050 .5055 top1 am

.5108 .5102 .5111 .5108 .5115 top5 em

.5105 .5106 .5100 .5094 .5109 top5 am

Table 3: The BLEU score of self-trained h4 translitera-
tion models under four selection strategies. nt (n=1..5)
stands for the n-th iteration.

self-training experiments are pursued on the hybrid
model taking mpl to be 4 (short for h4, hereafter).

5.3 Experiments on the self-trained hybrid
model

As former mentioned, we investigate the scalability
of the self-trained h4 model by respectively using 5,
10, 20, 40, 60, 80, and 100 percent of initial training
data, and the performances of using exact matching
(em) or approximate matching (am, line 8 in Algo-
rithm 1) on the top-1 and top-5 outputs (line 7 in Al-
gorithm 1) for selecting new training samples. We
used edit distance (ed) to measure the em and am
similarities:

ed(c, C ′) = 0 or < syllable number(C ′)/2. (5)

When applying Algorithm 1 for transliteration lexi-
con mining, we decode each word in eI1 respectively.
The algorithm terminated in five iterations when we
set the terminal threshold ε (Line 13 in Algorithm 1)
to be 100.

For simplicity, Table 3 only illustrates the BLEU
score of h4 models under four selection strategies.
From this table, we can draw the following conclu-
sions. First, with fewer initial training data, the im-
provement is better. The best relative improvements

additional Web resources as Jiang et al. (2007) did.
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are 8.74%, 8.46%, 4.41%, 0.67%, 0.68%, 0.32%,
and 1.39%, respectively. Second, using top-5 and
em for new training data selection performs the best
among the four strategies. Compared under each it-
eration, using top-5 is better than using top-1; em
is better than am; and top-5 with am is a little bet-
ter than top-1 with em. We mined 39,424, 42,466,
46,116, 47,057, 49,551, 49,622, and 50,313 distinct
entries under the six types of initial data with top-5
plus em strategy. The 50,313 entries are taken as the
final transliteration lexicon for further comparison.

6 Self-Training for a Cascaded Translation
Model

We classify the parenthetical translation candidates
by employing a translation model. In contrast to
(Lin et al., 2008), wherein the lengthes of prefixes
and suffixes of English words were assumed to be
three bytes, we segment words into morphemes (se-
quences of prefixes, stems, and suffixes) by Morfes-
sor 0.9.211, an unsupervised language-independent
morphological analyzer (Creutz and Lagus, 2007).
We use the morpheme-level translation similarity
explicitly in our cascaded translation model (Wu et
al., 2008), which makes use of morpheme, word,
and phrase level translation units. We train Moses
to gain a phrase-level translation table. To gain a
morpheme-level translation table, we run GIZA++
(Och and Ney, 2003) on both directions between En-
glish morphemes and Chinese characters, and take
the intersection of Viterbi alignments. The English-
to-Chinese translation probabilities computed by
GIZA++ are attached to each morpheme-character
element in the intersection set.

6.1 Experiment

The Wanfang Chinese-English technical term dictio-
nary12, which contains 525,259 entries in total, was
used for training and testing. 10,000 entries were
randomly selected as the test set and the remaining
as the training set. Again, we investigated the scala-
bility of the self-trained cascaded translation model
by respectively using 20, 40, 60, 80, and 100 per-
cent of initial training data. An aggressive similar-

11http://www.cis.hut.fi/projects/morpho/
12http://www.wanfangdata.com.cn/Search/ResourceBrowse

.aspx

% 0t 1t 2t 3t 4t 5t
20 .1406 .1196 .1243 .1239 .1176 .1179
40 .1091 .1224 .1386 .1345 .1479 .1466
60 .1630 .1624 .1429 .1714 .1309 .1398
80 .1944 .1783 .1886 .1870 .1884 .1873
100 .1810 .1814 .1539 .1981 .1542 .1944

Table 4: The BLEU score of self-trained cascaded trans-
lation model under five initial training sets.

ity measurement was used for selecting new training
samples:

first char(c) = first char(C ′) ∧ min{ed(c, C ′)}.
(6)

Here, we judge if the first characters of c and C ′

are similar or not. c was gained by deleting zero
or more characters from the left side of fJ1 . When
more than one c satisfied this condition, the c that
had the smallest edit distance with C ′ was selected.
When applying Algorithm 1 for translation lexicon
mining, we took eI1 as one input for decoding instead
of decoding each word respectively. Only the top-1
output (C ′) was used for comparing. The algorithm
stopped in five iterations when we set the terminal
threshold ε to be 2000.

For simplicity, Table 4 only illustrates the BLEU
score of the cascaded translation model under five
initial training sets. For the reason that there are fi-
nite phonemes in English and Chinese while the se-
mantic correspondences between the two languages
tend to be infinite, Table 4 is harder to be analyzed
than Table 3. When initially using 40%, 60%, and
100% training data for self-training, the results tend
to be better at some iterations. We gain 35.6%,
5.2%, and 9.4% relative improvements, respectively.
However, the results tend to be worse when 20% and
80% training data were used initially, with 11.6%
and 3.0% minimal relative loss. The best BLEU
scores tend to be better when more initial training
data are available. We mined 1,038,617, 1,025,606,
1,048,761, 1,056,311, and 1,060,936 distinct entries
under the five types of initial training data. The
1,060,936 entries are taken as the final translation
lexicon for further comparison.

7 Wikipedia Evaluation

We have mined three kinds of lexicons till now,
an abbreviation lexicon containing 107,856 dis-
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En. to Ch. Ch. to En.
Cov EMatch Cov EMatch

Our Lexicon 22.8% 5.2% 23.2% 5.5%
Unsupervised 23.5% 5.4% 24.0% 5.4%

Table 5: The results of our lexicon and an unsupervised-
mined lexicon (Lin et al., 2008) evaluated under
Wikipedia title dictionary. Cov is short for coverage.

similar English acronyms with 2,020,012 Chinese
long-form candidates; a transliteration lexicon with
50,313 distinct entries; and a translation lexicon
with 1,060,936 distinct entries. The three lexicons
are combined together as our final lexicon.

Similar with (Lin et al., 2008), we compare our
final mined lexicon with a dictionary extracted from
Wikipedia, the biggest multilingual free-content en-
cyclopedia on the Web. We extracted the titles of
Chinese and English Wikipedia articles13 that are
linked to each other. Since most titles contain less
than five words, we take a linked title pair as a trans-
lation entry without considering the word alignment
relation between the words inside the titles. The re-
sult lexicon contains 105,320 translation pairs be-
tween 103,823 Chinese titles and 103,227 English
titles. Obviously, only a small percentage of titles
have more than one translation. Whenever there is
more than one translation, we take the candidate en-
try as correct if and only if it matches one of the
translations.

Moreover, we compare our semi-supervised ap-
proach with an unsupervised approach (Lin et al.,
2008). Lin et al. (2008) took ϕ2(fj , ei) score
14(Gale and Church, 1991) with threshold 0.001 as
the word alignment probability in a word alignment
algorithm, Competitive Link. Competitive Link tries
to align an unlinked ei with an unlinked fj by the
condition that ϕ2(fj , ei) is the biggest. Lin et al.
(2008) relaxed the unlinked constraints to allow con-
secutive sequence of words on one side to be linked
to the same word on the other side15. The left

13English and Chinese Wikipedia pages due to 2008.09.23
are used here.

14ϕ2(fj , ei) = (ad−bc)2

(a+b)(a+c)(b+d)(c+d)
, where a is the number

of fJ
1 (eI

1) containing both ei and fj ; (a + b) is the number of
fJ
1 (eI

1) containing ei; (a + c) is the number of fJ
1 (eI

1) contain-
ing fj ; and d is the number of fJ

1 (eI
1) containing neither ei nor

fj .
15Instead of requiring both ei and fj to have no previous link-

boundary inside fJ1 is determined when each ei in
eI1 is aligned. After applying the modified Compet-
itive Link on the partially parallel corpus which in-
cludes 12,444,264 entries (Section 4.2), we obtained
2,628,366 distinct pairs.

Table 5 shows the results of the two lexicons eval-
uated under Wikipedia title dictionary. The coverage
is measured by the percentage of titles which ap-
pears in the mined lexicon. We then check whether
the translation in the mined lexicon is an exact match
of one of the translations in the Wikipedia lexicon.
Through comparing the results, our mined lexicon is
comparable with the lexicon mined in an unsuper-
vised way. Since the selection is based on phone-
mic and semantic clues instead of frequency, a par-
enthetical translation candidate will not be selected
if the in-parenthetical English text is failed to be
transliterated or translated. This is one reason that
explains why we earned a little lower coverage. An-
other reason comes from the low coverage rate of
seed lexicons used for self-training, only 8.65% En-
glish words in the partially parallel corpus are cov-
ered by the Wanfang dictionary.

8 Conclusion

We have proposed a semi-supervised learning
framework for mining bilingual lexicons from par-
enthetical expressions in monolingual Web pages.
We classified the parenthesis expressions into three
categories: abbreviation, transliteration, and transla-
tion. A set of heuristic rules, a self-trained hybrid
transliteration model, and a self-trained cascaded
translation model were proposed for each category,
respectively.

We investigated the scalability of the self-trained
transliteration and translation models by training
them with different amount of data. The results shew
the stability (transliteration) and feasibility (transla-
tion) of our proposals. Through employing the par-
allel Wikipedia article titles as a gold standard lex-
icon, we gained the comparable results comparing
our semi-supervised framework with our implemen-
tation of Lin et al. (2008)’s unsupervised mining
approach.

ages, they only require that at least one of them be unlinked and
that (suppose ei is unlinked and fj is linked to ek) none of the
words between ei and ek be linked to any word other than fj .
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Abstract

This paper describes a lattice-based decoder
for hierarchical phrase-based translation. The
decoder is implemented with standard WFST
operations as an alternative to the well-known
cube pruning procedure. We find that the
use of WFSTs rather than k-best lists requires
less pruning in translation search, resulting
in fewer search errors, direct generation of
translation lattices in the target language,
better parameter optimization, and improved
translation performance when rescoring with
long-span language models and MBR decod-
ing. We report translation experiments for
the Arabic-to-English and Chinese-to-English
NIST translation tasks and contrast the WFST-
based hierarchical decoder with hierarchical
translation under cube pruning.

1 Introduction

Hierarchical phrase-based translation generates
translation hypotheses via the application of hierar-
chical rules in CYK parsing (Chiang, 2005).Cube
pruning is used to apply language models at each
cell of the CYK grid as part of the search for a
k-best list of translation candidates (Chiang, 2005;
Chiang, 2007). While this approach is very effective
and has been shown to produce very good quality
translation, the reliance on k-best lists is a limita-
tion. We take an alternative approach and describe a
lattice-based hierarchical decoder implemented with
Weighted Finite State Transducers (WFSTs). In ev-
ery CYK cell we build a single, minimal word lattice
containing all possible translations of the source sen-
tence span covered by that cell. When derivations

contain non-terminals, we use pointers to lower-
level lattices for memory efficiency. The pointers
are only expanded to the actual translations if prun-
ing is required during search; expansion is otherwise
only carried out at the upper-most cell, after the full
CYK grid has been traversed.

We describe how this decoder can be easily im-
plemented with WFSTs. For this we employ the
OpenFST libraries (Allauzen et al., 2007). Using
standard FST operations such as composition, ep-
silon removal, determinization, minimization and
shortest-path, we find this search procedure to be
simpler to implement than cube pruning. The main
modeling advantages are a significant reduction in
search errors, a simpler implementation, direct gen-
eration of target language word lattices, and better
integration with other statistical MT procedures. We
report translation results in Arabic-to-English and
Chinese-to-English translation and contrast the per-
formance of lattice-based and cube pruning hierar-
chical decoding.

1.1 Related Work

Hierarchical phrase-based translation has emerged
as one of the dominant current approaches to statis-
tical machine translation. Hiero translation systems
incorporate many of the strengths of phrase-based
translation systems, such as feature-based transla-
tion and strong target language models, while also
allowing flexible translation and movement based
on hierarchical rules extracted from aligned paral-
lel text. We summarize some extensions to the basic
approach to put our work in context.
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Hiero Search RefinementsHuang and Chiang
(2007) offer several refinements to cube pruning to
improve translation speed. Venugopal et al. (2007)
introduce a Hiero variant with relaxed constraints
for hypothesis recombination during parsing; speed
and results are comparable to those of cube prun-
ing, as described by Chiang (2007). Li and Khudan-
pur (2008) report significant improvements in trans-
lation speed by taking unseen n-grams into account
within cube pruning to minimize language model re-
quests. Dyer et al. (2008) extend the translation of
source sentences to translation of input lattices fol-
lowing Chappelier et al. (1999).

Extensions to HieroSeveral authors describe ex-
tensions to Hiero, to incorporate additional syntactic
information (Zollmann and Venugopal, 2006; Zhang
and Gildea, 2006; Shen et al., 2008; Marton and
Resnik, 2008), or to combine it with discriminative
latent models (Blunsom et al., 2008).

Analysis and Contrastive ExperimentsZollman et
al. (2008) compare phrase-based, hierarchical and
syntax-augmented decoders for translation of Ara-
bic, Chinese, and Urdu into English. Lopez (2008)
explores whether lexical reordering or the phrase
discontiguity inherent in hierarchical rules explains
improvements over phrase-based systems. Hierar-
chical translation has also been used to great effect
in combination with other translation architectures,
e.g. (Sim et al., 2007; Rosti et al., 2007).

WFSTs for TranslationThere is extensive work in
using Weighted Finite State Transducer for machine
translation (Bangalore and Riccardi, 2001; Casacu-
berta, 2001; Kumar and Byrne, 2005; Mathias and
Byrne, 2006; Graehl et al., 2008).

To our knowledge, this paper presents the first de-
scription of hierarchical phrase-based translation in
terms of lattices rather than k-best lists. The next
section describes hierarchical phrase-based transla-
tion with WFSTs, including the lattice construction
over the CYK grid and pruning strategies. Sec-
tion 3 reports translation experiments for Arabic-to-
English and Chinese-to-English, and Section 4 con-
cludes.

2 Hierarchical Translation with WFSTs

The translation system is based on a variant of the
CYK algorithm closely related to CYK+ (Chappe-

lier and Rajman, 1998). Parsing follows the de-
scription of Chiang (2005; 2007), maintaining back-
pointers and employing hypothesis recombination
without pruning. The underlying model is a syn-
chronous context-free grammar consisting of a set
R = {Rr} of rulesRr : N → 〈γr,αr〉 / pr, with
‘glue’ rules,S → 〈X,X〉 andS → 〈S X,S X〉. If a
rule has probabilitypr, it is transformed to a costcr;
here we use the tropical semiring, socr = − log pr.
N denotes a non-terminal; in this paper,N can be
eitherS, X, or V (see section 3.2).T denotes the
terminals (words), and the grammar builds parses
based on stringsγ, α ∈ {{S,X, V } ∪ T}+. Each
cell in the CYK grid is specified by a non-terminal
symbol and position in the CYK grid:(N,x, y),
which spanssx+y−1

x on the source sentence.
In effect, the source language sentence is parsed

using a context-free grammar with rulesN → γ.
The generation of translations is a second step that
follows parsing. For this second step, we describe
a method to construct word lattices with all possible
translations that can be produced by the hierarchical
rules. Construction proceeds by traversing the CYK
grid along the backpointers established in parsing.
In each cell(N,x, y) in the CYK grid, we build a
target language word latticeL(N,x, y). This lat-
tice contains every translation ofsx+y−1

x from every
derivation headed byN . These lattices also contain
the translation scores on their arc weights.

The ultimate objective is the word lattice
L(S, 1, J) which corresponds to all the analyses that
cover the source sentencesJ

1 . Once this is built,
we can apply a target language model toL(S, 1, J)
to obtain the final target language translation lattice
(Allauzen et al., 2003).

We use the approach of Mohri (2002) in applying
WFSTs to statistical NLP. This fits well with the use
of the OpenFST toolkit (Allauzen et al., 2007) to
implement our decoder.

2.1 Lattice Construction Over the CYK Grid

In each cell(N,x, y), the set of rule indices used
by the parser is denotedR(N,x, y), i.e. for r ∈
R(N,x, y), N → 〈γr,αr〉 was used in at least one
derivation involving that cell.

For each ruleRr, r ∈ R(N,x, y), we build a lat-
tice L(N,x, y, r). This lattice is derived from the
target side of the ruleαr by concatenating lattices
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R1: X → 〈s1 s2 s3,t1 t2〉
R2: X → 〈s1 s2,t7 t8〉
R3: X → 〈s3,t9〉
R4: S → 〈X,X〉
R5: S → 〈S X,S X〉

L(S, 1, 3) = L(S, 1, 3, 4) ⊕ L(S, 1, 3, 5)
L(S, 1, 3, 4) = L(X, 1, 3) = L(X, 1, 3, 1) =

= A(t1)⊗A(t2)
L(S, 1, 3, 5) = L(S, 1, 2)⊗ L(X, 3, 1)

L(S, 1, 2) = L(S, 1, 2, 4) = L(X, 1, 2) =
= L(X, 1, 2, 2) = A(t7)⊗A(t8)

L(X, 3, 1) = L(X, 3, 1, 3) = A(t9)
L(S, 1, 3, 5) = A(t7)⊗A(t8)⊗A(t9)

L(S, 1, 3) = (A(t1)⊗A(t2))⊕ (A(t7)⊗A(t8)⊗A(t9))

Figure 1: Production of target latticeL(S, 1, 3) using translation rules within CYK grid for sentences1s2s3. The grid
is represented here in two dimensions(x, y). In practice only the first column accepts both non-terminals(S, X). For
this reason it is divided in two subcolumns.

corresponding to the elements ofαr = αr
1...α

r
|αr |.

If an αr
i is a terminal, creating its lattice is straight-

forward. If αr
i is a non-terminal, it refers to a cell

(N ′, x′, y′) lower in the grid identified by the back-
pointer BP (N,x, y, r, i); in this case, the lattice
used isL(N ′, x′, y′). Taken together,

L(N,x, y, r) =
⊗

i=1..|αr|
L(N,x, y, r, i) (1)

L(N,x, y, r, i) =

{
A(αi) if αi ∈ T

L(N ′, x′, y′) else
(2)

where A(t), t ∈ T returns a single-arc accep-
tor which accepts only the symbolt. The lattice
L(N,x, y) is then built as the union of lattices cor-
responding to the rules inR(N,x, y):

L(N,x, y) =
⊕

r∈R(N,x,y)

L(N,x, y, r) (3)

Lattice union and concatenation are performed
using the⊕ and⊗WFST operations respectively, as
described by Allauzen et al.(2007). If a ruleRr has
a costcr, it is applied to the exit state of the lattice
L(N,x, y, r) prior to the operation of Equation 3.

2.1.1 An Example of Phrase-based Translation

Figure 1 illustrates this process for a three word
source sentences1s2s3 under monotone phrase-
based translation. The left-hand side shows the state
of the CYK grid after parsing using the rulesR1 to
R5. These include 3 rules with only terminals (R1,

R2, R3) and the glue rules (R4, R5). Arrows repre-
sent backpointers to lower-level cells. We are inter-
ested in the upper-most S cell(S, 1, 3), as it repre-
sents the search space of translation hypotheses cov-
ering the whole source sentence. Two rules (R4, R5)
are in this cell, so the latticeL(S, 1, 3) will be ob-
tained by the union of the two lattices found by the
backpointers of these two rules. This process is ex-
plicitly derived in the right-hand side of Figure 1.

2.1.2 An Example of Hierarchical Translation

Figure 2 shows a hierarchical scenario for the
same sentence. Three rules,R6, R7, R8, are added
to the example of Figure 1, thus providing two ad-
ditional derivations. This makes use of sublattices
already produced in the creation ofL(S, 1, 3, 5) and
L(X, 1, 3, 1) in Figure 1; these are within{}.

2.2 A Procedure for Lattice Construction

Figure 3 presents an algorithm to build the lattice
for every cell. The algorithm uses memoization: if
a lattice for a requested cell already exists, it is re-
turned (line 2); otherwise it is constructed via equa-
tions 1,2,3. For every rule, each element of the tar-
get side (lines 3,4) is checked as terminal or non-
terminal (equation 2). If it is a terminal element
(line 5), a simple acceptor is built. If it is a non-
terminal (line 6), the lattice associated to its back-
pointer is returned (lines 7 and 8). The complete
lattice L(N,x, y, r) for each rule is built by equa-
tion 1 (line 9). The latticeL(N,x, y) for this cell
is then found by union of all the component rules
(line 10, equation 3); this lattice is then reduced by
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R6: X → 〈s1,t20〉
R7: X → 〈X1 s2 X2,X1 t10 X2〉
R8: X → 〈X1 s2 X2,X2 t10 X1〉

L(S, 1, 3) = L(S, 1, 3, 4) ⊕{L(S, 1, 3, 5)}
L(S, 1, 3, 4) = L(X, 1, 3) =

={L(X, 1, 3, 1)} ⊕L(X, 1, 3, 7)⊕ L(X, 1, 3, 8)
L(X, 1, 3, 7) = L(X, 1, 1, 6)⊗A(t10)⊗L(X, 3, 1, 3) =

= A(t20)⊗A(t10)⊗A(t9)
L(X, 1, 3, 8) = A(t9)⊗A(t10)⊗A(t20)

L(S, 1, 3) = {(A(t1)⊗A(t2))} ⊕
⊕(A(t20)⊗A(t10)⊗A(t9))⊕ (A(t9)⊗A(t10)⊗A(t20))⊕
⊕{(A(t7)⊗A(t8)⊗A(t9))}

Figure 2: Translation as in Figure 1 but with additional rulesR6,R7,R8. Lattices previously derived appear within{}.

standard WFST operations (lines 11,12,13). It is
important at this point to remove any epsilon arcs
which may have been introduced by the various
WFST union, concatenation, and replacement oper-
ations (Allauzen et al., 2007).

1 function buildFst(N,x,y)
2 if ∃ L(N,x, y) returnL(N,x, y)
3 for r ∈ R(N,x, y), Rr : N → 〈γ,α〉
4 for i = 1...|α|
5 if αi ∈ T, L(N,x, y, r, i) = A(αi)
6 else
7 (N ′, x′, y′) = BP (αi)
8 L(N,x, y, r, i) = buildFst(N ′, x′, y′)
9 L(N,x, y, r)=

⊗
i=1..|α|L(N,x, y, r, i)

10 L(N,x, y) =
⊕

r∈R(N,x,y) L(N,x, y, r)
11 fstRmEpsilonL(N,x, y)
12 fstDeterminizeL(N,x, y)
13 fstMinimizeL(N,x, y)
14 returnL(N,x, y)

Figure 3: Recursive Lattice Construction.

2.3 Delayed Translation

Equation 2 leads to the recursive construction of lat-
tices in upper-levels of the grid through the union
and concatenation of lattices from lower levels. If
equations 1 and 3 are actually carried out over fully
expanded word lattices, the memory required by the
upper lattices will increase exponentially.

To avoid this, we use special arcs that serve as
pointers to the low-level lattices. This effectively
builds a skeleton of the desired lattice and delays
the creation of the final word lattice until a single
replacement operation is carried out in the top cell
(S, 1, J). To make this exact, we define a function

g(N,x, y) which returns a unique tag for each lattice
in each cell, and use it to redefine equation 2. With
the backpointer(N ′, x′, y′) = BP (N,x, y, r, i),
these special arcs are introduced as:

L(N,x, y, r, i) =

{
A(αi) if αi ∈ T

A(g(N ′, x′, y′)) else
(4)

The resulting latticesL(N,x, y) are a mix of tar-
get language words and lattice pointers (Figure 4,
top). However each still represents the entire search
space of all translation hypotheses covering the
span. Importantly, operations on these lattices –
such as lossless size reduction via determinization
and minimization – can still be performed. Owing
to the existence of multiple hierarchical rules which
share the same low-level dependencies, these opera-
tions can greatly reduce the size of the skeleton lat-
tice; Figure 4 shows the effect on the translation ex-
ample. This process is carried out for the lattice at
every cell, even at the lowest level where there are
only sequences of word terminals. As stated, size
reductions can be significant. However not all redu-
dancy is removed, since duplicate paths may arise
through the concatenation and union of sublattices
with different spans.

At the upper-most cell, the latticeL(S, 1, J) con-
tains pointers to lower-level lattices. A single FST
replace operation (Allauzen et al., 2007) recursively
substitutes all pointers by their lower-level lattices
until no pointers are left, thus producing the com-
plete target word lattice for the whole source sen-
tence. The use of the lattice pointer arc was in-
spired by the ‘lazy evaluation’ techniques developed
by Mohri et al (2000). Its implementation uses the
infrastructure provided by the OpenFST libraries for
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Figure 4: Delayed translation WFST with derivations
from Figure 1 and Figure 2 before [t] and after minimiza-
tion [b].

delayed composition, etc.

2.4 Pruning in Lattice Construction

The final translation latticeL(S, 1, J) can grow very
large after the pointer arcs are expanded. We there-
fore apply a word-based language model, via WFST
composition, and perform likelihood-based prun-
ing (Allauzen et al., 2007) based on the combined
translation and language model scores.

Pruning can also be performed on sublattices
during search. One simple strategy is to monitor
the number of states in the determinized lattices
L(N,x, y). If this number is above a threshold, we
expand any pointer arcs and apply a word-based lan-
guage model via composition. The resulting lattice
is then reduced by likelihood-based pruning, after
which the LM scores are removed. This search prun-
ing can be very selective. For example, the pruning
threshold can depend on the height of the cell in the
grid. In this way the risk of search errors can be
controlled.

3 Translation Experiments

We report experiments on the NIST MT08 Arabic-
to-English and Chinese-to-English translation tasks.
We contrast two hierarchical phrase-based decoders.
The first decoder, Hiero Cube Pruning (HCP), is a k-

best decoder using cube pruning implemented as de-
scribed by Chiang (2007). In our implementation, k-
best lists contain unique hypotheses. The second de-
coder, Hiero FST (HiFST), is a lattice-based decoder
implemented with Weighted Finite State Transduc-
ers as described in the previous section. Hypotheses
are generated after determinization under the trop-
ical semiring so that scores assigned to hypotheses
arise from single minimum cost / maximum likeli-
hood derivations. We also use a variant of the k-best
decoder which works in alignment mode: given an
input k-best list, it outputs the feature scores of each
hypothesis in the list without applying any pruning.
This is used for Minimum Error Training (MET)
with the HiFST system.

These two language pairs pose very different
translation challenges. For example, Chinese-
to-English translation requires much greater word
movement than Arabic-to-English. In the frame-
work of hierarchical translation systems, we have
found that shallow decoding (see section 3.2) is
as good as full hierarchical decoding in Arabic-
to-English (Iglesias et al., 2009). In Chinese-to-
English, we have not found this to be the case.
Therefore, we contrast the performance of HiFST
and HCP under shallow hierarchical decoding for
Arabic-to-English, while for Chinese-to-English we
perform full hierarchical decoding.

Both hierarchical translation systems share a
common architecture. For both language pairs,
alignments are generated over the parallel data. The
following features are extracted and used in trans-
lation: target language model, source-to-target and
target-to-source phrase translation models, word and
rule penalties, number of usages of the glue rule,
source-to-target and target-to-source lexical models,
and three rule count features inspired by Bender et
al. (2007). The initial English language model is
a 4-gram estimated over the parallel text and a 965
million word subset of monolingual data from the
English Gigaword Third Edition. Details of the par-
allel corpus and development sets used for each lan-
guage pair are given in their respective section.

Standard MET (Och, 2003) iterative parameter
estimation under IBM BLEU (Papineni et al., 2001)
is performed on the corresponding development set.
For the HCP system, MET is done following Chi-
ang (2007). For the HiFST system, we obtain a k-
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best list from the translation lattice and extract each
feature score with the aligner variant of the k-best
decoder. After translation with optimized feature
weights, we carry out the two following rescoring
steps.

• Large-LM rescoring. We build sentence-
specific zero-cutoff stupid-backoff (Brants et
al., 2007) 5-gram language models, estimated
using∼4.7B words of English newswire text,
and apply them to rescore either 10000-best
lists generated by HCP or word lattices gener-
ated by HiFST. Lattices provide a vast search
space relative to k-best lists, with translation
lattice sizes of1081 hypotheses reported in the
literature (Tromble et al., 2008).

• Minimum Bayes Risk (MBR). We rescore the
first 1000-best hypotheses with MBR, taking
the negative sentence level BLEU score as the
loss function (Kumar and Byrne, 2004).

3.1 Building the Rule Sets

We extract hierarchical phrases from word align-
ments, applying the same restrictions as introduced
by Chiang (2005). Additionally, following Iglesias
et al. (2009) we carry out two rule filtering strate-
gies:

• we exclude rules with two non-terminals with
the same order on the source and target side

• we consider only the 20 most frequent transla-
tions for each rule

For each development set, this produces approx-
imately 4.3M rules in Arabic-to-English and 2.0M
rules in Chinese-to-English.

3.2 Arabic-to-English Translation

We translate Arabic-to-English with shallow hierar-
chical decoding,i.e. only phrases are allowed to be
substituted into non-terminals. The rules used in this
case are, in addition to the glue rules:

X → 〈γs,αs〉
X → 〈V ,V 〉
V → 〈s,t〉

s, t ∈ T+; γs, αs ∈ ({V } ∪T)+

For translation model training, we use all allowed
parallel corpora in the NIST MT08 Arabic track
(∼150M words per language). In addition to the
MT08 set itself, we use a development setmt02-05-
tuneformed from the odd numbered sentences of the
NIST MT02 through MT05 evaluation sets; the even
numbered sentences form the validation setmt02-
05-test. Themt02-05-tuneset has 2,075 sentences.

The cube pruning decoder, HCP, employs k-best
lists of depth k=10000 (unique). Using deeper lists
results in excessive memory and time requirements.
In contrast, the WFST-based decoder, HiFST, re-
quires no local pruning during lattice construction
for this task and the language model is not applied
until the lattice is fully built at the upper-most cell of
the CYK grid.

Table 1 shows results formt02-05-tune, mt02-
05-testandmt08, as measured by lowercased IBM
BLEU and TER (Snover et al., 2006). MET param-
eters are optimized for the HCP decoder. As shown
in rows ‘a’ and ‘b’, results after MET are compara-
ble.

Search ErrorsSince both decoders use exactly the
same features, we can measure their search errors on
a sentence-by-sentence basis. A search error is as-
signed to one of the decoders if the other has found
a hypothesis with lower cost. Formt02-05-tune, we
find that in 18.5% of the sentences HiFST finds a hy-
pothesis with lower cost than HCP. In contrast, HCP
never finds any hypothesis with lower cost for any
sentence. This is as expected: the HiFST decoder
requires no pruning prior to applying the language
model, so search is exact.

Lattice/k-best QualityRescoring results are dif-
ferent for cube pruning and WFST-based decoders.
Whereas HCP improves by 0.9 BLEU, HiFST im-
proves over 1.5 BLEU. Clearly, search errors in HCP
not only affect the 1-best output but also the quality
of the resulting k-best lists. For HCP, this limits the
possible gain from subsequent rescoring steps such
as large LMs and MBR.

Translation SpeedHCP requires an average of 1.1
seconds per input word. HiFST cuts this time by
half, producing output at a rate of 0.5 seconds per
word. It proves much more efficient to process com-
pact lattices contaning many hypotheses rather than
to independently processing each one of them in k-
best form.
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decoder mt02-05-tune mt02-05-test mt08
BLEU TER BLEU TER BLEU TER

a HCP 52.2 41.6 51.5 42.2 42.5 48.6
+5gram 53.1 41.0 52.5 41.5 43.3 48.3
+MBR 53.2 40.8 52.6 41.4 43.4 48.1

b HiFST 52.2 41.5 51.6 42.1 42.4 48.7
+5gram 53.3 40.6 52.7 41.3 43.7 48.1
+MBR 53.7 40.4 53.3 40.9 44.0 48.0

Decoding time in secs/word: 1.1 for HCP; 0.5 for HiFST.

Table 1: Constrative Arabic-to-English translation results (lower-cased IBM BLEU| TER) after MET and subsequent
rescoring steps. Decoding time reported formt02-05-tune.

The mixed case NIST BLEU-4 for the HiFST sys-
tem onmt08is 42.9. This is directly comparable to
the official MT08 Constrained Training Track eval-
uation results1.

3.3 Chinese-to-English Translation

We translate Chinese-to-English with full hierarchi-
cal decoding,i.e. hierarchical rules are allowed to be
substituted into non-terminals. We consider a maxi-
mum span of 10 words for the application of hierar-
chical rules and only glue rules are allowed at upper
levels of the CYK grid.

For translation model training, we use all avail-
able data for the GALE 2008 evaluation2, approx.
250M words per language. In addition to the MT08
set itself, we use a development settune-nwand
a validation settest-nw. These contain a mix of
the newswire portions of MT02 through MT05 and
additional developments sets created by translation
within the GALE program. Thetune-nwset has
1,755 sentences.

Again, the HCP decoder employs k-best lists of
depth k=10000. The HiFST decoder applies prun-
ing in search as described in Section 2.4, so that any
lattice in the CYK grid is pruned if it covers at least
3 source words and contains more than 10k states.
The likelihood pruning threshold relative to the best
path in the lattice is 9. This is a very broad threshold
so that very few paths are discarded.

1Full MT08 results are available at http://www.nist.gov/
speech/tests/mt/2008/doc/mt08official resultsv0.html. It is
worth noting that many of the top entries make use of system
combination; the results reported here are for single system
translation.

2See http://projects.ldc.upenn.edu/gale/data/catalog.html.

Improved OptimizationTable 2 shows results for
tune-nw, test-nwandmt08, as measured by lower-
cased IBM BLEU and TER. The first two rows show
results for HCP when using MET parameters opti-
mized over k-best lists produced by HCP (row ‘a’)
and by HiFST (row ‘b’). We find that using the k-
best list obtained by the HiFST decoder yields bet-
ter parameters during optimization. Tuning on the
HiFST k-best lists improves the HCP BLEU score,
as well. We find consistent improvements in BLEU;
TER also improves overall, although less consis-
tently.

Search ErrorsMeasured over thetune-nwdevel-
opment set, HiFST finds a hypothesis with lower
cost in 48.4% of the sentences. In contrast, HCP
never finds any hypothesis with a lower cost for any
sentence, indicating that the described pruning strat-
egy for HiFST is much broader than that of HCP.
Note that HCP search errors are more frequent for
this language pair. This is due to the larger search
space required in fully hierarchical translation; the
larger the search space, the more search errors will
be produced by the cube pruning k-best implemen-
tation.

Lattice/k-best QualityThe lattices produced by
HiFST yield greater gains in LM rescoring than the
k-best lists produced by HCP. Including the subse-
quent MBR rescoring, translation improves as much
as 1.2 BLEU, compared to 0.7 BLEU with HCP.
The mixed case NIST BLEU-4 for the HiFST sys-
tem onmt08 is 27.8, comparable to official results
in the UnConstrained Training Track of the NIST
2008 evaluation.
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decoder MET k-best tune-nw test-nw mt08
BLEU TER BLEU TER BLEU TER

a HCP HCP 31.6 59.7 31.9 59.7 – –
b HCP 31.7 60.0 32.2 59.9 27.2 60.2

+5gram HiFST 32.2 59.3 32.6 59.4 27.8 59.3
+MBR 32.4 59.2 32.7 59.4 28.1 59.3

c HiFST 32.0 60.1 32.2 60.0 27.1 60.5
+5gram HiFST 32.7 58.3 33.1 58.4 28.1 59.1
+MBR 32.9 58.4 33.4 58.5 28.9 58.9

Table 2: Contrastive Chinese-to-English translation results (lower-cased IBM BLEU|TER) after MET and subsequent
rescoring steps. The MET k-best column indicates which decoder generated the k-best lists used in MET optimization.

4 Conclusions

The lattice-based decoder for hierarchical phrase-
based translation described in this paper can be eas-
ily implemented using Weighted Finite State Trans-
ducers. We find many benefits in this approach
to translation. From a practical perspective, the
computational operations required can be easily car-
ried out using standard operations already imple-
mented in general purpose libraries. From a model-
ing perspective, the compact representation of mul-
tiple translation hypotheses in lattice form requires
less pruning in hierarchical search. The result is
fewer search errors and reduced overall memory use
relative to cube pruning over k-best lists. We also
find improved performance of subsequent rescor-
ing procedures which rely on the translation scores.
In direct comparison to k-best lists generated un-
der cube pruning, we find that MET parameter opti-
mization, rescoring with large language models, and
MBR decoding, are all improved when applied to
translations generated by the lattice-based hierarchi-
cal decoder.
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Aragüés, and Antoine Rozenknop. 1999. Lattice
parsing for speech recognition. InProceedings of
TALN, pages 95–104.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. InProceedings of
ACL, pages 263–270.

440



David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Christopher Dyer, Smaranda Muresan, and Philip Resnik.
2008. Generalizing word lattice translation. InPro-
ceedings of ACL-HLT, pages 1012–1020.

Jonathan Graehl, Kevin Knight, and Jonathan May. 2008.
Training tree transducers.Computational Linguistics,
34(3):391–427.

Liang Huang and David Chiang. 2007. Forest rescoring:
Faster decoding with integrated language models. In
Proceedings of ACL, pages 144–151.
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Abstract

This paper describes research on automatic as-
sessment of the pronunciation quality of spon-
taneous non-native adult speech. Since the
speaking content is not known prior to the
assessment, a two-stage method is developed
to first recognize the speaking content based
on non-native speech acoustic properties and
then forced-align the recognition results with
a reference acoustic model reflecting native
and near-native speech properties. Features
related to Hidden Markov Model likelihoods
and vowel durations are extracted. Words with
low recognition confidence can be excluded
in the extraction of likelihood-related fea-
tures to minimize erroneous alignments due
to speech recognition errors. Our experiments
on the TOEFL R©Practice Online test, an En-
glish language assessment, suggest that the
recognition/forced-alignment method can pro-
vide useful pronunciation features. Our new
pronunciation features are more meaningful
than an utterance-based normalized acoustic
model score used in previous research from a
construct point of view.

1 Introduction

Automated systems for evaluating highly pre-
dictable speech (e.g. read speech or speech that
is quite constrained in the use of vocabulary and
syntactic structures) have emerged in the past
decade (Bernstein, 1999; Witt, 1999; Franco et al.,
2000; Hacker et al., 2005) due to the growing matu-
rity of speech recognition and processing technolo-
gies. However, endeavors into automated scoring

for spontaneous speech have been sparse given the
challenge of both recognizing and assessing spon-
taneous speech. This paper addresses the develop-
ment and evaluation of pronunciation features for an
automated system for scoring spontaneous speech.
This system was deployed for the TOEFL R©Practice
Online (TPO) assessment used by prospective test
takers to prepare for the official TOEFL R©test.

A construct is a set of knowledge, skills, and abil-
ities measured by a test. The construct of the speak-
ing test is embodied in the rubrics that human raters
use to score the test. It consists of three key cat-
egories: delivery, language use, and topic devel-
opment. Delivery refers to the pace and the clar-
ity of the speech, including performance on into-
nation, rhythm, rate of speech, and degree of hesi-
tancy. Language use refers to the range, complex-
ity, and precision of vocabulary and grammar use.
Topic development refers to the coherence and full-
ness of the response. Most of the research on spon-
taneous speech assessment focuses on the delivery
aspect given the low recognition accuracy on non-
native spontaneous speech.

The delivery aspect can be measured on four di-
mensions: fluency, intonation, rhythm, and pronun-
ciation. For the TPO assessment, we have defined
pronunciation as the quality of vowels, consonants
and word-level stress (segmentals). Intonation and
sentence-level stress patterns (supra-segmentals) are
not defined as part of pronunciation. Pronuncia-
tion is one of the key factors that impact the intelli-
gibility and perceived comprehensibility of speech.
Because pronunciation plays an important role in
speech perception, features measuring pronuncia-
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tion using speech technologies have been explored
in many previous studies. However, the bulk of the
research on automatic pronunciation evaluation con-
cerns read speech or highly predictable speech (Witt,
1999; Franco et al., 2000; Hacker et al., 2005),
where there is a high possibility of success in speech
recognition. Automatic pronunciation evaluation is
challenging for spontaneous speech and has been
under-explored.

In this paper, we will describe a method for
extracting pronunciation features based on sponta-
neous speech that is well motivated by theories and
supported by empirical evaluations of feature per-
formance. In conceptualizing and computing these
features, we draw on the literature on automatic pro-
nunciation evaluation for constrained speech. As de-
scribed in the related work in Section 2, the widely
used features for measuring pronunciation are (1)
likelihood (posterior probability) of a phoneme be-
ing spoken given the observed audio sample that
is computed in a Viterbi decoding process, and (2)
phoneme length measurements that are compared to
standard references based on native speech.

However, we have also come up with unique solu-
tions to address the issue of relatively low accuracy
in recognizing spontaneous speech. Our methods of
feature extraction are designed with considerations
of how to best capture the quality of pronunciation
given technological constraints.

The remainder of the paper is organized as fol-
lows: Section 2 reviews the related research; Sec-
tion 3 describes our method to extract a set of fea-
tures for measuring pronunciation; Section 4 de-
scribes the design of the experiments, including the
questions investigated, the data, the speech process-
ing technologies, and the measurement metrics; Sec-
tion 5 reports on the experimental results; Section 6
discusses the experimental results; and Section 7
summaries the findings and future research planned.

2 Related work

There is previous research on utilizing speech recog-
nition technology to automatically assess non-native
speakers’ communicative competence (e.g., fluency,
intonation, and pronunciation). Witt (Witt, 1999)
developed the Goodness of Pronunciation (GOP)
measurement for measuring pronunciation based on

Hidden Markov Model (HMM) log likelihood. Us-
ing a similar method, Neumeyer et al. (Neumeyer et
al., 2000) designed a series of likelihood related pro-
nunciation features, e.g., the local average likelihood
and global average likelihood. Hacker et al. (Hacker
et al., 2005) utilized a relatively large feature vector
for scoring pronunciation.

Pronunciation has been the focus of assessment in
several automatic speech scoring systems. Franco et
al. (Franco et al., 2000) presented a system for au-
tomatic evaluation of pronunciation quality on the
phoneme level and the sentence level of speech by
native and non-native speakers of English and other
languages (e.g., French). A forced alignment be-
tween the speech read by subjects and the ideal path
through the HMM was computed. Then, the log
posterior probabilities for a certain position in the
signal were computed to achieve a local pronunci-
ation score. Cucchiarini et al. (Cucchiarini et al.,
1997a; Cucchiarini et al., 1997b) designed a system
for scoring Dutch pronunciation along a similar line.
Their pronunciation feature set was more extensive,
including various log likelihood HMM scores and
phoneme duration scores. In these two systems, the
speaking skill scores computed on features by ma-
chine are found to have good agreement with scores
provided by humans.

A limited number of studies have been conducted
on assessing speaking proficiency based on sponta-
neous speech. Moustroufas and Digalakis (Mous-
troufas and Digalakis, 2007) designed a system to
automatically evaluate the pronunciation of foreign
speakers using unknown text. The difference in the
recognition results between a recognizer trained on
speakers’ native languages (L1) and another recog-
nizer trained on their learned languages (L2) was
used for pronunciation scoring. Zechner and Be-
jar (Zechner and Bejar, 2006) presented a system
to score non-native spontaneous speech using fea-
tures derived from the recognition results. Follow-
ing their work, an operational assessment system,

SpeechRater
TM

, was implemented with further im-
provements (Zechner et al., 2007).

There are some issues with the method to extract
pronunciation features in the previous research on
automated assessment of spontaneous speech (Zech-
ner and Bejar, 2006; Zechner et al., 2007). For ex-
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ample, the acoustic model (AM) that was used to es-
timate a likelihood of a phoneme being spoken was
well-fitted to non-native speech acoustic properties.
Further, other important aspects of pronunciation,
e.g., vowel duration, have not been utilized as a fea-

ture in the current SpeechRater
TM

system. Likeli-
hoods estimated on non-words (such as silences and
fillers) that were not central to the measurement of
pronunciation were used in the feature extraction. In
addition, mis-recognized words lead to wrong like-
lihood estimation. Our paper attempts to address all
of these limitations described above.

3 Extraction of Pronunciation Features

Figure 1 depicts our new method for extracting an
expanded set of pronunciation features in a more
meaning way.

Figure 1: Two-stage pronunciation feature extraction

We used two different AMs for pronunciation fea-
ture extraction. First, we used an AM optimized
for speech recognition (typically an AM adapted
on non-native speech to better fit non-native speak-
ers’ acoustics patterns) to generate word hypotheses;
then we used the other AM optimized for pronun-
ciation scoring (typically trained on native or near-
native speech to be a good reference model reflect-
ing expected speech characteristics) to force align
the speech signals to the word hypotheses and to
compute the likelihoods of individual words being
spoken and durations of phonemes; finally new pro-
nunciation features were extracted based on these
measurements.

Some notations used for computing the pronunci-
ation features are listed in Table 1. Based on these
notations, the proposed new pronunciation features
are described in Table 2. To address the limita-
tions of previous research on automated assessment
of pronunciation, which was described in Section 2,
our proposed method has achieved improvements on
(1) using the two-stage method to compute HMM

likelihoods using a reference acoustic model trained
on native and near-native speech, (2) expanding the
coverage of pronunciation features by using vowel
duration shifts that are compared to standard norms
of native speech, (3) and using likelihoods on the
audio portions that are recognized as words and ap-
plying various normalizations.

Table 1: Notations used for pronunciation feature extrac-
tion

Variable Meaning
L(xi) the likelihood of word xi being spo-

ken given the observed audio signal
ti the duration of word i in a response
Ts the duration of the entire response

T
n∑

i=1

ti, the summation of the duration

of all words, where T ≤ Ts
n the number of words in a response
m the number of letters in a response
R m

Ts
, the frequency of letters (as the rate

of speech)
vi vowel i
Nv the total number of vowels
Pvi the duration of vowel vi
P̄ the average vowel duration (across all

vowels in the response being scored)
Dvi the standard average duration of

vowel vi (estimated on a native
speech corpus)

D̄ the averaged vowel duration (on all
vowels in a native speech corpus)

Svi |Pvi − Dvi |, duration shift of vowel
vi (measured as the absolute value of
the difference between the duration of
vowel vi and its standard value)

Snvi |Pvi

P̄
− Dvi

D̄
|, normalized duration shift

of vowel vi (measured as the absolute
value of the normalized difference be-
tween the duration of vowel vi and its
standard value)

4 Experiment design

We first raise three questions that we try to answer
with our experiments. Then, we describe the data
sets and the speech recognizers, especially the two
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Table 2: A list of proposed pronunciation features
Feature Formula Meaning

L1

n∑

i=1

L(xi) summation of likeli-
hoods of all the indi-
vidual words

L2 L1/n average likelihood
across all words

L3 L1/m average likelihood
across all letters

L4 L1/T average likelihood
per second

L5

n∑

i=1

L(xi)
ti

n average likelihood
density across all
words

L6 L4/R L4 normalized by the
rate of speech

L7 L5/R L5 normalized by the
rate of speech

S̄

Nv∑

i=1

Svi

Nv
average vowel dura-
tion shifts

S̄n

Nv∑

i=1

Snvi

Nv
average normalized
vowel duration shifts

different acoustic models fitted to non-native and ex-
pected speech respectively. Finally, we describe the
evaluation criterion used in the experiment.

4.1 Research questions
In order to justify that the two-stage method for ex-
tracting pronunciation features is a valid method that
provides useful features for assessing pronunciation,
the following questions need to be answered:

Q1: Can the words hypothesized be used to approx-
imate the human transcripts in the forced align-
ment step?

Q2: Are the new pronunciation features effective
for assessment?

Q3: Can the likelihood-related features be im-
proved when using only words correctly recog-

nized?

4.2 Data
Table 3 lists the data sets used in the experiment.
Non-native speech collected in the TPO was used in
training a non-native AM. For feature evaluations,
we selected 1, 257 responses from the TPO data col-
lected in 2006. Within this set, 645 responses were
transcribed. Holistic scores were assigned by human
raters based on a score scale of 1 (the lowest profi-
ciency) to 4 (the highest proficiency).

In the TOEFL R©Native Speaker Study, native
speakers of primarily North American English
(NaE) took the TOEFL R©test and their speech files
were collected. This TOEFL R©native speech data
and some high-scored TPO responses were used
in the adaptation of an AM representing expected
speech properties. In addition, 1, 602 responses of
native speech, which had the highest speech profi-
ciency scores in NaE, were used to estimate standard
average vowel durations.

Type Function Source Size
non-
native
speech

AM training TPO ∼ 30 hrs
feature evalua-
tion

TPO col-
lected in
2006

1, 257
responses
(645 with
tran-
scripts)

native
or
near-
native
speech

AM adaptation TPO and
TOEFL
Native

∼ 2, 000
responses

estimation of
standard vowel
durations

TOEFL
Native

1, 602 re-
sponses

Table 3: Data sets used in the experiment

4.3 Speech technologies
For speech recognition and forced alignment, we
used a gender-independent fully continuous HMM
speech recognizer. Two different AMs were used in
the recognition and forced alignment steps respec-
tively.

The AM used in the recognition was trained
on about 30 hours of non-native speech from the
TPO. For language model training, a large corpus
of non-native speech (about 100 hours) was used
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and mixed with a large general-domain language
model (trained from the Broadcast News (BN) cor-
pus (Graff et al., 1997) of the Linguistic Data Con-
sortium (LDC)). In the pronunciation feature extrac-
tion process depicted in Figure 1, this AM was used
to recognize non-native speech to generate the word
hypotheses.

The AM used in the forced alignment was trained
on native speech and high-scored non-native speech.
It was trained as follows: starting from a generic
recognizer, which was trained on a large and var-
ied native speech corpus, we adapted the AM using
batch-mode MAP adaptation. The adaptation corpus
contained about 2, 000 responses with high scores in
previous TPO tests and the TOEFL R©Native Speaker
Study. In addition, this AM was used to estimate
standard norms of vowels as described in Table 1.

4.4 Measurement metric

To measure the quality of the developed features,
a widely used metric is the Pearson correlation (r)
computed between the features and human scores.
In previous studies, human holistic scores of per-
ceived proficiency have been widely used in esti-
mating the correlations. In our experiment, we will
use the absolute value of Pearson correlation with
human holistic scores (|r|) to evaluate the features.
Given the close relationship between pronunciation
quality and overall speech proficiency, |r| is ex-
pected to approximate the strength of its relationship
with the human pronunciation scores.

5 Experimental Results

5.1 Results for Q1

When assessing read speech, the transcription of
the spoken content is known prior to the assess-
ment and used to forced-align the speech for fea-
ture extraction. However, when assessing sponta-
neous speech, we do not know the spoken content
and cannot provide a correct word transcription for
the forced alignment with imperfect speech recogni-
tion. A practical solution is to use the recognition
hypothesis to approximate the human transcript in
the forced alignment. Since the recognition word ac-
curacy on non-native spontaneous speech is not very
high (for example, a word accuracy of about 50% on
the TPO data was reported in (Zechner et al., 2007)),

it is critical to verify that the approximation can pro-
vide good enough pronunciation features compared
to the ones computed in an ideal scenario (by using
the human transcript in the forced alignment step).

We ran forced alignment on 645 TPO responses
with human transcriptions, using both the manual
transcription and the word hypotheses from the rec-
ognizer described in Section 4.3. Then, based on
these two forced alignment outputs, we extracted the
pronunciation features as described in Section 3.

Table 4 reports the |r|s between the proposed
pronunciation features and human holistic scores
when using the forced alignment results from ei-
ther transcriptions or recognition hypotheses. The
relative |r| reduction (defined as (|r|transcriptions −
|r|hypotheses)/|r|transcriptions ∗ 100) is reported to
measure the magnitude reduction.

Based on the results shown in Table 4, we find that
the pronunciation features computed based on the
forced alignment results using transcriptions have
higher |r|s with the human holistic scores than the
corresponding features computed based on the FA
results using the recognition hypotheses. This is not
surprising given that only 50% ∼ 60% word accu-
racy can be achieved when recognizing non-native
spontaneous speech. However, the pronunciation
features computed using the recognition hypothe-
ses that is feasible in practice show some promising
correlations to human holistic scores. For example,
L3, L6, and L7 have |r|s larger than 0.45 and S̄n
has an |r| larger than 0.35. Compared to the cor-
responding features computed using the FA results
based on transcriptions, these promising pronuncia-
tion features that can be obtained practically, show
some reduction in quality (from 13.4% to 21.1%)
but are still usable. Therefore, our proposed two-
stage method for pronunciation feature extraction is
proven to be a practical way for the computation of
features that have acceptable performance.

5.2 Result for Q2
Although our proposed modifications described in
Section 3 have improved the meaningfulness of the
features, an empirical study is needed to examine the
actual utility of these features for the assessment of
pronunciation.

In the experiment described in Section 5.1, four
pronunciation features (including L3, L6, L7, and
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Feature |r| using
transcrip-
tion

|r| using
recog-
nition
hypothesis

relative |r|
reduction
(%)

L1 0.216 0.107 50.5
L2 0.443 0.416 6.1
L3 0.506 0.473 6.5
L4 0.363 0.294 19
L5 0.333 0.287 13.8
L6 0.549 0.475 13.5
L7 0.546 0.473 13.4
S̄ 0.396 0.296 25.3
S̄n 0.451 0.356 21.1

Table 4: |r| between the pronunciation features and hu-
man holistic scores under two forced alignment input
conditions (using transcriptions vs. using recognition hy-
potheses) and relative |r| reduction

S̄n) show promising correlations to human holistic
scores. To check the quality of the newly developed
pronunciation features, we compared these four fea-
tures with the amscore feature used in (Zechner et
al., 2007) on the TPO data set collected in 2006
(with 1, 257 responses). We first ran speech recog-
nition using the recognizer designed for non-native
speech. The recognition results were used to com-
pute the amscore, which is calculated by dividing
the likelihood over an entire response by the number
of letters. Then, we used the recognition hypothe-
ses to do the forced alignment using the other AM
trained on the native and near-native speech to ex-
tract those four pronunciation features. Finally, we
calculated the correlation coefficients between fea-
tures and the human holistic scores. The results are
reported in Table 5.

feature |r| to human holistic scores
amscore 0.434
L3 0.369
L6 0.444
L7 0.443
S̄n 0.363

Table 5: A comparison of new pronunciation features to

amscore, the one used in SpeechRater
TM

Compared to the feature amscore, L6 and L7

have slightly higher |r|s with the human holistic

scores. This suggests that our construct-driven ap-
proach yields pronunciation features that are empiri-
cally comparable or even better than the amscore. In
addition, S̄n, a new feature representing the vowel
production aspect of pronunciation, shows a rela-
tively high correlation with human holistic scores.
This suggests that our new pronunciation feature set
has an expanded coverage of pronunciation.

It is interesting to note that L3 has a lower |r|with
human holistic scores than the amscore does. Al-
though the computation of L3 is quite similar to that
of amscore, the major difference is that likelihoods
of non-word portions (such as silences and fillers)
are used to compute amscore but not L3. This sug-
gests that likelihood-related pronunciation features
that involve information related to non-words may
perform better in predicting human holistic scores.
For example, for amscore, the likelihoods measured
on those non-word units were involved in the feature
calculation; for L6 and L7, the temporal information
of those non-word units (e.g., duration of units) was
involved in the feature calculation 1.

5.3 Result for Q3

In the feature extraction, we used the words hy-
pothesized by the speech recognizer as the input for
the forced alignment. Since a considerable num-
ber of words are recognized incorrectly (especially
for non-native spontaneous speech), a natural way
to further improve the likelihood related features is
to only consider words which are correctly recog-
nized. A useful metric associated with the recog-
nition performance is the confidence score (CS) out-
put by the recognizer, which reflects the recognizer’s
estimation about the probability that a hypothesized
word is correctly recognized. The recognized words
with high confidence scores tend to be correctly rec-
ognized. Therefore, focusing on words recognized
with high confidence scores may reduce the negative
impact caused by recognition errors on the quality of
the likelihood related features.

On the TPO data with human transcripts, we used
the NIST’s sclite scoring tool (Fiscus, 2009) to mea-
sure the percentage of correct words (correct%),
which is defined as the ratio of the number of words

1L6 and L7 use R, which is computed as m
Ts

, where Ts con-
tains durations of non-words.
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correctly recognized given the number of words in
the reference transcript. On all words (correspond-
ing to confidence scores ranging from 0.0 to 1.0), the
correct% is 53.3%. Figure 2 depicts the correct%
corresponding to ten confidence score bins ranging
from 0.0 to 1.0. Clearly, with the increase of the con-
fidence score, more words tend to be accurately rec-
ognized. Therefore, it is reasonable to only use like-
lihoods estimated on the hypothesized words with
high confidence scores for extracting likelihood re-
lated features.
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Figure 2: Correct% of words recognized across 10 confi-
dence score bins

On the TPO data set collected in 2006, we com-
puted three likelihood related features (includingL3,
L6, and L7) only on words whose SC is equal to
or higher than a threshold (i.e., 0.5, 0.6, 0.7, 0.8,
and 0.9) and measured the |r| of a feature with the
human holistic scores. Table 6 lists the confidence
score cutting thresholds, the percentage of words
whose confidence scores are not lower than the cut-
ting threshold selected, and |r| between each like-
lihood feature to human holistic scores. In the Ta-
ble 6, we observe that only using words recognized
with high confidence improves the correlations be-
tween the features and the human holistic scores.
One issue about only using words recognized with
high confidence scores is that the number of words
used in the feature extraction has been reduced and
may reduce the robustness of the feature calculation.

Tc percentage
of words
whose CS
≥ Tc (%)

L3

|r|
L6

|r|
L7

|r|

0.0 100 0.369 0.444 0.443
0.5 84.21 0.38 0.462 0.461
0.6 77.07 0.377 0.465 0.464
0.7 69.31 0.363 0.461 0.461
0.8 60.86 0.371 0.466 0.466
0.9 50.76 0.426 0.477 0.475

Table 6: |r| between L3, L6, and L7 and human holistic
scores using only words recognized whose CSs are not
lower than a threshold (Tc)

6 Discussion

To assess the pronunciation of spontaneous speech,
we proposed a method for extracting a set of pro-
nunciation features. The method consists of two
stages: (1) recognizing speech using an AM well fit-
ted to non-native speech properties and (2) forced-
aligning the hypothesized words using the other
AM, which was trained on native and near-native
speech, and extracting features related to spectral
properties (HMM likelihood) and vowel production.
This method of using one AM optimized for speech
recognition and another AM optimized for pronun-
ciation evaluation is well motivated theoretically.
The derived pronunciation features have also been
found to have reasonably high correlations with hu-
man holistic scores. The results support the link-
age of the features to the construct of pronunciation
and their utility of being used in a scoring model to
predict human holistic judgments. Several contribu-
tions of this paper are described as below.

First, the two-stage method allows us to utilize
an AM trained on native and near-native speech as
a reference model when computing pronunciation
features. The decision to include high-scored non-
native speech was driven by the scoring rubrics de-
rived from the construct, where the pronunciation
quality of the highest level performance does not
necessarily require native-like accent, but highly in-
telligible speech. The way the reference model was
trained is consistent with the scoring rubrics, and
makes it an appropriate standard based on which the
pronunciation quality of non-native speech can be
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evaluated. By using the recognition hypotheses from
the recognition step as input in the forced alignment
step, our experiments show a relatively small reduc-
tion in correlations with human holistic scores in
comparison to the features based on the human tran-
scriptions. This suggests that our method has po-
tential to be implemented in a real-time operational
setting.

Second, a few decisions we have made in com-
puting the pronunciation features are driven by
considerations of how these features are meaning-
fully linked to the construct of pronunciation as-
sessment. For example, we have excluded the
HMM likelihoods on non-words (such as pauses
and fillers) in the computations of likelihood-related
features. In addition, only using words recognized
with high confidence scores yields more informative
likelihood-related features for assessing the quality
of speech. The inclusion of vowel duration measures
in the feature set expanded the coverage of the qual-
ity of pronunciation.

7 Summary and future work

This paper presents a method for computing features
for assessing the pronunciation quality of non-native
spontaneous speech, guided by construct considera-
tions. We were able to show that using a two-stage
method of first recognizing speech with a non-native
AM and then forced aligning of the hypothesis using
a native or near-native speech AM we can generate
pronunciation features with promising correlations
with holistic scores assigned by human raters.

We plan to continue our research in the follow-
ing directions: (1) we will improve the native speech
norms for vowel durations, such as using the distri-
bution of vowel durations rather than just the mean
of durations in our feature computations; (2) we
will investigate other aspects of pronunciation, e.g.,
consonant quality and word stress; (3) we will add
other standard varieties of English (such as British,
Canadian, Australian, etc) to the training corpus for
the reference pronunciation model as the current
model is trained on primarily North American En-
glish (NaE).
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Abstract

We investigate the task of performance pre-
diction for language models belonging to the
exponential family. First, we attempt to em-
pirically discover a formula for predicting test
set cross-entropy forn-gram language mod-
els. We build models over varying domains,
data set sizes, andn-gram orders, and perform
linear regression to see whether we can model
test set performance as a simple function of
training set performance and various model
statistics. Remarkably, we find a simple rela-
tionship that predicts test set performance with
a correlation of 0.9997. We analyze why this
relationship holds and show that it holds for
other exponential language models as well, in-
cluding class-based models and minimum dis-
crimination information models. Finally, we
discuss how this relationship can be applied to
improve language model performance.

1 Introduction

In this paper, we investigate the following question
for language models belonging to the exponential
family: given some training data and test data drawn
from the same distribution, can we accurately pre-
dict the test set performance of a model estimated
from the training data? This problem is known as
performance predictionand is relevant formodel se-
lection, the task of selecting the best model from a
set of candidate models given data.1

Let us first define some notation. Events have the
form (x, y), where we attempt to predict the cur-
rent wordy given previous wordsx. We denote the
training data asD = (x1, y1), . . . , (xD, yD) and de-
fine p̃(x, y) = countD(x, y)/D to be the empirical
distribution of the training data. Similarly, we have

1A long version of this paper can be found at (Chen, 2008).

a test setD∗ and an associated empirical distribu-
tion p∗(x, y). We take the performance of a condi-
tional language modelp(y|x) to be the cross-entropy
H(p∗, p) between the empirical test distributionp∗

and the modelp(y|x):

H(p∗, p) = −
∑

x,y

p∗(x, y) log p(y|x) (1)

This is equivalent to the negative mean log-
likelihood per event, as well as to log perplexity.

We only consider models in the exponential fam-
ily. An exponential modelpΛ(y|x) is a model with
a set offeatures{f1(x, y), . . . , fF (x, y)} and equal
number of parametersΛ = {λ1, . . . , λF } where

pΛ(y|x) =
exp(

∑F
i=1 λifi(x, y))
ZΛ(x)

(2)

and whereZΛ(x) is a normalization factor.
One of the seminal methods for performance pre-

diction is the Akaike Information Criterion (AIC)
(Akaike, 1973). For a model, let̂Λ be the maxi-
mum likelihood estimate ofΛ on some training data.
Akaike derived the following estimate for the ex-
pected value of the test set cross-entropyH(p∗, pΛ̂):

H(p∗, pΛ̂) ≈ H(p̃, pΛ̂) +
F

D
(3)

H(p̃, pΛ̂) is the cross-entropy of the training set,F
is the number of parameters in the model, andD is
the number of events in the training data. However,
maximum likelihood estimates for language mod-
els typically yield infinite cross-entropy on test data,
and thus AIC behaves poorly for these domains.

In this work, instead of deriving a performance
prediction relationship theoretically, we attempt to
empirically discover a formula for predicting test
performance. Initially, we consider onlyn-gram lan-
guage models, and build models over varying do-
mains, data set sizes, andn-gram orders. We per-
form linear regression to discover whether we can
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model test set cross-entropy as a simple function of
training set cross-entropy and other model statistics.
For the 200+n-gram models we evaluate, we find
that the empirical relationship

H(p∗, pΛ̃) ≈ H(p̃, pΛ̃) +
γ

D

F∑

i=1

|λ̃i| (4)

holds with a correlation of 0.9997 whereγ is a con-
stant and wherẽΛ = {λ̃i} areregularizedparameter
estimates;i.e., rather than estimating performance
for maximum likelihood models as in AIC, we do
this for regularized models. In other words, test set
cross-entropy can be approximated by the sum of the
training set cross-entropy and the scaled sum of the
magnitudes of the model parameters.

To maximize the correlation achieved by eq. (4),
we find that it is necessary to use the same regular-
ization method and regularization hyperparameters
across models and that the optimal value ofγ de-
pends on the values of the hyperparameters. Con-
sequently, we first evaluate several types of regu-
larization and find which of these (and which hy-
perparameter values) work best across all domains,
and use these values in all subsequent experiments.
While `22 regularization gives the best performance
reported in the literature forn-gram models, we find
here that̀ 1 + `22 regularization works even better.

The organization of this paper is as follows: In
Section 2, we evaluate various regularization tech-
niques forn-gram models and select the method and
hyperparameter values that give the best overall per-
formance. In Section 3, we discuss experiments to
find a formula for predictingn-gram model perfor-
mance, and provide an explanation for why eq. (4)
works so well. In Section 4, we evaluate how well
eq. (4) holds for several class-based language mod-
els and minimum discrimination information mod-
els. Finally, in Sections 5 and 6 we discuss related
work and conclusions.

2 Selecting Regularization Settings

In this section, we address the issue of how to per-
form regularization in our later experiments. Fol-
lowing the terminology of Dud́ık and Schapire
(2006), the most widely-used and effective methods
for regularizing exponential models are`1 regular-
ization (Tibshirani, 1994; Kazama and Tsujii, 2003;

data token range training voc.
source type ofn sents. size

A RH letter 2–7 100–75k 27
B WSJ POS 2–7 100–30k 45
C WSJ word 2–5 100–100k 300
D WSJ word 2–5 100–100k 3k
E WSJ word 2–5 100–100k 21k
F BN word 2–5 100–100k 84k
G SWB word 2–5 100–100k 19k

Table 1: Statistics of data sets. RH = Random House
dictionary; WSJ = Wall Street Journal; BN = Broadcast
News; SWB = Switchboard.

Goodman, 2004) and̀2
2 regularization (Lau, 1994;

Chen and Rosenfeld, 2000; Lebanon and Lafferty,
2001). While not as popular, another regularization
scheme that has been shown to be effective is2-norm
inequalityregularization (Kazama and Tsujii, 2003)
which is an instance of̀1+`22 regularization as noted
by Dud́ık and Schapire (2006). Under`1 + `22 regu-
larization, the regularized parameter estimatesΛ̃ are
chosen to optimize the objective function

O`1+`22
(Λ) = H(p̃, pΛ) +

α

D

F∑

i=1

|λi|+
1

2σ2D

F∑

i=1

λ2
i

(5)
Note that̀ 1 regularization can be considered a spe-
cial case of this (by takingσ = ∞) as caǹ 2

2 regu-
larization (by takingα = 0).

Here, we evaluatè1, `22, and`1 + `22 regulariza-
tion for exponentialn-gram models. An exponen-
tial n-gram model contains a binary featurefω for
eachn′-gram ω occurring in the training data for
n′ ≤ n, wherefω(x, y) = 1 iff xy ends inω. We
would like to find the regularization method and as-
sociated hyperparameters that work best across dif-
ferent domains, training set sizes, andn-gram or-
ders. As it is computationally expensive to evalu-
ate a large number of hyperparameter settings over
a large collection of models, we divide this search
into two phases. First, we evaluate a large set of hy-
perparameters on a limited set of models to come up
with a short list of candidate hyperparameters. We
then evaluate these candidates on our full model set
to find the best one.

We buildn-gram models over data from five dif-
ferent sources and consider three different vocabu-
lary sizes for one source, giving us seven “domains”
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in total. We refer to these domains by the lettersA–
G; summary statistics for each domain are given in
Table 1. The domainsC–G consist of regular word
data, while domainsA and B consist of letter and
part-of-speech (POS) sequences, respectively. Do-
mainsC–E differ only in vocabulary.

For each domain, we first randomize the order of
sentences in that data. We partition off two devel-
opment sets and an evaluation set (5000 “sentences”
each in domainAand 2500 sentences elsewhere) and
use the remaining data as training data. In this way,
we assure that our training and test data are drawn
from the same distribution as is assumed in our later
experiments. Training set sizes in sentences are 100,
300, 1000, 3000, etc., up to the maximums given in
Table 1. Building models for each training set size
andn-gram order in Table 1 gives us a total of 218
models over the seven domains.

In the first phase of hyperparameter search, we
choose a subset of these models (57 total) and evalu-
ate many different values for(α, σ2) with `1+`22 reg-
ularization on each. We perform a grid search, trying
each valueα ∈ {0.0, 0.1, 0.2, . . . , 1.2} with each
valueσ2 ∈ {1, 1.2, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 10,∞}
whereσ = ∞ corresponds tò1 regularization and
α = 0 corresponds tò2

2 regularization. We use
a variant of iterative scaling for parameter estima-
tion. For each model and each(α, σ2), we denote
the cross-entropy of the development data asHm

α,σ

for themth model,m ∈ {1, . . . , 57}. Then, for each
m and(α, σ2), we can compute how much worse the
settings(α, σ2) perform with modelm as compared
to the best hyperparameter settings for that model:

Ĥm
α,σ = Hm

α,σ − min
α′,σ′

Hm
α′,σ′ (6)

We would like to select(α, σ2) for whichĤm
α,σ tends

to be small; in particular, we choose(α, σ2) that
minimizes the root mean squared (RMS) error

ĤRMS
α,σ =

√√√√ 1
57

57∑

m=1

(Ĥm
α,σ)2 (7)

For each of̀ 1, `22, and`1 + `22 regularization, we re-
tain the 6–8 best hyperparameter settings. To choose
the best single hyperparameter setting from within
this candidate set, we repeat the same analysis ex-
cept over the full set of 218 models.

statistic RMSE coeff.
1
D

∑F
i=1 |λ̃i| 0.043 0.938

1
D

∑
i:λ̃i>0 λ̃i 0.044 0.939

1
D

∑F
i=1 λ̃i 0.047 0.940

1
D

∑F
i=1 |λ̃i|

4
3 0.162 0.755

1
D

∑F
i=1 |λ̃i|

3
2 0.234 0.669

1
D

∑F
i=1 λ̃

2
i 0.429 0.443

F 6=0
D 0.709 1.289

F 6=0 logD
D 0.783 0.129
F
D 0.910 1.109

F logD
D 0.952 0.112
1 1.487 1.698
F

D−F−1 2.232 -0.028
F 6=0

D−F 6=0−1 2.236 -0.023

Table 2: Root mean squared error (RMSE) in nats when
predicting difference in development set and training set
cross-entropy as linear function of a single statistic. The
last column is the optimal coefficient for that statistic.

On the development sets, the(α, σ2) value with
the lowest squared error is (0.5, 6), and these are
the hyperparameter settings we use in all later ex-
periments unless otherwise noted. The RMS error,
mean error, and maximum error for these hyperpa-
rameters on the evaluation sets are 0.011, 0.007, and
0.033 nats, respectively.2 An error of 0.011 nats cor-
responds to a 1.1% difference in perplexity which
is generally considered insignificant. Thus, we can
achieve good performance across domains, data set
sizes, andn-gram orders using a single set of hyper-
parameters as compared to optimizing hyperparam-
eters separately for each model.

3 N -Gram Model Performance Prediction

Now that we have established which regularization
method and hyperparameters to use, we attempt to
empirically discover a simple formula for predict-
ing the test set cross-entropy of regularizedn-gram
models. The basic strategy is as follows: We first
build a large number ofn-gram models over differ-
ent domains, training set sizes, andn-gram orders.
Then, we come up with a set of candidate statistics,
e.g., training set cross-entropy, number of features,
etc., and do linear regression to try to best model test

2All cross-entropy values are reported innats, or natural
bits, equivalent tolog2 e regular bits. This will let us directly
compareγ values with average discounts in Section 3.1.
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Figure 1: Graph of optimism on evaluation datavs.
1
D

∑F
i=1 |λ̃i| for variousn-gram models under̀1 + `22

regularization,α = 0.5 andσ2 = 6. The line repre-
sents the predicted optimism according to eq. (9) with
γ = 0.938.

set cross-entropy as a linear function of these statis-
tics. We assume that training and test data come
from the same distribution; otherwise, it would be
difficult to predict test performance.

We use the same 218n-gram models as in Sec-
tion 2. For each model, we compute training set
cross-entropyH(p̃, pΛ̃) as well as all of the statis-
tics listed on the left in Table 2. The statisticsFD ,

F
D−F−1 , and F logD

D are motivated by AIC, AICc
(Hurvich and Tsai, 1989), and the Bayesian Infor-
mation Criterion (Schwarz, 1978), respectively. As
featuresfi with λ̃i = 0 have no effect, instead of
F we also consider usingF 6=0, the number of fea-
turesfi with λ̃i 6= 0. The statistics1

D

∑F
i=1 |λ̃i| and

1
D

∑F
i=1 λ̃

2
i are motivated by eq. (5). The statistics

with fractional exponents are suggested by Figure 2.
The value 1 is present to handle constant offsets.

After some initial investigation, it became clear
that training set cross-entropy is a very good (par-
tial) predictor of test set cross-entropy with coeffi-
cient 1. As there is ample theoretical support for
this, instead of fitting test set performance directly,
we chose to model the difference between test and
training performance as a function of the remaining
statistics. This difference is sometimes referred to as
theoptimismof a model:

optimism(pΛ̃) ≡ H(p∗, pΛ̃)−H(p̃, pΛ̃) (8)

First, we attempt to model optimism as a lin-
ear function of a single statistic. For each statis-
tic listed previously, we perform linear regression
to minimize root mean squared error when predict-
ing development set optimism. In Table 2, we dis-
play the RMSE and best coefficient for each statis-
tic. We see that three statistics have by far the lowest
error: 1

D

∑F
i=1 |λ̃i|, 1

D

∑
i:λ̃i>0 λ̃i, and 1

D

∑F
i=1 λ̃i.

In practice, most̃λi in n-gram models are positive,
so these statistics tend to have similar values. We
choose the best ranked of these,1

D

∑F
i=1 |λ̃i|, and

show in Section 3.1 why this statistic is more appeal-
ing than the others. Next, we investigate modeling
optimism as a linear function of apair of statistics.
We find that the best RMSE for two variables (0.042)
is only slightly lower than that for one (0.043), so it
is doubtful that a second variable helps.

Thus, our analysis suggests that among our candi-
dates, the best predictor of optimism is simply

optimism≈ γ

D

F∑

i=1

|λ̃i| (9)

whereγ = 0.938, with this value being independent
of domain, training set size, andn-gram order. In
other words, the difference between test and train-
ing cross-entropy is a linear function of the sum of
parameter magnitudes scaled per event. Substituting
into eq. (8) and rearranging, we get eq. (4).

To assess the accuracy of eq. (4), we compute var-
ious statistics on our evaluation sets using the best
γ from our development data,i.e., γ = 0.938. In
Figure 1, we graph optimism for the evaluation data
against 1

D

∑F
i=1 |λ̃i| for each of our models; we see

that the linear correlation is very good. The correla-
tion between the actual and predicted cross-entropy
on the evaluation data is 0.9997; the mean absolute
prediction error is 0.030 nats; the RMSE is 0.043
nats; and the maximum absolute error is 0.166 nats.
Thus, on average we can predict test performance to
within 3% in perplexity, though in the worst case we
may be off by as much as 18%.3

3The sampling variation in our test set selection limits the
measured accuracy of our performance prediction. To give
some idea of the size of this effect, we randomly selected 100
test sets in domainD of 2500 sentences each (as in our other
experiments). We evaluated their cross-entropies using mod-
els trained on 100, 1k, 10k, and 100k sentences. The empiri-
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Figure 2: Smoothed graph of discount versusλ̃i for all
features in ten different models built on domainsA and
E. Each smoothed point represents the average of at least
512 raw data points.

If we compute the prediction error of eq. (4) over
the same models except using`1 or `22 regulariza-
tion (with the best corresponding hyperparameter
values found in Section 2), the prediction RMSE is
0.054 and 0.139 nats, respectively. Thus, we find
that choosing hyperparameters carefully in Section 2
was important in doing well in performance predic-
tion. While hyperparameters were chosen to opti-
mize test performance rather than prediction accu-
racy, we find that the chosen hyperparameters are
favorable for the latter task as well.

3.1 Why Does Prediction Work So Well?

The correlation in Figure 1 is remarkably high, and
thus it begs for an explanation. First, let us express
the difference in test and training cross-entropy for
a model in terms of its parametersΛ. Substituting
eq. (2) into eq. (1), we get

H(p∗, pΛ) = −
F∑

i=1

λiEp∗ [fi] +
∑

x

p∗(x) logZΛ(x)

(10)
whereEp∗ [fi] =

∑
x,y p

∗(x, y)fi(x, y). Then, we
can express the difference in test and training per-
formance as

H(p∗, pΛ)−H(p̃, pΛ) =
∑F
i=1 λi(Ep̃[fi]− Ep∗ [fi])+∑

x(p∗(x)− p̃(x)) logZΛ(x) (11)

cal standard deviation across test sets was found to be 0.0123,
0.0144, 0.0167, and 0.0174 nats, respectively. This effect can
be mitigated by simply using larger test sets.

Ignoring the last term on the right, we see that opti-
mism for exponential models is a linear function of
theλi’s with coefficientsEp̃[fi]− Ep∗ [fi].

Then, we can ask whatEp̃[fi] − Ep∗ [fi] values
would let us satisfy eq. (4). Consider the relationship

(Ep̃[fi]− Ep∗ [fi])×D ≈ γ sgnλ̃i (12)

If we substitute this into eq. (11) and ignore the last
term on the right again, this gives us exactly eq. (4).
We refer to the value(Ep̃[fi]− Ep∗ [fi])×D as the
discountof a feature. It can be thought of as rep-
resenting how many times less the feature occurs in
the test data as opposed to the training data, if the
test data were normalized to be the same size as the
training data. Discounts forn-grams have been stud-
ied extensively,e.g., (Good, 1953; Church and Gale,
1991; Chen and Goodman, 1998), and tend not to
vary much across training set sizes.

We can check how well eq. (12) holds for actual
regularizedn-gram models. We construct a total of
tenn-gram models on domainsA andE. We build
four letter 5-gram models on domainA on training
sets ranging in size from 100 words to 30k words,
and six models (either trigram or 5-gram) on do-
mainE on training sets ranging from 100 sentences
to 30k sentences. We create large development test
sets (45k words for domainA and 70k sentences for
domainE) to better estimateEp∗ [fi].

Because graphs of discounts as a function ofλ̃i
are very noisy, we smooth the data before plotting.
We partition data points into buckets containing at
least 512 points. We average all of the points in
each bucket to get a “smoothed” data point, and plot
this single point for each bucket. In Figure 2, we
plot smoothed discounts as a function ofλ̃i over the
rangeλ̃i ∈ [−1, 4] for all ten models.

We see that eq. (12) holds at a very rough level
over theλ̃i range displayed. If we examine how
much different ranges of̃λi contribute to the over-
all value of

∑F
i=1 λ̃i(Ep̃[fi]−Ep∗ [fi]), we find that

the great majority of the mass (90–95%+) is concen-
trated in the rangẽλi ∈ [0, 4] for all ten models un-
der consideration. Thus, to a first approximation, the
reason that eq. (4) holds withγ = 0.938 is because
on average, feature expectations have a discount of
about this value for̃λi in this range.4

4This analysis provides some insight as to when eq. (4)
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Figure 3: Graph of optimism on evaluation datavs.
1
D

∑F
i=1 |λ̃i| for various models. The ‘+’ marks corre-

spond to modelsS, M , andL over different training set
sizes,n-gram orders, and numbers of classes. The ‘×’
marks correspond to MDI models over differentn-gram
orders and in-domain training set sizes. The line and
small points are taken from Figure 1.

Due to space considerations, we only summarize
our other findings; a longer discussion is provided
in (Chen, 2008). We find that the absolute error in
cross-entropy tends to be quite small across models
for several reasons. For non-sparse models, there
is significant variation in average discounts, but be-
cause 1

D

∑F
i=1 |λ̃i| is low, the overall error is low.

In contrast, sparse models are dominated by single-
countn-grams with features whose average discount
is quite close toγ = 0.938. Finally, the last term on
the right in eq. (11) also plays a small but significant
role in keeping the prediction error low.

4 Other Exponential Language Models

In (Chen, 2009), we show how eq. (4) can be used
to motivate a novel class-based language model and
a regularized version of minimum discrimination in-
formation (MDI) models (Della Pietra et al., 1992).
In this section, we analyze whether in addition to
word n-gram models, eq. (4) holds for these other
exponential language models as well.

won’t hold. For example, if a feature functionfi is doubled, its
expectations and discount will also double. Thus, eq. (4) won’t
hold in general for models with continuous feature values, as
average discounts may vary widely.

4.1 Class-Based Language Models

We assume a wordw is always mapped to the same
classc(w). For a sentencew1 · · ·wl, we have

p(w1 · · ·wl) =
∏l+1
j=1 p(cj |c1 · · · cj−1, w1 · · ·wj−1)×

∏l
j=1 p(wj |c1 · · · cj , w1 · · ·wj−1) (13)

where cj = c(wj) and wherecl+1 is an end-of-
sentence token. We use the notationpng(y|ω) to
denote an exponentialn-gram model as defined in
Section 2, where we have features for each suffix of
eachωy occurring in the training set. We use the
notationpng(y|ω1, ω2) to denote a model containing
all features in the modelspng(y|ω1) andpng(y|ω2).

We consider three class models, modelsS, M , and
L , defined as

pS(cj |c1···cj−1,w1···wj−1)=png(cj |cj−2cj−1)

pS(wj |c1···cj ,w1···wj−1)=png(wj |cj)

pM (cj |c1···cj−1,w1···wj−1)=png(cj |cj−2cj−1,wj−2wj−1)

pM (wj |c1···cj ,w1···wj−1)=png(wj |wj−2wj−1cj)

pL(cj |c1···cj−1,w1···wj−1)=png(cj |wj−2cj−2wj−1cj−1)

pL(wj |c1···cj ,w1···wj−1)=png(wj |wj−2cj−2wj−1cj−1cj)

ModelS is an exponential version of the class-based
n-gram model from (Brown et al., 1992); modelM
is a novel model introduced in (Chen, 2009); and
modelL is an exponential version of the modelind-
expredictfrom (Goodman, 2001).

To evaluate whether eq. (4) can accurately pre-
dict test performance for these class-based models,
we use the WSJ data and vocabulary from domain
E and consider training set sizes of 1k, 10k, 100k,
and 900k sentences. We create three different word
classings containing 50, 150, and 500 classes using
the algorithm of Brown et al. (1992) on the largest
training set. For each training set and number of
classes, we build both 3-gram and 4-gram versions
of each of our three class models.

In Figure 3, we plot optimism (i.e., test minus
training cross-entropy) versus1D

∑F
i=1 |λ̃i| for these

models (66 in total) on our WSJ evaluation set. The
‘+’ marks correspond to our classn-gram models,
while the small points replicate the points for word
n-gram models from Figure 1. Remarkably, eq. (4)
appears to accurately predict performance for our
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classn-gram models using the sameγ = 0.938
value found for wordn-gram models. The mean ab-
solute prediction error is 0.029 nats, comparable to
that found for wordn-gram models.

It is interesting that eq. (4) works for class-based
models despite their being composed of two sub-
models, one for word prediction and one for class
prediction. However, taking the log of eq. (13), we
note that the cross-entropy of text can be expressed
as the sum of the cross-entropy of its word tokens
and the cross-entropy of its class tokens. It would
not be surprising if eq. (4) holds separately for the
class prediction model predicting class data and the
word prediction model predicting word data, since
all of these component models are basicallyn-gram
models. Summing, this explains why eq. (4) holds
for the whole class model.

4.2 Models with Prior Distributions

Minimum discrimination information models (Della
Pietra et al., 1992) are exponential models with a
prior distributionq(y|x):

pΛ(y|x) = q(y|x)
exp(

∑F
i=1 λifi(x, y))
ZΛ(x)

(14)

The central issue in performance prediction for MDI
models is whetherq(y|x) needs to be accounted for.
That is, if we assumeq is an exponential model,
should its parametersλqi be included in the sum in
eq. (4)? From eq. (11), we note that ifEp̃[fi] −
Ep∗ [fi] = 0 for a featurefi, then the feature does
not affect the difference between test and training
cross-entropy (ignoring its impact on the last term).
By assumption, the training and test set forp come
from the same distribution whileq is derived from
an independent data set. It follows that we expect
Ep̃[f

q
i ]−Ep∗ [f qi ] to be zero for features inq, and we

should ignoreq when applying eq. (4).
To evaluate whether eq. (4) holds for MDI mod-

els, we use the same WSJ training and evaluation
sets from domainE as in Section 4.1. We consider
three different training set sizes: 1k, 10k, and 100k
sentences. To trainq, we use the 100k sentence BN
training set from domainF. We build both trigram
and 4-gram versions of each model.

In Figure 3, we plot test minus training cross-
entropy versus1D

∑F
i=1 |λ̃i| for these models on our

WSJ evaluation set; the ‘×’ marks correspond to

the MDI models. As expected, eq. (4) appears to
work quite well for MDI models using the same
γ = 0.938 value as before; the mean absolute pre-
diction error is 0.077 nats.

5 Related Work

We group existing performance prediction methods
into two categories:non-data-splittingmethods and
data-splittingmethods. In non-data-splitting meth-
ods, test performance is directly estimated from
training set performance and/or other statistics of a
model. Data-splitting methods involve partitioning
training data into a truncated training set and a surro-
gate test set and using surrogate test set performance
to estimate true performance.

The most popular non-data-splitting methods for
predicting test set cross-entropy (or likelihood) are
AIC and variants such as AICc, quasi-AIC (QAIC),
and QAICc (Akaike, 1973; Hurvich and Tsai, 1989;
Lebreton et al., 1992). In Section 3, we consid-
ered performance prediction formulae with the same
form as AIC and AICc (except using regularized pa-
rameter estimates), and neither performed as well as
eq. (4);e.g., see Table 2.

There are many techniques for bounding test
set classification error including the Occam’s Ra-
zor bound (Blumer et al., 1987; McAllester, 1999),
PAC-Bayes bound (McAllester, 1999), and the sam-
ple compression bound (Littlestone and Warmuth,
1986; Floyd and Warmuth, 1995). These methods
derive theoretical guarantees that the true error rate
of a classifier will be below (or above) some value
with a certain probability. Langford (2005) evalu-
ates these techniques over many data sets; while the
bounds can sometimes be fairly tight, in many data
sets the bounds are quite loose.

When learning an element from a set of target
classifiers, the Vapnik-Chervonenkis (VC) dimen-
sion of the set can be used to bound the true error rate
relative to the training error rate with some probabil-
ity (Vapnik, 1998); this technique has been used to
compute error bounds for many types of classifiers.
For example, Bartlett (1998) shows that for a neural
network with small weights and small training set
squared error, the true error depends on the size of
its weights rather than the number of weights; this
finding is similar in spirit to eq. (4).
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In practice, the most accurate methods for perfor-
mance prediction in many contexts are data-splitting
methods (Guyon et al., 2006). These techniques in-
clude the hold-out method; leave-one-out andk-fold
cross-validation; and bootstrapping (Allen, 1974;
Stone, 1974; Geisser, 1975; Craven and Wahba,
1979; Efron, 1983). However, unlike non-data-
splitting methods, these methods do not lend them-
selves well to providing insight into model design as
discussed in Section 6.

6 Discussion

We show that for several types of exponential lan-
guage models, it is possible to accurately predict the
cross-entropy of test data using the simple relation-
ship given in eq. (4). When using̀1 + `22 regulariza-
tion with (α = 0.5, σ2 = 6), the valueγ = 0.938
works well across varying model types, domains,
vocabulary sizes, training set sizes, andn-gram or-
ders, yielding a mean absolute error of about 0.03
nats (3% in perplexity). We evaluate∼300 language
models in total, including word and classn-gram
models andn-gram models with prior distributions.

While there has been a great deal of work in
performance prediction, the vast majority of work
on non-data-splitting methods has focused on find-
ing theoretically-motivated approximations or prob-
abilistic bounds on test performance. In contrast, we
developed eq. (4) on a purely empirical basis, and
there has been little, if any, existing work that has
shown comparable performance prediction accuracy
over such a large number of models and data sets. In
addition, there has been little, if any, previous work
on performance prediction for language modeling.5

While eq. (4) performs well as compared to other
non-data-splitting methods for performance predic-
tion, the prediction error can be several percent in
perplexity, which means we cannot reliably rank
models that are close in quality. In addition, in
speech recognition and many other applications, an
external test set is typically provided, which means
we can measure test set performance directly. Thus,
in practice, eq. (4) is not terribly useful for the task

5Here, we refer to predicting test set performance from
training setperformance and other model statistics. However,
there has been a good deal of work on predicting speech recog-
nition word-error rate fromtest setperplexity and other statis-
tics,e.g., (Klakow and Peters, 2002).

of model selection; instead, what eq. (4) gives us is
insight intomodel design. That is, instead of select-
ing between candidate modelsonce they have been
built as in model selection, it is desirable to be able
to select between models at themodel designstage.
Being able to intelligently compare models (with-
out implementation) requires that we know which
aspects of a model impact test performance, and this
is exactly what eq. (4) tells us.

Intuitively, simpler models should perform better
on test data given equivalent training performance,
and model structure (as opposed to parameter val-
ues) is an important aspect of the complexity of a
model. Accordingly, there have been many meth-
ods for model selection that measure the size of a
model in terms of the number of features or param-
eters in the model,e.g., (Akaike, 1973; Rissanen,
1978; Schwarz, 1978). Surprisingly, for exponential
language models, the number of model parameters
seems to matter not at all; all that matters are the
magnitudes of the parameter values. Consequently,
one can improve such models by adding features (or
a prior model) that reduce parameter values while
maintaining training performance.

In (Chen, 2009), we show how these ideas can be
used to motivate heuristics for improving the perfor-
mance of existing language models, and use these
heuristics to develop a novel class-based model and
a regularized version of MDI models that outper-
form comparable methods in both perplexity and
speech recognition word-error rate on WSJ data. In
addition, we show how the tradeoff between train-
ing set performance and model size impacts aspects
of language modeling as diverse as backoffn-gram
features, class-based models, and domain adapta-
tion. In sum, eq. (4) provides a new and valuable
framework for characterizing, analyzing, and de-
signing statistical models.
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Abstract

This paper presents a new perspective to the
language modeling problem by moving the
word representations and modeling into the
continuous space. In a previous work we in-
troduced Gaussian-Mixture Language Model
(GMLM) and presented some initial experi-
ments. Here, we propose Tied-Mixture Lan-
guage Model (TMLM), which does not have
the model parameter estimation problems that
GMLM has. TMLM provides a great deal of
parameter tying across words, hence achieves
robust parameter estimation. As such, TMLM
can estimate the probability of any word that
has as few as two occurrences in the train-
ing data. The speech recognition experiments
with the TMLM show improvement over the
word trigram model.

1 Introduction

Despite numerous studies demonstrating the serious
short-comings of the n–gram language models, it
has been surprisingly difficult to outperform n–gram
language models consistently across different do-
mains, tasks and languages. It is well-known that n–
gram language models are not effective in modeling
long range lexical, syntactic and semantic dependen-
cies. Nevertheless, n–gram models have been very
appealing due to their simplicity; they require only
a plain corpus of data to train the model. The im-
provements obtained by some more elaborate lan-
guage models (Chelba & Jelinek, 2000; Erdogan et
al., 2005) come from the explicit use of syntactic and
semantic knowledge put into the annotated corpus.

In addition to the mentioned problems above, tra-
ditional n–gram language models do not lend them-
selves easily to rapid and effective adaptation and

discriminative training. A typical n–gram model
contains millions of parameters and has no structure
capturing dependencies and relationships between
the words beyond a limited local context. These pa-
rameters are estimated from the empirical distribu-
tions, and suffer from data sparseness. n–gram lan-
guage model adaptation (to new domain, speaker,
genre and language) is difficult, simply because of
the large number of parameters, for which large
amount of adaptation data is required. Instead of up-
dating model parameters with an adaptation method,
the typical practice is to collect some data in the tar-
get domain and build a domain specific language
model. The domain specific language model is in-
terpolated with a generic language model trained
on a larger domain independent data to achieve ro-
bustness. On the other hand, rapid adaptation for
acoustic modeling, using such methods as Maxi-
mum Likelihood Linear Regression (MLLR) (Leg-
etter & Woodland, 1995), is possible using very
small amount of acoustic data, thanks to the inher-
ent structure of acoustic models that allow large de-
grees of parameter tying across different words (sev-
eral thousand context dependent states are shared
by all the words in the dictionary). Likewise,
even though discriminatively trained acoustic mod-
els have been widely used, discriminatively trained
languages models (Roark et al., 2007) have not
widely accepted as a standard practice yet.

In this study, we present a new perspective to the
language modeling. In this perspective, words are
not treated as discrete entities but rather vectors of
real numbers. As a result, long–term semantic re-
lationships between the words could be quantified
and can be integrated into a model. The proposed
formulation casts the language modeling problem as
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an acoustic modeling problem in speech recognition.
This approach opens up new possibilities from rapid
and effective adaptation of language models to using
discriminative acoustic modeling tools and meth-
ods, such as Minimum Phone Error (MPE) (Povey
& Woodland, 2002) training to train discriminative
language models.

We introduced the idea of language modeling in
continuous space from the acoustic modeling per-
spective and proposed Gaussian Mixture Language
Model (GMLM) (Afify et al., 2007). However,
GMLM has model parameter estimation problems.
In GMLM each word is represented by a specific set
of Gaussian mixtures. Robust parameter estimation
of the Gaussian mixtures requires hundreds or even
thousands of examples. As a result, we were able
to estimate the GMLM probabilities only for words
that have at least 50 or more examples. Essentially,
this was meant to estimate the GMLM probabilities
for only about top 10% of the words in the vocab-
ulary. Not surprisingly, we have not observed im-
provements in speech recognition accuracy (Afify et
al., 2007). Tied-Mixture Language Model (TMLM)
does not have these requirements in model estima-
tion. In fact, language model probabilities can be es-
timated for words having as few as two occurrences
in the training data.

The concept of language modeling in continuous
space was previously proposed (Bengio et al., 2003;
Schwenk & Gauvain, 2003) using Neural Networks.
However, our method offers several potential advan-
tages over (Schwenk & Gauvain, 2003) including
adaptation, and modeling of semantic dependencies
because of the way we represent the words in the
continuous space. Moreover, our method also al-
lows efficient model training using large amounts of
training data, thanks to the acoustic modeling tools
and methods which are optimized to handle large
amounts of data efficiently.

It is important to note that we have to realize the
full potential of the proposed model, before investi-
gating the potential benefits such as adaptation and
discriminative training. To this end, we propose
TMLM, which does not have the problems GMLM
has and, unlike GMLM we report improvements in
speech recognition over the corresponding n–gram
models.

The rest of the paper is organized as follows. Sec-

tion 2 presents the concept of language modeling
in continuous space. Section 3 describes the tied–
mixture modeling. Speech recognition architecture
is summarized in Section 4, followed by the experi-
mental results in Section 5. Section 6 discusses var-
ious issues with the proposed method and finally,
Section 7 summarizes our findings.

2 Language Modeling In Continuous
Space

The language model training in continuous space
has three main steps; namely, creation of a co–
occurrence matrix, mapping discrete words into a
continuous parameter space in the form of vectors
of real numbers and training a statistical parametric
model. Now, we will describe each step in detail.

2.1 Creation of a co–occurrence Matrix

There are many ways that discrete words can
be mapped into a continuous space. The ap-
proach we take is based on Latent Semantic Analy-
sis (LSA) (Deerwester et al., 1990), and begins
with the creation of a co–occurrence matrix. The
co–occurrence matrix can be constructed in sev-
eral ways, depending on the morphological com-
plexity of the language. For a morphologically
impoverished language, such as English the co–
occurrence matrix can be constructed using word bi-
gram co–occurrences. For morphologically rich lan-
guages, there are several options to construct a co–
occurrence matrix. For example, the co–occurrence
matrix can be constructed using either words (word–
word co–occurrences) or morphemes (morpheme–
morpheme co–occurrences), which are obtained af-
ter morphologically tokenizing the entire corpus.
In addition to word–word or morpheme–morpheme
co–occurrence matrices, a word–morpheme co–
occurrence matrix can also be constructed. A word
w can be decomposed into a set of prefixes, stem
and suffixes: w = [pfx1 + pfx2 + pfxn + stem+
sfx1+sfx2+sfxn]. The columns of such a matrix
contain words and the rows contain the correspond-
ing morphological decomposition (i.e. morphemes)
making up the word. The decomposition of this ma-
trix (as will be described in the next sub-section) can
allow joint modeling of words and morphemes in
one model.
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In this study, we use morpheme level bigram co–
occurrences to construct the matrix. All the mor-
pheme1 bigrams are accumulated for the entire cor-
pus to fill in the entries of a co–occurrence matrix,
C, where C(wi, wj) denotes the counts for which
word wi follows word wj in the corpus. This is a
large, but very sparse matrix, since typically a small
number of words follow a given word. Because of
its large size and sparsity, Singular Value Decom-
position (SVD) is a natural choice for producing a
reduced-rank approximation of this matrix.

The co–occurrence matrices typically contain a
small number of high frequency events and a large
number of less frequent events. Since SVD derives
a compact approximation of the co–occurrence ma-
trix that is optimal in the least–square sense, it best
models these high-frequency events, which may not
be the most informative. Therefore, the entries of
a word-pair co–occurrence matrix are smoothed ac-
cording to the following expression:

Ĉ(wi, wj) = log(C(wi, wj) + 1) (1)

Following the notation presented in (Bellegarda,
2000) we proceed to perform the SVD as follows:

Ĉ ≈ USV T (2)

where U is a left singular matrix with row vectors
ui (1 ≤ i ≤ M) and dimension M × R. S is a
diagonal matrix of singular values with dimension
R×R. V is a right singular matrix with row vectors
vj (1 ≤ j ≤ N) and dimension N × R. R is the
order of the decomposition and R ¿ min(M,N).
M and N are the vocabulary sizes on the rows
and columns of the co–occurrence matrix, respec-
tively. For word–word or morpheme–morpheme
co–occurrence matrices M = N , but for word–
morpheme co–occurrence matrix, M is the number
of unique words in the training corpus and N is the
number of unique morphemes in morphologically
tokenized training corpus.

2.2 Mapping Words into Continuous Space
The continuous space for the words listed on the
rows of the co–occurrence matrix is defined as the
space spanned by the column vectors of AM×R =

1For the generality of the notation, from now on we use
“word” instead of “morpheme”.

US. Similarly, the continuous space for the words
on the columns are defined as the space spanned
by the row vectors of BR×N = SV T . Here, for
a word–word co–occurrence matrix, each of the
scaled vectors (by S) in the columns of A and rows
of B are called latent word history vectors for the
forward and backward bigrams, respectively. Now,
a bigram wij = (wi, wj) (1 ≤ i, j ≤ M ) is repre-
sented as a vector of dimension M × 1, where the
ith entry of wij is 1 and the remaining ones are zero.
This vector is mapped to a lower dimensional vector
ŵij by:

ŵij = ATwij (3)

where ŵij has dimension of R × 1. Similarly, the
backward bigram wji (1 ≤ j, i ≤ N ) is mapped to a
lower dimensional vector ŵji by:

ŵji = Bwji (4)

where ŵji has dimension of R × 1. Note that for a
word–morpheme co–occurrence matrix the rows of
B would contain latent morpheme vectors.

Since a trigram history consists of two bigram his-
tories, a trigram history vector is obtained by con-
catenating two bigram vectors. Having generated
the features, now we explain the structure of the
parametric model and how to train it for language
modeling in continuous space.

2.3 Parametric Model Training in Continuous
Space

Recalling the necessary inputs to train an acoustic
model for speech recognition would be helpful to
explain the new language modeling method. The
acoustic model training in speech recognition needs
three inputs: 1) features (extracted from the speech
waveform), 2) transcriptions of the speech wave-
forms and 3) baseforms, which show the pronuncia-
tion of each word in the vocabulary. We propose to
model the language model using HMMs. The HMM
parameters are estimated in such way that the given
set of observations is represented by the model in
the “best” way. The “best” can be defined in vari-
ous ways. One obvious choice is to use Maximum
Likelihood (ML) criterion. In ML, we maximize the
probability of a given sequence of observations O,
belonging to a given class, given the HMM λ of the
class, with respect to the parameters of the model λ.
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This probability is the total likelihood of the obser-
vations and can be expressed mathematically as:

Ltot = p(O|λ) (5)

However, there is no known way to analytically
solve for the model λ = {A,B, π} , which max-
imize the quantity Ltot, where A is the transi-
tion probabilities, B is the observation probabili-
ties, and π is the initial state distribution. But we
can choose model parameters such that it is locally
maximized, using an iterative procedure, like Baum-
Welch method (Baum et al., 1970).

The objective function given in Eq. 5 is the same
objective function used to estimate the parameters
of an HMM based acoustic model. By drawing an
analogy between the acoustic model training and
language modeling in continuous space, the history
vectors are considered as the acoustic observations
(feature vectors) and the next word to be predicted is
considered as the label the acoustic features belong
to, and words with their morphological decomposi-
tions can be considered as the lexicon or dictionary.
Fig. 1 presents the topology of the model for model-
ing a word sequence of 3 words. Each word is mod-
eled with a single state left–to–right HMM topology.
Using a morphologically rich language (or a char-
acter based language like Chinese) to explain how
HMMs can be used for language modeling will be
helpful. In the figure, let the states be the words and
the observations that they emit are the morphemes
(or characters in the case of Chinese). The same
topology (3 states) can also be used to model a sin-
gle word, where the first state models the prefixes,
the middle state models the stem and the final state
models the suffixes. In this case, words are repre-
sented by network of morphemes. Each path in a
word network represents a segmentation (or “pro-
nunciation”) of the word.

The basic idea of the proposed modeling is to cre-
ate a separate model for each word of the language
and use the language model corpus to estimate the
parameters of the model. However, one could argue
that the basic model could be improved by taking
the contexts of the morphemes into account. Instead
of building a single HMM for each word, several
models could be trained according to the context of
the morphemes. These models are called context–
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Figure 1: HMM topology for language modeling in con-
tinuous space.

dependent morphemes. The most obvious choice is
to use both left and right neighbor of a morpheme as
context, and creating, what we call tri–morphemes.
In principal even if context-dependent morphemes
could improve the modeling accuracy, the number
of models increase substantially. For a vocabulary
size of V , the number of tri–morpheme could be as
high as V 3. However, most of the tri–morphemes
are either rare or will not be observed in the training
data altogether.

Decision tree is one approach that can solve this
problem. The main idea is to find similar tri–
morphemes and share the parameters between them.
The decision tree uses a top-down approach to split
the samples, which are in a single cluster at the root
of the tree, into smaller clusters by asking questions
about the current morpheme and its context. In our
case, the questions could be syntactic and/or seman-
tic in nature.

What we hope for is that in the new continuous
space there is some form of distance or similarity
between histories such that histories not observed in
the data for some words are smoothed by similar ob-
served histories.

2.4 Summary of the Continuous Language
Model Training and Using it for Decoding

In the upper part of Fig. 2 the language model train-
ing steps are shown. The training process starts with
the language model training corpus. From the sen-
tences a bigram word co–occurrence matrix is con-
structed. This is a square matrix where the num-
ber of rows (columns) equal to the vocabulary size
of the training data. The bigram co–occurrence ma-
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trix is decomposed using SVD. The columns of the
left–singular matrix obtained from SVD is used to
map the bigram word histories into a lower dimen-
sional continuous parameter space. The projected
word history vectors are stacked together depending
on the size of the n–gram. For example, for trigram
modeling two history vectors are stacked together.
Even though, we have not done so, at this stage one
could cluster the word histories for robust parame-
ter estimation. Now, the feature vectors, their corre-
sponding transcriptions and the lexicon (baseforms)
are ready to perform the “acoustic model training”.
One could use maximum likelihood criterion or any
other objective function such as Minimum Phone Er-
ror (MPE) training to estimate the language model
parameters in the continuous space.

The decoding phase could employ an adaptation
step, if one wants to adapt the language model to
a different domain, speaker or genre. Then, given
a hypothesized sequence of words the decoder ex-
tracts the corresponding feature vectors. The fea-
ture vectors are used to estimate the likelihood of
the word sequence using the HMM parameters. This
likelihood is used to compute the probability of the
word sequence. Next, we introduce Tied–Mixture
Modeling, which is a special HMM structure to ro-
bustly estimate model parameters.

3 Tied–Mixture Modeling

Hidden Markov Models (HMMs) have been exten-
sively used virtually in all aspects of speech and
language processing. In speech recognition area
continuous-density HMMs have been the standard
for modeling speech signals, where several thousand
context–dependent states have their own Gaussian
density functions to model different speech sounds.
Typically, speech data have hundreds of millions of
frames, which are sufficient to robustly estimate the
model parameters. The amount of data for language
modeling is orders of magnitude less than that of
the acoustic data in continuous space. Tied–Mixture
Hidden Markov Models (TM–HMMs) (Bellegarda
& Nahamoo, 1989; Huang & Jack, 1988) have a bet-
ter decoupling between the number of Gaussians and
the number of states compared to continuous den-
sity HMMs. The TM–HMM is useful for language
modeling because it allows us to choose the num-
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Figure 2: Language Model Training and Adaptation in
Continuous Space.

ber of Gaussian densities and the number of mixture
weights independently. Much more data is required
to reliably estimate Gaussian densities than to esti-
mate mixture weights.

The evaluation of the observation density func-
tions for TM–HMMs can be time consuming due to
the large mixture weight vector and due to the fact
that for each frame all Gaussians have to be evalu-
ated. However, there are a number of solutions pro-
posed in the past that significantly reduces the com-
putation (Duchateau et al., 1998).

The function p(w | h), defined in a continu-
ous space, represents the conditional probability of
the word w given the history h. In general, h
contains previous words and additional information
(e.g. part-of-speech (POS) tags for the previous
words) that may help to the prediction of the next
word. Unlike TM–HMMs, using a separate HMM
for each word as in the case of Gaussian Mixture
Models (GMMs), to represent the probability distri-
bution functions results in the estimation problems
for the model parameters since each n–gram does
not have hundreds of examples. TM–HMMs use
Gaussian mixture probability density functions per
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state in which a single set of Gaussians is shared
among all states:

p(o|w) =
J∑

j

cw,jNj(o, µw,j ,Σw,j) (6)

where w is the state, Nj is the jth Gaussian, and o
is the observation (i.e. history) vectors. and J is the
number of component mixtures in the TM-HMM.
In order to avoid zero variance in word mapping
into continuous space, all the latent word vectors are
added a small amount of white noise.

The TM–HMM topology is given in Fig. 3. Each
state models a word and they all share the same set of
Gaussian densities. However, each state has a spe-
cific set of mixture weights associated with them.
This topology can model a word–sequence that con-
sist of three words in them. The TM–HMM esti-
mates the probability of observing the history vec-
tors (h) for a given word w. However, what we need
is the posterior probability p(w | h) of observing w
as the next word given the history, h. This can be
obtained using the Bayes rule:

p(w|h) =
p(h|w)p(w)

p(h)
(7)

=
p(h|w)p(w)

∑V
v=1 p(h|v)p(v)

(8)

where p(w) is the unigram probability of the word
w. The unigram probabilities can also be substituted
for more accurate higher order n–gram probabilities.
If this n–gram has an order that is equal to or greater
than the one used in defining the continuous contexts
h, then the TMLM can be viewed as performing a
kind of smoothing of the original n–gram model:

Ps(w | h) =
P (w | h)p(h | w)

∑V
v=1 P (v | h)p(h | v)

(9)

where Ps(w | h) and P (w | h) are the smoothed
and original n–grams.

The TM–HMM parameters are estimated through
an iterative procedure called the Baum-Welch, or
forward-backward, algorithm (Baum et al., 1970).
The algorithm locally maximizes the likelihood
function via an iterative procedure. This type of
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Figure 3: Tied-Mixture HMM topology for language
modeling in continuous space. The mixtures are tied
across states. Each state represents a word. The TM-
HMM is completely defined with the mixture weights,
mixture densities and transition probabilities.

training is identical to training continuous density
HMMs except the Gaussians are tied across all arcs.
For the model estimation equations the readers are
referred to (Bellegarda & Nahamoo, 1989; Huang &
Jack, 1988).

Next, we introduce the speech recognition system
used for the experiments.

4 Speech Recognition Architecture

The speech recognition experiments are carried out
on the Iraqi Arabic side of an English to Iraqi Ara-
bic speech-to-speech translation task. This task cov-
ers the military and medical domains. The acoustic
data has about 200 hours of conversational speech
collected in the context of a DARPA supported
speech-to-speech (S2S) translation project (Gao et
al., 2006).

The feature vectors for training acoustic models
are generated as follows. The speech data is sampled
at 16kHz and the feature vectors are computed every
10ms. First, 24-dimensional MFCC features are ex-
tracted and appended with the frame energy. The
feature vector is then mean and energy normalized.
Nine vectors, including the current vector and four
vectors from its right and left contexts, are stacked
leading to a 216-dimensional parameter space. The
feature space is finally reduced from 216 to 40 di-
mensions using a combination of linear discriminant
analysis (LDA), feature space MLLR (fMLLR) and
feature space MPE (fMPE) training (Povey et al.,
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2005). The baseline speech recognition system used
in our experiments is the state–of–the–art and pro-
duces a competitive performance.

The phone set consists of 33 graphemes represent-
ing speech and silence for acoustic modeling. These
graphemes correspond to letters in Arabic plus si-
lence and short pause models. Short vowels are im-
plicitly modeled in the neighboring graphemes. Fea-
ture vectors are first aligned, using initial models,
to model states. A decision tree is then built for
each state using the aligned feature vectors by ask-
ing questions about the phonetic context; quinphone
questions are used in this case. The resulting tree has
about 3K leaves. Each leaf is then modeled using
a Gaussian mixture model. These models are first
bootstrapped and then refined using three iterations
of forward–backward training. The current system
has about 75K Gaussians.

The language model training data has 2.8M words
with 98K unique words and it includes acoustic
model training data as a subset. The morpholog-
ically analyzed training data has 58K unique vo-
cabulary items. The pronunciation lexicon consists
of the grapheme mappings of these unique words.
The mapping to graphemes is one-to-one and there
are very few pronunciation variants that are sup-
plied manually mainly for numbers. A statistical tri-
gram language model using Modified Kneser-Ney
smoothing (Chen& Goodman, 1996) has been built
using the training data, which is referred to as Word-
3gr.

For decoding a static decoding graph is com-
piled by composing the language model, the pro-
nunciation lexicon, the decision tree, and the HMM
graphs. This static decoding scheme, which com-
piles the recognition network off–line before decod-
ing, is widely adopted in speech recognition (Ri-
ley et al., 2002). The resulting graph is further op-
timized using determinization and minimization to
achieve a relatively compact structure. Decoding is
performed on this graph using a Viterbi beam search.

5 Experimental Results

We used the following TMLM parameters to build
the model. The SVD projection size is set to 200
(i.e. R = 200) for each bigram history. This re-
sults into a trigram history vector of size 400. This
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Figure 4: Scatter plot of the n–gram and TMLM proba-
bilities.

vector is further projected down to a 50 dimensional
feature space using LDA transform. The total num-
ber of Gaussian densities used for the TM–HMM is
set to 1024. In order to find the overall relationship
between trigram and TMLM probabilities we show
the scatter plot of the trigram and TMMT probabili-
ties in Fig. 4. While calculating the TMLM score the
TMLM likelihood generated by the model is divided
by 40 to balance its dynamic range with that of the
n–gram model. Most of the probabilities lie along
the diagonal line. However, some trigram proba-
bilities are modulated making TMLM probabilities
quite different than the corresponding trigram prob-
abilities. Analysis of TMLM probabilities with re-
spect to the trigram probabilities would be an inter-
esting future research.

We conducted the speech recognition language
modeling experiments on 3 testsets: TestA, TestB
and TestC. All three test sets are from July’07
official evaluations of the IBM’s speech-to-speech
translation system by DARPA. TestA consists of
sentences spoken out in the field to the IBM’s S2S
system during live evaluation. TestB contains sen-
tences spoken in an office environment to the live
S2S system. Using on-the-spot speakers for TestA
and TestB meant to have shorter and clean sentences.
Finally TestC contains pre-recorded sentences with
much more hesitations and more casual conversa-
tions compared to the other two testsets. TestA,
TestB and TestC have 309, 320 and 561 sentences,
respectively.
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LM TestA TestB TestC All
Word-3gr 18.7 18.6 38.9 32.9
TMLM 18.8 18.9 38.2 32.5

TMLM + Word-3gr 17.6 18.0 37.4 31.9

Table 1: Speech Recognition Language Model Rescoring
Results.

In order to evaluate the performance of the
TMLM, a lattice with a low oracle error rate was
generated by a Viterbi decoder using the word tri-
gram model (Word-3gr) model. From the lattice at
most 30 (N=30) sentences are extracted for each ut-
terance to form an N-best list. The N–best error rate
for the combined test set (All) is 22.7%. The N–
best size is limited (it is not in the hundreds), simply
because of faster experiment turn-around. These ut-
terances are rescored using TMLM. The results are
presented in Table 1. The first two rows in the ta-
ble show the baseline numbers for the word trigram
(Word–3gr) model. TestA has a WER of 18.7% sim-
ilar to that of TestB (18.6%). The WER for TestC
is relatively high (38.9%), because, as explained
above, TestC contains causal conversation with hes-
itations and repairs, and speakers do not necessar-
ily stick to the domain. Moreover, when users are
speaking to a device, as in the case of TestA and
TestB, they use clear and shorter sentences, which
are easier to recognize. The TMLM does not pro-
vide improvements for TestA and TestB but it im-
proves the WER by 0.7% for TestC. The combined
overall result is a 0.4% improvement over base-
line. This improvement is not statistically signifi-
cant. However, interpolating TMLM with Word-3gr
improves the WER to 31.9%, which is 1.0% better
than that of the Word-3gr. Standard p-test (Matched
Pairs Sentence-Segment Word Error test available
in standard SCLITEs statistical system comparison
program from NIST) shows that this improvement
is significant at p < 0.05 level. The interpolation
weights are set equally to 0.5 for each LM.

6 Discussions

Despite limited but encouraging experimental re-
sults, we believe that the proposed perspective is a
radical departure from the traditional n–gram based
language modeling methods. The new perspective

opens up a number of avenues which are impossible
to explore in one paper.

We realize that there are a number of outstand-
ing issues with the proposed perspective that re-
quire a closer look. We make a number of deci-
sions to build a language model within this perspec-
tive. The decisions are sometimes ad hoc. The de-
cisions are made in order to build a working sys-
tem and are by no means the best decisions. In
fact, it is quite likely that a different set of de-
cisions may result into a better system. Using a
word–morpheme co–occurrence matrix instead of a
morpheme–morpheme co–occurrence matrix is one
such decision. Another one is the clustering/tying
of the rarely observed events to achieve robust para-
meter estimation both for the SVD and TMLM pa-
rameter estimation. We also use a trivial decision
tree to build the models where there were no con-
text questions. Clustering morphemes with respect
to their syntactic and semantic context is another
area which should be explored. In fact, we are in
the process of building these models. Once we have
realized the full potential of the baseline maximum
likelihood TMLM, then we will investigate the dis-
criminative training methods such as MPE (Povey
& Woodland, 2002) to further improve the language
model performance and adaptation to new domains
using MLLR (Legetter & Woodland, 1995).

We also realize that different problems such as
segmentation (e.g. Chinese) of words or morpholog-
ical decomposition of words into morphemes can be
addressed within the proposed perspective.

7 Conclusions

We presented our progress in improving continuous-
space language modeling. We proposed the Tied-
Mixture Language Model (TMLM), which allows
for robust parameter estimation through the use
of tying and improves on the previously presented
GMLM. The new formulation lets us train a para-
metric language model using off–the–shelf acoustic
model training tools. Our initial experimental results
validated the proposed approach with encouraging
results.
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Abstract

In (Chen, 2009), we show that for a vari-
ety of language models belonging to the ex-
ponential family, the test set cross-entropy of
a model can be accurately predicted from its
training set cross-entropy and its parameter
values. In this work, we show how this rela-
tionship can be used to motivate two heuristics
for “shrinking” the size of a language model
to improve its performance. We use the first
heuristic to develop a novel class-based lan-
guage model that outperforms a baseline word
trigram model by 28% in perplexity and 1.9%
absolute in speech recognition word-error rate
on Wall Street Journal data. We use the second
heuristic to motivate a regularized version of
minimum discrimination information models
and show that this method outperforms other
techniques for domain adaptation.

1 Introduction

An exponential modelpΛ(y|x) is a model with a set
of features{f1(x, y), . . . , fF (x, y)} and equal num-
ber of parametersΛ = {λ1, . . . , λF } where

pΛ(y|x) =
exp(

∑F
i=1 λifi(x, y))
ZΛ(x)

(1)

and whereZΛ(x) is a normalization factor. In
(Chen, 2009), we show that for many types of ex-
ponential language models, if a training and test set
are drawn from the same distribution, we have

Htest≈ Htrain +
γ

D

F∑

i=1

|λ̃i| (2)

whereHtest denotes test set cross-entropy;Htrain de-
notes training set cross-entropy;D is the number of
events in the training data; thẽλi areregularizedpa-
rameter estimates; andγ is a constant independent

of domain, training set size, and model type.1 This
relationship is strongest if thẽΛ = {λ̃i} are esti-
mated using̀1+`22 regularization (Kazama and Tsu-
jii, 2003). In `1 + `22 regularization, parameters are
chosen to optimize

O`1+`22
(Λ) = Htrain +

α

D

F∑

i=1

|λi|+
1

2σ2D

F∑

i=1

λ2
i (3)

for someα andσ. With (α = 0.5, σ2 = 6) and
takingγ = 0.938, test set cross-entropy can be pre-
dicted with eq. (2) for a wide range of models with a
mean error of a few hundredths of a nat, equivalent
to a few percent in perplexity.2

In this paper, we show how eq. (2) can be applied
to improve language model performance. First, we
use eq. (2) to analyze backoff features in exponential
n-gram models. We find that backoff features im-
prove test set performance by reducing the “size” of
a model 1

D

∑F
i=1 |λ̃i| rather than by improving train-

ing set performance. This suggests the following
principle for improving exponential language mod-
els: if a model can be “shrunk” without increasing
its training set cross-entropy, test set cross-entropy
should improve. We apply this idea to motivate
two language models: a novel class-based language
model and regularized minimum discrimination in-
formation (MDI) models. We show how these mod-
els outperform other models in both perplexity and
word-error rate on Wall Street Journal (WSJ) data.

The organization of this paper is as follows: In
Section 2, we analyze the use of backoff features in
n-gram models to motivate a heuristic for model de-
sign. In Sections 3 and 4, we introduce our novel

1The cross-entropy of a modelpΛ(y|x) on some dataD =
(x1, y1), . . . , (xD, yD) is defined as− 1

D

PD
j=1 log pΛ(yj |xj).

It is equivalent to the negative mean log-likelihood per event as
well as to log perplexity.

2A nat is a “natural” bit and is equivalent tolog2 e regular
bits. We use nats to be consistent with (Chen, 2009).
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features Heval Hpred Htrain
∑ |λ̃i|

D

3g 2.681 2.724 2.341 0.408
2g+3g 2.528 2.513 2.248 0.282

1g+2g+3g 2.514 2.474 2.241 0.249

Table 1: Various statistics for letter trigram models built
on a 1k-word training set.Heval is the cross-entropy of
the evaluation data;Hpred is the predicted test set cross-
entropy according to eq. (2); andHtrain is the training
set cross-entropy. The evaluation data is drawn from the
same distribution as the training;H values are in nats.
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Figure 1: Nonzerõλi values for bigram features in let-
ter bigram model without unigram backoff features. If
we denote bigrams aswj−1wj , each column contains the
λ̃i’s corresponding to all bigrams with a particularwj .
The ‘×’ marks represent the average|λ̃i| in each column;
this average includes history words for which no feature
exists or for which̃λi = 0.

class-based model and discuss MDI domain adapta-
tion, and compare these methods against other tech-
niques on WSJ data. Finally, in Sections 5 and 6 we
discuss related work and conclusions.3

2 N -Gram Models and Backoff Features

In this section, we use eq. (2) to explain why backoff
features in exponentialn-gram models improve per-
formance, and use this analysis to motivate a general
heuristic for model design. An exponentialn-gram
model contains a binary featurefω for eachn′-gram
ω occurring in the training data forn′ ≤ n, where
fω(x, y) = 1 iff xy ends inω. We refer to features
corresponding ton′-grams forn′ < n as backoff
features; it is well known that backoff features help

3A long version of this paper can be found at (Chen, 2008).
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Figure 2: Like Figure 1, but for model with unigram
backoff features.

performance a great deal. We present statistics in
Table 1 for various letter trigram models built on the
same data set. In these and all later experiments, all
models are regularized with̀1 + `22 regularization
with (α = 0.5, σ2 = 6). The last row corresponds to
a normal trigram model; the second row corresponds
to a model lacking unigram features; and the first
row corresponds to a model with no unigram or bi-
gram features. As backoff features are added, we see
that the training set cross-entropy improves, which
is not surprising since the number of features is in-
creasing. More surprising is that as we add features,
the “size” of the model1D

∑F
i=1 |λ̃i| decreases.

We can explain these results by examining a sim-
ple example. Consider an exponential model con-
sisting of the featuresf1(x, y) andf2(x, y) with pa-
rameter values̃λ1 = 3 and λ̃2 = 4. From eq. (1),
this model has the form

pΛ̃(y|x) =
exp(3f1(x, y) + 4f2(x, y))

ZΛ(x)
(4)

Now, consider creating a new featuref3(x, y) =
f1(x, y)+f2(x, y) and setting our parameters as fol-
lows: λnew

1 = 0, λnew
2 = 1, andλnew

3 = 3. Substitut-
ing into eq. (1), we see thatpΛnew(y|x) = pΛ̃(y|x)
for all x, y. As the distribution this model de-
scribes does not change, neither will its training per-
formance. However, the (unscaled) size

∑F
i=1 |λi|

of the model has been reduced from 3+4=7 to
0+1+3=4, and consequently by eq. (2) we predict
that test performance will improve.4

4When sgn(λ̃1) = sgn(λ̃2),
PF
i=1 |λi| is reduced most by
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In fact, sincepΛnew = pΛ̃, test performance will
remain the same. The catch is that eq. (2) applies
only to the regularizedparameter estimates for a
model, and in general,Λnew will not be the regu-
larized parameter estimates for the expanded feature
set. We can compute the actual regularized parame-
tersΛ̃new for which eq. (2)will apply; this may im-
prove predicted performance even more.

Hence, by adding “redundant” features to a model
to shrink its total size

∑F
i=1 |λ̃i|, we can improve

predicted performance (and perhaps also actual per-
formance). This analysis suggests the following
technique for improving model performance:

Heuristic 1 Identify groups of features which will
tend to have similar̃λi values. For each such fea-
ture group, add a new feature to the model that is
the sum of the original features.

The larger the original̃λi’s, the larger the reduction
in model size and the higher the predicted gain.

Given this perspective, we can explain why back-
off features improven-gram model performance.
For simplicity, consider a bigram model, one with-
out unigram backoff features. It seems intuitive
that probabilities of the formp(wj |wj−1) are sim-
ilar across differentwj−1, and thus so are thẽλi for
the corresponding bigram features. (If a word has
a high unigram probability, it will also tend to have
high bigram probabilities.) In Figure 1, we plot the
nonzeroλ̃i values for all (bigram) features in a bi-
gram model without unigram features. Each column
contains thẽλi values for a different predicted word
wj , and the ‘×’ mark in each column is the average
value of |λ̃i| over all history wordswj−1. We see
that the average|λ̃i| for each wordwj is often quite
far from zero, which suggests creating features

fwj (x, y) =
∑

wj−1

fwj−1wj (x, y) (5)

to reduce the overall size of the model.
In fact, these features are exactly unigram backoff

features. In Figure 2, we plot the nonzeroλ̃i values
for all bigram features after adding unigram backoff
features. We see that the average|λ̃i|’s are closer
to zero, implying that the model size

∑F
i=1 |λ̃i| has

settingλnew
3 to theλ̃i with the smaller magnitude, and the size

of the reduction is equal to|λnew
3 |. If sgn(λ̃1) 6= sgn(λ̃2), no

reduction is possible through this transformation.

Heval Hpred Htrain
∑ |λ̃i|

D

wordn-gram 4.649 4.672 3.354 1.405
modelM 4.536 4.544 3.296 1.330

Table 2: Various statistics for word and class trigram
models built on 100k sentences of WSJ training data.

been significantly decreased. We can extend this
idea to higher-ordern-gram models as well;e.g., bi-
gram parameters can shrink trigram parameters, and
can in turn be shrunk by unigram parameters. As
shown in Table 1, both training set cross-entropy and
model size can be reduced by this technique.

3 Class-Based Language Models

In this section, we show how we can use Heuris-
tic 1 to design a novel class-based model that outper-
forms existing models in both perplexity and speech
recognition word-error rate. We assume a wordw is
always mapped to the same classc(w). For a sen-
tencew1 · · ·wl, we have

p(w1 · · ·wl) =
∏l+1
j=1 p(cj |c1 · · · cj−1, w1 · · ·wj−1)×

∏l
j=1 p(wj |c1 · · · cj , w1 · · ·wj−1) (6)

wherecj = c(wj) andcl+1 is the end-of-sentence
token. We use the notationpng(y|ω) to denote an ex-
ponentialn-gram model, a model containing a fea-
ture for each suffix of eachωy occurring in the train-
ing set. We usepng(y|ω1, ω2) to denote a model con-
taining all features inpng(y|ω1) andpng(y|ω2).

We can define a class-basedn-gram model by
choosing parameterizations for the distributions
p(cj | · · · ) andp(wj | · · · ) in eq. (6) above. For exam-
ple, the most widely-used class-basedn-gram model
is the one introduced by Brown et al. (1992); we re-
fer to this model as the IBM class model:

p(cj |c1 · · · cj−1, w1 · · ·wj−1)= png(cj |cj−2cj−1)

p(wj |c1 · · · cj , w1 · · ·wj−1)= png(wj |cj) (7)

(In the original work, non-exponentialn-gram mod-
els are used.) Clearly, there is a large space of pos-
sible class-based models.

Now, we discuss how we can use Heuristic 1 to
design a novel class-based model by using class in-
formation to “shrink” a word-basedn-gram model.
The basic idea is as follows: if we have ann-gramω
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and anothern-gramω′ created by replacing a word
in ω with a similar word, then the two correspond-
ing features should have similar̃λi’s. For exam-
ple, it seems intuitive that then-gramson Monday
morningandon Tuesday morningshould have sim-
ilar λ̃i’s. Heuristic 1 tells us how to take advantage
of this observation to improve model performance.

Let’s begin with a word trigram model
png(wj |wj−2wj−1). First, we would like to
convert this model into a class-based model.
Without loss of generality, we have

p(wj |wj−2wj−1) =
∑
cj
p(wj , cj |wj−2wj−1)

=
∑
cj
p(cj |wj−2wj−1)p(wj |wj−2wj−1cj) (8)

Thus, it seems reasonable to use the distributions
png(cj |wj−2wj−1) andpng(wj |wj−2wj−1cj) as the
starting point for our class model. This model can
express the same set of word distributions as our
original model, and hence may have a similar train-
ing cross-entropy. In addition, this transformation
can be viewed as shrinking together wordn-grams
that differ only inwj . That is, we expect that pairs
of n-gramswj−2wj−1wj that differ only inwj (be-
longing to the same class) should have similarλ̃i.
From Heuristic 1, we can make new features

fwj−2wj−1cj (x, y) =
∑

wj∈cj
fwj−2wj−1wj (x, y) (9)

These are exactly the features inpng(cj |wj−2wj−1).
When applying Heuristic 1, all features typically be-
long to the same model, but even when they don’t
one can achieve the same net effect.

Then, we can use Heuristic 1 to also shrink to-
gethern-gram features forn-grams that differ only
in their histories. For example, we can create new
features of the form

fcj−2cj−1cj (x, y) =
∑

wj−2∈cj−2,wj−1∈cj−1

fwj−2wj−1cj (x, y) (10)

This corresponds to replacingpng(cj |wj−2wj−1)
with the distributionpng(cj |cj−2cj−1, wj−2wj−1).
We refer to the resulting model as modelM :

p(cj |c1···cj−1,w1···wj−1)=png(cj |cj−2cj−1,wj−2wj−1)

p(wj |c1···cj ,w1···wj−1)=png(wj |wj−2wj−1cj) (11)

By design, it is meant to have similar training set
cross-entropy as a wordn-gram model while being
significantly smaller.

To give an idea of whether this model behaves as
expected, in Table 2 we provide statistics for this
model (as well as for an exponential wordn-gram
model) built on 100k WSJ training sentences with 50
classes using the same regularization as before. We
see that modelM is both smaller than the baseline
and has a lower training set cross-entropy, similar to
the behavior found when adding backoff features to
wordn-gram models in Section 2. As long as eq. (2)
holds, modelM should have good test performance;
in (Chen, 2009), we show that eq. (2) does indeed
hold for models of this type.

3.1 Class-Based Model Comparison

In this section, we compare modelM against other
class-based models in perplexity and word-error
rate. The training data is 1993 WSJ text with verbal-
ized punctuation from the CSR-III Text corpus, and
the vocabulary is the union of the training vocabu-
lary and 20k-word “closed” test vocabulary from the
first WSJ CSR corpus (Paul and Baker, 1992). We
evaluate training set sizes of 1k, 10k, 100k, and 900k
sentences. We create three different word classings
containing 50, 150, and 500 classes using the algo-
rithm of Brown et al. (1992) on the largest training
set.5 For each training set and number of classes, we
build 3-gram and 4-gram versions of each model.

From the verbalized punctuation data from the
training and test portions of the WSJ CSR corpus,
we randomly select 2439 unique utterances (46888
words) as our evaluation set. From the remaining
verbalized punctuation data, we select 977 utter-
ances (18279 words) as our development set.

We compare the following model types: con-
ventional (i.e., non-exponential) wordn-gram mod-
els; conventional IBM classn-gram models in-
terpolated with conventional wordn-gram models
(Brown et al., 1992); and modelM . All conven-
tional n-gram models are smoothed with modified
Kneser-Ney smoothing (Chen and Goodman, 1998),
except we also evaluate wordn-gram models with
Katz smoothing (Katz, 1987).Note: Because word

5One can imagine choosing word classes to optimize model
shrinkage; however, this is not an avenue we pursued.
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training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, Katz
3g 579.3 317.1 196.7 137.5
4g 592.6 325.6 202.4 136.7

interpolated IBM class model
3g, 50c 358.4 224.5 156.8 117.8
3g, 150c 346.5 210.5 149.0 114.7
3g, 500c 372.6 210.9 145.8 112.3
4g, 50c 362.1 220.4 149.6 109.1
4g, 150c 346.3 207.8 142.5 105.2
4g, 500c 371.5 207.9 140.5 103.6

training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, modified KN
3g 488.4 270.6 168.2 121.5
4g 486.8 267.4 163.6 114.4

modelM
3g, 50c 341.5 210.0 144.5 110.9
3g, 150c 342.6 203.7 140.0 108.0
3g, 500c 387.5 212.7 142.2 108.1
4g, 50c 345.8 209.0 139.1 101.6
4g, 150c 344.1 202.8 135.7 99.1
4g, 500c 390.7 211.1 138.5 100.6

Table 3: WSJ perplexity results. The best performance for each training set for each model type is highlighted in bold.

training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, Katz
3g 35.5% 30.7% 26.2% 22.7%
4g 35.6% 30.9% 26.3% 22.7%

interpolated IBM class model
3g, 50c 32.2% 28.7% 25.2% 22.5%
3g, 150c 31.8% 28.1% 25.0% 22.3%
3g, 500c 32.5% 28.5% 24.5% 22.1%
4g, 50c 32.2% 28.6% 25.0% 22.0%
4g, 150c 31.8% 28.0% 24.6% 21.8%
4g, 500c 32.7% 28.3% 24.5% 21.6%

training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, modified KN
3g 34.5% 30.5% 26.1% 22.6%
4g 34.5% 30.4% 25.7% 22.3%

modelM
3g, 50c 30.8% 27.4% 24.0% 21.7%
3g, 150c 31.0% 27.1% 23.8% 21.5%
3g, 500c 32.3% 27.8% 23.9% 21.4%
4g, 50c 30.8% 27.5% 23.9% 21.2%
4g, 150c 31.0% 27.1% 23.5% 20.8%
4g, 500c 32.4% 27.9% 24.1% 21.1%

Table 4: WSJ lattice rescoring results; all values are word-error rates. The best performance for each training set size
for each model type is highlighted in bold. Each 0.1% in error rate corresponds to about 47 errors.

classes are derived from the largest training set, re-
sults for word models and class models are compa-
rable only for this data set. The interpolated model is
the most popular state-of-the-art class-based model
in the literature, and is the only model here using the
development set to tune interpolation weights.

We display the perplexities of these models on the
evaluation set in Table 3. ModelM performs best of
all (even without interpolating with a wordn-gram
model), outperforming the interpolated model with
every training set and achieving its largest reduction
in perplexity (4%) on the largest training set. While
these perplexity reductions are quite modest, what
matters more is speech recognition performance.

For the speech recognition experiments, we use
a cross-word quinphone system built from 50 hours
of Broadcast News data. The system contains 2176
context-dependent states and a total of 50336 Gaus-
sians. To evaluate our language models, we use lat-

tice rescoring. We generate lattices on both our de-
velopment and evaluation data sets using the Latt-
AIX decoder (Saon et al., 2005) in the Attila speech
recognition system (Soltau et al., 2005). The lan-
guage model for lattice generation is created by
building a modified Kneser-Ney-smoothed word tri-
gram model on our largest training set; this model is
pruned to contain a total of 350kn-grams using the
algorithm of Stolcke (1998). We choose the acoustic
weight for each model to optimize word-error rate
on the development set.

In Table 4, we display the word-error rates for
each model. If we compare the best performance
of model M for each training set with that of the
state-of-the-art interpolated class model, we find that
modelM is superior by 0.8–1.0% absolute. These
gains are much larger than are suggested by the
perplexity gains of modelM over the interpolated
model; as has been observed earlier, perplexity is
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Heval Hpred Htrain
∑ |λ̃i|

D

baselinen-gram model
1k 5.915 5.875 2.808 3.269
10k 5.212 5.231 3.106 2.265
100k 4.649 4.672 3.354 1.405

MDI n-gram model
1k 5.444 5.285 2.678 2.780
10k 5.031 4.973 3.053 2.046
100k 4.611 4.595 3.339 1.339

Table 5: Various statistics for WSJ trigram models, with
and without a Broadcast News prior model. The first col-
umn is the size of the in-domain training set in sentences.

not a reliable predictor of speech recognition perfor-
mance. While we can only compare class models
with word models on the largest training set, for this
training set modelM outperforms the baseline Katz-
smoothed word trigram model by 1.9% absolute.6

4 Domain Adaptation

In this section, we introduce another heuristic for
improving exponential models and show how this
heuristic can be used to motivate a regularized ver-
sion of minimum discrimination information (MDI)
models (Della Pietra et al., 1992). Let’s say we have
a modelpΛ̃ estimated from one training set and a
“similar” model q estimated from an independent
training set. Imagine we useq as aprior model for
pΛ; i.e., we make a new modelpqΛnew as follows:

pq
Λnew(y|x) = q(y|x)

exp(
∑F
i=1 λ

new
i fi(x, y))

ZΛnew(x)
(12)

Then, chooseΛnew such thatpqΛnew(y|x) = pΛ̃(y|x)
for all x, y (assuming this is possible). Ifq is “simi-
lar” to pΛ̃, then we expect the size1D

∑F
i=1 |λnew

i | of
pqΛnew to be less than that ofpΛ̃. Since they describe
the same distribution, their training set cross-entropy
will be the same. By eq. (2), we expectpqΛnew to
have better test set performance thanpΛ̃ after reesti-
mation.7 In (Chen, 2009), we show that eq. (2) does
indeed hold for models with priors;q need not be
accounted for in computing model size as long as it
is estimated on a separate training set.

6Results for several other baseline language models and with
a different acoustic model are given in (Chen, 2008).

7That is, we expect theregularizedparameters̃Λnew to yield
improved performance.

This analysis suggests the following method for
improving model performance:

Heuristic 2 Find a “similar” distribution estimated
from an independent training set, and use this distri-
bution as a prior.

It is straightforward to apply this heuristic to the task
of domain adaptation for language modeling. In the
usual formulation of this task, we have a test set and
a small training set from the same domain, and a
large training set from a different domain. The goal
is to use the data from the outside domain to max-
imally improve language modeling performance on
the target domain. By Heuristic 2, we can build a
language model on the outside domain, and use this
model as the prior model for a language model built
on the in-domain data. This method is identical to
the MDI method for domain adaptation, except that
we also apply regularization.

In our domain adaptation experiments, our out-
of-domain data is a 100k-sentence Broadcast News
training set. For our in-domain WSJ data, we use
training set sizes of 1k, 10k, and 100k sentences. We
build an exponentialn-gram model on the Broad-
cast News data and use this model as the prior model
q(y|x) in eq. (12) when building an exponentialn-
gram model on the in-domain data. In Table 5, we
display various statistics for trigram models built on
varying amounts of in-domain data when using a
Broadcast News prior and not. Across training sets,
the MDI models are both smaller in1D

∑F
i=1 |λ̃i| and

have better training set cross-entropy than the un-
adapted models built on the same data. By eq. (2),
the adapted models should have better test perfor-
mance and we verify this in the next section.

4.1 Domain Adaptation Method Comparison

In this section, we examine how MDI adapta-
tion compares to other state-of-the-art methods for
domain adaptation in both perplexity and speech
recognition word-error rate. For these experiments,
we use the same development and evaluation sets
and lattice rescoring setup from Section 3.1.

The most widely-used techniques for domain
adaptation are linear interpolation and count merg-
ing. In linear interpolation, separaten-gram models
are built on the in-domain and out-of-domain data
and are interpolated together. In count merging, the
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in-domain data (sents.) in-domain data (sents.)
1k 10k 100k 1k 10k 100k

in-domain data only
3g 488.4 270.6 168.2 34.5% 30.5% 26.1%
4g 486.8 267.4 163.6 34.5% 30.4% 25.7%

count merging
3g 503.1 290.9 170.7 30.4% 28.3% 25.2%
4g 497.1 284.9 165.3 30.0% 28.0% 25.3%

linear interpolation
3g 328.3 234.8 162.6 30.3% 28.5% 25.8%
4g 325.3 230.8 157.6 30.3% 28.4% 25.2%

MDI model
3g 296.3 218.7 157.0 30.0% 28.0% 24.9%
4g 293.7 215.8 152.5 29.6% 27.9% 24.9%

Table 6: WSJ perplexity and lattice rescoring results for
domain adaptation models. Values on the left are perplex-
ities and values on the right are word-error rates.

in-domain and out-of-domain data are concatenated
into a single training set, and a singlen-gram model
is built on the combined data set. The in-domain
data set may be replicated several times to more
heavily weight this data. We also consider the base-
line of not using the out-of-domain data.

In Table 6, we display perplexity and word-error
rates for each method, for both trigram and 4-gram
models and with varying amounts of in-domain
training data. The last method corresponds to the
exponential MDI model; all other methods employ
conventional (non-exponential)n-gram models with
modified Kneser-Ney smoothing. In count merging,
only one copy of the in-domain data is included in
the training set; including more copies does not im-
prove evaluation set word-error rate.

Looking first at perplexity, MDI models outper-
form the next best method, linear interpolation, by
about 10% in perplexity on the smallest data set and
3% in perplexity on the largest. In terms of word-
error rate, MDI models again perform best of all,
outperforming interpolation by 0.3–0.7% absolute
and count merging by 0.1–0.4% absolute.

5 Related Work

5.1 Class-Based Language Models

In past work, the most common baseline models are
Katz-smoothed word trigram models. Compared to
this baseline, modelM achieves a perplexity reduc-

tion of 28% and word-error rate reduction of 1.9%
absolute with a 900k-sentence training set. The most
closely-related existing model to modelM is the
modelfullibmpredictproposed by Goodman (2001):

p(cj |cj−2cj−1,wj−2wj−1)=

λ p(cj |wj−2wj−1)+(1−λ) p(cj |cj−2cj−1)

p(wj |cj−2cj−1cj ,wj−2wj−1)=

µ p(wj |wj−2wj−1cj)+(1−µ) p(wj |cj−2cj−1cj) (13)

This is similar to modelM except that linear in-
terpolation is used to combine word and class his-
tory information, and there is no analog to the fi-
nal term in eq. (13) in modelM . Using the North
American Business news corpus, the largest perplex-
ity reduction achieved over a Katz-smoothed trigram
model baseline byfullibmpredictis about 25%, with
a training set of 1M words. InN -best list rescor-
ing with a 284M-word training set, the best result
achieved for an individual class-based model is an
0.5% absolute reduction in word-error rate.

To situate the quality of our results, we also re-
view the best perplexity and word-error rate results
reported for class-based language models relative
to conventional wordn-gram model baselines. In
terms of absolute word-error rate, the best gains we
found in the literature are frommulti-class com-
positen-gram models, a variant of the IBM class
model (Yamamoto and Sagisaka, 1999; Yamamoto
et al., 2003). These are calledcompositemodels
because frequent word sequences can be concate-
nated into single units within the model; the term
multi-classrefers to choosing different word clus-
terings depending on word position. In experiments
on the ATR spoken language database, Yamamoto et
al. (2003) report a reduction in perplexity of 9% and
an increase in word accuracy of 2.2% absolute over
a Katz-smoothed trigram model.

In terms of perplexity, the best gains we found
are from SuperARV language models (Wang and
Harper, 2002; Wang et al., 2002; Wang et al., 2004).
In these models, classes are based onabstract role
valuesas given by a Constraint Dependency Gram-
mar. The class and word prediction distributions are
n-gram models that back off to a variety of mixed
word/class histories in a specific order. With a WSJ
training set of 37M words and a Katz-smoothed tri-
gram model baseline, a perplexity reduction of up to
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53% is achieved as well as a decrease in word-error
rate of up to 1.0% absolute.

All other perplexity and absolute word-error rate
gains we found in the literature are considerably
smaller than those listed here. While different data
sets are used in previous work so results are not di-
rectly comparable, our results appear very competi-
tive with the body of existing results in the literature.

5.2 Domain Adaptation

Here, we discuss methods for supervised domain
adaptation that involve only the simple static combi-
nation of in-domain and out-of-domain data or mod-
els. For a survey of techniques using word classes,
topic, syntax, etc., refer to (Bellegarda, 2004).

Linear interpolation is the most widely-used
method for domain adaptation. Jelinek et al. (1991)
describe its use for combining a cache language
model and static language model. Another popular
method is count merging; this has been motivated
as an instance of MAP adaptation (Federico, 1996;
Masataki et al., 1997). In terms of word-error rate,
Iyer et al. (1997) found linear interpolation to give
better speech recognition performance while Bac-
chiani et al. (2006) found count merging to be su-
perior. Klakow (1998) proposes log-linear interpo-
lation for domain adaptation. As compared to reg-
ular linear interpolation for bigram models, an im-
provement of 4% in perplexity and 0.2% absolute in
word-error rate is found.

Della Pietra et al. (1992) introduce the idea of
minimum discrimination information distributions.
Given a prior modelq(y|x), the goal is to find
the nearest model in Kullback-Liebler divergence
that satisfies a set of linear constraints derived from
adaptation data. The model satisfying these condi-
tions is an exponential model containing one fea-
ture per constraint withq(y|x) as its prior as in
eq. (12). While MDI models have been used many
times for language model adaptation,e.g., (Kneser et
al., 1997; Federico, 1999), they have not performed
as well as linear interpolation in perplexity or word-
error rate (Rao et al., 1995; Rao et al., 1997).

One important issue with MDI models is how to
select the feature set specifying the model. With a
small amount of adaptation data, one should intu-
itively use a small feature set,e.g., containing just
unigram features. However, the use of regulariza-

tion can obviate the need for intelligent feature se-
lection. In this work, we include alln-gram fea-
tures present in the adaptation data forn ∈ {3, 4}.
Chueh and Chien (2008) propose the use of inequal-
ity constraints for regularization (Kazama and Tsu-
jii, 2003); here, we usè1+`22 regularization instead.
We hypothesize that the use of state-of-the-art regu-
larization is the primary reason why we achieve bet-
ter performance relative to interpolation and count
merging as compared to earlier work.

6 Discussion

For exponential language models, eq. (2) tells us
that with respect to test set performance, the num-
ber of model parameters seems to matter not at all;
all that matters are the magnitudes of the parame-
ter values. Consequently, one can improve exponen-
tial language models by adding features (or a prior
model) that shrink parameter values while maintain-
ing training performance, and from this observa-
tion we develop Heuristics 1 and 2. We use these
ideas to motivate a novel and simple class-based
language model that achieves perplexity and word-
error rate improvements competitive with the best
reported results for class-based models in the litera-
ture. In addition, we show that with regularization,
MDI models can outperform both linear interpola-
tion and count merging in language model combina-
tion. Still, Heuristics 1 and 2 are quite vague, and
it remains to be seen how to determine when these
heuristics will be effective.

In summary, we have demonstrated how the trade-
off between training set performance and model size
impacts aspects of language modeling as diverse as
backoff n-gram features, class-based models, and
domain adaptation. In particular, we can frame
performance improvements in all of these areas as
methods that shrink models without degrading train-
ing set performance. All in all, eq. (2) is an impor-
tant tool for both understanding and improving lan-
guage model performance.
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Abstract

In this paper we model discussions in online
political blogs. To do this, we extend Latent
Dirichlet Allocation (Blei et al., 2003), in var-
ious ways to capture different characteristics
of the data. Our models jointly describe the
generation of the primary documents (posts)
as well as the authorship and, optionally, the
contents of the blog community’s verbal reac-
tions to each post (comments). We evaluate
our model on a novel comment prediction task
where the models are used to predict which
blog users will leave comments on a given
post. We also provide a qualitative discussion
about what the models discover.

1 Introduction

Web logging (blogging) and its social impact have
recently attracted considerable public and scientific
interest. One use of blogs is as a community dis-
cussion forum, especially for political discussion
and debate. Blogging has arguably opened a new
channel for huge numbers of people to express their
views with unprecedented speed and to unprece-
dented audiences. Their collective behavior in the
blogosphere has already been noted in the Ameri-
can political arena (Adamic and Glance, 2005). In
this paper we attempt to deliver a framework useful
for analyzing text in blogs quantitatively as well as
qualitatively. Better blog text analysis could lead to
better automated recommendation, organization, ex-
traction, and retrieval systems, and might facilitate
data-driven research in the social sciences.

Apart from the potential social utility of text pro-
cessing for this domain, we believe blog data is wor-
thy of scientific study in its own right. The sponta-
neous, reactive, and informal nature of the language
in this domain seems to defy conventional analytical
approaches in NLP such as supervised text classifi-
cation (Mullen and Malouf, 2006), yet the data are

rich in argumentative, topical, and temporal struc-
ture that can perhaps be modeled computationally.
We are especially interested in the semi-causal struc-
ture of blog discussions, in which a post “spawns”
comments (or fails to do so), which meander among
topics and asides and show the personality of the
participants and the community.

Our approach is to develop probabilistic mod-
els for the generation of blog posts and comments
jointly within a blog site. The model is an extension
of Latent Dirichlet Allocation (Blei et al., 2003).
Unsupervised topic models can be applied to collec-
tions of unannotated documents, requiring very lit-
tle corpus engineering. They can be easily adapted
to new problems by altering the graphical model,
then applying standard probabilistic inference algo-
rithms. Different models can be compared to ex-
plore the ramifications of different hypotheses about
the data. For example, we will explore whether the
contents of posts a user has commented on in the
past and the words she has used can help predict
which posts she will respond to in the future.

The paper is organized as follows. In §2 we re-
view prior work on topic modeling for document
collections and studies of social media like political
blogs. We then provide a qualitative characterization
of political blogs, highlighting some of the features
we believe a computational model should capture
and discuss our new corpus of political blogs (§3).
We present several different candidate topic models
that aim to capture these ideas in §4. §5 shows our
empirical evaluation on a new comment prediction
task and a qualitative analysis of the models learned.

2 Related Work

Network analysis, including citation analysis, has
been applied to document collections on the Web
(Cohn and Hofmann, 2001). Adamic and Glance
(2005) applied network analysis to the political bl-
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ogosphere. The study modeled the large, complex
structure of the political blogosphere as a network
of hyperlinks among the blog sites, demonstrated the
viability of link structure for information discovery,
though their analysis of text content was less exten-
sive. In contrast, the text seems to be of interest
to social scientists studying blogs as an artifact of
the political process. Although attempts to quanti-
tatively analyze the contents of political texts have
been made, results from classical, supervised text
classification experiments are mixed (Mullen and
Malouf, 2006; Malouf and Mullen, 2007). Also, a
consensus on useful, reliable annotation or catego-
rization schemes for political texts, at any level of
granularity, has yet to emerge.

Meanwhile, latent topic modeling has become a
widely used unsupervised text analysis tool. The ba-
sic aim of those models is to discover recurring pat-
terns of “topics” within a text collection. LDA was
introduced by Blei et al. (2003) and has been espe-
cially popular because it can be understood as a gen-
erative model and because it discovers understand-
able topics in many scenarios (Steyvers and Grif-
fiths, 2007). Its declarative specification makes it
easy to extend for new kinds of text collections. The
technique has been applied to Web document collec-
tions, notably for community discovery in social net-
works (Zhang et al., 2007), opinion mining in user
reviews (Titov and McDonald, 2008), and sentiment
discovery in free-text annotations (Branavan et al.,
2008). Dredze et al. (2008) applied LDA to a collec-
tion of email for summary keyword extraction. The
authors evaluated the model with proxy tasks such as
recipient prediction. More closely related to the data
considered in this work, Lin et al. (2008) applied a
variation of LDA to ideological discourse.

A notable trend in the recent research is to aug-
ment the models to describe non-textual evidence
alongside the document collection. Several such
studies are especially relevant to our work. Blei and
Jordan (2003) were one of the earliest results in this
trend. The concept was developed into more general
framework by Blei and McAuliffe (2008). Steyvers
et al. (2004) and Rosen-Zvi et al. (2004) first ex-
tended LDA to explicitly model the influence of au-
thorship, applying the model to a collection of aca-
demic papers from CiteSeer. The model combined
the ideas from the mixture model proposed by Mc-

Callum (1999) and LDA. In this model, an abstract
notion “author” is associated with a distribution over
topics. Another approach to the same document col-
lection based on LDA was used for citation network
analysis. Erosheva et al. (2004), following Cohn and
Hofmann (2001), defined a generative process not
only for each word in the text, but also its citation
to other documents in the collection, thereby cap-
turing the notion of relations between the document
into one generative process. Nallapati and Cohen
(2008) introduced the Link-PLSA-LDA model, in
which the contents of the citing document and the
“influences” on the document (its citations to exist-
ing literature), as well as the contents of the cited
documents, are modeled together. They further ap-
plied the Link-PLSA-LDA model to a blog corpus
to analyze its cross citation structure via hyperlinks.

In this work, we aim to model the data within blog
conversations, focusing on comments left by a blog
community in response to a blogger’s post.

3 Political Blog Data

We discuss next the dataset used in our experiments.

3.1 Corpus

We have collected blog posts and comments from
40 blog sites focusing on American politics during
the period November 2007 to October 2008, con-
temporaneous with the presidential elections. The
discussions on these blogs focus on American poli-
tics, and many themes appear: the Democratic and
Republican candidates, speculation about the results
of various state contests, and various aspects of
international and (more commonly) domestic poli-
tics. The sites were selected to have a variety of
political leanings. From this pool we chose five
blogs which accumulated a large number of posts
during this period: Carpetbagger (CB),1 Daily Kos
(DK),2 Matthew Yglesias (MY),3 Red State (RS),4

and Right Wing News (RWN).5 CB and MY ceased
as independent bloggers in August 2008.6 Because

1http://www.thecarpetbaggerreport.com
2http://www.dailykos.com
3http://matthewyglesias.theatlantic.com
4http://www.redstate.com
5http://www.rightwingnews.com
6The authors of those blogs now write for larger on-

line media, CB for Washingon Monthly at http://www.
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MY RWN CB RS DK
Time span (from 11/11/07) –8/2/08 –10/10/08 –8/25/08 –6/26/08 –4/9/08
# training posts 1607 1052 1080 2045 2146
# words (total) 110,788 194,948 183,635 321,699 221,820

(on average per post) (68) (185) (170) (157) (103)
# comments 56,507 34,734 34,244 59,687 425,494

(on average per post) (35) (33) (31) (29) (198)
(unique commenters, on average) (24) (13) (24) (14) (93)

# words in comments (total) 2,287,843 1,073,726 1,411,363 1,675,098 8,359,456
(on average per post) (1423) (1020) (1306) (819) (3895)
(on average per comment) (41) (31) (41) (27) (20)

Post vocabulary size 6,659 9,707 7,579 12,282 10,179
Comment vocabulary size 33,350 22,024 24,702 25,473 58,591
Size of user pool 7,341 963 5,059 2,789 16,849
# test posts 183 113 121 231 240

Table 1: Details of the blog data used in this paper.

our focus in this paper is on blog posts and their
comments, we discard posts on which no one com-
mented within six days. We also remove posts with
too few words: specifically, we retain a post only
if it has at least five words in the main entry, and
at least five words in the comment section. All
posts are represented as text only (images, hyper-
links, and other non-text contents are ignored). To
standardize the texts, we remove from the text 670
commonly used stop words, non-alphabet symbols
including punctuation marks, and strings consisting
of only symbols and digits. We also discard infre-
quent words from our dataset: for each word in a
post’s main entry, we kept it only if it appears at
least one more time in some main entry. We ap-
ply the same word pruning to the comment section
as well. The corpus size and the vocabulary size of
the five datasets are listed in Table 1. In addition,
each user’s handle is replaced with a unique inte-
ger. The dataset is available for download at http:
//www.ark.cs.cmu.edu/blog-data.

3.2 Qualitative Properties of Blogs

We believe that readers’ reactions to blog posts are
an integral part of blogging activity. Often com-
ments are much more substantial and informative
than the post. While circumspective articles limit
themselves to allusions or oblique references, read-
ers’ comments may point to heart of the matter more

washingtonmonthly.com and MY for Think Progress
athttp://yglesias.thinkprogress.org.

boldly. Opinions are expressed more blatantly in
comments. Comments may help a human (or au-
tomated) reader to understand the post more clearly
when the main text is too terse, stylized, or technical.

Although the main entry and its comments are
certainly related and at least partially address similar
topics, they are markedly different in several ways.
First of all, their vocabulary is noticeably different.
Comments are more casual, conversational, and full
of jargon. They are less carefully edited and there-
fore contain more misspellings and typographical er-
rors. There is more diversity among comments than
within the single-author post, both in style of writing
and in what commenters like to talk about. Depend-
ing on the subjects covered in a blog post, different
types of people are inspired to respond. We believe
that analyzing a piece of text based on the reaction
it causes among those who read it is a fascinating
problem for NLP.

Blog sites are also quite distinctive from each
other. Their language, discussion topics, and col-
lective political orientations vary greatly. Their vol-
umes also vary; multi-author sites (such as DK, RS)
may consistently produce over twenty posts per day,
while single-author sites (such as MY, CB) may have
a day with only one post. Single author sites also
tend to have a much smaller vocabulary and range
of interests. The sites are also culturally different
in commenting styles; some sites are full of short
interjections, while others have longer, more analyt-
ical comments. On some sites, users appear to be
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Figure 1: Left:
LinkLDA (Erosheva
et al., 2004), with
variables reassigned.
Right:
CommentLDA. In
training, w, u, and
(in CommentLDA)
w′ are observed. D is
the number of blog
posts, and N and M
are the word counts
in the post and the all
of its comments,
respectively. Here we
“count by verbosity.”

close-knit, while others have high turnover.
In the next section, we describe how we apply

topic models to political blogs, and how these prob-
abilistic models can put to use to make predictions.

4 Generative Models

The first model we consider is LinkLDA, which is
analogous to the model of Erosheva et al. (2004),
though the variables are given different meanings
here.7 The graphical model is depicted in Fig. 1
(left). As in LDA and its many variants, this model
postulates a set of latent “topic” variables, where
each topic k corresponds to a multinomial distribu-
tion βk over the vocabulary. In addition to gener-
ating the words in the post from its topic mixture,
this model also generates a bag of users who respond
to the post, according to a distribution γ over users
given topics. In this model, the topic distribution θ
is all that determines the text content of the post and
which users will respond to the post.

LinkLDA models which users are likely to re-
spond to a post, but it does not model what they
will write. Our new model, CommentLDA, gen-
erates the contents of the comments (see Fig. 1,
right). In order to capture the differences in lan-
guage style between posts and comments, however,
we use a different conditional distribution over com-
ment words given topics, β′. The post text, comment
text, and commenter distributions are all interdepen-
dent through the (latent) topic distribution θ, and a
topic k is defined by:

7Instead of blog commenters, they modeled citations.

• A multinomial distribution βk over post words;
• A multinomial distribution β′

k over comment
words; and
• A multinomial distribution γk over blog com-

menters who might react to posts on the topic.

Formally, LinkLDA and CommentLDA generate
blog data as follows: For each blog post (1 to D):

1. Choose a distribution θ over topics according
to Dirichlet distribution α.

2. For i from 1 to Ni (the length of the post):

(a) Choose a topic zi according to θ.
(b) Choose a word wi according to the topic’s

post word distribution βzi .

3. For j from 1 toMi (the length of the comments
on the post, in words):

(a) Choose a topic z′
j .

(b) Choose an author uj from the topic’s com-
menter distribution γz′j .

(c) (CommentLDA only) Choose a word w′
j

according to the topic’s comment word
distribution β′

z′j
.

4.1 Variations on Counting Users

As described, CommentLDA associates each com-
ment word token with an independent author. In
both LinkLDA and CommentLDA, this “counting
by verbosity” will force γ to give higher probabil-
ity to users who write longer comments with more
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words. We consider two alternative ways to count
comments, applicable to both LinkLDA and Com-
mentLDA. These both involve a change to step 3 in
the generative process.
Counting by response (replaces step 3): For j from
1 to Ui (the number of users who respond to the
post): (a) and (b) as before. (c) (CommentLDA only)
For ` from 1 to `i,j (the number of words in uj’s
comments), choose w′

` according to the topic’s com-
ment word distribution β′

z′j
. This model collapses all

comments by a user into a single bag of words on a
single topic.8

Counting by comments (replaces step 3): For j
from 1 to Ci (the number of comments on the post):
(a) and (b) as before. (c) (CommentLDA only) For `
from 1 to `i,j (the number of words in comment j),
choose w′

` according to the topic’s comment word
distribution β′

z′j
. Intuitively, each comment has a

topic, a user, and a bag of words.
The three variations—counting users by ver-

bosity, response, or comments—correspond to dif-
ferent ways of thinking about topics in political blog
discourse. Counting by verbosity will let garrulous
users define the topics. Counting by response is
more democratic, letting every user who responds
to a blog post get an equal vote in determining what
the post is about, no matter how much that user says.
Counting by comments gives more say to users who
engage in the conversation repeatedly.

4.2 Implementation

We train our model using empirical Bayesian esti-
mation. Specifically, we fix α = 0.1, and we learn
the values of word distributions β and β′ and user
distribution γ by maximizing the likelihood of the
training data:

p(w,w′,u | α, β, β′, γ) (1)

(Obviously, β′ is not present in the LinkLDA mod-
els.) This requires an inference step that marginal-
izes out the latent variables, θ, z, and z′, for which
we use Gibbs sampling as implemented by the Hier-
archical Bayes Compiler (Daumé, 2007). The Gibbs

8The counting-by-response models are deficient, since they
assume each user will only be chosen once per blog post, though
they permit the same user to be chosen repeatedly.

sampling inference algorithm for LDA was first in-
troduced by Griffiths and Steyvers (2004) and has
since been used widely.

5 Empirical Evaluation

We adopt a typical NLP “train-and-test” strategy that
learns the model parameters on a training dataset
consisting of a collection of blog posts and their
commenters and comments, then considers an un-
seen test dataset from a later time period. Many
kinds of predictions might be made about the test
set and then evaluated against the true comment re-
sponse. For example, the likelihood of a user to
comment on the post, given knowledge of θ can be
estimated as:9

p(u | wN1 , γ, θ) =
K∑

z=1

p(u | z, γ)p(z | wN1 , θ)

=
K∑

z=1

γz,u · θz (2)

The latter is in a sense a “guessing game,” a pre-
diction on who is going to comment on a new blog
post. A similar task was used by Nallapati and Co-
hen (2008) for assessing the performance of Link-
PLSA-LDA: they predicted the presence or absence
of citation links between documents. We report the
performance on this prediction task using our six
blog topic models (LinkLDA and CommentLDA,
with three counting variations each).

Our aim is to explore and compare the effective-
ness of the different models in discovering topics
that are useful for a practical task. We also give a
qualitative analysis of topics learned.

5.1 Comment Prediction
For each political blog, we trained the three varia-
tions each of LinkLDA and CommentLDA. Model
parameters β, γ, and (in CommentLDA) β′ were
learned by maximizing likelihood, with Gibbs sam-
pling for inference, as described in §4.2. The num-
ber of topics K was fixed at 15.

A simple baseline method makes a post-
independent prediction that ranks users by their
comment frequency. Since blogs often have a “core
constituency” of users who post frequently, this is a

9Another approach would attempt to integrate out θ.
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n=5 n=10 n=20 n=30 oracle
MY
Freq. 23.93 18.68 14.20 11.65 13.18
NB 25.13 19.28 14.20 11.63 13.54
Link-v 20.10 14.04 11.17 9.23 11.32
Link-r 26.77 18.63 14.64 12.47 14.03
Link-c 25.13 18.85 14.61 11.91 13.84
Com-v 22.84 17.15 12.75 10.69 12.77
Com-r 27.54 20.54 14.61 12.45 14.35
Com-c 22.40 18.50 14.83 12.56 14.20
Max 94.75 89.89 73.63 58.76 92.60
RWN
Freq. 32.56 30.17 22.61 19.7 27.19
NB 25.63 34.86 27.61 22.03 18.28
Link-v 28.14 21.06 17.34 14.51 19.81
Link-r 32.92 29.29 22.61 18.96 26.32
Link-c 32.56 27.43 21.15 17.43 25.09
Com-v 29.02 24.07 19.07 16.04 22.71
Com-r 36.10 29.64 23.8 19.26 25.97
Com-c 32.03 27.43 19.82 16.25 23.88
Max 90.97 76.46 52.56 37.05 96.16
CB
Freq. 33.38 28.84 24.17 20.99 21.63
NB 36.36 31.15 25.08 21.40 23.22
Link-v 32.06 26.11 19.79 17.43 18.31
Link-r 37.02 31.65 24.62 20.85 22.34
Link-c 36.03 32.06 25.28 21.10 23.44
Com-v 32.39 26.36 20.95 18.26 19.85
Com-r 35.53 29.33 24.33 20.22 22.02
Com-c 33.71 29.25 23.80 19.86 21.68
Max 99.66 98.34 88.88 72.53 95.58
RS
Freq. 25.45 16.75 11.42 9.62 17.15
NB 22.07 16.01 11.60 9.76 16.50
Link-v 14.63 11.9 9.13 7.76 11.38
Link-r 25.19 16.92 12.14 9.82 17.98
Link-c 24.50 16.45 11.49 9.32 16.76
Com-v 14.97 10.51 8.46 7.37 11.3 0
Com-r 15.93 11.42 8.37 6.89 10.97
Com-c 17.57 12.46 8.85 7.34 12.14
Max 80.77 62.98 40.95 29.03 91.86
DK
Freq. 24.66 19.08 15.33 13.34 9.64
NB 35.00 27.33 22.25 19.45 13.97
Link-v 20.58 19.79 15.83 13.88 10.35
Link-r 33.83 27.29 21.39 19.09 13.44
Link-c 28.66 22.16 18.33 16.79 12.60
Com-v 22.16 18.00 16.54 14.45 10.92
Com-r 33.08 25.66 20.66 18.29 12.74
Com-c 26.08 20.91 17.47 15.59 11.82
Max 100.00 100.00 100.00 99.09 98.62

Table 2: Comment prediction results on 5 blogs. See text.

strong baseline. We also compared to a Naı̈ve Bayes
classifier (with word counts in the post’s main en-
try as features). To perform the prediction task with
our models, we took the following steps. First, we
removed the comment section (both the words and
the authorship information) from the test data set.
Then, we ran a Gibbs sampler with the partial data,
fixing the model parameters to their learned values
and the blog post words to their observed values.
This gives a posterior topic mixture for each post (θ
in the above equations).10 We then computed each
user’s comment prediction score for each post as in
Eq. 2. Users are ordered by their posterior probabil-
ities. Note that these posteriors have different mean-
ings for different variations:

• When counting by verbosity, the value is the prob-
ability that the next (or any) comment word will
be generated by the user, given the blog post.
• When counting by response, the value is the prob-

ability that the user will respond at all, given the
blog post. (Intuitively, this approach best matches
the task at hand.)
• When counting by comments, the value is the

probability that the next (or any) comment will be
generated by the user, given the blog post.

We compare our commenter ranking-by-
likelihood with the actual commenters in the test
set. We report in Tab. 2 the precision (macro-
averaged across posts) of our predictions at various
cut-offs (n). The oracle column is the precision
where it is equal to the recall, equivalent to the
situation when the true number of commenters
is known. (The performance of random guessing
is well below 1% for all sites at cut-off points
shown.) “Freq.” and “NB” refer to our baseline
methods. “Link” refers to LinkLDA and “Com” to
CommentLDA. The suffixes denote the counting
methods: verbosity (“-v”), response (“-r”), and
comments (“-c”). Recall that we considered only
the comments by the users seen at least once in the
training set, so perfect precision, as well as recall, is
impossible when new users comment on a post; the
Max row shows the maximum performance possible
given the set of commenters recognizable from the
training data.

10For a few cases we checked the stability of the sampler and
found results varied by less than 1% precision across ten runs.
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Our results suggest that, if asked to guess 5 peo-
ple who would comment on a new post given some
site history, we will get 25–37% of them right, de-
pending on the site, given the content of a new post.

We achieved some improvement over both the
baseline and Naı̈ve Bayes for some cut-offs on three
of the five sites, though the gains were very small
for and RS and CB. LinkLDA usually works slightly
better than CommentLDA, except for MY, where
CommentLDA is stronger, and RS, where Com-
mentLDA is extremely poor. Differences in com-
menting style are likely to blame: MY has relatively
long comments in comparison to RS, as well as DK.
MY is the only site where CommentLDA variations
consistently outperformed LinkLDA variations, as
well as Naı̈ve Bayes classifiers. This suggests that
sites with more terse comments may be too sparse
to support a rich model like CommentLDA.

In general, counting by response works best,
though counting by comments is a close rival in
some cases. We observe that counting by response
tends to help LinkLDA, which is ignorant of the
word contents of the comment, more than it helps
CommentLDA. Varying the counting method can
bring as much as 10% performance gain.

Each of the models we have tested makes differ-
ent assumptions about the behavior of commenters.
Our results suggest that commenters on different
sites behave differently, so that the same modeling
assumptions cannot be made universally. In future
work, we hope to permit blog-specific properties
to be automatically discovered during learning, so
that, for example, the comment words can be ex-
ploited when they are helpful but assumed indepen-
dent when they are not. Of course, improved per-
formance might also be obtained with more topics,
richer priors over topic distributions, or models that
take into account other cues, such as the time of the
post, pages it links to, etc. It is also possible that bet-
ter performance will come from more sophisticated
supervised models that do not use topics.

5.2 Qualitative Evaluation
Aside from prediction tasks such as above, the
model parameters by themselves can be informative.
β defines which words are likely to occur in the post
body for a given topic. β′ tells which words are
likely to appear in the collective response to a partic-

ular topic. Similarity or divergence of the two dis-
tributions can tell us about differences in language
used by bloggers and their readers. γ expresses
users’ topic preferences. A pair or group of par-
ticipants may be seen as “like-minded” if they have
similar topic preferences (perhaps useful in collabo-
rative filtering).

Following previous work on LDA and its exten-
sions, we show words most strongly associated with
a few topics, arguing that some coherent clusters
have been discovered. Table 3 shows topics discov-
ered in MY using CommentLDA (counting by com-
ments). This is the blog site where our models most
consistently outperformed the Naı̈ve Bayes classi-
fiers and LinkLDA, therefore we believe the model
was a good fit for this dataset.

Since the site is concentrated on American pol-
itics, many of the topics look alike. Table 3 shows
the most probable words in the posts, comments, and
both together for five hand-picked topics that were
relatively transparent. The probabilistic scores of
those words are computed with the scoring method
suggested by Blei and Lafferty (in press).

The model clustered words into topics pertain-
ing to religion and domestic policy (first and last
topics in Table 3) quite reasonably. Some of the
religion-related words make sense in light of cur-
rent affairs.11 Some words in the comment sec-
tion are slightly off-topic from the issue of religion,
such as dawkins12 or wright,13 but are relevant in
the context of real-world events. Notice those words
rank highly only in the comment section, showing
differences between discussion in the post and the
comments. This is also noticeable, for example, in
the “primary” topic (second in Table 3), where the
Republican primary receives more discussion in the
main post, and in the “Iraq war” and “energy” top-
ics, where bloggers discuss strategy and commenters

11Mitt Romney was a candidate for the Republican nomi-
nation in 2008 presidential election. He is a member of The
Church of Jesus Christ of Latter-Day Saints. Another candi-
date, Mike Huckabee, is an ordained Southern Baptist minister.
Moktada al-Sadr is an Iraqi theologian and political activist, and
John Hagee is an influential televangelist.

12Richard Dawkins is a well known evolutionary biologist
who is a vocal critic of intelligent design.

13We believe this is a reference to Rev. Jeremiah Wright of
Trinity United Church of Christ, whose inflammatory rhetoric
was negatively associated with then-candidate Barack Obama.
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religion; in both: people, just, american, church, believe, god, black, jesus, mormon, faith, jews, right, say,
mormons, religious, point

in posts: romney, huckabee, muslim, political, hagee, cabinet, mitt, consider, true, anti, problem,
course, views, life, real, speech, moral, answer, jobs, difference, muslims, hardly, going,
christianity

in comments: religion, think, know, really, christian, obama, white, wright, way, said, good, world, science,
time, dawkins, human, man, things, fact, years, mean, atheists, blacks, christians

primary; in both: obama, clinton, mccain, race, win, iowa, delegates, going, people, state, nomination, primary,
hillary, election, polls, party, states, voters, campaign, michigan, just

in posts: huckabee, wins, romney, got, percent, lead, barack, point, majority, ohio, big, victory, strong,
pretty, winning, support, primaries, south, rules

in comments: vote, think, superdelegates, democratic, candidate, pledged, delegate, independents, votes,
white, democrats, really, way, caucuses, edwards, florida, supporters, wisconsin, count

Iraq war; in
both:

american, iran, just, iraq, people, support, point, country, nuclear, world, power, military,
really, government, war, army, right, iraqi, think

in posts: kind, united, forces, international, presence, political, states, foreign, countries, role, need,
making, course, problem, shiite, john, understand, level, idea, security, main

in comments: israel, sadr, bush, state, way, oil, years, time, going, good, weapons, saddam, know, maliki,
want, say, policy, fact, said, shia, troops

energy; in both: people, just, tax, carbon, think, high, transit, need, live, going, want, problem, way, market,
money, income, cost, density

in posts: idea, public, pretty, course, economic, plan, making, climate, spending, economy, reduce,
change, increase, policy, things, stimulus, cuts, low, fi nancial, housing, bad, real

in comments: taxes, fuel, years, time, rail, oil, cars, car, energy, good, really, lot, point, better, prices, pay,
city, know, government, price, work, technology

domestic policy;
in both:

people, public, health, care, insurance, college, schools, education, higher, children, think,
poor, really, just, kids, want, school, going, better

in posts: different, things, point, fact, social, work, large, article, getting, inequality, matt, simply,
percent, tend, hard, increase, huge, costs, course, policy, happen

in comments: students, universal, high, good, way, income, money, government, class, problem, pay, amer-
icans, private, plan, american, country, immigrants, time, know, taxes, cost

Table 3: The most probable words for some CommentLDA topics (MY).

focus on the tangible (oil, taxes, prices, weapons).
While our topic-modeling approach achieves

mixed results on the prediction task, we believe it
holds promise as a way to understand and summa-
rize the data. Without CommentLDA, we would not
be able to easily see the differences noted above in
blogger and commenter language. In future work,
we plan to explore models with weaker indepen-
dence assumptions among users, among blog posts
over time, and even across blogs. This line of re-
search will permit a more nuanced understanding
of language in the blogosphere and in political dis-
course more generally.

6 Conclusion

In this paper we applied several probabilistic topic
models to discourse within political blogs. We in-

troduced a novel comment prediction task to assess
these models in an objective evaluation with possi-
ble practical applications. The results show that pre-
dicting political discourse behavior is challenging,
in part because of considerable variation in user be-
havior across different blog sites. Our results show
that using topic modeling, we can begin to make rea-
sonable predictions as well as qualitative discoveries
about language in blogs.
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Abstract 

With the in-depth study of sentiment analysis 
research, finer-grained opinion mining, which 
aims to detect opinions on different review fea-
tures as opposed to the whole review level, has 
been receiving more and more attention in the 
sentiment analysis research community re-
cently. Most of existing approaches rely mainly 
on the template extraction to identify the ex-
plicit relatedness between product feature and 
opinion terms, which is insufficient to detect 
the implicit review features and mine the hid-
den sentiment association in reviews, which 
satisfies (1) the review features are not appear 
explicit in the review sentences; (2) it can be 
deduced by the opinion words in its context. 
From an information theoretic point of view, 
this paper proposed an iterative reinforcement 
framework based on the improved information 
bottleneck algorithm to address such problem. 
More specifically, the approach clusters prod-
uct features and opinion words simultaneously 
and iteratively by fusing both their semantic in-
formation and co-occurrence information. The 
experimental results demonstrate that our ap-
proach outperforms the template extraction 
based approaches. 

1 Introduction 

In the Web2.0 era, the Internet turns from a static 
information media into a platform for dynamic 
information exchanging, on which people can ex-
press their views and show their selfhood. More 
and more people are willing to record their feel-
ings (blog), give voice to public affairs (news re-
view), express their likes and dislikes on products 
(product review), and so on. In the face of the vol-
ume of sentimental information available on the 
Internet continues to increase, there is growing 
interest in helping people better find, filter, and 
manage these resources. 

Automatic opinion mining (Turney et al., 2003; 
Ku et al., 2006; Devitt et al., 2007) can play an 
important role in a wide variety of more flexible 
and dynamic information management tasks. For 
example, with the help of sentiment analysis sys-
tem, in the field of public administration, the ad-
ministrators can receive the feedbacks on one pol-
icy in a timelier manner; in the field of business, 
manufacturers can perform more targeted updates 
on products to improve the consumer experience. 

The research of opinion mining began in 1997, 
the early research results mainly focused on the 
polarity of opinion words (Hatzivassiloglou et al., 
1997) and treated the text-level opinion mining as 
a classification of either positive or negative on the 
number of positive or negative opinion words in 
one text (Turney et al., 2003; Pang et al., 2002; 
Zagibalov et al., 2008;). With the in-depth study of 
opinion mining, researchers committed their ef-
forts for more accurate results: the research of sen-
timent summarization (Philip et al., 2004; Hu et al., 
KDD 2004), domain transfer problem of the sen-
timent analysis (Kanayama et al., 2006; Tan et al., 
2007; Blitzer et al., 2007; Tan et al., 2008; An-
dreevskaia et al., 2008; Tan et al., 2009) and fine-
grained opinion mining (Hatzivassiloglou et al., 
2000; Takamura et al., 2007; Bloom et al., 2007; 
Wang et al., 2008; Titov et al., 2008) are the main 
branches of the research of opinion mining. In this 
paper, we focus on the fine-grained (feature-level) 
opinion mining.  

For many applications (e.g. the task of public 
affairs review analysis and the products review 
analysis), simply judging the sentiment orientation 
of a review unit is not sufficient. Researchers (Ku-
shal, 2003; Hu et al., KDD 2004; Hu et al., AAAI 
2004; Popescu et al., 2005) began to work on 
finer-grained opinion mining which predicts the 
sentiment orientation related to different review 
features. The task is known as feature-level opin-
ion mining. 
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In feature-level opinion mining, most of the ex-
isting researches associate product features and 
opinion words by their explicit co-occurrence. 
Template extraction based method (Popescu et al., 
2005) and association rule mining based method 
(Hu et al., AAAI 2004) are the representative ones.  

These approaches did good jobs for identifying 
the review features that appear explicitly in re-
views, however, real reviews from customers are 
usually complicated. In some cases, the review 
features are implicit in the review sentences, but 
can be deduced by the opinion words in its context. 
The detection of such hidden sentiment association 
is a big challenge in feature-level opinion mining 
on Chinese reviews due to the nature of Chinese 
language (Qi et al., 2008). Obviously, neither the 
template extraction based method nor the associa-
tion rule mining based method is effective for such 
cases. Moreover, in some cases, even if the review 
features appear explicitly in the review sentences, 
the co-occurrence information between review 
features and opinion words is too quantitatively 
sparse to be utilized. So we consider whether it is a 
more sensible way to construct or cluster review 
feature groups and opinion words groups to mine 
the implicit or hidden sentiment association in the 
reviews. 

The general approach will cluster the two types 
of objects separately, which neglects the highly 
interrelationship. To address this problem, in this 
paper, we propose an iterative reinforcement 
framework, under which we cluster product fea-
tures and opinion words simultaneously and itera-
tively by fusing both their semantic information 
and sentiment link information. We take improved 
information bottleneck algorithm (Tishby, 1999) 
as the kernel of the proposed framework. 

The information bottleneck approach was pre-
sented by Tishby (1999). The basic idea of the ap-
proach is that it treats the clustering problems from 
the information compressing point of view, and 
takes this problem as a case of much more funda-
mental problem: what are the features of the vari-
able X that are relevant for the prediction of an-
other, relevance, variable Y? Based on the infor-
mation theory, the problem can be formulated as: 
find a compressed representation of the variable X, 
denoted C, such that the mutual information be-
tween C and Y is as high as possible, under a con-
straint on the mutual information between X and C. 
For our case, take the hotel reviews as example, X 

is one type of objects of review features (e.g. fa-
cilities, service, surrounding environment, etc) or 
opinion words (e.g. perfect, circumspect, quiet, 
etc), and Y is another one. Given some review fea-
tures (or opinion words) gained from review cor-
pus, we want to assemble them into categories, 
conserving the information about opinion words 
(or review features) as high as possible. 

The information bottleneck algorithm has some 
benefits, mainly including (1) it treats the trade-off 
of precision versus complexity of clustering model 
through the rate distortion theory, which is a sub-
field of information theory; (2) it defines the “dis-
tance” or “similarity” in a well-defined way based 
on the mutual information. The efficiency of in-
formation bottleneck algorithm (Slonim and 
Tishby, 2000) motivates us to take it as the kernel 
of our framework. As far as we know, this ap-
proach has not been employed in opinion mining 
yet. 

In traditional information bottleneck approach, 
the distance between two data objects is measured 
by the Jensen-Shannon divergence (Lin, 1991), 
which aims to measure the divergence between 
two probability distributions. We alter this meas-
ure to integrate more semantic information, which 
will be illustrated in detail in the following sec-
tions, and the experimental result shows the 
effectiveness of the alteration.  

It would be worthwhile to highlight several as-
pects of our work here:  
z We propose an iterative reinforcement 

framework, and under this framework, review 
feature words and opinion words are organized 
into categories in a simultaneous and iterative 
manner. 
z In the process of clustering, the semantic in-

formation and the co-occurrence information 
are integrated. 
z The experimental results on real Chinese 

web reviews demonstrate that proposed 
method outperforms the template extraction 
based algorithm. 

2 Proposed Algorithm 

2.1 The Problem  

In product reviews, opinion words are used to ex-
press opinion, sentiment or attitude of reviewers. 
Although some review units may express general 
opinions toward a product, most review units are 
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regarding to specific features of the product. 
A product is always reviewed under a certain 

feature set F. Suppose we have got a lexical list O 
which includes all the opinion expressions and 
their sentiment polarities. For the feature-level 
opinion mining, identifying the sentiment associa-
tion between F and O is essential. The key points 
in the whole process are as follows: 
z get opinion word set O (with polarity labels) 
z get product feature set F 
z identify relationships between F and O 
The focus of the paper is on the latter two steps, 

especially for the case of hidden sentiment asso-
ciation that the review features are implicit in the 
review sentences, but can be deduced by the opin-
ion words in its context. In contrast to existing ex-
plicit adjacency approaches, the proposed 
approach detects the sentiment association 
between F and O based on review feature 
categories and opinion word groups gained from 
the review corpus. 

To this end, we first consider two sets of asso-
ciation objects: the set of product feature words F 
= {f1,f2,…,fm} and the set of opinion words O = 
{o1,o2,…on}. A weighted bipartite graph from F 
and O can be built, denoted by G = {F, O, R}. 
Here R = [rij] is the m*n link weight matrix con-
taining all the pair-wise weights between set F and 
O. The weight can be calculated with different 
weighting schemes, in this paper, we set rij by the 
co-appearance frequency of fi and oj in clause level. 

We take F and O as two random variables, and 
the question of constructing or clustering the ob-
ject groups can be defined as finding compressed 
representation of each variable that reserves the 
information about another variable as high as pos-
sible. Take F as an example, we want to find its 
compression, denoted as C, such that the mutual 
information between C and O is as high as possi-
ble, under a constraint on the mutual information 
between F and C.  

We propose an iterative reinforcement frame-
work to deal with the tasks. An improved informa-
tion bottleneck algorithm is employed in this 
framework, which will be illustrated in detail in 
the following sections. 

2.2 Information Bottleneck Algorithm 

The information bottleneck method (IB) was pre-
sented by Tishby et al. (1999). According to Shan-
non‘s information theory (Cover and Thomas, 

1991), for the two random variables X, Y, the mu-
tual information I(X;Y) between the random vari-
ables X, Y is given by the symmetric functional: 

,

( | )( ; ) ( ) ( | ) log
( )x X y Y

p y xI X Y p x p y x
p y∈ ∈

= ∑         (1) 

and the mutual information between them meas-
ures the relative entropy between their joint distri-
bution p(x, y) and the product of respective mar-
ginal distributions p(x)p(y), which is the only con-
sistent statistical measure of the information that 
variable X contains about variable Y (and vice 
versa). Roughly speaking, some of the mutual in-
formation will be lost in the process of compres-
sion, e.g. ( , ) ( , )I C Y I X Y≤  (C is a compressed rep-
resentation of X). 

This representation is defined through a (possi-
bly stochastic) mapping between each value 
x X∈ to each representative value c C∈ . Formally, 
this mapping can be characterized by a conditional 
distribution p(c|x), inducing a soft partitioning of X 
values, Specifically, each value of X _is associated 
with all the codebook elements (C values), with 
some normalized probability. 
_ 

The IB method is based on the following simple 
idea. Given the empirical joint distribution of two 
variables, one variable is compressed so that the 
mutual information about the other variable is pre-
served as much as possible. The method can be 
considered as finding a minimal sufficient partition 
or efficient relevant coding of one variable with 
respect to the other one. This problem can be 
solved by introducing a Lagrange multiplier β , 
and then minimizing the functional: 

[ ( | )] ( , ) ( , )L p c x I C X I C Yβ= −                       (2) 

This solution is given in terms of the three dis-
tributions that characterize every cluster c C∈ , the 
prior probability for this cluster, p(c), its member-
ship probabilities p(c|x), and its distribution over 
the relevance variable p(y|c). In general, the mem-
bership probabilities, p(c|x) is “soft”, i.e. every 
x X∈ can be assigned to every c C∈ in some 
(normalized) probability. The information bottle-
neck principle determines the distortion measure 
between the points x and c to be 

the [ ] ( | )( | ) || ( | ) ( | )log
( | )KL y

p y xD p y x p y c p y x
p y c

=∑ , the 

Kullback-Leibler divergence (Cover and Thomas, 
1991) between the conditional distributions p(y|x) 
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and p(y|c). Specifically, the formal optimal solu-
tion is given by the following equations which 
must be solved together. 

( )( | ) exp( [ ( | ) || ( | )])
( , )
1( | ) ( | ) ( ) ( | )
( )

( ) ( | ) ( )

KL

x

x

p cp c x D p y x p y c
Z x

p y c p c x p x p y x
p c

p c p c x p x

β
β

⎧ = −⎪
⎪
⎪ =⎨
⎪
⎪ =
⎪
⎩

∑

∑

 

(3) 
Where ( , )Z xβ is a normalization factor, and the 

single positive (Lagrange) parameter β determines 
the “softness” of the classification. Intuitively, in 
this procedure the information contained in X 
about Y ‘squeezed’ through a compact ‘bottleneck’ 
of clusters C, that is forced to represent the ‘rele-
vant’ part in X w.r.t to Y.  

An important special case is the “hard” cluster-
ing case where C is a deterministic function of X. 
That is, p(c|x) can only take values of zero or one, 
This restriction, which corresponds to the 
limit β →∞ in Eqs 3 meaning every x X∈  is as-
signed to exactly one cluster c C∈  with a prob-
ability of one and to all the others with a probabil-
ity of zero. This yields a natural distance measure 
between distributions which can be easily imple-
mented in an agglomerative hierarchical clustering 
procedure (Slonim and Tishby, 1999).  

1,
( | )

0,
1( | ) ( , )
( )

( ) ( )
x c

x c

if x c
p c x

otherwise

p y c p x y
p c

p c p x
∈

∈

⎧ ∈⎧
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⎩⎪

⎪⎪ =⎨
⎪
⎪ =
⎪
⎪⎩

∑

∑

                              (4) 

The algorithm starts with a trivial partitioning 
into |X| singleton clusters, where each cluster con-
tains exactly one element of X. At each step we 
merge two components of the current partition into 
a single new component in a way that locally 
minimizes the loss of mutual information about the 
categories. Every merger, *( , )i jc c c⇒ , is formally 
defined by the following equation: 

*

*
* *

*

1,
( | )

0,
( )( )

( | ) ( | ) ( | )
( ) ( )

( ) ( ) ( )

i j

ji
i j

i j

x c or x c
p c x

otherwise
p cp c

p y c p y c p y c
p c p c

p c p c p c

⎧ ∈ ∈⎧⎪=⎪ ⎨
⎪⎩⎪

⎪⎪ = +⎨
⎪
⎪ = +
⎪
⎪⎩

     (5) 

The decrease in the mutual information I(C, Y) due 
to this merger is defined by  

( , ) ( , ) ( , )i j before afterI c c I C Y I C Yδ ≡ −               (6) 
When ( , )beforeI C Y  and ( , )afterI C Y are the informa-
tion values before and after the merger, respec-
tively. After a little algebra, one can see 

( )( , ) ( ) ( ) ( | ), ( | )i j i j JS i jI c c p c p c D p y c p y cδ ⎡ ⎤≡ + ⋅ ⎣ ⎦  (7)  
Where the functional DJS  is the Jensen-Shannon 
divergence (Lin, 1991), defined as  

^ ^
, || ||JS i j i KL i j KL jD p p D p p D p pπ π⎡ ⎤ ⎡ ⎤⎡ ⎤ = +⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (8) 

where in our case  
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π π

⎧ ≡⎪
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⎪
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                     (9) 

By introducing the information optimization cri-
terion the resulting similarity measure directly 
emerges from the analysis. The algorithm is now 
very simple. At each step we perform “the best 
possible merger”, i.e. merge the clusters { , }i jc c  
which minimize ( , )i jI c cδ .  

2.3 Improved Information Bottleneck Algo-
rithm for Semantic Information 

In traditional information bottleneck approach, the 
distance between two data objects is measured by 
the difference of information values before and 
after the merger, which is measured by the Jensen-
Shannon divergence. This divergence aims to 
measure the divergence between two probability 
distributions. For our case, the divergence is based 
on the co-occurrence information between the two 
variables F and O. 

While the co-occurrence in corpus is usually 
quantitatively sparse; additionally, Statistics based 
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on word-occurrence loses semantic related infor-
mation. To avoid such reversed effects, in the pro-
posed framework we combine the co-occurrence 
information and semantic information as the final 
distance between the two types of objects. 

( , ) ( , )

(1 ) ( , )

{ } { }

i j semantic i j

i j

i j i j

D X X D X X

I X X

where X F X F X O X O

α

α δ

=

+ −

∈ ∧ ∈ ∨ ∈ ∧ ∈

 

(10) 
In equation 10, the distance between two data 

objects Xi and Xj is denoted as a linear combination 
of semantic distance and information value differ-
ence. The parameter α  reflects the contribution of 
different distances to the final distance. 

Input: Joint probability distribution p(f,o) 
Output: A partition of F into m clusters, ∀m∈

{1,…,|F|}, and a partition of O into n clusters ∀
n∈{1,…,|O|} 
1. t←0 
2. Repeat 

a. Construct CFt←Ft 
b. ∀i, j=1,…,|CFt|, i<j, calculate 

         ( , ) (1 ) ( , )t t t t t
ij semantic i j i jd D cf cf I cf cfα α δ← + −

c. for m←|CFt|-1 to 1 
1) find the indices {i, j}, for which dij

t is 
minimized 

2) merge {cfi
t, cfj

t}into cf*
t  

3) update CFt← {CFt -{cfi
t, cfj

t}}U {cf*
t} 

4) update dij
t costs w.r.t cf*

t
 

d. Construct COt←Ot 
e. ∀i, j=1,…,|COt|, i<j,calculate 
     ( , ) (1 ) ( , )t t t t t

ij semantic i j i jd D co co I co coα α δ← + −

f. for n←|COt|-1 to 1 
1) find the indices {i, j}, for which dij

t is 
minimized 

2) merge {coi
t,coj

t}into co*
t  

3) update COt ← {COt -{coi
t,coj

t}}U {co*
t}

4) update dij
t costs w.r.t co*

t
 

g. t←t+1 
3. until (CFt = CFt-1 and COt =COt-1) 

Figure 1: Pseudo-code of semantic information bot-
tleneck in iterative reinforcement framework  
 

The semantic distance can be got by the usage 
of lexicon, such as WordNet (Budanitsky and Hirst, 

2006). In this paper, we use the Chinese lexicon 
HowNet1. 

The basic idea of the iterative reinforcement 
principle is to propagate the clustered results be-
tween different type data objects by updating their 
inter-relationship spaces. The clustering process 
can begin from an arbitrary type of data object. 
The clustering results of one data object type up-
date the interrelationship thus reinforce the data 
object categorization of another type. The process 
is iterative until clustering results of both object 
types converge. Suppose we begin the clustering 
process from data objects in set F, and then the 
steps can be expressed as Figure 1. After the itera-
tion, we can get the strongest n links between 
product feature categories and opinion word 
groups. That constitutes our set of sentiment asso-
ciation. 

3 Experimental Setup 

In this section we describe our experiments and the 
data used in these experiments. 

3.1 Data 

Our experiments take hotel reviews (in Chinese) 
as example. The corpus used in the experiments is 
composed by 4000 editor reviews on hotel, includ-
ing 857,692 Chinese characters. They are extracted 
from www.ctrip.com. Each review contains a 
user’s rating represented by “stars”, the number of 
the star denotes the user’s satisfaction. The de-
tailed information is illustrated in Table 1, 

 
Table 1: The detail information of corpus 

User’s rating Number 
1 star 555 
2 star 1375 
3 star 70 
4 star 2000 

 
Then we use ICTCLAS2, a Chinese word seg-

mentation software to extract candidate review 
features and opinion words.  

Usually, adjectives are normally used to express 
opinions in reviews. Therefore, most of the exist-
ing researches take adjectives as opinion words. In 
the research of Hu et al. (2004), they proposed that 
                                                 
1 http://www.keenage.com/ 
2 www.searchforum.org.cn 
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other components of a sentence are unlikely to be 
product features except for nouns and noun 
phrases. Some researchers (Fujii and Ishikawa, 
2006) targeted nouns, noun phrases and verb 
phrases. The adding of verb phrases caused the 
identification of more possible product features, 
while brought lots of noises. So in this paper, we 
follow the points of Hu’s, extracting nouns and 
noun phrases as candidate product feature words. 

Take the whole set of nouns and noun phrases 
as candidate features will bring some noise. In or-
der to reduce such adverse effects, we use the 
function of Named Entity Recognition (NER) in 
ICTCLAS to filter out named entities, including: 
person, location, organization. Since the NEs have 
small probability of being product features, we 
prune the candidate nouns or noun phrases which 
have the above NE taggers. 

 
Table 2: The number of candidate review features 
and opinion words in our corpus 

Extracted In-
stance Total Non-

Repeated 
Candidate re-
view feature 86,623 15,249 

Opinion word 26,721 1,231 
 
By pruning candidate product feature words, we 

get the set of product feature words F. And the set 
of opinion words O is composed by all the adjec-
tives in reviews. The number of candidate product 
feature words and opinion words extracted from 
the corpus are shown as Table 2: 

3.2 Experimental Procedure 

We evaluate our approach from two perspectives:  
1) Effectiveness of product feature category 

construction by mutual reinforcement based clus-
tering;  

2) Precision of sentiment association between 
product feature categories and opinion word 
groups;  

4 Experimental Results and Discussion 

4.1 Evaluation of Review Feature Category 
Construction 

To calculate agreement between the review feature 
category construction results and the correct labels, 
we make use of the Rand index (Rand, 1971). This 

allows for a measure of agreement between two 
partitions, P1 and P2, of the same data set D. Each 
partition is viewed as a collection of n*(n-1)/2 pair 
wise decisions, where n is the size of D. For each 
pair of points di and dj in D, Pi either assigns them 
to the same cluster or to different clusters. Let a be 
the number of decisions where di is in the same 
cluster as dj in P1 and in P2. Let b be the number of 
decisions where the two instances are placed in 
different clusters in both partitions. Total agree-
ment can then be calculated using 

1 2( , )
( 1) / 2

a bRand P P
n n

+
=

−
                            (11)  

In our case, the parts of product feature words in 
the pre-constructed evaluation set are used to rep-
resent the data set D; a and b represent the parti-
tion agreements between the pairs of any two 
words in the parts and in the clustering results re-
spectively. 

In equation 10, the parameter α reflects the re-
spective contribution of semantic information and 
co-occurrence information to the final distance. 
When 0α = or 1α = , the co-occurrence informa-
tion or the semantic information will be utilized 
alone. 

In order to get the optimal combination of the 
two type of distance, we adjust the parameter 
α from 0 to 1(stepped by 0.2), and the accuracy of 
feature category construction with different α are 
shown in Figure 2: 

 

 
Figure 2: The accuracy of review feature category 
construction with the variation of the parameter α  
 

From this figure, we can find that the semantic 
information (α =1) contributes much more to the 
accuracy of review feature category construction 
than the co-occurrence information ( α =0), and 
when α =0, the approach is equivalent to the tradi-
tional information bottleneck approach. We con-
sider this is due partly to the sparseness of the cor-
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pus, by enlarging the scale of the corpus or using 
the search engine (e.g. google etc), we can get 
more accurate results.  

Additionally, by a sensible adjust on the pa-
rameter α (in this experiment, we set α  as 0.6), 
we can get higher accuracy than the two baselines 
( α =0 and α =1), which indicates the necessity 
and effectiveness of the integration of semantic 
information and co-occurrence information in the 
proposed approach. 

4.2 Evaluation of Sentiment Association  

We use precision to evaluate the performance of 
sentiment association. An evaluation set is con-
structed manually first, in which there are not only 
the categories that every review feature word be-
long to, but also the relationship between each 
category and opinion word. Then we define preci-
sion as: 

number of correctly associated pairsPrecision
number of detected pairs

=

                                                                          (12) 
A comparative result is got by the means of 

template-extraction based approach on the same 
test set. By the usage of regular expression, the 
nouns (phrase) and gerund (phrase) are extracted 
as the review features, and the nearest adjectives 
are extracted as the related opinion words. Because 
the modifiers of adjectives in reviews also contain 
rich sentiment information and express the view of 
customs, we extract adjectives and their modifiers 
simultaneously, and take them as the opinion 
words. 

 
Table 3: Performance comparison in sentiment asso-
ciation 

Approach Pairs Precision 
Template extraction 27,683 65.89% 
Proposed approach 141,826 78.90% 
 
Table 3 shows the advantage of our approach 

over the extraction by explicit adjacency. Using 
the same product feature categorization, our sen-
timent association approach get a more accurate 
pair set than the direct extraction based on explicit 
adjacency. The precision we obtained by the itera-
tive reinforcement approach is 78.90%, almost 13 
points higher than the adjacency approach. This 
indicates that there are a large number of hidden 
sentiment associations in the real custom reviews, 

which underlines the importance and value of our 
work. 

5 Conclusions and Further Work 

In this paper, we propose a novel iterative rein-
forcement framework based on improved informa-
tion bottleneck approach to deal with the feature-
level product opinion-mining problem. We alter 
traditional information bottleneck method by inte-
gration with semantic information, and the ex-
perimental result demonstrates the effectiveness of 
the alteration. The main contribution of our work 
mainly including:  
z We propose an iterative reinforcement in-

formation bottleneck framework, and in this 
framework, review feature words and opinion 
words are organized into categories in a simul-
taneous and iterative manner. 
z In the process of clustering, the semantic in-

formation and the co-occurrence information 
are integrated. 
z The experimental results based on real Chi-

nese web reviews demonstrate that our method 
outperforms the template extraction based al-
gorithm. 

Although our methods for candidate product 
feature extraction and filtering (see in 3.1) can 
partly identify real product features, it may lose 
some data and remain some noises. We’ll conduct 
deeper research in this area in future work. Addi-
tionally, we plan to exploit more information, such 
as background knowledge, to improve the per-
formance. 
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Abstract

We address the problem of large-scale auto-
matic detection of online reviews without us-
ing any human labels. We propose an efficient
method that combines two basic ideas: Build-
ing a classifier from a large number of noisy
examples and using the structure of the web-
site to enhance the performance of this classi-
fier. Experiments suggest that our method is
competitive against supervised learning meth-
ods that mandate expensive human effort.

1 Introduction

Shoppers are migrating to the web and online re-
views are playing a critical role in affecting their
shopping decisions, online and offline. According
to two surveys published by comScore (2007) and
Horrigan (2008), 81% of web users have done on-
line research on a product at least once. Among
readers of online reviews, more than 70% reported
that the reviews had a significant influence on their
purchases. Realizing this economic potential, search
engines have been scrambling to cater to such user
needs in innovative ways. For example, in response
to a product-related query, a search engine might
want to surface only review pages, perhaps via a “fil-
ter by” option, to the user. More ambitiously, they
might want to dissect the reviews, segregate them
into novice and expert judgments, distill sentiments,
and present an aggregated “wisdom of the crowds”
opinion to the user. Identifying review pages is the
indispensable enabler to fulfill any such ambition;
nonetheless, this problem does not seem to have
been addressed at web scale before.

Detecting review webpages in a few, review-only
websites is an easy, manually-doable task. A large
fraction of the interesting review content, however,
is present on pages outside such websites. This is
where the task becomes challenging. Review pages
might constitute a minority and can be buried in
a multitude of ways among non-review pages —
for instance, the movie review pages in nytimes.
com, which are scattered among all news articles, or
the product review pages in amazon.com, which
are accessible from the product description page. An
automatic and scalable method to identify reviews
is thus a practical necessity for the next-generation
search engines. The problem is actually more gen-
eral than detecting reviews: it applies to detecting
any “horizontal” category such as buying guides, fo-
rums, discussion boards, FAQs, etc.

Given the nature of these problems, it is tempt-
ing to use supervised classification. A formidable
barrier is the labeling task itself since human la-
bels need time and money. On the other hand, it
is easier to generate an enormous number of low-
quality labeled examples through purely automatic
methods. This prompts the question: Can we do re-
view detection by focusing just on the textual con-
tent of a large number of automatically obtained but
low-quality labeled examples, perhaps also utilizing
the site structure specific to each website? And how
will it compare to the best supervised classification
method? We address these questions in this paper.

Main contributions. We propose the first end-to-
end method that can operate at web scale to effi-
ciently detect review pages. Our method is based
on using simple URL-based clues to automatically
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partition a large collection of webpages into two
noisy classes: One that consists mostly of review
webpages and another that consists of a mixture
of some review but predominantly non-review web-
pages (more details in Section 4.2).

We analyze the use of a naive Bayes classifier in
this noisy setting and present a simple algorithm for
review page classification. We further enhance the
performance of this classifier by incorporating infor-
mation about the structure of the website that is man-
ifested through the URLs of the webpages. We do
this by partitioning the website into clusters of web-
pages, where the clustering delicately balances the
information in the site-unaware labels provided by
the classifier in the previous step and the site struc-
ture encoded in the URL tokens; a decision tree is
used to accomplish this. Our classification method
for noisily-labeled examples and the use of site-
specific cues to improve upon a site-independent
classifier are general techniques that may be appli-
cable in other large-scale web analyses.

Experiments on 2000 hand-labeled webpages
from 40 websites of varying sizes show that besides
being computationally efficient, our human-label-
free method not only outperforms those based on
off-the-shelf subjectivity detection but also remains
competitive against the state-of-the-art supervised
text classification that relies on editorial labels.

2 Related work

The related work falls into roughly four categories:
Document- and sentence-level subjectivity detec-
tion, sentiment analysis in the context of reviews,
learning from noisy labeled examples, and exploit-
ing site structure for classification.

Given the subjective nature of reviews, document-
level subjectivity classification is closely related to
our work. There have been a number of approaches
proposed to address document-level subjectivity in
news articles, weblogs, etc. (Yu and Hatzivas-
siloglou, 2003; Wiebe et al., 2004; Finn and Kush-
merick, 2006; Ni et al., 2007; Stepinski and Mit-
tal, 2007). Ng et al. (2006) experiment with review
identification for known domains using datasets with
clean labels (e.g., movie reviews vs. movie-related
non-reviews), a setting different from that of ours.
Pang and Lee (2008b) present a method on re-

ranking documents that are web search results for a
specific query (containing the word review) based
on the subjective/objective distinction. Given the na-
ture of the query, they implicitly detect reviews from
unknown sources. But their re-ranking algorithm
only applies to webpages known to be (roughly) re-
lated to the same narrow subject. Since the web-
pages in our datasets cover not only a diverse range
of websites but also a diverse range of topics, their
approach does not apply. To the best of our knowl-
edge, there has been no work on identifying review
pages at the scale and diversity we consider.

Subjectivity classification of within-document
items, such as terms, has been an active line of re-
search (Wiebe et al. (2004) present a survey). Iden-
tifying subjective sentences in a document via off-
the-shelf packages is an alternative way of detect-
ing reviews without (additional) human annotations.
In particular, the OpinionFinder system (Riloff and
Wiebe, 2003; Wiebe and Riloff, 2005) is a state-of-
the-art knowledge-rich sentiment-analysis system.
We will use it as one of our baselines and compare
its performance with our methods.

There has been a great deal of previous work in
sentiment analysis that worked with reviews, but
they were typically restricted to using reviews ex-
tracted from one or two well-known sources, by-
passing automatic review detection. Examples of
such early work include (Turney, 2002; Pang et al.,
2002; Dave et al., 2003; Hu and Liu, 2004; Popescu
and Etzioni, 2005). See Pang and Lee (2008a) for
a more comprehensive survey. Building a collection
of diverse review webpages, not limited to one or
two hosts, can better facilitate such research.

Learning from noisy examples has been studied
for a long time in the learning theory community
(Angluin and Laird, 1988). Learning naive Bayes
classifiers from noisy data (either features or labels
or both) was studied by Yang et al. (2003). Their
focus, however, is to reconstruct the underlying con-
ditional probability distributions from the observed
noisy dataset. We, on the other hand, rely on the vol-
ume of labels to drown the noise. Along this spirit,
Snow et al. (2008) show that obtaining multiple low-
quality labels (through Mechanical Turk) can ap-
proach high-quality editorial labels. Unlike in their
setting, we do not have multiple low-quality labels
for the same URL. The extensive body of work in
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semi-supervised learning or learning from one class
is also somewhat relevant to our work. A major dif-
ference is that they tend to work with small amount
of clean, labeled data. In addition, many semi-
supervised/transductive learning algorithms are not
efficient for web-scale data.

Using site structure for web analysis tasks has
been addressed in a variety of contexts. For ex-
ample, Kening et al. (2005) exploit the structure
of a website to improve classification. On a re-
lated note, co-training has also been used to utilize
inter-page link information in addition to intra-page
textual content: Blum and Mitchell (1998) use an-
chor texts pointing to a webpage as the alternative
“view” of the page in the context of webpage clas-
sification. Their algorithm is largely site-unaware
in that it does not explicitly exploit site structures.
Utilizing site structures also has remote connections
to wrapper induction, and there is extensive litera-
ture on this topic. Unfortunately, the methods in all
of these work require human labeling, which is pre-
cisely what our work is trying to circumvent.

3 Methodology

In this section we describe our basic methodology
for identifying review pages. Our method consists
of two main steps. The first is to use a large amount
of noisy training examples to learn a basic classifier
for review webpages; we adapt a simple naive Bayes
classifier for this purpose. The second is to improve
the performance of this basic classifier by exploiting
the website structure; we use a decision tree for this.

Let P be the set of all webpages. Let C+ denote
the positive class, i.e., the set of all review pages and
let C− denote the negative class, i.e., the set of all
non-review pages. Each webpage p is exactly in one
of C+ or C−, and is labeled +1 or −1 respectively.

3.1 Learning from large amounts of noisy data

Previous work using supervised or semi-supervised
learning approaches for sentiment analysis assumes
relatively high-quality labels that are produced ei-
ther via human annotation or automatically gener-
ated through highly accurate rules (e.g., assigning
positive or negative label to a review according to
automatically extracted star ratings).

We examine a different scenario where we can au-

tomatically generate large amount of relatively low-
quality labels. Section 4.2 describes the process
in more detail, but briefly, in a collection of pages
crawled from sites that are very likely to host re-
views, those with the word review in their URLs
are very likely to contain reviews (the noisy posi-
tive set C̃+) and the rest of the pages on those sites
are less likely to contain reviews (the more noisy
negative set C̃−). More formally, for a webpage
p, suppose Pr[p ∈ C+ | p ∈ C̃+] = α and
Pr[p ∈ C+ | p ∈ C̃−] = β, where 1 > α 
 β > 0.
Can we still learn something useful from C̃+ and C̃−
despite the labels being highly noisy?

The following analysis is based on a naive Bayes
classifier. We chose naive Bayes classifier since the
learning phase can easily be parallelized.

Given a webpage (or a document) p represented
as a bag of features {fi}, we wish to assign a class
arg maxc∈{C+,C−} Pr[c | p] to this webpage. Naive
Bayes classifiers assume fi’s to be conditionally in-
dependent and we have Pr[p | c] =

∏
Pr[fi | c].

Let ri = Pr[fi | C+]/Pr[fi | C−] denote the con-
tribution of each feature towards classification, and
rc = Pr[C+]/Pr[C−] denote the ratio of class pri-
ors. First note that

log Pr[C+|p]
Pr[C−|p] = log

(
Pr[C+]
Pr[C−] ·

Pr[p|C+]
Pr[p|C−]

)

= log
(

Pr[C+]
Pr[C−] ·

∏
ri

)
= log rc +

∑
log ri.

A webpage p receives label +1 iff Pr[C+ | p] >
Pr[C− | p], and by above, if and only if

∑
log ri >

− log rc.
When we do not have a reasonable estimate of

Pr[C+] and Pr[C−], as in our setting, the best we
can do is to assume rc = 1. In this case, p receives
label +1 if and only if

∑
log ri > 0. Thus, a feature

fi with log ri > 0 has a positive contribution to-
wards p being labeled +1; call fi to be a “positive”
feature. Typically we use relative-frequency estima-
tion of Pr[c] and Pr[fi | c] for c ∈ {C+, C−}. Now,
how does the estimation from a dataset with noisy
labels compare with the estimation from a dataset
with clean labels?

To examine this, we calculate the following:
Pr[fi | C̃+] = αPr[fi | C+] + (1− α) Pr[fi | C−],
Pr[fi | C̃−] = β Pr[fi | C+] + (1− β) Pr[fi | C−].

Let r̃i = Pr[fi| eC+]

Pr[fi| eC−]
= αri+(1−α)

βri+(1−β) . Clearly r̃i is mono-
tonic but not linear in ri. Furthermore, it is bounded:
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(1− α)/(1− β) ≤ r̃i ≤ α/β. However,
r̃i > 1 ⇐⇒ αri + (1− α) > βri + (1− β)
⇐⇒ (α−β)ri > (α−β) ⇐⇒ ri > 1,where

the last step used α > β. Thus, the sign of log r̃i is
the same as that of log ri, i.e., a feature contribut-
ing positively to

∑
log ri will continue to contribute

positively to
∑

log r̃i (although its magnitude is dis-
torted) and vice versa.

The above analysis motivates an alternative model
to naive Bayes. Instead of each feature fi placing
a weighted vote log r̃i in the final decision, we trust
only the sign of log r̃i, and let each feature fi place a
vote for the classC+ (respectively, C−) if log r̃i > 0
(respectively, log r̃i < 0). Intuitively, this model
just compares the number of “positive” features and
the number of “negative” features, ignoring the mag-
nitude (since it is distorted anyway). This is pre-
cisely our algorithm: For a given threshold γ, the
final label nbuγ(p) of a webpage p is given by

nbuγ(p) = sgn (
∑

sgn(log r̃i)− γ) ,
where sgn is the sign function. For comparison
purposes, we also indicate the “weighted” version:

nbwγ(p) = sgn (
∑

log r̃i − γ) .
If γ = 0, we omit γ and use nb to denote a generic
label assigned by any of the above algorithms.

Note that even though our discussions were for
two-class and in particular, review classification,
they are equally applicable to a wide range of clas-
sification tasks in large-scale web-content analysis.
Our analysis of learning from automatically gener-
ated noisy examples is thus of independent interest.

3.2 Utilizing site structure
Can the structure of a website be exploited to im-
prove the classification of webpages given by nb(·)?
While not all websites are well-organized, quite a
number of them exhibit certain structure that makes
it possible to identify large subsites that contain only
review pages. Typically but not always this structure
is manifested through the tokens in the URL corre-
sponding to the webpage. For instance, the pattern
http://www.zagat.com/verticals/
PropertyDetails.aspx?VID=a&R=b,
where a,b are numbers, is indicative of all
webpages in zagat.com that are reviews of
restaurants. In fact, we can think of this as a
generalization of having the keyword review in
the URL. Now, suppose we have an initial labeling

nb(p) ∈ {±1} for each webpage p produced by a
classifier (as in the previous section, or one that is
trained on a small set of human annotated pages),
can we further improve the labeling using the
pattern in the URL structure?

It is not immediate how to best use the URL
structure to identify the review subsites. First,
URLs contain irrelevant information (e.g., the to-
ken verticals in the above example), thus clus-
tering by simple cosine similarity may not dis-
cover the review subsites. Second, the subsite
may not correspond to a subtree in the URL hi-
erarchy, i.e., it is not reasonable to expect all
the review URLs to share a common prefix.
Third, the URLs contain a mixture of path com-
ponents (e.g., www.zagat.com/verticals/
PropertyDetails.aspx) and key-value pairs
(e.g., VID=a and R=b) and hence each token (re-
gardless of its position) in the URL could play a
role in determining the review subsite. Furthermore,
conjunction of presence/absence of certain tokens in
the URL may best correspond to subsite member-
ship. In light of these, we represent each URL (and
hence the corresponding webpage) by a bag {gi} of
tokens obtained from the URL. We perform a crude
form of feature selection by dropping tokens that
are either ubiquitous (occurring in more than 99%
of URLs) or infrequent (occurring in fewer than 1%
of URLs) in a website; neither yields useful infor-
mation.

Our overall approach will be to use gi’s to par-
tition P into clusters {Ci} of webpages such that
each cluster Ci is predominantly labeled as either
review or non-review by nb(·). This automati-
cally yields a new label cls(p) for each page p,
which is the majority label of the cluster of p:

cls(p) = sgn
(∑

q∈C(p) nb(q)
)
,

where C(p) is the cluster of p. To this end, we use
a decision tree classifier to build the clusters. This
classifier will use the features {gi} and the target la-
bels nb(·). The classifier is trained on all the web-
pages in the website and in the obtained decision
tree, each leaf, consisting of pages with the same
set of feature values leading down the path, corre-
sponds to a cluster of webpages. Note that the clus-
ters delicately balance the information in the site-
unaware labels nb(·) and the site structure encoded

497



in the URLs (given by gi’s). Thus the label cls(p)
can be thought of as a smoothed version of nb(p).

Even though we can expect most clusters to be ho-
mogeneous (i.e., pure reviews or non-reviews), the
above method can produce clusters that are inher-
ently heterogeneous. This can happen if the web-
site URLs are organized such that many subsites
contain both review and non-review webpages. To
take this into account, we propose the following
hybrid approach that interpolates between the un-
smoothed labels given by nb(·) and the smoothed
labels given by cls(·). For a cluster Ci, the dis-
crepancy disc(Ci) =

∑
p∈Ci

[cls(p) 6= nb(p)]; this
quantity measures the number of disagreements be-
tween the majority label cls(p) and the original label
nb(p) for each page p in the cluster. The decision
tree guarantees disc(Ci) ≤ |Ci|/2. We call a cluster
Ci to be δ-homogeneous if disc(Ci) ≤ δ|Ci|, where
δ ∈ [0, 1/2]. For a fixed δ, the hybrid label of a web-
page p is given by

hybδ(p) =
{

cls(p) if C(p) is δ-homogeneous,
nb(p) otherwise.

Note that hyb1/2(p) = cls(p) and hyb0(p) = nb(p).
Note that in the above discussions, any clustering

method that can incorporate the site-unaware labels
nb(·) and the site-specific tokens in gi’s could have
been used; off-the-shelf decision tree was merely a
specific way to realize this.

4 Data

It is crucial for this study to create a dataset that
is representative of a diverse range of websites that
host reviews over different topics in different styles.
We are not aware of any extensive index of online
review websites and we do not want to restrict our
study to a few well-known review aggregation web-
sites (such as yelp.com or zagat.com) since
this will not represent the less popular and more spe-
cialized ones. Instead, we utilized user-generated
tags for webpages, available on social bookmarking
websites such as del.icio.us.

We obtained (a sample of) a snapshot of URL–tag
pairs from del.icio.us. We took the top one
thousand sites with review* tags; these websites
hopefully represent a broad coverage. We were able
to crawl over nine hundred of these sites and the re-
sulting collection of webpages served as the basis

of the experiments in this paper. We refer to these
websites (or the webpages from these sites, when it
is clear from the context) as Sall.

4.1 Gold-standard test set
When the websites are as diverse as represented in
Sall, there is no perfect automatic way to generate
the ground truth labels. Thus we sampled a number
of pages for human labeling as follows.

First, we set aside 40 sites as the test sites (S40).
In order to represent different types of websites (to
the best we can), we sampled the 40 sites so that S40

covers different size ranges, since large-scale web-
sites and small-scale websites are often quite dif-
ferent in style, topic, and content. We uniformly
sampled 10 sites from each of the four size cate-
gories (roughly, sites with 100–5K, 5K–25K, 25K–
100K, and 100K+ webpages)1. Indeed, S40 (as did
Sall) covered a wide range of topics (e.g., games,
books, restaurants, movies, music, and electronics)
and styles (e.g., dedicated review sites, product sites
that include user reviews, newspapers with movie re-
view sections, religious sites hosting book reviews,
and non-English review sites).

We then sampled 50 pages to be labeled from each
site in S40. Since there are some fairly large sites
that have only a small number of review pages, a
uniform sampling may yield no review webpages
from those sites. To reflect the natural distribu-
tion on a website and to represent pages from both
classes, the webpages were sampled in the follow-
ing way. For each website in S40, 25 pages were
uniformly sampled (representing the natural distri-
bution) and 25 pages were sampled from among
“equivalence classes” based on URLs so that pages
from each major URL pattern were represented.
Here, each webpage in the site is represented by a
URL signature containing the most frequent tokens
that occur in the URLs in that site and all pages with
the same signature form an equivalence class.

For our purposes, a webpage is considered a re-
view if it contains significant amount of textual in-
formation expressing subjective opinions on or per-
sonal experiences with a given product / service.
When in doubt, the guiding principle is whether

1As we do not want to waste human annotation on sites with
no reviews at all, a quick pre-screening process eliminated can-
didate sites that did not seem to host any reviews.

498



a page can be a satisfactory result page for users
searching for reviews. More specifically, the human
annotation labeled each webpage, after thoroughly
examining the content, with one of the following
seven intuitive labels: “single” (contains exactly one
review), “multiple” (concatenation of more than one
review), “no” (clearly not a review page), “empty”
(looks like a page that could contain reviews but had
none), “login” (a valid user login needed to look at
the content), “hub” (a pointer to one or more review
pages), and “ambiguous” (border-line case, e.g., a
webpage with a one line review). The first two labels
were treated as +1 (i.e., reviews) and the last five la-
bels were treated as −1 (i.e., non-reviews). Out of
the 2000 pages, we obtained 578 pages labeled +1
and the 1422 pages labeled −1. On a pilot study us-
ing two human judges, we obtained 78% inter-judge
agreement for the seven labels and 92% inter-judge
agreement if we collapse the labels to ±1. Percent-
ages of reviews in our samples from different sites
range from 14.6% to 93.9%.
Preprocessing for text-based analysis. We pro-
cessed the crawled webpages using lynx to ex-
tract the text content. To discard templated content,
which is an annoying issue in large-scale web pro-
cessing, and HTML artifacts, we used the following
preprocessing. First, the HTML tags <p>, <br>,
</tr>, and </td> were interpreted as paragraph
breaks, the ‘.’ inside a paragraph was interpreted as
a sentence break, and whitespace was used to tok-
enize words in a sentence. A sentence is considered
“good” if it has at least seven alphabetic words and
a paragraph is considered “good” if it has at least
two good sentences. After extracting the text us-
ing lynx, only the good paragraphs were retained.
This effectively removes most of the templated con-
tent (e.g., navigational phrases) and retains most of
the “natural language” texts. Because of this pre-
processing, 485 pages out of 2000 turned out to be
empty and these were discarded (human labels on
97% of these empty pages were −1).

4.2 Dataset with noisy labels
As discussed in Section 3.1, our goal is to obtain a
large noisy set of positive and negative labeled ex-
amples. We obtained these labels for the webpages
in the training sites, Srest, which is essentially Sall \
S40. First, the URLs in Srest were tokenized using a

unigram model based on an English dictionary; this
is so that strings such as reviewoftheday are
properly interpreted.
C̃+: To be labeled +1, the path-component of

the URL of the webpage has to contain the token
review. Our assumption is that such pages are
highly likely to be review pages. On a uniform sam-
ple of 100 such pages in Sall, 90% were found to be
genuine reviews. Thus, we obtained a collection of
webpages with slightly noisy positive labels.
C̃−: The rest of the pages in Srest were labeled
−1. Clearly this is a noisy negative set since not all
pages containing reviews have review as part of
their URLs (recall the example from zagat.com);
thus many pages in C̃− can still be reviews.

While the negative labels in Srest are more noisy
than the positive labels, we believe most of the non-
review pages are in C̃−, and as most websites con-
tain a significant number of non-review pages, the
percentage of reviews in C̃− is smaller than that in
C̃+ (the assumption α 
 β in Section 3.1).

We collected all the paragraphs (as defined ear-
lier) from both C̃+ and C̃− separately. We elim-
inated duplicate paragraphs (this further mitigates
the templates issue, especially for sites generated
by content-management software), and trained a un-
igram language model as in Section 3.1.

5 Evaluations

The evaluations were conducted on the 1515 labeled
(non-empty) pages in S40 described in Section 4.1.
We report the accuracy (acc.) as well as precision
(prec.), recall (rec.), and f-measure (fmeas.) for C+.

Trivial baselines. Out of the 1515 labeled pages,
565 were labeled +1 and 950 were labeled −1. Ta-
ble 1 summarizes the performance of baselines that
always predict one of the classes and a baseline that
randomly select a class according to the class dis-
tribution S40. As we can see, the best accuracy
is .63, the best f-measure is .54, and they cannot
be achieved by the same baseline. Before present-

acc. prec. rec. fmeas.
always C− .63 - 0 -
always C+ .37 .37 1 .54

random .53 .37 .37 .37

Table 1: Trivial baseline performances.
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ing the main results of our methods, we introduce
a much stronger baseline that utilizes a knowledge-
rich subjectivity detection package.

5.1 Using subjectivity detectors

This baseline is motivated by the fact that reviews
often contain extensive subjective content. There are
many existing techniques that detect subjectivity in
text. OpinionFinder (http://www.cs.pitt.
edu/mpqa/opinionfinderrelease/) is a
well-known system that processes documents and
automatically identifies subjective sentences in
them. OpinionFinder uses two subjective sentence
classifiers (Riloff and Wiebe, 2003; Wiebe and
Riloff, 2005). The first (denoted opfA) focuses on
yielding the highest accuracy; the second (denoted
opfB) optimizes precision at the expense of recall.
The methods underlying OpinionFinder incorporate
extensive tools from linguistics (including, speech
activity verbs, psychological verbs, FrameNet verbs
and adjectives with frame “experiencer”, among oth-
ers) and machine learning. In terms of performance,
previous work has shown that OpinionFinder is a
challenging system to improve upon for review re-
trieval (Pang and Lee, 2008b). Computationally,
OpinionFinder is very expensive and hence unattrac-
tive for large-scale webpage analysis (running Opin-
ionFinder on 1515 pages took about five hours).
Therefore, we also propose a light-weight subjectiv-
ity detection mechanism called lwd, which counts
the number of opinion words in each sentence in the
text. The opinion words (5403 of them) were ob-
tained from an existing subjectivity lexicon (http:
//www.cs.pitt.edu/mpqa).

We ran both opfA and opfB on the tokenized text
(running them on raw HTML produced worse re-
sults). Each sentence in the text was labeled subjec-
tive or objective. We experimented with two ways
to label a document using sentence-level subjectiv-
ity labels. We labeled a document +1 if it contained
at least k subjective sentences (denoted as opf?(k),
where k > 0 is the absolute threshold), or at least
f fraction of its sentences were labeled subjective
(denoted as opf?(f), where f ∈ (0, 1] is the rela-
tive threshold). We conducted exhaustive parameter
search with both opfA and opfB. For instance, the
performances of opfA as a function of the thresh-
olds, both absolute and relative, is shown in Fig-

ure 1. Table 2 summarizes the best performances
of opf?(k) (first two rows) and opf?(f) (next two
rows), in terms of accuracy and f-measure (bold-
faced). Similarly, for lwd, we labeled a document
+1 if at least k sentences have at least ` opin-
ion words (denoted lwd(k, `).) Table 2 once again
shows the best performing parameters for both accu-
racy and f-measure for lwd. Our results indicate that
a simple method such as lwd can come very close to
a sophisticated system such as opf?.

acc. prec. rec. fmeas.
opfA(2) .704 .597 .634 .615
opfB(2) .659 .526 .857 .652

opfA(.17) .652 .529 .614 .568
opfB(.36) .636 .523 .797 .632
lwd(1, 4) .716 .631 .572 .600
lwd(1, 1) .666 .538 .740 .623

Table 2: Best performances of opf? and lwd methods.

Figure 1: Performance of opfA as a function of thresh-
olds: Absolute and relative.

5.2 Main results
As stated earlier, we do not have any prior knowl-
edge about the value of γ and hence have to work
with γ = 0. To investigate the implications of
this assumption, we study the performance of nbuγ
and nbwγ as a function of γ. The accuracy and f-
measures are plotted in Figure 2. There are three
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acc. prec. rec. fmeas.
nbu .753 .652 .726 .687
cls .756 .696 .616 .654

hyb1/3 .777 .712 .674 .693

Table 3: Performance of our methods.

conclusions that can be drawn from this study: (i)
The peak values of accuracy and f-measure are com-
parable for both nbuγ and nbwγ , (ii) at γ = 0, nbu is
much better than nbw, in terms of both accuracy and
f-measure, and (iii) the best performance of nbuγ oc-
curs at γ ≈ 0. Given the difficulty of obtaining γ if
one were to use nbwγ , the above conclusions vali-
date our intuition and the algorithm in Section 3.1.

Figure 2: Performance as threshold changes: Comparing
nbuγ (marked as (u)) with nbwγ (marked as (w)).

Table 3 shows the performance of the site-specific
method outlined in Section 3.2. The clusters
were generated using the unpruned J48 decision
tree in Weka (www.cs.waikato.ac.nz/ml/
weka). In our experiments, we set δ = 1/3 as a
natural choice for the hybrid method. As we see
the performance of nbu is about 7% better than the
best performance using a subjectivity-based method
(in terms of accuracy). The performance of the
smoothed labels (decision tree-based clustering) is
comparable to that of nbu. However, the hybrid
method hyb1/3 yields an additional 3% relative im-
provement over nbu. Paired t-test over the accura-
cies for these 40 sites shows both hyb1/3 and nbu
to be statistically significantly better than the opf?
with best accuracy (with p < 0.05, p < 0.005,
respectively), and hyb1/3 to be statistically signifi-
cantly better than nbu (with p < 0.05).

5.3 Cross-validation on S40

While the main focus of our paper is to study
how to detect reviews without human labels, we
present cross validation results on S40 as a compar-
ison point. The goal of this experiment is to get a
sense of the best possible accuracy and f-measure
numbers using labeled data and the state-of-the-
art method for text classification, namely, SVMs.
In other words, the performance numbers obtained
through SVMs and cross-validation can be thought
of as realistic “upper bounds” on the performance of
content-based review detection. We used SVMlight

(svmlight.joachims.org) for this purpose.
The cross-validation experiment was conducted

as follows. We split the data by site to simulate the
more realistic setting where pages in the test set do
not necessarily come from a known site. Each fold
consisted of one site from each size category; thus,
36 of the 40 sites in S40 were used for training and
the remainder for testing. Over ten folds, the aver-
age performance was: accuracy .795, precision .759,
recall .658, and f-measure .705.

Thus our methods in Section 3 come reason-
ably close to the “upper bound” given by SVMs
and human-labeled data. In fact, while the su-
pervised SVMs statistically significantly outperform
nbu, they are statistically indistinguishable from
hyb1/3 via paired t-test over site-level accuracies.

6 Conclusions

In this paper we proposed an automatic method to
perform efficient and large-scale detection of re-
views. Our method is based on two principles:
Building a classifier from a large number of noisy
labeled examples and using the site structure to im-
prove the performance of this classifier. Extensive
experiments suggest that our method is competitive
against supervised learning methods that depend on
expensive human labels. There are several interest-
ing avenues for future research, including improv-
ing the current method for exploiting the site struc-
ture. On a separate note, previous research has ex-
plicitly studied sentiment analysis as an application
of transfer learning (Blitzer et al., 2007). Given the
diverse range of topics present in our dataset, ad-
dressing topic-dependency is also an interesting fu-
ture research direction.
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Abstract

Work on sentiment analysis often focuses on
the words and phrases that people use in
overtly opinionated text. In this paper, we in-
troduce a new approach to the problem that
focuses not on lexical indicators, but on the
syntactic “packaging” of ideas, which is well
suited to investigating the identification ofim-
plicit sentiment, or perspective. We establish a
strong predictive connection between linguis-
tically well motivated features and implicit
sentiment, and then show how computational
approximations of these features can be used
to improve on existing state-of-the-art senti-
ment classification results.

1 Introduction

As Pang and Lee (2008) observe, the last several
years have seen a “land rush” in research on senti-
ment analysis and opinion mining, with a frequent
emphasis on the identification of opinions in evalua-
tive text such as movie or product reviews. How-
ever, sentiment also may be carried implicitly by
statements that are not only non-evaluative, but not
even visibly subjective. Consider, for example, the
following two descriptions of the same (invented)
event:

1(a) On November 25, a soldier veered his jeep into
a crowded market and killed three civilians.

(b) On November 25, a soldier’s jeep veered into a
crowded market, causing three civilian deaths.

∗This work was done while the first author was a student in
the Department of Linguistics, University of Maryland.

Both descriptions appear on the surface to be objec-
tive statements, and they use nearly the same words.
Lexically, the sentences’ first clauses differ only in
the difference between’s andhis to express the rela-
tionship between the soldier and the jeep, and in the
second clauses bothkill and deathare terms with
negative connotations, at least according to the Gen-
eral Inquirer lexicon (Stone, 1966). Yet the descrip-
tions clearly differ in the feelings they evoke: if the
soldier were being tried for his role in what hap-
pened on November 25, surely the prosecutor would
be more likely to say (1a) to the jury, and the defense
attorney (1b), rather than the reverse.1

Why, then, should a description like (1a) be per-
ceived as less sympathetic to the soldier than (1b)?
If the difference is not in the words, it must be in
the way they are put together; that is, thestructure
of the sentence. In Section 2, we offer a specific hy-
pothesis about the connection between structure and
implicit sentiment: we suggest that the relationship
is mediated by a set of “grammatically relevant” se-
mantic properties well known to be important cross-
linguistically in characterizing the interface between
syntax and lexical semantics. In Section 3, we val-
idate this hypothesis by means of a human ratings
study, showing that these properties are highly pre-
dictive of human sentiment ratings. In Section 4, we
introduceobservable proxies for underlying seman-
tics(OPUS), a practical way to approximate the rele-
vant semantic properties automatically as features in
a supervised learning setting. In Section 5, we show
that these features improve on the existing state of
the art in automatic sentiment classification. Sec-

1We refer readers not sharing this intuition to Section 3.
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tions 6 and 7 discuss related work and summarize.

2 Linguistic Motivation

Verbal descriptions of an event often carry along
with them an underlying attitude toward what is be-
ing described. By framing the same event in differ-
ent ways, speakers or authors “select some aspects
of a perceived reality and make them more salient
in a communicating text, in such a way as to pro-
mote a particular problem definition, causal inter-
pretation, moral evaluation, and/or treatment recom-
mendation” (Entman, 1993, p. 52). Clearly lexi-
cal choices can accomplish this kind of selection,
e.g. choosing to describe a person as aterrorist
rather than afreedom fighter, or referencingkiller
whales rather thanorcas.2 Syntactic choices can
also have framing effects. For example, Ronald Rea-
gan’s famous use of the passive construction, “Mis-
takes were made” (in the context of the Iran-Contra
scandal), is a classic example of framing or spin:
used without aby-phrase, the passive avoids iden-
tifying a causal agent and therefore sidesteps the is-
sue of responsibility (Broder, 2007). A toddler who
says “My toy broke” instead of “I broke my toy” is
employing the same linguistic strategy.

Linguists have long studied syntactic variation
in descriptions of the same event, often under the
general heading of syntactic diathesis alternations
(Levin, 1993; Levin and Hovav, 2005). This line
of research has established a set of semantic prop-
erties that are widely viewed as “grammatically rel-
evant” in the sense that they enable generalizations
about syntactic “packaging” of meaning within (and
across) the world’s languages. For example, the
verb break in English participates in the causative-
inchoative alternation (causative eventX broke Y
can also be expressed without overt causation asY
broke), but the verbclimb does not (X also causes
the event inX climbed Y, but that event cannot be
expressed asY climbed). These facts about partic-
ipation in the alternation turn out to be connected
with the fact that a breaking event entails achange of
statein Y but a climbing event does not. Grammati-
cally relevant semantic properties of events and their

2Supporters of an endangered species listing in Puget Sound
generally referred to the animals asorcas, while opponents gen-
erally saidkiller whales(Harden, 2006).

participants — causation, change of state, and others
— are central not only in theoretical work on lex-
ical semantics, but in computational approaches to
the lexicon, as well (e.g. (Pustejovsky, 1991; Dorr,
1993; Wu and Palmer, 1994; Dang et al., 1998)).

The approach we propose draws on two influ-
ential discussions about grammatically relevant se-
mantic properties in theoretical work on lexical se-
mantics. First, Dowty (1991) characterizes gram-
matically relevant properties of a verb’s arguments
(e.g. subject and object) via inferences that follow
from the meaning of the verb. For example, expres-
sions likeX murders Yor X interrogates Yentail
that subject X caused the event.3 Second, Hopper
and Thompson (1980) characterize “semantic transi-
tivity” using similar properties, connecting semantic
features to morphosyntactic behavior across a wide
variety of languages.

Bringing together Dowty with Hopper and
Thompson, we find 13 semantic properties or-
ganized into three groups, corresponding to the
three components of a canonical transitive clause,
expressed asX verb Y in English.4 Proper-
ties associated with Xinvolve volitional involve-
ment in the event or state, causation of the event,
sentience/awareness and/or perception, causing a
change of state inY, kinesis or movement, and ex-
istence independent of the event.Properties asso-
ciated with the event or state conveyed by the verb
include aspectual features of telicity (a defined end-
point) and punctuality (the latter of which may be
inversely related to a property known as incremen-
tal theme). Properties associated with Yinclude
affectedness, change of state, (lack of) kinesis or
movement, and (lack of) existence independent of
the event.

Now, observe that this set of semantic proper-
ties involves many of the questions that would nat-
urally help to shape one’s opinion about the event
described byveer in (1). Was anyone or anything
affected by what took place, and to what degree?
Did the event just happen or was it caused? Did the
event reach a defined endpoint? Did participation in

3Kako (2006) has verified that people make these inferences
based on X’s syntactic position even when a semantically empty
nonsense verb is used.

4We are deliberately sidestepping the choice of terminology
for X and Y, e.g. proto-Patient, theme, etc.
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the event involve conscious thought or intent? Our
hypothesis is that the syntactic aspects of “framing”,
as characterized by Entman, involve manipulation of
these semantic properties, even when overt opinions
are not being expressed. That is, we propose a con-
nection between syntactic choices and implicit senti-
ment mediated by the very same semantic properties
that linguists have already identified as central when
connecting surface expression to underlying mean-
ing more generally.

3 Empirical Validation

We validated the hypothesized connection between
implicit sentiment and grammatically relevant se-
mantic properties using psycholinguistic methods,
by varying the syntactic form of event descriptions,
and showing that the semantic properties of descrip-
tions do indeed predict perceived sentiment.5

3.1 Semantic property ratings

Materials. Stimuli were constructed using 11
verbs of killing, which are widely viewed as proto-
typical for the semantic properties of interest here
(Lemmens, 1998):X killed Y normally involves
conscious, intentional causation byX of a kinetic
event that causes a (rather decisive and clearly ter-
minated!) change of state inY . The verbs comprise
two classes: the “transitive” class, involving ex-
ternally caused change-of-state verbs (kill , slaugh-
ter, assassinate, shoot, poison), and the “ergative”
class (strangle, smother, choke, drown, suffocate,
starve), within which verbs are internally caused
(McKoon and MacFarland, 2000) or otherwise em-
phasize properties of the object. Variation of syntac-
tic description involved two forms: a transitive syn-
tactic frame with a human agent as subject (“transi-
tive form”, 2a), and a nominalization of the verb as
subject and the verbkill as the predicate (“nominal-
ized form”, 2b).

2(a) The gunmen shot the opposition leader
(b) The shooting killed the opposition leader

Participants and procedure. A set of 18 vol-
unteer participants, all native speakers of English,
were presented with event descriptions and asked to
answer questions probing both Dowty’s proto-role

5Full details and materials in Greene (2007).

properties as well as Hopper and Thompson’s se-
mantic transitivity components, responding via rat-
ings on a 1-to-7 scale. For example, the questions
probing volition were: “In this event, how likely
is it that 〈subject〉 chose to be involved?”, where
〈subject〉 wasthe gunmenandthe shooting, for 2(a-
b), respectively.6

3.2 Sentiment ratings

Materials. We used the materials above to con-
struct short, newspaper-like paragraphs, each one
accompanied by a “headline” version of the same
syntactic descriptions used above. For example,
given this paragraph:

A man has been charged for the suffocation of a

woman early Tuesday morning. City police say

the man suffocated the 24-year-old woman using

a plastic garbage bag. The woman, who police say

had a previous relationship with her attacker, was

on her way to work when the incident happened.

Based on information provided by neighbors, po-

lice were able to identify the suspect, who was ar-

rested at gunpoint later the same day.

the three alternative headlines would be:

3(a) Man suffocates 24-year old woman
(b) Suffocation kills 24-year-old woman
(c) 24-year-old woman is suffocated

Some paragraphs were based on actual news sto-
ries.7 In all paragraphs, there is an obvious nomi-
nal referent for both the perpetrator and the victim,
it is clear that the victim dies, and the perpetrator
in the scenario is responsible for the resulting death
directly rather than indirectly (e.g. through negli-

6Standard experimental design methods were followed with
respect to counterbalancing, block design, and distractorstim-
uli; for example, no participant saw more than one of 2(a) or
2(b), and all participants saw equal numbers of transitive and
nominalized descriptions. The phraseIn this eventwas repeated
in each question and emphasized visually in order to encourage
participants to focus on the particular event described in the sen-
tence, rather than on the entities or events denoted in general.

7In those cases no proper names were used, to avoid any
inadvertent emotional reactions or legal issues, althoughthe de-
scriptions retained emotional impact because we wanted readers
to have some emotional basis with which to judge the headlines.
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gence).8 The stem of the nominalization always ap-
peared in the event description in either verbal or
nominal form.

Participants and procedure. A set of 31 volun-
teers, all native speakers of English, were presented
with the paragraph-length descriptions and accom-
panying headlines. As a measure of sentiment, par-
ticipants were asked to rate headlines on a 1-to-7
scale with respect to how sympathetic they perceive
the headline to be toward the perpetrator. For exam-
ple, given the paragraph and one of the associated
headlines in (3), a participant would be asked to rate
“How sympathetic or unsympathetic isthis headline
to the man?”9

3.3 Analysis and discussion

Unsurprisingly, but reassuringly, an analysis of the
sentiment ratings yields a significant effect of syn-
tactic form on sympathy toward the perpetrator
(F (2, 369) = 33.902, p < .001), using a mixed
model ANOVA run with the headline form as fixed
effect. The transitive form of the headline yielded
significantly lower sympathy ratings than the nom-
inalized or passive forms in pairwise comparisons
(both p < .001). We have thus confirmed empir-
ically that Reagan’s “Mistakes were made” was a
wise choice of phrasing on his part.

More important, we are now in a position to ex-
amine the relationship between syntactic forms and
perceived sentiment in more detail. We performed
regression analyses treating the 13 semantic prop-
erty ratings plus the identity of the verb as indepen-
dent variables to predict sympathy rating as a de-
pendent variable, using the 24 stimulus sentences
that bridged both collections of ratings.10 Consid-

8An alert reader may observe that headlines with nominal-
ized subjects using the verbkill require some other nominaliza-
tion, so they don’t say “Killing kills victim”. For these cases
in the data, an appropriate nominalization drawn from the event
description was used (e.g.,explosion).

9Again, standard experimental design methods were used
with respect to block design, distractor stimuli, etc. The phrase
this headlinewas emphasized to stress that it is the headline
being rated, not the story. A second question rating sympathy
toward the victim was also asked in each case, as an additional
distractor.

10These involved only the transitive and nominalized forms,
because many of the questions were inapplicable to the passive
form. Since the two ratings studies involved different subject

ering semantic properties individually, we find that
volition has the strongest correlation with sympathy
(a negative correlation, withr = −.776), followed
by sentience (r = −.764) and kinesis/movement
(r = −.751). Although performing a multiple re-
gression with all variables for this size dataset is im-
possible, owing to overfitting (as a rule of thumb,
5 to 10 observed items are necessary per each in-
dependent variable), a multiple regression involving
verb, volition, and telicity as independent variables
yieldsR = .88, R2 = .78 (p < .001). The value for
adjustedR2, which explicitly takes into account the
small number of observations, is74.1.

In summary, then, this ratings study confirms the
influence of syntactic choices on perceptions of im-
plicit sentiment. Furthermore, it provides support
for the idea that this influence is mediated by “gram-
matically relevant” semantic properties, demonstrat-
ing that these accounted for approximately 75% of
the variance in implicit sentiment expressed by al-
ternative headlines describing the same event.

4 Observable Approximation

Thus far, we have established a predictive connec-
tion between syntactic choices and underlying or im-
plicit sentiment, mediated by grammatically relevant
semantic properties. In an ideal world, we could har-
ness the predictive power of those properties by us-
ing volition, causation, telicity, etc. as features for
regression or classification in sentiment prediction
tasks. Unfortunately, the properties are not directly
observable, and neither automatic annotators nor la-
beled training data currently exist.

We therefore pursue a different strategy, which we
refer to asobservable proxies for underlying seman-
tics (OPUS). It can be viewed as a middle ground
between relying on construction-level syntactic dis-
tinctions (such as the 3-way transitive, nominalized
subject, passive distinction in Section 3) and an-
notation of fine-grained semantic properties. The
key idea is to use observable grammatical relations,
drawn from the usages of terms determined to be
relevant to a domain, as proxies for the underlying
semantic properties that gave rise to their syntactic
realization using those relations. Automatically cre-

pools, regression models were run over the mean values of each
observation in the experimental data.
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ated features based on those observable proxies are
then used in classification as described in Section 5.

In order to identify the setT of terms relevant
to a particular document collection, we adopt the
relative frequency ratio (Damerau, 1993),R(t) =
Rt

domain/R
t
reference, whereRt

c = ft
c

Nc
is the ratio of

term t’s frequency in corpusc to the sizeNc of that
corpus. R(t) is a simple but effective comparison
of a term’s prevalence in a particular collection as
compared to a general reference corpus. We used
the British National Corpus as the reference because
it is both very large and representative of text from a
wide variety of domains and genres. The threshold
of R(t) permitting membership inT is an experi-
mental parameter.

OPUS features are defined in terms of syntactic
dependency relations involving terms inT . Given a
setD of syntactic dependency relations, features are
of the formt : d or d : t, with d ∈ D, t ∈ T . That
is, they are term-dependency pairs extracted from
term-dependency-term dependency tuples, preserv-
ing whether the term is the head or the dependent
in the dependency relation. In addition, we add two
construction-specific features:TRANS:v, which rep-
resents verbv in a canonical, syntactically transitive
usage, andNOOBJ:v, present when verbv is used
without a direct object.11

Example 4 shows source text (bolded clause in
4a), an illustrative subset of parser dependencies
(4b), and corresponding OPUS features (4c):

4(a) Life Without Parole does not eliminate the risk
thatthe prisoner will murder a guard, a visi-
tor, or another inmate.

(b) nsubj(murder, prisoner); aux(murder, will);
dobj(murder, guard)

(c) TRANS:murder, murder:nsubj, nsubj:prisoner,
murder:aux, aux:will, murder:dobj, dobj:guard

Intuitively the presence ofTRANS:murder suggests
the entire complex of semantic properties discussed
in Section 2, bringing together the impliciation of
volition, causation, etc. on the part ofprisoner
(as does nsubj:prisoner), affectedness and change of
state on the part ofguard (as does dobj:guard), and
so forth.

11We parsed English text using the Stanford parser.

The NOOBJ features can capture a habitual read-
ing, or in some cases a detransitivizing effect as-
sociated with omission of the direct object (Olsen
and Resnik, 1997). The bold text in (5) yields
NOOBJ:kill as a feature.

5(a) At the same time, we should never ignore the
risks of allowing the inmateto kill again .

In this case, omitting the direct object decreases the
extent to which the killing event is interpreted as
telic, and it eliminates the possibility of attributing
change-of-state to a specific affected object (much
like “Mistakes were made” avoids attributing cause
to a specified subject), placing the phrasing at a
less “semantically transitive” point on the transi-
tivity continuum (Hopper and Thompson, 1980).
Some informants find a perceptible increase in neg-
ative sentiment towardinmatewhen the sentence is
phrased as in 5(b):

5(b) At the same time, we should never ignore the
risks of allowing the inmateto kill someone
again.

5 Computational Application

Having discussed linguistic motivation, empirical
validation, and practical approximation of seman-
tically relevant features, we now present two stud-
ies demonstrating their value in sentiment classifica-
tion. For the first study, we have constructed a new
data set particularly well suited for testing our ap-
proach, based on writing about the death penalty. In
our second study, we make a direct comparison with
prior state-of-the-art classification using the Bitter
Lemons corpus of Lin et al. (2006).

5.1 Predicting Opinions of the Death Penalty

Corpus. We constructed a new corpus for exper-
imentation on implicit sentiment by downloading
the contents of pro- and anti-death-penalty Web
sites and manually checking, for a large subset,
that the viewpoints expressed in documents were as
expected. The collection, which we will refer to
as the DP corpus, comprises documents from five
pro-death-penalty sites and three anti-death-penalty
sites, and the corpus was engineered to have an even
balance, 596 documents per side.12

12Details in Greene (2007).
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Frequent bigram baseline. We adopted a super-
vised classification approach based on wordn-gram
features, using SVM classification in the WEKA
machine learning package. In initial exploration us-
ing both unigrams and bigrams, and using both word
forms and stems, we found that performance did not
differ significantly, and chose stemmed bigrams for
our baseline comparisons. In order to control for the
difference in the number of features available to the
classifier in our comparisons, we use theN most fre-
quent stemmed bigrams as the baseline feature set
whereN is matched to number of OPUS features
used in the comparison condition.

OPUS-kill verbs: OPUS features for manually
selected verbs. We created OPUS features for 14
verbs — those used in Section 3, plusmurder, exe-
cute, andstaband their nominalizations (including
both event and-er nominals, e.g. bothkilling and
killer) — generatingN = 1016 distinct features.

OPUS-domain: OPUS features for domain-
relevant verbs. We created OPUS features for the
117 verbs for which the relative frequency ratio
was greater than 1. This list includes many of the
kill verbs we used in Section 3, and introduces,
among others, many transitive verbs describing acts
of physical force (e.g.rape, rob, steal, beat, strike,
force, fight) as well as domain-relevant verbs such
astestify, convict, andsentence. Included verbs near
the borderline included, for example,hold, watch,
allow, andtry. Extracting OPUS features for these
verbs yieldedN = 7552 features.

Evaluation. Cross-validation at the document
level does not test what we are interested in, since
a classifier might well learn to bucket documents ac-
cording to Web site, not according to pro- or anti-
death-penalty sentiment. To avoid this difficulty, we
performed site-wise cross-validation. We restricted
our attention to the two sites from each perspec-
tive with the most documents, which we refer to as
pro1, pro2, anti1, andanti2, yielding 4-fold cross-
validation. Each foldftrain,test is defined as con-
taining all documents from one pro and one anti site
for training, using all documents from the remain-
ing pro and anti sites for testing. So, for exam-
ple, fold f11,22 uses all documents frompro1 and
anti1 in training, and all documents frompro2 and

Condition N features SVM accuracy

Baseline 1016 68.37
OPUS-kill verbs 1016 82.09
Baseline 7552 71.96
OPUS-domain 7552 88.10

Table 1: Results for 4-fold site-wise cross-validation us-
ing the DP corpus

Condition N features SVM accuracy
Baseline 1518 55.95
OPUS-frequent verbs 1518 55.95
OPUS-kill verbs 1062 66.67

Table 2: DP corpus comparison for OPUS features based
on frequent vs. domain-relevant verbs

anti2 for testing.13 As Table 1 shows, OPUS fea-
tures provide substantial and statistically significant
gains (p < .001).

As a reality check to verify that it is domain-
relevant verb usages and the encoding of events they
embody that truly drives improved classification, we
extracted OPUS features for the 14 most frequent
verbs found in the DP Corpus that werenot in our
manually created list of kill verbs, along with their
nominalizations. Table 2 shows the results of a clas-
sification experiment using a single train-test split,
training on 1062 documents frompro1, pro2, anti1,
anti2 and testing on 84 test documents from the sig-
nificantly smaller remaining sites. Using OPUS
features for the most frequent non-kill verbs fails
to beat the baseline, establishing that it is not sim-
ply term frequency, the presence of particular gram-
matical relations, or a larger feature set that thekill -
verb OPUS model was able to exploit, but rather the
properties of event encodings involving thekill verbs
themselves.

5.2 Predicting Points of View in the
Israeli-Palestinian Conflict

In order to make a direct comparison here with prior
state-of-the-art work on sentiment analysis, we re-
port on sentiment classification using OPUS features
in experiments using a publicly available corpus in-
volving opposing perspectives, the Bitter Lemons

13Site (# of documents): pro1= clarkprosecutor.org (437),
pro2= prodeathpenalty.com (117), anti1= deathpenaltyinfo.org
(319), anti2= nodeathpenalty.org (212)
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(hence BL) corpus introduced by Lin et al. (2006).

Corpus. The Bitter Lemons corpus comprises es-
says posted atwww.bitterlemons.org,which,
in the words of the site, “present Israeli and Pales-
tinian viewpoints on prominent issues of concern”.
As a corpus, it has a number of interesting proper-
ties. First, its topic area is one of significant interest
and considerable controversy, yet the general tenor
of the web site is one that eschews an overly shrill
or extreme style of writing. Second, the site is orga-
nized in terms of issue-focused weekly editions that
include essays with contrasting viewpoints from the
site’s two editors, plus two essays, also contrasting,
from guest editors. This creates a natural balance be-
tween the two sides and across the subtopics being
discussed. The BL corpus as prepared by Lin et al.
contains 297 documents from each of the Israeli and
Palestinian viewpoints, averaging 700-800 words in
length.

Lin et al. classifiers. Lin et al. report results on
distinguishing Israeli vs. Palestinian perspectives
using an SVM classifier, a naive Bayes classifier
NB-M using maximum a posteriori estimation, and a
naive Bayes classifier NB-B using full Bayesian in-
ference. (Document perspectives are labeled clearly
on the site.) We continue to use the WEKA SVM
classifier, but compare our results to both their SVM
and NB-B, since the latter achieved their best results.

OPUS features. As in Section 5.1, we experi-
mented with OPUS features driven by automati-
cally extracted lists of domain-relevant verbs. For
these experiments, we included domain-relevant
nouns, and we varied a thresholdρ for the rela-
tive frequency ratio, including only terms for which
log(R(t)) > ρ. In addition, we introduced a gen-
eral filter on OPUS features, eliminating syntactic
dependency types that do not usefully reflect seman-
tically relevant properties: det, predet, preconj, prt,
aux, auxpas, cc, punct, complm, mark, rel, ref, expl.

Evaluation. Lin et al. describe two test scenar-
ios. In the first, referred to as Test Scenario 1, they
trained on documents written by the site’s guests,
and tested on documents from the site’s editors. Test
Scenario 2 represents the reverse, training on docu-
ments from the site editors and testing on documents
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Figure 1: Results on the Bitter Lemons corpus

from guest authors. As in our site-wise cross vali-
dation for the DP corpus, this strategy ensures that
what is being tested is classification according to the
viewpoint, not author or topic.

Figure 1 (top) summarizes a large set of experi-
ments for Test Scenario 1, in which we varied the
values ofρ for verbs and nouns. Each experiment,
using a particular〈ρ(verbs), ρ(nouns)〉, corresponds
to a vertical strip on thex-axis. The points on that
strip include theρ values for verbs and nouns, mea-
sured by the scale on they-axis at the left of the
figure; the accuracy of Lin et al.’s SVM (88.22% ac-
curacy, constant across all our variations); the accu-
racy of Lin et al.’s NB-B classifier (93.46% accu-
racy, constant across all our variations), and the ac-
curacy of our SVM classifier using OPUS features,
which varies depending on theρ values. Across 423
experiments, our average accuracy is 95.41%, with
the best accuracy achieved being 97.64%. Our clas-
sifier underperformed NB-B slightly, with accura-
cies from 92.93% to 93.27%, in just 8 of the 423
experiments.

Figure 1 (bottom) provides a similar summary for
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experiments in Test Scenario 2. The first thing to no-
tice is that accuracy for all methods is lower than for
Test Scenario 1. This is not terribly surprising: it is
likely that training a classifier on the more uniform
authorship of the editor documents builds a model
that generalizes less well to the more diverse au-
thorship of the guest documents (though accuracy
is still quite high). In addition, the editor-authored
documents comprise a smaller training set, consist-
ing of 7,899 sentences, while the guest documents
have a total of 11,033 sentences, a 28% difference.
In scenario 2, we obtain average accuracy across ex-
periments of 83.12%, with a maximum of 85.86%,
in this case outperforming the 81.48% obtained by
Lin’s SVM fairly consistently, and in some cases ap-
proaching or matching NB-B at 85.85%.

6 Related Work

Pang and Lee’s (2008) excellent monograph pro-
vides a thorough, well organized, and relatively re-
cent description of computational work on senti-
ment, opinion, and subjectivity analysis.

The problem of classifying underlying sentiment
in statements that are not overtly subjective is less
studied within the NLP literature, but it has received
some attention in other fields. These include, for ex-
ample, research on content analysis in journalism,
media studies, and political economy (Gentzkow
and Shapiro, 2006a; Gentzkow and Shapiro, 2006b;
Groseclose and Milyo, 2005; Fader et al., 2007); au-
tomatic identification of customer attitudes for busi-
ness e-mail routing (Durbin et al., 2003). And, of
course, the study of perceptions in politics and me-
dia bears a strong family resemblance to real-world
marketing problems involving reputation manage-
ment and business intelligence (Glance et al., 2005).

Within computational linguistics, what we call
implicit sentiment was introduced as a topic of study
by Lin et al. (2006) under the rubric of identifying
perspective, though similar work had begun earlier
in the realm of political science (e.g. (Laver et al.,
2003)). Other recent work focusing on the notion of
perspective or ideology has been reported by Martin
and Vanberg (2008) and Mullen and Malouf (2008).

Among prior authors, Gamon’s (2004) research is
perhaps closest to the work described here, in that
he uses some features based on a sentence’s logical

form, generated using a proprietary system. How-
ever, his features are templatic in nature in that they
do not couple specific lexical entries with their logi-
cal form. Hearst (1992) and Mulder et al. (2004) de-
scribe systems that make use of argument structure
features coupled with lexical information, though
neither provides implementation details or experi-
mental results.

In terms of computational experimentation, work
by Thomas et al. (2006), predicting yes and no
votes in corpus of United States Congressional floor
debate speeches, is quite relevant. They combined
SVM classification with a min-cut model on graphs
in order to exploit both direct textual evidence and
constraints suggested by the structure of Congres-
sional debates, e.g. the fact that the same individ-
ual rarely gives one speech in favor of a bill and an-
other opposing it. We have extend their method to
use OPUS features in the SVM and obtained signifi-
cant improvements over their classification accuracy
(Greene, 2007; Greene and Resnik, in preparation).

7 Conclusions

In this paper we have introduced an approach to
implicit sentiment motivated by theoretical work in
lexical semantics, presenting evidence for the role of
semantic properties in human sentiment judgments.
This research is, to our knowledge, the first to draw
an explicit and empirically supported connection be-
tween theoretically motivated work in lexical se-
mantics and readers’ perception of sentiment. In ad-
dition, we have reported positive sentiment classifi-
cation results within a standard supervised learning
setting, employing a practical first approximation to
those semantic properties, including positive results
in a direct comparison with the previous state of the
art.

Because we computed OPUS features for opin-
ionated as well as non-evaluative language in our
corpora, obtaining overall positive results, we be-
lieve these features may also improve conventional
opinion labeling for subjective text. This will be in-
vestigated in future work.
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Abstract

In this paper, we explore a streaming al-
gorithm paradigm to handle large amounts
of data for NLP problems. We present an
efficient low-memory method for construct-
ing high-order approximaten-gram frequency
counts. The method is based on a determinis-
tic streaming algorithm which efficiently com-
putes approximate frequency counts over a
stream of data while employing a small mem-
ory footprint. We show that this method eas-
ily scales to billion-word monolingual corpora
using a conventional (8 GB RAM) desktop
machine. Statistical machine translation ex-
perimental results corroborate that the result-
ing high-n approximatesmall language model
is as effective as models obtained from other
count pruning methods.

1 Introduction

In many NLP problems, we are faced with the chal-
lenge of dealing with large amounts of data. Many
problems boil down to computing relative frequen-
cies of certain items on this data. Items can be
words, patterns, associations,n-grams, and others.
Language modeling (Chen and Goodman, 1996),
noun-clustering (Ravichandran et al., 2005), con-
structing syntactic rules for SMT (Galley et al.,
2004), and finding analogies (Turney, 2008) are
examples of some of the problems where we need
to compute relative frequencies. We use language
modeling as a canonical example of a large-scale
task that requires relative frequency estimation.

Computing relative frequencies seems like an
easy problem. However, as corpus sizes grow,
it becomes a highly computational expensive task.

Cutoff Size BLEU NIST MET
Exact 367.6m 28.73 7.691 56.32

2 229.8m 28.23 7.613 56.03
3 143.6m 28.17 7.571 56.53
5 59.4m 28.33 7.636 56.03
10 18.3m 27.91 7.546 55.64
100 1.1m 28.03 7.607 55.91
200 0.5m 27.62 7.550 55.67

Table 1: Effect of count-based pruning on SMT per-
formance using EAN corpus. Results are according to
BLEU, NIST and METEOR (MET) metrics. Bold #s are
not statistically significant worse than exact model.

Brants et al. (2007) used1500 machines for a
day to compute the relative frequencies ofn-grams
(summed over all orders from1 to 5) from 1.8TB
of web data. Their resulting model contained300
million uniquen-grams.

It is not realistic using conventional computing re-
sources to use all the300 million n-grams for ap-
plications like speech recognition, spelling correc-
tion, information extraction, and statistical machine
translation (SMT). Hence, one of the easiest way to
reduce the size of this model is to use count-based
pruning which discards alln-grams whose count is
less than a pre-defined threshold. Although count-
based pruning is quite simple, yet it is effective for
machine translation. As we do not have a copy of
the web, we will use a portion of gigaword i.e. EAN
(see Section 4.1) to show the effect of count-based
pruning on performance of SMT (see Section 5.1).
Table 1 shows that using a cutoff of100 produces a
model of size1.1 million n-grams with a Bleu score
of 28.03. If we compare this with an exact model
of size367.6 million n-grams, we see an increase of
0.8 points in Bleu (95% statistical significance level
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ǫ Size BLEU NIST MET
Exact 367.6m 28.73 7.691 56.32
1e-10 218.4m 28.64 7.669 56.33
5e-10 171.0m 28.48 7.666 56.38
1e-9 148.0m 28.56 7.646 56.51
5e-9 91.9m 28.27 7.623 56.16
1e-8 69.4m 28.15 7.609 56.19
5e-7 28.5m 28.08 7.595 55.91

Table 2: Effect of entropy-based pruning on SMT perfor-
mance using EAN corpus. Results are as in Table 1

is ≈ 0.53 Bleu). However, we need300 times big-
ger model to get such an increase. Unfortunately, it
is not possible to integrate such a big model inside a
decoder using normal computation resources.

A better way of reducing the size ofn-grams is to
use entropy pruning (Stolcke, 1998). Table 2 shows
the results with entropy pruning with different set-
tings ofǫ. We see that for three settings ofǫ equal to
1e-10, 5e-10 and1e-9, we get Bleu scores compara-
ble to the exact model. However, the size of all these
models is not at all small. The size of smallest model
is 25% of the exact model. Even with this size it is
still not feasible to integrate such a big model inside
a decoder. If we take a model of size comparable to
count cutoff of100, i.e., withǫ = 5e-7, we see both
count-based pruning as well as entropy pruning per-
forms the same.

There also have been prior work on maintain-
ing approximate counts for higher-order language
models (LMs) ((Talbot and Osborne, 2007a; Tal-
bot and Osborne, 2007b; Talbot and Brants, 2008))
operates under the model that the goal is to store a
compressed representation of a disk-resident table of
counts and use this compressed representation to an-
swer count queries approximately.

There are two difficulties with scaling all the
above approaches as the order of the LM increases.
Firstly, the computation time to build the database of
counts increases rapidly. Secondly, the initial disk
storage required to maintain these counts, prior to
building the compressed representation is enormous.

The method we propose solves both of these prob-
lems. We do this by making use of thestreaming al-
gorithm paradigm (Muthukrishnan, 2005). Working
under the assumption that multiple-GB models are
infeasible, our goal is to instead of estimating a large
model and then compressing it, we directly estimate

a small model. We use a deterministic streaming al-
gorithm (Manku and Motwani, 2002) that computes
approximate frequency counts of frequently occur-
ring n-grams. This scheme is considerably more ac-
curate in getting the actual counts as compared to
other schemes (Demaine et al., 2002; Karp et al.,
2003) that find the set of frequent items without car-
ing about the accuracy of counts.

We use these counts directly as features in an
SMT system, and propose a direct way to integrate
these features into an SMT decoder. Experiments
show that directly storing approximate counts of fre-
quent5-grams compared to using count or entropy-
based pruning counts gives equivalent SMT perfor-
mance, while dramatically reducing the memory us-
age and getting rid of pre-computing a large model.

2 Background

2.1 n-gram Language Models

Language modeling is based on assigning probabil-
ities to sentences. It can either compute the proba-
bility of an entire sentence or predict the probability
of the next word in a sequence. Letwm

1 denote a se-
quence of words (w1, . . . , wm). The probability of
estimating wordwm depends on previousn-1 words
wheren denotes the size ofn-gram. This assump-
tion that probability of predicting a current word de-
pends on the previous words is called a Markov as-
sumption, typically estimated by relative frequency:

P (wm | wm−1
m−n+1) =

C(wm−1
m−n+1wm)

C(wm−1
m−n+1)

(1)

Eq 1 estimates then-gram probability by taking the
ratio of observed frequency of a particular sequence
and the observed frequency of the prefix. This is
precisely the relative frequency estimate we seek.

2.2 Large-scale Language modeling

Using higher order LMs to improve the accuracy
of SMT is not new. (Brants et al., 2007; Emami
et al., 2007) built5-gram LMs over web using dis-
tributed cluster of machines and queried them via
network requests. Since the use of cluster of ma-
chines is not always practical, (Talbot and Osborne,
2007b; Talbot and Osborne, 2007a) showed a ran-
domized data structure called Bloom filter, that can
be used to construct space efficient language models
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for SMT. (Talbot and Brants, 2008) presented ran-
domized language model based on perfect hashing
combined with entropy pruning to achieve further
memory reductions. A problem mentioned in (Tal-
bot and Brants, 2008) is that the algorithm that com-
putes the compressed representation might need to
retain the entire database in memory; in their paper,
they design strategies to work around this problem.
(Federico and Bertoldi, 2006) also used single ma-
chine and fewer bits to store the LM probability by
using efficient prefix trees.

(Uszkoreit and Brants, 2008) used partially class-
based LMs together with word-based LMs to im-
prove SMT performance despite the large size of
the word-based models used. (Schwenk and Koehn,
2008; Zhang et al., 2006) used higher language mod-
els at time of re-ranking rather than integrating di-
rectly into the decoder to avoid the overhead of
keeping LMs in the main memory since disk lookups
are simply too slow. Now using higher order LMs at
time of re-ranking looks like a good option. How-
ever, the targetn-best hypothesis list is not diverse
enough. Hence if possible it is always better to inte-
grate LMs directly into the decoder.

2.3 Streaming

Consider an algorithm that reads the input from a
read-onlystream from left to right, with no ability
to go back to the input that it has already processed.
This algorithm has working storage that it can use to
store parts of the input or other intermediate compu-
tations. However, (and this is a critical constraint),
this working storage space is significantly smaller
than the input stream length. For typical algorithms,
the storage size is of the order oflogk N , whereN
is the input size andk is some constant.

Stream algorithms were first developed in the
early 80s, but gained in popularity in the late 90s
as researchers first realized the challenges of dealing
with massive data sets. A good survey of the model
and core challenges can be found in (Muthukrish-
nan, 2005). There has been considerable work on the
problem of identifying high-frequency items (items
with frequency above a threshold), and a detailed re-
view of these methods is beyond the scope of this ar-
ticle. A new survey by (Cormode and Hadjielefthe-
riou, 2008) comprehensively reviews the literature.

3 Space-Efficient Approximate Frequency
Estimation

Prior work on approximate frequency estimation for
language models provide a “no-false-negative” guar-
antee, ensuring that counts forn-grams in the model
are returned exactly, while working to make sure the
false-positive rate remains small (Talbot and Os-
borne, 2007a). The notion of approximation we use
is different: in our approach, it is the actual count
values that will be approximated. We also exploit
the fact that low-frequency n-grams, while consti-
tuting the vast majority of the set of unique n-grams,
are usually smoothed away and are less likely to in-
fluence the language model significantly. Discard-
ing low-frequencyn-grams is particularly important
in a stream setting, because it can be shown in gen-
eral that any algorithm that generates approximate
frequency counts for alln-grams requires space lin-
ear in the input stream (Alon et al., 1999).

We employ an algorithm for approximate fre-
quency counting proposed by (Manku and Motwani,
2002) in the context of database management. Fix
parameterss ∈ (0, 1), andǫ ∈ (0, 1), ǫ ≪ s. Our
goal is to approximately find alln-grams with fre-
quency at leastsN . For an input stream ofn-grams
of length N , the algorithm outputs a set of items
(and frequencies) and guarantees the following:

• All items with frequencies exceedingsN are
output (no false negatives).

• No item with frequency less than(s − ǫ)N is
output (few false positives).

• All reported frequencies are less than the true
frequencies by at mostǫN (close-to-exact fre-
quencies).

• The space used by the algorithm is
O(1

ǫ log ǫN).

A simple example illustrates these properties. Let
us fixs = 0.01, ǫ = 0.001. Then the algorithm guar-
antees that alln-grams with frequency at least1%
will be returned, no element with frequency less than
0.9% will be returned, and all frequencies will be no
more than0.1% away from the true frequencies. The
space used by the algorithm isO(log N), which can
be compared to the much larger (close toN ) space
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needed to store the initial frequency counts. In addi-
tion, the algorithm runs in linear time by definition,
requiring only one pass over the input. Note that
there might be1

ǫ elements with frequency at least
ǫN , and so the algorithm uses optimal space (up to
a logarithmic factor).

3.1 The Algorithm

We present a high-level overview of the algorithm;
for more details, the reader is referred to (Manku
and Motwani, 2002). The algorithm proceeds by
conceptually dividing the stream intoepochs, each
containing1/ǫ elements. Note that there areǫN
epochs. Each such epoch has an ID, starting from
1. The algorithm maintains a list of tuples1 of the
form (e, f,∆), wheree is an n-gram, f is its re-
ported frequency, and∆ is the maximum error in the
frequency estimation. While the algorithm readsn-
grams associated with the current epoch, it does one
of two things: if the new elemente is contained in
the list of tuples, it merely increments the frequency
countf . If not, it creates a new tuple of the form
(e, 1, T −1), whereT is the ID of the current epoch.

After each epoch, the algorithm “cleans house” by
eliminating tuples whose maximum true frequency
is small. Formally, if the epoch that just ended
has IDT , then the algorithm deletes all tuples sat-
isfying conditionf + ∆ ≤ T . SinceT ≤ ǫN ,
this ensures that no low-frequency tuples are re-
tained. When all elements in the stream have been
processed, the algorithm returns all tuples(e, f,∆)
wheref ≥ (s−ǫ)N . In practice, however we do not
care about s and return all tuples. At a high level,
the reason the algorithm works is that if an element
has high frequency, it shows up more than once each
epoch, and so its frequency gets updated enough to
stave off elimination.

4 Intrinsic Evaluation

We conduct a set of experiments with approxi-
maten-gram counts (stream counts) produced by
the stream algorithm. We define various metrics on
which we evaluate the quality of stream counts com-
pared with exactn-gram counts (true counts). To

1We use hash tables to store tuples; however smarter data
structures like suffix trees could also be used.

Corpus Gzip-MB M-wrds Perplexity
EP 63 38 1122.69
afe 417 171 1829.57
apw 1213 540 1872.96
nyt 2104 914 1785.84
xie 320 132 1885.33

Table 3: Corpus Statistics and perplexity of LMs made
with each of these corpuses on development set

evaluate the quality of stream counts on these met-
rics, we carry out three experiments.

4.1 Experimental Setup

The freely available English side of Europarl (EP)
and Gigaword corpus (Graff, 2003) is used for
computingn-gram counts. We only use EP along
with two sections of the Gigaword corpus: Agence
France Press English Service(afe) and The New
York Times Newswire Service (nyt). The unigram
language models built using these corpuses yield
better perplexity scores on the development set (see
Section 5.1) compared to The Xinhua News Agency
English Service (xie) and Associated Press World-
stream English Service (apw) as shown in Table 3.
The LMs are build using the SRILM language mod-
elling toolkit (Stolcke, 2002) with modified Kneser-
Ney discounting and interpolation. The evaluation
of stream counts is done on EP+afe+nyt (EAN) cor-
pus, consisting of 1.1 billion words.

4.2 Description of the metrics

To evaluate the quality of counts produced by our
stream algorithm four different metrics are used.
The accuracy metric measures the quality of topN
stream counts by taking the fraction of topN stream
counts that are contained in the topN true counts.

Accuracy=
Stream Counts∩ True Counts

True Counts

Spearman’s rank correlation coefficient or Spear-
man’s rho(ρ) computes the difference between the
ranks of each observation (i.e.n-gram) on two vari-
ables (that are topN stream and true counts). This
measure captures how different the stream count or-
dering is from the true count ordering.

ρ = 1− 6
∑

d2
i

N(N2 − 1)
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di is the difference between the ranks of correspond-
ing elementsXi andYi; N is the number of elements
found in both sets;Xi andYi in our case denote the
stream and true counts.

Mean square error (MSE) quantifies the amount
by which a predicted value differs from the true
value. In our case, it estimates how different the
stream counts are from the true counts.

MSE =
1
N

N∑

i=1

(truei − predictedi)
2

true and predicted denotes values of true and stream
counts;N denotes the number of stream counts con-
tained in true counts.

4.3 Varying ǫ experiments

In our first experiment, we use accuracy,ρ and MSE
metrics for evaluation. Here, we compute5-gram
stream counts with different settings ofǫ on the EAN
corpus.ǫ controls the number of stream counts pro-
duced by the algorithm. The results in Table 4 sup-
port the theory that decreasing the value ofǫ im-
proves the quality of stream counts. Also, as ex-
pected, the algorithm produces more stream counts
with smaller values ofǫ. The evaluation of stream
counts obtained withǫ = 50e-8 and20e-8 reveal that
the stream counts learned with this large value are
more susceptible to errors.

If we look closely at the counts forǫ = 50e-8, we
see that we get at least30% of the stream counts
from 245k true counts. This number is not signifi-
cantly worse than the36% of stream counts obtained
from 4, 018k true counts for the smallest value of
ǫ = 5e-8. However, if we look at the other two met-
rics, the ranking correlationρ of stream counts com-
pared with true counts onǫ = 50e-8 and20e-8 is low
compared to otherǫ values. For the MSE, the error
with stream counts on theseǫm values is again high
compared to other values. As we decrease the value
of ǫ we continually get better results: decreasingǫ
pushes the stream counts towards the true counts.
However, using a smallerǫ increases the memory
usage. Looking at the evaluation, it is therefore ad-
visable to use5-gram stream counts produced with
at mostǫ ≤ 10e-7 for the EAN corpus.

Since it is not possible to compute true7-grams
counts on EAN with available computing resources,

ǫ
5-gram

Acc ρ MSE
produced

50e-8 245k 0.294 -3.6097 0.4954
20e-8 726k 0.326 -2.6517 0.1155
10e-8 1655k 0.352 -1.9960 0.0368
5e-8 4018k 0.359 -1.7835 0.0114

Table 4: Evaluating quality of5-gram stream counts for
different settings ofǫ on EAN corpus

ǫ
7-gram

Acc ρ MSE
produced

50e-8 44k 0.509 0.3230 0.0341
20e-8 128k 0.596 0.5459 0.0063
10e-8 246k 0.689 0.7413 0.0018
5e-8 567k 0.810 0.8599 0.0004

Table 5: Evaluating quality of7-gram stream counts for
different settings ofǫ on EP corpus

we carry out a similar experiment for7-grams on EP
to verify the results for higher ordern-grams2. The
results in Table 5 tell a story similar to our results for
7-grams. The size of EP corpus is much smaller than
EAN and so we see even better results on each of the
metrics with decreasing the value ofǫ. The overall
trend remains the same; here too, settingǫ ≤ 10e-
8 is the most effective strategy. The fact that these
results are consistent across two datasets of different
sizes and differentn-gram sizes suggests that they
will carry over to other tasks.

4.4 Varying top K experiments

In the second experiment, we evaluate the quality
of the topK (sorted by frequency)5-gram stream
counts. Here again, we use accuracy,ρ and MSE for
evaluation. We fix the value ofǫ to 5e-8 and com-
pute5-gram stream counts on the EAN corpus. We
vary the value ofK between100k and4, 018k (i.e
all then-gram counts produced by the stream algo-
rithm). The experimental results in Table 6 support
the theory that stream count algorithm computes the
exact count of most of the high frequencyn-grams.
Looking closer, we see that if we evaluate the algo-
rithm on just the top100k 5-grams (roughly5% of
all 5-grams produced), we see almost perfect results.
Further, if we take the top1, 000k 5-grams (approx-
imately25% of all 5-grams) we again see excellent

2Similar evaluation scores are observed for9-gram stream
counts with different values ofǫ on EP corpus.
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Top K Accuracy ρ MSE
100k 0.994 0.9994 0.01266
500k 0.934 0.9795 0.0105
1000k 0.723 0.8847 0.0143
2000k 0.504 0.2868 0.0137
4018k 0.359 -1.7835 0.0114

Table 6: Evaluating topK sorted5-gram stream counts
for ǫ=5e-8 on EAN corpus

performance on all metrics. The accuracy of the re-
sults decrease slightly, but theρ andMSE metrics
are not decreased that much in comparison. Perfor-
mance starts to degrade as we get to2, 000k (over
50% of all 5-grams), a result that is not too surpris-
ing. However, even here we note that the MSE is
low, suggesting that the frequencies of stream counts
(found in topK true counts) are very close to the
true counts. Thus, we conclude that the quality of
the5-gram stream counts produced for this value of
ǫ is quite high (in relation to the true counts).

As before, we corroborate our results with higher
ordern-grams. We evaluate the quality of topK 7-
gram stream counts on EP.3 Since EP is a smaller
corpus, we evaluate the stream counts produced by
settingǫ to 10e-8. Here we vary the value ofK be-
tween10k and246k (the total number produced by
the stream algorithm). Results are shown in Table
7. As we saw earlier with5-grams, the top10k (i.e.
approximately5% of all 7-grams) are of very high
quality. Results, and this remains true even when
we increaseK to 100k. There is a drop in the accu-
racy and a slight drop inρ, while the MSE remains
the same. Taking all counts again shows a signifi-
cant decrease in both accuracy andρ scores, but this
does not affect MSE scores significantly. Hence, the
7-gram stream counts i.e.246k counts produced by
ǫ = 10e-8 are quite accurate when compared to the
top246k true counts.

4.5 Analysis of tradeoff between coverage and
space

In our third experiment, we investigate whether a
large LM can help MT performance. We evaluate
the coverage of stream counts built on the EAN cor-
pus on the test data for SMT experiments (see Sec-

3Similar evaluation scores are observed for different top K
sorted9-gram stream counts withǫ=10e-8 on EP corpus.

Top K Accuracy ρ MSE
10k 0.996 0.9997 0.0015
20k 0.989 0.9986 0.0016
50k 0.950 0.9876 0.0016
100k 0.876 0.9493 0.0017
246k 0.689 0.7413 0.0018

Table 7: Evaluating topK sorted7-gram stream counts
for ǫ=10e-8 on EP corpus

tion 5.1) with different values ofǫm. We compute
the recall of each model against3071 sentences of
test data where recall is the fraction of number of
n-grams of a dataset found in stream counts.

Recall=
Number ofn-grams found in stream counts

Number ofn-grams in dataset

We build unigram, bigram, trigram,5-gram and
7-gram with four different values ofǫ. Table 8 con-
tains thegzip size of the count file and the recall
of various different stream countn-grams. As ex-
pected, the recall with respect to true counts is max-
imum for unigrams, bigrams, trigrams and5-grams.
However the amount of space required to store all
true counts in comparison to stream counts is ex-
tremely high: we need4.8GB of compressed space
to store all the true counts for5-grams.

For unigram models, we see that the recall scores
are good for all values ofǫ. If we compare the
approximate stream counts produced by largestǫ
(which is worst) to all true counts, we see that the
stream counts compressed size is50 times smaller
than the true counts size, and is only three points
worse in recall. Similar trends hold for bigrams,
although the loss in recall is higher. As with uni-
grams, the loss in recall is more than made up for by
the memory savings (a factor of nearly150). For
trigrams, we see a14 point loss in recall for the
smallestǫ, but a memory savings of400 times. For
5-grams, the best recall value is.020 (1.2k out of
60k 5-gram stream counts are found in the test set).
However, compared with the true counts we only
loss a recall of0.05 (4.3k out of 60k) points but
memory savings of150 times. In extrinsic evalua-
tions, we will show that integrating5-gram stream
counts with an SMT system performs slightly worse
than the true counts, while dramatically reducing the
memory usage.
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N -gram unigram bigram trigram 5-gram 7-gram

ǫ
Gzip

Recall
Gzip

Recall
Gzip

Recall
Gzip

Recall
Gzip

Recall
MB MB MB MB MB

50e-8 .352 .785 2.3 .459 3.3 .167 1.9 .006 .864 5.6e-5
20e-8 .568 .788 4.5 .494 7.6 .207 5.3 .011 2.7 1.3e-4
10e-8 .824 .791 7.6 .518 15 .237 13 .015 9.7 4.1e-4
5e-8 1.3 .794 13 .536 30 .267 31 .020 43 5.9e-4
all 17 .816 228 .596 1200 .406 4800 .072 NA

Table 8: Gzipped space required to storen-gram counts on disk and their coverage on a test set with differentǫm

For 7-gram we can not compute the truen-gram
counts due to limitations of available computational
resources. The memory requirements with smallest
value ofǫ are similar to those of5-gram, but the re-
call values are quite small. For7-grams, the best re-
call value is5.9e-4 which means that stream counts
contains only32 out of 54k 7-grams contained in
test set. The small recall value for7-grams suggests
that these counts may not be that useful in SMT.
We further substantiate our findings in our extrinsic
evaluations. There we show that integrating7-gram
stream counts with an SMT system does not affect
its overall performance significantly.

5 Extrinsic Evaluation

5.1 Experimental Setup

All the experiments conducted here make use of
publicly available resources. Europarl (EP) corpus
French-English section is used as parallel data. The
publicly available Moses4 decoder is used for train-
ing and decoding (Koehn and Hoang, 2007). The
news corpus released for ACL SMT workshop in
2007 consisting of1057 sentences5 is used as the de-
velopment set. Minimum error rate training (MERT)
is used on this set to obtain feature weights to opti-
mize translation quality. The final SMT system per-
formance is evaluated on a uncased test set of3071
sentences using the BLEU (Papineni et al., 2002),
NIST (Doddington, 2002) and METEOR (Banerjee
and Lavie, 2005) scores. The test set is the union of
the 2007 news devtest and 2007 news test data from
ACL SMT workshop 2007.6

4http://www.statmt.org/moses/
5http://www.statmt.org/wmt07/
6We found that testing on Parliamentary test data was com-

pletely insensitive to largen-gram LMs, even when these LMs
are exact. This suggests that for SMT performance, more data

5.2 Integrating stream counts feature into
decoder

Our method only computes high-frequencyn-gram
counts; it does not estimate conditional probabili-
ties. We can either turn these counts into conditional
probabilities (by using SRILM) or use the counts di-
rectly. We observed no significant difference in per-
formance between these two approaches. However,
using the counts directly consumes significantly less
memory at run-time and is therefore preferable. Due
to space constraints, SRILM results are omitted.

The only remaining open question is:how should
we turn the counts into a feature that can be used in
an SMT system? We considered several alternatives;
the most successful was a simple weighted count
of n-gram matches of varying size, appropriately
backed-off. Specifically, consider ann-gram model.
For every sequence of wordswi, . . . , wi+N−1, we
obtain a feature score computed recursively accord-
ing to Eq (2).

f(wi) = log

„

C(wi)

Z

«

(2)

f(wi, . . . , wi+k) = log

„

C(wi, . . . , wi+k)

Z

«

+
1

2
f(wi+1, . . . , wi+k)

Here, 1
2 is the backoff factor andZ is the largest

count in the count set (the presence ofZ is simply to
ensure that these values remain manageable). In or-
der to efficiently compute these features, we store
the counts in a suffix-tree. The computation pro-
ceeds by first consideringwi+N−1 alone and then
“expanding” to consider the bigram, then trigram
and so on. The advantage to this order of computa-
tion is that the recursive calls can cease whenever a
is betteronly if it comes from the right domain.
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n-gram(ǫ) BLEU NIST MET
Mem
GB

3 EP(exact) 25.57 7.300 54.48 2.7
5 EP(exact) 25.79 7.286 54.44 2.9

3 EAN(exact) 27.04 7.428 55.07 4.6
5 EAN(exact) 28.73 7.691 56.32 20.5

4(10e-8) 27.36 7.506 56.19 2.7
4(5e-8) 27.40 7.507 55.90 2.8
5(10e-8) 27.97 7.605 55.52 2.8
5(5e-8) 27.98 7.611 56.07 2.8
7(10e-8) 27.97 7.590 55.88 2.9
7(5e-8) 27.88 7.577 56.01 2.9
9(10e-8) 28.18 7.611 55.95 2.9
9(5e-8) 27.98 7.608 56.08 2.9

Table 9: Evaluating SMT with different LMs on EAN.
Results are according to BLEU, NIST and MET metrics.
Bold #s are not statistically significant worse than exact.

zero count is reached. (Extending Moses to include
this required only about100 lines of code.)

5.3 Results

Table 9 summarizes SMT results. We have4 base-
line LMs that are conventional LMs smoothed using
modified Kneser-Ney smoothing. The first two tri-
gram and5-gram LMs are built on EP corpus and
the other two are built on EAN corpus. Table 9
show that there is not much significant difference
in SMT results of5-gram and trigram LM on EP.
As expected, the trigram built on the large corpus
EAN gets an improvement of1.5 Bleu Score. How-
ever, unlike the EP corpus, building a5-gram LM
on EAN (huge corpus) gets an improvement of3.2
Bleu Score. (The95% statistical significance bound-
ary is about± 0.53 Bleu on the test data, 0.077 Nist
and 0.16 Meteor according to bootstrap resampling)
We see similar gains in Nist and Meteor metrics as
shown in Table 9.

We use stream counts computed with two values
of ǫ, 5e-8 and 10e-8 on EAN corpus. We use all
the stream counts produced by the algorithm.4, 5, 7
and9 ordern-gram stream counts are computed with
these settings ofǫ. These counts are used along with
a trigram LM built on EP to improve SMT perfor-
mance. The memory usage (Mem) shown in Table
9 is the full memory size required to run on the test
data (including phrase tables).

Adding 4-gram and5-gram stream counts as fea-

ture helps the most. The performance gain by using
5-gram stream counts is slightly worse than com-
pared to true5-gram LM on EAN. However, using
5-gram stream counts directly is more memory ef-
ficient. Also, the gains for stream counts are ex-
actly the same as we saw for same sized count-
based and entropy-based pruning counts in Table 1
and 2 respectively. Moreover, unlike the pruning
methods, our algorithm directly computes a small
model, as opposed to compressing a pre-computed
large model.

Adding 7-gram and9-gram does not help signifi-
cantly, a fact anticipated by the low recall of7-gram-
based counts that we saw in Section 4.5. The results
with two different settings ofǫ are largely the same.
This validates our intrinsic evaluation results in Sec-
tion 4.3 that stream counts learned usingǫ ≤ 10e-8
are of good quality, and that the quality of the stream
counts is high.

6 Conclusion

We have proposed an efficient, low-memory method
to construct high-order approximaten-gram LMs.
Our method easily scales to billion-word monolin-
gual corpora on conventional (8GB) desktop ma-
chines. We have demonstrated that approximaten-
gram features could be used as a direct replacement
for conventional higher order LMs in SMT with
significant reductions in memory usage. In future,
we will be looking into building streaming skipn-
grams, and other variants (like clustern-grams).

In NLP community, it has been shown that having
more data results in better performance (Ravichan-
dran et al., 2005; Brants et al., 2007; Turney, 2008).
At web scale, we have terabytes of data and that can
capture broader knowledge. Streaming algorithm
paradigm provides a memory and space-efficient
platform to deal with terabytes of data. We hope
that other NLP applications (where we need to com-
pute relative frequencies) like noun-clustering, con-
structing syntactic rules for SMT, finding analogies,
and others can also benefit from streaming methods.
We also believe that stream counts can be applied to
other problems involving higher order LMs such as
speech recognition, information extraction, spelling
correction and text generation.
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Abstract

This paper reports the effect of corpus size on
case frame acquisition for discourse analysis
in Japanese. For this study, we collected a
Japanese corpus consisting of up to 100 bil-
lion words, and constructed case frames from
corpora of six different sizes. Then, we ap-
plied these case frames to syntactic and case
structure analysis, and zero anaphora resolu-
tion. We obtained better results by using case
frames constructed from larger corpora; the
performance was not saturated even with a
corpus size of 100 billion words.

1 Introduction

Very large corpora obtained from the Web have
been successfully utilized for many natural lan-
guage processing (NLP) applications, such as prepo-
sitional phrase (PP) attachment, other-anaphora res-
olution, spelling correction, confusable word set dis-
ambiguation and machine translation (Volk, 2001;
Modjeska et al., 2003; Lapata and Keller, 2005; At-
terer and Schütze, 2006; Brants et al., 2007).

Most of the previous work utilized only the sur-
face information of the corpora, such as n-grams,
co-occurrence counts, and simple surface syntax.
This may be because these studies did not require
structured knowledge, and for such studies, the size
of currently available corpora is considered to have
been almost enough. For instance, while Brants et
al. (2007) reported that translation quality continued
to improve with increasing corpus size for training
language models at even size of 2 trillion tokens, the

increase became small at the corpus size of larger
than 30 billion tokens.

However, for more complex NLP tasks, such as
case structure analysis and zero anaphora resolution,
it is necessary to obtain more structured knowledge,
such as semantic case frames, which describe the
cases each predicate has and the types of nouns that
can fill a case slot. Note that case frames offer not
only the knowledge of the relationships between a
predicate and its particular case slot, but also the
knowledge of the relationships among a predicate
and its multiple case slots. To obtain such knowl-
edge, very large corpora seem to be necessary; how-
ever it is still unknown how much corpora would be
required to obtain good coverage.

For examples, Kawahara and Kurohashi pro-
posed a method for constructing wide-coverage case
frames from large corpora (Kawahara and Kuro-
hashi, 2006b), and a model for syntactic and case
structure analysis of Japanese that based upon case
frames (Kawahara and Kurohashi, 2006a). How-
ever, they did not demonstrate whether the coverage
of case frames was wide enough for these tasks and
how dependent the performance of the model was on
the corpus size for case frame construction.

This paper aims to address these questions. We
collect a very large Japanese corpus consisting of
about 100 billion words, or 1.6 billion unique sen-
tences from the Web. Subsets of the corpus are ran-
domly selected to obtain corpora of different sizes
ranging from 1.6 million to 1.6 billion sentences.
We construct case frames from each corpus and ap-
ply them to syntactic and case structure analysis, and
zero anaphora resolution, in order to investigate the
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relationships between the corpus size and the perfor-
mance of these analyses.

2 Related Work

Many NLP tasks have successfully utilized very
large corpora, most of which were acquired from
the Web (Kilgarriff and Grefenstette, 2003). Volk
(2001) proposed a method for resolving PP attach-
ment ambiguities based upon Web data. Modjeska
et al. (2003) used the Web for resolving nominal
anaphora. Lapata and Keller (2005) investigated the
performance of web-based models for a wide range
of NLP tasks, such as MT candidate selection, ar-
ticle generation, and countability detection. Nakov
and Hearst (2008) solved relational similarity prob-
lems using the Web as a corpus.

With respect to the effect of corpus size on NLP
tasks, Banko and Brill (2001a) showed that for
content sensitive spelling correction, increasing the
training data size improved the accuracy. Atterer
and Schütze (2006) investigated the effect of cor-
pus size in combining supervised and unsupervised
learning for two types of attachment decision; they
found that the combined system only improved the
performance of the parser for small training sets.
Brants et al. (2007) varied the amount of language
model training data from 13 million to 2 trillion to-
kens and applied these models to machine transla-
tion systems. They reported that translation qual-
ity continued to improve with increasing corpus size
for training language models at even size of 2 tril-
lion tokens. Suzuki and Isozaki (2008) provided ev-
idence that the use of more unlabeled data in semi-
supervised learning could improve the performance
of NLP tasks, such as POS tagging, syntactic chunk-
ing, and named entities recognition.

There are several methods to extract useful infor-
mation from very large corpora. Search engines,
such as Google and Altavista, are often used to ob-
tain Web counts (e.g. (Nakov and Hearst, 2005;
Gledson and Keane, 2008)). However, search en-
gines are not designed for NLP research and the re-
ported hit counts are subject to uncontrolled vari-
ations and approximations. Therefore, several re-
searchers have collected corpora from the Web by
themselves. For English, Banko and Brill (2001b)
collected a corpus with 1 billion words from vari-

ety of English texts. Liu and Curran (2006) created
a Web corpus for English that contained 10 billion
words and showed that for content-sensitive spelling
correction the Web corpus results were better than
using a search engine. Halacsy et al. (2004) created
a corpus with 1 billion words for Hungarian from
the Web by downloading 18 million pages. Others
utilize publicly available corpus such as the North
American News Corpus (NANC) and the Gigaword
Corpus (Graff, 2003). For instance, McClosky et al.
(2006) proposed a simple method of self-training a
two phase parser-reranker system using NANC.

As for Japanese, Kawahara and Kurohashi
(2006b) collected 23 million pages and created a
corpus with approximately 20 billion words. Google
released Japanese n-gram constructed from 20 bil-
lion Japanese sentences (Kudo and Kazawa, 2007).
Several news wires are publicly available consisting
of tens of million sentences. Kotonoha project is
now constructing a balanced corpus of the present-
day written Japanese consisting of 50 million words
(Maekawa, 2006).

3 Construction of Case Frames

Case frames describe the cases each predicate has
and what nouns can fill the case slots. In this study,
case frames we construct case frames from raw cor-
pora by using the method described in (Kawahara
and Kurohashi, 2006b). This section illustrates the
methodology for constructing case frames.

3.1 Basic Method

After parsing a large corpus by a Japanese parser
KNP1, we construct case frames from modifier-head
examples in the resulting parses. The problems for
case frame construction are syntactic and semantic
ambiguities. In other words, the resulting parses in-
evitably contain errors and predicate senses are in-
trinsically ambiguous. To cope with these problems,
we construct case frames from reliable modifier-
head examples.

First, we extract modifier-head examples that had
no syntactic ambiguity, and assemble them by cou-
pling a predicate and its closest case component.
That is, we assemble the examples not by predi-
cates, such as tsumu (load/accumulate), but by cou-

1http://nlp.kuee.kyoto-u.ac.jp/nl-resource/knp-e.html
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Table 1: Examples of Constructed Case Frames.

Case slot Examples Generalized examples with rate

ga (nominative) he, driver, friend, · · · [CT:PERSON]:0.45, [NE:PERSON]:0.08, · · ·
tsumu (1) wo (accusative) baggage, luggage, hay, · · · [CT:ARTIFACT]:0.31, · · ·

(load) ni (dative) car, truck, vessel, seat, · · · [CT:VEHICLE]:0.32, · · ·
tsumu (2) ga (nominative) player, children, party, · · · [CT:PERSON]:0.40, [NE:PERSON]:0.12, · · ·

(accumulate) wo (accusative) experience, knowledge, · · · [CT:ABSTRACT]:0.47, · · ·

... ... ...

ga (nominative) company, Microsoft, firm, · · · [NE:ORGANIZATION]:0.16, [CT:ORGANIZATION]:0.13, · · ·
hanbai (1) wo (accusative) goods, product, ticket, · · · [CT:ARTIFACT]:0.40, [CT:FOOD]:0.07, · · ·

(sell) ni (dative) customer, company, user, · · · [CT:PERSON]:0.28, · · ·
de (locative) shop, bookstore, site · · · [CT:FACILITY]:0.40, [CT:LOCATION]:0.39, · · ·

... ... ...

ples, such as nimotsu-wo tsumu (load baggage) and
keiken-wo tsumu (accumulate experience). Such
couples are considered to play an important role
for constituting sentence meanings. We call the as-
sembled examples as basic case frames. In order
to remove inappropriate examples, we introduce a
threshold α and use only examples that appeared no
less than α times in the corpora.

Then, we cluster the basic case frames to merge
similar case frames. For example, since nimotsu-
wo tsumu (load baggage) and busshi-wo tsumu (load
supplies) are similar, they are merged. The similar-
ity is measured by using a Japanese thesaurus (The
National Language Institute for Japanese Language,
2004). Table 1 shows examples of constructed case
frames.

3.2 Generalization of Examples

When we use hand-crafted case frames, the data
sparseness problem is serious; by using case frames
automatically constructed from a large corpus, it was
alleviated to some extent but not eliminated. For in-
stance, there are thousands of named entities (NEs)
that cannot be covered intrinsically. To deal with
this problem, we generalize the examples of the case
slots. Kawahara and Kurohashi also generalized ex-
amples but only for a few types. In this study, we
generalize case slot examples based upon common
noun categories and NE classes.

First, we generalize the examples based upon the
categories that tagged by the Japanese morpholog-
ical analyzer JUMAN2. In JUMAN, about 20 cat-
egories are defined and tagged to common nouns.
For example, ringo (apple), inu (dog) and byoin

2http://nlp.kuee.kyoto-u.ac.jp/nl-resource/juman-e.html

Table 2: Definition of NE in IREX.
NE class Examples
ORGANIZATION NHK Symphony Orchestra
PERSON Kawasaki Kenjiro
LOCATION Rome, Sinuiju
ARTIFACT Nobel Prize
DATE July 17, April this year
TIME twelve o’clock noon
MONEY sixty thousand dollars
PERCENT 20%, thirty percents

(hospital) are tagged as FOOD, ANIMAL and FA-
CILITY, respectively. For each category, we calcu-
late the ratio of the categorized example among all
case slot examples, and add it to the case slot (e.g.
[CT:FOOD]:0.07).

We also generalize the examples based upon NE
classes. We use a common standard NE defini-
tion for Japanese provided by the IREX (1999).
We first recognize NEs in the source corpus by
using an NE recognizer (Sasano and Kurohashi,
2008); and then construct case frames from the NE-
recognized corpus. Similar to the categories, for
each NE class, we calculate the NE ratio among all
the case slot examples, and add it to the case slot
(e.g. [NE:PERSON]:0.12). The generalized exam-
ples are also included in Table 1.

4 Discourse Analysis with Case Frames

In order to investigate the effect of corpus size
on complex NLP tasks, we apply the constructed
cases frames to an integrated probabilistic model
for Japanese syntactic and case structure analysis
(Kawahara and Kurohashi, 2006a) and a probabilis-
tic model for Japanese zero anaphora resolution
(Sasano et al., 2008). In this section, we briefly de-
scribe these models.
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4.1 Model for Syntactic and Case Structure
Analysis

Kawahara and Kurohashi (2006a) proposed an in-
tegrated probabilistic model for Japanese syntactic
and case structure analysis based upon case frames.
Case structure analysis recognizes predicate argu-
ment structures. Their model gives a probability to
each possible syntactic structure T and case struc-
ture L of the input sentence S, and outputs the syn-
tactic and case structure that have the highest proba-
bility. That is to say, the system selects the syntactic
structure Tbest and the case structure Lbest that max-
imize the probability P (T,L|S):

(Tbest, Lbest) = argmax
(T,L)

P (T,L|S)

= argmax
(T,L)

P (T,L, S) (1)

The last equation is derived because P (S) is con-
stant. P (T,L, S) is defined as the product of a prob-
ability for generating a clause Ci as follows:

P (T,L, S) =
∏

i=1..n

P (Ci|bhi
) (2)

where n is the number of clauses in S, and bhi
is

Ci’s modifying bunsetsu3. P (Ci|bhi
) is approxi-

mately decomposed into the product of several gen-
erative probabilities such as P (A(sj) = 1|CFl, sj)
and P (nj |CFl, sj , A(sj) = 1), where the function
A(sj) returns 1 if a case slot sj is filled with an input
case component; otherwise 0. P (A(sj)=1|CFl, sj)
denotes the probability that the case slot sj is filled
with an input case component, and is estimated from
resultant case structure analysis of a large raw cor-
pus. P (nj |CFl, sj , A(sj) = 1) denotes the proba-
bility of generating a content part nj from a filled
case slot sj in a case frame CFl, and is calculated
by using case frames. For details see (Kawahara and
Kurohashi, 2006a).

4.2 Model for Zero Anaphora Resolution
Anaphora resolution is one of the most important
techniques for discourse analysis. In English, overt
pronouns such as she and definite noun phrases such
as the company are anaphors that refer to preced-
ing entities (antecedents). On the other hand, in

3In Japanese, bunsetsu is a basic unit of dependency, con-
sisting of one or more content words and the following zero or
more function words. It corresponds to a base phrase in English.

Japanese, anaphors are often omitted; these omis-
sions are called zero pronouns. Zero anaphora res-
olution is the integrated task of zero pronoun detec-
tion and zero pronoun resolution.

We proposed a probabilistic model for Japanese
zero anaphora resolution based upon case frames
(Sasano et al., 2008). This model first resolves
coreference and identifies discourse entities; then
gives a probability to each possible case frame CF
and case assignment CA when target predicate v,
input case components ICC and existing discourse
entities ENT are given, and outputs the case frame
and case assignment that have the highest probabil-
ity. That is to say, this model selects the case frame
CFbest and the case assignment CAbest that maxi-
mize the probability P (CF,CA|v, ICC,ENT ):

(CF best, CAbest)
= argmax

(CF,CA)
P (CF,CA|v, ICC,ENT ) (3)

P (CF,CA|v, ICC,ENT ) is approximately de-
composed into the product of several probabilities.
Case frames are used for calculating P (nj |CFl,
sj , A(sj) = 1), the probability of generating a con-
tent part nj from a case slot sj in a case frame
CFl, and P (nj |CFl, sj , A

′(sj)=1), the probability
of generating a content part nj of a zero pronoun,
where the function A′(sj) returns 1 if a case slot sj

is filled with an antecedent of a zero pronoun; other-
wise 0.

P (nj |CFl, sj , A
′(sj)=1) is similar to P (nj |CFl,

sj , A(sj)=1) and estimated from the frequencies of
case slot examples in case frames. However, while
A′(sj)=1 means sj is not filled with an overt argu-
ment but filled with an antecedent of zero pronoun,
case frames are constructed from overt predicate ar-
gument pairs. Therefore, the content part nj is often
not included in the case slot examples. To cope with
this problem, this model also utilizes generalized ex-
amples to estimate P (nj |CFl, sj , A(sj) = 1). For
details see (Sasano et al., 2008).

5 Experiments

5.1 Construction of Case Frames

In order to investigate the effect of corpus size,
we constructed case frames from corpora of dif-
ferent sizes. We first collected Japanese sentences
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Table 4: Statistics of the Constructed Case Frames.
Corpus size (sentences) 1.6M 6.3M 25M 100M 400M 1.6G

# of predicate 2460 6134 13532 27226 42739 65679
(type) verb 2039 4895 10183 19191 28523 41732

adjective 154 326 617 1120 1641 2318
noun with copula 267 913 2732 6915 12575 21629

average # of case frames for a predicate 15.9 12.2 13.3 16.1 20.5 25.3
average # of case slots for a case frame 2.95 3.44 3.88 4.21 4.69 5.08
average # of examples for a case slot 4.89 10.2 19.5 34.0 67.2 137.6
average # of unique examples for a case slot 1.19 1.85 3.06 4.42 6.81 9.64
average # of generalized examples for a case slot 0.14 0.24 0.37 0.49 0.67 0.84
File size(byte) 8.9M 20M 56M 147M 369M 928M

Table 3: Corpus Sizes and Thresholds.

Corpus size for case
frame construction 1.6M 6.3M 25M 100M 400M 1.6G
(sentences)
Threshold α
introduced in Sec. 3.1 2 3 4 5 7 10
Corpus size to
estimate generative 1.6M 3.2M 6.3M 13M 25M 50M
probability (sentences)

from the Web using the method proposed by Kawa-
hara and Kurohashi (2006b). We acquired approx-
imately 6 billion Japanese sentences consisting of
approximately 100 billion words from 100 million
Japanese web pages. After discarding duplicate sen-
tences, which may have been extracted from mirror
sites, we acquired a corpus comprising of 1.6 bil-
lion (1.6G) unique Japanese sentences consisting of
approximately 25 billion words. The average num-
ber of characters and words in each sentence was
28.3, 15.6, respectively. Then we randomly selected
subsets of the corpus for five different sizes; 1.6M,
6.3M, 25M, 100M, and 400M sentences to obtain
corpora of different sizes.

We constructed case frames from each corpus. We
employed JUMAN and KNP to parse each corpus.
We changed the threshold α introduced in Section
3.1 depending upon the size of the corpus as shown
in Table 3. Completing the case frame construc-
tion took about two weeks using 600 CPUs. Ta-
ble 4 shows the statistics for the constructed case
frames. The number of predicates, the average num-
ber of examples and unique examples for a case slot,
and whole file size were confirmed to be heavily de-
pendent upon the corpus size. However, the average
number of case frames for a predicate and case slots
for a case frame did not.

5.2 Coverage of Constructed Case Frames

5.2.1 Setting
In order to investigate the coverage of the resul-

tant case frames, we used a syntactic relation, case
structure, and anaphoric relation annotated corpus
consisting of 186 web documents (979 sentences).
This corpus was manually annotated using the same
criteria as Kawahara et al. (2004). There were 2,390
annotated relationships between predicates and their
direct (not omitted) case components and 837 zero
anaphoric relations in the corpus.

We used two evaluation metrics depending upon
whether the target case component was omitted or
not. For the overt case component of a predicate, we
judged the target component was covered by case
frames if the target component itself was included in
the examples for one of the corresponding case slots
of the case frame. For the omitted case component,
we checked not only the target component itself but
also all mentions that refer to the same entity as the
target component.

5.2.2 Coverage of Case Frames
Figure 1 shows the coverage of case frames for

the overt argument, which would have tight relations
with case structure analysis. The lower line shows
the coverage without considering generalized exam-
ples, the middle line shows the coverage considering
generalized NE examples, and the upper line shows
the coverage considering all generalized examples.

Figure 2 shows the coverage of case frames for
the omitted argument, which would have tight rela-
tions with zero anaphora resolution. The upper line
shows the coverage considering all generalized ex-
amples, which is considered to be the upper bound
of performance for the zero anaphora resolution sys-
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Figure 2: Coverage of CF (omitted argument).

tem described in Section 4.2. Comparing with Fig-
ure 1, we found two characteristics. First, the lower
and middle lines of Figure 2 were located lower than
the corresponding lines in Figure 1. This would re-
flect that some frequently omitted case components
are not described in the case frames because the case
frames were constructed from only overt predicate
argument pairs. Secondly, the effect of generalized
NE examples was more evident for the omitted ar-
gument reflecting the important role of NEs in zero
anaphora resolution.

Both figures show that the coverage was improved
by using larger corpora and there was no saturation
even when the largest corpus of 1.6 billion sentences
was used. When the largest corpus and all general-
ized examples were used, the case frames achieved a
coverage of almost 90% for both the overt and omit-
ted argument.

Figure 3 shows the coverage of case frames for
each predicate type, which was calculated for both
overt and omitted argument considering all general-
ized examples. The case frames for verbs achieved
a coverage of 93.0%. There were 189 predicate-
argument pairs that were not included case frames;
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Figure 3: Coverage of CF for Each Predicate Type.

11 pairs of them were due to lack of the case frame
of target predicate itself, and the others were due
to lack of the corresponding example. For adjec-
tive, the coverage was 78.8%. The main cause of
the lower coverage would be that the predicate argu-
ment relations concerning adjectives that were used
in restrictive manner, such as “oishii sushi” (deli-
cious sushi), were not used for case frame construc-
tion, although such relations were also the target of
the coverage evaluation. For noun with copula, the
coverage was only 54.5%. However, most predicate
argument relations concerning nouns with copula
were easily recognized from syntactic preference,
and thus the low coverage would not quite affect the
performance of discourse analysis.

5.3 Syntactic and Case Structure Analysis

5.3.1 Accuracy of Syntactic Analysis
We investigated the effect of corpus size for syn-

tactic analysis described in Section 4.1. We used
hand-annotated 759 web sentences, which was used
by Kawahara and Kurohashi (2007). We evaluated
the resultant syntactic structures with regard to de-
pendency accuracy, the proportion of correct depen-
dencies out of all dependencies4.

Figure 4 shows the accuracy of syntactic struc-
tures. We conducted these experiments with case
frames constructed from corpora of different sizes.
We also changed the corpus size to estimate gen-
erative probability of a case slot in Section 4.1 de-
pending upon the size of the corpus for case frame
construction as shown in Table 3. Figure 4 also in-

4Note that Kawahara and Kurohashi (2007) exclude the de-
pendency between the last two bunsetsu, since Japanese is head-
final and thus the second last bunsetsu unambiguously depends
on the last bunsetsu.
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Figure 4: Accuracy of Syntactic Analysis. (McNemar’s
test results are also shown under each data point.)

cludes McNemar’s test results. For instance, the dif-
ference between the corpus size of 1.6G and 100M
sentences is significant at the 90% level (p = 0.1),
but not significant at the 99% level (p = 0.01).

In Figure 4, ‘w/o case frames’ shows the accu-
racy of the rule-based syntactic parser KNP that does
not use case frames. Since the model described
in Section 4.1 assumes the existence of reasonable
case frames, when we used case frames constructed
from very small corpus, such as 1.6M and 6.3M sen-
tences, the accuracy was lower than that of the rule-
based syntactic parser. Moreover, when we tested
the model described in Section 4.1 without any case
frames, the accuracy was 0.885.

We confirmed that better performance was ob-
tained by using case frames constructed from larger
corpora, and the accuracy of 0.8945 was achieved
by using the case frames constructed from 1.6G sen-
tences. However the effect of the corpus size was
limited. This is because there are various causes
of dependency error and the case frame sparseness
problem is not serious for syntactic analysis.

We considered that generalized examples can
benefit for the accuracy of syntactic analysis, and
tried several models that utilize these examples.
However, we cannot confirm any improvement.

5.3.2 Accuracy of Case Structure Analysis
We conducted case structure analysis on 215 web

sentences in order to investigate the effect of cor-
pus size for case structure analysis. The case mark-
ers of topic marking phrases and clausal modifiers

5It corresponds to 0.877 in Kawahara and Kurohashi’s
(2007) evaluation metrics.
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Figure 5: Accuracy of Case Structure Analysis.

Table 5: Corpus Sizes for Case Frame Construction and
Time for Syntactic and Case Structure Analysis.

Corpus size 1.6M 6.3M 25M 100M 400M 1.6G
Time (sec.) 850 1244 1833 2696 3783 5553

were evaluated by comparing them with the gold
standard in the corpus. Figure 5 shows the experi-
mental results. We confirmed that the accuracy of
case structure analysis strongly depends on corpus
size for case frame construction.

5.3.3 Analysis Speed
Table 5 shows the time for analyzing syntactic

and case structure of 759 web sentences. Although
the time for analysis became longer by using case
frames constructed from a larger corpus, the growth
rate was smaller than the growth rate of the size for
case frames described in Table 4.

Since there is enough increase in accuracy of case
structure analysis, we can say that case frames con-
structed larger corpora are desirable for case struc-
ture analysis.

5.4 Zero Anaphora Resolution
5.4.1 Accuracy of Zero Anaphora Resolution

We used an anaphoric relation annotated corpus
consisting of 186 web documents (979 sentences)
to evaluate zero anaphora resolution. We used first
51 documents for test and used the other 135 doc-
uments for calculating several probabilities. In the
51 test documents, 233 zero anaphora relations were
annotated between one of the mentions of the an-
tecedent and corresponding predicate that had zero
pronoun.

In order to concentrate on evaluation for zero
anaphora resolution, we used the correct mor-
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Figure 6: F-measure of Zero Anaphora Resolution.

phemes, named entities, syntactic structures and
coreference relations that were manually annotated.
Since correct coreference relations were given, the
number of created entities was the same between the
gold standard and the system output because zero
anaphora resolution did not create new entities.

The experimental results are shown in Figure 6, in
which F-measure was calculated by:

R =
# of correctly recognized zero anaphora
# of zero anaphora annotated in corpus

,

P =
# of correctly recognized zero anaphora

# of system outputted zero anaphora
,

F =
2

1/R + 1/P
.

The upper line shows the performance using all
generalized examples, the middle line shows the
performance using only generalized NEs, and the
lower line shows the performance without using
any generalized examples. While generalized cat-
egories much improved the F-measure, generalized
NEs contributed little. This tendency is similar to
that of coverage of case frames for omitted argument
shown in Figure 2. Unlike syntactic and case struc-
ture analysis, the performance for the zero anaphora
resolution is quite low when using case frames con-
structed from small corpora, and we can say case
frames constructed from larger corpora are essential
for zero anaphora resolution.

5.4.2 Analysis Speed
Table 6 shows the time for resolving zero

anaphora in 51 web documents consisting of 278
sentences. The time for analysis became longer by
using case frames constructed from larger corpora,

Table 6: Corpus Sizes for Case Frame Construction and
Time for Zero Anaphora Resolution.

Corpus size 1.6M 6.3M 25M 100M 400M 1.6G
Time (sec.) 538 545 835 1040 1646 2219

which tendency is similar to the growth of the time
for analyzing syntactic and case structure.

5.5 Discussion
Experimental results of both case structure analy-
sis and zero anaphora resolution show the effective-
ness of a larger corpus in case frame acquisition for
Japanese discourse analysis. Up to the corpus size
of 1.6 billion sentences, or 100 billion words, these
experimental results still show a steady increase in
performance. That is, we can say that the corpus
size of 1.6 billion sentences is not enough to obtain
case frames of sufficient coverage.

These results suggest that increasing corpus size
is more essential for acquiring structured knowledge
than for acquiring unstructured statistics of a corpus,
such as n-grams, and co-occurrence counts; and for
complex NLP tasks such as case structure analysis
and zero anaphora resolution, the currently available
corpus size is not sufficient.

Therefore, to construct more wide-coverage case
frames by using a larger corpus and reveal how much
corpora would be required to obtain sufficient cov-
erage is considered as future work.

6 Conclusion

This paper has reported the effect of corpus size
on case frame acquisition for syntactic and case
structure analysis, and zero anaphora resolution in
Japanese. We constructed case frames from cor-
pora of six different sizes ranging from 1.6 million
to 1.6 billion sentences; and then applied these case
frames to Japanese syntactic and case structure anal-
ysis, and zero anaphora resolution. Experimental re-
sults showed better results were obtained using case
frames constructed from larger corpora, and the per-
formance showed no saturation even when the cor-
pus size was 1.6 billion sentences.

The findings suggest that increasing corpus size
is more essential for acquiring structured knowledge
than for acquiring surface statistics of a corpus; and
for complex NLP tasks the currently available cor-
pus size is not sufficient.

528



References
Michaela Atterer and Hinrich Schütze. 2006. The ef-

fect of corpus size in combining supervised and un-
supervised training for disambiguation. In Proc. of
COLING-ACL’06, pages 25–32.

Michele Banko and Eric Brill. 2001a. Mitigating the
paucity-of-data problem: Exploring the effect of train-
ing corpus size on classifier performance for natural
language processing. In Proc. of HLT’01.

Michele Banko and Eric Brill. 2001b. Scaling to very
very large corpora for natural language disambigua-
tion. In Proc. of ACL’01, pages 26–33.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in
machine translation. In Proc. of EMNLP-CoNLL’07,
pages 858–867.

Ann Gledson and John Keane. 2008. Using web-search
results to measure word-group similarity. In Proc. of
COLING’08, pages 281–288.

David Graff. 2003. English Gigaword. Technical Report
LDC2003T05, Linguistic Data Consortium, Philadel-
phia, PA USA.

Peter Halacsy, Andras Kornai, Laszlo Nemeth, Andras
Rung, Istvan Szakadat, and Vikto Tron. 2004. Creat-
ing open language resources for Hungarian. In Proc.
of LREC’04, pages 203–210.

IREX Committee, editor. 1999. Proc. of the IREX Work-
shop.

Daisuke Kawahara and Sadao Kurohashi. 2006a. A
fully-lexicalized probabilistic model for Japanese syn-
tactic and case structure analysis. In Proc. of HLT-
NAACL’06, pages 176–183.

Daisuke Kawahara and Sadao Kurohashi. 2006b.
Case frame compilation from the web using high-
performance computing. In Proc. of LREC’06, pages
1344–1347.

Daisuke Kawahara and Sadao Kurohashi. 2007.
Probabilistic coordination disambiguation in a fully-
lexicalized Japanese parser. In Proc. of EMNLP-
CoNLL’07, pages 306–314.

Daisuke Kawahara, Ryohei Sasano, and Sadao Kuro-
hashi. 2004. Toward text understanding: Integrat-
ing relevance-tagged corpora and automatically con-
structed case frames. In Proc. of LREC’04, pages
1833–1836.

Adam Kilgarriff and Gregory Grefenstette. 2003. In-
troduction to the special issue on the web as corpus.
Computational Linguistic, 29(3):333–347.

Taku Kudo and Hideto Kazawa. 2007. Web Japanese N-
gram version 1, published by Gengo Shigen Kyokai.

Mirella Lapata and Frank Keller. 2005. Web-based mod-
els for natural language processing. ACM Transac-
tions on Speech and Language Processing, 2:1:1–31.

Vinci Liu and James R. Curran. 2006. Web text corpus
for natural language processing. In Proc. of EACL’06,
pages 233–240.

Kikuo Maekawa. 2006. Kotonoha, the corpus develop-
ment project of the National Institute for Japanese lan-
guage. In Proc. of the 13th NIJL International Sympo-
sium, pages 55–62.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proc. of
HLT-NAACL’06, pages 152–159.

Natalia N. Modjeska, Katja Markert, and Malvina Nis-
sim. 2003. Using the web in machine learning for
other-anaphora resolution. In Proc. of EMNLP-2003,
pages 176–183.

Preslav Nakov and Marti Hearst. 2005. A study of using
search engine page hits as a proxy for n-gram frequen-
cies. In Proc. of RANLP’05.

Preslav Nakov and Marti A. Hearst. 2008. Solving rela-
tional similarity problems using the web as a corpus.
In Proc. of ACL-HLT’08, pages 452–460.

Ryohei Sasano and Sadao Kurohashi. 2008. Japanese
named entity recognition using structural natural lan-
guage processing. In Proc. of IJCNLP’08, pages 607–
612.

Ryohei Sasano, Daisuke Kawahara, and Sadao Kuro-
hashi. 2008. A fully-lexicalized probabilistic model
for japanese zero anaphora resolution. In Proc. of
COLING’08, pages 769–776.

Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised
sequential labeling and segmentation using giga-word
scale unlabeled data. In Proceedings of ACL-HLT’08,
pages 665–673.

The National Language Institute for Japanese Language.
2004. Bunruigoihyo. Dainippon Tosho, (In Japanese).

Martin Volk. 2001. Exploiting the WWW as a corpus
to resolve PP attachment ambiguities. In Proc. of the
Corpus Linguistics, pages 601–606.

529



Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 530–538,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Semantic-based Estimation of Term Informativeness

Kirill Kireyev
University of Colorado – Boulder
kireyev@colorado.edu

Abstract

The idea that some words carry more semantic 
content  than  others,  has  led  to  the  notion  of 
term specificity,  or informativeness. Computa-
tional  estimation of  this  quantity  is  important 
for various applications such as information re-
trieval. We propose a new method of comput-
ing term specificity, based on modeling the rate 
of learning of word meaning in Latent Semantic 
Analysis  (LSA).  We analyze  the performance 
of this method both qualitatively and quantitat-
ively and  demonstrate  that  it  shows excellent 
performance compared to existing methods on 
a  broad  range  of  tests.  We  also  demonstrate 
how it can be used to improve existing applica-
tions  in  information  retrieval  and  summariza-
tion.

1 Introduction

The idea that some words carry more semantic 
content than others has been occurring in various 
literature in linguistics, psychology and computer 
science for some time. The intuitive notion of spe-
cificity has long existed before it was formalized; 
consider, for example, the distinction between the 
more general word “beverage” and more specific 
terms   “tea”, “coffee” and “cocoa” made by  Spär-
ck-Jones (1973). Another informal mention of spe-
cificity is mentioned by Gorman (1961):

A word may be “abstract” and either general  
or specific, or “concrete” and either general or  
specific.

where it  is contrasted with another psycholinguistic 
property of concreteness, which is generally defined 
as “the  extent to which the word's referent can be 
touched or felt” (Reilly et al., 2007). 

The field of information retrieval has attracted 
greater  attention  to  the  computational  estimation 
and  applications  of  term specificity.  It  has  been 
noted that words with higher specificity, or inform-
ation content, deserve to be weighted more heavily 
when  matching  documents  with  queries,  since 

these words play a greater importance in character-
izing what a query or a document is about. By con-
trast,  stopwords,  words  that  contribute  the  least 
amount  of  semantic  content,  are  often  down-
weighted  or  removed  altogether  (see  (Lo  et  al., 
2005), for example).

In addition to IR, term specificity, or informat-
iveness,  has been shown useful  in other applica-
tions,  such as  Named  Entity Tagging (Rennie  et 
al.,  2005),  creating  back-of-the-book  glossaries 
(Csomai  et al.,  2007),  and extractive summariza-
tion (Kireyev, 2008).

A related notion of  communication density  has 
been introduced by Gorman et al. (2003) in team 
communication analysis, to measure the extent to 
which  a  team conveys  information  in  a  concise 
manner, or, in other words, the rate of meaningful 
discourse, defined by the ratio of  meaningfulness 
to number  of  words spoken.  The  meaningfulness 
described here should not  be confused with psy-
cholinguistic  quality  of  meaningfulness  as  de-
scribed by Toglia and Battig (1978), which is the 
degree to  which a  word is  associated with other 
words.

In this paper we consider the terms  specificity, 
informativeness and  information content of words 
to mean the same thing. A precise formulation or 
analysis of important qualitative characteristics of 
these concepts has not been performed in previous 
literature; we hope to make some progress in that 
direction in this paper. 

Our main goal is to introduce a new method of 
computing word specificity based on the rate and 
strength of semantic associations between words, 
as modeled by Latent Semantic Analysis (LSA).

2 Previous Approaches

To date, most of the known approaches to estim-
ating  term  informativeness  have  relied  on  fre-
quency-based methods. 
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A very basic, yet surprisingly effective approach 
to measuring term informativeness is its frequency 
of occurrence in a large representative corpus of 
language.  Spärck Jones (1973) defines  IDF or  in-
verse document frequency, which is determined by 
the  probability  of  occurrence  of  documents  con-
taining a particular word:

IDF w =−log2df w /D

where  D  is the total number of documents in the 
corpus.   The assumption behind it is that low fre-
quency words tend to be rich in content, and vice 
versa.

Church and Gale (1995) correctly note that this 
measure is fundamentally different from collection 
frequency fw,  (the total number of times the word 
type occurs in the corpus) or  its transformations, 
despite  the  fact  that  the  two  measures  appear 
highly correlated. In fact, what is particularly of in-
terest are the words for which these two quantities 
deviate the most. This happens most dramatically 
for  most  informative,  or  content  words,  such  as 
“boycott” (Church, 1995a). These words happen to 
exhibit “bursty” behavior, where they tend to ap-
pear multiple times but in fewer documents,  thus 
having  fw  > dfw. In  contrast,  less  content-loaded 
words like “somewhat” tend to occur on average 
once in documents,  and thus have similar  values 
for collection and document frequencies ( fw ≈ dfw ).  
As a result, more informative words can be less ac-
curately  estimated  by  the  Poisson  distribution, 
which is  based on the simplistic assumption that 
the expected number of occurrences of word in a 
document can be estimated by its total number of 
occurrences in the corpus.

Most prominent statistical measures of term in-
formativeness  rely  on  quantifying  this  notion  of 
deviation  from  the  Poisson  distribution.  If  the 
mean expected word rate is:

tw=
f w

D

then the variance metric can be defined as:

variance w= 1
D−1∑d=1

D

 tdw−t w
2

where  tdw is  the actual  number  of  occurrences of 
term  w in document  d.  The idea is that  a higher 
variance would indicate greater deviation from ex-

pected  frequency  of  occurrence  in  a  document, 
which  is  assumed  to  be  higher  for  informative 
words. 

Another  measure,  suggested by  Church  and 
Gale (1995a) is burstiness which attempts to com-
pare collection frequency and document frequency 
directly:

burstiness w=
tw

df w /D
=

f w

df w

Church and Gale also noted that nearly all words 
have IDF scores that are larger than what one 
would expect according to an independence-based 
model such as the Poisson. They note that interest-
ing or informative words tend to have the largest 
deviations from what would be expected. They 
thus introduce the notion of residual IDF which 
measures exactly this deviation:

residualIDF w= IDF w log2 1−e−t 

Papineni (2001) introduces the notion of gain:

gain w=
df w

D  df w

D −1−log 
df w

D 
This  measure  tends  to  give low weights  to  very 
high- and very low- frequency words.

Most closely related to our work is the notion of 
meaningfulness in (Gorman et al 2003), computed 
as the LSA vector length. We will discuss it further 
in the subsequent sections, and show that a small 
but crucial modification to this quantity gives the 
best results.

3 Using Latent Semantic Analysis for Ap-
proximating Term Informativeness

3.1 Latent Semantic Analysis

Latent Semantic Analysis  (LSA) is a language 
model  that  represents  semantic  word meaning as 
vectors  in  high-dimensional  space.  Word  vectors 
are positioned in such a way that semantically-re-
lated words vectors point in similar directions or 
have a smaller angle / higher cosine between them. 
The representation is  derived in  an unsupervised 
manner, by observing occurrence patterns of words 
in a large corpus of natural language documents. 
Singular  Value  Decomposition  on  the  matrix  of 
word/document occurrence counts is used to derive 
the optimal set of dimensions of the space in which 
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all of the words can be represented as vectors. The 
number of dimensions is then artificially reduced 
to a smaller number (typically around 300) of most 
important  dimensions,  which  has  the  effect  of 
smoothing  out  incidental  relationships  and  pre-
serving significant ones between words. 

The  resulting  geometric  space  allows  for 
straightforward  representation  of  meaning  of 
words  and/or  documents;  the  latter  are  simply  a 
weighted  geometric  composition  of  constituent 
word vectors. Similarity in meaning between a pair 
of words or documents can be obtained by comput-
ing the cosine between their corresponding vectors. 
For  details  of  LSA,  please  see  (Landauer  et  al., 
2007), and others

3.2 LSA Term Vector Length

Most of the LSA applications focus on compar-
ing semantic similarity between words and/or text, 
using the cosine measure of the angle between the 
corresponding vectors. There is, however, another 
significant characteristic of LSA word vectors be-
sides  their  direction  in  space;  it  is  their  vector 
length. The vector length for words differs signi-
ficantly, as is shown in Table 1.

Word dfw Vector Length

dog 1365 1.3144

green 2067 0.7125

run 2721 0.4788

puppy 127 0.2648

electron 264 0.9009

the 44474 0.0098

Table 1: LSA vector length for some of the words in 
TASA corpus.

The vector length plays a very important role in 
many LSA calculations,  in particular  – in giving 
relative weights to the word vectors that constitute 
a particular text passage. 

What causes differences in vector lengths? They 
are based roughly on how much information LSA 
learns about a word based on its patterns of occur-
rence in the corpus. Kintsch (2001) writes:

Intuitively, the vector length tells us how much in-
formation LSA has about this vector. [...] Words that 
LSA  knows  a  lot  about  (because  they  appear  fre-
quently in the training corpus[...]) have greater vector 
lengths than words LSA does not know well. Func-
tion words that are used frequently in many different 
contexts have low vector lengths -- LSA knows noth-

ing about them and cannot tell them apart since they 
appear in all contexts.

Essentially, there are two factors that affect vec-
tor length: (1) number of occurrences and (2) the 
consistency of contexts in which the word occurs.

3.3 Deriving Specificity from Vector Length

Based on the observations above we propose a 
new metric of term informativeness, or specificity, 
which we call  LSAspec, which is simply the ratio 
of LSA vector length to the number of documents 
in the LSA training corpus that contain a particular 
word:

LSAspec w=∥w∥/df w

The value can be interpreted as the rate of vector 
length growth. We argue that more specific, or in-
formative, words have the greatest rate of  vector 
length  growth;  LSA  learns  about  their  meaning 
faster,  with  relatively  fewer  exposures.  To  illus-
trate this concept, let's look at a few examples, that 
were obtained by controlling the number of occur-
rences of a particular word in the LSA training cor-
pus.  The  base  corpus  was  obtained  using  the 
44000-passage  TASA  corpus  with  all  passages 
containing  the  three  words  below  initially  re-
moved.  Each data point on the graph reflects the 
vector  length  of  a  particular  word,  after  training 
LSA on the base corpus plus the specified number 
of  passages  containing  a  particular  word  added 
back. Highly specific words like “cellulose” gain 
vector length quite quickly compared to a low-spe-
cificity word like “dismay”.

4 Comparison of Specificity Metrics

Past attempts to examine the merits of various 
existing term informativeness estimation methods 
in the literature thus far has largely involved em-

Illustration 1: Vector lengths for some words vs the 
number of documents containing those words.
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pirical summative evaluations as part of informa-
tion  retrieval  or  named  entity  tagging  systems 
(Rennie  et  al.,  2005).  Here,  we  provide  some 
measures which hopefully provide more illuminat-
ing insights into the various methods.

In all of the tests below we derived the metrics 
(including the LSA space for  LSAspec) from the 
same  corpus  –  MetaMetrics  2002  corpus,  com-
posed of ~188k passages mostly used in education-
al texts.  No stemming or stopword removal of any 
kind was performed. All word types were conver-
ted  to  lowercase.  We  computed  the  specificity 
score for each of the 174,374 most frequent words 
in the corpus using each of the metrics described 
above:  LSAspec,  IDF,  residualIDF,  burstiness,  
gain and variance. 

4.1 Correlation with Number of Senses

Intuitively,  one  would  expect  more  specific 
words  to have more  precise  meaning,  and there-
fore, generally fewer senses. For example, “elec-
tron” is a specific physics term that has only one 
sense, whereas “run” has a very general meaning, 
and thus has over 50 senses in the WordNet data-
base (Miller et al., 1990). There are many excep-
tions to this, of course, but overall, one would ex-
pect a negative correlation between specificity and 
number of senses. 

In this test, we measure the correlation between 
the specificity score of a word by various methods 
and its number of senses in WordNet version 3.0. 
A total of 75,978 words were considered. We use 
Spearman  correlation  coefficient,  since  the  rela-
tionships are likely to be non-linear. 

Metric Corr Metric Corr

LSAspec -0.46 burstiness -0.02

IDF -0.44 variance 0.40

residualIDF -0.03 gain 0.44

Table 2: Correlation of specificity metrics with number  
of senses in WordNet

LSAspec gives the highest  negative correlation 
with number of WordNet senses.

4.2 Correlation with Hypernymy

WordNet organizes concepts into a hypernymy 
tree, where each parent node is a hypernym of the 
child node below it. For example:

substance

element

metal

nickel copper
In general one would expect that for each pair of 

child-parent pairs in the hypernym tree, the child 
will  have greater specificity than the parent1.  We 
examined of  a total  of  14451 of  such hypernym 
word pairs and computed how often the child's in-
formativeness  score,  according  to  each  of  the 
measures,  is  greater  than  its  parent's  (its  hyper-
nym's) score.

Metric Percent Metric Percent

IDF 88.8% burstiness 47.2%

LSAspec 87.7% variance 13.4%

residualIDF 48.8% gain 11.1%

Table 3: Percentage of the time specificity of child ex-
ceeds that of its hypernym in WordNet

4.3 Writing Styles and Levels

One may expect that the specificity of words on 
average would change with texts that are known to 
be of different writing styles and difficulty level. 
To test this hypotheses we extracted texts from the 
TASA  collection  of  educational  materials.  The 
texts are annotated with genre (“Science”, “Social 
Studies” or “Language Arts”), and difficulty level 
on the DRP readability scale (Koslin et al., 1987). 
Intuitively,  one would expect to see two patterns 
among these texts:

(1) The specificity of words would generally in-
crease with increasing level of difficulty of texts.

(2)  Informative  (Science)  texts  should  have 
more specific terms than narrative (Language Arts) 
texts;  with Social  Studies somewhere in between 
(McCarthy et al., 2006).

We extracted 100 text  passages for  each com-
bination  of  style  (“Science”,  “Social  Studies”, 
“Language Arts”) and DRP difficulty level (50, 55, 
60,  65,  70)2,  thus resulting in 15 batches of  100 
passages. For each passage we computed the medi-
an specificity measure of each unique word type in 
1 In practice this is more difficult to determine, since some Word-

Net entries are actually phrases, rather than words (e.g. “tulip” ← 
“liliaceous plant”  ← ...  ← “plant”). In such cases we search up 
the tree until we stumble upon a node where the entry (or one of 
the entries) is a single word.

2 DRP level of 50 roughly corresponds to the beginning of 6th grade 
in US schools, 70 corresponds to end of 10th grade. 
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the passage,  and averaged these values over 100 
passages of each batch. Table 4 shows the results.

LSAspec

LSA
Vector
Length

IDF

residualIDF

burstiness

variance

gain

Table 4: Average median specificity scores for texts of  
different genres and DRP levels.

Note  that  the  absolute  values  for  a  particular 
batch of texts are not important in this case; it's  the 
relative  differences  between  batches  of  different 
styles and difficulty levels that are of interest. Of 
all the measures, only  LSAspec appears to exhibit 
the two characteristics described above (increasing 
with text difficulty, and separating the three genres 
in the expected way). The metrics residualIDF and 
burstiness also appear to separate the genres as ex-
pected,  but  they do  not  increase  with  text  diffi-
culty. 

It is also evident that  LSA Vector Length alone 
does not serve as a good measure of informative-
ness, contrary to its use as such in (Gorman et al., 
2003). In fact, it shows the most dramatic and reli-
able  inverse relationship with text difficulty. This 
is likely due to the fact that texts of lower diffi-
culty use common (easier) words more often; these 
words tend to have longer LSA vector lengths.

4.4 Back-of-the-Book Glossary

Educational textbooks typically have a glossary 
(index) at the end which lists important terms or 
concepts mentioned in the book. One would expect 
these terms to have greater informativeness com-
pared to other words in the textbook. This was a 
crucial assumption used by Csomai and Mihalcea 
(2007), who used informativeness (as measured by 
IDF and other metrics) as one of the main features 
used  to  automatically  generate   glossaries  from 
textbooks.

We can use existing textbooks and their glossar-
ies to validate this assumptions, by observing the 
extent  to  which  the  words  in  the  glossary  are 
ranked higher by different specificity metrics com-
pared to other words. Note that the goal here is not 
to actually achieve optimal  performance  in  auto-
matically finding glossary words;  for  this  reason 
we do not use recall/precision- based evaluation or 
rely on  additional features such as term frequency 
(or the popular tfw∙idfw measure). Rather the goal is 
to simply see how much the glossary words exhibit 
the property (informativeness) that we are trying to 
compute with various methods. 

We obtained a  collection of textbook chapters 
(middle-school  level  material  from Prentice  Hall 
Publishing) and their corresponding glossaries, in 
two  different  genres:  8  on  World  Studies  (e.g. 
“Africa”,  “Medieval  Times”)  and  13  on  Science 
(e.g. “Structure of Animals”, “Electricity”).  Each 

50 55 60 65 70

SocialStudies
LanguageArts
Science

50 55 60 65 70

SocialStudies
LanguageArts
Science

50 55 60 65 70

SocialStudies
LanguageArts
Science

50 55 60 65 70

SocialStudies
LanguageArts
Science

50 55 60 65 70

SocialStudies
LanguageArts
Science

50 55 60 65 70

SocialStudies
LanguageArts
Science

50 55 60 65 70

SocialStudies
LanguageArts
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534



chapter was converted into text and a list of unique 
words was extracted.

For each of the specificity metrics, we compute 
how well it predicts glossary words:

1. Compute the specificity of each word in a 
chapter, according to the metric.

2. Order all the words in decreasing order of 
specificity.

3. Compute the median percentile rank (posi-
tion)  in  the  list  above  of  all  single-word 
entries in the glossary (top word has  the 
rank of 0; bottom has a rank of 100).

If  a  specificity  metric  predicts  the  glossary 
words well, we would expect the average rank to 
be low; i.e. glossary words would be near the top 
of the specificity-ordered list.

Metric Word Studies
(~9000 total wds / ch
~260 gloss wds / ch)

Science
(~1000 total wds / ch
~20 gloss wds / ch)

LSAspec 0.21 0.10

residualIDF 0.21 0.11

burstiness 0.21 0.12

IDF 0.29 0.16

variance 0.49 0.64

gain 0.51 0.68

Table 5: Average median rank of glossary words among 
all other words in textbook by specificity.

LSAspec shows the lowest median percentile for 
both genres of books.

4.5 Qualitative Analysis

It is useful to inspect the significant differences 
between the word rankings by different methods, 
to see if some notable patterns emerge.  We can 
find words  on  which the  methods  disagree  most 
dramatically by observing which of them have the 
most significant differences of position (0-100) in 
the word lists ranked by different specificity met-
rics. To avoid dealing with overly-rare words, we 
restrict  our attention to the 23,000 most  frequent 
words in the corpus.

Let's  first  compare  LSAspec and  residualIDF. 
From the list of 100 words with the most extreme 
disagreements, we select some examples that have 
high rank for  LSAspec (and low for  residuaIDF) 
and vice-versa.  From Table 6 we can see that  re-
sidualIDF misses some term words (such as “chro-
matin”) which  LSAspec correctly rates as highly-
specific  words.  Conversely,  residualIDF,  incor-

rectly ranks common words like “her” and “water” 
as highly-specific. The reason for this behavior is 
that words like “chromatin” happen to occur only 
once per document in the texts they are mentioned 
(e.g.  dfcromatin =  tfchromatin =  7),  whereas  “her”  and 
“school” tend to occur frequently per document. In 
real applications “her” will probably be discarded 
using  stopword  lists,  but  “school”  will  probably 
not.

Word LSAspec residualIDF

oviducts 0.5 98.8

cuspids 0.6 98.8

chromatin 0.7 98.7

disassembly 0.7 98.7

her 99.9 1.5

my 99.9 3.5

water 97.5 5.1

school 97.8 10.3

Table 6: Words ranked most differently by LSAspec and 
residualIDF

 Comparing  LSAspec  and  burstiness we see al-
most  the  same  pattern,  which  is  not  surprising, 
since  burstiness and  residualIDF work  from the 
same assumptions that content words tend to occur 
multiple times but in fewer documents.

The table below lists examples of most notable 
differences between LSAspec and IDF.

Word LSAspec IDF

billy 10.3 93.5

jack 15.0 95.9

melody 4.1 83.8

cells 10.8 86.3

inducing 34.0 9.8

vagueness 32.5 9.6

initiating 31.5 8.7

apathetic 32.3 9.8

Table 7: Words ranked most differently by LSAspec and 
IDF and their percentiles

There is a large disagreement between rankings 
of  common proper  names  (e.g.  “jack”).  It  is  not 
clear what the correct answer for these should be, 
although Rennie & Jaakkola (2005) use informat-
iveness for named entity detection, assuming that 
proper names should have high specificity.  Com-
mon  but  important  words  like  “melody”  and 
“cells” are considered low-specificity by  IDF. By 
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contrast, rare but vague words like “inducing” or 
“vagueness”  are  improperly   given  a  high   spe-
cificity ranking.

5 Applications in LSA

Having demonstrated that  our word specificity 
metric performs well with regards to some natural 
linguistic phenomena, we can now show that it can 
be used successfully as part of existing NLP tech-
nologies. Here we will  focus particularly on  ap-
plications within  Latent Semantic Analysis (LSA), 
although it is highly likely that this specificity met-
ric can be used successfully in other places as well. 

We will demonstrate that  LSAspec shows better 
results  that  the  conventional  term  weighting 
scheme in LSA. It is also important to note that al-
though LSAspec is derived using LSA, it is in fact 
logically  independent  from  the  term  weighting 
mechanism used by LSA; other metrics  (such as 
the ones described above) could also be potentially 
used for LSA term weighting.

In order to represent the meaning of text in LSA, 
one typically computes the document vector of the 
text by geometric addition of word vectors for each 
of the constituent words:

V d=∑
w∈d

a w∗log1tdw∗vw

where aw is the log-entropy weight of the word 
w, typically set to tfw∙idfw (or some variation there-
of) , tdw is the number of occurrences of the word w 
in the document, and vw is the vector of the word. 
Implicit in  vw  is its geometric length, which tends 
to be much greater for frequently-used words (un-
less  they  are  extremely  vague).  It  is  tempered 
somewhat by  aw which is higher for content words, 
but  perhaps  not  effectively  enough,  as  the  sub-
sequent  tests  will  show. McNamara et  al.  (2007) 
experimented  with  changing  the  weighting 
scheme,  mainly  focusing  on  prioritizing  rare  vs. 
frequent words, and has shown significant differ-
ences in short-sentence comparison results. 

In the sections below we compare the original 
LSA  weighting  scheme  with  our  new  scheme 
based on LSAspec:

V d=∑
w∈d

LSAspec w∗log1tdw∗
vw

∥vw∥

In other words, we replace the weight parameter aw  

and the implicit weight contained in the length of 

each word vector (by normalizing it) with the spe-
cificity value of LSAspec.

We  show  that  the  resulting  term  weighting 
scheme improves  performance  in three important 
applications:  information  retrieval,  gisting  and 
short-sentence comparison.

5.1 Information Retrieval

LSA was first introduced as Latent Semantic In-
dexing (Deerwester et al, 1990), designed for the 
goal of more effective information retrieval by rep-
resenting both documents and queries as vectors in 
a common latent semantic space.

In this  IR context,  the type  of term weighting 
used to compose document and query vectors plays 
an  important  role.  We  show  that  using  our 
LSAspec-based term weighting gives superior per-
formance to the traditional weighting scheme de-
scribed in the previous section.

We used the SMART Time3 dataset, a collection 
of 425 documents and 83 queries related to Time 
magazine news articles. For this task only, we used 
a LSA space that was built using the AQUAINT-2 
corpus4, a large collection (~440,000) of news art-
icles from prominent newspapers such as the New 
York Times.  The variable parameter in the LSA 
IR models was the cosine threshold between the 
document and the query, which was varied 
between 0 and 1

Figure 1 shows the performance of the original 
LSA and LSA with LSAspec5 term weighting 
method, in terms of the F-measure, which is the 
harmonic mean of precision and recall; a higher 
value means better performance. The abscissa in 
3   ftp://ftp.cs.cornell.edu/pub/smart/time/
4 TREC conference: http://trec.nist.gov/
5 LSAspec measure was the same as before, derived from LSA built 

on MetaMetrics corpus.

Figure 2: The performance of default LSA and 
LSA+LSASpec on SMART IR dataset.
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the graph is the value of the threshold cosine para-
meter. The LSAspec term weighting outperforms 
the original term weighting.

5.2 Sentence Similarity

Here we analyze performance of the two LSA 
term  weighting  methods  on  automated  sentence 
similarity comparisons. Although LSA works best 
on units of text of paragraph-size or larger, it can 
work reasonably well on sentence-length units.

We  use  the  dataset  reported  by  McNamara 
(2007),  where the authors collected a set  of sen-
tence pairs from several books. A total of 96 sen-
tence pairs was provided, consisting of a combina-
tion of subsequent sentences in the book (16), non-
adjacent  sentences  in  the  same  book  (16),  sen-
tences  from  two  different  books  (48),  and  sen-
tences where one is a manually-created paraphrase 
of one another (16). The standard of reference for 
this task is human similarity ratings of these sen-
tences within each pair, reported on a Likert scale 
between 6 (most  similar)  and 1 (completely dis-
similar). Here we report correlations between hu-
man rating and LSA similarity with the two term 
weighting metrics.

Original LSA: 0.66 LSA + LSAspec: 0.85
Using LSAspec term weighting gives better per-

formance  compared  to  the  original  LSA  term 
weighting scheme.

5.3 Gisting (Very Short Summarization)

The ability to represent documents and words in 
a common geometric space allows LSA to easily 
compute  the  gist  of  a  document  by  finding  the 
word (or sentence) whose vector is most similar by 
cosine metric to the document  vector.  This word 
can be interpreted as the most representative of the 
cumulative meaning of the document; it can also 
be thought  as a one-word summary of the docu-
ment.  Gisting  is  discussed  from a  psychological 
perspective by Kintsch (2002).

Once again, the choice of term weighting mech-
anism can make a significant difference in how the 
overall  document vector is constructed. Here, we 
compare  the  original  weighting  scheme  and 
LSAspec in the performance on gisting. To perform 
this evaluation, we selected 46 well-written Wiki-
pedia6 articles in various categories: Sports, Anim-
als, Countries, Sciences, Religions, Diseases.  The 

6 http://en.wikipedia.org  , circa May 2008.

original single-word Wikipedia title of each of the 
articles  can  be  thought  as  the  optimal  one-word 
gist of the article, thus serving as a reference an-
swer in evaluation. A perfect gisting performance 
by the model would always select the original title 
as the closest  word to the  meaning of the docu-
ment. We also measure the position of the original 
title in the list of all words in the article ranked by 
their  similarity to  the  document  vector,  and ran-
ging from 0 (original title picked as top word) and 
1. Table 10 shows a few examples of both the top 
word and rank of the title, as well  as the overall 
mean rank of all 46 articles.

Title Orig LSA LSA + LSAspec
top word rank top word rank

Skiing skiing 0.0000 skiing 0.0000
Thailand buddhism 0.0189 thailand 0.0000
Sociology sociologists 0.0012 sociology 0.0000
Pneumonia infections 0.0064 infections 0.0092
Mean rank (all 46 articles) 0.0191 0.0061
St. dev. of rank 0.0847 0.0133

Table 8: Examples of gisting (picking most representat-
ive word for text) in with and without LSASpec in LSA

Using  LSAspec noticeably  improves  gisting  per-
formance,  compared  to  the  original  LSA  term 
weighting method, as is evidenced by much lower 
mean rank of the original title.

6 Conclusion

We have introduced a new method of measuring 
word informativeness. The method gives good res-
ults modeling some real linguistic phenomena, and 
improves LSA applications.

We attempted to look more deeply at the relev-
ant characteristics of word specificity (such as cor-
relation  with  number  of  senses).  Our  method 
seems to correspond with intuition on emulating a 
wide range of these characteristics. It also avoids a 
lot  of  pitfalls  of  existing methods  that  are based 
purely on frequency statistics, such as unduly pri-
oritizing rare but vague words.

Further research should examine the stability of 
this method (compared to others) with regards to 
variation/size of the training corpus. It should also 
analyze application of the method in other natural 
language tasks. Lastly, it should be correlated with 
human judgments, similar to other psycholinguistic 
properties.
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Abstract

Linear Context-free Rewriting Systems
(LCFRS) is an expressive grammar formalism
with applications in syntax-based machine
translation. The parsing complexity of an
LCFRS is exponential in both the rank
of a production, defined as the number of
nonterminals on its right-hand side, and a
measure for the discontinuity of a phrase,
called fan-out. In this paper, we present
an algorithm that transforms an LCFRS
into a strongly equivalent form in which
all productions have rank at most 2, and
has minimal fan-out. Our results generalize
previous work on Synchronous Context-Free
Grammar, and are particularly relevant for
machine translation from or to languages that
require syntactic analyses with discontinuous
constituents.

1 Introduction

There is currently considerable interest in syntax-
based models for statistical machine translation that
are based on the extraction of a synchronous gram-
mar from a corpus of word-aligned parallel texts;
see for instance Chiang (2007) and the references
therein. One practical problem with this approach,
apart from the sheer number of the rules that result
from the extraction procedure, is that the parsing
complexity of all synchronous formalisms that we
are aware of is exponential in the rank of a rule,
defined as the number of nonterminals on the right-
hand side. Therefore, it is important that the rules
of the extracted grammar are transformed so as to
minimise this quantity. Not only is this beneficial in

terms of parsing complexity, but smaller rules can
also improve a translation model’s ability to gener-
alize to new data (Zhang et al., 2006).

Optimal algorithms exist for minimising the size
of rules in a Synchronous Context-Free Gram-
mar (SCFG) (Uno and Yagiura, 2000; Zhang et al.,
2008). However, the SCFG formalism is limited
to modelling word-to-word alignments in which a
single continuous phrase in the source language is
aligned with a single continuous phrase in the tar-
get language; as defined below, this amounts to
saying that SCFG have a fan-out of 2. This re-
striction appears to render SCFG empirically inad-
equate. In particular, Wellington et al. (2006) find
that the coverage of a translation model can increase
dramatically when one allows a bilingual phrase to
stretch out over three rather than two continuous
substrings. This observation is in line with empir-
ical studies in the context of dependency parsing,
where the need for formalisms with higher fan-out
has been observed even in standard, single language
texts (Kuhlmann and Nivre, 2006).

In this paper, we present an algorithm that com-
putes optimal decompositions of rules in the for-
malism of Linear Context-Free Rewriting Systems
(LCFRS) (Vijay-Shanker et al., 1987). LCFRS was
originally introduced as a generalization of sev-
eral so-called mildly context-sensitive grammar for-
malisms. In the context of machine translation,
LCFRS is an interesting generalization of SCFG be-
cause it does not restrict the fan-out to 2, allow-
ing productions with arbitrary fan-out (and arbitrary
rank). Given an LCFRS, our algorithm computes a
strongly equivalent grammar with rank 2 and min-
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imal increase in fan-out.1 In this context, strong
equivalence means that the derivations of the orig-
inal grammar can be reconstructed using some sim-
ple homomorphism (c.f. Nijholt, 1980). Our contri-
bution is significant because the existing algorithms
for decomposing SCFG, based on Uno and Yagiura
(2000), cannot be applied to LCFRS, as they rely
on the crucial property that components of biphrases
are strictly separated in the generated string: Given a
pair of synchronized nonterminal symbols, the ma-
terial derived from the source nonterminal must pre-
cede the material derived from the target nontermi-
nal, or vice versa. The problem that we solve has
been previously addressed by Melamed et al. (2004),
but in contrast to our result, their algorithm does not
guarantee an optimal (minimal) increase in the fan-
out of the resulting grammar. However, this is essen-
tial for the practical applicability of the transformed
grammar, as the parsing complexity of LCFRS is ex-
ponential in both the rank and the fan-out.

Structure of the paper The remainder of the pa-
per is structured as follows. Section 2 introduces the
terminology and notation that we use for LCFRS.
In Section 3, we present the technical background
of our algorithm; the algorithm itself is discussed
in Section 4. Section 5 concludes the paper by dis-
cussing related work and open problems.

General notation The set of non-negative integers
is denoted by N. For i, j ∈ N, we write [i, j] to
denote the interval { k ∈ N | i ≤ k ≤ j }, and use
[i] as a shorthand for [1, i]. Given an alphabet V , we
write V ∗ for the set of all (finite) strings over V .

2 Preliminaries

We briefly summarize the terminology and notation
that we adopt for LCFRS; for detailed definitions,
see Vijay-Shanker et al. (1987).

2.1 Linear, non-erasing functions

Let V be an alphabet. For natural numbers r ≥ 0
and f, f1, . . . , fr ≥ 1, a function

g : (V ∗)f1 × · · · × (V ∗)fr → (V ∗)f

1Rambow and Satta (1999) show that without increasing
fan-out it is not always possible to produce even weakly equiv-
alent grammars.

is called a linear, non-erasing function over V of
type f1 × · · · × fr → f , if it can be defined by an
equation of the form

g(〈x1,1, . . . , x1,f1〉, . . . , 〈xr,1, . . . , xr,fr〉) = βg ,

where βg = 〈αg,1, . . . , αg,f 〉 is an f -tuple of strings
over the variables on the left-hand side of the equa-
tion and symbols in V that contains exactly one oc-
currence of each variable. We call the value r the
rank of g, the value f its fan-out, and write ρ(g)
and ϕ(g), respectively, to denote these quantities.
Note that, if we assume the variables on the left-
hand side of the defining equation of g to be named
according to the specific schema given above, then g
is uniquely determined by βg.

2.2 Linear context-free rewriting systems

A linear context-free rewriting system (LCFRS)
is a construct G = (VN , VT , P, S), where: VN is
an alphabet of nonterminal symbols in which each
symbol A ∈ VN is associated with a value ϕ(A),
called its fan-out; VT is an alphabet of terminal
symbols; S ∈ N is a distinguished start symbol with
ϕ(S) = 1; and P is a set of productions of the form

p : A→ g(B1, B2, . . . , Br) ,

where A,B1, . . . , Br ∈ VN , and g is a linear, non-
erasing function over the terminal alphabet VT of
type ϕ(B1) × · · · × ϕ(Br) → ϕ(A). In a deriva-
tion of an LCFRS, the production p can be used to
transform a sequence of r tuples of strings, gener-
ated by the nonterminals B1, . . . , Br, into a single
ϕ(A)-tuple of strings, associated with the nonter-
minal A. The values ρ(g) and ϕ(g) are called the
rank and fan-out of p, respectively, and we write
ρ(p) and ϕ(p), respectively, to denote these quan-
tities. The rank and fan-out of G, written ρ(G)
and ϕ(G), respectively, are the maximum rank and
fan-out among all of its productions. Given that
ϕ(S) = 1, a derivation will associate S with a set of
one-component tuples of strings over VT ; this forms
the string language generated by G.

Example 1 The following LCFRS generates the
string language { anbncndn | n ∈ N }. We only
specify the set of productions; the remaining com-
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ponents of the grammar are obvious from that.

S → g1(R) g1(〈x1,1, x1,2〉) = 〈x1,1x1,2〉
R→ g2(R) g2(〈x1,1, x1,2〉) = 〈ax1,1b, cx1,2d〉
R→ g3 g3 = 〈ε, ε〉

The functions g1 and g2 have rank 1; the function g3
has rank 0. The functions g2 and g3 have fan-out 2;
the function g1 has fan-out 1. 2

3 Technical background

The general idea behind our algorithm is to replace
each production of an LCFRS with a set of “shorter”
productions that jointly are equivalent to the original
production. Before formalizing this idea, we first in-
troduce a specialized representation for the produc-
tions of an LCFRS.

We distinguish between occurrences of symbols
within a string by exploiting two different notations.
Let α = a1a2 · · · an be a string. The occurrence ai
in α can be denoted by means of its position index
i ∈ [n], or else by means of its two (left and right)
endpoints, i−1 and i; here, the left (right) endpoint
denotes a boundary between occurrence ai and the
previous (subsequent) occurrence, or the beginning
(end) of the string α. Similarly, a substring ai · · · aj
of α with i ≤ j can be denoted by the positions
i, i+ 1, . . . , j of its occurrences, or else by means of
its left and right endpoints, i− 1 and j.

3.1 Production representation

For the remainder of this section, let us fix an
LCFRS G = (VN , VT , P, S) and a production
p : A → g(B1, . . . , Br) of G, with g defined as
in Section 2.1. We define

|p| = ϕ(g) +
ϕ(g)∑

i=1

|αg,i|.

Let $ be a fresh symbol that does not occur inG. We
define the characteristic string of the production p
as

σ(p) = αg,1$ · · · $αg,ϕ(g) ,

and the variable string of p as the string σN (p) ob-
tained from σ(p) by removing all the occurrences of
symbols in VT .

Example 2 We will illustrate the concepts intro-
duced in this section using the concrete production
p0 : A→ g(B1, B2, B3), where

βg = 〈x1,1ax2,1x1,2, x3,1bx3,2〉 .

In this case, we have

σ(p0) = x1,1ax2,1x1,2$x3,1bx3,2 , and

σN (p0) = x1,1x2,1x1,2$x3,1x3,2 . 2

Let I be an index set, I ⊆ [r]. Consider the set B of
occurrences Bi in the right-hand side of p such that
i ∈ I .2 We define the position set of B, denoted
by ΠB, as the set of all positions 1 ≤ j ≤ |σN (p)|
such that the jth symbol in σN (p) is a variable of the
form xi,h, for i ∈ I and some h ≥ 1.

Example 3 Some position sets of p0 are

Π{B1} = {1, 3} ,Π{B2} = {2} ,Π{B3} = {5, 6} .
2

A position set ΠB can be uniquely expressed as the
union of f ≥ 1 intervals [l1 + 1, r1], . . . , [lf + 1, rf ]
such that ri−1 < li for every 1 < i ≤ f . Thus we
define the set of endpoints of ΠB as

∆B = { lj | j ∈ [f ] } ∪ { rj | j ∈ [f ] } .

The quantity f is called the fan-out of ΠB, writ-
ten ϕ(ΠB). Notice that the fan-out of a position set
Π{B} does not necessarily coincide with the fan-out
of the non-terminal B in the underlying LCFRS. A
set with 2f endpoints always corresponds to a posi-
tion set of fan-out f .

Example 4 For our running example, we have
∆{B1} = {0, 1, 2, 3}, ∆{B2} = {1, 2}, ∆{B3} =
{4, 6}. Consequently, the fan-out of ∆{B1} is 2, and
the fan-out of ∆{B2} and ∆{B3} is 1. Notice that the
fan-out of the non-terminal B3 is 2. 2

We drop B from ΠB and ∆B whenever this set is
understood from the context or it is not relevant.
Given a set of endpoints ∆ = {i1, . . . , i2f} with
i1 < · · · < i2f , we obtain its corresponding position
set by calculating the closure of ∆, defined as

[∆] =
⋃f
j=1[i2j−1 + 1, i2j ] .

2To avoid clutter in our examples, we abuse the notation by
not making an explicit distinction between nonterminals and oc-
currences of nonterminals in productions.
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3.2 Reductions

Assume that r > 2. The reduction of p by the non-
terminal occurrencesBr−1, Br is the ordered pair of
productions (p1, p2) that is defined as follows. Let
γ1, . . . , γn be the maximal substrings of σ(p) that
contain only variables xi,j with r − 1 ≤ i ≤ r and
terminal symbols, and at least one variable. Then

p1 : A→ g1(B1, . . . , Br−2, X) and

p2 : X → g2(Br−1, Br) ,

where X is a fresh nonterminal symbol, the char-
acteristic string σ(p1) is the string obtained from
σ(p) by replacing each substring γi by the vari-
able xr−1,i, and the characteristic string σ(p2) is the
string γ1$ · · · $γn.

Note that the defining equations of neither g1
nor g2 are in the specific form discussed in Sec-
tion 2.1; however, they can be brought into this form
by a consistent renaming of the variables. We will
silently assume this renaming to take place.

Example 5 The reduction of p0 by the nonterminal
occurrences B2 and B3 has p1 : A → g1(B1, X)
and p2 : X → g2(B2, B3) with

σ(p1) = x1,1x2,1x1,2$x2,2

σ(p2) = ax2,1$x3,1bx3,2

or, after renaming and in standard notation,

g1(〈x1,1, x1,2〉, 〈x2,1, x2,2〉) = 〈x1,1x2,1x1,2, x2,2〉
g2(〈x1,1〉, 〈x2,1, x2,2〉) = 〈ax1,1, x2,1bx2,2〉 .2

It is easy to check that a reduction provides us with a
pair of productions that are equivalent to the original
production p, in terms of generative capacity, since

g1(B1, . . . , Br−2, g2(Br−1, Br)) = g(B1, . . . , Br)

for all tuples of strings generated from the nontermi-
nalsB1, . . . , Br, respectively. Note also that the fan-
out of production p1 equals the fan-out of p. How-
ever, the fan-out of p2 (the value n) may be greater
than the fan-out of p, depending on the way vari-
ables are arranged in σ(p). Thus, a reduction does
not necessarily preserve the fan-out of the original
production. In the worst case, the fan-out of p2 can
be as large as ϕ(Br−1) + ϕ(Br).

1: Function NAIVE-BINARIZATION(p)
2: result← ∅;
3: currentProd← p;
4: while ρ(currentProd) > 2 do
5: (p1, p2)← any reduction of currentProd;
6: result← result ∪ p2;
7: currentProd← p1;
8: return result ∪ currentProd;

Figure 1: The naive algorithm

We have defined reductions only for the last two
occurrences of nonterminals in the right-hand side of
a production p. However, it is easy to see that we can
also define the concept for two arbitrary (not neces-
sarily adjacent) occurrences of nonterminals, at the
cost of making the notation more complicated.

4 The algorithm

Let G be an LCFRS with ϕ(G) = f and ρ(G) = r,
and let f ′ ≥ f be a target fan-out. We will now
present an algorithm that computes an equivalent
LCFRS G′ of fan-out at most f ′ whose rank is at
most 2, if such an LCFRS exists in the first place.
The algorithm works by exhaustively reducing all
productions in G.

4.1 Naive algorithm

Given an LCFRS production p, a naive algorithm
to compute an equivalent set of productions whose
rank is at most 2 is given in Figure 1. By ap-
plying this algorithm to all the productions in the
LCFRSG, we can obtain an equivalent LCFRS with
rank 2. We will call such an LCFRS a binarization
of G.

The fan-out of the obtained LCFRS will depend
on the nonterminals that we choose for the reduc-
tions in line 5. It is not difficult to see that, in the
worst case, the resulting fan-out can be as high as
d r2e · f . This occurs when we choose d r2e nonter-
minals with fan-out f that have associated variables
in the string σN (p) that do not occur at consecutive
positions.

The algorithm that we develop in Section 4.3 im-
proves on the naive algorithm in that it can be ex-
ploited to find a sequence of reductions that results
in a binarization of G that is optimal, i.e., leads to
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an LCFRS with minimal fan-out. The algorithm is
based on a technical concept called adjacency.

4.2 Adjacency
Let p be some production in the LCFRS G, and let
∆1,∆2 be sets of endpoints, associated with some
sets of nonterminal occurrences in p. We say that ∆1

and ∆2 overlap if the intersection of their closures
is nonempty, that is, if [∆1]∩ [∆2] 6= ∅. Overlapping
holds if and only if the associated sets of nontermi-
nal occurrences are not disjoint. If ∆1 and ∆2 do
not overlap, we define their merge as

⊕(∆1,∆2) = (∆1 ∪∆2) \ (∆1 ∩∆2) .

It is easy to see that [⊕(∆1,∆2)] = [∆1] ∪ [∆2].
We say that ∆1 and ∆2 are adjacent for a given fan-
out f , written ∆1 ↔f ∆2, if ∆1 and ∆2 do not
overlap, and ϕ([⊕(∆1,∆2)]) ≤ f .

Example 6 For the production p0 from Example 2,
we have ⊕(∆{B1},∆{B2}) = {0, 3}, showing that
∆{B1} ↔1 ∆{B2}. Similarly, we have

⊕(∆{B1},∆{B3}) = {0, 1, 2, 3, 4, 6} ,

showing that ∆{B1} ↔3 ∆{B3}, but that neither
∆{B1} ↔2 ∆{B3} nor ∆{B1} ↔1 ∆{B3} holds. 2

4.3 Bounded binarization algorithm
The adjacency-based binarization algorithm is given
in Figure 2. It starts with a working set contain-
ing the endpoint sets corresponding to each non-
terminal occurrence in the input production p. Re-
ductions of p are only explored for nonterminal oc-
currences whose endpoint sets are adjacent for the
target fan-out f ′, since reductions not meeting this
constraint would produce productions with fan-out
greater than f ′. Each reduction explored by the al-
gorithm produces a new endpoint set, associated to
the fresh nonterminal that it introduces, and this new
endpoint set is added to the working set and poten-
tially used in further reductions.

From the definition of the adjacency relation↔f ,
it follows that at lines 9 and 10 of BOUNDED-
BINARIZATION we only pick up reductions for p
that do not exceed the fan-out bound of f ′. This
implies soundness for our algorithm. Completeness
means that the algorithm fails only if there exists no
binarization for p of fan-out not greater than f ′. This

1: Function BOUNDED-BINARIZATION(p, f ′)
2: workingSet← ∅;
3: agenda← ∅;
4: for all i from 1 to ρ(p) do
5: workingSet← workingSet ∪ {∆{Bi}};
6: agenda← agenda ∪ {∆{Bi}};
7: while agenda 6= ∅ do
8: ∆← pop some endpoint set from agenda;
9: for all ∆1 ∈ workingSet with ∆1 ↔f ′ ∆ do

10: ∆2 = ⊕(∆,∆1);
11: if ∆2 /∈ workingSet then
12: workingSet← workingSet ∪ {∆2};
13: agenda← agenda ∪ {∆2};
14: if ∆{B1,B2,...,Bρ(p))} ∈ workingSet then
15: return true;
16: else
17: return false;

Figure 2: Algorithm to compute a bounded binarization

property is intuitive if one observes that our algo-
rithm is a specialization of standard algorithms for
the computation of the closure of binary relations.
A formal proof of this fact is rather long and te-
dious, and will not be reported here. We notice that
there is a very close similarity between algorithm
BOUNDED-BINARIZATION and the deduction pro-
cedure proposed by Shieber et al. (1995) for parsing.
We discuss this more at length in Section 5.

Note that we have expressed the algorithm as a
decision function that will return true if there exists
a binarization of p with fan-out not greater than f ′,
and false otherwise. However, the algorithm can
easily be modified to return a reduction producing
such a binarization, by adding to each endpoint set
∆ ∈ workingSet two pointers to the adjacent end-
point sets that were used to obtain it. If the algorithm
is successful, the tree obtained by following these
pointers from the final endpoint set ∆{B1,...,Bρ(p)} ∈
workingSet gives us a tree of reductions that will
produce a binarization of p with fan-out not greater
than f ′, where each node labeled with the set ∆{Bi}
corresponds to the nonterminal Bi, and nodes la-
beled with other endpoint sets correspond to the
fresh nonterminals created by the reductions.
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4.4 Implementation

In order to implement BOUNDED-BINARIZATION,
we can represent endpoint sets in a canonical way
as 2f ′-tuples of integer positions in ascending order,
and with some special null value used to fill posi-
tions for endpoint sets with fan-out strictly smaller
than f ′. We will assume that the concrete null value
is larger than any other integer.

We also need to provide some appropriate repre-
sentation for the set workingSet, in order to guar-
antee efficient performance for the membership test
and the insertion operation. Both operations can be
implemented in constant time if we represent work-
ingSet as an (2×f ′)-dimensional table with Boolean
entries. Each dimension is indexed by values in
[0, n] plus our special null value; here n is the length
of the string σN (p), and thus n = O(|p|). However,
this has the disadvantage of using space Θ(n2f ′),
even in case workingSet is sparse, and is affordable
only for quite small values of f ′. Alternatively, we
can more compactly represent workingSet as a trie
data structure. This representation has size certainly
smaller than 2f ′ × q, where q is the size of the set
workingSet. However, both membership and inser-
tion operations take now an amount of time O(2f ′).

We now analyse the time complexity of algorithm
BOUNDED-BINARIZATION for inputs p and f ′. We
first focus on the while-loop at lines 7 to 13. As
already observed, the number of possible endpoint
sets is bounded by O(n2f ′). Furthermore, because
of the test at line 11, no endpoint set is ever inserted
into the agenda variable more than once in a sin-
gle run of the algorithm. We then conclude that our
while-loop cycles a number of times O(n2f ′).

We now focus on the choice of the endpoint set
∆1 in the inner for-loop at lines 9 to 13. Let us fix ∆
as in line 8. It is not difficult to see that any ∆1 with
∆1 ↔f ′ ∆ must satisfy

ϕ(∆) + ϕ(∆1)− |∆ ∩∆1| ≤ f ′. (1)

Let I ⊆ ∆, and consider all endpoint sets ∆1 with
∆ ∩∆1 = I . Given (1), we also have

ϕ(∆1) ≤ f ′ + |I| − ϕ(∆). (2)

This means that, for each ∆ coming out of the
agenda, at line 9 we can choose all endpoint sets ∆1

such that ∆1 ↔f ′ ∆ by performing the following
steps:

• arbitrarily choose a set I ⊆ ∆;

• choose endpoints in set ∆1\I subject to (2);

• test whether ∆1 belongs to workingSet and
whether ∆, ∆1 do not overlap.

We claim that, in the above steps, the number
of involved endpoints does not exceed 3f ′. To
see this, we observe that from (2) we can derive
|I| ≥ ϕ(∆) + ϕ(∆1) − f ′. The total number
of (distinct) endpoints in a single iteration step is
e = 2ϕ(∆) + 2ϕ(∆1) − |I|. Combining with the
above inequality we have

e ≤ 2ϕ(∆) + 2ϕ(∆1)− ϕ(∆)− ϕ(∆1) + f ′

= ϕ(∆) + ϕ(∆1) + f ′ ≤ 3f ′ ,

as claimed. Since each endpoint takes values in
the set [0, n], we have a total of O(n3f ′) different
choices. For each such choice, we need to clas-
sify an endpoint as belonging to either ∆\I , ∆1\I ,
or I . This amounts to an additional O(33f ′) dif-
ferent choices. Overall, we have a total number of
O((3n)3f

′
) different choices. For each such choice,

the test for membership in workingSet for ∆1 takes
constant time in case we use a multi-dimensional ta-
ble, or else O(|p|) in case we use a trie. The ad-
jacency test and the merge operations can easily be
carried out in time O(|p|).

Putting all of the above observations together, and
using the already observed fact that n = O(|p|),
we can conclude that the total amount of time re-
quired by the while-loop at lines 7 to 13 is bounded
byO(|p| · (3|p|)3f ′), both under the assumption that
workingSet is represented as a multi-dimensional ta-
ble or as a trie. This is also a bound on the running
time of the whole algorithm.

4.5 Minimal binarization of a complete LCFRS

The algorithm defined in Section 4.3 can be used
to binarize an LCFRS in such a way that each rule
in the resulting binarization has the minimum pos-
sible fan-out. This can be done by applying the
BOUNDED-BINARIZATION algorithm to each pro-
duction p, until we find the minimum value for the
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1: Function MINIMAL-BINARIZATION(G)
2: pb = ∅ {Set of binarized productions}
3: for all production p of G do
4: f ′ = fan-out(p);
5: while not BOUNDED-BINARIZATION(p, f ′)

do
6: f ′ = f ′ + 1;
7: add result of BOUNDED-BINARIZATION(p,

f ′) to pb; {We obtain the tree from
BOUNDED-BINARIZATION as explained in
Section 4.3 and use it to binarize p}

8: return pb;

Figure 3: Minimal binarization by sequential search

bound f ′ for which this algorithm finds a binariza-
tion. For a production with rank r and fan-out f ,
we know that this optimal value of f ′ must be in
the interval [f, d r2e · f ] because binarizing a pro-
duction cannot reduce its fan-out, and the NAIVE-
BINARIZATION algorithm seen in Section 4.1 can
binarize any production by increasing fan-out to
d r2e · f in the worst case.

The simplest way of finding out the optimal value
of f ′ for each production is by a sequential search
starting with ϕ(p) and going upwards, as in the algo-
rithm in Figure 3. Note that the upper bound d r2e · f
that we have given for f ′ guarantees that the while-
loop in this algorithm always terminates.

In the worst case, we may need f · (d r2e − 1) + 1
executions of the BOUNDED-BINARIZATION algo-
rithm to find the optimal binarization of a production
in G. This complexity can be reduced by changing
the strategy to search for the optimal f ′: for exam-
ple, we can perform a binary search within the inter-
val [f, d r2e · f ], which lets us find the optimal bina-
rization in blog(f · (d r2e−1)+1)c+1 executions of
BOUNDED-BINARIZATION. However, this will not
result in a practical improvement, since BOUNDED-
BINARIZATION is exponential in the value of f ′ and
the binary search will require us to run it on val-
ues of f ′ larger than the optimal in most cases. An
intermediate strategy between the two is to apply
exponential backoff to try the sequence of values
f−1+2i (for i = 0, 1, 2 . . .). When we find the first
i such that BOUNDED-BINARIZATION does not fail,
if i > 0, we apply the same strategy to the interval

[f−1+2i−1, f−2+2i], and we repeat this method to
shrink the interval until BOUNDED-BINARIZATION

does not fail for i = 0, giving us our optimal f ′.
With this strategy, the amount of executions of the
algorithm that we need in the worst case is

1
2

(dlog(ω)e+ dlog(ω)e2) + 1 ,

where ω = f · (d r2e − 1) + 1, but we avoid using
unnecessarily large values of f ′.

5 Discussion

To conclude this paper, we now discuss a number of
aspects of the results that we have presented, includ-
ing various other pieces of research that are particu-
larly relevant to this paper.

5.1 The tradeoff between rank and fan-out

The algorithm introduced in this paper can be used
to transform an LCFRS into an equivalent form
with rank 2. This will result into a more effi-
ciently parsable LCFRS, since rank exponentially
affects parsing complexity. However, we must take
into account that parsing complexity is also influ-
enced by fan-out. Our algorithm guarantees a min-
imal increase in fan-out. In practical cases it seems
such an increase is quite small. For example, in
the context of dependency parsing, both Gómez-
Rodrı́guez et al. (2009) and Kuhlmann and Satta
(2009) show that all the structures in several well-
known non-projective dependency treebanks are bi-
narizable without any increase in their fan-out.

More in general, it has been shown by Seki et al.
(1991) that parsing of LCFRS can be carried out in
time O(n|pM |), where n is the length of the input
string and pM is the production in the grammar with
largest size.3 Thus, there may be cases in which one
has to find an optimal tradeoff between rank and fan-
out, in order to minimize the size of pM . This re-
quires some kind of Viterbi search over the space of
all possible binarizations, constructed as described
at the end of Subsection 4.3, for some appropriate
value of the fan-out f ′.

3The result has been shown for the formalism of multiple
context-free grammars (MCFG), but it also applies to LCFRS,
which are a special case of MCFG.
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5.2 Extension to general LCFRS

This paper has focussed on string-based LCFRS.
As discussed in Vijay-Shanker et al. (1987), LCFRS
provide a more general framework where the pro-
ductions are viewed as generating a set of abstract
derivation trees. These trees can be used to specify
how structures other than tuples of strings are com-
posed. For example, LCFRS derivation trees can be
used to specify how the elementary trees of a Tree
Adjoining Grammar can be composed to produced
derived tree. However, the results in this paper also
apply to non-string-based LCFRS, since by limit-
ing attention to the terminal string yield of whatever
structures are under consideration, the composition
operations can be defined using the string-based ver-
sion of LCFRS that is discussed here.

5.3 Similar algorithmic techniques

The NAIVE-BINARIZATION algorithm given in Fig-
ure 1 is not novel to this paper: it is similar to
an algorithm developed in Melamed et al. (2004)
for generalized multitext grammars, a formalism
weakly equivalent to LCFRS that has been intro-
duced for syntax-based machine translation. How-
ever, the grammar produced by our algorithm has
optimal (minimal) fan-out. This is an important im-
provement over the result in (Melamed et al., 2004),
as this quantity enters into the parsing complexity
of both multitext grammars and LCFRS as an expo-
nential factor, and therefore must be kept as low as
possible to ensure practically viable parsing.

Rank reduction is also investigated in Nesson
et al. (2008) for synchronous tree-adjoining gram-
mars, a synchronous rewriting formalism based on
tree-adjoining grammars Joshi and Schabes (1992).
In this case the search space of possible reductions
is strongly restricted by the tree structures specified
by the formalism, resulting in simplified computa-
tion for the reduction algorithms. This feature is not
present in the case of LCFRS.

There is a close parallel between the technique
used in the MINIMAL-BINARIZATION algorithm
and deductive parsing techniques as proposed by
Shieber et al. (1995), that are usually implemented
by means of tabular methods. The idea of exploit-
ing tabular parsing in production factorization was
first expressed in Zhang et al. (2006). In fact, the

particular approach presented here has been used
to improve efficiency of parsing algorithms that use
discontinuous syntactic models, in particular, non-
projective dependency grammars, as discussed in
Gómez-Rodrı́guez et al. (2009).

5.4 Open problems
The bounded binarization algorithm that we have
presented has exponential run-time in the value of
the input fan-out bound f ′. It remains an open ques-
tion whether the bounded binarization problem for
LCFRS can be solved in deterministic polynomial
time. Even in the restricted case of f ′ = ϕ(p), that
is, when no increase in the fan-out of the input pro-
duction is allowed, we do not know whether p can be
binarized using only deterministic polynomial time
in the value of p’s fan-out. However, our bounded
binarization algorithm shows that the latter problem
can be solved in polynomial time when the fan-out
of the input LCFRS is bounded by some constant.

Whether the bounded binarization problem can
be solved in polynomial time in the value of the
input bound f ′ is also an open problem in the re-
stricted case of synchronous context-free grammars,
a special case of an LCFRS of fan-out two with
a strict separation between the two components of
each nonterminal in the right-hand side of a produc-
tion, as discussed in the introduction. An interesting
analysis of this restricted problem can be found in
Gildea and Stefankovic (2007).
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Abstract

Tree substitution grammars (TSGs) are a com-
pelling alternative to context-free grammars
for modelling syntax. However, many popu-
lar techniques for estimating weighted TSGs
(under the moniker of Data Oriented Parsing)
suffer from the problems of inconsistency and
over-fitting. We present a theoretically princi-
pled model which solves these problems us-
ing a Bayesian non-parametric formulation.
Our model learns compact and simple gram-
mars, uncovering latent linguistic structures
(e.g., verb subcategorisation), and in doing so
far out-performs a standard PCFG.

1 Introduction

Many successful models of syntax are based on
Probabilistic Context Free Grammars (PCFGs)
(e.g., Collins (1999)). However, directly learning a
PCFG from a treebank results in poor parsing perfor-
mance, due largely to the unrealistic independence
assumptions imposed by the context-free assump-
tion. Considerable effort is required to coax good
results from a PCFG, in the form of grammar en-
gineering, feature selection and clever smoothing
(Collins, 1999; Charniak, 2000; Charniak and John-
son, 2005; Johnson, 1998). This effort must be re-
peated when moving to different languages, gram-
mar formalisms or treebanks. We propose that much
of this hand-coded knowledge can be obtained auto-
matically as an emergent property of the treebanked
data, thereby reducing the need for human input in
crafting the grammar.

We present a model for automatically learning a
Probabilistic Tree Substitution Grammar (PTSG),
an extension to the PCFG in which non-terminals
can rewrite as entire tree fragments (elementary

trees), not just immediate children. These large frag-
ments can be used to encode non-local context, such
as head-lexicalisation and verb sub-categorisation.
Since no annotated data is available providing TSG
derivations we must induce the PTSG productions
and their probabilities in an unsupervised way from
an ordinary treebank. This is the same problem ad-
dressed by Data Oriented Parsing (DOP, Bod et al.
(2003)), a method which uses as productions all sub-
trees of the training corpus. However, many of the
DOP estimation methods have serious shortcomings
(Johnson, 2002), namely inconsistency for DOP1
(Bod, 2003) and overfitting of the maximum like-
lihood estimate (Prescher et al., 2004).

In this paper we develop an alternative means of
learning a PTSG from a treebanked corpus, with the
twin objectives of a) finding a grammar which ac-
curately models the data and b) keeping the gram-
mar as simple as possible, with few, compact, ele-
mentary trees. This is achieved using a prior to en-
courage sparsity and simplicity in a Bayesian non-
parametric formulation. The framework allows us to
perform inference over an infinite space of gram-
mar productions in an elegant and efficient manner.
The net result is a grammar which only uses the in-
creased context afforded by the TSG when necessary
to model the data, and otherwise uses context-free
rules.1 That is, our model learns to use larger rules
when the CFG’s independence assumptions do not
hold. This contrasts with DOP, which seeks to use
all elementary trees from the training set. While our
model is able, in theory, to use all such trees, in prac-
tice the data does not justify such a large grammar.
Grammars that are only about twice the size of a

1While TSGs and CFGs describe the same string lan-
guages, TSGs can describe context-sensitive tree-languages,
which CFGs cannot.
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treebank PCFG provide large gains in accuracy. We
obtain additional improvements with grammars that
are somewhat larger, but still much smaller than the
DOP all-subtrees grammar. The rules in these gram-
mars are intuitive, potentially offering insights into
grammatical structure which could be used in, e.g.,
the development of syntactic ontologies and guide-
lines for future treebanking projects.

2 Background and related work

A Tree Substitution Grammar2 (TSG) is a 4-tuple,
G = (T,N, S,R), where T is a set of terminal sym-
bols, N is a set of non-terminal symbols, S ∈ N is
the distinguished root non-terminal and R is a set
of productions (a.k.a. rules). The productions take
the form of elementary trees – tree fragments of
depth ≥ 2, where each internal node is labelled with
a non-terminal and each leaf is labelled with either a
terminal or a non-terminal. Non-terminal leaves are
called frontier non-terminals and form the substitu-
tion sites in the generative process of creating trees
with the grammar.

A derivation creates a tree by starting with the
root symbol and rewriting (substituting) it with an
elementary tree, then continuing to rewrite frontier
non-terminals with elementary trees until there are
no remaining frontier non-terminals. Unlike Con-
text Free Grammars (CFGs) a syntax tree may not
uniquely specify the derivation, as illustrated in Fig-
ure 1 which shows two derivations using different
elementary trees to produce the same tree.

A Probabilistic Tree Substitution Grammar
(PTSG), like a PCFG, assigns a probability to each
rule in the grammar. The probability of a derivation
is the product of the probabilities of its component
rules, and the probability of a tree is the sum of the
probabilities of its derivations.

As we mentioned in the introduction, work within
the DOP framework seeks to induce PTSGs from
treebanks by using all possible subtrees as rules, and
one of a variety of methods for estimating rule prob-
abilities.3 Our aim of inducing compact grammars
contrasts with that of DOP; moreover, we develop a
probabilistic estimator which avoids the shortcom-
ings of DOP1 and the maximum likelihood esti-

2A TSG is a Tree Adjoining Grammar (TAG; Joshi (2003))
without the adjunction operator.

3TAG induction (Chiang and Bikel, 2002; Xia, 2002) also
tackles a similar learning problem.

mate (Bod, 2000; Bod, 2003; Johnson, 2002). Re-
cent work on DOP estimation also seeks to address
these problems, drawing from estimation theory to
solve the consistency problem (Prescher et al., 2004;
Zollmann and Sima’an, 2005), or incorporating a
grammar brevity term into the learning objective
(Zuidema, 2007). Our work differs from these pre-
vious approaches in that we explicitly model a prior
over grammars within a Bayesian framework.4

Models of grammar refinement (Petrov et al.,
2006; Liang et al., 2007; Finkel et al., 2007) also
aim to automatically learn latent structure underly-
ing treebanked data. These models allow each non-
terminal to be split into a number of subcategories.
Theoretically the grammar space of our model is a
sub-space of theirs (projecting the TSG’s elementary
trees into CFG rules). However, the number of non-
terminals required to recreate our TSG grammars
in a PCFG would be exorbitant. Consequently, our
model should be better able to learn specific lexical
patterns, such as full noun-phrases and verbs with
their sub-categorisation frames, while theirs are bet-
ter suited to learning subcategories with larger mem-
bership, such as the terminals for days of the week
and noun-adjective agreement. The approaches are
orthogonal, and we expect that combining a category
refinement model with our TSG model would pro-
vide better performance than either approach alone.

Our model is similar to the Adaptor Grammar
model of Johnson et al. (2007b), which is also
a kind of Bayesian nonparametric tree-substitution
grammar. However, Adaptor Grammars require that
each sub-tree expands completely, with only termi-
nal symbols as leaves, while our own model permits
non-terminal frontier nodes. In addition, they disal-
low recursive containment of adapted non-terminals;
we impose no such constraint.

3 Model

Recall the nature of our task: we are given a corpus
of parse trees t and wish to infer a tree-substitution
grammar G that we can use to parse new data.
Rather than inferring a grammar directly, we go
through an intermediate step of inferring a distri-
bution over the derivations used to produce t, i.e.,

4A similar Bayesian model of TSG induction has been de-
veloped independently to this work (O’Donnell et al., 2009b;
O’Donnell et al., 2009a).
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(a)
S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)
S

NP

George

VP

V

V

hates

NP

broccoli

S→ NP (VP (V hates) NP)
NP→ George
NP→ broccoli

S→ (NP George) (VP V (NP broccoli))
V→ hates

Figure 1: Example derivations for the same tree,
where arrows indicate substitution sites. The ele-
mentary trees used in (a) and (b) are shown below
as grammar productions in bracketed tree notation.

a distribution over sequences of elementary trees e
that compose to form t. We will then essentially read
the grammar off the elementary trees, as described
in Section 5. Our problem therefore becomes one of
identifying the posterior distribution of e given t,
which we can do using Bayes’ Rule:

P (e|t) ∝ P (t|e)P (e) (1)

Since the sequence of elementary trees can be split
into derivations, each of which completely specifies
a tree, P (t|e) is either equal to 1 (when t and e
are consistent) or 0 (otherwise). Therefore, the work
in our model is done by the prior distribution over
elementary trees. Note that this is analogous to the
Bayesian model of word segmentation presented by
Goldwater et al. (2006); indeed, the problem of in-
ferring e from t can be viewed as a segmentation
problem, where each full tree must be segmented
into one or more elementary trees. As in Goldwater
et al. (2006), we wish to favour solutions employing
a relatively small number of elementary units (here,
elementary trees). This can be done using a Dirichlet
process (DP) prior. Specifically, we define the distri-
bution of elementary tree e with root non-terminal
symbol c as

Gc|αc, P0 ∼ DP(αc, P0(·|c))
e|c ∼ Gc

whereP0(·|c) (the base distribution) is a distribution
over the infinite space of trees rooted with c, and αc

(the concentration parameter) controls the model’s
tendency towards either reusing elementary trees or
creating novel ones as each training instance is en-
countered (and consequently, the tendency to infer
larger or smaller sets of elementary trees from the
observed data). We discuss the base distribution in
more detail below.

Rather than representing the distribution Gc ex-
plicitly, we integrate over all possible values of Gc.
The resulting distribution over ei, conditioned on
e<i = e1 . . . ei−1 and the root category c is:

p(ei|e<i, c, αc, P0) =
n<iei,c + αcP0(ei|c)

n<i·,c + αc
(2)

where n<iei,c is the number number of times ei has
been used to rewrite c in e<i, and n<i·,c =

∑
e n

<i
e,c is

the total count of rewriting c.
As with other DP models, ours can be viewed as a

cache model, where ei can be generated in one of
two ways: by drawing from the base distribution,
where the probability of any particular tree is pro-
portional to αcP0(ei|c), or by drawing from a cache
of previous expansions of c, where the probability of
any particular expansion is proportional to the num-
ber of times that expansion has been used before.
This view makes it clear that the model embodies
a “rich-get-richer” dynamic in which a few expan-
sions will occur with high probability, but many will
occur only once or twice, as is typical of natural lan-
guage. Our model is similar in this way to the Adap-
tor Grammar model of Johnson et al. (2007a).

We still need to define P0, the base distribution
over tree fragments. We use two such distributions.
The first, PM0 generates each elementary tree by
a series of random decisions: whether to expand a
non-terminal, how many children to produce and
their identities. The probability of expanding a non-
terminal node labelled c is parameterised via a bino-
mial distribution, Bin(βc), while all other decisions
are chosen uniformly at random. The second base
distribution, PC0 , has a similar generative process
but draws non-terminal expansions from a treebank-
trained PCFG instead of a uniform distribution.

Both choices of P0 have the effect of biasing the
model towards simple rules with a small number of
internal nodes. The geometric increase in cost dis-
courages the model from using larger rules; for this
to occur these rules must yield a large increase in the
data likelihood. As PC0 incorporates PCFG probabil-
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S

NP,1

George

VP,0

V,0

hates

NP,1

broccoli
Figure 2: Gibbs state e specifying the derivation in
Figure 1a. Each node is labelled with its substitution
indicator variable.

ities, it assigns higher relative probability to larger
rules, compared to the more draconian PM0 .

4 Training

To train our model we use Gibbs sampling (Geman
and Geman, 1984), a Markov chain Monte Carlo
method in which variables are repeatedly sampled
conditioned on the values of all other variables in
the model. After a period of burn-in, each sam-
pler state (set of variable assignments) is a sample
from the posterior distribution of the model. In our
case, we wish to sample from P (e|t, α, β), where
(α, β) = {αc, βc} for all categories c. To do so,
we associate a binary variable with each non-root
internal node of each tree in the training set, indi-
cating whether that node is a substitution point or
not. Each substitution point forms the root of some
elementary tree, as well as a frontier non-terminal
of an ancestor node’s elementary tree. Collectively,
the training trees and substitution variables specify
the sequence of elementary trees e that is the current
state of the sampler. Figure 2 shows an example tree
with its substitution variables, corresponding to the
TSG derivation in Figure 1a.

Our Gibbs sampler works by sampling the value
of each substitution variable, one at a time, in ran-
dom order. If d is the node associated with the sub-
stitution variable s under consideration, then the two
possible values of s define two options for e: one
in which d is internal to some elementary tree eM ,
and one in which d is the substitution site con-
necting two smaller trees, eA and eB . In the ex-
ample in Figure 2, when sampling the VP node,
eM = (S NP (VP (V hates) NP)), eA = (S NP VP),
and eB = (VP (V hates) NP). To sample a value for
s, we compute the probabilities of eM and (eA, eB),
conditioned on e−: all other elementary trees in the
training set that share at most a root or frontier non-

terminal with eM , eA, or eB . This is easy to do
because the DP is exchangeable, meaning that the
probability of a set of outcomes does not depend on
their ordering. Therefore, we can treat the elemen-
tary trees under consideration as the last ones to be
sampled, and apply Equation 2, giving us

P (eM |cM )=
n−eM ,cM

+ αcMP0(eM |cM )

n−·,cM + αcM
(3)

P (eA, eB|cA)=
n−eA,cA

+ αcAP0(eA|cA)

n−·,cA + αcA
(4)

×
n−eB ,cB

+ δ(eA, eB) + αcBP0(eB|cB)

n−·,cB + δ(cA, cB) + αcB

where cx is the root label of ex, x ∈ {A,B,M},
the counts n− are with respect to e−, and δ(·, ·) is
the Kronecker delta function, which returns 1 when
its arguments are identical and 0 otherwise. We have
omitted e−, t, α and β from the conditioning con-
text. The δ terms in the second factor of (4) account
the changes to n− that would occur after observing
eA, which forms part of the conditioning context for
eB . If the trees eA and eB are identical, then the
count n−eB ,cB

would increase by one, and if the trees
share the same root non-terminal, then n−·,cB would
increase by one.

In the previous discussion, we have assumed
that the model hyperparameters, (α, β), are known.
However, selecting their values by hand is extremely
difficult and fitting their values on heldout data is of-
ten very time consuming. For this reason we treat
the hyper-parameters as variables in our model and
infer their values during training. We choose vague
priors for each hyper-parameter, encoding our lack
of information about their values. We treat the con-
centration parameters, α, as being generated by a
vague gamma prior, αc ∼ Gamma(0.001, 1000).
We sample a new value α′c using a log-normal dis-
tribution with mean αc and variance 0.3, which is
then accepted into the distribution p(αc|e, t, α−, β)
using the Metropolis-Hastings algorithm. We use a
Beta prior for the binomial specification parameters,
βc ∼ Beta(1, 1). As the Beta distribution is conju-
gate to the binomial, we can directly resample the
β parameters from the posterior, p(βc|e, t, α, β−).
Both the concentration and substitution parameters
are resampled after every full Gibbs sampling itera-
tion over the training trees.
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5 Parsing

We now turn to the problem of using the model
to parse novel sentences. This requires finding the
maximiser of

p(t|w, t) =
∫
p(t|w, e, α, β) p(e, α, β|t) de dα dβ

(5)
wherew is the sequence of words being parsed and t
the resulting tree, t are the training trees and e their
segmentation into elementary trees.

Unfortunately solving for the maximising parse
tree in (5) is intractable. However, it can approxi-
mated using Monte Carlo techniques. Given a sam-
ple of (e, α, β)5 we can reason over the space of
possible trees using a Metropolis-Hastings sampler
(Johnson et al., 2007a) coupled with a Monte Carlo
integral (Bod, 2003). The first step is to sample from
the posterior over derivations, p(d|w, e, α, β). This
is achieved by drawing samples from an approxima-
tion grammar, p̃(d|w), which are then accepted to
the true distribution using the Metropolis-Hastings
algorithm. The second step records for each sampled
derivation the CFG tree. The counts of trees consti-
tute an approximation to p(t|w, e, α, β), from which
we can recover the maximum probability tree.

A natural proposal distribution, p̃(d|w), is the
maximum a posterior (MAP) grammar given the el-
ementary tree analysis of our training set (analogous
to the PCFG approximation used in Johnson et al.
(2007a)). This is not practical because the approx-
imation grammar is infinite: elementary trees with
zero count in e still have some residual probabil-
ity under P0. In the absence of a better alternative,
we discard (most of) the zero-count rules from MAP
grammar. This results in a tractable grammar repre-
senting the majority of the probability mass, from
which we can sample derivations. We specifically
retain all zero-count PCFG productions observed in
the training set in order to provide greater robustness
on unseen data.

In addition to finding the maximum probability
parse (MPP), we also report results using the maxi-
mum probability derivation (MPD). While this could
be calculated in the manner as described above, we

5Using many samples of (e, α, β) in a Monte Carlo inte-
gral is a straight-forward extension to our parsing algorithm. We
did not observe a significant improvement in parsing accuracy
when using a multiple samples compared to a single sample,
and therefore just present results for a single sample.

S → A | B
A→ A A | B B | (A a) (A a) | (B a) (B a)
B → A A | B B | (A b) (A b) | (B b) (B b)

Figure 3: TSG used to generate synthetic data. All
production probabilities are uniform.

found that using the CYK algorithm (Cocke, 1969)
to find the Viterbi derivation for p̃ yielded consis-
tently better results. This algorithm maximises an
approximated model, as opposed to approximately
optimising the true model. We also present results
using the tree with the maximum expected count of
CFG rules (MER). This uses counts of the CFG rules
applied at each span (compiled from the derivation
samples) followed by a maximisation step to find the
best tree. This is similar to the MAX-RULE-SUM
algorithm of Petrov and Klein (2007) and maximum
expected recall parsing (Goodman, 2003).

6 Experiments

Synthetic data Before applying the model to
natural language, we first create a synthetic problem
to confirm that the model is capable of recovering
a known tree-substitution grammar. We created 50
random trees from the TSG shown in Figure 3. This
produces binary trees with A and B internal nodes
and ‘a’ and ‘b’ as terminals, such that the termi-
nals correspond to their grand-parent non-terminal
(A and a or B and b). These trees cannot be mod-
elled accurately with a CFG because expanding A
and B nodes into terminal strings requires knowing
their parent’s non-terminal.

We train the model for 100 iterations of Gibbs
sampling using annealing to speed convergence.
Annealing amounts to smoothing the distributions
in (3) and (4) by raising them to the power of 1

T .
Our annealing schedule begins at T = 3 and lin-
early decreases to reach T = 1 in the final iteration.
The sampler converges to the correct grammar, with
the 10 rules from Figure 3.

Penn-treebank parsing We ran our natural lan-
guage experiments on the Penn treebank, using the
standard data splits (sections 2–21 for training, 22
for development and 23 for testing). As our model is
parameter free (the α and β parameters are learnt in
training), we do not use the development set for pa-
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rameter tuning. We expect that fitting these param-
eters to maximise performance on the development
set would lead to a small increase in generalisation
performance, but at a significant cost in runtime. We
replace tokens with count≤ 1 in the training sample
with one of roughly 50 generic unknown word mark-
ers which convey the token’s lexical features and po-
sition in the sentence, following Petrov et al. (2006).
We also right-binarise the trees to reduce the branch-
ing factor in the same manner as Petrov et al. (2006).
The predicted trees are evaluated using EVALB6 and
we report the F1 score over labelled constituents and
exact match accuracy over all sentences in the test-
ing sets.

In our experiments, we initialised the sampler by
setting all substitution variables to 0, thus treating
every full tree in the training set as an elementary
tree. Starting with all the variables set to 1 (corre-
sponding to CFG expansions) or a random mix of
0s and 1s considerably increases time until conver-
gence. We hypothesise that this is due to the sampler
getting stuck in modes, from which a series of lo-
cally bad decisions are required to escape. The CFG
solution seems to be a mode and therefore starting
the sampler with maximal trees helps the model to
avoid this mode.

Small data sample For our first treebank exper-
iments, we train on a small data sample by using
only section 2 of the treebank. Bayesian methods
tend to do well with small data samples, while for
larger samples the benefits diminish relative to point
estimates. The models were trained using Gibbs
sampling for 4000 iterations with annealing linearly
decreasing from T = 5 to T = 1, after which
the model performed another 1000 iterations with
T = 1. The final training sample was used in the
parsing algorithm, which used 1000 derivation sam-
ples for each test sentence. All results are the aver-
age of five independent runs.

Table 1 presents the prediction results on the de-
velopment set. The baseline is a maximum likeli-
hood PCFG. The TSG model significantly outper-
forms the baseline with either base distribution PM0
or PC0 . This confirms our hypothesis that CFGs are
not sufficiently powerful to model syntax, but that
the increased context afforded to the TSG can make
a large difference. This result is even more impres-
sive when considering the difference in the sizes of

6See http://nlp.cs.nyu.edu/evalb/.

F1 EX # rules
PCFG 60.20 4.29 3500
TSG PM0 : MPD 72.17 11.92 6609

MPP 71.27 12.33 6609
MER 74.25 12.30 6609

TSG PC0 : MPD 75.24 15.18 14923
MPP 75.30 15.74 14923
MER 76.89 15.76 14923

SMτ=2: MPD 71.93 11.30 16168
MER 74.32 11.77 16168

SMτ=5: MPD 75.33 15.64 39758
MER 77.93 16.94 39758

Table 1: Development results for models trained on
section 2 of the Penn tree-bank, showing labelled
constituent F1 and exact match accuracy. Grammar
sizes are the number of rules with count ≥ 1.

grammar in the PCFG versus TSG models. The TSG
using PM0 achieves its improvements with only dou-
ble as many rules, as a consequence of the prior
which encourages sparse solutions. The TSG results
with the CFG base distribution, PC0 , are more ac-
curate but with larger grammars.7 This base distri-
bution assigns proportionally higher probability to
larger rules than PM0 , and consequently the model
uses these additional rules in a larger grammar.

Surprisingly, the MPP technique is not systemati-
cally better than the MPD approach, with mixed re-
sults under the F1 metric. We conjecture that this is
due to sampling variance for long sentences, where
repeated samples of the same tree are exceedingly
rare. The MER technique results in considerably
better F1 scores than either MPD or MPP, with a
margin of 1.5 to 3 points. This method is less af-
fected by sampling variance due to its use of smaller
tree fragments (PCFG productions at each span).

For comparison, we trained the Berkeley split-
merge (SM) parser (Petrov et al., 2006) on the same
data and decoded using the Viterbi algorithm (MPD)
and expected rule count (MER a.k.a. MAX-RULE-
SUM). We ran two iterations of split-merge training,
after which the development F1 dropped substan-
tially (in contrast, our model is not fit to the devel-
opment data). The result is an accuracy slightly be-
low that of our model (SMτ=2). To be fairer to their
model, we adjusted the unknown word threshold to
their default setting, i.e., to apply to word types oc-

7The grammar is nevertheless far smaller than the full DOP
grammar on this data set, which has 700K rules.
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Figure 4: Grammar statistics for a TSG PM0 model
trained on section 2 of the Penn treebank, show-
ing a histogram over elementary tree depth, num-
ber of nodes, terminals (lexemes) and frontier non-
terminals (vars).

curring fewer than five times (SMτ=5). We expect
that tuning the treatment of unknown words in our
model would also yield further gains. The grammar
sizes are not strictly comparable, as the Berkeley bi-
narised grammars prohibit non-binary rules, and are
therefore forced to decompose each of these rules
into many child rules. But the trend is clear – our
model produces similar results to a state-of-the-art
parser, and can do so using a small grammar. With
additional rounds of split-merge training, the Berke-
ley grammar grows exponentially larger (200K rules
after six iterations).

Full treebank We now train the model using
PM0 on the full training partition of the Penn tree-
bank, using sections 2–21. We run the Gibbs sampler
for 15,000 iterations while annealing from T = 5 to
T = 1, after which we finish with 5,000 iterations
at T = 1. We repeat this three times, giving an av-
erage F1 of 84.0% on the testing partition using the
maximum expected rule algorithm and 83.0% using
the Viterbi algorithm. This far surpasses the ML-
PCFG (F1 of 70.7%), and is similar to Zuidema’s
(2007) DOP result of 83.8%. However, it still well
below state-of-the art parsers (e.g., the Berkeley
parser trained using the same data representation
scores 87.7%). But we must bear in mind that these
parsers have benefited from years of tuning to the
Penn-treebank, where our model is much simpler
and is largely untuned. We anticipate that careful
data preparation and model tuning could greatly im-
prove our model’s performance.

NP→
(NNP Mr.) NNP
CD (NN %)
(NP CD (NN %)) (PP (IN of) NP)
(NP ($ $) CD) (NP (DT a) (NN share))
(NP (DT the) (N̄P (NN company) POS)) N̄P
(NP QP (NN %)) (PP (IN of) NP)
(NP CD (NNS cents)) (NP (DT a) (NN share))
(NP (NNP Mr.) (N̄P NNP (POS ’s))) NN
QP (NN %)
(NP (NN president)) (PP (IN of) NP)
(NP (NNP Mr.) (N̄P NNP (POS ’s))) N̄P
NNP (N̄P NNP (NNP Corp.))
NNP (N̄P NNP (NNP Inc.))
(NP (NN chairman)) (PP (IN of) NP)
VP→
(VBD said) (SBAR (S (NP (PRP it)) VP))
(VBD said) (SBAR (S NP VP))
(VBD rose) (V̄P (NP CD (NN %)) V̄P)
(VBP want) S
(VBD said) (SBAR (S (NP (PRP he)) VP))
(VBZ plans) S
(VBD said) (SBAR S)
(VBZ says) (SBAR (S NP VP))
(VBP think) (SBAR S)
(VBD agreed) (S (VP (TO to) (VP VB V̄P)))
(VBZ includes) NP
(VBZ says) (SBAR (S (NP (PRP he)) VP))
(VBZ wants) S
(VBD closed) (V̄P (PP (IN at) NP) (V̄P , ADVP))

Table 3: Most frequent lexicalised expansions for
noun and verb phrases, excluding auxiliary verbs.

7 Discussion

So what kinds of non-CFG rules is the model learn-
ing? Figure 4 shows the grammar statistics for a
TSG model trained on the small data sample. This
model has 5611 CFG rules and 1008 TSG rules.
The TSG rules vary in depth from two to nine levels
with the majority between two and four. Most rules
combine a small degree of lexicalisation and a vari-
able or two. This confirms that the model is learn-
ing local structures to encode, e.g., multi-word units,
subcategorisation frames and lexical agreement. The
few very large rules specify full parses for sentences
which were repeated in the training corpus. These
complete trees are also evident in the long tail of
node counts (up to 27; not shown in the figure) and
counts for highly lexicalised rules (up to 8).

To get a better feel for the types of rules being
learnt, it is instructive to examine the rules in the re-
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NP→ PP→ ADJP→
DT N̄P IN NP JJ
NNS (IN in) NP RB JJ
DT NN (TO to) NP JJ ( ¯ADJP CC JJ)
(DT the) N̄P TO NP JJ PP
JJ NNS (IN with) NP (RB very) JJ
NP (PP (IN of) NP) (IN of) NP RB ¯ADJP
NP PP (IN by) NP (RBR more) JJ
NP (N̄P (CC and) NP) (IN at) NP JJ ¯ADJP
JJ N̄P IN (NP (DT the) N̄P) ADJP ( ¯ADJP CC ADJP)
NN NNS (IN on) NP RB VBN
(DT the) NNS (IN from) NP RB ( ¯ADJP JJ PP)
DT (N̄P JJ NN) IN (S (VP VBG NP)) JJ (PP (TO to) NP)
NN IN (NP NP PP) ADJP (PP (IN than) NP)
JJ NN (IN into) NP (RB too) JJ
(NP DT NN) (PP (IN of) NP) (IN for) NP (RB much) JJR

Table 2: Top fifteen expansions sorted by frequency (most frequent at top), taken from the final sample of a
model trained on the full Penn treebank. Non-terminals shown with an over-bar denote a binarised sub span
of the given phrase type.

sultant grammar. Table 2 shows the top fifteen rules
for three phrasal categories for the model trained on
the full Penn treebank. We can see that many of these
rules are larger than CFG rules, showing that the
CFG rules alone are inadequate to model the tree-
bank. Two of the NP rules encode the prevalence
of preposition phrases headed by ‘of’ within a noun
phrase, as opposed to other prepositions. Also note-
worthy is the lexicalisation of the determiner, which
can affect the type of NP expansion. For instance,
the indefinite article is more likely to have an ad-
jectival modifier, while the definite article appears
more frequently unmodified. Highly specific tokens
are also incorporated into lexicalised rules.

Many of the verb phrase expansions have been
lexicalised, encoding the verb’s subcategorisation,
as shown in Table 3. Notice that each verb here ac-
cepts only one or a small set of argument frames,
indicating that by lexicalising the verb in the VP ex-
pansion the model can find a less ambiguous and
more parsimonious grammar.

The model also learns to use large rules to de-
scribe the majority of root node expansions (we add
a distinguished TOP node to all trees). These rules
mostly describe cases when the S category is used
for a full sentence, which most often include punc-
tuation such as the full stop and quotation marks. In
contrast, the majority of expansions for the S cat-
egory do not include any punctuation. The model
has learnt to differentiate between the two different
classes of S – full sentence versus internal clause –
due to their different expansions.

8 Conclusion

In this work we have presented a non-parametric
Bayesian model for inducing tree substitution gram-
mars. By incorporating a structured prior over ele-
mentary rules our model is able to reason over the
infinite space of all such rules, producing compact
and simple grammars. In doing so our model learns
local structures for latent linguistic phenomena, such
as verb subcategorisation and lexical agreement. Our
experimental results show that the induced gram-
mars strongly out-perform standard PCFGs, and are
comparable to a state-of-the-art parser on small data
samples. While our results on the full treebank are
well shy of the best available parsers, we have pro-
posed a number of improvements to the model and
the parsing algorithm that could lead to state-of-the-
art performance in the future.
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Abstract

Both coarse-to-fine and A∗ parsing use simple
grammars to guide search in complex ones.
We compare the two approaches in a com-
mon, agenda-based framework, demonstrat-
ing the tradeoffs and relative strengths of each
method. Overall, coarse-to-fine is much faster
for moderate levels of search errors, but be-
low a certain threshold A∗ is superior. In addi-
tion, we present the first experiments on hier-
archical A∗ parsing, in which computation of
heuristics is itself guided by meta-heuristics.
Multi-level hierarchies are helpful in both ap-
proaches, but are more effective in the coarse-
to-fine case because of accumulated slack in
A∗ heuristics.

1 Introduction

The grammars used by modern parsers are ex-
tremely large, rendering exhaustive parsing imprac-
tical. For example, the lexicalized grammars of
Collins (1997) and Charniak (1997) and the state-
split grammars of Petrov et al. (2006) are all
too large to construct unpruned charts in memory.
One effective approach is coarse-to-fine pruning, in
which a small, coarse grammar is used to prune
edges in a large, refined grammar (Charniak et al.,
2006). Indeed, coarse-to-fine is even more effective
when a hierarchy of successive approximations is
used (Charniak et al., 2006; Petrov and Klein, 2007).
In particular, Petrov and Klein (2007) generate a se-
quence of approximations to a highly subcategorized
grammar, parsing with each in turn.

Despite its practical success, coarse-to-fine prun-
ing is approximate, with no theoretical guarantees

on optimality. Another line of work has explored
A∗ search methods, in which simpler problems are
used not for pruning, but for prioritizing work in
the full search space (Klein and Manning, 2003a;
Haghighi et al., 2007). In particular, Klein and Man-
ning (2003a) investigated A∗ for lexicalized parsing
in a factored model. In that case, A∗ vastly im-
proved the search in the lexicalized grammar, with
provable optimality. However, their bottleneck was
clearly shown to be the exhaustive parsing used to
compute the A∗ heuristic itself. It is not obvious,
however, how A∗ can be stacked in a hierarchical or
multi-pass way to speed up the computation of such
complex heuristics.

In this paper, we address three open questions
regarding efficient hierarchical search. First, can
a hierarchy of A∗ bounds be used, analogously to
hierarchical coarse-to-fine pruning? We show that
recent work in hierarchical A∗ (Felzenszwalb and
McAllester, 2007) can naturally be applied to both
the hierarchically refined grammars of Petrov and
Klein (2007) as well as the lexicalized grammars
of Klein and Manning (2003a). Second, what are
the tradeoffs between coarse-to-fine pruning and A∗

methods? We show that coarse-to-fine is generally
much faster, but at the cost of search errors.1 Below
a certain search error rate, A∗ is faster and, of course,
optimal. Finally, when and how, qualitatively, do
these methods fail? A∗ search’s work grows quickly
as the slack increases between the heuristic bounds
and the true costs. On the other hand, coarse-to-fine
prunes unreliably when the approximating grammar

1In this paper, we consider only errors made by the search
procedure, not modeling errors.
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Name Rule Priority
IN r : wr I(Bt, i, k) : βB I(Ct, k, j) : βC ⇒ I(At, i, j) : βA = βB + βC + wr βA + h(A, i, j)

Table 1: Deduction rule for A∗ parsing. The items on the left of the ⇒ indicate what edges must be present on the
chart and what rule can be used to combine them, and the item on the right is the edge that may be added to the agenda.
The weight of each edge appears after the colon. The rule r is A→ B C.

is very different from the target grammar. We em-
pirically demonstrate both failure modes.

2 Parsing algorithms

Our primary goal in this paper is to compare hi-
erarchical A∗ (HA∗) and hierarchical coarse-to-fine
(CTF) pruning methods. Unfortunately, these two
algorithms are generally deployed in different archi-
tectures: CTF is most naturally implemented using
a dynamic program like CKY, while best-first al-
gorithms like A∗ are necessarily implemented with
agenda-based parsers. To facilitate comparison, we
would like to implement them in a common architec-
ture. We therefore work entirely in an agenda-based
setting, noting that the crucial property of CTF is
not the CKY order of exploration, but the pruning
of unlikely edges, which can be equally well done
in an agenda-based parser. In fact, it is possible to
closely mimic dynamic programs like CKY using a
best-first algorithm with a particular choice of prior-
ities; we discuss this in Section 2.3.

While a general HA∗ framework is presented in
Felzenszwalb and McAllester (2007), we present
here a specialization to the parsing problem. We first
review the standard agenda-driven search frame-
work and basic A∗ parsing before generalizing to
HA∗.

2.1 Agenda-Driven Parsing

A non-hierarchical, best-first parser takes as input a
PCFG G (with root symbol R), a priority function
p(·) and a sentence consisting of terminals (words)
T0 . . . Tn−1. The parser’s task is to find the best
scoring (Viterbi) tree structure which is rooted at R
and spans the input sentence. Without loss of gen-
erality, we consider grammars in Chomsky normal
form, so that each non-terminal rule in the grammar
has the form r = A → B C with weight wr. We
assume that weights are non-negative (e.g. negative
log probabilities) and that we wish to minimize the
sum of the rule weights.
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Figure 1: Deduction rule for A∗ depicted graphically.
Items to the left of the arrow indicate edges and rules that
can be combined to produce the edge to the right of the ar-
row. Edges are depicted as complete triangles. The value
inside an edge represents the weight of that edge. Each
new edge is assigned the priority written above the arrow
when added to the agenda.

The objects in an agenda-based parser are edges
e = I(X, i, j), also called items, which represent
parses spanning i to j and rooted at symbol X. We
denote edges as triangles, as in Figure 1. At all
times, edges have scores βe, which are estimates
of their Viterbi inside probabilities (also called path
costs). These estimates improve over time as new
derivations are considered, and may or may not be
correct at termination, depending on the properties
of p. The parser maintains an agenda (a priority
queue of edges), as well as a chart (or closed list
in search terminology) of edges already processed.
The fundamental operation of the algorithm is to pop
the best (lowest) priority edge e from the agenda,
put it into the chart, and enqueue any edges which
can be built by combining e with other edges in the
chart. The combination of two adjacent edges into
a larger edge is shown graphically in Figure 1 and
as a weighted deduction rule in Table 1 (Shieber et
al., 1995; Nederhof, 2003). When an edge a is built
from adjacent edges b and c and a rule r, its cur-
rent score βa is compared to βb + βc + wr and up-
dated if necessary. To allow reconstruction of best
parses, backpointers are maintained in the standard
way. The agenda is initialized with I(Ti, i, i + 1)
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for i = 0 . . . n − 1. The algorithm terminates when
I(R, 0, n) is popped off the queue.

Priorities are in general different than weights.
Whenever an edge e’s score changes, its priority
p(e), which may or may not depend on its score,
may improve. Edges are promoted accordingly in
the agenda if their priorities improve. In the sim-
plest case, the priorities are simply the βe estimates,
which gives a correct uniform cost search wherein
the root edge is guaranteed to have its correct inside
score estimate at termination (Caraballo and Char-
niak, 1996).

A∗ parsing (Klein and Manning, 2003b) is a spe-
cial case of such an agenda-driven parser in which
the priority function p takes the form p(e) = βe +
h(e), where e = I(X, i, j) and h(·) is some approx-
imation of e’s Viterbi outside cost (its completion
cost). If h is consistent, then the A∗ algorithm guar-
antees that whenever an edge comes off the agenda,
its weight is its true Viterbi inside cost. In particular,
this guarantee implies that the first edge represent-
ing the root I(R, 0, n) will be scored with the true
Viterbi score for the sentence.

2.2 Hierarchical A∗

In the standard A∗ case the heuristics are assumed
to come from a black box. For example, Klein and
Manning (2003b) precomputes most heuristics of-
fline, while Klein and Manning (2003a) solves sim-
pler parsing problems for each sentence. In such
cases, the time spent to compute heuristics is often
non-trivial. Indeed, it is typical that effective heuris-
tics are themselves expensive search problems. We
would therefore like to apply A∗ methods to the
computation of the heuristics themselves. Hierar-
chical A∗ allows us to do exactly that.

Formally, HA∗ takes as input a sentence and a se-
quence (or hierarchy) of m + 1 PCFGs G0 . . .Gm,
where Gm is the target grammar and G0 . . .Gm−1

are auxiliary grammars. Each grammar Gt has an in-
ventory of symbols Σt, hereafter denoted with capi-
tal letters. In particular, each grammar has a distin-
guished terminal symbol Ti

t for each word Ti in the
input and a root symbol Rt.

The grammars G0 . . .Gm must form a hierarchy in
which Gt is a relaxed projection of Gt+1. A grammar
Gt−1 is a projection of Gt if there exists some onto
function πt : Σt $→ Σt−1 defined for all symbols in

Agenda Chart

I(NP, 3, 5)

O(VP, 4, 8)

I(NN, 2, 3)
.

.

.

.

.

I

I

I

O

O

O

G1

G0

G2

Figure 3: Operation of hierarchical A∗ parsing. An edge
comes off the agenda and is added to the chart (solid line).
From this edge, multiple new edges can be constructed
and added to the agenda (dashed lines). The chart is com-
posed of two subcharts for each grammar in the hierar-
chy: an inside chart (I) and an outside chart (O).

Gt; hereafter, we will use A′
t to represent πt(At). A

projection is a relaxation if, for every rule r = At →
Bt Ct with weight wr the projection r′ = πt(r) =
A′

t → B′tC
′
t has weight wr′ ≤ wr in Gt−1. Given

a target grammar Gm and a projection function πm,
it is easy to construct a relaxed projection Gm−1 by
minimizing over rules collapsed by πm:

wr′ = min
r∈Gm:πm(r)=r′

wr

Given a series of projection functions π1 . . . πm,
we can construct relaxed projections by projecting
Gm to Gm−1, then Gm−1 to Gm−2 and so on. Note
that by construction, parses in a relaxed projection
give lower bounds on parses in the target grammar
(Klein and Manning, 2003b).

HA∗ differs from standard A∗ in two ways.
First, it tracks not only standard inside edges
e = I(X, i, j) which represent derivations of
X → Ti . . . Tj , but also outside edges o =
O(X, i, j) which represent derivations of R →
T0 . . . Ti−1 X Tj+1 . . . Tn. For example, where
I(VP, 0, 3) denotes trees rooted at VP covering the
span [0, 3], O(VP, 0, 3) denotes the derivation of the
“rest” of the structure to the root. Where inside
edges e have scores βe which represent (approxima-
tions of) their Viterbi inside scores, outside edges o
have scores αo which are (approximations of) their
Viterbi outside scores. When we need to denote the
inside version of an outside edge, or the reverse, we
write o = ē, etc.
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Name Rule Priority
IN-BASE O(T′it , i, i + 1) : αT ⇒ I(Ti

t, i, i + 1) : 0 αT

IN r : wr O(A′t, i, j) : αA′ I(Bt, i, k) : βB I(Ct, k, j) : βC ⇒ I(At, i, j) : βA = βB + βC + wr βA + αA′
OUT-BASE I(Rt, 0, n) : βR ⇒ O(Rt, 0, n) : 0 βR

OUT-L r : wr O(At, i, j) : αA I(Bt, i, k) : βB I(Ct, k, j) : βC ⇒ O(Bt, i, k) : αB = αA + βC + wr βB + αB

OUT-R r : wr O(At, i, j) : αA I(Bt, i, k) : βB I(Ct, k, j) : βC ⇒ O(Ct, k, j) : αC = αA + βB + wr βC + αC

Table 2: Deduction rules for HA∗. The rule r is in all cases At → Bt Ct.
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Figure 2: Non-base case deduction rules for HA∗ depicted graphically. (a) shows the rule used to build inside edges
and (b) shows the rules to build outside edges. Inside edges are depicted as complete triangles, while outside edges
are depicted as chevrons. An edge from a previous level in the hierarchy is denoted with dashed lines.

The second difference is that HA∗ tracks items
from all levels of the hierarchy on a single, shared
agenda, so that all items compete (see Figure 3).
While there is only one agenda, it is useful to imag-
ine several charts, one for each type of edge and each
grammar level. In particular, outside edges from one
level of the hierarchy are the source of completion
costs (heuristics) for inside edges at the next level.

The deduction rules for HA∗ are given in Table 2
and represented graphically in Figure 2. The IN rule
(a) is the familiar deduction rule from standard A∗:
we can combine two adjacent inside edges using a
binary rule to form a new inside edge. The new twist
is that because heuristics (scores of outside edges
from the previous level) are also computed on the
fly, they may not be ready yet. Therefore, we cannot
carry out this deduction until the required outside
edge is present in the previous level’s chart. That
is, fine inside deductions wait for the relevant coarse
outside edges to be popped. While coarse outside
edges contribute to priorities of refined inside scores

(as heuristic values), they do not actually affect the
inside scores of edges (again just like basic A∗).

In standard A∗, we begin with all terminal edges
on the agenda. However, in HA∗, we cannot en-
queue refined terminal edges until their outside
scores are ready. The IN-BASE rule specifies the
base case for a grammar Gt: we cannot begin un-
til the outside score for the terminal symbol T is
ready in the coarser grammar Gt−1. The initial queue
contains only the most abstract level’s terminals,
I(Ti

0, i, i + 1). The entire search terminates when
the inside edge I(Rm, 0, n), represting root deriva-
tions in the target grammar, is dequeued.

The deductions which assemble outside edges are
less familiar from the standard A∗ algorithm. These
deductions take larger outside edges and produce
smaller sub-edges by linking up with inside edges,
as shown in Figure 2(b). The OUT-BASE rule states
that an outside pass for Gt can be started if the in-
side score of the root symbol for that level Rt has
been computed. The OUT-L and OUT-R rules are
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the deduction rules for building outside edges. OUT-
L states that, given an outside edge over the span
[i, j] and some inside edge over [i, k], we may con-
struct an outside edge over [k, j]. For outside edges,
the score reflects an estimate of the Viterbi outside
score.

As in standard A∗, inside edges are placed on the
agenda with a priority equal to their path cost (inside
score) and some estimate of their completion cost
(outside score), now taken from the previous projec-
tion rather than a black box. Specifically, the priority
function takes the form p(e) = βe + αē′ , where ē′

is the outside version of e one level previous in the
hierarchy.

Outside edges also have priorities which combine
path costs with a completion estimate, except that
the roles of inside and outside scores are reversed:
the path cost for an outside edge o is its (outside)
score αo, while the completion cost is some estimate
of the inside score, which is the weight βe of o’s
complementary edge e = ō. Therefore, p(o) = αo+
βō.

Note that inside edges combine their inside score
estimates with outside scores from a previous level
(a lower bound), while outside edges combine their
outside score estimates with inside scores from the
same level, which are already available. Felzen-
szwalb and McAllester (2007) show that these
choices of priorities have the same guarantee as stan-
dard A∗: whenever an inside or outside edge comes
off the queue, its path cost is optimal.

2.3 Agenda-driven Coarse-to-Fine Parsing
We can always replace the HA∗ priority function
with an alternate priority function of our choosing.
In doing so, we may lose the optimality guarantees
of HA∗, but we may also be able to achieve sig-
nificant increases in performance. We do exactly
this in order to put CTF pruning in an agenda-based
framework. An agenda-based implementation al-
lows us to put CTF on a level playing field with HA∗,
highlighting the effectiveness of the various parsing
strategies and normalizing their implementations.

First, we define coarse-to-fine pruning. In stan-
dard CTF, we exhaustively parse in each projection
level, but skip edges whose projections in the previ-
ous level had sufficiently low scores. In particular,
an edge e in the grammar Gt will be skipped entirely

if its projection e′ in Gt−1 had a low max marginal:
αē′ + βe′ , that is, the score of the best tree contain-
ing e′ was low compared to the score best overall
root derivation βR′ . Formally, we prune all e where
αē′ + βe′ > βR′ + τ for some threshold τ .

The priority function we use to implement CTF in
our agenda-based framework is:

p(e) = βe

p(o) =

8
><

>:

∞ αo + βō >

βRt + τt

αo + βō otherwise

Here, τt ≥ 0 is a user-defined threshold for level
t and βRt is the inside score of the root for gram-
mar Gt. These priorities lead to uniform-cost explo-
ration for inside edges and completely suppress out-
side edges which would have been pruned in stan-
dard CTF. Note that, by the construction of the IN
rule, pruning an outside edge also prunes all inside
edges in the next level that depend on it; we there-
fore prune slightly earlier than in standard CTF. In
any case, this priority function maintains the set of
states explored in CKY-based CTF, but does not nec-
essarily explore those states in the same order.

3 Experiments

3.1 Evaluation
Our focus is parsing speed. Thus, we would ideally
evaluate our algorithms in terms of CPU time. How-
ever, this measure is problematic: CPU time is influ-
enced by a variety of factors, including the architec-
ture of the hardware, low-level implementation de-
tails, and other running processes, all of which are
hard to normalize.

It is common to evaluate best-first parsers in terms
of edges popped off the agenda. This measure is
used by Charniak et al. (1998) and Klein and Man-
ning (2003b). However, when edges from grammars
of varying size are processed on the same agenda,
the number of successor edges per edge popped
changes depending on what grammar the edge was
constructed from. In particular, edges in more re-
fined grammars are more expensive than edges in
coarser grammars. Thus, our basic unit of measure-
ment will be edges pushed onto the agenda. We
found in our experiments that this was well corre-
lated with CPU time.

561



UCS A*

3

HA*

3

HA*

3-5

HA*

0-5

CTF

3

CTF

3-5

CTF

0-5

E
d

g
es

 p
u

sh
ed

 (
b

il
li

o
n

s)

0
1
0
0

2
0
0

3
0
0

4
0
0

424

86.6 78.2
58.8 60.1

8.83 7.12 1.98

Figure 4: Efficiency of several hierarchical parsing algo-
rithms, across the test set. UCS and all A∗ variants are
optimal and thus make no search errors. The CTF vari-
ants all make search errors on about 2% of sentences.

3.2 State-Split Grammars
We first experimented with the grammars described
in Petrov et al. (2006). Starting with an X-Bar gram-
mar, they iteratively refine each symbol in the gram-
mar by adding latent substates via a split-merge pro-
cedure. This training procedure creates a natural hi-
erarchy of grammars, and is thus ideal for our pur-
poses. We used the Berkeley Parser2 to train such
grammars on sections 2-21 of the Penn Treebank
(Marcus et al., 1993). We ran 6 split-merge cycles,
producing a total of 7 grammars. These grammars
range in size from 98 symbols and 8773 rules in the
unsplit X-Bar grammar to 1139 symbols and 973696
rules in the 6-split grammar. We then parsed all sen-
tences of length ≤ 30 of section 23 of the Treebank
with these grammars. Our “target grammar” was in
all cases the largest (most split) grammar. Our pars-
ing objective was to find the Viterbi derivation (i.e.
fully refined structure) in this grammar. Note that
this differs from the objective used by Petrov and
Klein (2007), who use a variational approximation
to the most probable parse.

3.2.1 A∗ versus HA∗

We first compare HA∗ with standard A∗. In A∗ as
presented by Klein and Manning (2003b), an aux-
iliary grammar can be used, but we are restricted
to only one and we must compute inside and out-
side estimates for that grammar exhaustively. For
our single auxiliary grammar, we chose the 3-split
grammar; we found that this grammar provided the
best overall speed.

For HA∗, we can include as many or as few
auxiliary grammars from the hierarchy as desired.
Ideally, we would find that each auxiliary gram-

2http://berkeleyparser.googlecode.com

mar increases performance. To check this, we per-
formed experiments with all 6 auxiliary grammars
(0-5 split); the largest 3 grammars (3-5 split); and
only the 3-split grammar.

Figure 4 shows the results of these experiments.
As a baseline, we also compare with uniform cost
search (UCS) (A∗ with h = 0 ). A∗ provides a
speed-up of about a factor of 5 over this UCS base-
line. Interestingly, HA∗ using only the 3-split gram-
mar is faster than A∗ by about 10% despite using the
same grammars. This is because, unlike A∗, HA∗

need not exhaustively parse the 3-split grammar be-
fore beginning to search in the target grammar.

When we add the 4- and 5-split grammars to HA∗,
it increases performance by another 25%. However,
we can also see an important failure case of HA∗:
using all 6 auxiliary grammars actually decreases
performance compared to using only 3-5. This is be-
cause HA∗ requires that auxiliary grammars are all
relaxed projections of the target grammar. Since the
weights of the rules in the smaller grammars are the
minimum of a large set of rules in the target gram-
mar, these grammars have costs that are so cheap
that all edges in those grammars will be processed
long before much progress is made in the refined,
more expensive levels. The time spent parsing in
the smaller grammars is thus entirely wasted. This
is in sharp contrast to hierarchical CTF (see below)
where adding levels is always beneficial.

To quantify the effect of optimistically cheap
costs in the coarsest projections, we can look at the
degree to which the outside costs in auxiliary gram-
mars underestimate the true outside cost in the target
grammar (the “slack”). In Figure 5, we plot the aver-
age slack as a function of outside context size (num-
ber of unincorporated words) for each of the auxil-
iary grammars. The slack for large outside contexts
gets very large for the smaller, coarser grammars. In
Figure 6, we plot the number of edges pushed when
bounding with each auxiliary grammar individually,
against the average slack in that grammar. This plot
shows that greater slack leads to more work, reflect-
ing the theoretical property of A∗ that the work done
can be exponential in the slack of the heuristic.

3.2.2 HA∗ versus CTF
In this section, we compare HA∗ to CTF, again

using the grammars of Petrov et al. (2006). It is
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Figure 6: Edges pushed as a function of the average slack
for spans of length 10 when parsing with each auxiliary
grammar individually.

important to note, however, that we do not use the
same grammars when parsing with these two al-
gorithms. While we use the same projections to
coarsen the target grammar, the scores in the CTF
case need not be lower bounds. Instead, we fol-
low Petrov and Klein (2007) in taking coarse gram-
mar weights which make the induced distribution
over trees as close as possible to the target in KL-
divergence. These grammars represent not a mini-
mum projection, but more of an average.3

The performance of CTF as compared to HA∗

is shown in Figure 4. CTF represents a significant
speed up over HA∗. The key advantage of CTF, as
shown here, is that, where the work saved by us-

3We tried using these average projections as heuristics in
HA∗, but doing so violates consistency, causes many search er-
rors, and does not substantially speed up the search.
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Figure 7: Edges pushed as function of sentence length for
HA∗ 3-5 and CTF 0-5.

ing coarser projections falls off for HA∗, the work
saved with CTF increases with the addition of highly
coarse grammars. Adding the 0- through 2-split
grammars to CTF was responsible for a factor of 8
speed-up with no additional search errors.

Another important property of CTF is that it
scales far better with sentence length than does HA∗.
Figure 7 shows a plot of edges pushed against sen-
tence length. This is not surprising in light of the in-
crease in slack that comes with parsing longer sen-
tences. The more words in an outside context, the
more slack there will generally be in the outside es-
timate, which triggers the time explosion.

Since we prune based on thresholds τt in CTF,
we can explore the relationship between the number
of search errors made and the speed of the parser.
While it is possible to tune thresholds for each gram-
mar individually, we use a single threshold for sim-
plicity. In Figure 8, we plot the performance of CTF
using all 6 auxiliary grammars for various values of
τ . For a moderate number of search errors (< 5%),
CTF parses more than 10 times faster than HA∗ and
nearly 100 times faster than UCS. However, below a
certain tolerance for search errors (< 1%) on these
grammars, HA∗ is the faster option.4

3.3 Lexicalized parsing experiments

We also experimented with the lexicalized parsing
model described in Klein and Manning (2003a).
This lexicalized parsing model is constructed as the
product of a dependency model and the unlexical-

4In Petrov and Klein (2007), fewer search errors are re-
ported; this difference is because their search objective is more
closely aligned to the CTF pruning criterion.
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Figure 8: Performance of CTF as a function of search er-
rors for state split grammars. The dashed lines represent
the time taken by UCS and HA∗ which make no search
errors. As search accuracy increases, the time taken by
CTF increases until it eventually becomes slower than
HA∗. The y-axis is a log scale.

ized PCFG model in Klein and Manning (2003c).
We constructed these grammars using the Stanford
Parser.5 The PCFG has 19054 symbols 36078 rules.
The combined (sentence-specific) grammar has n
times as many symbols and 2n2 times as many rules,
where n is the length of an input sentence. This
model was trained on sections 2-20 of the Penn Tree-
bank and tested on section 21.

For these lexicalized grammars, we did not per-
form experiments with UCS or more than one level
of HA∗. We used only the single PCFG projection
used in Klein and Manning (2003a). This grammar
differs from the state split grammars in that it factors
into two separate projections, a dependency projec-
tion and a PCFG. Klein and Manning (2003a) show
that one can use the sum of outside scores computed
in these two projections as a heuristic in the com-
bined lexicalized grammar. The generalization of
HA∗ to the factored case is straightforward but not
effective. We therefore treated the dependency pro-
jection as a black box and used only the PCFG pro-
jection inside the HA∗ framework. When comput-
ing A∗ outside estimates in the combined space, we
use the sum of the two projections’ outside scores as
our completion costs. This is the same procedure as
Klein and Manning (2003a). For CTF, we carry out
a uniform cost search in the combined space where
we have pruned items based on their max-marginals

5http://nlp.stanford.edu/software/
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Figure 9: Performance of CTF for lexicalized parsing as
a function of search errors. The dashed line represents
the time taken by A∗, which makes no search errors. The
y-axis is a log scale.

in the PCFG model only.
In Figure 9, we examine the speed/accuracy trade

off for the lexicalized grammar. The trend here is
the reverse of the result for the state split grammars:
HA∗ is always faster than posterior pruning, even for
thresholds which produce many search errors. This
is because the heuristic used in this model is actu-
ally an extraordinarily tight bound – on average, the
slack even for spans of length 1 was less than 1% of
the overall model cost.

4 Conclusions

We have a presented an empirical comparison of
hierarchical A∗ search and coarse-to-fine pruning.
While HA∗ does provide benefits over flat A∗

search, the extra levels of the hierarchy are dramat-
ically more beneficial for CTF. This is because, in
CTF, pruning choices cascade and even very coarse
projections can prune many highly unlikely edges.
However, in HA∗, overly coarse projections become
so loose as to not rule out anything of substance. In
addition, we experimentally characterized the fail-
ure cases of A∗ and CTF in a way which matches
the formal results on A∗: A∗ does vastly more work
as heuristics loosen and only outperforms CTF when
either near-optimality is desired or heuristics are ex-
tremely tight.

Acknowledgements
This work was partially supported by an NSERC Post-Graduate
Scholarship awarded to the first author.

564



References

Sharon Caraballo and Eugene Charniak. 1996. Figures
of Merit for Best-First Probabalistic Parsing. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Eugene Charniak. 1997 Statistical Parsing with a
Context-Free Grammar and Word Statistics. In Pro-
ceedings of the Fourteenth National Conference on Ar-
tificial Intelligence.

Eugene Charniak, Sharon Goldwater and Mark Johnson.
1998. Edge-based Best First Parsing. In Proceedings
of the Sixth Workshop on Very Large Corpora.

Eugene Charniak, Mark Johnson, Micha Elsner, Joseph
Austerweil, David Ellis, Isaac Haxton, Catherine Hill,
R. Shrivaths, Jeremy Moore, Michael Pozar, and
Theresa Vu. 2006. Multilevel Coarse-to-fine PCFG
Parsing. In Proceedings of the North American Chap-
ter of the Association for Computational Linguistics.

Michael Collins. 1997. Three Generative, Lexicalised
Models for Statistical Parsing. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics.

P. Felzenszwalb and D. McAllester. 2007. The General-
ized A∗ Architecture. In Journal of Artificial Intelli-
gence Research.

Aria Haghighi, John DeNero, and Dan Klein. 2007. Ap-
proximate Factoring for A∗ Search. In Proceedings
of the North American Chapter of the Association for
Computational Linguistics.

Dan Klein and Chris Manning. 2002. Fast Exact In-
ference with a Factored Model for Natural Language
Processing. In Advances in Neural Information Pro-
cessing Systems.

Dan Klein and Chris Manning. 2003. Factored A∗

Search for Models over Sequences and Trees. In Pro-
ceedings of the International Joint Conference on Ar-
tificial Intelligence.

Dan Klein and Chris Manning. 2003. A∗ Parsing: Fast
Exact Viterbi Parse Selection. In Proceedings of the
North American Chapter of the Association for Com-
putational Linguistics

Dan Klein and Chris Manning. 2003. Accurate Unlexi-
calized Parsing. In Proceedings of the North American
Chapter of the Association for Computational Linguis-
tics.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The
Penn Treebank. In Computational Linguistics.

Mark-Jan Nederhof. 2003. Weighted deductive parsing
and Knuth’s algorithm. In Computational Linguistics,
29(1):135–143.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2003. Learning Accurate, Compact, and In-
terpretable Tree Annotation. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics.

Slav Petrov and Dan Klein. 2007. Improved Inference
for Unlexicalized Parsing. In Proceedings of the North
American Chapter of the Association for Computa-
tional Linguistics.

Stuart M. Shieber, Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementation of de-
ductive parsing. In Journal of Logic Programming,
24:3–36.

565



Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 566–574,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

An effective Discourse Parser that uses Rich Linguistic Information

Rajen Subba ∗

Display Advertising Sciences
Yahoo! Labs

Sunnyvale, CA, USA
rajen@yahoo-inc.com

Barbara Di Eugenio
Department of Computer Science

University of Illinois
Chicago, IL, USA

bdieugen@cs.uic.edu

Abstract

This paper presents a first-order logic learn-
ing approach to determine rhetorical relations
between discourse segments. Beyond lin-
guistic cues and lexical information, our ap-
proach exploits compositional semantics and
segment discourse structure data. We report
a statistically significant improvement in clas-
sifying relations over attribute-value learn-
ing paradigms such as Decision Trees, RIP-
PER and Naive Bayes. For discourse pars-
ing, our modified shift-reduce parsing model
that uses our relation classifier significantly
outperforms a right-branching majority-class
baseline.

1 Introduction

Many theories postulate a hierarchical structure for
discourse (Mann and Thompson, 1988; Moser et.
al., 1996; Polanyi et. al., 2004). Discourse struc-
ture is most often based on semantic / pragmatic re-
lationships between spans of text and results in a tree
structure, as that shown in Figure 1. Discourse
parsing, namely, deriving such tree structures and
the rhetorical relations labeling their inner nodes is
still a challenging and mostly unsolved problem in
NLP. It is linguistically plausible that such structures
are determined at least in part on the basis of the
meaning of the related chunks of texts, and of the
rhetorical intentions of their authors. However, such
knowledge is extremely difficult to capture. Hence,
previous work on discourse parsing (Wellner et. al.,
2006; Sporleder and Lascarides, 2005; Marcu, 2000;
Polanyi et. al., 2004; Soricut and Marcu, 2003;

∗This work was done while the author was a student at the
University of Illinois at Chicago.

Baldridge and Lascarides, 2005) has relied only on
syntactic and lexical information, lexical chains and
shallow semantics.

We present an innovative discourse parser that
uses compositional semantics (when available) and
information on the structure of the segment being
built itself. Our discourse parser, based on a modi-
fied shift-reduce algorithm, crucially uses a rhetori-
cal relation classifier to determine the site of attach-
ment of a new incoming chunk together with the ap-
propriate relation label. Another novel aspect of our
work is the usage of Inductive Logic Programming
(ILP): ILP learns from first-order logic representa-
tions (FOL). The ILP-based relation classifier is
significantly more accurate than relation classifiers
that use competitive propositional ML algorithms
such as decision trees and Naive Bayes. In addi-
tion, it results in FOL rules that are linguistically
perspicuous. Our domain is that of instructional
how-to-do manuals, and we describe our corpus
in Section 2. In Section 3, we discuss the modified
shift-reduce parser we developed. The bulk of the
paper is devoted to the rhetorical relation classifier
in Section 4. Experimental results of both the rela-
tion classifier and the discourse parser in its entirety
are discussed in Section 5. Further details can be
found in (Subba, 2008).

2 Discourse Annotated Instructional
Corpus

Existing corpora annotated with rhetorical relations
(Carlson et. al., 2003; Wolf and Gibson, 2005;
Prasad et. al., 2008) focus primarily on news arti-
cles. However, for us the development of the dis-
course parser is parasitic on our ultimate goal: de-
veloping resources and algorithms for language in-
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or cut it
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Figure 1: Discourse Parse Tree of the Text in Example (1)

terfaces to instructional applications. Hence, we are
interested in working with instructional texts. We
worked with a corpus on home-repair that is about
5MB in size and is made up entirely of written En-
glish instructions,1 such as that shown in Exam-
ple (1). The text has been manually segmented
into Elementary Discourse Units (EDUs), the small-
est units of discourse. In total, our corpus contains
176 documents with an average of 32.6 EDUs for a
total of 5744 EDUs and 53,250 words. The structure
for Example (1) is shown in Figure 1.

(1) [Another way to measure and mark panels for
cutting is to make a template from the protec-
tive sheets.(s1e1)] [Because these sheets are the
same size as the panels,(s2e1)] [you can tape
one to the wall as though it were a panel.(s2e2)]
[Mark the opening on the sheet(s3e1)] [or cut
it out with a razor blade.(s3e2)] [Then lay the
sheet on the panel.(s4e1)] [Using the template
as a pattern,(s5e1)] [mark the panel.(s5e2)]

To explore our hypothesis, that rich linguistic in-
formation helps discourse parsing, and that the state

1The raw corpus was originally assembled at the Informa-
tion Technology Research Institute, University of Brighton.

of the art in machine learning supports such an
approach, we needed training data annotated with
both compositional semantics and rhetorical rela-
tions. We performed the first type of annotation al-
most completely automatically, and the second man-
ually, as we turn now to describing.

2.1 Compositional Semantics Derivation

The type of compositional semantics we are inter-
ested in is heavily rooted in verb semantics, which
is particularly appropriate for the instructional text
we are working with. Therefore, we used VerbNet
(Kipper et. al., 2000) as our verb lexicon. VerbNet
groups together verbs that undergo the same syn-
tactic alternations and share similar semantics. It
accounts for 4962 distinct verbs classified into 237
main classes. Each verb class is described by the-
matic roles, selectional restrictions on the arguments
and frames consisting of a syntactic description and
semantic predicates. Such semantic classification of
verbs can be helpful in making generalizations, es-
pecially when data is not abundant. Generalization
can also be achieved by means of the semantic pred-
icates. Although the verb classes of two verb in-
stances may differ, semantic predicates are shared
across verbs. To compositionally build verb based
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semantic representations of our EDUs, we (Subba
et al., 2006) integrated a robust parser, LCFLEX
(Rosé, 2000), with a lexicon and ontology based
both on VerbNet and, for nouns, on CoreLex (Buite-
laar, 1998). The augmented parser was able to de-
rive complete semantic representations for 3257 of
the 5744 EDUs (56.7%). The only manual step was
to pick the correct parse from a forest of parse trees,
since the output of the parser can be ambiguous.

2.2 Rhetorical relation annotation
The discourse processing community has not yet
reached agreement on an inventory of rhetorical re-
lations. Among the many choices, our coding
scheme is a hybrid of (Moser et. al., 1996) and
(Marcu, 1999). We focused on what we call infor-
mational relations, namely, relations in the domain.
We used 26 relations, divided into 5 broad classes:
12 causal relations (e.g., preparation:act, goal:act,
cause:effect, step1:step2); 6 elaboration relations
(e.g., general:specific, set:member, object:attribute;
3 similarity relations (contrast1:contrast2, com-
parison, restatement); 2 temporal relations (co-
temp1:co-temp2, before:after); and 4 other rela-
tions, including joint and disjunction.

The annotation yielded 5172 relations, with rea-
sonable intercoder agreement. On 26% of the data,
we obtained κ = 0.66; κ rises to 0.78 when the two
most commonly confused relations, preparation:act
and step1:step2, are consolidated. We also anno-
tated the relata as nucleus (more important mem-
ber) and satellite (contributing member(s)) (Mann
and Thompson, 1988), with κ = 0.67.2 The most
frequent relation is preparation:act (24.46%), and in
general, causal relations are more frequently used in
our instructional corpus than in news corpora (Carl-
son et. al., 2003; Wolf and Gibson, 2005).

3 Shift-Reduce Discourse Parsing

Our discourse parser is a modified version of a shift-
reduce parser. The shift operation places the next
segment on top of the stack, TOP. The reduce oper-
ation will attach the text segment at TOP to the text
segment at TOP-1. (Marcu, 2000) also uses a shift-
reduce parser, though our parsing algorithm differs

2We don’t have space to explain why we annotate for nu-
cleus and satellite, even if (Moser et. al., 1996) argue that this
sort of distinction does not apply to informational relations.

in two respects: 1) we do not learn shift operations
and 2) in contrast to (Marcu, 2000), the attachment
of an incoming text segment to the emerging tree
may occur at any node on the right frontier. This al-
lows for the more sophisticated type of adjunction
operations required for discourse parsing as mod-
eled in D-LTAG (Webber, 2004). A reduce op-
eration is determined by the relation identification
component. We check if a relation exists between
the incoming text segment and the attachment points
on the right frontier. If more than one attachment
site exists, then the attachment site for which the rule
with the highest score fired (see below) is chosen for
the reduce operation. A reduce operation can fur-
ther trigger additional reduce operations if there is
more than one tree left in the stack after the first re-
duce operation. When no rules fire, a shift occurs.
In the event that all the segments in the input list
have been processed and a full DPT has not been
obtained, then we reduce TOP and TOP-1 using the
joint relation until a single DPT is built.

4 Classifying Rhetorical Relations

Identifying the informational relations between text
segments is central to our approach for building the
informational tree structure of text. We believe that
the use of a limited knowledge representation for-
malism, essentially propositional logic, is not ad-
equate and that a relational model that can handle
compositional semantics is necessary. We cast the
problem of determining informational relations as a
classification task. We used the ILP system Aleph
that is based on (Muggleton, 1995). Formulation
of any problem within the ILP framework consists
of background knowledge B and the set of exam-
ples E (E+∪ E−). In our ILP framework, positive
examples are ground clauses describing a relation
and its relata, e.g. relation(s5e1,s5e2,act:goal), or
relation(s2e1-s3e2,s4e1,preparation:act) from Fig-
ure 1. If e is a positive example of a relation r, then
it is also a negative example for all the other rela-
tions.

Background Knowledge (B) can be thought of as
features used by ILP to learn rules, as in traditional
attribute-value learning algorithms. We use the fol-
lowing information to learn rules for classifying re-
lations. Figure 2 shows a sample of the background
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Verbs + Nouns: verb(’s5e2’,mark). noun(’s5e2’,panel).
Linguistic Cues: firstWordPOS(’s5e2’,’VB’). lastWordPOS(’s5e2’,’.’).

Similarity: segment sim score(’s5e1’,’s5e2’,0.0).
verbclass(’s5e2’,mark,’image impression-25.1’).
agent(’s5e2’,frame(mark),you).

Compositional Semantics: destination(’s5e2’,frame(mark),panel).
cause(’s5e2’,frame(mark),you,’s5e2-mark-e’).
prep(’s5e2’,frame(mark),end(’s5e2-mark-e’),mark,panel).
created image(’s5e2’,frame(mark),result(’s5e2-mark-e’),mark).

Structural Information: same sentence(’s5e1’,’s5e2’).

Figure 2: Example Background Knowledge

knowledge provided for EDU s5e2.
Verbs + Nouns: These features were derived by

tagging all the sentences in the corpus with a POS
tagger (Brill, 1995).

WordNet: For each noun in our data, we also use
information on hypernymy and meronymy relations
using WordNet. In a sense, this captures the domain
relations between objects in our data.

Linguistic Cues: Various cues can facilitate the
inference of informational relations, even if it is well
known that they are based solely on the content of
the text segments, various cues can facilitate the in-
ference of such relations. At the same time, it is
well known that relations are often non signalled:
in our corpus, only 43% of relations are signalled,
consistently with figures from the literature (44%
in (Williams and Reiter, 2003) and 45% in (Prasad
et. al., 2008)). Besides lexical cues such as but,
and and if, we also include modals, tense, compara-
tives and superlatives, and negation. E.g., wrong-act
in relations like prescribe-act:wrong-act is often ex-
pressed using a negation.

Similarity: For the two segments in question, we
compute the cosine similarity of the segments using
only nouns and verbs.

Compositional semantics: the semantic infor-
mation derived by our parser, as described in Sec-
tion 2.1. The semantic representation of segment
s5e2 from Example (1) is shown in Figure 2. Each
semantic predicate is a feature for the classifier.

Structural Information: For relations between
two EDUs, we use knowledge of whether the two
EDUs are intra-sentential or inter-sentential, since
some relations, e.g. criterion:act, are more likely to
be realized intra-sententially than inter-sententially.

For larger segments, we also encode the hierarchi-
cal representation of text segments that contain more
than one nucleus, the distance between the nuclei
of the two segments and any relations that exist be-
tween the smaller inner segments.

At this point, the attentive reader will be wonder-
ing how we encode compositional semantics for re-
lations relating text segments larger than one EDU.
Clearly we cannot just list the semantics of each
EDU that is dominated by the larger segment. We
follow the intuition that nuclei represent the most
important portions of segments (Mann and Thomp-
son, 1988). For segments such as s5e1-s5e2 that
contains a single nucleus, we simply reduce the se-
mantic content of the larger segment to that of its
nucleus:

s5e1-s5e2

verb(’s5e1-s5e2’,mark).
...

verbclass(’s5e1-s5e2’,..).
agent(’s5e1-s5e2’,..).

In this case, the semantics of the complex text seg-
ment is represented by the compositional semantics
of the single most important EDU.

For segments that contain more than one nu-
cleus, such as s3e1-s3e2, the discourse struc-
ture information of the segment is represented with
the additional predicates internal relation and par-
ent segment. These predicates can be used recur-
sively at every level of the tree to specify the relation
between the most important segments. In addition,
they also provide a means to represent the compo-
sitional semantics of the most important EDUs and
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make them available to the relational learning algo-
rithm.

s3e1-s3e2

internal relation(s3e1,s3e2,’disjunction’).
parent segment(s3e1-s3e2,s3e1).
parent segment(s3e1-s3e2,s3e2).

LLLLLLLLLLLLLLLLLLLLL

rrrrrrrrrrrrrrrrrrrrr

verb(’s3e1’,mark).
noun(’s3e1’,opening).

...
verbclass(’s3e1’,..).

theme(’s3e1’,..).

verb(’s3e2’,cut).
noun(’s3e2’,opening).

...
noun(’s3e1’,blade).

4.1 Learning FOL Rules for Discourse Parsing
In Aleph, the hypothesis space is restricted to a set of
rules that conform to a predefined language L. This
is done with the use of mode declarations which, in
other words, introduces a language bias in the learn-
ing process. modeh declarations inform the learning
algorithm about what predicates to use as the head
of the rule and modeb specifies what predicates to
use in the body of the rule. Not all the information
in B needs to be included in the body of the rule.
This makes sense since we often learn definitions of
concepts based on more abstract higher level infor-
mation that is inferred from some other information
that is not part of our final definition. Mode decla-
rations are used by Aleph to build the most specific
clause (⊥) that can be learned for each example. ⊥
constrains the search for suitable hypotheses. ⊥i is
built by taking an example ei ∈ E+ and adding lit-
erals that are entailed by B and ei. We then have the
following property, whereHi is the hypothesis (rule)
we are trying to learn and� is a generality operator:

� � Hi � ⊥i
Finding the most specific clause (⊥) provides us

with a partially ordered set of clauses from which to
choose the best hypothesis based on some quantifi-
able qualitative criteria. This sub-lattice is bounded
by the most general clause (�, the empty clause)
from the top and the most specific clause (⊥) at the
bottom. We use the heuristic search in Aleph that is
similar to the A*-like search strategy presented by
(Muggleton, 1995) to find the best hypothesis (rule).
A noise threshold on the number of negative exam-
ples that can be covered by a rule can be set. We

learn a model that learns perfect rules first and then
one that allows for at most 5 negative examples. A
backoff model that first uses the model trained with
noise = 0 and then noise = 5 if no classification
has been made is used. We use the evaluation func-
tion in Equation 1 to guide our search through the
tree of possible hypotheses. This evaluation func-
tion is also called the compression function since it
prefers simpler explanations to more complex ones
(Occam’s Razor). fs is the score for clause cs that
is being evaluated, ps is the number of positive ex-
amples, ns is the number of negative examples, ls is
the length of the clause (measured by the number of
clauses).

fs = ps − (ns + (0.1× ls)) (1)

Classification in most ILP systems, including
Aleph, is restricted to binary classification (positive
vs. negative). In many applications with just two
classes, this is sufficient. However, we are faced
with a multi-classification problem. In order to per-
form multi-class classification, we use a decision
list. First, we build m binary classifiers for each
relation r ∈ R. Then, we form an ordered list of the
rules based on the following criterion:

1. Given two rules ri and rj , ri ,is ranked higher
than rj if (pi − ni) > (pj − nj).

2. if (pi−ni) = (pj−nj), then ri is ranked higher
than rj if ( pi

pi+ni
) > ( pj

pj+nj
).

3. if (pi − ni) = (pj − nj) and ( pi

pi+ni
) = ( pj

pj+nj
)

then ri is ranked higher than rj if (li) > (lj).

4. default: random order

Classifying an unseen example is done by using
the first rule in the ordered list that satisfies it.

5 Experiments and Results

We report our results from experiments on both the
classification task and the discourse parsing task.

5.1 Relation Classification Results

For the classification task, we conducted exper-
iments using the stratified k-fold (k = 5) cross-
validation evaluation technique on our data. Unlike
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(Wellner et. al., 2006; Sporleder and Lascarides,
2005), we do not assume that we know the order
of the relation in question. Instead we treat reversals
of non-commutative relations (e.g. preparation:act
and act:goal) as separate relations as well. We
compare our ILP model to RIPPER, Naive Bayes
and the Decision Tree algorithm. We should point
out that since attribute-value learning models can-
not handle first-order logic data, they have been pre-
sented with features that lose at least some of this
information. While this may then seem to result in
an unfair comparison, to the contrary, this is pre-
cisely the point: can we do better than very effec-
tive attribute-value approaches that however inher-
ently cannot take richer information into account?
All the statistical significance tests were performed
using the value of F-Score obtained from each of the
folds. We report performance on two sets of data
since we were not able to obtain compositional se-
mantic data for all the EDUs in our corpus:

• Set A: Examples for which semantic data was
available for all the nuclei of the segments
(1789 total). This allows us to have a better
idea of how much impact semantic data has on
the performance, if any.

• Set B: All examples regardless of whether or
not semantic data was available for the nuclei
of the segments (5475 total).

Model Semantics No Semantics
ILP 62.78 60.25
Decision Tree 56.29 55.45
RIPPER 58.02 56.96
Naive Bayes 35.83 34.66
Majority Class 31.63 31.63

Table 1: Classification Performance: Set A (F-Score)

Table 1 shows the results on Set A. ILP outper-
forms all the other models. Via ANOVA, we first
conclude that there is a statistically significant differ-
ence between the 8 models (p < 2.2e−16). To then
pinpoint where the difference precisely lies, pair-
wise comparisons using Student’s t-test show that
the difference between ILP (using semantics) and all
of the other learning models is statistically signifi-
cant at p < 0.05. Additionally, ILP with semantics

is significantly better than ILP without it (p < 0.05).
For Decision Tree, Naive Bayes and RIPPER, the
improvement in using semantics is not statistically
significant.

Model Semantics No Semantics
ILP 59.43 59.22
Decision Tree 53.84 53.69
RIPPER 51.1 51.36
Naive Bayes 49.69 51.62
Majority Class 22.01 22.01

Table 2: Classification Performance: Set B (F-Score)

In Table 2, we list the results on Set B. Once
again, our ILP model outperforms the other three
learning models. Naive Bayes is much more com-
petitive when using all the examples compared to
using only examples with semantic data. In the case
of the attribute-value machine learning models, the
use of semantic data seems to marginally hurt the
performance of the classifiers. However, this is in
contrast to the relational ILP model which always
performs better when using semantics. This result
suggests that the use of semantic data with loss of in-
formation may not be helpful, and in fact, it may ac-
tually hurt performance. Based on ANOVA, the dif-
ferences in these 8 models is statistically significant
with p < 6.95e−12. A pairwise t-test between ILP
(using semantics) and each of the other attribute-
value learning models shows that our results are sta-
tistically significant at p < 0.05.

In Table 3, we report the performance of the two
ILP models on each relation.3 In general, the models
perform better on relations that have the most exam-
ples.

The evaluation of work in discourse parsing is
hindered by the lack of a standard corpus or task.
Hence, our results cannot be directly compared
to (Marcu, 2000; Sporleder and Lascarides, 2005;
Wellner et. al., 2006), but neither can those works
be compared among themselves, because of differ-
ences in underlying corpora, the type and number of
relations used, and various assumptions. However,
we can still draw some general comparisons. Our
ILP-based models provide as much or significantly

3Due to space limitations, only relations with > 10 examples
are shown.
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relation Semantics No Semantics
preparation:act 74.86 72.05
general:specific 31.74 28.24
joint 55.23 52
act:goal 86.12 83.85
criterion:act 77.37 75.32
goal:act 73.43 68.9
step1:step2 28.75 35.29
co-temp1:co-temp2 48.84 37.84
disjunction 83.33 80.81
act:criterion 54.29 54.79
contrast1:contrast2 22.22 5.0
act:preparation 65.31 70.59
act:reason 0 10.26
cause:effect 19.05 10.53
comparison 22.22 10.53

Table 3: Classification Performance (F-Score) by
Relation: ILP on Set A

more improvement over a majority-class baseline
when compared to these other works. This is the
case even though our work is based on less training
data, relatively more relations, relations both be-
tween just two EDUs and those involving larger text
segments, and we make no assumptions about the
order of the relations. Our results are comparable to
(Marcu, 2000), which reports an accuracy of about
61% for his classifier. His majority class baseline
performs at about 50% accuracy. (Wellner et. al.,
2006) reports an accuracy of up to 81%, with a ma-
jority class baseline performance of 45.7%. How-
ever, our task is more challenging than (Wellner et.
al., 2006). They use only 11 relations compared to
the 26 we use. They also assume the order of the
relation in the examples (i.e. examples for goal:act
would be treated as examples for act:goal by revers-
ing the order of the arguments) whereas we do not
make such assumptions. In addition, their training
data is almost twice as large as ours, based on re-
lation instances. (Sporleder and Lascarides, 2005)
also makes the same assumption on the ordering of
the relations as (Wellner et. al., 2006). They re-
port an accuracy of 57.75%. Their work, though,
was based on only 5 relations. Importantly, neither
(Wellner et. al., 2006; Sporleder and Lascarides,
2005) model examples with complex text segments

with more than one EDU.

5.2 How interesting are the rules?
Given that our ILP models learn first-order logic
rules, we can make some qualitative analysis of the
rules learned, such as those below, learnt by the ILP
model that uses semantics:

(2a) relation(A,B,’act:goal’) :-
firstWordPOS(A,’VBG’),
verbclass(A,D,’use-1’),
firstWordPOS(B,’VB’).
[pos cover = 23 neg cover = 1]

(2b) relation(A,B,’preparation:act’) :-
discourse cue(B,front,and),
cause(A,frame(C),D,E),
theme(B,frame(F),G), theme(A,frame(C),G).
[pos cover = 12 neg cover = 0]

(2c) relation(A,B,’preparation:act’) :-
discourse cue(B,front,then),
parent segment(A,C), parent segment(A,D),
internal relation(C,D,’preparation:act’).
[pos cover = 17 neg cover = 0]

(2a) is learned using examples such as
relation(s5e1,s5e2,’act:goal’) from Example (1).
(2b) uses relational semantic information. This rule
can be read as follows:

IF segment A contains a cause and a
theme, the same object that is the theme
in A is also the theme in segment B, and B
contains the discourse cue and at the front
THEN the relation between A and B is
preparation:act.

(2c) is a rule that makes use of the structural in-
formation about complex text segments. When us-
ing Set A, more than about 60% of the rules in-
duced include at least one semantic predicate in its
body. They occur more frequently in rules for re-
lations like preparation:act while less in rules for
general:specific and act:goal.

5.3 Discourse Parsing Results
In order to test our discourse parser, we used 151
documents for training and 25 for testing. We eval-
uated the performance of our parser on both the
discourse parse trees it builds at the sentence level
and at the document level. The test set contained
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Sentence Level Document Level
model Semantics span nuclearity relation span nuclearity relation
SR-ILP yes 92.91 71.83 63.06 70.35 49.47 35.44
SR-ILP no 91.98 69.59 58.58 68.95 48.16 33.33
Baseline - 93.66 74.44 34.32 70.26 47.98 22.46

Table 4: Parsing Performance (F-Score): (Baseline = right-branching majority)

341 sentences out of which 180 sentences were seg-
mented into more than one EDU. We ran experi-
ments using our two ILP models for the relation
identifier, namely ILP with semantics and without
semantics. Our ILP based discourse parsing models
are named SR-ILP. We compare the performance of
our models against a right branching majority class
baseline. We used the sign-test to determine statis-
tical significance of the results. Using the automatic
evaluation methodology in (Marcu, 2000), preci-
sion, recall and F-Score measures are computed for
determining the hierarchical spans, nucleus-satellite
assignments and rhetorical relations. The perfor-
mance on labeling relations is the most important
measure since the results on nuclearity and hierar-
chical spans are by-products of the decisions made
to attach segments based on relations.

On labeling relations, the parser that uses all the
features (including compositional semantics) for de-
termining relations performs the best with an F-
Score of 63.06%. The difference of about 4.5% (be-
tween ILP with semantics and without semantics)
in F-Score is statistically significant at p = 0.006.
Our best model, SR-ILP (using semantics) beats the
baseline by about 28% in F-Score. Since the task at
the document level is much more challenging than
building the discourse structure at the sentence level,
we were not surprised to see a considerable drop in
performance. For our best model, the performance
on labeling relations drops to 35.44%. Clearly, the
mistakes made when attaching segments at lower
levels have quite an adverse effect on the overall
performance. A less greedy approach to parsing dis-
course structure is warranted.

While we would have hoped for a better perfor-
mance than 35.44%, to start with, (Forbes et. al.,
2001), (Polanyi et. al., 2004), and (Cristea, 2000) do
not report the performance of their discourse parsers
at all. (Marcu, 2000) reports precision and recall of

up to 63.2% and 59.8% on labeling relations using
manually segmented EDUs on three WSJ articles.
(Baldridge and Lascarides, 2005) reports 43.2% F-
Score on parsing 10 dialogues using a probabilistic
head-driven parsing model.

6 Conclusions

In conclusion, we have presented a relational ap-
proach for classifying informational relations and a
modified shift-reduce parsing algorithm for building
discourse parse trees based on informational rela-
tions. To our knowledge, this is the first attempt
at using a relational learning model for the task of
relation classification, or even discourse parsing in
general. Our approach is linguistically motivated.
Using ILP, we are able to account for rich composi-
tional semantic data of the EDUs based on VerbNet
as well as the structural relational properties of the
text segments. This is not possible using attribute-
value based models like Decision Trees and RIP-
PER and definitely not using probabilistic models
like Naive Bayes. Our experiments have shown that
semantics can be useful in classifying informational
relations. For parsing, our modified shift-reduce al-
gorithm using the ILP relation classifier outperforms
a right-branching baseline model significantly. Us-
ing semantics for parsing also yields a statistically
significant improvement. Our approach is also do-
main independent as the underlying model and data
are not domain specific.
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Abstract

Recent work has shown that explicitly iden-
tifying and filtering non-anaphoric mentions
prior to coreference resolution can improve
the performance of a coreference system.
We present a novel approach to this task of
anaphoricity determination based on graph
cuts, and demonstrate its superiority to com-
peting approaches by comparing their effec-
tiveness in improving a learning-based coref-
erence system on the ACE data sets.

1 Introduction

Coreference resolution is the problem of identifying
which noun phrases (NPs, ormentions) refer to the
same real-world entity in a text or dialogue. Accord-
ing to Webber (1979), coreference resolution can
be decomposed into two complementary tasks: “(1)
identifying what a text potentially makes available
for anaphoric reference and (2) constraining the can-
didate set of a given anaphoric expression down to
one possible choice.” The first task is nowadays typ-
ically formulated as ananaphoricity determination
task, which aims to classify whether a given men-
tion is anaphoric or not. Knowledge of anaphoric-
ity could improve the precision of a coreference sys-
tem, since non-anaphoric mentions do not have an
antecedent and therefore do not need to be resolved.

Previous work on anaphoricity determination can
be broadly divided into two categories (see Poe-
sio et al. (2004) for an overview). Research in the
first category aims to identify specific types of non-
anaphoric phrases, with some identifying pleonas-
tic it (using heuristics [e.g., Paice and Husk (1987),

Lappin and Leass (1994), Kennedy and Boguraev
(1996)], supervised approaches [e.g., Evans (2001),
Müller (2006), Versley et al. (2008)], and distribu-
tional methods [e.g., Bergsma et al. (2008)]), and
others identifying non-anaphoric definite descrip-
tions (using rule-based techniques [e.g., Vieira and
Poesio (2000)] and unsupervised techniques [e.g.,
Bean and Riloff (1999)]).

On the other hand, research in the second cat-
egory focuses on (1) determining the anaphoricity
of all types of mentions, and (2) using the result-
ing anaphoricity information to improve coreference
resolution. For instance, Ng and Cardie (2002a)
train an anaphoricity classifier to determine whether
a mention is anaphoric, and let an independently-
trained coreference system resolve only those men-
tions that are classified as anaphoric. Somewhat sur-
prisingly, they report that using anaphoricity infor-
mation adversely affects the performance of their
coreference system, as a result of an overlyconser-
vativeanaphoricity classifier that misclassifies many
anaphoric mentions as non-anaphoric. One solu-
tion to this problem is to use anaphoricity infor-
mation assoft constraints rather than as hard con-
straints for coreference resolution. For instance,
when searching for the best partition of a set of
mentions, Luo (2007) combines the probabilities re-
turned by an anaphoricity model and a coreference
model to score a coreference partition, such that a
partition is penalized whenever an anaphoric men-
tion is resolved. Another, arguably more popular,
solution is to “improve” the output of the anaphoric-
ity classifier by exploiting the dependency between
anaphoricity determination and coreference resolu-
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tion. For instance, noting that Ng and Cardie’s
anaphoricity classifier is too conservative, Ng (2004)
first parameterizes their classifier such that its con-
servativeness can be varied, and then tunes this pa-
rameter so that the performance of the coreference
system is maximized. As another example, De-
nis and Baldridge (2007) and Finkel and Manning
(2008) perform joint inference for anaphoricity de-
termination and coreference resolution, by using In-
teger Linear Programming (ILP) to enforce the con-
sistency between the output of the anaphoricity clas-
sifier and that of the coreference classifier.

While this ILP approach and Ng’s (2004) ap-
proach to improving the output of an anaphoricity
classifier both result in increased coreference per-
formance, they have complementary strengths and
weaknesses. Specifically, Ng’s approach can di-
rectly optimize the desired coreference evaluation
metric, but by treating the coreference system as a
black box during the optimization process, it does
not exploit the potentially useful pairwise probabil-
ities provided by the coreference classifier. On the
other hand, the ILP approach does exploit such pair-
wise probabilities, but optimizes an objective func-
tion that does not necessarily have any correlation
with the desired evaluation metric.

Our goals in this paper are two-fold. First, moti-
vated in part by previous work, we propose a graph-
cut-based approach to anaphoricity determination
that combines the strengths of Ng’s approach and
the ILP approach, by exploiting pairwise corefer-
ence probabilities when co-ordinating anaphoricity
and coreference decisions, and at the same time al-
lowing direct optimization of the desired corefer-
ence evaluation metric. Second, we compare our
cut-based approach with the five aforementioned ap-
proaches to anaphoricity determination (namely, Ng
and Cardie (2002a), Ng (2004), Luo (2007), De-
nis and Baldridge (2007), and Finkel and Manning
(2008)) in terms of their effectiveness in improv-
ing a learning-based coreference system. To our
knowledge, there has been no attempt to perform
a comparative evaluation of existing approaches to
anaphoricity determination. It is worth noting, in
particular, that Luo (2007), Denis and Baldridge
(2007), and Finkel and Manning (2008) evaluate
their approaches ontrue mentions extracted from
the answer keys. Since true mentions are com-

posed of all the NPs involved in coreference rela-
tions but only a subset of the singleton NPs (i.e.,
NPs that are not coreferent with any other NPs) in
a text, evaluating the utility of anaphoricity deter-
mination on true mentions to some extent defeats
the purpose of performing anaphoricity determina-
tion, which precisely aims to identify non-anaphoric
mentions. Hence, we hope that our evaluation on
mentions extracted using an NP chunker can reveal
their comparative strengths and weaknesses.

We perform our evaluation on three ACE coref-
erence data sets using two commonly-used scor-
ing programs. Experimental results show that (1)
employing our cut-based approach to anaphoric-
ity determination yields a coreference system that
achieves the best performance for all six data-
set/scoring-program combinations, and (2) among
the five existing approaches, none performs consis-
tently better than the others.

The rest of the paper is organized as follows. Sec-
tion 2 describes our learning-based coreference sys-
tem. In Section 3, we give an overview of the five
baseline approaches to anaphoricity determination.
Section 4 provides the details of our graph-cut-based
approach. Finally, we present evaluation results in
Section 5 and conclude in Section 6.

2 Baseline Coreference Resolution System

Our baseline coreference system implements the
standard machine learning approach to coreference
resolution (see Ng and Cardie (2002b), Ponzetto and
Strube (2006), Yang and Su (2007), for instance),
which consists ofprobabilistic classificationand
clustering, as described below.

2.1 The Standard Machine Learning Approach

We use maximum entropy (MaxEnt) classification
(Berger et al., 1996) in conjunction with the 33 fea-
tures described in Ng (2007) to acquire a model,PC ,
for determining the probability that two mentions,
mi andmj, are coreferent. Hence,

PC(mi,mj) = P (COREFERENT | mi,mj).

In the rest of the paper, we will refer toPC(mi,mj)
as thepairwise coreference probabilitybetweenmi

and mj. To generate training instances, we em-
ploy Soon et al.’s (2001) procedure, relying on the
training texts to create (1) apositive instancefor
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each anaphoric mention,mj, and its closest an-
tecedent,mi; and (2) anegative instancefor mj

paired with each of the intervening mentions,mi+1,
mi+2,. . ., mj−1. When training the feature-weight
parameters of the MaxEnt model, we use 100 it-
erations of the improved iterative scaling (IIS) al-
gorithm (Della Pietra et al., 1997) together with a
Gaussian prior to prevent overfitting.

After training, the coreference model is used to
select an antecedent for each mention in a test text.
Following Soon et al. (2001), we select as the an-
tecedent of each mention,mj, the closestpreced-
ing mention that is classified as coreferent withmj,
where mention pairs with pairwise probabilities of at
least 0.5 are considered coreferent. If no such men-
tion exists, no antecedent will be selected formj . In
essence, we use aclosest-firstclustering algorithm
to impose a partitioning on the mentions.

3 Baseline Approaches to Anaphoricity
Determination

As mentioned previously, we will use five existing
approaches to anaphoricity determination as base-
lines in our evaluation. Common to all five ap-
proaches is the acquisition of an anaphoricity model,
PA, for determining the probability that a mention,
mj, is anaphoric. Hence,

PA(mj) = P (ANAPHORIC | mj)

To trainPA, we again employ MaxEnt modeling,
and create one training instance from each mention
in a training text. Hence, each instance represents a
single mention and consists of 37 features that are
potentially useful for distinguishing anaphoric and
non-anaphoric mentions (see Ng and Cardie (2002a)
for a detailed description of these features).1

The classification of a training instance — one
of ANAPHORIC or NOT ANAPHORIC — is derived
directly from the coreference chains in the associ-
ated training text. Like the coreference model, the
anaphoricity model is trained by running 100 iter-
ations of IIS with a Guassian prior. The resulting
model is then applied to a test text to determine the

1While we train the anaphoricity model using the Ng and
Cardie (2002a) feature set, it should be clear that any features
that are useful for distinguishing anaphoric and non-anaphoric
mentions can be used (e.g., those proposed by Uryupina (2003)
and Elsner and Charniak (2007)).

probability that a mention is anaphoric.
In the rest of this section, we provide an overview

of the five baseline approaches to anaphoricity deter-
mination. We will characterize each approach along
two dimensions: (1) whether it attempts to improve
PA, and if so, how; and (2) whether the resulting
anaphoricity information is used as hard constraints
or soft constraints by the coreference system.

3.1 Ng and Cardie (2002a)

Ng and Cardie (N&C) do not attempt to improvePA,
simply using the anaphoricity information it pro-
vides as hard constraints for coreference resolution.
Specifically, the coreference system resolves only
those mentions that are determined as anaphoric by
PA, where a mention is classified as anaphoric if the
classification threshold is at least 0.5.

3.2 Ng (2004)

PA may not be “sufficiently” accurate, however,
as N&C report a significant drop in the perfor-
mance of their coreference system after incorpo-
rating anaphoricity information, owing in part to
their overly conservativeanaphoricity model that
misclassifies many anaphoric mentions as non-
anaphoric. To address this problem, Ng (2004) at-
tempts to improvePA by introducing a threshold
parameterc to adjust the conservativeness ofPA

as follows. Given a specificc (0 ≤ c ≤ 1), a
mentionmj is classified as anaphoric byPA if and
only if PA(mj) ≥ c. It should be easy to see
that decreasingc yields progressively less conserva-
tive anaphoricity models (i.e., more mentions will
be classified as anaphoric). The parameterc is tuned
using held-out development data to optimize the per-
formance of the coreference system that employs
anaphoricity information (as hard constraints).

In essence, Ng’s approach to improvingPA treats
the coreference system as a black box, merely se-
lecting the value forc that yields the best score ac-
cording to the desired coreference evaluation met-
ric on the held-out data. In particular, unlike some
of the anaphoricity determination approaches dis-
cussed later on, this approach does not attempt to co-
ordinate the anaphoricity decisions and the pairwise
coreference decisions. Nevertheless, as mentioned
before, a unique strength of this approach lies in its
ability to optimize directly the desired coreference
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evaluation metric.

3.3 Luo (2007)

Among the five anaphoricity determination ap-
proaches, Luo’s (2007) is the only one where
anaphoricity information is exploited as soft con-
straints by the coreference model,PC .

Specifically, Luo’s algorithm attempts to find the
most probable coreference partition of a given set
of mentions. To do so, it scores a partition us-
ing the probabilities provided byPA andPC . Let
us illustrate how this can be done via the follow-
ing example. Given a document with four men-
tions, m1, . . . ,m4, and a partition of the mentions,
{[m1,m3,m4], [m2]}, automatically produced by
some coreference system, Luo’s algorithm scores
the partition by considering the mentions in the
document in a left-to-right manner. As the first
mention in the document,m1 is not anaphoric,
and the probability that it is non-anaphoric is 1 –
PA(m1). Then, the algorithm processesm2, which
according to the partition is non-anaphoric, and
the probability of its being non-anaphoric is 1 –
PA(m2). Next, it processesm3, which is coref-
erent with m1 with probability PC(m1,m3). Fi-
nally, it processesm4, which is coreferent withm1

andm3. The probability thatm4 is coreferent with
the cluster consisting ofm1 and m3 is defined to
be max(PC(m1,m4), PC (m3,m4)), according to
Luo’s algorithm. The score of this partition is the
product of these four probabilities, two provided by
PA and two byPC . As can be seen, a partition
is penalized whenever a mention that is unlikely to
be anaphoric (according toPA) is being resolved to
some antecedent according to the partition.

Nevertheless, it is computationally infeasible to
score all possible partitions given a set of mentions,
as the number of partitions is exponential in the
number of mentions. To cope with this computa-
tional complexity, Luo employs the algorithm pro-
posed in Luo et al. (2004) to heuristically search for
the most probable partition by performing a beam
search through aBell tree. In essence, only the most
promising nodes in the tree are expanded at each
step of the search process, where the “promise” of
a node is defined in terms of the probabilities pro-
vided byPA andPC , as described above. Details of
this process can be found in Luo et al. (2004).

3.4 Denis and Baldridge (2007)

As mentioned before, Denis and Baldridge (D&B)
aim to improve the outputs ofPA and PC by em-
ploying Integer Linear Programming (ILP) to per-
form joint inference for anaphoricity determination
and coreference resolution. The ILP approach is mo-
tivated by the observation that the outputs of these
two models have to satisfy certain constraints. For
instance, ifPC determines that a mention,mj, is
not coreferent with any other mentions in the as-
sociated text, thenPA should determine thatmj is
non-anaphoric. In practice, however, sincePA and
PC are trained independently of each other, this and
other constraints cannot be enforced.

ILP provides a framework forjointly determining
anaphoricity and coreference decisions for a given
set of mentions based on the probabilities provided
by PA and PC , such that the resulting joint deci-
sions satisfy the desired constraints while respecting
as much as possible the probabilistic decisions made
by the independently-trainedPA andPC . Specifi-
cally, an ILP program is composed of an objective
function to be optimized subject to a set of linear
constraints, and is created for each test textD as fol-
lows. LetM be the set of mentions inD, andP be
the set of mention pairs formed fromM (i.e., P =
{(mi,mj) | mi,mj ∈ M, i < j}). Each ILP pro-
gram has a set of indicatorvariables. In our case, we
have one binary-valued variable for each anaphoric-
ity decision and coreference decision to be made by
an ILP solver. Following D&B’s notation, we useyj

to denote the anaphoricity decision for mentionmj,
andx〈i,j〉 to denote the coreference decision involv-
ing mentionsmi andmj. In addition, each variable
is associated with anassignmentcost. Specifically,
let cC

〈i,j〉 = − log(PC(mi,mj)) be the cost of setting

x〈i,j〉 to 1, andc̄C
〈i,j〉 = − log(1 − PC(mi,mj)) be

the complementary cost of settingx〈i,j〉 to 0. We can
similarly define the cost associated with eachyj , let-
ting cA

j =− log(PA(mj)) be the cost of settingyj to
1, andc̄A

j = − log(1 − PA(mj)) be the complemen-
tary cost of settingyj to 0. Given these costs, we
aim to optimize the following objective function:

min
∑

(mi,mj)∈P

cC
〈i,j〉 · x〈i,j〉 + c̄C

〈i,j〉 · (1 − x〈i,j〉)

+
∑

mj∈M

cA
j · yj + c̄A

j · (1 − yj)
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subject to a set of manually-specifiedlinear con-
straints. D&B specify four types of constraints: (1)
each indicator variable can take on a value of 0 or 1;
(2) if mi andmj are coreferent (x〈i,j〉=1), thenmj is
anaphoric (yj=1); (3) if mj is anaphoric (yj=1), then
it must be coreferent with some preceding mention
mi; and (4) ifmj is non-anaphoric, then it cannot be
coreferent with any mention. Note that we aremini-
mizingthe objective function, since each assignment
cost is expressed as a negative logarithm value. We
uselp solve2, an ILP solver, to solve this program.

It is easy to see that enforcing consistency using
ILP amounts to employing anaphoricity informa-
tion as hard constraints for the coreference system.
Since transitivity is not guaranteed by the above con-
straints, we follow D&B and use theaggressive-
mergeclustering algorithm to put any two mentions
that are posited as coreferent into the same cluster.

3.5 Finkel and Manning (2008)

Finkel and Manning (F&M) present one simple ex-
tension to D&B’s ILP approach: augmenting the
set of linear constraints with the transitivity con-
straint. This ensures that ifx〈i,j〉=1 andx〈j,k〉=1,
thenx〈i,k〉=1. As a result, the coreference decisions
do not need to be co-ordinated by a separate cluster-
ing mechanism.

4 Cut-Based Anaphoricity Determination

As mentioned in the introduction, our graph-cut-
based approach to anaphoricity determination is mo-
tivated by Ng’s (2004) and the ILP approach, aim-
ing to combine the strengths of the two approaches.
Specifically, like Ng (2004), our approach allows di-
rect optimization of the desired coreference evalua-
tion metric; and like the ILP approach, our approach
co-ordinates anaphoricity decisions and coreference
decisions by exploiting the pairwise probabilities
provided by a coreference model. In this section,
we will introduce our cut-based approach, starting
by reviewing concepts related to minimum cuts.

4.1 The Minimum Cut Problem Setting

Assume that we want to partition a set ofn objects,
{x1, x2, . . . , xn}, into two sets,Y1 andY2. We have
two types of scores concerning thex’s and theY ’s:

2Available from http://lpsolve.sourceforge.net/

membershipscores andsimilarity scores. The mem-
bership score,memYi(xj), is a non-negative quan-
tity that approximates the “affinity” ofxj to Yi. On
the other hand, the similarity score,sim(xj , xk), is
a non-negative quantity that provides an estimate of
the similarity betweenxj andxk.

Informally, our goal is to maximize each object’s
net happiness, which is computed by subtracting its
membership score of the class it isnot assigned to
from its membership score of the class it is assigned
to. However, at the same time, we want to avoid
assigning similar objects to different classes. More
formally, we seek to minimize the partition cost:∑

xj∈Y1,xk∈Y2

sim(xj, xk)+
∑

x∈Y1

memY2(x)+
∑

x∈Y2

memY1(x)

There exists an efficient algorithm for solving this
seemingly intractable problem when it is recast as
a graph problem. So, let us construct a graph,G,
based on the available scores as follows. First, we
create two nodes,s and t (called thesourceand
the sink, respectively), to represent the two classes.
Then, we create one “object” node for each of the
n objects. For each object,xj , we add two directed
edges, one froms to xj (with weight memY1(xj))
and the other fromxj to t (with weightmemY2(xj)).
Moreover, for each pair of object nodes,xj andxk,
we add two directed edges (one fromxj to xk and
another fromxk to xj), both of which have weight
sim(xj , xk). A cut in G is defined as a partition of
the nodes into two sets,S andT , such thats ∈ S,
t ∈ T ; and the cost of the cut,cost(S, T ), is the
sum of the weights of the edges going fromS to
T . A minimum cut is a cut that has the lowest cost
among all the cuts ofG. It can be proved that find-
ing a minimum cut ofG is equivalent to minimizing
the partition cost defined as above. The main advan-
tage of recasting the above minimization problem as
a graph-cut problem is that there exist polynomial-
time maxflow algorithms for finding a minimum cut.

4.2 Graph Construction

Next, we show how to construct the graph to which
the mincut-finding algorithm will be applied. The
ultimate goal is to use the mincut finder to parti-
tion a given set of mentions into two subsets, so that
our coreference system will attempt to resolve only
those mentions that are in the subset correspond-
ing to ANAPHORIC. In other words, the resulting
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anaphoricity information will be used to identify and
filter non-anaphoric mentions prior to coreference
resolution. The graph construction process, which
takes as input a set of mentions in a test text, is com-
posed of three steps, as described below.

Step 1: Mimicking Ng and Cardie (2002a)
To construct the desired graph,G, we first create
the source,s, and the sink,t, that represent the
classesANAPHORIC andNOT ANAPHORIC, respec-
tively. Then, for each mentionmn in the input text,
we create one node,n, and two edges,sn andnt,
connectingn to s and t. Next, we computewsn

and wnt, the weights associated withsn and nt.
A natural choice would be to usePA(mn) as the
weight ofsn and (1−wsn) as the weight ofnt. (We
will assume throughout thatwnt is always equal to
1 − wsn.) If we apply the mincut finder to the cur-
rent G, it should be easy to see that (1) any node
n wherewsn > 0.5 will be assigned tos, (2) any
node n where wsn < 0.5 will be assigned tot,
and (3) any remaining node will be assigned to one
of them. (Without loss of generality, we assume
that such nodes are assigned tos.) Hence, the set
of mentions determined as anaphoric by the mincut
finder is identical to the set of mentions classified as
anaphoric byPA, thus yielding a coreference system
that is functionally equivalent to N&C’s. This also
implies thatG shares the same potential weakness
asPA: being overly conservative in determining a
mention as anaphoric.

Step 2: Mimicking Ng (2004)
One way to “improve”G is to make it functionally
equivalent to Ng’s (2004) approach. Specifically,
our goal in Step 2 is to modify the edge weights in
G (without adding new edges or nodes) such that the
mincut finder classifies a noden as anaphoric if and
only if PA(mn) ≥ c for somec ∈ [0, 1]. Now, recall
from Step 1 that the mincut finder classifies a node
n as anaphoric if and only ifwsn ≥ 0.5. Hence,
to achieve the aforementioned goal, we just need to
ensure the property thatwsn ≥ 0.5 if and only if
PA(mn) ≥ c. Consequently, we computewsn using
a sigmoid function:

wsn =
1

1 + e−α×(PA(mn)−c)

whereα is a constant that controls the “steepness”

of the sigmoid.3 It should be easy to verify that the
sigmoid satisfies the aforementioned property. As
noted before,wnt = 1 − wsn for each noden. In-
spired by Ng (2004), the value of the parameterc
will be tuned based on held-out development data to
maximize coreference performance.

Step 3: Incorporating coreference probabilities
Like Ng’s (2004) approach, the currentG suffers
from the weakness of not exploiting the pairwise
probabilities provided byPC . Fortunately, these
probabilities can be naturally incorporated intoG as
similarity scores. To see why these pairwise prob-
abilities are potentially useful, consider two men-
tions,mi andmj, in a textD that are coreferent and
are both anaphoric. Assume that the graphG con-
structed fromD has these edge weights:wsi = 0.8,
wsj = 0.3, andwij = wji = 0.8. Without the sim-
ilarity scores, the mincut finder will correctly deter-
minemi as anaphoric but incorrectly classifymj as
non-anaphoric. On the other hand, if the similarity
scores are taken into account, the mincut finder will
correctly determine both mentions as anaphoric.

The above discussion suggests that it is desirable
to incorporate edges between two nodes,i and j,
when mi and mj are likely to be coreferent (i.e.,
PC(mi,mj) ≥ c2 for some constantc2). In our im-
plementation, we tune this new parameter,c2, jointly
with c (see Step 2) on development data to maxi-
mize coreference performance. While it is possible
to imagine scenarios where incorporating pairwise
probabilities is not beneficial, we believe that these
probabilities represent a source of information that
could be profitably exploited via learning appropri-
ate values forc andc2.4

3One of the main reasons why we use a sigmoid function
(rather than a linear function) is that the weights will still fall
within the[0, 1] interval after the transformation, a property that
will turn out to be convenient when the pairwise coreference
probabilities are incorporated (see Step 3).α is chosen so that
the difference between two weights after the transformation is
as close as possible to their difference before the transformation.
With this criterion in mind, we setα to 0.42 in our experiments.

4Incorporating the coreference probabilities can potentially
identify some of the anaphoric mentions that would be misclas-
sified otherwise. However, note that the minimum cut algorithm
does not maintain the notion of directionality that would allow
one to determine that a discourse-new mention (i.e., the first
mention of a coreference chain) is not anaphoric. In particu-
lar, the algorithm tends to classify all members of a coreference
chain, including the first mention, as anaphoric. We did not ex-

580



5 Evaluation

5.1 Experimental Setup

For evaluation, we use the ACE Phase II coreference
corpus, which is composed of three sections: Broad-
cast News (BNEWS), Newspaper (NPAPER), and
Newswire (NWIRE). Each section is in turn com-
posed of a training set and a test set. For each
section, we train an anaphoricity model,PA, and
a coreference model,PC , on the training set, and
evaluatePC (when used in combination with differ-
ent approaches to anaphoricity determination) on the
test set. As noted before, the mentions used are ex-
tracted automatically using an in-house NP chunker.
Results are reported in terms of recall (R), precision
(P), and F-measure (F), obtained using two corefer-
ence scoring programs: the MUC scorer (Vilain et
al., 1995) and the CEAF scorer (Luo, 2005).

5.2 Results and Discussions

“No Anaphoricity” baseline. Our first baseline is
the learning-based coreference system described in
Section 2, which does not employ any anaphoric-
ity determination algorithm. Results using the MUC
scorer and the CEAF scorer are shown in row 1 of
Tables 1 and 2, respectively. As we can see, MUC
F-score ranges from 55.0 to 61.7 and CEAF F-score
ranges from 55.3 to 61.2.
Duplicated Ng and Cardie (2002a) baseline.
Next, we evaluate our second baseline, which is
N&C’s coreference system. As seen from row 2 of
Tables 1 and 2, MUC F-score ranges from 50.5 to
60.0 and CEAF F-score ranges from 54.5 to 59.4.
In comparison to the first baseline, we see drops in
F-score in all cases as a result of considerable pre-
cipitation in recall, which can in turn be attributed
to the misclassification of many anaphoric mentions
by the anaphoricity model. More specifically, MUC
F-score decreases by 1.7–5.5%, whereas CEAF F-
score decreases by 0.5–1.8%. These trends are con-
sistent with those reported in N&C’s paper.
Duplicated Ng (2004) baseline. Our third base-
line is Ng’s (2004) coreference system. Recall that
this resolver requires the tuning of the conservative-
ness parameter,c, on held-out data. To ensure a fair
comparison between different resolvers, we do not

plicitly address this issue, simply letting the coreference clus-
tering algorithm discover that first mentions are non-anaphoric.

rely on additional data for parameter tuning. Rather,
we reserve13 of the available training data for tuning
c, for which we tested values from 0 to 1 in steps of
0.01, and use the remaining23 of the data for training
PA andPC . Results are shown in row 3 of Tables
1 and 2, where MUC F-score ranges from 57.0 to
61.9 and CEAF F-score ranges from 55.5 to 60.6. In
comparison to the first baseline, we obtain mixed re-
sults: MUC F-score increases by 2.0% and 0.2% for
BNEWS and NPAPER, respectively, but drops by
0.1% for NWIRE; CEAF F-score increases by 0.2%
and 1.1% for BNEWS and NPAPER, respectively,
but drops by 0.6% for NWIRE.

Duplicated Luo (2007) baseline. Results of our
fourth baseline, in which the anaphoricity and pair-
wise coreference probabilities are combined to score
a partition using Luo’s system, are shown in row 4
of Tables 1 and 2. Here, we see that MUC F-score
ranges from 55.8 to 62.1 and CEAF F-score ranges
from 56.3 to 61.5. In comparison to the first base-
line, performance improves, though insignificantly,5

in all cases: MUC F-score increases by 0.2–0.8%,
whereas CEAF F-score increases by 0.3–1.0%.

Duplicated Denis and Baldridge (2007) base-
line. Our fifth baseline performs joint inference
for anaphoricity determination and coreference res-
olution using D&B’s ILP approach. Results are
shown in row 5 of Tables 1 and 2, where MUC
F-score ranges from 56.2 to 63.8 and CEAF F-
score ranges from 56.9 to 61.5. In comparison to
the first baseline, MUC F-score always increases,
with improvements ranging from 1.2% to 2.1%.
CEAF results are mixed: F-score increases signifi-
cantly for BNEWS, drops insignificantly for NPA-
PER, and rises insignificantly for NWIRE. The dif-
ference in performance trends between the two scor-
ers can be attributed to the fact that the MUC
scorer typically under-penalizes errors due to over-
merging, which occurs as a result of D&B’s using
the aggressive-merge clustering algorithm. In addi-
tion, we can see that D&B’s approach performs at
least as good as Luo’s approach in all but one case
(NPAPER/CEAF).

Duplicated Finkel and Manning (2008) baseline.
Our sixth baseline is F&M’s coreference system,

5Like the MUC organizers, we use Approximate Random-
ization (Noreen, 1989) for significance testing, withp=0.05.
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Broadcast News Newspaper Newswire
Approach to Anaphoricity Determination R P F R P F R P F

1 No Anaphoricity 57.7 52.6 55.0 60.8 62.6 61.7 59.1 58.1 58.6
2 Duplicated Ng and Cardie (2002a) 40.3 67.7 50.5† 52.1 70.6 60.0 43.0 69.3 53.1†
3 Duplicated Ng (2004) 51.9 63.2 57.0 60.0 63.8 61.9 59.3 57.7 58.5
4 Duplicated Luo (2007) 55.4 56.1 55.8 60.6 63.7 62.1 58.4 59.2 58.8
5 Duplicated Denis and Baldridge (2007) 57.3 55.1 56.2∗ 63.8 63.7 63.8∗ 60.4 59.3 59.8∗

6 Duplicated Finkel and Manning (2008) 56.4 55.3 55.8 63.8 63.7 63.8∗ 59.7 59.2 59.5
7 Graph Minimum Cut 53.1 67.5 59.4∗ 57.9 71.2 63.9∗ 54.1 69.0 60.6∗

Table 1: MUC scores for the three ACE data sets. F-scores thatrepresent statistically significant gains and drops with
respect to the “No Anaphoricity” baseline are marked with anasterisk (*) and a dagger (†), respectively.

Broadcast News Newspaper Newswire
Approach to Anaphoricity Determination R P F R P F R P F

1 No Anaphoricity 63.2 49.2 55.3 64.5 54.3 59.0 67.3 56.1 61.2
2 Duplicated Ng and Cardie (2002a) 55.9 53.3 54.5 60.7 56.3 58.5 60.6 58.2 59.4
3 Duplicated Ng (2004) 62.5 49.9 55.5 63.5 57.0 60.1 65.6 56.3 60.6
4 Duplicated Luo (2007) 62.7 51.1 56.3 64.6 55.4 59.6 67.0 56.8 61.5
5 Duplicated Denis and Baldridge (2007) 63.8 51.4 56.9∗ 62.6 53.6 57.8 67.0 56.8 61.5
6 Duplicated Finkel and Manning (2008) 63.2 51.3 56.7∗ 62.6 53.6 57.8 66.7 56.7 61.3
7 Graph Minimum Cut 61.4 57.6 59.4∗ 64.1 59.4 61.7∗ 65.7 61.9 63.8∗

Table 2: CEAF scores for the three ACE data sets. F-scores that represent statistically significant gains and drops with
respect to the “No Anaphoricity” baseline are marked with anasterisk (*) and a dagger (†), respectively.

which is essentially D&B’s approach augmented
with transitivity constraints. Results are shown in
row 6 of Tables 1 and 2, where MUC F-score ranges
from 55.8 to 63.8 and CEAF F-score ranges from
56.7 to 61.3. In comparison to the D&B baseline, we
see that F-score never improves, regardless of which
scoring program is used. In fact, recall slightly de-
teriorates, and this can be attributed to F&M’s ob-
servation that transitivity constraints tend to produce
smaller clusters. Overall, these results suggest that
enforcing transitivity for coreference resolution is
not useful for improving coreference performance.

Our graph-cut-based approach. Finally, we
evaluate the coreference system using the anaphoric-
ity information provided by our cut-based approach.
As before, we reserve13 of the training data for
jointly tuning the two parameters,c andc2, and use
the remaining2

3 for training PA andPC . For tun-
ing, we tested values from 0 to 1 in steps of 0.1 for
both c and c2. Results are shown in row 7 of Ta-
bles 1 and 2. As we can see, MUC F-score ranges
from 59.4 to 63.9 and CEAF F-score ranges from
59.4 to 63.8, representing a significant improvement
over the first baseline in all six cases: MUC F-score
rises by 2.0–4.4% and CEAF F-score rises by 2.6–
4.1%. Such an improvement can be attributed to a
large gain in precision and a smaller drop in recall.

This implies that our mincut algorithm has success-
fully identified many non-anaphoric mentions, but
in comparison to N&C’s approach, it misclassifies
a smaller number of anaphoric mentions. Moreover,
our approach achieves the best F-score for each data-
set/scoring-program combination, and significantly
outperforms the best baseline (D&B) in all but two
cases, NPAPER/MUC and NWIRE/MUC.

6 Conclusions

We have presented a graph-cut-based approach to
anaphoricity determination that (1) directly opti-
mizes the desired coreference evaluation metric
through parameterization and (2) exploits the proba-
bilities provided by the coreference model when co-
ordinating anaphoricity and coreference decisions.
Another major contribution of our work is the em-
pirical comparison of our approach against five ex-
isting approaches to anaphoricity determination in
terms of their effectiveness in improving a coref-
erence system using automatically extracted men-
tions. Our approach demonstrates effectiveness and
robustness by achieving the best result on all three
ACE data sets according to both the MUC scorer
and the CEAF scorer. We believe that our cut-based
approach provides a flexible mechanism for co-
ordinating anaphoricity and coreference decisions.
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Abstract

The number of research publications in var-
ious disciplines is growing exponentially.
Researchers and scientists are increasingly
finding themselves in the position of having
to quickly understand large amounts of tech-
nical material. In this paper we present the
first steps in producing an automatically gen-
erated, readily consumable, technical survey.
Specifically we explore the combination of
citation information and summarization tech-
niques. Even though prior work (Teufel et
al., 2006) argues that citation text is unsuitable
for summarization, we show that in the frame-
work of multi-document survey creation, cita-
tion texts can play a crucial role.

1 Introduction

In today’s rapidly expanding disciplines, scientists
and scholars are constantly faced with the daunting
task of keeping up with knowledge in their field. In
addition, the increasingly interconnected nature of
real-world tasks often requires experts in one dis-
cipline to rapidly learn about other areas in a short
amount of time.

Cross-disciplinary research requires scientists in
areas such as linguistics, biology, and sociology
to learn about computational approaches and appli-
cations, e.g., computational linguistics, biological
modeling, social networks. Authors of journal ar-
ticles and books must write accurate surveys of pre-
vious work, ranging from short summaries of related
research to in-depth historical notes.

Interdisciplinary review panels are often called
upon to review proposals in a wide range of areas,

some of which may be unfamiliar to panelists. Thus,
they must learn about a new discipline “on the fly”
in order to relate their own expertise to the proposal.

Our goal is to effectively serve these needs by
combining two currently available technologies: (1)
bibliometric lexical link mining that exploits the
structure of citations and relations among citations;
and (2) summarization techniques that exploit the
content of the material in both the citing and cited
papers.

It is generally agreed upon that manually written
abstracts are good summaries of individual papers.
More recently, Qazvinian and Radev (2008) argue
that citation texts are useful in creating a summary
of the important contributions of a research paper.
The citation text of a target paper is the set of sen-
tences in other technical papers that explicitly refer
to it (Elkiss et al., 2008a). However, Teufel (2005)
argues that using citation text directly is not suitable
for document summarization.

In this paper, we compare and contrast the use-
fulness of abstracts and of citation text in automati-
cally generating a technical survey on a given topic
from multiple research papers. The next section pro-
vides the background for this work, including the
primary features of a technical survey and also the
types of input that are used in our study (full pa-
pers, abstracts, and citation texts). Following this,
we describe related work and point out the advances
of our work over previous work. We then describe
how citation texts are used as a new input for multi-
document summarization to produce surveys of a
given technical area. We apply four different sum-
marization techniques to data in the ACL Anthol-
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ogy and evaluate our results using both automatic
(ROUGE) and human-mediated (nugget-based pyra-
mid) measures. We observe that, as expected, ab-
stracts are useful in survey creation, but, notably, we
also conclude that citation texts have crucial survey-
worthy information not present in (or at least, not
easily extractable from) abstracts. We further dis-
cover that abstracts are author-biased and thus com-
plementary to the broader perspective inherent in ci-
tation texts; these differences enable the use of a
range of different levels and types of information in
the survey—the extent of which is subject to survey
length restrictions (if any).

2 Background

Automatically creating technical surveys is sig-
nificantly distinct from that of traditional multi-
document summarization. Below we describe pri-
mary characteristics of a technical survey and we
present three types of input texts that we used for
the production of surveys.

2.1 Technical Survey

In the case of multi-document summarization, the
goal is to produce a readable presentation of mul-
tiple documents, whereas in the case of technical
survey creation, the goal is to convey the key fea-
tures of a particular field, basic underpinnings of the
field, early and late developments, important con-
tributions and findings, contradicting positions that
may reverse trends or start new sub-fields, and ba-
sic definitions and examples that enable rapid un-
derstanding of a field by non-experts.

A prototypical example of a technical survey is
that of “chapter notes,” i.e., short (50–500 word)
descriptions of sub-areas found at the end of chap-
ters of textbook, such as Jurafsky and Martin (2008).
One might imagine producing such descriptions au-
tomatically, then hand-editing them and refining
them for use in an actual textbook.

We conducted a human analysis of these chapter
notes that revealed a set of conventions, an outline
of which is provided here (with example sentences
in italics):

1. Introductory/opening statement: The earliest
computational use of X was in Y, considered by
many to be the foundational work in this area.

2. Definitional follow up: X is def ined as Y.

3. Elaboration of definition (e.g., with an exam-
ple): Most early algorithms were based on Z.

4. Deeper elaboration, e.g., pointing out issues
with initial approaches: Unfortunately, this
model seems to be wrong.

5. Contrasting definition: Algorithms since then...

6. Introduction of additional specific instances /
historical background with citations: Two clas-
sic approaches are described in Q.

7. References to other summaries: R provides a
comprehensive guide to the details behind X.

The notion of text level categories or zoning
of technical papers—related to the survey compo-
nents enumerated above—has been investigated pre-
viously in the work of Nanba and Kan (2004b) and
Teufel (2002). These earlier works focused on the
analysis of scientific papers based on their rhetori-
cal structure and on determining the portions of pa-
pers that contain new results, comparisons to ear-
lier work, etc. The work described in this paper fo-
cuses on the synthesis of technical surveys based on
knowledge gleaned from rhetorical structure not un-
like that of the work of these earlier researchers, but
perhaps guided by structural patterns along the lines
of the conventions listed above.

Although our current approach to survey creation
does not yet incorporate a fully pattern-based com-
ponent, our ultimate objective is to apply these pat-
terns to guide the creation and refinement of the final
output. As a first step toward this goal, we use cita-
tion texts (closest in structure to the patterns iden-
tified by convention 7 above) to pick out the most
important content for survey creation.

2.2 Full papers, abstracts, and citation texts

Published research on a particular topic can be sum-
marized from two different kinds of sources: (1)
where an author describes her own work and (2)
where others describe an author’s work (usually in
relation to their own work). The author’s descrip-
tion of her own work can be found in her paper. How
others perceive her work is spread across other pa-
pers that cite her work. We will refer to the set of
sentences that explicitly mention a target paper Y as
the citation text of Y.
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Traditionally, technical survey generation has
been tackled by summarizing a set of research pa-
pers pertaining to the topic. However, individual re-
search papers usually come with manually-created
“summaries”—their abstracts. The abstract of a pa-
per may have sentences that set the context, state the
problem statement, mention how the problem is ap-
proached, and the bottom-line results—all in 200 to
500 words. Thus, using only the abstracts (instead
of full papers) as input to a summarization system is
worth exploring.

Whereas the abstract of a paper presents what the
authors think to be the important contributions of a
paper, the citation text of a paper captures what oth-
ers in the field perceive as the contributions of the
paper. The two perspectives are expected to have
some overlap in their content, but the citation text
also contains additional information not found in ab-
stracts (Elkiss et al., 2008a). For example, how a
particular methodology (described in one paper) was
combined with another (described in a different pa-
per) to overcome some of the drawbacks of each.
A citation text is also an indicator of what contri-
butions described in a paper were more influential
over time. Another distinguishing feature of citation
texts in contrast to abstracts is that a citation text
tends to have a certain amount of redundant informa-
tion. This is because multiple papers may describe
the same contributions of a target paper. This redun-
dancy can be exploited to determine the important
contributions of the target paper.

Our goal is to test the hypothesis that an ef-
fective technical survey will reflect information on
research not only from the perspective of its au-
thors but also from the perspective of others who
use/commend/discredit/add to it. Before describ-
ing our experiments with technical papers, abstracts,
and citation texts, we first summarize relevant prior
work that used these sources of information as input.

3 Related work

Previous work has focused on the analysis of cita-
tion and collaboration networks (Teufel et al., 2006;
Newman, 2001) and scientific article summarization
(Teufel and Moens, 2002). Bradshaw (2003) used
citation texts to determine the content of articles and
improve the results of a search engine. Citation

texts have also been used to create summaries of sin-
gle scientific articles in Qazvinian and Radev (2008)
and Mei and Zhai (2008). However, there is no pre-
vious work that uses the text of the citations to pro-
duce a multi-document survey of scientific articles.
Furthermore, there is no study contrasting the qual-
ity of surveys generated from citation summaries—
both automatically and manually produced—to sur-
veys generated from other forms of input such as the
abstracts or full texts of the source articles.

Nanba and Okumura (1999) discuss citation cate-
gorization to support a system for writing a survey.
Nanba et al. (2004a) automatically categorize cita-
tion sentences into three groups using pre-defined
phrase-based rules. Based on this categorization a
survey generation tool is introduced in Nanba et al.
(2004b). They report that co-citation (where both
papers are cited by many other papers) implies sim-
ilarity by showing that the textual similarity of co-
cited papers is proportional to the proximity of their
citations in the citing article.

Elkiss et al. (2008b) conducted several exper-
iments on a set of 2,497 articles from the free
PubMed Central (PMC) repository.1 Results from
this experiment confirmed that the cohesion of a ci-
tation text of an article is consistently higher than
the that of its abstract. They also concluded that ci-
tation texts contain additional information are more
focused than abstracts.

Nakov et al. (2004) use sentences surrounding ci-
tations to create training and testing data for seman-
tic analysis, synonym set creation, database cura-
tion, document summarization, and information re-
trieval. Kan et al. (2002) use annotated bibliogra-
phies to cover certain aspects of summarization and
suggest using metadata and critical document fea-
tures as well as the prominent content-based features
to summarize documents. Kupiec et al. (1995) use a
statistical method and show how extracts can be used
to create summaries but use no annotated metadata
in summarization.

Siddharthan and Teufel (2007) describe a new
reference task and show high human agreement as
well as an improvement in the performance of ar-
gumentative zoning (Teufel, 2005). In argumenta-
tive zoning—a rhetorical classification task—seven

1http://www.pubmedcentral.gov
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classes (Own, Other, Background, Textual, Aim,
Basis, and Contrast) are used to label sentences ac-
cording to their role in the author’s argument.

Our aim is not only to determine the utility of cita-
tion texts for survey creation, but also to examine the
quality distinctions between this form of input and
others such as abstracts and full texts—comparing
the results to human-generated surveys using both
automatic and nugget-based pyramid evaluation
(Lin and Demner-Fushman, 2006; Nenkova and Pas-
sonneau, 2004; Lin, 2004).

4 Summarization systems

We used four summarization systems for our
survey-creation approach: Trimmer, LexRank, C-
LexRank, and C-RR. Trimmer is a syntactically-
motivated parse-and-trim approach. LexRank is a
graph-based similarity approach. C-LexRank and C-
RR use graph clustering (‘C’ stands for clustering).
We describe each of these, in turn, below.

4.1 Trimmer

Trimmer is a sentence-compression tool that extends
the scope of an extractive summarization system by
generating multiple alternative sentence compres-
sions of the most important sentences in target doc-
uments (Zajic et al., 2007). Trimmer compressions
are generated by applying linguistically-motivated
rules to mask syntactic components of a parse of a
source sentence. The rules can be applied iteratively
to compress sentences below a configurable length
threshold, or can be applied in all combinations to
generate the full space of compressions.

Trimmer can leverage the output of any con-
stituency parser that uses the Penn Treebank con-
ventions. At present, the Stanford Parser (Klein and
Manning, 2003) is used. The set of compressions
is ranked according to a set of features that may in-
clude metadata about the source sentences, details of
the compression process that generated the compres-
sion, and externally calculated features of the com-
pression.

Summaries are constructed from the highest scor-
ing compressions, using the metadata and maximal
marginal relevance (Carbonell and Goldstein, 1998)
to avoid redundancy and over-representation of a
single source.

4.2 LexRank

We also used LexRank (Erkan and Radev, 2004), a
state-of-the-art multidocument summarization sys-
tem, to generate summaries. LexRank first builds a
graph of all the candidate sentences. Two candidate
sentences are connected with an edge if the similar-
ity between them is above a threshold. We used co-
sine as the similarity metric with a threshold of 0.15.
Once the network is built, the system finds the most
central sentences by performing a random walk on
the graph.

The salience of a node is recursively defined on
the salience of adjacent nodes. This is similar to
the concept of prestige in social networks, where the
prestige of a person is dependent on the prestige of
the people he/she knows. However, since random
walk may get caught in cycles or in disconnected
components, we reserve a low probability to jump
to random nodes instead of neighbors (a technique
suggested by Langville and Meyer (2006)).

Note also that unlike the original PageRank
method, the graph of sentences is undirected. This
updated measure of sentence salience is called as
LexRank. The sentences with the highest LexRank
scores form the summary.

4.3 Cluster Summarizers: C-LexRank, C-RR

Two clustering methods proposed by Qazvinian and
Radev (2008)—C-RR and C-LexRank—were used
to create summaries. Both create a fully connected
network in which nodes are sentences and edges are
cosine similarities. A cutoff value of 0.1 is applied
to prune the graph and make a binary network. The
largest connected component of the network is then
extracted and clustered.

Both of the mentioned summarizers cluster the
network similarly but use different approaches to se-
lect sentences from different communities. In C-
RR sentences are picked from different clusters in
a round robin (RR) fashion. C-LexRank first calcu-
lates LexRank within each cluster to find the most
salient sentences of each community. Then it picks
the most salient sentence of each cluster, and then
the second most salient and so forth until the sum-
mary length limit is reached.
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Most of work in QA and paraphrasing focused on folding paraphrasing knowledge into question analyzer or answer
locator Rinaldi et al, 2003; Tomuro, 2003. In addition, number of researchers have built systems to take reading
comprehension examinations designed to evaluate children’s reading levels Charniak et al, 2000; Hirschman et al,
1999; Ng et al, 2000; Riloff and Thelen, 2000; Wang et al, 2000. so-called “ definition ” or “ other ”
questions at recent TREC evalua - tions Voorhees, 2005 serve as good examples. To better facilitate user
information needs, recent trends in QA research have shifted towards complex, context-based, and interactive
question answering Voorhees, 2001; Small et al, 2003; Harabagiu et al, 2005. [And so on.]

Table 1: First few sentences of the QA citation texts survey generated by Trimmer.

5 Data

The ACL Anthology is a collection of papers from
the Computational Linguistics journal, and proceed-
ings of ACL conferences and workshops. It has
almost 11,000 papers. To produce the ACL An-
thology Network (AAN), Joseph and Radev (2007)
manually parsed the references before automatically
compiling the network metadata, and generating ci-
tation and author collaboration networks. The AAN
includes all citation and collaboration data within
the ACL papers, with the citation network consist-
ing of 11,773 nodes and 38,765 directed edges.

Our evaluation experiments are on a set of papers
in the research area of Question Answering (QA)
and another set of papers on Dependency parsing
(DP). The two sets of papers were compiled by se-
lecting all the papers in AAN that had the words
Question Answering and Dependency Parsing, re-
spectively, in the title and the content. There were
10 papers in the QA set and 16 papers in the DP set.
We also compiled the citation texts for the 10 QA
papers and the citation texts for the 16 DP papers.

6 Experiments

We automatically generated surveys for both QA
and DP from three different types of documents: (1)
full papers from the QA and DP sets—QA and DP
full papers (PA), (2) only the abstracts of the QA
and DP papers—QA and DP abstracts (AB), and
(3) the citation texts corresponding to the QA and
DP papers—QA and DP citations texts (CT).

We generated twenty four (4x3x2) surveys,
each of length 250 words, by applying Trimmer,
LexRank, C-LexRank and C-RR on the three data
types (citation texts, abstracts, and full papers) for
both QA and DP. (Table 1 shows a fragment of one
of the surveys automatically generated from QA ci-

tation texts.) We created six (3x2) additional 250-
word surveys by randomly choosing sentences from
the citation texts, abstracts, and full papers of QA
and DP. We will refer to them as random surveys.

6.1 Evaluation

Our goal was to determine if citation texts do in-
deed have useful information that one will want to
put in a survey and if so, how much of this infor-
mation is not available in the original papers and
their abstracts. For this we evaluated each of the
automatically generated surveys using two separate
approaches: nugget-based pyramid evaluation and
ROUGE (described in the two subsections below).

Two sets of gold standard data were manually cre-
ated from the QA and DP citation texts and abstracts,
respectively:2 (1) We asked two impartial judges to
identify important nuggets of information worth in-
cluding in a survey. (2) We asked four fluent speak-
ers of English to create 250-word surveys of the
datasets. Then we determined how well the differ-
ent automatically generated surveys perform against
these gold standards. If the citation texts have only
redundant information with respect to the abstracts
and original papers, then the surveys of citation texts
will not perform better than others.

6.1.1 Nugget-Based Pyramid Evaluation
For our first approach we used a nugget-based

evaluation methodology (Lin and Demner-Fushman,
2006; Nenkova and Passonneau, 2004; Hildebrandt
et al., 2004; Voorhees, 2003). We asked three impar-
tial annotators (knowledgeable in NLP but not affil-
iated with the project) to review the citation texts
and/or abstract sets for each of the papers in the QA
and DP sets and manually extract prioritized lists

2Creating gold standard data from complete papers is fairly
arduous, and was not pursued.
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of 2–8 “nuggets,” or main contributions, supplied
by each paper. Each nugget was assigned a weight
based on the frequency with which it was listed by
annotators as well as the priority it was assigned
in each case. Our automatically generated surveys
were then scored based on the number and weight
of the nuggets that they covered. This evaluation ap-
proach is similar to the one adopted by Qazvinian
and Radev (2008), but adapted here for use in the
multi-document case.

The annotators had two distinct tasks for the QA
set, and one for the DP set: (1) extract nuggets for
each of the 10 QA papers, based only on the citation
texts for those papers; (2) extract nuggets for each
of the 10 QA papers, based only on the abstracts of
those papers; and (3) extract nuggets for each of the
16 DP papers, based only on the citation texts for
those papers.3

We obtained a weight for each nugget by revers-
ing its priority out of 8 (e.g., a nugget listed with
priority 1 was assigned a weight of 8) and summing
the weights over each listing of that nugget.4

To evaluate a given survey, we counted the num-
ber and weight of nuggets that it covered. Nuggets
were detected via the combined use of annotator-
provided regular expressions and careful human re-
view. Recall was calculated by dividing the com-
bined weight of covered nuggets by the combined
weight of all nuggets in the nugget set. Precision
was calculated by dividing the number of distinct
nuggets covered in a survey by the number of sen-
tences constituting that survey, with a cap of 1. F-
measure, the weighted harmonic mean of precision
and recall, was calculated with a beta value of 3 in
order to assign the greatest weight to recall. Recall
is favored because it rewards surveys that include
highly weighted (important) facts, rather than just a

3We first experimented using only the QA set. Then to show
that the results apply to other datasets, we asked human anno-
tators for gold standard data on the DP citation texts. Addi-
tional experiments on DP abstracts were not pursued because
this would have required additional human annotation effort to
establish a point we had already made with the QA set, i.e., that
abstracts are useful for survey creation.

4Results obtained with other weighting schemes that ig-
nored priority ratings and multiple mentions of a nugget by a
single annotator showed the same trends as the ones shown by
the selected weighting scheme, but the latter was a stronger dis-
tinguisher among the four systems.

Human Performance: Pyramid F-measure
Human1 Human2 Human3 Human4 Average

Input: QA citation surveys
QA–CT nuggets 0.524 0.711 0.468 0.695 0.599
QA–AB nuggets 0.495 0.606 0.423 0.608 0.533

Input: QA abstract surveys
QA–CT nuggets 0.542 0.675 0.581 0.669 0.617
QA–AB nuggets 0.646 0.841 0.673 0.790 0.738

Input: DP citation surveys
DP–CT nuggets 0.245 0.475 0.378 0.555 0.413

Table 2: Pyramid F-measure scores of human-created
surveys of QA and DP data. The surveys are evaluated
using nuggets drawn from QA citation texts (QA–CT),
QA abstracts (QA–AB), and DP citation texts (DP–CT).

great number of facts.
Table 2 gives the F-measure values of the 250-

word surveys manually generated by humans. The
surveys were evaluated using the nuggets drawn
from the QA citation texts, QA abstracts, and DP ci-
tation texts. The average of their scores (listed in the
rightmost column) may be considered a good score
to aim for by the automatic summarization methods.

Table 3 gives the F-measure values of the surveys
generated by the four automatic summarizers, evalu-
ated using nuggets drawn from the QA citation texts,
QA abstracts, and DP citation texts. The table also
includes results for the baseline random summaries.

When we used the nuggets from the abstracts
set for evaluation, the surveys created from ab-
stracts scored higher than the corresponding surveys
created from citation texts and papers. Further, the
best surveys generated from citation texts outscored
the best surveys generated from papers. When we
used the nuggets from citation sets for evaluation,
the best automatic surveys generated from citation
texts outperform those generated from abstracts and
full papers. All these pyramid results demonstrate
that citation texts can contain useful information that
is not available in the abstracts or the original papers,
and that abstracts can contain useful information that
is not available in the citation texts or full papers.

Among the various automatic summarizers, Trim-
mer performed best at this task, in two cases ex-
ceeding the average human performance. Note also
that the random summarizer outscored the automatic
summarizers in cases where the nuggets were taken
from a source different from that used to generate
the survey. However, one or two summarizers still
tended to do well. This indicates a difficulty in ex-
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System Performance: Pyramid F-measure
Random C-LexRank C-RR LexRank Trimmer

Input: QA citation surveys
QA–CT nuggets 0.321 0.434 0.268 0.295 0.616
QA–AB nuggets 0.305 0.388 0.349 0.320 0.543

Input: QA abstract surveys
QA–CT nuggets 0.452 0.383 0.480 0.441 0.404
QA–AB nuggets 0.623 0.484 0.574 0.606 0.622

Input: QA full paper surveys
QA–CT nuggets 0.239 0.446 0.299 0.190 0.199
QA–AB nuggets 0.294 0.520 0.387 0.301 0.290

Input: DP citation surveys
DP–CT nuggets 0.219 0.231 0.170 0.372 0.136

Input: DP abstract surveys
DP–CT nuggets 0.321 0.301 0.263 0.311 0.312

Input: DP full paper surveys
DP–CT nuggets 0.032 0.000 0.144 * 0.280

Table 3: Pyramid F-measure scores of automatic surveys of QA and DP data. The surveys are evaluated using nuggets
drawn from QA citation texts (QA–CT), QA abstracts (QA–AB), and DP citation texts (DP–CT).
* LexRank is computationally intensive and so was not run on the DP-PA dataset (about 4000 sentences).

Human Performance: ROUGE-2
human1 human2 human3 human4 average

Input: QA citation surveys
QA–CT refs. 0.1807 0.1956 0.0756 0.2019 0.1635
QA–AB refs. 0.1116 0.1399 0.0711 0.1576 0.1201

Input: QA abstract surveys
QA–CT refs. 0.1315 0.1104 0.1216 0.1151 0.1197
QA-AB refs. 0.2648 0.1977 0.1802 0.2544 0.2243

Input: DP citation surveys
DP–CT refs. 0.1550 0.1259 0.1200 0.1654 0.1416

Table 4: ROUGE-2 scores obtained for each of the manu-
ally created surveys by using the other three as reference.
ROUGE-1 and ROUGE-L followed similar patterns.

tracting the overlapping survey-worthy information
across the two sources.

6.1.2 ROUGE evaluation
Table 4 presents ROUGE scores (Lin, 2004) of

each of human-generated 250-word surveys against
each other. The average (last column) is what the au-
tomatic surveys can aim for. We then evaluated each
of the random surveys and those generated by the
four summarization systems against the references.
Table 5 lists ROUGE scores of surveys when the
manually created 250-word survey of the QA cita-
tion texts, survey of the QA abstracts, and the survey
of the DP citation texts, were used as gold standard.

When we use manually created citation text
surveys as reference, then the surveys gener-
ated from citation texts obtained significantly bet-

ter ROUGE scores than the surveys generated from
abstracts and full papers (p < 0.05) [RESULT 1].
This shows that crucial survey-worthy information
present in citation texts is not available, or hard to
extract, from abstracts and papers alone. Further,
the surveys generated from abstracts performed sig-
nificantly better than those generated from the full
papers (p < 0.05) [RESULT 2]. This shows that ab-
stracts and citation texts are generally denser in sur-
vey worthy information than full papers.

When we use manually created abstract sur-
veys as reference, then the surveys generated
from abstracts obtained significantly better ROUGE
scores than the surveys generated from citation texts
and full papers (p< 0.05) [RESULT 3]. Further, and
more importantly, the surveys generated from cita-
tion texts performed significantly better than those
generated from the full papers (p < 0.05) [RESULT

4]. Again, this shows that abstracts and citation texts
are richer in survey-worthy information. These re-
sults also show that abstracts of papers and citation
texts have some overlapping information (RESULT

2 and RESULT 4), but they also have a signifi-
cant amount of unique survey-worthy information
(RESULT 1 and RESULT 3).

Among the automatic summarizers, C-LexRank
and LexRank perform best. This is unlike the results
found through the nugget-evaluation method, where
Trimmer performed best. This suggests that Trim-
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System Performance: ROUGE-2
Random C-LexRank C-RR LexRank Trimmer

Input: QA citation surveys
QA–CT refs. 0.11561 0.17013 0.09522 0.13501 0.16984
QA–AB refs. 0.08264 0.11653 0.07600 0.07013 0.10336

Input: QA abstract surveys
QA–CT refs. 0.04516 0.05892 0.06149 0.05369 0.04114
QA–AB refs. 0.12085 0.13634 0.12190 0.20311 0.13357

Input: QA full paper surveys
QA–CT refs. 0.03042 0.03606 0.03599 0.28244 0.03986
QA–AB refs. 0.04621 0.05901 0.04976 0.10540 0.07505

Input: DP citation surveys
DP–CT refs. 0.10690 0.13164 0.08748 0.04901 0.10052

Input: DP abstract surveys
DP–CT refs. 0.07027 0.07321 0.05318 0.20311 0.07176

Input: DP full paper surveys
DP–CT refs. 0.03770 0.02511 0.03433 * 0.04554

Table 5: ROUGE-2 scores of automatic surveys of QA and DP data. The surveys are evaluated by using human
references created from QA citation texts (QA–CT), QA abstracts (QA–AB), and DP citation texts (DP–CT). These
results are obtained after Jack-knifing the human references so that the values can be compared to those in Table 4.
* LexRank is computationally intensive and so was not run on the DP full papers set (about 4000 sentences).

mer is better at identifying more useful nuggets of
information, but C-LexRank and LexRank are bet-
ter at producing unigrams and bigrams expected in
a survey. To some extent this may be due to the fact
that Trimmer uses smaller (trimmed) fragments of
source sentences in its summaries.

7 Conclusion

In this paper, we investigated the usefulness of di-
rectly summarizing citation texts (sentences that cite
other papers) in the automatic creation of technical
surveys. We generated surveys of a set of Ques-
tion Answering (QA) and Dependency Parsing (DP)
papers, their abstracts, and their citation texts us-
ing four state-of-the-art summarization systems (C-
LexRank, C-RR, LexRank, and Trimmer). We then
used two separate approaches, nugget-based pyra-
mid and ROUGE, to evaluate the surveys. The re-
sults from both approaches and all four summa-
rization systems show that both citation texts and
abstracts have unique survey-worthy information.
These results also demonstrate that, unlike single
document summarization (where citing sentences
have been suggested to be inappropriate (Teufel
et al., 2006)), multidocument summarization—
especially technical survey creation—benefits con-
siderably from citation texts.

We next plan to generate surveys using both cita-

tion texts and abstracts together as input. Given the
overlapping content of abstracts and citation texts,
discovered in the current study, it is clear that re-
dundancy detection will be an integral component of
this future work. Creating readily consumable sur-
veys is a hard task, especially when using only raw
text and simple summarization techniques. There-
fore we intend to combine these summarization and
bibliometric techniques with suitable visualization
methods towards the creation of iterative technical
survey tools—systems that present surveys and bib-
liometric links in a visually convenient manner and
which incorporate user feedback to produce even
better surveys.
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Abstract

We describe a statistical model over linguis-
tic areas and phylogeny. Our model recov-
ers known areas and identifies a plausible hi-
erarchy of areal features. The use of areas
improves genetic reconstruction of languages
both qualitatively and quantitatively according
to a variety of metrics. We model linguistic
areas by a Pitman-Yor process and linguistic
phylogeny by Kingman’s coalescent.

1 Introduction
Why are some languages more alike than others?
This question is one of the most central issues in his-
torical linguistics. Typically, one of three answers
is given (Aikhenvald and Dixon, 2001; Campbell,
2006). First, the languages may be related “genet-
ically.” That is, they may have all derived from a
common ancestor language. Second, the similarities
may be due to chance. Some language properties
are simply more common than others, which is of-
ten attributed to be mostly due to linguistic univer-
sals (Greenberg, 1963). Third, the languages may
be related areally. Languages that occupy the same
geographic area often exhibit similar characteristics,
not due to genetic relatedness, but due to sharing.
Regions (and the languages contained within them)
that exhibit sharing are called linguistic areas and
the features that are shared are called areal features.

Much is not understood or agreed upon in the field
of areal linguistics. Different linguists favor differ-
ent defintions of what it means to be a linguistic area
(are two languages sufficient to describe an area or
do you need three (Thomason, 2001; Katz, 1975)?),

what areal features are (is there a linear ordering of
“borrowability” (Katz, 1975; Curnow, 2001) or is
that too prescriptive?), and what causes sharing to
take place (does social status or number of speakers
play a role (Thomason, 2001)?).

In this paper, we attempt to provide a statistical
answer to some of these questions. In particular,
we develop a Bayesian model of typology that al-
lows for, but does not force, the existence of linguis-
tic areas. Our model also allows for, but does not
force, preference for some feature to be shared are-
ally. When applied to a large typological database
of linguistic features (Haspelmath et al., 2005), we
find that it discovers linguistic areas that are well
documented in the literature (see Campbell (2005)
for an overview), and a small preference for cer-
tain features to be shared areally. This latter agrees,
to a lesser degree, with some of the published hi-
erarchies of borrowability (Curnow, 2001). Finally,
we show that reconstructing language family trees is
significantly aided by knowledge of areal features.
We note that Warnow et al. (2005) have indepen-
dently proposed a model for phonological change in
Indo-European (based on the Dyen dataset (Dyen et
al., 1992)) that includes notions of borrowing. Our
model is different in that we (a) base our model on
typological features rather than just lexical patterns
and (b) we explicitly represent language areas, not
just one-time borrowing phenomena.
2 Background
We describe (in Section 3) a non-parametric, hier-
archical Bayesian model for finding linguistic areas
and areal features. In this section, we provide nec-
essary background—both linguistic and statistical—
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for understanding our model.

2.1 Areal Linguistics
Areal effects on linguistic typology have been stud-
ied since, at least, the late 1920s by Trubetzkoy,
though the idea of tracing family trees for languages
goes back to the mid 1800s and the comparative
study of historical linguistics dates back, perhaps to
Giraldus Cambrenis in 1194 (Campbell, In press).
A recent article provides a short introduction to both
the issues that surround areal linguistics, as well as
an enumeration of many of the known language ar-
eas (Campbell, 2005). A fairly wide, modern treat-
ment of the issues surrounding areal diffusion is also
given by essays in a recent book edited by Aikhen-
vald and Dixon (2001). The essays in this book pro-
vide a good introduction to the issues in the field.
Campbell (2006) provides a critical survey of these
and other hypotheses relating to areal linguistics.

There are several issues which are basic to the
study of areal linguistics (these are copied almost
directly from Campbell (2006)). Must a linguistic
area comprise more than two languages? Must it
comprise more than one language family? Is a sin-
gle trait sufficient to define an area? How “nearby”
must languages in an area be to one another? Are
some feature more easily borrowed that others?

Despite these formal definitional issues of what
constitutes a language area and areal features, most
historical linguists seem to believe that areal effects
play some role in the change of languages.

2.1.1 Established Linguistic Areas
Below, we list some of the well-known linguistic

areas; Campbell (2005) provides are more complete
listing together with example areal features for these
areas. For each area, we list associated languages:
The Balkans: Albanian, Bulgarian, Greek, Mace-
donian, Rumanian and Serbo-Croatian. (Sometimes:
Romani and Turkish)
South Asian: Languages belonging to the Dravid-
ian, Indo-Aryan, Munda, Tibeto-Burman families.
Meso-America: Cuitlatec, Huave, Mayan, Mixe-
Zoquean, Nahua, Otomanguean, Tarascan, Tequist-
latecan, Totonacan and Xincan.
North-west America: Alsea, Chimakuan, Coosan,
Eyak, Haida, Kalapuyan, Lower Chinook, Salishan,
Takelman, Tlingit, Tsimshian and Wakashan.
The Baltic: Baltic languages, Baltic German, and

Finnic languages (especially Estonian and Livo-
nian). (Sometimes many more are included, such as:
Belorussian, Lavian, Lithuanian, Norwegian, Old
Prussian, Polish, Romani, Russian, Ukranian.)
Ethiopia: Afar, Amharic, Anyuak, Awngi, Beja,
Ge’ez, Gumuz, Janjero, Kefa, Sidamo, Somali, Ti-
gre, Tigrinya and Wellamo.

Needless to say, the exact definition and extent of
the actual areas is up to significant debate. More-
over, claims have been made in favor of many lin-
guistic areas not defined above. For instance, Dixon
(2001) presents arguments for several Australian lin-
guistic areas and Matisoff (2001) defines a South-
East Asian language area. Finally, although “folk
lore” is in favor of identifying a linguistic area in-
cluding English, French and certain Norse languages
(Norwegian, Swedish, Low Dutch, High German,
etc.), there are counter-arguments to this position
(Thomason, 2001) (see especially Case Study 9.8).

2.1.2 Linguistic Features
Identifying which linguistic features are most eas-

ily shared “areally” is a long standing problem in
contact linguistics. Here we briefly review some of
the major claims. Much of this overview is adoped
from the summary given by Curnow (2001).

Haugen (1950) considers only borrowability as
far as the lexicon is concerned. He provided evi-
dence that nouns are the easiest, followed by verbs,
adjectives, adverbs, prepositions, etc. Ross (1988)
corroborates Haugen’s analysis and deepens it to
cover morphology, syntax and phonology. He pro-
poses the following hierarchy of borrowability (eas-
iest items coming first): nouns > verbs > adjectives
> syntax > non-bound function words > bound
morphemes > phonemes. Coming from a “con-
straints” perspective, Moravcsik (1978) suggests
that: lexical items must be borrowed before lexi-
cal properties; inflected words before bound mor-
phemes; verbal items can never be borrowed; etc.

Curnow (2001) argues that coming up with a rea-
sonable hierarchy of borrowability is that “we may
never be able to develop such constraints.” Never-
theless, he divides the space of borrowable features
into 15 categories and discusses the evidence sup-
porting each of these categories, including: phonet-
ics (rare), phonology (common), lexical (very com-
mon), interjections and discourse markers (com-
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mon), free grammatical forms (occasional), bound
grammatical forms (rare), position of morphology
(rare), syntactic frames (rare), clause-internal syntax
(common), between-clause syntax (occasional).

2.2 Non-parametric Bayesian Models
We treat the problem of understanding areal linguis-
tics as a statistical question, based on a database of
typological information. Due to the issues raised in
the previous section, we do not want to commit to
the existence of a particular number of linguistic ar-
eas, or particular sizes thereof. (Indeed, we do not
even want to commit to the existence of any linguis-
tic areas.) However, we will need to “unify” the
languages that fall into a linguistic area (if such a
thing exists) by means of some statistical param-
eter. Such problems have been studied under the
name non-parametric models. The idea behind non-
parametric models is that one does not commit a pri-
ori to a particularly number of parameters. Instead,
we allow the data to dictate how many parameters
there are. In Bayesian modeling, non-parametric
distributions are typically used as priors; see Jor-
dan (2005) or Ghahramani (2005) for overviews. In
our model, we use two different non-parametric pri-
ors: the Pitman-Yor process (for modeling linguistic
areas) and Kingman’s coalescent (for modeling lin-
guistic phylogeny), both described below.

2.2.1 The Pitman-Yor Process
One particular example of a non-parametric prior

is the Pitman-Yor process (Pitman and Yor, 1997),
which can be seen as an extension to the better-
known Dirichlet process (Ferguson, 1974). The
Pitman-Yor process can be understood as a particu-
lar example of a Chinese Restaurant process (CRP)
(Pitman, 2002). The idea in all CRPs is that there
exists a restaurant with an infinite number of ta-
bles. Customers come into the restaurant and have
to choose a table at which to sit.

The Pitman-Yor process is described by three pa-
rameters: a base rate α, a discount parameter d and
a mean distribution G0. These combine to describe
a process denoted by PY(α, d,G0). The parameters
α and d must satisfy: 0 ≤ d < 1 and α > −d. In
the CRP analogy, the model works as follows. The
first customer comes in and sits at any table. After
N customers have come in and seated themselves
(at a total of K tables), the N th customer arrives. In

the Pitman-Yor process, the N th customer sits at a
new table with probability proportional to α + Kd
and sits at a previously occupied table k with proba-
bility proportional to #k − d, where #k is the num-
ber of customers already seated at table k. Finally,
with each table k we associate a parameter θk, with
each θk drawn independently from G0. An impor-
tant property of the Pitman-Yor process is that draws
from it are exchangable: perhaps counterintuitively,
the distribution does not care about customer order.

The Pitman-Yor process induces a power-law dis-
tribution on the number of singleton tables (i.e., the
number of tables that have only one customer). This
can be seen by noticing two things. In general,
the number of singleton tables grows as O(αNd).
When d = 0, we obtain a Dirichlet process with the
number of singleton tables growing as O(α logN).

2.2.2 Kingman’s Coalescent
Kingman’s coalescent is a standard model in pop-

ulation genetics describing the common genealogy
(ancestral tree) of a set of individuals (Kingman,
1982b; Kingman, 1982a). In its full form it is a dis-
tribution over the genealogy of a countable set.

Consider the genealogy of n individuals alive at
the present time t = 0. We can trace their ances-
try backwards in time to the distant past t = −∞.
Assume each individual has one parent (in genet-
ics, haploid organisms), and therefore genealogies
of [n] = {1, . . . , n} form a directed forest. King-
man’s n-coalescent is simply a distribution over ge-
nealogies of n individuals. To describe the Markov
process in its entirety, it is sufficient to describe
the jump process (i.e. the embedded, discrete-time,
Markov chain over partitions) and the distribution
over coalescent times. In the n-coalescent, every
pair of lineages merges independently with rate 1,
with parents chosen uniformly at random from the
set of possible parents at the previous time step.

The n-coalescent has some interesting statistical
properties (Kingman, 1982b; Kingman, 1982a). The
marginal distribution over tree topologies is uni-
form and independent of the coalescent times. Sec-
ondly, it is infinitely exchangeable: given a geneal-
ogy drawn from an n-coalescent, the genealogy of
any m contemporary individuals alive at time t≤ 0
embedded within the genealogy is a draw from the
m-coalescent. Thus, taking n→∞, there is a distri-
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bution over genealogies of a countably infinite pop-
ulation for which the marginal distribution of the ge-
nealogy of any n individuals gives the n-coalescent.
Kingman called this the coalescent.

Teh et al. (2007) recently described efficient in-
ference algorithms for Kingman’s coalescent. They
applied the coalescent to the problem of recovering
linguistic phylogenies. The application was largely
successful—at least in comparison to alternative al-
gorithms that use the same data-. Unfortunately,
even in the results they present, one can see signif-
icant areal effects. For instance, in their Figure(3a),
Romanian is very near Albanian and Bulgarian. This
is likely an areal effect: specifically, an effect due to
the Balkan langauge area. We will revisit this issue
in our own experiments.
3 A Bayesian Model for Areal Linguistics
We will consider a data set consisting of N lan-
guages and F typological features. We denote the
value of feature f in language n as Xn,f . For sim-
plicity of exposition, we will assume two things: (1)
there is no unobserved data and (2) all features are
binary. In practice, for the data we use (described in
Section 4), neither of these is true. However, both
extensions are straightforward.

When we construct our model, we attempt to be
as neutral to the “areal linguistics” questions defined
in Section 2.1 as possible. We allow areas with only
two languages (though for brevity we do not present
them in the results). We allow areas with only one
family (though, again, do not present them). We are
generous with our notion of locality, allowing a ra-
dius of 1000 kilometers (though see Section 5.4 for
an analysis of the effect of radius).1 And we allow,
but do not enforce trait weights. All of this is ac-
complished through the construction of the model
and the choice of the model hyperparameters.

At a high-level, our model works as follows. Val-
ues Xn,f appear for one of two reasons: they are ei-
ther areally derived or genetically derived. A latent
variable Zn,f determines this. If it is derived areally,
then the value Xn,f is drawn from a latent variable

1An reader might worry about exchangeability: Our method
of making language centers and locations part of the Pitman-Yor
distribution ensures this is not an issue. An alternative would
be to use a location-sensitive process such as the kernel stick-
breaking process (Dunson and Park, 2007), though we do not
explore that here.

corresponding to the value preferences in the lan-
gauge area to which language n belongs. If it is de-
rived genetically, thenXn,f is drawn from a variable
corresponding to value preferences for the genetic
substrate to which language n belongs. The set of
areas, and the area to which a language belongs are
given by yet more latent variables. It is this aspect of
the model for which we use the Pitman-Yor process:
languages are customers, areas are tables and area
value preferences are the parameters of the tables.

3.1 The formal model
We assume that the value a feature takes for a par-
ticular language (i.e., the value of Xn,f ) can be ex-
plained either genetically or areally.2 We denote this
by a binary indicator variable Zn,f , where a value 1
means “areal” and a value 0 means “genetic.” We as-
sume that each Zn,f is drawn from a feature-specific
binomial parameter πf . By having the parameter
feature-specific, we express the fact that some fea-
tures may be more or less likely to be shared than
others. In other words, a high value of πf would
mean that feature f is easily shared areally, while a
low value would mean that feature f is hard to share.
Each language n has a known latitude/longitude `n.

We further assume that there are K linguistic ar-
eas, whereK is treated non-parametrically by means
of the Pitman-Yor process. Note that in our context,
a linguistic area may contain only one language,
which would technically not be allowed according
to the linguistic definition. When a language belongs
to a singleton area, we interpret this to mean that it
does not belong to any language area.

Each language area k (including the singleton ar-
eas) has a set of F associated parameters φk,f , where
φk,f is the probability that feature f is “on” in area k.
It also has a “central location” given by a longitude
and latitude denoted ck. We only allow languages
to belong to areas that fall within a given radius R
of them (distances computed according to geodesic
distance). This accounts for the “geographical” con-
straints on language areas. We denote the area to
which language n belongs as an.

We assume that each language belongs to a “fam-
ily tree.” We denote the parent of language n in the

2As mentioned in the introduction, (at least) one more option
is possible: chance. We treat “chance” as noise and model it in
the data generation process, not as an alternative “source.”
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Xn,f ∼
{
Bin(θpn,f ) if Zn,f = 0
Bin(φan,f ) if Zn,f = 1 feature values are derived genetically or areally

Zn,f ∼ Bin(πf ) feature source is a biased coin, parameterized per feature
`n ∼ Ball(can , R) language position is uniform within a ball around area center, radius R
πf ∼ Bet(1, 1) bias for a feature being genetic/areal is uniform

(p, θ) ∼ Coalescent(π0,m0) language hierarchy and genetic traits are drawn from a Coalescent
(a, 〈φ, c〉) ∼ PY(α0, d0,Bet(1, 1)× Uni) area features are drawn Beta and centers Uniformly across the globe

Figure 1: Full hierarchical Areal model; see Section 3.1 for a complete description.

family tree by pn. We associate with each node i in
the family tree and each feature f a parameter θi,f .
As in the areal case, θi,f is the probability that fea-
ture f is on for languages that descend from node i
in the family tree. We model genetic trees by King-
man’s coalescent with binomial mutation.

Finally, we put non-informative priors on all the
hyperparameters. Written hierarchically, our model
has the following shown in Figure 1. There, by
(p, θ) ∼ Coalescent(π0,m0), we mean that the tree
and parameters are given by a coalescent.

3.2 Inference
Inference in our model is mostly by Gibbs sam-
pling. Most of the distributions used are conju-
gate, so Gibbs sampling can be implemented effi-
ciently. The only exceptions are: (1) the coales-
cent for which we use the GreedyRate1 algorithm
described by Teh et al. (2007); (2) the area centers c,
for which we using a Metropolis-Hastings step. Our
proposal distribution is a Gaussian centered at the
previous center, with standard deviation of 5. Ex-
perimentally, this resulted in an acceptance rate of
about 50%.

In our implementation, we analytically integrate
out π and φ and sample only over Z, the coalescent
tree, and the area assignments. In some of our ex-
periments, we treat the family tree as given. In this
case, we also analytically integrate out the θ param-
eters and sample only over Z and area assignments.

4 Typological Data
The database on which we perform our analysis is
the World Atlas of Language Structures (henceforth,
WALS) (Haspelmath et al., 2005). The database
contains information about 2150 languages (sam-
pled from across the world). There are 139 typologi-
cal features in this database. The database is sparse:
only 16% of the possible language/feature pairs are
known. We use the version extracted and prepro-

cessed by Daumé III and Campbell (2007).
In WALS, languages a grouped into 38 language

families (including Indo-European, Afro-Asiatic,
Austronesian, Niger-Congo, etc.). Each of these lan-
guage families is grouped into a number of language
geni. The Indo-European family includes ten geni,
including: Germanic, Romance, Indic and Slavic.
The Austronesian family includes seventeen geni,
including: Borneo, Oceanic, Palauan and Sundic.
Overall, there are 275 geni represented in WALS.

We further preprocess the data as follows. For
the Indo-European subset (hence-forth, “IE”), we re-
move all languages with ≤ 10 known features and
then remove all features that appear in at most 1/4
of the languages. This leads to 73 languages and
87 features. For the whole-world subset, we remove
languages with ≤ 25 known features and then fea-
tures that appear in at most 1/10 of the languages.
This leads to 349 languages and 129 features.
5 Experiments
5.1 Identifying Language Areas
Our first experiment is aimed at discovering lan-
guage areas. We first focus on the IE family, and
then extend the analysis to all languages. In both
cases, we use a known family tree (for the IE ex-
periment, we use a tree given by the language genus
structure; for the whole-world experiment, we use a
tree given by the language family structure). We run
each experiment with five random restarts and 2000
iterations. We select the MAP configuration from
the combination of these runs.

In the IE experiment, the model identified the
areas shown in Figure 5.1. The best area identi-
fied by our model is the second one listed, which
clearly correlates highly with the Balkans. There
are two areas identified by our model (the first and
last) that include only Indic and Iranian languages.
While we are not aware of previous studies of these
as linguistic areas, they are not implausible given
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(Indic) Bhojpuri, Darai, Gujarati, Hindi, Kalami, Kashmiri,
Kumauni, Nepali, Panjabi, Shekhawati, Sindhi (Iranian) Or-
muri, Pashto
(Albanian) Albanian (Greek) Greek (Modern) (Indic) Romani
(Kalderash) (Romance) Romanian, Romansch (Scharans), Ro-
mansch (Sursilvan), Sardinian (Slavic) Bulgarian, Macedonian,
Serbian-Croatian, Slovak, Slovene, Sorbian
(Baltic) Latvian, Lithuanian (Germanic) Danish, Swedish
(Slavic) Polish, Russian
(Celtic) Irish (Germanic) English, German, Norwegian (Ro-
mance) French
(Indic) Prasuni, Urdu (Iranian) Persian, Tajik
Plus 46 non-areal languages

Figure 2: IE areas identified. Areas that consist of just
one genus are not listed, nor are areas with two languages.

(Mayan) Huastec, Jakaltek, Mam, Tzutujil (Mixe-Zoque)
Zoque (Copainalá) (Oto-Manguean) Mixtec (Chalcatongo),
Otomı́ (Mezquital) (Uto-Aztecan) Nahualtl (Tetelcingo), Pipil
(Baltic) Latvian, Lithuanian (Finnic) Estonian, Finnish
(Slavic) Polish, Russian, Ukranian
(Austro-Asiatic) Khasi (Dravidian) Telugu (IE) Bengali
(Sino-Tibetan) Bawm, Garo, Newari (Kathmandu)

Figure 3: A small subset of the world areas identified.

the history of the region. The fourth area identi-
fied by our model corresponds roughly to the de-
bated “English” area. Our area includes the req-
uisite French/English/German/Norwegian group, as
well as the somewhat surprising Irish. However, in
addition to being intuitively plausible, it is not hard
to find evidence in the literature for the contact re-
lationship between English and Irish (Sommerfelt,
1960).

In the whole-world experiment, the model identi-
fied too many linguistic areas to fit (39 in total that
contained at least two languages, and contained at
least two language families). In Figure 5.1, we de-
pict the areas found by our model that best corre-
spond to the areas described in Section 2.1.1. We
acknowledge that this gives a warped sense of the
quality of our model. Nevertheless, our model is
able to identify large parts of the the Meso-American
area, the Baltic area and the South Asian area. (It
also finds the Balkans, but since these languages
are all IE, we do not consider it a linguistic area in
this evaluation.) While our model does find areas
that match Meso-American and North-west Ameri-
can areas, neither is represented in its entirety (ac-
cording to the definition of these areas given in Sec-

Model Rand F-Sc Edit NVI
K-means 0.9149 0.0735 0.1856 0.5889
Pitman-Yor 0.9637 0.1871 0.6364 0.7998
Areal model 0.9825 0.2637 0.8295 0.9090

Table 1: Area identification scores for two baseline algo-
rithms (K-means and Pitman-Yor clustering) that do not
use hierarchical structure, and for the Areal model we
have presented. Higher is better and all differences are
statistically significant at the 95% level.

tion 2.1.1).
Despite the difficulty humans have in assigning

linguistic areas, In Table 1, we explicitly compare
the quality of the areal clusters found on the IE sub-
set. We compare against the most inclusive areal
lists from Section 2.1.1 for IE: the Balkans and the
Baltic. When there is overlap (eg., Romani appears
in both lists), we assigned it to the Balkans.

We compare our model with a flat Pitman-Yor
model that does not use the hierarchy. We also
compare to a baseline K-means algorithm. For K-
means, we ran with K ∈ {5, 10, 15, . . . , 80, 85}
and chose the value of K for each metric that did
best (giving an unfair advantage). Clustering per-
formance is measured on the Indo-European task
according to the Rand Index, F-score, Normalized
Edit Score (Pantel, 2003) and Normalized Variation
of Information (Meila, 2003). In these results, we
see that the Pitman-Yor process model dominates the
K-means model and the Areal model dominates the
Pitman-Yor model.

5.2 Identifying Areal Features
Our second experiment is an analysis of the features
that tend to be shared areally (as opposed to genet-
ically). For this experiment, we make use of the
whole-world version of the data, again with known
language family structure. We initialize a Gibbs
sampler from the MAP configuration found in Sec-
tion 5.1. We run the sampler for 1000 iterations and
take samples every ten steps.

From one particular sample, we can estimate a
posterior distribution over each πf . Due to con-
jugacy, we obtain a posterior distribution of πf ∼
Bet(1 +

∑
n Zn,f , 1 +

∑
n[1−Zn,f ]). The 1s come

from the prior. From this Beta distribution, we can
ask the question: what is the probability that a value
of πf drawn from this distribution will have value
< 0.5? If this value is high, then the feature is likely
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p(gen) #f Feature Category
.00 1 Tea
.73 19 Phonology
.73 9 Lexicon
.74 4 Nominal Categories / Numerals
.79 5 Simple Clauses / Predication
.80 5 Verbal Categories / Tense and Aspect
.87 8 Nominal Syntax
.87 8 Simple Clauses / Simple Clauses
.91 12 Nominal Categories / Articles and Pronouns
.94 17 Word Order
.99 10 Morphology
.99 6 Simple Clauses / Valence and Voice
.99 7 Complex Sentences
.99 7 Nominal Categories / Gender and Number
.99 5 Simple Clauses / Negation and Questions
1.0 1 Other / Clicks
1.0 2 Verbal Categories / Suppletion
1.0 9 Verbal Categories / Modality
1.0 4 Nominal Categories / Case

Table 2: Average probability of genetic for each feature
category and the number of features in that category.

to be a “genetic feature”; if it is low, then the feature
is likely to be an “areal feature.” We average these
probabilities across all 100 samples.

The features that are most likely to be areal ac-
cording to our model are summaries in Table 2. In
this table, we list the categories to which each fea-
ture belongs, together with the number of features in
that category, and the average probability that a fea-
ture in that category is genetically transmitted. Ap-
parently, the vast majority of features are not areal.

We can treat the results presented in Table 2 as a
hierarchy of borrowability. In doing so, we see that
our hierarchy agrees to a large degree with the hier-
archies summarized in Section 2.1.2. Indeed, (aside
from “Tea”, which we will ignore) the two most
easily shared categories according to our model are
phonology and the lexicon; this is in total agreement
with the agreed state of affairs in linguistics.

Lower in our list, we see that noun-related cat-
egories tend to precede their verb-related counter-
parts (nominal categories before verbal categores,
nominal syntax before complex sentences). Accord-
ing to Curnow (2001), the most difficult features to
borrow are phonetics (for which we have no data),
bound grammatical forms (which appear low on our
list), morphology (which is 99% genetic, according
to our model) and syntactic frames (which would
roughly correspond to “complex sentences”, another

Indo-European
Model Accuracy Log Prob
Baseline 0.635 (±0.007) −0.583 (±0.008)
Areal model 0.689 (±0.010) −0.526 (±0.027)

World
Model Accuracy Log Prob
Baseline 0.628 (±0.001) −0.654 (±0.003)
Areal model 0.635 (±0.002) −0.565 (±0.011)

Table 3: Prediction accuracies and log probabilities for
IE (top) and the world (bottom).

item which is 99% genetic in our model).

5.3 Genetic Reconstruction
In this section, we investigate whether the use of
areal knowledge can improve the automatic recon-
struction of language family trees. We use King-
man’s coalescent (see Section 2.2.2) as a probabilis-
tic model of trees, endowed with a binomial muta-
tion process on the language features.

Our baseline model is to run the vanilla coalescent
on the WALS data, effective reproducing the results
presented by Teh et al. (2007). This method was al-
ready shown to outperform competing hierarchical
clustering algorithms such as average-link agglom-
erative clustering (see, eg., Duda and Hart (1973))
and the Bayesian Hierarchical Clustering algorithm
(Heller and Ghahramani, 2005).

We run the same experiment both on the IE sub-
set of data and on the whole-world subset. We eval-
uate the results qualitatively, by observing the trees
found (on the IE subset) and quantitatively (below).
For the qualitative analysis, we show the subset of
IE that does not contain Indic languages or Iranian
languages (just to keep the figures small). The tree
derived from the original data is on the left in Fig-
ure 4, below:
The tree based on areal information is on the right in
Figure 4, below. As we can see, the use of areal in-
formation qualitatively improves the structure of the
tree. Where the original tree had a number of errors
with respect to Romance and Germanic languages,
these are sorted out in the areally-aware tree. More-
over, Greek now appears in a more appropriate part
of the tree and English appears on a branch that is
further out from the Norse languages.

We perform two varieties of quantitative analysis.
In the first, we attempt to predict unknown feature
values. In particular, we hide an addition 10% of
the feature values in the WALS data and fit a model
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Figure 4: Genetic trees of IE languages. (Left) with no areal knowledge; (Right) with areal model.

Indo-European versus Genus
Model Purity Subtree LOO Acc
Baseline 0.6078 0.5065 0.3218
Areal model 0.6494 0.5455 0.2528

World versus Genus
Model Purity Subtree LOO Acc
Baseline 0.3599 0.2253 0.7747
Areal model 0.4001 0.2450 0.7982

World versus Family
Model Purity Subtree LOO Acc
Baseline 0.4163 0.3280 0.4842
Areal model 0.5143 0.3318 0.5198

Table 4: Scores for IE as compared against genus (top);
for world against genus (mid) and against family (low).

to the remaining 90%. We then use that model to
predict the hidden 10%. The baseline model is to
make predictions according to the family tree. The
augmented model is to make predictions according
to the family tree for those features identified as ge-
netic and according to the linguistic area for those
features identified as areal. For both settings, we
compute both the absolute accuracy as well as the
log probability of the hidden data under the model
(the latter is less noisy). We repeat this experiment
10 times with a different random 10% hidden. The
results are shown in Table 3, below. The differences
are not large, but are outside one standard deviation.

For the second quantitative analysis, we use
present purity scores (Heller and Ghahramani,
2005), subtree scores (the number of interior nodes
with pure leaf labels, normalized) and leave-one-out
log accuracies (all scores are between 0 and 1, and
higher scores are better). These scores are computed
against both language family and language genus as
the “classes.” The results are in Table 4, below. As
we can see, the results are generally in favor of the
Areal model (LOO Acc on IE versus Genus non-
withstanding), depending on the evaluation metric.

Radius Purity Subtree LOO Acc
125 0.6237 0.4855 0.2013
250 0.6457 0.5325 0.2299
500 0.6483 0.5455 0.2413
1000 0.6494 0.5455 0.2528
2000 0.6464 0.4935 0.3218
4000 0.6342 0.4156 0.4138

Table 5: Scores for IE vs genus at varying radii.

5.4 Effect of Radius
Finally, we evaluate the effect of the radius hyper-
parameter on performance. Table 5 shows perfor-
mance for models built with varying radii. As can
be seen by purity and subtree scores, there is a
“sweet spot” around 500 to 1000 kilometers where
the model seems optimal. LOO (strangely) seems
to continue to improve as we allow areas to grow
arbitrarily large. This is perhaps overfitting. Never-
theless, performance is robust for a range of radii.
6 Discussion
We presented a model that is able to recover well-
known linguistic areas. Using this areas, we have
shown improvement in the ability to recover phylo-
genetic trees of languages. It is important to note
that despite our successes, there is much at our
model does not account for: borrowing is known to
be assymetric; contact is temporal; borrowing must
obey univeral implications. Despite the failure of
our model to account for these issues, however, it
appears largely successful. Moreover, like any “data
mining” expedition, our model suggests new lin-
guistic areas (particularly in the “whole world” ex-
periments) that deserve consideration.
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Abstract

Multi-task learning is the problem of maxi-
mizing the performance of a system across a
number of related tasks. When applied to mul-
tiple domains for the same task, it is similar to
domain adaptation, but symmetric, rather than
limited to improving performance on a target
domain. We present a more principled, better
performing model for this problem, based on
the use of a hierarchical Bayesian prior. Each
domain has its own domain-specific parame-
ter for each feature but, rather than a constant
prior over these parameters, the model instead
links them via a hierarchical Bayesian global
prior. This prior encourages the features to
have similar weights across domains, unless
there is good evidence to the contrary. We
show that the method of (Daumé III, 2007),
which was presented as a simple “prepro-
cessing step,” is actually equivalent, except
our representation explicitly separates hyper-
parameters which were tied in his work. We
demonstrate that allowing different values for
these hyperparameters significantly improves
performance over both a strong baseline and
(Daumé III, 2007) within both a conditional
random field sequence model for named en-
tity recognition and a discriminatively trained
dependency parser.

1 Introduction

The goal ofmulti-task learningis to improve perfor-
mance on a set of related tasks, when provided with
(potentially varying quantities of) annotated data for
each of the tasks. It is very closely related todomain
adaptation, a far more common task in the natural
language processing community, but with two pri-
mary differences. Firstly, in domain adaptation the

different tasks are actually just different domains.
Secondly, in multi-task learning the focus is on im-
proving performance acrossall tasks, while in do-
main adaptation there is a distinction betweensource
data andtargetdata, and the goal is to improve per-
formance on the target data. In the present work we
focus on domain adaptation, but like the multi-task
setting, we wish to improve performance acrossall
domains and not a singletargetdomains. The word
domainis used here somewhat loosely: it may refer
to a topical domain or to distinctions that linguists
might term mode (speech versus writing) or regis-
ter (formal written prose versus SMS communica-
tions). For example, one may have a large amount
of parsed newswire, and want to use it to augment
a much smaller amount of parsed e-mail, to build a
higher quality parser for e-mail data. We also con-
sider the extension to the task where the annotation
is not the same, but is consistent, across domains
(that is, some domains may be annotated with more
information than others).

This problem is important because it is omni-
present in real life natural language processing tasks.
Annotated data is expensive to produce and limited
in quantity. Typically, one may begin with a con-
siderable amount of annotated newswire data, some
annotated speech data, and a little annotated e-mail
data. It would be most desirable if the aggregated
training data could be used to improve the perfor-
mance of a system on each of these domains.

From the baseline of building separate systems
for each domain, the obvious first attempt at domain
adaptation is to build a system from the union of the
training data, and we will refer to this as a second
baseline. In this paper we propose a more principled,
formal model of domain adaptation, which not only
outperforms previous work, but maintains attractive
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performance characteristics in terms of training and
testing speed. We also show that the domain adapta-
tion work of (Daumé III, 2007), which is presented
as an ad-hoc “preprocessing step,” is actually equiv-
alent to our formal model. However, our representa-
tion of the model conceptually separates some of the
hyperparameters which are not separated in (Daumé
III, 2007), and we found that setting these hyperpa-
rameters with different values from one another was
critical for improving performance.

We apply our model to two tasks, named entity
recognition, using a linear chain conditional random
field (CRF), and dependency parsing, using a dis-
criminative, chart-based model. In both cases, we
find that our model improves performance over both
baselines and prior work.

2 Hierarchical Bayesian Domain
Adaptation

2.1 Motivation

We call our modelhierarchical Bayesian domain
adaptation, because it makes use of a hierarchical
Bayesian prior. As an example, take the case of
building a logistic classifier to decide if a word is
part of a person’s name. There will be a param-
eter (weight) for each feature, and usually there is
a zero-mean Gaussian prior over the parameter val-
ues so that they don’t get too large.1 In the stan-
dard, single-domain, case the log likelihood of the
data and prior is calculated, and the optimal pa-
rameter values are found. Now, let’s extend this
model to the case of two domains, one containing
American newswire and the other containing British
newswire. The data distributions will be similar for
the two domains, but not identical. In our model,
we have separate parameters for each feature in each
domain. We also have a top level parameter (also
to be learned) for each feature. For each domain,
the Gaussian prior over the parameter values is now
centered around these top level parameters instead
of around zero. A zero-mean Gaussian prior is then
placed over the top level parameters. In this ex-
ample, if some feature, sayword=‘Nigel,’ only ap-
pears in the British newswire, the corresponding
weight for the American newswire will have a sim-
ilar value. This happens because the evidence in
the British domain will push the British parameter

1This can be regarded as a Bayesian prior or as weight reg-
ularization; we adopt the former perspective here.

to have a high value, and this will in turn influence
the top-level parameter to have a high value, which
will then influence the American newswire to have
a high value, because there will be no evidence in
the American data to override the prior. Conversely,
if some feature is highly indicative ofisName=true
for the British newswire, and ofisName=falsefor
the American newswire, then the British parameter
will have a high (positive) value while the American
parameter will have a low (negative) value, because
in both cases the domain-specific evidence will out-
weigh the effect of the prior.

2.2 Formal Model

Our domain adaptation model is based on a hierar-
chical Bayesian prior, through which the domain-
specific parameters are tied. The model is very
general-purpose, and can be applied to any discrim-
inative learning task for which one would typically
put a prior with a mean over the parameters. We will
build up to it by first describing a general, single-
domain, discriminative learning task, and then we
will show how to modify this model to construct
our hierarchical Bayesian domain adaptation model.
In a typical discriminative probabilistic model, the
learning process consists of optimizing the log con-
ditional likelihood of the data with respect to the pa-
rameters,Lorig(D ;θ). This likelihood function can
take on many forms: logistic regression, a condi-
tional Markov model, a conditional random field, as
well as others. It is common practice to put a zero-
mean Gaussian prior over the parameters, leading to
the following objective, for which we wish to find
the optimal parameter values:

argmax
θ

(
Lorig(D ;θ)−∑

i

θ2
i

2σ2

)
(1)

From a graphical models perspective, this looks like
Figure 1(a), whereµ is the mean for the prior (in our
case, zero),σ2 is the variance for the prior,θ are the
parameters, or feature weights, andD is the data.
Now we will extend this single-domain model into
a multi-domain model (illustrated in Figure 1(b)).
Each feature weightθi is replicated once for each
domain, as well as for a top-level set of parame-
ters. We will refer to the parameters for domain
d as θd, with individual componentsθd,i , the top-
level parameters asθ∗, and all parameters collec-
tively as θ . All of the power of our model stems
from the relationship between these sets of param-
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Figure 1:(a) No domain adaptation. The model parameters,θ , are normally distributed, with meanµ (typically zero)
and varianceσ2. The likelihood of the data,D , is dependent on the model parameters. The form of the data distribution
depends on the underlying model (e.g., logistic regression, or a CRF).(b) Our hierarchical domain adaptation model.
The top-level parameters,θ∗, are normally distributed, with meanµ (typically zero) and varianceσ2

∗ . There is a plate
for each domain. Within each plate, the domain-specific parameters,θd are normally distributed, with meanθ∗ and
varianceσ2

d . (c) Our hierarchical domain adaptation model, with an extra level of structure. In this example, the
domains are further split into text and speech super-domains, each of which has its own set of parameters (θtxt andσtxt

for text andθsp andσsp for speech).θd is normally distributed with meanθtxt if domaind is in the text super-domain,
andθsp if it is in the speech super-domain.

eters. First, we place a zero-mean Gaussian prior
over the top level parametersθ∗. Then, these top
level parameters are used as the mean for a Gaussian
prior placed over each of the domain-specific param-
etersθd. These domain-specific parameters are then
the parameters used in the original conditional log
likelihood functions for each domain. The domain-
specific parameter values jointly influence an appro-
priate value for the higher-level parameters. Con-
versely, the higher-level parameters will largely de-
termine the domain-specific parameters when there
is little or no evidence from within a domain, but can
be overriden by domain-specific evidence when it
clearly goes against the general picture (for instance
Leedsis normally alocation, but within thesports
domain is usually anorganization(football team)).

The beauty of this model is that the degree of in-
fluence each domain exerts over the others, for each
parameter, is based on the amount of evidence each
domain has about that parameter. If a domain has
a lot of evidence for a feature weight, then that evi-
dence will outweigh the effect of the prior. However,
when a domain lacks evidence for a parameter the
opposite occurs, and the prior (whose value is deter-
mined by evidence in the other domains) will have a

greater effect on the parameter value.
To achieve this, we modify the objective func-

tion. We now sum over the log likelihood for all do-
mains, including a Gaussian prior for each domain,
but which is now centered aroundθ∗, the top-level
parameters. Outside of this summation, we have a
Gaussian prior over the top-level parameters which
is identical to the prior in the original model:

Lhier(D ;θ) = (2)

∑
d

(
Lorig(Dd;θd)−∑

i

(θd,i −θ∗,i)2

2σ2
d

)
−∑

i

(θ∗,i)2

2σ2∗

whereσ2
d and σ2

∗ are variances on the priors over
the parameters for all the domains, as well as the
top-level parameters. The graphical models repre-
sentation is shown in Figure 1(b).

One potential source of confusion is with respect
to the directed or undirected nature of our domain
adaptation model, and the underlying model of the
data. Our hierarchical Bayesian domain adaptation
model isdirected, as illustrated in Figure 1. How-
ever, somewhat counterintuitively, the underlying
(original) model of the data can be eitherdirected
or undirected, and for our experiments we use undi-
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rected, conditional random field-based models. The
directed domain adaptation model can be viewed
as a model of the parameters, and those parameter
weights are used by the underlying data model. In
Figure 1, the entire data model is represented by a
single node,D , conditioned on the parameters,θ or
θd. The form of that model can then be almost any-
thing, including an undirected model.

From an implementation perspective, the objec-
tive function is not much more difficult to implement
than the original single-domain model. For all of our
experiments, we optimized the log likelihood using
L-BFGS, which requires the function value and par-
tial derivatives of each parameter. The new partial
derivatives for the domain-specific parameters (but
not the top-level parameters) utilize the same par-
tial derivatives as in the original model. The only
change in the calculations is with respect to the pri-
ors. The partial derivatives for the domain-specific
parameters are:

∂Lhier(D ;θ)
∂θd,i

=
∂Ld(Dd,θd)

∂θd,i
− θd,i −θ∗,i

σ2
d

(3)

and the derivatives for the top level parametersθ∗
are:

∂Lhier(D ;θ)
∂θ∗,i

=

(
∑
d

θ∗,i −θd,i

σ2
d

)
− θ∗,i

σ2∗
(4)

This function is convex. Once the optimal param-
eters have been learned, the top level parameters
can be discarded, since the runtime model for each
domain is the same as the original (single-domain)
model, parameterized by the parameters learned for
that domain in the hierarchical model. However, it
may be useful to retain the top-level parameters for
use in adaptation to further domains in the future.

In our model there ared extra hyper-parameters
which can be tuned. These are the variancesσ2

d for
each domain. When this value is large then the prior
has little influence, and when set high enough will be
equivalent to training each model separately. When
this value is close to zero the prior has a strong in-
fluence, and when it is sufficiently close to zero then
it will be equivalent to completely tying the param-
eters, such thatθd1,i = θd2,i for all domains. Despite
having many more parameters, for both of the tasks
on which we performed experiments, we found that
our model did not take much more time to train that
a baseline model trained on all of the data concate-
nated together.

2.3 Model Generalization

The model as presented thus far can be viewed
as a two level tree, with the top-level parameters
at the root, and the domain-specific ones at the
leaves. However, it is straightforward to generalize
the model to any tree structure. In the generalized
version, the domain-specific parameters would still
be at the leaves, the top-level parameters at the root,
but new mid-level parameters can be added based
on beliefs about how similar the various domains
are. For instance, if one had four datasets, two of
which contained speech data and two of which con-
tained newswire, then it might be sensible to have
two sets of mid-level parameters, one for the speech
data and one for the newswire data, as illustrated in
Figure 1(c). This would allow the speech domains
to influence one another more than the newswire do-
mains, and vice versa.

2.4 Formalization of (Daumé III, 2007)

As mentioned earlier, our model is equivalent to that
presented in (Daumé III, 2007), and can be viewed
as a formal version of his model.2 In his presenta-
tion, the adapation is done through feature augmen-
tation. Specifically, for each feature in the original
version, a new version is created for each domain, as
well as a general, domain-independent version of the
feature. For each datum, two versions of each orig-
inal feature are present: the version for that datum’s
domain, and the domain independent one.

The equivalence between the two models can be
shown with simple arithmetic. Recall that the log
likelihood of our model is:

∑
d

(
Lorig(Dd;θd)−∑

i

(θd,i −θ∗,i)2

2σ2
d

)
−∑

i

(θ∗,i)2

2σ2∗
We now introduce a new variableψd = θd −θ∗, and
plug it into the equation for log likelihood:

∑
d

(
Lorig(Dd;ψd + θ∗)−∑

i

(ψd,i)2

2σ2
d

)
−∑

i

(θ∗,i)2

2σ2∗
The result is the model of (Daumé III, 2007), where
theψd are the domain-specific feature weights, and
θd are the domain-independent feature weights. In
his formulation, the variancesσ2

d = σ2
∗ for all do-

mainsd.
This separation of the domain-specific and inde-

pendent variances was critical to our improved per-
formance. When using a Gaussian prior there are

2Many thanks to David Vickrey for pointing this out to us.
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two parameters set by the user: the mean,µ (usu-
ally zero), and the variance,σ2. Technically, each
of these parameters is actually a vector, with an en-
try for each feature, but almost always the vectors
are uniform and the same parameter is used for each
feature (there are exceptions, e.g. (Lee et al., 2007)).
Because Daumé III (2007) views the adaptation as
merely augmenting the feature space, each of his
features has the same prior mean and variance, re-
gardless of whether it is domain specific or indepen-
dent. He could have set these parameters differently,
but he did not.3 In our presentation of the model,
we explicitly represent different variances for each
domain, as well as the top level parameters. We
found that specifying different values for the domain
specific versus domain independent variances sig-
nificantly improved performance, though we found
no gains from using different values for the differ-
ent domain specific variances. The values were set
based on development data.

3 Named Entity Recognition

For our first set of experiments, we used a linear-
chain, conditional random field (CRF) model,
trained for named entity recognition (NER). The use
of CRFs for sequence modeling has become stan-
dard so we will omit the model details; good expla-
nations can be found in a number of places (Lafferty
et al., 2001; Sutton and McCallum, 2007). Our fea-
tures were based on those in (Finkel et al., 2005).

3.1 Data

We used three named entity datasets, from the
CoNLL 2003, MUC-6 and MUC-7 shared tasks.
CoNLL is British newswire, while MUC-6 and
MUC-7 are both American newswire. Arguably
MUC-6 and MUC-7 should not count as separate
domains, but because they were annotated sepa-
rately, for different shared tasks, we chose to treat
them as such, and feel that our experimental results
justify the distinction. We used the standard train
and test sets for each domain, which for CoNLL cor-
responds to the (more difficult) testb set. For details
about the number of training and test words in each
dataset, please see Table 1.

One interesting challenge in dealing with both
CoNLL and MUC data is that the label sets differ.

3Although he alludes to the potential for something similar
in the last section of his paper, when discussing the kerneliza-
tion interpretation of his approach.

# Train # Test
Words Words

MUC-6 165,082 15,032
MUC-7 89,644 64,490
CoNLL 203,261 46,435

Table 1: Number of words in the training and test sets for
each of the named entity recognition datasets.

CoNLL has four classes:person, organization, lo-
cation, andmisc. MUC data has seven classes:per-
son, organization, location, percent, date, time, and
money. They overlap in the three core classes (per-
son, organization, and location), but CoNLL has
one additional class and MUC has four additional
classes.

The differences in the label sets led us to perform
two sets of experiments for the baseline and hier-
archical Bayesian models. In the first set of exper-
iments, at training time, the model allows any la-
bel from the union of the label sets, regardless of
whether that label was legal for the domain. At test
time, we would ignore guesses made by the model
which were inconsistent with the allowed labels for
that domain.4 In the second set of experiments, we
restricted the model at training time to only allow
legal labels for each domain. At test time, the do-
main was specified, and the model was once again
restricted so that words would never be tagged with
a label outside of that domain’s label set.

3.2 Experimental Results and Discussion

In our experiments, we compared our model to sev-
eral strong baselines, and the full set of results is in
Table 2. The models we used were:

TARGET ONLY. Trained and tested on only the data
for that domain.

ALL DATA . Trained and tested on data from all do-
mains, concatenated into one large dataset.

ALL DATA *. Same as ALL DATA , but restricted
possible labels for each word based on domain.

DAUME07. Trained and tested using the same tech-
nique as (Daumé III, 2007). We note that they
present results using per-token label accuracy,
while we used the more standard entity preci-
sion, recall, and F score (as in the CoNLL 2003
shared task).

4We treated them identically to the background symbol. So,
for instance, labelling a word adatein the CoNLL data had no
effect on the score.
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Named Entity Recognition
Model Precision Recall F1

MUC-6
TARGET ONLY 86.74 80.10 83.29
ALL DATA * 85.04 83.49 84.26
ALL DATA 86.00 82.71 84.32
DAUME07* 87.83 83.41 85.56
DAUME07 87.81 82.23 85.46
HIER BAYES* 88.59 84.97 86.74
HIER BAYES 88.77 85.14 86.92

MUC-7
TARGET ONLY 81.17 70.23 75.30
ALL DATA * 81.66 76.17 78.82
ALL DATA 82.20 70.91 76.14
DAUME07* 83.33 75.42 79.18
DAUME07 83.51 75.63 79.37
HIER BAYES* 82.90 76.95 79.82
HIER BAYES 83.17 77.02 79.98

CoNLL
TARGET ONLY 85.55 84.72 85.13
ALL DATA * 86.34 84.45 85.38
ALL DATA 86.58 83.90 85.22
DAUME07* 86.09 85.06 85.57
DAUME07 86.35 85.26 85.80
HIER BAYES* 86.33 85.06 85.69
HIER BAYES 86.51 85.13 85.81

Table 2: Named entity recognition results for each of the
models. With the exception of the TARGET ONLY model,
all three datasets were combined when training each of
the models.

DAUME07*. Same as DAUME07, but restricted
possible labels for each word based on domain.

HIER BAYES. Our hierarchical Bayesian domain
adaptation model.

HIER BAYES*. Same as HIER BAYES, but re-
stricted possible labels for each word based on
the domain.

For all of the baseline models, and for the top
level-parameters in the hierarchical Bayesian model,
we usedσ = 1. For the domain-specific parameters,
we usedσd = 0.1 for all domains.

The HIER BAYES model outperformed all base-
lines for both of the MUC datasets, and tied with
the DAUME07 for CoNLL. The largest improvement
was on MUC-6, where HIER BAYES outperformed
DAUME07*, the second best model, by 1.36%. This
improvement is greater than the improvement made
by that model over the ALL DATA * baseline. To as-
sess significance we used a document-level paired
t-test (over all of the data combined), and found that

HIER BAYES significantly outperformed all of the
baselines (not including HIER BAYES*) with greater
than 95% confidence.

For both the HIER BAYES and DAUME07 mod-
els, we found that performance was better for the
variant which did not restrict possible labels based
on the domain, while the ALL DATA model did ben-
efit from the label restriction. For HIER BAYES and
DAUME07, this result may be due to the structure
of the models. Because both models have domain-
specific features, the models likely learned that these
labels were never actually allowed. However, when
a feature does not occur in the data for a particular
domain, then the domain-specific parameter for that
feature will have positive weight due to evidence
present in the other domains, which at test time can
lead to assigning an illegal label to a word. This
information that a word may be of some other (un-
known to that domain) entity type may help prevent
the model from mislabeling the word. For example,
in CoNLL, nationalities, such asIraqi and Ameri-
can, are labeled asmisc. If a previously unseen na-
tionality is encountered in the MUC testing data, the
MUC model may be tempted to label is as alocation,
but this evidence from the CoNLL data may prevent
that, by causing it to instead be labeledmisc, a label
which will subsequently be ignored.

In typical domain adaptation work, showing gains
is made easier by the fact that the amount of train-
ing data in thetargetdomain is comparatively small.
Within the multi-task learning setting, it is more
challenging to show gains over the ALL DATA base-
line. Nevertheless, our results show that, so long as
the amount of data in each domain is not widely dis-
parate, it is possible to achieve gains on all of the
domains simultaneously.

4 Dependency Parsing

4.1 Parsing Model

We also tested our model on an untyped dependency
parsing task, to see how it performs on a more struc-
turally complex task than sequence modeling. To
our knowledge, the discriminatively trained depen-
dency model we used has not been previously pub-
lished, but it is very similar to recent work on dis-
criminative constituency parsing (Finkel and Man-
ning, 2008). Due to space restrictions, we cannot
give a complete treatment of the model, but will give
an overview.
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We built a CRF-based model, optimizing the like-
lihood of the parse, conditioned on the words and
parts of speech of the sentence. At the heart of
our model is the Eisner dependency grammar chart-
parsing algorithm (Eisner, 1996), which allows for
efficient computation of inside and outside scores.
The Eisner algorithm, originally designed for gen-
erative parsing, decomposes the probability of a de-
pendency parse into the probabilities of each attach-
ment of a dependent to its parent, and the proba-
bilities of each parent stopping taking dependents.
These probabilities can be conditioned on the child,
parent, and direction of the dependency. We used
a slight modification of the algorithm which allows
each probability to also be conditioned on whether
there is a previous dependent. While the unmodified
version of the algorithm includes stopping probabil-
ities, conditioned on the parent and direction, they
have no impact on which parse for a particular sen-
tence is most likely, because all words must eventu-
ally stop taking dependents. However, in the modi-
fied version, the stopping probability is also condi-
tioned on whether or not there is a previous depen-
dent, so this probability does make a difference.

While the Eisner algorithm computes locally nor-
malized probabilities for each attachment decision,
our model computes unnormalized scores. From
a graphical models perspective, our parsing model
is undirected, while the original model is directed.5

The score for a particular tree decomposes the same
way in our model as in the original Eisner model,
but it is globally normalized instead of locally nor-
malized. Using the inside and outside scores we can
compute partial derivatives for the feature weights,
as well as the value of the normalizing constant
needed to determine the probability of a particular
parse. This is done in a manner completely analo-
gous to (Finkel and Manning, 2008). Partial deriva-
tives and the function value are all that is needed to
find the optimal feature weights using L-BFGS.6

Features are computed over each attachment and
stopping decision, and can be conditioned on the

5The dependencies themselves are stilldirected in both
cases, it is just the underlying graphical model used to compute
the likelihood of a parse which changes from a directed model
to an undirected model.

6In (Finkel and Manning, 2008) we used stochastic gradient
descent to optimize our weights because our function evaluation
was too slow to use L-BFGS. We did not encounter this problem
in this setting.

parent, dependent (or none, if it is a stopping deci-
sion), direction of attachment, whether there is a pre-
vious dependent in that direction, and the words and
parts of speech of the sentence. We used the same
features as (McDonald et al., 2005), augmented with
information about whether or not a dependent is the
first dependent (information they did not have).

4.2 Data

For our dependency parsing experiments, we used
LDC2008T04 OntoNotes Release 2.0 data (Hovy
et al., 2006). This dataset is still in development,
and includes data from seven different domains, la-
beled for a number of tasks, including PCFG trees.
The domains span both newswire and speech from
multiple sources. We converted the PCFG trees
into dependency trees using the Collins head rules
(Collins, 2003). We also omitted the WSJ portion
of the data, because it follows a different annotation
scheme from the other domains.7 For each of the
remaining six domains, we aimed for an 75/25 data
split, but because we divided the data using the pro-
vided sections, this split was fairly rough. The num-
ber of training and test sentences for each domain
are specified in the Table 3, along with our results.

4.3 Experimental Results and Discussion

We compared the same four domain adaptation
models for dependency parsing as we did for the
named entity experiments, once again settingσ =
1.0 andσd = 0.1. Unlike the named entity experi-
ments however, there were no label set discrepencies
between the domains, so only one version of each
domain adaptation model was necessary, instead of
the two versions in that section.

Our full dependency parsing results can be found
in Table 3. Firstly, we found that DAUME07, which
had outperformed the ALL DATA baseline for the
sequence modeling task, performed worse than the

7Specifically, all the other domains use the “new” Penn
Treebank annotation style, whereas the WSJ data is still in the
“traditional” annotation style, familiar from the past decade’s
work in Penn Treebank parsing. The major changes are in
hyphenation and NP structure. In the new annotation style,
many hyphenated words are separated into multiple tokens, with
a new part-of-speech tag given to the hyphens, and leftward-
branching structure inside noun phrases is indicated by useof
a new NML phrasal category. The treatment of hyphenated
words, in particular, makes the two annotation styles inconsis-
tent, and so we could not work with all the data together.
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Dependency Parsing
Training Testing TARGET ALL HIER

Range # Sent Range # Sent ONLY DATA DAUME07 BAYES

ABC 0–55 1195 56–69 199 83.32% 88.97% 87.30% 88.68%
CNN 0–375 5092 376–437 1521 85.53% 87.09% 86.41%87.26%
MNB 0–17 509 18–25 245 77.06% 86.41% 84.70%86.71%
NBC 0–29 552 30–39 149 76.21% 85.82% 85.01% 85.32%
PRI 0–89 1707 90–112 394 87.65% 90.28% 89.52%90.59%
VOA 0–198 1512 199–264 383 89.17%92.11% 90.67% 92.09%

Table 3: Dependency parsing results for each of the domain adaptation models. Performance is measured as unlabeled
attachment accuracy.

baseline here, indicating that the transfer of infor-
mation between domains in the more structurally
complicated task is inherently more difficult. Our
model’s gains over the ALL DATA baseline are
quite small, but we tested their significance using a
sentence-level paired t-test (over all of the data com-
bined) and found them to be significant atp< 10−5.
We are unsure why some domains improved while
others did not. It is not simply a consequence of
training set size, but may be due to qualities of the
domains themselves.

5 Related Work

We already discussed the relation of our work to
(Daumé III, 2007) in Section 2.4. Another piece of
similar work is (Chelba and Acero, 2004), who also
modify their prior. Their work is limited to two do-
mains, a source and a target, and their algorithm has
a two stage process: First, train a classifier on the
source data, and then use the learned weights from
that classifier as the mean for a Gaussian prior when
training a new model on just the target data.

Daumé III and Marcu (2006) also took a Bayesian
approach to domain adaptation, but structured their
model in a very different way. In their model, it is
assumed that each datum within a domain is either a
domain-specific datum, or a general datum, and then
domain-specific and general weights were learned.
Whether each datum is domain-specific or general
is not known, so they developed an EM based algo-
rithm for determining this information while simul-
taneously learning the feature weights. Their model
had good performance, but came with a 10 to 15
times slowdown at training time. Our slowest de-
pendency parser took four days to train, making this
model close to infeasible for learning on that data.

Outside of the NLP community there has been
much similar work making use of hierarchical

Bayesian priors to tie parameters across multiple,
similar tasks. Evgeniou et al. (2005) present a sim-
ilar model, but based on support vector machines,
to predict the exam scores of students. Elidan et
al. (2008) make us of anundirectedBayesian trans-
fer hierarchy to jointly model the shapes of differ-
ent mammals. The complete literature on related
multi-task learning is too large to fully discuss here,
but we direct the reader to (Baxter, 1997; Caruana,
1997; Yu et al., 2005; Xue et al., 2007). For a more
general discussion of hierarchical priors, we recom-
mend Chapter 5 of (Gelman et al., 2003) and Chap-
ter 12 of (Gelman and Hill, 2006).

6 Conclusion and Future Work

In this paper we presented a new model for domain
adaptation, based on a hierarchical Bayesian prior,
which allows information to be shared between do-
mains when information is sparse, while still allow-
ing the data from a particular domain to override the
information from other domains when there is suf-
ficient evidence. We outperformed previous work
on a sequence modeling task, and showed improve-
ments on dependency parsing, a structurally more
complex problem, where previous work failed. Our
model is practically useful and does not require sig-
nificantly more time to train than a baseline model
using the same data (though it does require more
memory, proportional to the number of domains). In
the future we would like to see if the model could be
adapted to improve performance on data from a new
domain, potentially by using the top-level weights
which should be less domain-dependent.
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Abstract

The (batch) EM algorithm plays an important
role in unsupervised induction, but it some-
times suffers from slow convergence. In this
paper, we show that online variants (1) provide
significant speedups and (2) can even find bet-
ter solutions than those found by batch EM.
We support these findings on four unsuper-
vised tasks: part-of-speech tagging, document
classification, word segmentation, and word
alignment.

1 Introduction

In unsupervised NLP tasks such as tagging, parsing,
and alignment, one wishes to induce latent linguistic
structures from raw text. Probabilistic modeling has
emerged as a dominant paradigm for these problems,
and the EM algorithm has been a driving force for
learning models in a simple and intuitive manner.

However, on some tasks, EM can converge
slowly. For instance, on unsupervised part-of-
speech tagging, EM requires over 100 iterations to
reach its peak performance on the Wall-Street Jour-
nal (Johnson, 2007). The slowness of EM is mainly
due to its batch nature: Parameters are updated only
once after each pass through the data. When param-
eter estimates are still rough or if there is high redun-
dancy in the data, computing statistics on the entire
dataset just to make one update can be wasteful.

In this paper, we investigate two flavors of on-
line EM—incremental EM (Neal and Hinton, 1998)
and stepwise EM (Sato and Ishii, 2000; Cappé and
Moulines, 2009), both of which involve updating pa-
rameters after each example or after a mini-batch

(subset) of examples. Online algorithms have the
potential to speed up learning by making updates
more frequently. However, these updates can be
seen as noisy approximations to the full batch up-
date, and this noise can in fact impede learning.

This tradeoff between speed and stability is famil-
iar to online algorithms for convex supervised learn-
ing problems—e.g., Perceptron, MIRA, stochastic
gradient, etc. Unsupervised learning raises two ad-
ditional issues: (1) Since the EM objective is non-
convex, we often get convergence to different local
optima of varying quality; and (2) we evaluate on
accuracy metrics which are at best loosely correlated
with the EM likelihood objective (Liang and Klein,
2008). We will see that these issues can lead to sur-
prising results.

In Section 4, we present a thorough investigation
of online EM, mostly focusing on stepwise EM since
it dominates incremental EM. For stepwise EM, we
find that choosing a good stepsize and mini-batch
size is important but can fortunately be done ade-
quately without supervision. With a proper choice,
stepwise EM reaches the same performance as batch
EM, but much more quickly. Moreover, it can even
surpass the performance of batch EM. Our results
are particularly striking on part-of-speech tagging:
Batch EM crawls to an accuracy of 57.3% after 100
iterations, whereas stepwise EM shoots up to 65.4%
after just two iterations.

2 Tasks, models, and datasets

In this paper, we focus on unsupervised induction
via probabilistic modeling. In particular, we define
a probabilistic model p(x, z; θ) of the input x (e.g.,
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a sentence) and hidden output z (e.g., a parse tree)
with parameters θ (e.g., rule probabilities). Given a
set of unlabeled examples x(1), . . . ,x(n), the stan-
dard training objective is to maximize the marginal
log-likelihood of these examples:

`(θ) =
n∑

i=1

log p(x(i); θ). (1)

A trained model θ̂ is then evaluated on the accuracy
of its predictions: argmaxz p(z | x(i); θ̂) against the
true output z(i); the exact evaluation metric depends
on the task. What makes unsupervised induction
hard at best and ill-defined at worst is that the train-
ing objective (1) does not depend on the true outputs
at all.

We ran experiments on four tasks described be-
low. Two of these tasks—part-of-speech tagging and
document classification—are “clustering” tasks. For
these, the output z consists of labels; for evalua-
tion, we map each predicted label to the true label
that maximizes accuracy. The other two tasks—
segmentation and alignment—only involve unla-
beled combinatorial structures, which can be eval-
uated directly.

Part-of-speech tagging For each sentence x =
(x1, . . . , x`), represented as a sequence of words, we
wish to predict the corresponding sequence of part-
of-speech (POS) tags z = (z1, . . . , z`). We used
a simple bigram HMM trained on the Wall Street
Journal (WSJ) portion of the Penn Treebank (49208
sentences, 45 tags). No tagging dictionary was used.
We evaluated using per-position accuracy.

Document classification For each document x =
(x1, . . . , x`) consisting of ` words,1 we wish to pre-
dict the document class z ∈ {1, . . . , 20}. Each doc-
ument x is modeled as a bag of words drawn inde-
pendently given the class z. We used the 20 News-
groups dataset (18828 documents, 20 classes). We
evaluated on class accuracy.

Word segmentation For each sentence x =
(x1, . . . , x`), represented as a sequence of English
phonemes or Chinese characters without spaces
separating the words, we would like to predict

1We removed the 50 most common words and words that
occurred fewer than 5 times.

a segmentation of the sequence into words z =
(z1, . . . , z|z|), where each segment (word) zi is a
contiguous subsequence of 1, . . . , `. Since the naı̈ve
unigram model has a degenerate maximum likeli-
hood solution that makes each sentence a separate
word, we incorporate a penalty for longer segments:
p(x, z; θ) ∝ ∏|z|

k=1 p(xzk ; θ)e
−|zk|β , where β > 1

determines the strength of the penalty. For English,
we used β = 1.6; Chinese, β = 2.5. To speed up in-
ference, we restricted the maximum segment length
to 10 for English and 5 for Chinese.

We applied this model on the Bernstein-Ratner
corpus from the CHILDES database used in
Goldwater et al. (2006) (9790 sentences) and
the Academia Sinica (AS) corpus from the first
SIGHAN Chinese word segmentation bakeoff (we
used the first 100K sentences). We evaluated using
F1 on word tokens.

To the best of our knowledge, our penalized uni-
gram model is new and actually beats the more com-
plicated model of Johnson (2008) 83.5% to 78%,
which had been the best published result on this task.

Word alignment For each pair of translated sen-
tences x = (e1, . . . , ene , f1, . . . , fnf ), we wish to
predict the word alignments z ∈ {0, 1}nenf . We
trained two IBM model 1s using agreement-based
learning (Liang et al., 2008). We used the first
30K sentence pairs of the English-French Hansards
data from the NAACL 2003 Shared Task, 447+37
of which were hand-aligned (Och and Ney, 2003).
We evaluated using the standard alignment error rate
(AER).

3 EM algorithms

Given a probabilistic model p(x, z; θ) and unla-
beled examples x(1), . . . ,x(n), recall we would like
to maximize the marginal likelihood of the data
(1). Let φ(x, z) denote a mapping from a fully-
labeled example (x, z) to a vector of sufficient statis-
tics (counts in the case of multinomials) for the
model. For example, one component of this vec-
tor for HMMs would be the number of times state
7 emits the word “house” in sentence x with state
sequence z. Given a vector of sufficient statistics µ,
let θ(µ) denote the maximum likelihood estimate. In
our case, θ(µ) are simply probabilities obtained by
normalizing each block of counts. This closed-form
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Batch EM

µ← initialization
for each iteration t = 1, . . . , T :
−µ′ ← 0
−for each example i = 1, . . . , n:
−−s′

i ←
∑

z p(z | x(i); θ(µ))φ(x(i), z) [inference]
−−µ′ ← µ′ + s′

i [accumulate new]
−µ← µ′ [replace old with new]

solution is one of the features that makes EM (both
batch and online) attractive.

3.1 Batch EM

In the (batch) EM algorithm, we alternate between
the E-step and the M-step. In the E-step, we com-
pute the expected sufficient statistics µ′ across all
the examples based on the posterior over z under the
current parameters θ(µ). In all our models, this step
can be done via a dynamic program (for example,
forward-backward for POS tagging).

In the M-step, we use these sufficient statistics
µ′ to re-estimate the parameters. Since the M-step
is trivial, we represent it implicitly by θ(·) in order
to concentrate on the computation of the sufficient
statistics. This focus will be important for online
EM, so writing batch EM in this way accentuates
the parallel between batch and online.

3.2 Online EM

To obtain an online EM algorithm, we store a sin-
gle set of sufficient statistics µ and update it after
processing each example. For the i-th example, we
compute sufficient statistics s′i. There are two main
variants of online EM algorithms which differ in ex-
actly how the new s′i is incorporated into µ.

The first is incremental EM (iEM) (Neal and Hin-
ton, 1998), in which we not only keep track of µ but
also the sufficient statistics s1, . . . , sn for each ex-
ample (µ =

∑n
i=1 si). When we process example i,

we subtract out the old si and add the new s′i.
Sato and Ishii (2000) developed another variant,

later generalized by Cappé and Moulines (2009),
which we call stepwise EM (sEM). In sEM, we in-
terpolate between µ and s′i based on a stepsize ηk (k
is the number of updates made to µ so far).

The two algorithms are motivated in different
ways. Recall that the log-likelihood can be lower

Incremental EM (iEM)

si ← initialization for i = 1, . . . , n
µ←∑n

i=1 si

for each iteration t = 1, . . . , T :
−for each example i = 1, . . . , n in random order:
−−s′

i ←
∑

z p(z | x(i); θ(µ))φ(x(i), z) [inference]
−−µ← µ+ s′

i − si; si ← s′
i [replace old with new]

Stepwise EM (sEM)

µ← initialization; k = 0
for each iteration t = 1, . . . , T :
−for each example i = 1, . . . , n in random order:
−−s′

i ←
∑

z p(z | x(i); θ(µ))φ(x(i), z) [inference]
−−µ← (1−ηk)µ+ ηks

′
i; k ← k+1 [towards new]

bounded as follows (Neal and Hinton, 1998):

`(θ) ≥ L(q1, . . . , qn, θ) (2)

def=
n∑

i=1

[∑

z

qi(z | x(i)) log p(x(i), z; θ) +H(qi)
]
,

where H(qi) is the entropy of the distribution qi(z |
x(i)). Batch EM alternates between optimizing L
with respect to q1, . . . , qn in the E-step (represented
implicitly via sufficient statistics µ′) and with re-
spect to θ in the M-step. Incremental EM alternates
between optimizing with respect to a single qi and θ.

Stepwise EM is motivated from the stochastic ap-
proximation literature, where we think of approxi-
mating the update µ′ in batch EM with a single sam-
ple s′i. Since one sample is a bad approximation,
we interpolate between s′i and the current µ. Thus,
sEM can be seen as stochastic gradient in the space
of sufficient statistics.

Stepsize reduction power α Stepwise EM leaves
open the choice of the stepsize ηk. Standard results
from the stochastic approximation literature state
that

∑∞
k=0 ηk = ∞ and

∑∞
k=0 η

2
k < ∞ are suffi-

cient to guarantee convergence to a local optimum.
In particular, if we take ηk = (k + 2)−α, then any
0.5 < α ≤ 1 is valid. The smaller the α, the larger
the updates, and the more quickly we forget (decay)
our old sufficient statistics. This can lead to swift
progress but also generates instability.

Mini-batch size m We can add some stability
to sEM by updating on multiple examples at once
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instead of just one. In particular, partition the
n examples into mini-batches of size m and run
sEM, treating each mini-batch as a single exam-
ple. Formally, for each i = 0,m, 2m, 3m, . . . , first
compute the sufficient statistics s′i+1, . . . , s

′
i+m on

x(i+1), . . . ,x(i+m) and then update µ using s′i+1 +
· · · + s′i+m. The larger the m, the less frequent
the updates, but the more stable they are. In this
way, mini-batches interpolate between a pure online
(m = 1) and a pure batch (m = n) algorithm.2

Fast implementation Due to sparsity in NLP, the
sufficient statistics of an example s′i are nonzero for
a small fraction of its components. For iEM, the
time required to update µ with s′i depends only on
the number of nonzero components of s′i. However,
the sEM update is µ← (1−ηk)µ+ηks′i, and a naı̈ve
implementation would take time proportional to the
total number of components. The key to a more effi-
cient solution is to note that θ(µ) is invariant to scal-
ing of µ. Therefore, we can store S = µQ

j<k(1−ηj)
instead of µ and make the following sparse update:
S ← S + ηkQ

j≤k(1−ηj)
s′i, taking comfort in the fact

that θ(µ) = θ(S).
For both iEM and sEM, we also need to efficiently

compute θ(µ). We can do this by maintaining the
normalizer for each multinomial block (sum of the
components in the block). This extra maintenance
only doubles the number of updates we have to make
but allows us to fetch any component of θ(µ) in con-
stant time by dividing out the normalizer.

3.3 Incremental versus stepwise EM

Incremental EM increases L monotonically after
each update by virtue of doing coordinate-wise as-
cent and thus is guaranteed to converge to a local
optimum of both L and ` (Neal and Hinton, 1998).
However, ` is not guaranteed to increase after each
update. Stepwise EM might not increase either L or
` after each update, but it is guaranteed to converge
to a local optimum of ` given suitable conditions on
the stepsize discussed earlier.

Incremental and stepwise EM actually coincide
under the following setting (Cappé and Moulines,

2Note that running sEM with m = n is similar but not
equivalent to batch EM since old sufficient statistics are still
interpolated rather than replaced.

2009): If we set (α,m) = (1, 1) for sEM and ini-
tialize all si = 0 for iEM, then both algorithms make
the same updates on the first pass through the data.
They diverge thereafter as iEM subtracts out old sis,
while sEM does not even remember them.

One weakness of iEM is that its memory require-
ments grow linearly with the number of examples
due to storing s1, . . . , sn. For large datasets, these
sis might not even fit in memory, and resorting to
physical disk would be very slow. In contrast, the
memory usage of sEM does not depend on n.

The relationship between iEM and sEM (with
m = 1) is analogous to the one between exponen-
tiated gradient (Collins et al., 2008) and stochastic
gradient for supervised learning of log-linear mod-
els. The former maintains the sufficient statistics of
each example and subtracts out old ones whereas the
latter does not. In the supervised case, the added sta-
bility of exponentiated gradient tends to yield bet-
ter performance. For the unsupervised case, we will
see empirically that remembering the old sufficient
statistics offers no benefit, and much better perfor-
mance can be obtained by properly setting (α,m)
for sEM (Section 4).

4 Experiments

We now present our empirical results for batch EM
and online EM (iEM and sEM) on the four tasks de-
scribed in Section 2: part-of-speech tagging, docu-
ment classification, word segmentation (English and
Chinese), and word alignment.

We used the following protocol for all experi-
ments: We initialized the parameters to a neutral set-
ting plus noise to break symmetries.3 Training was
performed for 20 iterations.4 No parameter smooth-
ing was used. All runs used a fixed random seed for
initializing the parameters and permuting the exam-
ples at the beginning of each iteration. We report two
performance metrics: log-likelihood normalized by
the number of examples and the task-specific accu-
racy metric (see Section 2). All numbers are taken
from the final iteration.

3Specifically, for each block of multinomial probabilities
θ1, . . . , θK , we set θk ∝ exp{10−3(1 + ak)}, where ak ∼
U [0, 1]. Exception: for batch EM on POS tagging, we used 1
instead of 10−3; more noise worked better.

4Exception: for batch EM on POS tagging, 100 iterations
was needed to get satisfactory performance.
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Stepwise EM (sEM) requires setting two
optimization parameters: the stepsize reduc-
tion power α and the mini-batch size m (see
Section 3.2). As Section 4.3 will show, these
two parameters can have a large impact on
performance. As a default rule of thumb, we
chose (α,m) ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} ×
{1, 3, 10, 30, 100, 300, 1K, 3K, 10K} to maximize
log-likelihood; let sEM` denote stepwise EM with
this setting. Note that this setting requires no labeled
data. We will also consider fixing (α,m) = (1, 1)
(sEMi) and choosing (α,m) to maximize accuracy
(sEMa).

In the results to follow, we first demonstrate that
online EM is faster (Section 4.1) and sometimes
leads to higher accuracies (Section 4.2). Next, we
explore the effect of the optimization parameters
(α,m) (Section 4.3), briefly revisiting the connec-
tion between incremental and stepwise EM. Finally,
we show the stability of our results under different
random seeds (Section 4.4).

4.1 Speed

One of the principal motivations for online EM
is speed, and indeed we found this motivation to
be empirically well-justified. Figure 1 shows that,
across all five datasets, sEM` converges to a solution
with at least comparable log-likelihood and accuracy
with respect to batch EM, but sEM` does it anywhere
from about 2 (word alignment) to 10 (POS tagging)
times faster. This supports our intuition that more
frequent updates lead to faster convergence. At the
same time, note that the other two online EM vari-
ants in Figure 1 (iEM and sEMi) are prone to catas-
trophic failure. See Section 4.3 for further discus-
sion on this issue.

4.2 Performance

It is fortunate but perhaps not surprising that step-
wise EM is faster than batch EM. But Figure 1 also
shows that, somewhat surprisingly, sEM` can actu-
ally converge to a solution with higher accuracy, in
particular on POS tagging and document classifica-
tion. To further explore the accuracy-increasing po-
tential of sEM, consider choosing (α,m) to maxi-
mize accuracy (sEMa). Unlike sEM`, sEMa does re-
quire labeled data. In practice, (α,m) can be tuned

EM sEM` sEMa α` m` αa ma

POS 57.3 59.6 66.7 0.7 3 0.5 3
DOC 39.1 47.8 49.9 0.8 1K 0.5 3K
SEG(en) 80.5 80.7 83.5 0.7 1K 1.0 100
SEG(ch) 78.2 77.2 78.1 0.6 10K 1.0 10K
ALIGN 78.8 78.9 78.9 0.7 10K 0.7 10K

Table 1: Accuracy of batch EM and stepwise EM, where
the optimization parameters (α,m) are tuned to either
maximize log-likelihood (sEM`) or accuracy (sEMa).
With an appropriate setting of (α,m), stepwise EM out-
performs batch EM significantly on POS tagging and
document classification.

on a small labeled set along with any model hyper-
parameters.

Table 1 shows that sEMa improves the accuracy
compared to batch EM even more than sEM`. The
result for POS is most vivid: After one iteration of
batch EM, the accuracy is only at 24.0% whereas
sEMa is already at 54.5%, and after two iterations,
at 65.4%. Not only is this orders of magnitude faster
than batch EM, batch EM only reaches 57.3% after
100 iterations.

We get a similarly striking result for document
classification, but the results for word segmentation
and word alignment are more modest. A full un-
derstanding of this phenomenon is left as an open
problem, but we will comment on one difference be-
tween the tasks where sEM improves accuracy and
the tasks where it doesn’t. The former are “clus-
tering” tasks (POS tagging and document classifi-
cation), while the latter are “structural” tasks (word
segmentation and word alignment). Learning of
clustering models centers around probabilities over
words given a latent cluster label, whereas in struc-
tural models, there are no cluster labels, and it is
the combinatorial structure (the segmentations and
alignments) that drives the learning.

Likelihood versus accuracy From Figure 1, we
see that stepwise EM (sEM`) can outperform batch
EM in both likelihood and accuracy. This suggests
that stepwise EM is better at avoiding local minima,
perhaps leveraging its stochasticity to its advantage.

However, on POS tagging, tuning sEM to maxi-
mize accuracy (sEMa) results in a slower increase
in likelihood: compare sEMa in Figure 2 with sEM`

in Figure 1(a). This shouldn’t surprise us too much
given that likelihood and accuracy are only loosely
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accuracy log-likelihood
EM sEM` EM sEM`

pos 57.3 59.6 -6.03 -6.08
doc 39.1 47.8 -7.96 -7.88
seg(en) 80.5 80.7 -4.11 -4.11
seg(ch) 78.2 77.2 -7.27 -7.28
align 78.8 78.9 -5.05 -5.12

(e) Word alignment (f) Results after convergence

Figure 1: Accuracy and log-likelihood plots for batch EM, incremental EM, and stepwise EM across all five datasets.
sEM` outperforms batch EM in terms of convergence speed and even accuracy and likelihood; iEM and sEMi fail in
some cases. We did not run iEM on POS tagging due to memory limitations; we expect the performance would be
similar to sEMi, which is not very encouraging (Section 4.3).

correlated (Liang and Klein, 2008). But it does sug-
gest that stepwise EM is injecting a bias that favors
accuracy over likelihood—a bias not at all reflected
in the training objective.

We can create a hybrid (sEMa+EM) that com-
bines the strengths of both sEMa and EM: First run
sEMa for 5 iterations, which quickly takes us to a
part of the parameter space yielding good accura-
cies; then run EM, which quickly improves the like-
lihood. Fortunately, accuracy does not degrade as

likelihood increases (Figure 2).

4.3 Varying the optimization parameters

Recall that stepwise EM requires setting two opti-
mization parameters: the stepsize reduction power α
and the mini-batch size m. We now explore the ef-
fect of (α,m) on likelihood and accuracy.

As mentioned in Section 3.2, larger mini-batches
(increasing m) stabilize parameter updates, while
larger stepsizes (decreasing α) provide swifter
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doc accuracy
α\m 1 3 10 30 100 300 1K 3K 10K
0.5 5.4 5.4 5.5 5.6 6.0 25.7 48.8 49.9 44.6
0.6 5.4 5.4 5.6 5.6 22.3 36.1 48.7 49.3 44.2
0.7 5.5 5.5 5.6 11.1 39.9 43.3 48.1 49.0 43.5
0.8 5.6 5.6 6.0 21.7 47.3 45.0 47.8 49.5 42.8
0.9 5.8 6.0 13.4 32.4 48.7 48.4 46.4 49.4 42.4
1.0 6.2 11.8 19.6 35.2 47.6 49.5 47.5 49.3 41.7

pos doc align

doc log-likelihood
α\m 1 3 10 30 100 300 1K 3K 10K
0.5 -8.875 -8.71 -8.61 -8.555 -8.505 -8.172 -7.92 -7.906 -7.916
0.6 -8.604 -8.575 -8.54 -8.524 -8.235 -8.041 -7.898 -7.901 -7.916
0.7 -8.541 -8.533 -8.531 -8.354 -8.023 -7.943 -7.886 -7.896 -7.918
0.8 -8.519 -8.506 -8.493 -8.228 -7.933 -7.896 -7.883 -7.89 -7.922
0.9 -8.505 -8.486 -8.283 -8.106 -7.91 -7.889 -7.889 -7.891 -7.927
1.0 -8.471 -8.319 -8.204 -8.052 -7.919 -7.889 -7.892 -7.896 -7.937

seg(en) seg(ch)

Figure 3: Effect of optimization parameters (stepsize reduction power α and mini-batch size m) on accuracy and
likelihood. Numerical results are shown for document classification. In the interest of space, the results for each task
are compressed into two gray scale images, one for accuracy (top) and one for log-likelihood (bottom), where darker
shades represent larger values. Bold (red) numbers denote the best α for a given m.
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Figure 2: sEMa quickly obtains higher accuracy than
batch EM but suffers from a slower increase in likeli-
hood. The hybrid sEMa+EM (5 iterations of EMa fol-
lowed by batch EM) increases both accuracy and likeli-
hood sharply.

progress. Remember that since we are dealing with a
nonconvex objective, the choice of stepsize not only
influences how fast we converge, but also the quality
of the solution that we converge to.

Figure 3 shows the interaction between α and m
in terms of likelihood and accuracy. In general, the
best (α,m) depends on the task and dataset. For ex-
ample, for document classification, larger m is criti-
cal for good performance; for POS tagging, it is bet-
ter to use smaller values of α and m.

Fortunately, there is a range of permissible set-
tings (corresponding to the dark regions in Figure 3)
that lead to reasonable performance. Furthermore,

the settings that perform well on likelihood gener-
ally correspond to ones that perform well on accu-
racy, which justifies using sEM`.

A final observation is that as we use larger mini-
batches (larger m), decreasing the stepsize more
gradually (smaller α) leads to better performance.
Intuitively, updates become more reliable with larger
m, so we can afford to trust them more and incorpo-
rate them more aggressively.

Stepwise versus incremental EM In Section 3.2,
we mentioned that incremental EM can be made
equivalent to stepwise EM with α = 1 and m = 1
(sEMi). Figure 1 provides the empirical support:
iEM and sEMi have very similar training curves.
Therefore, keeping around the old sufficient statis-
tics does not provide any advantage and still requires
a substantial storage cost. As mentioned before, set-
ting (α,m) properly is crucial. While we could sim-
ulate mini-batches with iEM by updating multiple
coordinates simultaneously, iEM is not capable of
exploiting the behavior of α < 1.

4.4 Varying the random seed

All our results thus far represent single runs with a
fixed random seed. We now investigate the impact
of randomness on our results. Recall that we use
randomness for two purposes: (1) initializing the
parameters (affects both batch EM and online EM),
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accuracy log-likelihood
EM sEM` EM sEM`

POS 56.2 ±1.36 58.8 ±0.73, 1.41 −6.01 −6.09
DOC 41.2 ±1.97 51.4 ±0.97, 2.82 −7.93 −7.88
SEG(en) 80.5 ±0.0 81.0 ±0.0, 0.42 −4.1 −4.1
SEG(ch) 78.2 ±0.0 77.2 ±0.0, 0.04 −7.26 −7.27
ALIGN 79.0 ±0.14 78.8 ±0.14, 0.25 −5.04 −5.11

Table 2: Mean and standard deviation over different ran-
dom seeds. For EM and sEM, the first number after ±
is the standard deviation due to different initializations
of the parameters. For sEM, the second number is the
standard deviation due to different permutations of the
examples. Standard deviation for log-likelihoods are all
< 0.01 and therefore left out due to lack of space.

and (2) permuting the examples at the beginning of
each iteration (affects only online EM).

To separate these two purposes, we used two
different seeds, Si ∈ {1, 2, 3, 4, 5} and Sp ∈
{1, 2, 3, 4, 5} for initializing and permuting, respec-
tively. Let X be a random variable denoting either
log-likelihood or accuracy. We define the variance
due to initialization as var(E(X | Si)) (E averages
over Sp for each fixed Si) and the variance due to
permutation as E(var(X | Si)) (E averages over Si).
These two variances provide an additive decompo-
sition of the total variance: var(X) = var(E(X |
Si)) + E(var(X | Si)).

Table 2 summarizes the results across the 5 tri-
als for EM and 25 for sEM`. Since we used a very
small amount of noise to initialize the parameters,
the variance due to initialization is systematically
smaller than the variance due to permutation. sEM`

is less sensitive to initialization than EM, but addi-
tional variance is created by randomly permuting the
examples. Overall, the accuracy of sEM` is more
variable than that of EM, but not by a large amount.

5 Discussion and related work

As datasets increase in size, the demand for online
algorithms has grown in recent years. One sees
this clear trend in the supervised NLP literature—
examples include the Perceptron algorithm for tag-
ging (Collins, 2002), MIRA for dependency parsing
(McDonald et al., 2005), exponentiated gradient al-
gorithms (Collins et al., 2008), stochastic gradient
for constituency parsing (Finkel et al., 2008), just
to name a few. Empirically, online methods are of-

ten faster by an order of magnitude (Collins et al.,
2008), and it has been argued on theoretical grounds
that the fast, approximate nature of online meth-
ods is a good fit given that we are interested in test
performance, not the training objective (Bottou and
Bousquet, 2008; Shalev-Shwartz and Srebro, 2008).

However, in the unsupervised NLP literature, on-
line methods are rarely seen,5 and when they are,
incremental EM is the dominant variant (Gildea and
Hofmann, 1999; Kuo et al., 2008). Indeed, as we
have shown, applying online EM does require some
care, and some variants (including incremental EM)
can fail catastrophically in face of local optima.
Stepwise EM provides finer control via its optimiza-
tion parameters and has proven quite successful.

One family of methods that resembles incremen-
tal EM includes collapsed samplers for Bayesian
models—for example, Goldwater et al. (2006) and
Goldwater and Griffiths (2007). These samplers
keep track of a sample of the latent variables for
each example, akin to the sufficient statistics that we
store in incremental EM. In contrast, stepwise EM
does not require this storage and operates more in
the spirit of a truly online algorithm.

Besides speed, online algorithms are of interest
for two additional reasons. First, in some applica-
tions, we receive examples sequentially and would
like to estimate a model in real-time, e.g., in the clus-
tering of news articles. Second, since humans learn
sequentially, studying online EM might suggest new
connections to cognitive mechanisms.

6 Conclusion

We have explored online EM on four tasks and
demonstrated how to use stepwise EM to overcome
the dangers of stochasticity and reap the benefits of
frequent updates and fast learning. We also discov-
ered that stepwise EM can actually improve accu-
racy, a phenomenon worthy of further investigation.
This paper makes some progress on elucidating the
properties of online EM. With this increased under-
standing, online EM, like its batch cousin, could be-
come a mainstay for unsupervised learning.

5Other types of learning methods have been employed
successfully, for example, Venkataraman (2001) and Seginer
(2007).
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Abstract

This paper explores several unsupervised ap-
proaches to automatic keyword extraction
using meeting transcripts. In the TFIDF
(term frequency, inverse document frequency)
weighting framework, we incorporated part-
of-speech (POS) information, word clustering,
and sentence salience score. We also evalu-
ated a graph-based approach that measures the
importance of a word based on its connection
with other sentences or words. The system
performance is evaluated in different ways, in-
cluding comparison to human annotated key-
words using F-measure and a weighted score
relative to the oracle system performance, as
well as a novel alternative human evaluation.
Our results have shown that the simple un-
supervised TFIDF approach performs reason-
ably well, and the additional information from
POS and sentence score helps keyword ex-
traction. However, the graph method is less
effective for this domain. Experiments were
also performed using speech recognition out-
put and we observed degradation and different
patterns compared to human transcripts.

1 Introduction

Keywords in a document provide important infor-
mation about the content of the document. They
can help users search through information more effi-
ciently or decide whether to read a document. They
can also be used for a variety of language process-
ing tasks such as text categorization and informa-
tion retrieval. However, most documents do not
provide keywords. This is especially true for spo-
ken documents. Current speech recognition system

performance has improved significantly, but there
is no rich structural information such as topics and
keywords in the transcriptions. Therefore, there is
a need to automatically generate keywords for the
large amount of written or spoken documents avail-
able now.

There have been many efforts toward keyword ex-
traction for text domain. In contrast, there is less
work on speech transcripts. In this paper we fo-
cus on one speech genre — the multiparty meeting
domain. Meeting speech is significantly different
from written text and most other speech data. For
example, there are typically multiple participants
in a meeting, the discussion is not well organized,
and the speech is spontaneous and contains disflu-
encies and ill-formed sentences. It is thus ques-
tionable whether we can adopt approaches that have
been shown before to perform well in written text
for automatic keyword extraction in meeting tran-
scripts. In this paper, we evaluate several differ-
ent keyword extraction algorithms using the tran-
scripts of the ICSI meeting corpus. Starting from
the simple TFIDF baseline, we introduce knowl-
edge sources based on POS filtering, word cluster-
ing, and sentence salience score. In addition, we
also investigate a graph-based algorithm in order to
leverage more global information and reinforcement
from summary sentences. We used different per-
formance measurements: comparing to human an-
notated keywords using individual F-measures and
a weighted score relative to the oracle system per-
formance, and conducting novel human evaluation.
Experiments were conducted using both the human
transcripts and the speech recognition (ASR) out-
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put. Overall the TFIDF based framework seems to
work well for this domain, and the additional knowl-
edge sources help improve system performance. The
graph-based approach yielded worse results, espe-
cially for the ASR condition, suggesting further in-
vestigation for this task.

2 Related Work

TFIDF weighting has been widely used for keyword
or key phrase extraction. The idea is to identify
words that appear frequently in a document, but do
not occur frequently in the entire document collec-
tion. Much work has shown that TFIDF is very ef-
fective in extracting keywords for scientific journals,
e.g., (Frank et al., 1999; Hulth, 2003; Kerner et al.,
2005). However, we may not have a big background
collection that matches the test domain for a reli-
able IDF estimate. (Matsuo and Ishizuka, 2004) pro-
posed a co-occurrence distribution based method us-
ing a clustering strategy for extracting keywords for
a single document without relying on a large corpus,
and reported promising results.

Web information has also been used as an ad-
ditional knowledge source for keyword extraction.
(Turney, 2002) selected a set of keywords first and
then determined whether to add another keyword hy-
pothesis based on its PMI (point-wise mutual infor-
mation) score to the current selected keywords. The
preselected keywords can be generated using basic
extraction algorithms such as TFIDF. It is impor-
tant to ensure the quality of the first selection for the
subsequent addition of keywords. Other researchers
also used PMI scores between each pair of candidate
keywords to select the top k% of words that have
the highest average PMI scores as the final keywords
(Inkpen and Desilets, 2004).

Keyword extraction has also been treated as a
classification task and solved using supervised ma-
chine learning approaches (Frank et al., 1999; Tur-
ney, 2000; Kerner et al., 2005; Turney, 2002; Tur-
ney, 2003). In these approaches, the learning al-
gorithm needs to learn to classify candidate words
in the documents into positive or negative examples
using a set of features. Useful features for this ap-
proach include TFIDF and its variations, position of
a phrase, POS information, and relative length of a
phrase (Turney, 2000). Some of these features may
not work well for meeting transcripts. For exam-

ple, the position of a phrase (measured by the num-
ber of words before its first appearance divided by
the document length) is very useful for news article
text, since keywords often appear early in the doc-
ument (e.g., in the first paragraph). However, for
the less well structured meeting domain (lack of ti-
tle and paragraph), these kinds of features may not
be indicative. A supervised approach to keyword ex-
traction was used in (Liu et al., 2008). Even though
the data set in that study is not very big, it seems that
a supervised learning approach can achieve reason-
able performance for this task.

Another line of research for keyword extrac-
tion has adopted graph-based methods similar to
Google’s PageRank algorithm (Brin and Page,
1998). In particular, (Wan et al., 2007) attempted
to use a reinforcement approach to do keyword ex-
traction and summarization simultaneously, on the
assumption that important sentences usually contain
keywords and keywords are usually seen in impor-
tant sentences. We also find that this assumption also
holds using statistics obtained from the meeting cor-
pus used in this study. Graph-based methods have
not been used in a genre like the meeting domain;
therefore, it remains to be seen whether these ap-
proaches can be applied to meetings.

Not many studies have been performed on speech
transcripts for keyword extraction. The most rel-
evant work to our study is (Plas et al., 2004),
where the task is keyword extraction in the mul-
tiparty meeting corpus. They showed that lever-
aging semantic resources can yield significant per-
formance improvement compared to the approach
based on the relative frequency ratio (similar to
IDF). There is also some work using keywords for
other speech processing tasks, e.g., (Munteanu et
al., 2007; Bulyko et al., 2007; Wu et al., 2007; De-
silets et al., 2002; Rogina, 2002). (Wu et al., 2007)
showed that keyword extraction combined with se-
mantic verification can be used to improve speech
retrieval performance on broadcast news data. In
(Rogina, 2002), keywords were extracted from lec-
ture slides, and then used as queries to retrieve rel-
evant web documents, resulting in an improved lan-
guage model and better speech recognition perfor-
mance of lectures. There are many differences be-
tween written text and speech — meetings in par-
ticular. Thus our goal in this paper is to investi-
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gate whether we can successfully apply some exist-
ing techniques, as well as propose new approaches
to extract keywords for the meeting domain. The
aim of this study is to set up some starting points for
research in this area.

3 Data

We used the meetings from the ICSI meeting data
(Janin et al., 2003), which are recordings of naturally
occurring meetings. All the meetings have been
transcribed and annotated with dialog acts (DA)
(Shriberg et al., 2004), topics, and extractive sum-
maries (Murray et al., 2005). The ASR output for
this corpus is obtained from a state-of-the-art SRI
conversational telephone speech system (Zhu et al.,
2005), with a word error rate of about 38.2% on
the entire corpus. We align the human transcripts
and ASR output, then map the human annotated DA
boundaries and topic boundaries to the ASR words,
such that we have human annotation of these infor-
mation for the ASR output.

We recruited three Computer Science undergradu-
ate students to annotate keywords for each topic seg-
ment, using 27 selected ICSI meetings.1 Up to five
indicative key words or phrases were annotated for
each topic. In total, we have 208 topics annotated
with keywords. The average length of the topics
(measured using the number of dialog acts) among
all the meetings is 172.5, with a high standard devi-
ation of 236.8. We used six meetings as our devel-
opment set (the same six meetings as the test set in
(Murray et al., 2005)) to optimize our keyword ex-
traction methods, and the remaining 21 meetings for
final testing in Section 5.

One example of the annotated keywords for a
topic segment is:
• Annotator I: analysis, constraints, template

matcher;
• Annotator II: syntactic analysis, parser, pattern

matcher, finite-state transducers;

• Annotator III: lexicon, set processing, chunk
parser.

Note that these meetings are research discussions,
and that the annotators may not be very familiar with

1We selected these 27 meetings because they have been used
in previous work for topic segmentation and summarization
(Galley et al., 2003; Murray et al., 2005).

the topics discussed and often had trouble deciding
the important sentences or keywords. In addition,
limiting the number of keywords that an annotator
can select for a topic also created some difficulty.
Sometimes there are more possible keywords and
the annotators felt it is hard to decide which five are
the most topic indicative. Among the three annota-
tors, we notice that in general the quality of anno-
tator I is the poorest. This is based on the authors’
judgment, and is also confirmed later by an indepen-
dent human evaluation (in Section 6).

For a better understanding of the gold standard
used in this study and the task itself, we thoroughly
analyzed the human annotation consistency. We re-
moved the topics labeled with “chitchat” by at least
one annotator, and also the digit recording part in
the ICSI data, and used the remaining 140 topic seg-
ments. We calculated the percentage of keywords
agreed upon by different annotators for each topic,
as well as the average for all the meetings. All of the
consistency analysis is performed based on words.
Figure 1 illustrates the annotation consistency over
different meetings and topics. The average consis-
tency rate across topics is 22.76% and 5.97% among
any two and all three annotators respectively. This
suggests that people do not have a high agreement
on keywords for a given document. We also notice
that the two person agreement is up to 40% for sev-
eral meetings and 80% for several individual top-
ics, and the agreement among all three annotators
reaches 20% and 40% for some meetings or topics.
This implies that the consistency depends on topics
(e.g., the difficulty or ambiguity of a topic itself, the
annotators’ knowledge of that topic). Further studies
are needed for the possible factors affecting human
agreement. We are currently creating more annota-
tions for this data set for better agreement measure
and also high quality annotation.

4 Methods

Our task is to extract keywords for each of the topic
segments in each meeting transcript. Therefore, by
“document”, we mean a topic segment in the re-
mainder of this paper. Note that our task is different
from keyword spotting, where a keyword is provided
and the task is to spot it in the audio (along with its
transcript).

The core part of keyword extraction is for the sys-
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Figure 1: Human annotation consistency across differ-
ent topics (upper graph) and meetings (lower graph). Y-
axis is the percent of the keywords agreed upon by two or
three annotators.

tem to assign an importance score to a word, and
then pick the top ranked words as keywords. We
compare different methods for weight calculation in
this study, broadly divided into the following two
categories: the TFIDF framework and the graph-
based model. Both are unsupervised learning meth-
ods.2 In all of the following approaches, when se-
lecting the final keywords, we filter out any words
appearing on the stopword list. These stopwords are
generated based on the IDF values of the words us-
ing all the meeting data by treating each topic seg-
ment as a document. The top 250 words from this
list (with the lowest IDF values) were used as stop-
words. We generated two different stopword lists for
human transcripts and ASR output respectively. In
addition, in this paper we focus on performing key-
word extraction at the single word level, therefore
no key phrases are generated.

2Note that by unsupervised methods, we mean that no data
annotated with keywords is needed. These methods do require
the use of some data to generate information such as IDF, or
possibly a development set to optimize some parameters or
heuristic rules.

4.1 TFIDF Framework
(A) Basic TFIDF weighting

The term frequency (TF) for a word wi in a doc-
ument is the number of times the word occurs in the
document. The IDF value is:

IDFi = log(N/Ni)

whereNi denotes the number of the documents con-
taining word wi, and N is the total number of the
documents in the collection. We also performed L2

normalization for the IDF values when combining
them with other scores.

(B) Part of Speech (POS) filtering
In addition to using a stopword list to remove

words from consideration, we also leverage POS in-
formation to filter unlikely keywords. Our hypothe-
sis is that verb, noun and adjective words are more
likely to be keywords, so we restrict our selection to
words with these POS tags only. We used the TnT
POS tagger (Brants, 2000) trained from the Switch-
board data to tag the meeting transcripts.

(C) Integrating word clustering
One weakness of the baseline TFIDF is that it

counts the frequency for a particular word, without
considering any words that are similar to it in terms
of semantic meaning. In addition, when the docu-
ment is short, the TF may not be a reliable indicator
of the importance of the word. Our idea is therefore
to account for the frequency of other similar words
when calculating the TF of a word in the document.
For this, we group all the words into clusters in an
unsupervised fashion. If the total term frequency
of all the words in one cluster is high, it is likely
that this cluster contributes more to the current topic
from a thematic point of view. Thus we want to as-
sign higher weights to the words in this cluster.

We used the SRILM toolkit (Stolcke, 2002) for
automatic word clustering over the entire docu-
ment collection. It minimizes the perplexity of the
induced class-based n-gram language model com-
pared to the original word-based model. Using the
clusters, we then adjust the TF weighting by inte-
grating with the cluster term frequency (CTF):

TF CTF (wi) = TF (wi)∗α(
P

wl∈Ci,wl 6=wi
freq(wl))

where the last summation component means the to-
tal term frequency of all the other words in this docu-
ment that belong to the same clusterCi as the current
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word wi. We set parameter α to be slightly larger
than 1. We did not include stopwords when adding
the term frequencies for the words in a cluster.

(D) Combining with sentence salience score
Intuitively, the words in an important sentence

should be assigned a high weight for keyword ex-
traction. In order to leverage the sentence infor-
mation, we adjust a word’s weight by the salience
scores of the sentences containing that word. The
sentence score is calculated based on its cosine sim-
ilarity to the entire meeting. This score is often used
in extractive summarization to select summary sen-
tences (Radev et al., 2001). The cosine similarity
between two vectors, D1 and D2, is defined as:

sim(D1, D2) =
∑

i t1it2i√∑
i t

2
1i ×

√∑
i t

2
2i

where ti is the term weight for a word wi, for which
we use the TFIDF value.

4.2 Graph-based Methods
For the graph-based approach, we adopt the itera-
tive reinforcement approach from (Wan et al., 2007)
in the hope of leveraging sentence information for
keyword extraction. This algorithm is based on the
assumption that important sentences/words are con-
nected to other important sentences/words.

Four graphs are created: one graph in which sen-
tences are connected to other sentences (S-S graph),
one in which words are connected to other words
(W-W graph), and two graphs connecting words to
sentences with uni-directional edges (W-S and S-W
graphs). Stopwords are removed before the creation
of the graphs so they will be ineligible to be key-
words.

The final weight for a word node depends on its
connection to other words (W-W graph) and other
sentences (W-S graph); similarly, the weight for
a sentence node is dependent on its connection to
other sentences (S-S graph) and other words (S-W
graph). That is,

u = αUTu+ βŴ T v

v = αV T v + βW Tu

where u and v are the weight vectors for sentence
and word nodes respectively, U, V,W, Ŵ represent
the S-S, W-W, S-W, and W-S connections. α and β

specify the contributions from the homogeneous and
the heterogeneous nodes. The initial weight is a uni-
form one for the word and sentence vector. Then
the iterative reinforcement algorithm is used until
the node weight values converge (the difference be-
tween scores at two iterations is below 0.0001 for all
nodes) or 5,000 iterations are reached.

We have explored various ways to assign weights
to the edges in the graphs. Based on the results on
the development set, we use the following setup in
this paper:

• W-W Graph: We used a diagonal matrix for
the graph connection, i.e., there is no connec-
tion among words. The self-loop values are
the TFIDF values of the words. This is also
equivalent to using an identity matrix for the
word-word connection and TFIDF as the initial
weight for each vertex in the graph. We investi-
gated other strategies to assign a weight for the
edge between two word nodes; however, so far
the best result we obtained is using this diago-
nal matrix.

• S-W and W-S Graphs: The weight for an
edge between a sentence and a word is the TF
of the word in the sentence multiplied by the
word’s IDF value. These weights are initially
added only to the S-W graph, as in (Wan et al.,
2007); then that graph is normalized and trans-
posed to create the W-S graph.

• S-S Graph: The sentence node uses a vector
space model and is composed of the weights of
those words connected to this sentence in the
S-W graph. We then use cosine similarity be-
tween two sentence vectors.

Similar to the above TFIDF framework, we also
use POS filtering for the graph-based approach. Af-
ter the weights for all the words are determined, we
select the top ranked words with the POS restriction.

5 Experimental Results: Automatic
Evaluation

Using the approaches described above, we com-
puted weights for the words and then picked the top
five words as the keywords for a topic. We chose five
keywords since this is the number of keywords that
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human annotators used as a guideline, and it also
yielded good performance in the development set.
To evaluate system performance, in this section we
use human annotated keywords as references, and
compare the system output to them. The first metric
we use is F-measure, which has been widely used
for this task and other detection tasks. We compare
the system output with respect to each human anno-
tation, and calculate the maximum and the average
F-scores. Note that our keyword evaluation is word-
based. When human annotators choose key phrases
(containing more than one word), we split them into
words and measure the matching words. Therefore,
when the system only generates five keywords, the
upper bound of the recall rate may not be 100%. In
(Liu et al., 2008), a lenient metric is used which ac-
counts for some inflection of words. Since that is
highly correlated with the results using exact word
match, we report results based on strict matching in
the following experiments.

The second metric we use is similar to Pyramid
(Nenkova and Passonneau, 2004), which has been
used for summarization evaluation. Instead of com-
paring the system output with each individual hu-
man annotation, the method creates a “pyramid”
using all the human annotated keywords, and then
compares system output to this pyramid. The pyra-
mid consists of all the annotated keywords at dif-
ferent levels. Each keyword has a score based on
how many annotators have selected this one. The
higher the score, the higher up the keyword will be in
the pyramid. Then we calculate an oracle score that
a system can obtain when generating k keywords.
This is done by selecting keywords in the decreas-
ing order in terms of the pyramid levels until we
obtain k keywords. Finally for the system hypoth-
esized k keywords, we compute its score by adding
the scores of the keywords that match those in the
pyramid. The system’s performance is measured us-
ing the relative performance of the system’s pyramid
scores divided by the oracle score.

Table 1 shows the results using human transcripts
for different methods on the 21 test meetings (139
topic segments in total). For comparison, we also
show results using the supervised approach as in
(Liu et al., 2008), which is the average of the 21-
fold cross validation. We only show the maximum
F-measure with respect to individual annotations,

since the average scores show similar trend. In ad-
dition, the weighted relative scores already accounts
for the different annotation and human agreement.

Methods F-measure weighted relative score
TFIDF 0.267 0.368
+ POS 0.275 0.370

+ Clustering 0.277 0.367
+ Sent weight 0.290 0.404

Graph 0.258 0.364
Graph+POS 0.277 0.380
Supervised 0.312 0.401

Table 1: Keyword extraction results using human tran-
scripts compared to human annotations.

We notice that for the TFIDF framework, adding
POS information slightly helps the basic TFIDF
method. In all the meetings, our statistics show that
adding POS filtering removed 2.3% of human anno-
tated keywords from the word candidates; therefore,
this does not have a significant negative impact on
the upper bound recall rate, but helps eliminate un-
likely keyword candidates. Using word clustering
does not yield a performance gain, most likely be-
cause of the clustering technique we used — it does
clustering simply based on word co-occurrence and
does not capture semantic similarity properly.

Combining the term weight with the sentence
salience score improves performance, supporting the
hypothesis that summary sentences and keywords
can reinforce each other. In fact we performed an
analysis of keywords and summaries using the fol-
lowing two statistics:

(1) k =
Psummary(wi)
Ptopic(wi)

where Psummary(wi) and Ptopic(wi) represent the
the normalized frequency of a keyword wi in the
summary and the entire topic respectively; and

(2) s =
PSsummary
PStopic

where PSsummary represents the percentage of the
sentences containing at least one keyword among all
the sentences in the summary, and similarly PStopic
is measured using the entire topic segment. We
found that the average k and s are around 3.42 and
6.33 respectively. This means that keywords are
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more likely to occur in the summary compared to the
rest of the topic, and the chance for a summary sen-
tence to contain at least one keyword is much higher
than for the other sentences in the topic.

For the graph-based methods, we notice that
adding POS filtering also improves performance,
similar to the TFIDF framework. However, the
graph method does not perform as well as the TFIDF
approach. Comparing with using TFIDF alone, the
graph method (without using POS) yielded worse re-
sults. In addition to using the TFIDF for the word
nodes, information from the sentences is used in the
graph method since a word is linked to sentences
containing this word. The global information in the
S-S graph (connecting a sentence to other sentences
in the document) is propagated to the word nodes.
Unlike the study in (Wan et al., 2007), this infor-
mation does not yield any gain. We did find that the
graph approach performed better in the development
set, but it seems that it does not generalize to this test
set.

Compared to the supervised results, the TFIDF
approach is worse in terms of the individual maxi-
mum F-measure, but achieves similar performance
when using the weighted relative score. However,
the unsupervised TFIDF approach is much simpler
and does not require any annotated data for train-
ing. Therefore it may be easily applied to a new
domain. Again note that these results used word-
based selection. (Liu et al., 2008) investigated
adding bigram key phrases, which we expect to
be independent of these unigram-based approaches
and adding bigram phrases will yield further per-
formance gain for the unsupervised approach. Fi-
nally, we analyzed if the system’s keyword ex-
traction performance is correlated with human an-
notation disagreement using the unsupervised ap-
proach (TFIDF+POS+Sent weight). The correla-
tion (Spearman’s ρ value) between the system’s
F-measure and the three-annotator consistency on
the 27 meetings is 0.5049 (p=0.0072). This indi-
cates that for the meetings with a high disagreement
among human annotators, it is also challenging for
the automatic systems.

Table 2 shows the results using ASR output for
various approaches. The performance measure is
the same as used in Table 1. We find that in gen-
eral, there is a performance degradation compared

to using human transcripts, which is as expected.
We found that only 59.74% of the human annotated
keywords appear in ASR output, that is, the upper
bound of recall is very low. The TFIDF approach
still outperforms the graph method. Unlike on hu-
man transcripts, the addition of information sources
in the TFIDF approach did not yield significant per-
formance gain. A big difference from the human
transcript condition is the use of sentence weight-
ing — adding it degrades performance in ASR, in
contrast to the improvement in human transcripts.
This is possibly because the weighting of the sen-
tences is poor when there are many recognition er-
rors from content words. In addition, compared to
the supervised results, the TFIDF method has sim-
ilar maximum F-measure, but is slightly worse us-
ing the weighted score. Further research is needed
for the ASR condition to investigate better modeling
approaches.

Methods F-measure weighted relative score
TFIDF 0.191 0.257
+ POS 0.196 0.259

+ Clustering 0.196 0.259
+ Sent weigh 0.178 0.241

Graph 0.173 0.223
Graph+POS 0.183 0.233
Supervised 0.197 0.269

Table 2: Keyword extraction results using ASR output.

6 Experimental Results: Human
Evaluation

Given the disagreement among human annotators,
one question we need to answer is whether F-
measure or even the weighted relative scores com-
pared with human annotations are appropriate met-
rics to evaluate system-generated keywords. For
example, precision measures among the system-
generated keywords how many are correct. How-
ever, this does not measure if the unmatched system-
generated keywords are bad or acceptable. We
therefore performed a small scale human evaluation.
We selected four topic segments from four differ-
ent meetings, and gave output from different sys-
tems to five human subjects. The subjects ranged
in age from 22 to 63, and all but one had only basic
knowledge of computers. We first asked the eval-
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uators to read the entire topic transcript, and then
presented them with the system-generated keywords
(randomly ordered by different systems). For com-
parison, the keywords annotated by our three hu-
man annotators were also included without reveal-
ing which sets of keywords were generated by a
human and which by a computer. Because there
was such disagreement between annotators regard-
ing what made good keywords, we instead asked our
evaluators to mark any words that were definitely
not keywords. Systems that produced more of these
rejected words (such as “basically” or “mmm-hm”)
are assumed to be worse than those containing fewer
rejected words. We then measured the percentage of
rejected keywords for each system/annotator. The
results are shown in Table 3. Not surprisingly, the
human annotations rank at the top. Overall, we find
human evaluation results to be consistent with the
automatic evaluation metrics in terms of the ranking
of different systems.

Systems Rejection rate
Annotator 2 8%
Annotator 3 19%
Annotator 1 25%

TFIDF + POS 28%
TFIDF 30%

Table 3: Human evaluation results: percentage of the re-
jected keywords by human evaluators for different sys-
tems/annotators.

Note this rejection rate is highly related to the re-
call/precision measure in the sense that it measures
how many keywords are acceptable (or rejected)
among the system generated ones. However, instead
of comparing to a fixed set of human annotated key-
words (e.g., five) and using that as a gold standard
to compute recall/precision, in this evaluation, the
human evaluator may have a larger set of accept-
able keywords in their mind. We also measured the
human evaluator agreement regarding the accepted
or bad keywords. We found that the agreement on
a bad keyword among five, four, and three human
evaluator is 10.1%, 14.8%, and 10.1% respectively.
This suggests that humans are more likely to agree
on a bad keyword selection compared to agreement
on the selected keywords, as discussed in Section 3
(even though the data sets in these two analysis are

not the same). Another observation from the human
evaluation is that sometimes a person rejects a key-
word from one system output, but accepts that on
the list from another system. We are not sure yet
whether this is the inconsistency from human evalu-
ators or whether the judgment is based on a word’s
occurrence with other provided keywords and thus
some kind of semantic coherence. Further investi-
gation on human evaluation is still needed.

7 Conclusions and Future Work

In this paper, we evaluated unsupervised keyword
extraction performance for the meeting domain, a
genre that is significantly different from most pre-
vious work. We compared several different ap-
proaches using the transcripts of the ICSI meeting
corpus. Our results on the human transcripts show
that the simple TFIDF based method is very compet-
itive. Adding additional knowledge such as POS and
sentence salience score helps improve performance.
The graph-based approach performs less well in this
task, possibly because of the lack of structure in
this domain. We use different performance measure-
ments, including F-measure with respect to individ-
ual human annotations and a weighted metric rela-
tive to the oracle system performance. We also per-
formed a new human evaluation for this task and our
results show consistency with the automatic mea-
surement. In addition, experiments on the ASR out-
put show performance degradation, but more impor-
tantly, different patterns in terms of the contributions
of information sources compared to using human
transcripts. Overall the unsupervised approaches are
simple but effective; however, system performance
compared to the human performance is still low,
suggesting more work is needed for this domain.

For the future work, we plan to investigate dif-
ferent weighting algorithms for the graph-based ap-
proach. We also need a better way to decide the
number of keywords to generate instead of using a
fixed number. Furthermore, since there are multiple
speakers in the meeting domain, we plan to incor-
porate speaker information in various approaches.
More importantly, we will perform a more rigorous
human evaluation, and also use extrinsic evaluation
to see whether automatically generated keywords fa-
cilitate tasks such as information retrieval or meeting
browsing.
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Abstract

This paper introduces the Finite-State Turn-
Taking Machine (FSTTM), a new model to
control the turn-taking behavior of conversa-
tional agents. Based on a non-deterministic
finite-state machine, the FSTTM uses a cost
matrix and decision theoretic principles to se-
lect a turn-taking action at any time. We show
how the model can be applied to the problem
of end-of-turn detection. Evaluation results on
a deployed spoken dialog system show that the
FSTTM provides significantly higher respon-
siveness than previous approaches.

1 Introduction

Turn-taking, the process by which participants in a
conversation alternate speech and silence, is an es-
sential component of spoken interaction. In order to
lead productive conversations, people need not only
know what to say but also when to say it. Decades
of research on Conversation Analysis and psycholin-
guistics (Duncan, 1972; Sacks et al., 1974; Ore-
ström, 1983; Schegloff, 2000; Wesseling and van
Son, 2005) have shown that human turn-taking be-
havior relies on a wide range of rules and signals
at many different levels of language, from prosody
to syntax, semantics, and discourse structure. In
contrast, turn-taking in spoken dialog systems is of-
ten reduced to ad hoc rules only based on very low
level features. This simplistic approach leads to in-
efficient, unnatural, and possibly confusing behavior
(Porzel and Baudis, 2004; Ward et al., 2005).

∗This research was conducted when the first author was a
student at the Language Technologies Institute.

Recently, more complex models of turn-taking
have been proposed (Cassell et al., 2001; Thorisson,
2002; Kronild, 2006). Yet, these models still rely
extensively on hand-coded expert knowledge and
do not lend themselves to data-driven optimization.
Furthermore, to our knowledge, no such model has
been deployed in a widely used system outside of the
laboratory. In this paper, we propose a flexible, prac-
tical model of turn-taking behavior that builds upon
previous work on finite-state models of the conver-
sational floor. Because of its simplicity and gener-
ality, this model can be applied to many turn-taking
phenomena. At the same time, being grounded in
decision theory, it lends itself well to data-driven op-
timization. We illustrate our approach by applying
the model to a specific turn-taking task: end-of-turn
detection.

2 Conversational Floor as a Finite-State
Machine

2.1 6-state finite state models of turn-taking

In the 1960’s and early 1970’s, several researchers
proposed models to explain the rhythmic turn-taking
patterns in human conversation. In particular, Jaffe
and Feldstein (1970) studied the mean duration of
pauses, switching pauses (when a different speaker
takes the floor), simultaneous speech, and (single-
speaker) vocalizations in recorded dyadic conversa-
tions. Based on their observation that these dura-
tions follow exponential distributions, they proposed
first-order Markov models to capture the alterna-
tion of speech and silence in dialog. Their initial
model had four states: only participant A is speak-
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Figure 1: Our six-state model of turn-taking, inspired by
Jaffe and Feldstein (1970) and Brady (1969). See section
3.1 for a description of the states.

ing; only participant B is speaking; both participants
are speaking; and neither participant is speaking.
However, such a model fails to distinguish switch-
ing pauses from A to B from switching pauses from
B to A. Based on this observation, they extend their
model to a six-state model which they found to bet-
ter fit their data than the four-state model. Around
the same time, Brady (1969) developed a very sim-
ilar six-state model. He trained the parameters on a
recorded conversation and compared the generated
conversations to the original real one along several
dimensions (pause and speech segment durations,
overlaps, etc), finding that his model generally pro-
duced a good fit of the data.

2.2 Finite-State Models for Control

While Jaffe, Feldstein and Brady were primarily
concerned with the analysis of human-human con-
versations, more recently, several researchers have
proposed finite-state machines to control conversa-
tional agents. For instance, Cassell et al. (2001)
model the conversational state of an embodied real
estate agent as a 5-state machine. Two states indi-
cate whether a user is present or not, whereas the
other three indicate who holds the floor between the
user and the agent, or whether the floor is open.
Floor conflicts are not captured by this machine and
are presumably resolved through simple rules (e.g.
when the user speaks, the agent yields the floor).

Kronild (2006) proposes a much more complex
model, based on Harel statecharts, which are an ex-
tension of finite-state machines for modeling and vi-
sualizing abstract control (Harel, 1987).

Thorisson’s Ymir architecture (Thorisson, 2002)
is an attempt to model the cognitive processes in-
volved in conversation. It features dialog states, cap-
turing, for example, who has the floor, and rules that
govern the transition from one state to another based
on ”boolean conditions of perceptual features”.

All these models are deterministic. At any point
in time, the agent knows who owns the floor and uses
fixed rules to take appropriate actions. These ap-
proaches assume 1) that the system can obtain per-
fectly reliable information on the state of the world,
and 2) that the state itself is unambiguous.

3 The Finite-State Turn-Taking Machine

3.1 Extending the 6-state model for control

Our model, the Finite-State Turn-Taking Machine
(FSTTM), uses the same six states as Jaffe and
Feldstein: USER and SY STEM represent states
where one and only one of the participants claims
the floor, FREES and FREEU states where no
participant claims the floor (following, resp., a
SY STEM and USER state), and BOTHS and
BOTHU states where both participants claim the
floor (following, resp. a SY STEM and USER
state). However, we apply this model to the control
of a conversational agent, with a goal similar to that
of Cassel, Thorisson, and Kronild. One important
distinction is that we define the states in terms of the
participants’ intentions and obligations (in the sense
of Traum and Allen (1994)) rather than the surface
level observation of speech vs silence. For example,
the state is USER when the user has the obligation
to speak (to respond to a system question) or the in-
tention to speak, while at the same time, the system
does not hold the floor. This does not necessarily
mean that the user is speaking, for example at pauses
during a user utterance.

As can be seen in Figure 1, not all transitions are
valid. First, there is no direct transition between any
of the intermediate states (the two FREE states and
two BOTH states). The assumption is that to go
from any of these state to another, the model will
first go to either SY STEM or USER. This is an
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approximation as there might be cases where, for
example, both the system and user start speaking
at the exact same time, going from a FREE state
to a BOTH state. However these cases are rare
enough that they can be approximated using a tran-
sition through either SY STEM or USER. Sec-
ond, because intermediate states are conditioned on
who had the floor previously, not all valid transitions
are bidirectional. For example, there is no transi-
tion from SY STEM to BOTHU . We associate
pairs of user/system actions to each transition. The
four possible actions are Grab the floor, Release the
floor, Wait while not claiming the floor, and Keep
the floor. For example, transition from SY STEM
to FREES corresponds to the user waiting silently
and the system releasing the floor at the end of a
prompt, noted (R,W ) (we always note the system
action first and user action second).

This representation allows us to formalize a wide
variety of turn-taking phenomena in a unified frame-
work. Specifically, there are 4 types of 2-step transi-
tions from a single-floor-holder state (SY STEM or
USER) to another (or the same) single-floor-holder
state, which represent typical turn-taking phenom-
ena:

Turn transitions with gap are the most common
way the floor goes from one participant to the
other. For example, at the end of a user utter-
ance, once the user finishes speaking, the floor
becomes free, after which the system starts re-
sponding, thus grabbing the floor. The resulting
state sequence is:

SY STEM
(R,W )→ FREES

(W,G)→ USER

Conversely, the transition with gap following a
system prompt corresponds to:

USER
(R,W )→ FREES

(W,G→ USER

Turn transitions with overlap happen when a par-
ticipant grabs the floor while it still belongs to
the other. For example, when a user barges in
on a system prompt, both participants hold the
floor. Then, the system recognizes the barge-
in attempt and relinquishes the floor, which be-
comes user’s.

SY STEM
(K,G)→ BOTHS

(R,K→ USER

And conversely, when the system interrupts the
user mid-utterance (which in dialog systems is
more often the result of an intentional cut-in,
rather than intentional interruption), the state
sequence is:

USER
(G,K)→ BOTHU

(K,R)→ SY STEM

Failed interruptions happen when a participant
barges in on the other and then withdraws be-
fore the original floor holder releases the floor.
For example, when the system interrupts the
user (often by mistake) but detects it and in-
terrupts itself:

USER
(G,K)→ BOTHU

(R,K→ USER

The converse is usually the result of the system
failing to react fast enough to a user barge-in:

SY STEM
(K,G)→ BOTHS

(K,R)→ SY STEM

Note that backchannels seem to fit in this cat-
egory too. However, since backchannels, by
definition, do not represent an attempt to grab
the floor, they are not captured by the model
as it is (for example, the floor should remain
SY STEM when a user backchannels a sys-
tem utterance).

Time outs start like transitions with gap but the in-
tended next speaker (e.g. the user after a system
prompt) does not take the floor and the original
floor holder grabs it back. For instance, after a
system prompt, if the floor remains free for a
certain amount of time, the system attempts to
re-establish the communication with the user,
as follows:

SY STEM
(R,W )→ FREES

(G,W→ SY STEM

The opposite also happens when the system is
to slow to respond to the user:

USER
(W,R)→ FREEU

(W,G→ USER

While all the transitions above were described
as deterministic, the actual state of the model is
not fully observable. Specifically, while the system
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knows whether its claiming the floor or not, it can
only believe with some degree of uncertainty that
the user does so. The system’s knowledge of its own
claim to the floor splits the state space into two dis-
joint subsets. When the system claims the floor, the
state can be SY STEM , BOTHS , or BOTHU ).
When the system does not claim the floor, the state
can be USER, FREEU , or FREES). In either
case, the system needs to recognize the user’s in-
tention (i.e. whether the user claims to the floor or
not) to maintain a probability distribution over the
three states. Since the distinction between the two
BOTH states (resp. the two FREE states) is based
on past history that can be known with a high level
of certainty, the uncertainty in state distribution is
fully characterized by the probability that the user is
claiming the floor, which will have to be estimated
from observations, as we will see below.

3.2 Cost of Turn-Taking Actions

The problem we are facing is that of choosing the
best system action given the system’s belief about
the current state of the model. That is achieved by
applying the probabilistic decision theory principle
of selecting the action with lowest expected cost.
The actions available to the system are the four de-
scribed above (G,R,K,W ), although not all actions
are available in all states. In fact, as can be seen in
Table 1, there are always only two actions available
in each state, depending on whether the system is
claiming the floor or not.

Each action in each state has a particular cost.
While there are many possible ways of defining
these costs, we propose a simple cost structure that
derives from the principles laid out in Sacks et al.
(1974):

Participants in a conversation attempt to
minimize gaps and overlaps.

From this general principle, we derive three rules to
drive the design of a cost matrix:

1. The cost of an action that resolves either a gap
or an overlap is zero

2. The cost of an action that creates unwanted gap
or overlap is equal to a constant parameter (po-
tentially different for each action/state pair)

3. The cost of an action that maintains a gap or
overlap is either a constant or an increasing
function of the total time spent in that state

The resulting cost matrix is shown in Table 1, where

• CS is the cost of interrupting a system prompt
before its end when the user is not claiming the
floor (false interruption)

• CO(τ ) is the cost of remaining in an overlap
that is already τ ms long

• CU is the cost of grabbing the floor when the
user is holding it (cut-in)

• CG(τ ) is the cost of remaining in a gap that is
already τ ms long

This cost structure makes a number of simplifying
assumptions and there are many other possible cost
matrices. For example, the cost of interrupting the
user might vary depending on what has already been
said in the utterance, so does the cost of interrupt-
ing a system prompt. A more principled approach
to setting the costs would be to estimate from per-
ceptual experiments or user studies what the impact
of remaining in gap or overlap is compared to that
of a cut-in or false interruption. However, as a first
approximation, the proposed cost structure offers a
simple way to take into account some of the con-
straints of interaction.

3.3 Decision Theoretic Action Selection
Given the state space and the cost matrix given
above, the optimal decision at any point in time is
the one that yields the lowest expected cost, where
the expected cost of action A is:

C(A) =
∑

S∈Σ

P (s = S|O) · C(A,S)

where Σ is the set of states, O are the observable
features of the world, and C(A,S) is the cost of ac-
tion A in state S, from the cost matrix in Table 1.
In addition to the cost matrix’ four constants, which
we will consider as parameters of the model, it is
thus necessary to estimate P (s = S|O), which as
seen above amounts to estimate the probability that
the user is claiming the floor. Key to applying the
FSTTM to a practical turn-taking problem is thus
the construction of accurate estimates of the proba-
bilities P (s = S|O).
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PPPPPPPPPState
Action

K R W G

SY STEM 0 CS - -
BOTHS CO(τ) 0 - -
BOTHU CO(τ) 0 - -
USER - - 0 CU
FREEU - - CG(τ) 0
FREES - - CG(τ) 0

Table 1: Cost of system actions in each state (K: keep the floor, R: release the floor, W : wait without the floor, G:
grab the floor, τ : time spent in current state, -: action unavailable).

4 Endpointing with the FSTTM

4.1 Problem formalization

In our FSTTM formalism, endpointing is the prob-
lem of selecting between the Wait and the Grab ac-
tions during a user utterance. We make the simplify-
ing assumption that, once a user utterance has been
detected, the only states with non-zero probability
are USER and FREEU . While this does not cap-
ture cases where the system erroneously detects user
speech (because there is, for example, background
noise), it represents a working first approximation
of the problem.

The main issue is to estimate the probability
P (s = FREEU |Ot) (hereafter abbreviated as
P (F |Ot), P (s = USER|Ot) being abbreviated as
P (U |Ot)) where Ot represents all observable fea-
tures at time t. Given that probability, the expected
cost of grabbing the floor is:

C(G|Ot) = P (U |Ot) · CU + P (F |Ot) · 0
= (1− P (F |Ot)) · CU

Similarly, the expected cost of waiting is:

C(W |Ot) = P (F |Ot) · CG(τ)

The system endpoints whenever the expected cost
of grabbing the floor becomes higher than that of
waiting.

We consider two separate cases for computing
both P (F |Ot) and CG(τ): when a pause has been
detected by the voice activity detector (VAD), and
when no pause has been detected (yet). In the fol-
lowing sections, we provide details on the approxi-
mations and estimation methods for these two cases.

4.2 At pauses

If a pause has been detected by the VAD, we set
the cost of waiting in the FREEU state to be pro-
portional to the duration of the pause so far. If the
user has released the floor, the duration of the current
pause corresponds to the time spent in the FREEU
state, i.e. τ in the cost matrix of Table 1. In this case,
we set CG(τ) = CpG · τ as a simple application of
rule 3 from section 3.2.

We decompose the observations at time t,Ot, into
observations available at the start of the pause (O),
and observations made during the pause. With only
audio information available, the only information
available during the pause is its duration so far, i.e.
τ . Specifically, we know that d ≥ τ , where d is the
total duration of the pause (with d = ∞ at the end
of a turn1). Consequently, P (F |Ot) can be rewritten
using Bayes rule as

P (F |Ot) =
P (d ≥ τ |O,F ) · P (F |O)

P (d ≥ τ |O)

=
P (F |O)

P (d ≥ τ |O)

where P (F |O) is the probability that the user re-
leased the floor without any knowledge of the dura-
tion of the pause, and P (d ≥ τ |O) is the probability
that the pause will last at least τ ms. We further de-
compose P (d ≥ τ |O) into

P (d ≥ τ |O) = P (d ≥ τ, U |O) + P (d ≥ τ, F |O)

1Note that this is an approximation since the user could start
speaking again after releasing the floor to reestablish the chan-
nel (e.g. by saying ”Hello?”). However, in the vast majority of
cases, the time after which the user resumes speaking is signifi-
cantly longer than the time the system takes to endpoint.
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= P (d ≥ τ |O,U) · P (U |O) +
P (d ≥ τ |O,F ) · P (F |O)

= P (d ≥ τ |O,U) · (1− P (F |O))
+P (F |O)

Consequently, P (F |Ot) is a function of P (F |O)
and P (d ≥ τ |O,U). We estimate P (F |O) by step-
wise logistic regression on a training set of pauses
labeled for finality (whether the pause is turn-final or
turn-internal), using a wide range of features avail-
able from various components of the dialog system.
Based on the well established observation that pause
durations follow an exponential distribution (Jaffe
and Feldstein, 1970; Lennes and Anttila, 2002; Raux
et al., 2008), P (d ≥ τ |O,U) is a function of mean
pause duration, computed on the training set.

4.3 In speech

In some cases, it is not necessary to wait for the VAD
to detect a pause to know with high confidence that
the user has released the floor. For example, after a
simple yes/no question, if the user says ”YES”, they
are very likely to have released the floor, regardless
of how long they remain silent afterwards. In order
to exploit this fact and improve the responsiveness
of the system in these highly predictable cases, we
use a separate model to compute the expected costs
of waiting and grabbing the floor before any pause is
detected by the VAD (specifically, whenever the du-
ration of the current pause is between 0 and 200 ms).
In this case, we set the cost of waiting to a constant
CsG. We train a logistic regression model to estimate
P (F |Ot) each time a new partial hypothesis is pro-
duced by the ASR during a user utterance. We use
the same set of features as above.

5 Evaluation

5.1 Corpus and Features

We evaluated the effectiveness of the FSTTM on
an actual deployed spoken dialog system. The sys-
tem provides bus schedule information for a mid-
size North American city. It is actually used by the
general public and therefore constantly operates and
collects data. In order to train the various proba-
bility estimation models and evaluate the approach
in batch, we first collected a corpus of 586 dialogs

between May 4, and May 14, 2008 (the ”2008 cor-
pus”).

All of the features we used can be automatically
extracted at runtime, and most of them were readily
available in the system. They include dialog state in-
formation, turn-taking features, such as whether the
current user utterance is a barge-in, and semantic
information derived from the dialog state and par-
tial recognition hypotheses provided by the speech
recognizer. Dialog state is abstracted to three high-
level states, which correspond to the type of system
prompt directly preceding the user utterance: Open
question (”What can I do for you?”); Closed ques-
tion (e.g. ”Where do you want to go?”); and Confir-
mation (e.g. ”Going to the airport. Is this correct?”).

To capture lexical cues correlated with the end of
turns, we created a new feature called the boundary
LM score. To compute it, we used previously col-
lected data to train dialog-state-dependent statistical
language models to estimate the probability that the
hypothesis is complete. Boundary LM score is de-
fined as the ratio of the log likelihood of the hypoth-
esis being complete by that of the hypothesis being
incomplete.

5.2 Estimating P (F |Ot)
We trained two logistic regression models using
stepwise regression and 10-fold cross-validation for
evaluation. The first model, whose performance
is given in Table 2, estimates P (F |O) at pauses.
The model is unable to improve classification accu-
racy over the majority baseline for each state, how-
ever, the statistically significant improvement in av-
erage log likelihood indicates that the probability
estimates are improved by using the features. The
most informative feature in all three states was the
boundary LM score introduced in section 5.1. Other
selected features included the average number of
words per user utterance so far and whether the cur-
rent utterance is a barge-in (for the Open and Closed
question states), as well as whether the partial hy-
pothesis contained a confirmation marker such as
”YES” or ”SURE” (for the Confirmation state).

The second model performs the same regression,
this time on all partial hypotheses received during
speech segments. As seen in the ”S” columns in Ta-
ble 2, classification error was significantly reduced
and the gain in average log likelihood were larger
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Open question Closed question Confirmation
P S P S P S

Majority Baseline 38% 20% 25% 32% 12% 36%
Classification Error 35% 17% 26% 22% 12% 17%
Baseline log likelihood -0.66 -0.50 -0.56 -0.63 -0.36 -0.65
Log likelihood -0.61 -0.40 -0.50 -0.49 -0.30 -0.40

Table 2: Performance of state-specific logistic regression for estimating P (F |O) at pauses (P) and in speech (S).

(a) In-pause evaluation on the 2007 corpus. (a) Anytime evaluation on the 2008 corpus.

Figure 2: Batch evaluation of FSTTM endpointing.

than at pauses, particularly for the ”Closed ques-
tion” and ”Confirmation” states. Again, boundary
LM score was the most informative feature. The
duration of the pause at the end of the partial hy-
pothesis (between 0 and 200 ms) also proved well
correlated with finality.

5.3 Batch Evaluation of the FSTTM

We performed two batch evaluations of the FSTTM.
The first one aims at comparing in-pause-FSTTM
with a fixed-threshold baseline as well as previous
data-driven endpointing methods proposed in Ferrer
et al. (2003) (reimplemented by us) and Raux et al.
(2008). This evaluation was done on the corpus used
in Raux et al. (2008) (the ”2007 corpus”). As seen
in Figure 2 (a), the FSTTM outperforms all other ap-
proaches (albeit only slightly compared to Ferrer et
al.), improving over the fixed threshold baseline by
up to 29.5%.

Second, we compared the anytime-FSTTM with
in-pause-FSTTM and a fixed-threshold baseline (for
reference) on the more recent 2008 corpus (since the
2007 corpus did not contain all necessary features
for anytime-FSTTM). We set CpG = 1 and set CsG
to either 0, leading to an endpointer that never end-

points during speech (in-pause-FSTTM), or 1000
(anytime-FSTTM). In both cases, we vary CU to
compute the latency / cut-in rate trade-off curve.
The results are shown in Figure 2 (b). Anytime-
FSTTM endpointing is consistently better than in-
pause-FSTTM. For example, at a cut-in rate of 5%,
anytime-FSTTM yields latencies that are on average
17% shorter than in-pause-FSTTM, and 40% shorter
than the baseline. Additionally, we found that, in
anytime-FSTTM, 30 to 40% of the turns are end-
pointed before the pause is detected by the VAD.

5.4 Live Evaluation

To confirm the results of the batch evaluation, we
implemented our FSTTM model in the deployed
system a let it run for ten days using either FSTTM
or a fixed threshold for endpointing, resulting in
a corpus of 171 FSTTM and 148 control dialogs.
For FSTTM, we set CpG = 1, CsG = 500, and
CU = 5000. In the batch evaluation, these values
correspond to a cut-in rate of 6.3% and an average
latency of 320 ms. For the control condition, we
set the fixed endpointing threshold to 555 ms, which
also corresponded to about 6.3% cut-ins.

Figure 3 shows the average latency and cut-in rate
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(a) Latency (b) Cut-in rates

Figure 3: Live evaluation results. All confidence intervals for latency (not shown on the figure) fall within +/− 4ms.

for both conditions. The FSTTM improves over the
baseline on all metrics, reducing average latency by
193 ms (p < 0.05), cut-in rate by 1.5% (although
this result is not statistically significant).

6 Discussion

Both batch and live evaluation results confirm the
effectiveness of the FSTTM approach in improv-
ing system responsiveness. This approach signif-
icantly reduced endpointing latency over previous
approaches. Boundary LM score got the highest
weight in the regression, indicating that in a domain
such as telephone-based information access, lexical
cues are very informative for endpointing. The fact
that boundary LMs can be computed without any hu-
man transcription effort (since they are trained on
ASR output) makes them all the more appealing.

Essentially, the FSTTM provides a simple, unified
model of turn-taking that lends itself to data-driven
optimization. While we discussed specific cost
structures and probability estimation techniques, the
framework’s flexibility opens it to other choices at
many levels. By formalizing the overall turn-taking
process in a probabilistic, decision-theoretic frame-
work, the FSTTM extends and generalizes previous
classification-based approaches to endpointing such
as those proposed by Sato et al. (2002), Ferrer et
al. (2003), Takeuchi et al. (2004), and our previous
work (Raux et al., 2008).

Possible extensions of the approach include data-
driven cost matrices to relax some of the assump-
tions introduced in section 3.2, as well as more com-
plex state structures to handle, for example, multi-
party conversations.

Finally, we plan to investigate more principled ap-
proaches, such as Partially Observable Markov De-
cision Processes or Dynamic Bayesian Networks, to
model the different sources of uncertainty (detection
errors and inherent ambiguity) and track the state
distribution over time. Raux (2009) provides more
details on all aspects of the approach and its possi-
ble extensions.

7 Conclusion

In this paper, motivated by existing finite-state mod-
els of turn-taking in dyadic conversations, we pro-
pose the Finite-State Turn-Taking Machine, an ap-
proach to turn-taking that relies on three core ele-
ments: a non-deterministic finite-state machine that
captures the conversational floor; a cost matrix that
models the impact of different system actions in dif-
ferent states; and a decision-theoretic action selec-
tion mechanism. We describe the application of the
FSTTM to the key turn-taking phenomenon of end-
of-turn detection. Evaluation both offline and by
applying the FSTTM to a deployed spoken dialog
system system showed that it performs significantly
better than a fixed-threshold baseline.
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Abstract

Automatically extracting social meaning and
intention from spoken dialogue is an impor-
tant task for dialogue systems and social com-
puting. We describe a system for detecting
elements of interactional style: whether a
speaker is awkward, friendly, or flirtatious.
We create and use a new spoken corpus of 991
4-minute speed-dates. Participants rated their
interlocutors for these elements of style. Us-
ing rich dialogue, lexical, and prosodic fea-
tures, we are able to detect flirtatious, awk-
ward, and friendly styles in noisy natural con-
versational data with up to 75% accuracy,
compared to a 50% baseline. We describe sim-
ple ways to extract relatively rich dialogue fea-
tures, and analyze which features performed
similarly for men and women and which were
gender-specific.

1 Introduction

How can we extract social meaning from speech, de-
ciding if a speaker is particularly engaged in the con-
versation, is uncomfortable or awkward, or is partic-
ularly friendly and flirtatious? Understanding these
meanings and how they are signaled in language is
an important sociolinguistic task in itself. Extracting
them automatically from dialogue speech and text
is crucial for developing socially aware computing
systems for tasks such as detection of interactional
problems or matching conversational style, and will
play an important role in creating more natural dia-
logue agents (Pentland, 2005; Nass and Brave, 2005;
Brave et al., 2005).

Cues for social meaning permeate speech at every
level of linguistic structure. Acoustic cues such as
low and high F0 or energy and spectral tilt are impor-
tant in detecting emotions such as annoyance, anger,
sadness, or boredom (Ang et al., 2002; Lee and
Narayanan, 2002; Liscombe et al., 2003), speaker
characteristics such as charisma (Rosenberg and
Hirschberg, 2005), or personality features like extro-
version (Mairesse et al., 2007; Mairesse and Walker,
2008). Lexical cues to social meaning abound.
Speakers with links to depression or speakers who
are under stress use more first person singular pro-
nouns (Rude et al., 2004; Pennebaker and Lay, 2002;
Cohn et al., 2004), positive emotion words are cues
to agreeableness (Mairesse et al., 2007), and neg-
ative emotion words are useful cues to deceptive
speech (Newman et al., 2003). The number of words
in a sentence can be a useful feature for extroverted
personality (Mairesse et al., 2007). Finally, dia-
log features such as the presence of disfluencies
can inform listeners about speakers’ problems in ut-
terance planning or about confidence (Brennan and
Williams, 1995; Brennan and Schober, 2001).

Our goal is to see whether cues of this sort are
useful in detecting particular elements of conversa-
tional style and social intention; whether a speaker
in a speed-dating conversation is judged by the in-
terlocutor as friendly, awkward, or flirtatious.

2 The Corpus

Our experiments make use of a new corpus we have
collected, the SpeedDate Corpus. The corpus is
based on three speed-dating sessions run at an elite
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private American university in 2005 and inspired
by prior speed-dating research (Madan et al., 2005;
Pentland, 2005). The graduate student participants
volunteered to be in the study and were promised
emails of persons with whom they reported mutual
liking. Each date was conducted in an open setting
where there was substantial background noise. All
participants wore audio recorders on a shoulder sash,
thus resulting in two audio recordings of the approx-
imately 1100 4-minute dates. In addition to the au-
dio, we collected pre-test surveys, event scorecards,
and post-test surveys. This is the largest sample we
know of where audio data and detailed survey infor-
mation were combined in a natural experiment.

The rich survey information included date per-
ceptions and follow-up interest, as well as gen-
eral attitudes, preferences, and demographic infor-
mation. Participants were also asked about the
conversational style and intention of the interlocu-
tor. Each speaker was asked to report how of-
ten their date’s speech reflected different conversa-
tional styles (awkward, friendly, flirtatious, funny,
assertive) on a scale of 1-10 (1=never, 10=con-
stantly): “How often did the other person behave in
the following ways on this ‘date’?”. We chose three
of these five to focus on in this paper.

We acquired acoustic information by taking the
acoustic wave file from each recorder and manually
segmenting it into a sequence of wavefiles, each cor-
responding to one 4-minute date. Since both speak-
ers wore microphones, most dates had two record-
ings, one from the male recorder and one from the
female recorder. Because of mechanical, opera-
tor, and experimenter errors, some recordings were
lost, and thus some dates had only one recording.
Transcribers at a professional transcription service
used the two recordings to create a transcript for
each date, and time-stamped the start and end time
of each speaker turn. Transcribers were instructed
to mark various disfluencies as well as some non-
verbal elements of the conversation such as laughter.

Because of noise, participants who accidentally
turned off their mikes, and some segmentation and
transcription errors, a number of dates were not pos-
sible to analyze. 19 dates were lost completely, and
for an additional 130 we lost one of the two audio
tracks and had to use the remaining track to extract
features for both interlocutors. The current study fo-

cuses on the 991 remaining clean dates for which
we had usable audio, transcripts, and survey infor-
mation.

3 The Experiments

Our goal is to detect three of the style variables, in
particular awkward, friendly, or flirtatious speakers,
via a machine learning classifier. Recall that each
speaker in a date (each conversation side) was la-
beled by his or her interlocutor with a rating from
1-10 for awkward, friendly, or flirtatious behavior.
For the experiments, the 1-10 Likert scale ratings
were first mean-centered within each respondent so
that the average was 0. Then the top ten percent of
the respondent-centered meaned Likert ratings were
marked as positive for the trait, and the bottom ten
percent were marked as negative for a trait. Thus
each respondent labels the other speaker as either
positive, negative, or NA for each of the three traits.

We run our binary classification experiments to
predict this output variable.

For each speaker side of each 4-minute conversa-
tion, we extracted features from the wavefiles and
the transcript, as described in the next section. We
then trained six separate binary classifiers (for each
gender for the 3 tasks), as described in Section 5.

4 Feature Extraction

In selecting features we drew on previous research
on the use of relatively simple surface features that
cue social meaning, described in the next sections.

Each date was represented by the two 4-minute
wavefiles, one from the recorder worn by each
speaker, and a single transcription. Because of the
very high level of noise, the speaker wearing the
recorder was much clearer on his/her own recording,
and so we extracted the acoustic features for each
speaker from their own microphone (except for the
130 dates for which we only had one audio file). All
lexical and discourse features were extracted from
the transcripts.

All features describe the speaker of the conversa-
tion side being labeled for style. The features for
a conversation side thus indicate whether a speaker
who talks a lot, laughs, is more disfluent, has higher
F0, etc., is more or less likely to be considered flir-
tatious, friendly, or awkward by the interlocutor. We
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also computed the same features for the alter inter-
locutor. Alter features thus indicate the conversa-
tional behavior of the speaker talking with an inter-
locutor they considered to be flirtatious, friendly, or
awkward.

4.1 Prosodic Features

F0 and RMS amplitude features were extracted us-
ing Praat scripts (Boersma and Weenink, 2005).
Since the start and end of each turn were time-
marked by hand, each feature was easily extracted
over a turn, and then averages and standard devia-
tions were taken over the turns in an entire conversa-
tion side. Thus the feature F0 MIN for a conversation
side was computed by taking the F0 min of each turn
in that conversation side (not counting zero values of
F0), and then averaging these values over all turns in
the side. F0 MIN SD is the standard deviation across
turns of this same measure.

Note that we coded four measures of f0 varia-
tion, not knowing in advance which one was likely
to be the most useful: F0 MEAN SD is the deviation
across turns from the global F0 mean for the con-
versation side, measuring how variable the speakers
mean f0 is across turns. F0 SD is the standard devia-
tion within a turn for the f0 mean, and then averaged
over turns, hence measures how variable the speak-
ers f0 is within a turn. F0 SD SD measures how much
the within-turn f0 variance varies from turn to turn,
and hence is another measure of cross-turn f0 vari-
ation. PITCH RANGE SD measures how much the
speakers pitch range varies from turn to turn, and
hence is another measure of cross-turn f0 variation.

4.2 Lexical Features

Lexical features have been widely explored in the
psychological and computational literature. For
these features we drew mainly on the LIWC lexicons
of Pennebaker et al. (2007), the standard for social
psychological analysis of lexical features. From the
large variety of lexical categories in LIWC we se-
lected ten that the previous work of Mairesse et al.
(2007) had found to be very significant in detect-
ing personality-related features. The 10 LIWC fea-
tures we used were Anger, Assent, Ingest, Insight,
Negemotion, Sexual, Swear, I, We, and You. We also
added two new lexical features, “past tense auxil-
iary”, a heuristic for automatically detecting narra-

F0 MIN minimum (non-zero) F0 per turn, av-
eraged over turns

F0 MIN SD standard deviation from F0 min
F0 MAX maximum F0 per turn, averaged over

turns
F0 MAX SD standard deviation from F0 max
F0 MEAN mean F0 per turn, averaged over turns
F0 MEAN SD standard deviation (across turns) from

F0 mean
F0 SD standard deviation (within a turn)

from F0 mean, averaged over turns
F0 SD SD standard deviation from the f0 sd
PITCH RANGE f0 max - f0 min per turn, averaged

over turns
PITCH RANGE
SD

standard deviation from mean pitch
range

RMS MIN minimum amplitude per turn, aver-
aged over turns

RMS MIN SD standard deviation from RMS min
RMS MAX maximum amplitude per turn, aver-

aged over turns
RMS MAX SD standard deviation from RMS max
RMS MEAN mean amplitude per turn, averaged

over turns
RMS MEAN SD standard deviation from RMS mean
TURN DUR duration of turn in seconds, averaged

over turns
TIME total time for a speaker for a conversa-

tion side, in seconds
RATE OF
SPEECH

number of words in turn divided by
duration of turn in seconds, averaged
over turns

Table 1: Prosodic features for each conversation side,
extracted using Praat from the hand-segmented turns of
each side.

tive or story-telling behavior, and Metadate, for dis-
cussion about the speed-date itself. The features are
summarized in Table 2.

4.3 Dialogue Act and Adjacency Pair Features

A number of discourse features were extracted,
drawing from the conversation analysis, disfluency
and dialog act literature (Sacks et al., 1974; Juraf-
sky et al., 1998; Jurafsky, 2001). While discourse
features are clearly important for extracting social
meaning, previous work on social meaning has met
with less success in use of such features (with the
exception of the ‘critical segments’ work of (Enos
et al., 2007)), presumably because discourse fea-
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TOTAL WORDS total number of words
PAST TENSE uses of past tense auxiliaries was, were, had
METADATE horn, date, bell, survey, speed, form, questionnaire, rushed, study, research
YOU you, you’d, you’ll, your, you’re, yours, you’ve (not counting you know)
WE lets, let’s, our, ours, ourselves, us, we, we’d, we’ll, we’re, we’ve
I I’d, I’ll, I’m, I’ve, me, mine, my, myself (not counting I mean)
ASSENT yeah, okay, cool, yes, awesome, absolutely, agree
SWEAR hell, sucks, damn, crap, shit, screw, heck, fuck*
INSIGHT think*/thought, feel*/felt, find/found, understand*, figure*, idea*, imagine, wonder
ANGER hate/hated, hell, ridiculous*, stupid, kill*, screwed, blame, sucks, mad, bother, shit
NEGEMOTION bad, weird, hate, crazy, problem*, difficult, tough, awkward, boring, wrong, sad, worry,
SEXUAL love*, passion*, loves, virgin, sex, screw
INGEST food, eat*, water, bar/bars, drink*, cook*, dinner, coffee, wine, beer, restaurant, lunch, dish

Table 2: Lexical features. Each feature value is a total count of the words in that class for each conversation side;
asterisks indicate that suffixed forms were included (e.g., love, loves, loving). All except the first three are from LIWC
(Pennebaker et al., 2007) (modified slightly, for example by removing you know and I mean). The last five classes
include more words in addition to those shown.

tures are expensive to hand-label and hard to auto-
matically extract. We chose a suggestive discourse
features that we felt might still be automatically ex-
tracted.

Four particular dialog acts were chosen as shown
in Table 3. Backchannels (or continuers) and ap-
preciations (a continuer expressing positive affect)
were coded by hand-built regular expressions. The
regular expressions were based on analysis of the
backchannels and appreciations in the hand-labeled
Switchboard corpus of dialog acts (Jurafsky et al.,
1997). Questions were coded simply by the pres-
ence of question marks.

Finally, repair questions (also called NTRIs; next
turn repair indicators) are turns in which a speaker
signals lack of hearing or understanding (Schegloff
et al., 1977). To detect these, we used a simple
heuristic: the presence of ‘Excuse me’ or ‘Wait’, as
in the following example:

FEMALE: Okay. Are you excited about that?
MALE: Excuse me?

A collaborative completion is a turn where a
speaker completes the utterance begun by the alter
(Lerner, 1991; Lerner, 1996). Our heuristic for iden-
tifying collaborative completions was to select sen-
tences for which the first word of the speaker was
extremely predictable from the last two words of the
previous speaker. We trained a word trigram model1

1interpolated, with Good Turing smoothing, trained on the
Treebank 3 Switchboard transcripts after stripping punctuation.

and used it to compute the probability p of the first
word of a speaker’s turn given the last two words
of the interlocutor’s turn. We arbitrarily chose the
threshold .01, labeling all turns for which p > .01 as
collaborative completions and used the total number
of collaborative completions in a conversation side
as our variable. This simple heuristic was errorful,
but did tend to find completions beginning with and
or or (1 below) and wh-questions followed by an NP
or PP phrase that is grammatically coherent with the
end of the question (2 and 3):

(1) FEMALE: The driving range.
(1) MALE: And the tennis court, too.

(2) MALE: What year did you graduate?
(2) FEMALE: From high school?

(3) FEMALE: What department are you in?
(3) MALE: The business school.

We also marked aspects of the preference struc-
ture of language. A dispreferred action is one in
which a speaker avoids the face-threat to the inter-
locutor that would be caused by, e.g., refusing a
request or not answering a question, by using spe-
cific strategies such as the use of well, hesitations, or
restarts (Schegloff et al., 1977; Pomerantz, 1984).

Finally, we included the number of instances of
laughter for the side, as well as the total number of
turns a speaker took.

4.4 Disfluency Features

A second group of discourse features relating to re-
pair, disfluency, and speaker overlap are summarized
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BACKCHANNELS number of backchannel utterances in side (Uh-huh., Yeah., Right., Oh, okay.)
APPRECIATIONS number of appreciations in side (Wow, That’s true, Oh, great)
QUESTIONS number of questions in side
NTRI repair question (Next Turn Repair Indicator) (Wait, Excuse me)
COMPLETION (an approximation to) utterances that were ‘collaborative completions’
DISPREFERRED (an approximation to) dispreferred responses, beginning with discourse marker well
LAUGH number of instances of laughter in side
TURNS total number of turns in side

Table 3: Dialog act/adjacency pair features.

in Table 4. Filled pauses (um, uh) were coded by

UH/UM total number of filled pauses (uh or
um) in conversation side

RESTART total number of disfluent restarts in
conversation side

OVERLAP number of turns in side which the two
speakers overlapped

Table 4: Disfluency features

regular expressions (the transcribers had been in-
structed to transcribe all filled pauses). Restarts are
a type of repair in which speakers begin a phrase,
break off, and then restart the syntactic phrase. The
following example shows a restart; the speaker starts
a sentence Uh, I and then restarts, There’s a group...:

Uh, I–there’s a group of us that came in–

Overlaps are cases in which both speakers were
talking at the same time, and were marked by the
transcribers in the transcripts:

MALE: But-and also obviously–
FEMALE: It sounds bigger.
MALE: –people in the CS school are not

quite as social in general as other–

5 Classifier Training

Before performing the classification task, we prepro-
cessed the data in two ways. First, we standardized
all the variables to have zero mean and unit variance.
We did this to avoid imposing a prior on any of the
features based on their numerical values.2 Second,

2Consider a feature A with mean 100 and a feature B with
mean .1 where A and B are correlated with the output. Since
regularization favors small weights there is a bias to put weight
on feature A because intuitively the weight on feature B would

we removed features correlated greater than .7. One
goal of removing correlated features was to remove
as much colinearity as possible from the regression
so that the regression weights could be ranked for
their importance in the classification. In addition,
we hoped to improve classification because a large
number of features require more training examples
(Ng, 2004). For example for male flirt we removed
f0 range (highly correlated with f0 max), f0 min sd
(highly correlated with f0 min), and Swear (highly
correlated with Anger).

For each classification task due to the small
amounts of data we performed k-fold cross vali-
dation to learn and evaluate our models. We used
a variant of k-fold cross validation with five folds
where three folds are used for training, one fold is
used for validation, and one fold is used as a test set.
This test fold is not used in any training step. This
yields a datasplit of 60% for training, 20% for val-
idation, and 20% for testing, or 120 training exam-
ples, 40 validation examples, and 40 test examples.
To ensure that we were not learning something spe-
cific to our data split, we randomized our data order-
ing and repeated the k-fold cross validation variant
25 times.

We used regularized logistic regression for clas-
sification. Recall that in logistic regression we train
a vector of feature weights θ ∈ Rn so as to make
the following classification of some output variable
y for an input observation x:3

p(y|x; θ) =
1

1 + exp(−θTx) (1)

In regularized logistic regression we find the

need to be 1000 times larger to carry the same effect. This ar-
gument holds similarly for the reduction to unit variance.

3Where n is the number of features plus 1 for the intercept.
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weights θ which maximize the following optimiza-
tion problem:

argmax
θ

∑

i

log p(yi|xi; θ)− α ∗R(θ) (2)

R(θ) is a regularization term used to penalize
large weights. We chose R(θ), the regularization
function, to be the L1 norm of θ. That is, R(θ) =
||θ||1 =

∑n
i=1 |θi|.

In our case, given the training set Strain, test set
Stest, and validation set Sval, we trained the weights
θ as follows:

argmax
α

accuracy(θα, Sval) (3)

where for a given sparsity parameter α

θα = argmax
θ

∑

i

log p(yi|xi; θ)− α ∗R(θ) (4)

We chose L1-regularization because the number of
training examples to learn well grows logarithmi-
cally with the number of input variables (Ng, 2004),
and to achieve a sparse activation of our features
to find only the most salient explanatory variables.
This choice of regularization was made to avoid the
problems that often plague supervised learning in
situations with large number of features but only a
small number of examples. The search space over
the sparsity parameter α is bounded around an ex-
pected sparsity to prevent overfitting.

Finally, to evaluate our model on the learned α
and θα we used the features X of the test set Stest to
compute the predicted outputs Y using the logistic
regression model. Accuracy is simply computed as
the percent of correct predictions.

To avoid any data ordering bias, we calculated
a θα for each randomized run. The output of the
runs was a vector of weights for each feature. We
kept any feature if the median of its weight vector
was nonzero.4 A sample boxplot for the highest
weighted ego features for predicting male flirt can
be found in Figure 1.

4We also performed a t-test to find salient feature values
significantly different than zero; the non-zero median method
turned out to be a more conservative measure in practice (intu-
itively, because L1 normed regression pushes weights to 0).

-1   -0.8  -0.6  -0.4  -0.2    0    0.2    0.4   0.6   0.8    1

question
f0 mean std

you
rate

intensity min
backchannel
appreciation
repair quest

intensity max
laugh

I

Figure 1: An illustrative boxplot for flirtation in men
showing the 10 most significant features and one not
significant (‘I’). Shown are median values (central red
line), first quartile, third quartile, outliers (red X’s) and
interquartile range (filled box).

6 Results

Results for the 6 binary classifiers are presented in
Table 5.

Awk Flirt Friendly
M F M F M F

Speaker 63% 51% 67% 60% 72% 68%
+other 64% 64% 71% 60% 73% 75%

Table 5: Accuracy of binary classification of each con-
versation side, where chance is 50%. The first row uses
features only from the single speaker; the second adds all
the features from the interlocutor as well. These accu-
racy results were aggregated from 25 randomized runs of
5-fold cross validation.

The first row shows results using features ex-
tracted from the speaker being labeled. Here, all
conversational styles are easiest to detect in men.

The second row of table 5 shows the accuracy
when using features from both speakers. Not sur-
prisingly, adding information about the interlocutor
tends to improve classification, and especially for
women, suggesting that male speaking has greater
sway over perceptions of conversational style. We
discuss below the role of these features.

We first considered the features that helped clas-
sification when considering only the ego (i.e., the re-
sults in the first row of Table 5). Table 6 shows fea-
ture weights for the features (features were normed
so weights are comparable), and is summarized in
the following paragraphs:
• Men who are labeled as friendly use you, col-
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MALE FRIENDLY MALE FLIRT
backchannel -0.737 question 0.376
you 0.631 f0 mean sd 0.288
intensity min sd 0.552 you 0.214
f0 sd sd -0.446 rate 0.190
intensity min -0.445 intensity min -0.163
completion 0.337 backchannel -0.142
time -0.270 appreciation -0.136
Insight -0.249 repair question 0.128
f0 min -0.226 intensity max -0.121
intensity max -0.221 laugh 0.107
overlap 0.213 time -0.092
laugh 0.192 overlap -0.090
turn dur -0.059 f0 min 0.089
Sexual 0.059 Sexual 0.082
appreciation -0.054 Negemo 0.075
Anger -0.051 metadate -0.041

FEMALE FRIENDLY FEMALE FLIRT
intensity min sd 0.420 f0 max 0.475
intensity max sd -0.367 rate 0.346
completion 0.276 intensity min sd 0.269
repair question 0.255 f0 mean sd 0.21
appreciation 0.253 Swear 0.156
f0 max 0.233 question -0.153
Swear -0.194 Assent -0.127
wordcount 0.165 f0 min -0.111
restart 0.172 intensity max 0.092
uh 0.241 I 0.073
I 0.111 metadate -0.071
past -0.060 wordcount 0.065
laugh 0.048 laugh 0.054
Negemotion -0.021 restart 0.046
intensity min -0.02 overlap -0.036
Ingest -0.017 f0 sd sd -0.025
Assent 0.0087 Ingest -0.024
f0 max sd 0.0089

MALE AWK
restart 0.502 completion -0.141
f0 sd sd 0.371 intensity max -0.135
appreciation -0.354 f0 mean sd -0.091
turns -0.292 Ingest -0.079
uh 0.270 Anger 0.075
you -0.210 repair question -0.067
overlap -0.190 Insight -0.056
past -0.175 rate 0.049
intensity min sd -0.173

Table 6: Feature weights (median weights of the random-
ized runs) for the non-zero predictors for each classifier.
Since our accuracy for detecting awkwardness in women
based solely on ego features is so close to chance, we
didn’t analyze the awkwardness features for women here.

laborative completions, laugh, overlap, but don’t
backchannel or use appreciations. Their utterances
are shorter (in seconds and words) and they are qui-
eter and their (minimum) pitch is lower and some-
what less variable.
• Women labeled as friendly have more collab-

orative completions, repair questions, laughter, and
appreciations. They use more words overall, and use
I more often. They are more disfluent (both restarts
and uh) but less likely to swear. Prosodically their f0
is higher, and there seems to be some pattern involv-
ing quiet speech; more variation in intensity mini-
mum than intensity max.
• Men who are labeled as flirting ask more ques-

tions, including repair questions, and use you. They
don’t use backchannels or appreciations, or overlap
as much. They laugh more, and use more sexual and
negative emotional words. Prosodically they speak
faster, with higher and more variable pitch, but qui-
eter (lower intensity max).
• The strongest features for women who are la-

beled as flirting are prosodic; they speak faster and
louder with higher and more variable pitch. They
also use more words in general, swear more, don’t
ask questions or use Assent, use more I, laugh more,
and are somewhat more disfluent (restarts).
•Men who are labeled as awkward are more dis-

fluent, with increased restarts and filled pauses (uh
and um). They are also not ‘collaborative’ conversa-
tionalists; they don’t use appreciations, repair ques-
tions, collaborative completions, past-tense, or you,
take fewer turns overall, and don’t overlap. Prosod-
ically the awkward labels are hard to characterize;
there is both an increase in pitch variation (f0 sd sd)
and a decrease (f0 mean sd). They don’t seem to get
quite as loud (intensity max).

The previous analysis showed what features of the
ego help in classification. We next asked about fea-
tures of the alter, based on the results using both
ego and alter features in the second row of Table 5.
Here we are asking about the linguistic behaviors of
a speaker who describes the interlocutor as flirting,
friendly, or awkward.

While we don’t show these values in a table, we
offer here an overview of their tendencies. For
example for women who labeled their male in-
terlocutors as friendly, the women got much qui-
eter, used ‘well’ much more, laughed, asked more
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repair questions, used collaborative completions,
and backchanneled more. When a man labeled a
woman as friendly, he used an expanded intensity
range (quieter intensity min, louder intensity max).
laughed more, used more sexual terms, used less
negative emotional terms, and overlapped more.

When women labeled their male interlocutor as
flirting, the women used many more repair ques-
tions, laughed more, and got quieter (lower intensity
min). By contrast, when a man said his female inter-
locutor was flirting, he used more Insight and Anger
words, and raised his pitch.

When women labeled their male interlocutor as
awkward, the women asked a lot of questions, used
well, were disfluent (restarts), had a diminished
pitch range, and didn’t use I. In listening to some
of these conversations, it was clear that the conver-
sation lagged repeatedly, and the women used ques-
tions at these points to restart the conversations.

7 Discussion

The results presented here should be regarded with
some caution. The sample is not a random sample of
English speakers or American adults, and speed dat-
ing is not a natural context for expressing every con-
versational style. Therefore, a wider array of studies
across populations and genres would be required be-
fore a more general theory of conversational styles is
established.

On the other hand, the presented results may
under-reflect the relations being captured. The qual-
ity of recordings and coarse granularity (1 second)
of the time-stamps likely cloud the relations, and as
the data is cleaned and improved, we expect the as-
sociations to only grow stronger.

Caveats aside, we believe the evidence indicates
that the perception of several types of conversational
style have relatively clear signals across genders, but
with some additional gender contextualization.

Both genders convey flirtation by laughing more,
speaking faster, and using higher and more variable
pitch. Both genders convey friendliness by laughing
more, and using collaborative completions.

However, we do find gender differences; men asl
more questions when (labeled as) flirting, women
ask fewer. Men labeled as flirting are softer, but
women labeled as flirting are louder. Women flirt-

ing swear more, while men are more likely to use
sexual vocabulary. Gender differences exist as well
for the other variables. Men labeled as friendly use
you while women labeled as friendly use I. Friendly
women are very disfluent; friendly men are not.

While the features for friendly and flirtatious
speech overlap, there are clear differences. Men
speaker faster and with higher f0 (min) in flirtatious
speech, but not faster and with lower f0 (min) in
friendly speech. For men, flirtatious speech involves
more questions and repair questions, while friendly
speech does not. For women, friendly speech is
more disfluent than flirtatious speech, and has more
collaborative style (completions, repair questions,
appreciations).

We also seem to see a model of collaborative con-
versational style (probably related to the collabo-
rative floor of Edelsky (1981) and Coates (1996)),
cued by the use of more collaborative completions,
repair questions and other questions, you, and laugh-
ter. These collaborative techniques were used by
both women and men who were labeled as friendly,
and occurred less with men labeled as awkward.
Women themselves displayed more of this collab-
orative conversational style when they labeled the
men as friendly. For women only, collaborative style
included appreciations; while for men only, collabo-
rative style included overlaps.

In addition to these implications for social sci-
ence, our work has implications for the extraction of
meaning in general. A key focus of our work was on
ways to extract useful dialog act and disfluency fea-
tures (repair questions, backchannels, appreciations,
restarts, dispreferreds) with very shallow methods.
These features were indeed extractable and proved
to be useful features in classification.

We are currently extending these results to predict
date outcomes including ‘liking’, extending work
such as Madan and Pentland (2006).
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Abstract
In this paper, we extend methods from Roark
and Hollingshead (2008) for reducing the
worst-case complexity of a context-free pars-
ing pipeline via hard constraints derived from
finite-state tagging pre-processing. Methods
from our previous paper achieved quadratic
worst-case complexity. We prove here that al-
ternate methods for choosing constraints can
achieve either linear orO(N log2N) complex-
ity. These worst-case bounds on processing
are demonstrated to be achieved without re-
ducing the parsing accuracy, in fact in some
cases improving the accuracy. The new meth-
ods achieve observed performance compara-
ble to the previously published quadratic com-
plexity method. Finally, we demonstrate im-
proved performance by combining complexity
bounding methods with additional high preci-
sion constraints.

1 Introduction

Finite-state pre-processing for context-free parsing
is very common as a means of reducing the amount
of search required in the later stage. For ex-
ample, the well-known Ratnaparkhi parser (Ratna-
parkhi, 1999) used a finite-state POS-tagger and NP-
chunker to reduce the search space for his Maxi-
mum Entropy parsing model, and achieved linear
observed-time performance. Other recent examples
of the utility of finite-state constraints for parsing
pipelines include Glaysher and Moldovan (2006),
Djordjevic et al. (2007), Hollingshead and Roark
(2007), and Roark and Hollingshead (2008). Note
that by making use of constraints derived from pre-
processing, they are no longer performing full exact
inference—these are approximate inference meth-
ods, as are the methods presented in this paper. Most
of these parsing pipeline papers show empirically

that these techniques can improve pipeline efficiency
for well-known parsing tasks. In contrast, in Roark
and Hollingshead (2008), we derived and applied the
finite-state constraints so as to guarantee a reduc-
tion in the worst-case complexity of the context-free
parsing pipeline from O(N3) in the length of the
string N to O(N2) by closing chart cells to entries.
We demonstrated the application of such constraints
to the well-known Charniak parsing pipeline (Char-
niak, 2000), which resulted in no accuracy loss when
the constraints were applied.

While it is important to demonstrate that these
sorts of complexity-reducing chart constraints do not
interfere with the operation of high-accuracy, state-
of-the-art parsing approaches, existing pruning tech-
niques used within such parsers can obscure the im-
pact of these constraints on search. For example, us-
ing the default search parameterization of the Char-
niak parser, the Roark and Hollingshead (2008) re-
sults demonstrated no parser speedup using the tech-
niques, rather an accuracy improvement, which we
attributed to a better use of the amount of search per-
mitted by that default parameterization. We only
demonstrated efficiency improvements by reducing
the amount of search via the Charniak search param-
eterization. There we showed a nice speedup of the
parser versus the default, while maintaining accu-
racy levels. However, internal heuristics of the Char-
niak search, such as attention shifting (Blaheta and
Charniak, 1999; Hall and Johnson, 2004), can make
this accuracy/efficiency tradeoff somewhat difficult
to interpret.

Furthermore, one might ask whetherO(N2) com-
plexity is as good as can be achieved through the
paradigm of using finite-state constraints to close
chart cells. What methods of constraint would be
required to achieve O(N logN) or linear complex-
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ity? Would such constraints degrade performance,
or can the finite-state models be applied with suffi-
cient precision to allow for such constraints without
significant loss of accuracy?

In this paper, we adopt the same paradigm pur-
sued in Roark and Hollingshead (2008), but apply
it to an exact inference CYK parser (Cocke and
Schwartz, 1970; Younger, 1967; Kasami, 1965). We
demonstrate that imposing constraints sufficient to
achieve quadratic complexity in fact yields observed
linear parsing time, suggesting that tighter complex-
ity bounds are possible. We prove that a differ-
ent method of imposing constraints on words be-
ginning or ending multi-word constituents can give
O(N log2N) or O(N) worst-case complexity, and
we empirically evaluate the impact of such an ap-
proach.

The rest of the paper is structured as follows. We
begin with a summary of the chart cell constraint
techniques from Roark and Hollingshead (2008),
and some initial empirical trials applying these tech-
niques to an exact inference CYK parser. Complex-
ity bounding approaches are contrasted (and com-
bined) with high precision constraint selection meth-
ods from that paper. We then present a new approach
to making use of the same sort of finite-state tag-
ger output to achieve linear or N log2N complexity.
This is followed with an empirical validation of the
new approach.

2 Background: Chart Cell Constraints

The basic algorithm from Roark and Hollingshead
(2008) is as follows. Let B be the set of words in a
string w1 . . . wk that begin a multi-word constituent,
and let E be the set of words in the string that end a
multi-word constituent. For chart parsing with, say,
the CYK algorithm, cells in the chart represent sub-
strings wi . . . wj of the string, and can be indexed
with (i, j), the beginning and ending words of the
substring. If wi 6∈ B, then we can close any cell
(i, j) where i < j, i.e., no complete constituents
need be stored in that cell. Similarly, if wj 6∈ E,
then we can close any cell (i, j) where i < j. A dis-
criminatively trained finite-state tagger can be used
to classify words as being in or out of these sets
with relatively high tagging accuracy, around 97%
for both sets (B and E). The output of the tagger is
then used to close cells, thus reducing the work for

the chart parser.
An important caveat must be made about these

closed cells, related to incomplete constituents. For
simplicity of exposition, we will describe incom-
plete constituents in terms of factored categories in
a Chomsky Normal Form grammar, e.g., the new
non-terminal Z:X+W that results when the ternary
rule production Z → Y X W is factored into
the two binary productions Z → Y Z:X+W and
Z:X+W → X W . A factored category such
as Z:X+W should be permitted in cell (i, j) if
wj ∈ E, even if wi 6∈ B, because the category could
subsequently combine with an Y category to create
a Z constituent that begins at some word wp ∈ B.
Hence there are three possible conditions for cell
(i, j) in the chart:

1. wj 6∈ E: closing the cell affects all con-
stituents, both complete and incomplete

2. wi 6∈ B and wj ∈ E: closing the cell affects
only complete constituents

3. wi ∈ B and wj ∈ E: cell is not closed, i.e., it
is “open”

In Roark and Hollingshead (2008), we proved
that, for the CYK algorithm, there is no work neces-
sary for case 1 cells, a constant amount of work for
case 2 cells, and a linear amount of work for case
3 cells. Therefore, if the number of cells allowed
to fall in case 3 is linear, the overall complexity of
search is O(N2).

The amount of work for each case is related
to how the CYK algorithm performs its search.
Each cell in the chart (i, j) represents a substring
wi . . . wj , and building non-terminal categories in
that cell involves combining non-terminal categories
(via rules in the context-free grammar) found in cells
of adjacent substrings wi . . . wm and wm+1 . . . wj .
The length of substrings can be up to order N
(length of the whole string), hence there are O(N)
midpoint words wm in the standard algorithm, and
in the case 3 cells above. This accounts for the lin-
ear amount of work for those cells. Case 2 cells
have constant work because there is only one pos-
sible midpoint, and that is wi, i.e., the first child of
any incomplete constituent placed in a case 2 cell
must be span 1, since wi 6∈ B. This is a very con-
cise recap of the proof, and we refer the reader to
our previous paper for more details.
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3 Constraining Exact-Inference CYK
Despite referring to the CYK algorithm in the proof,
in Roark and Hollingshead (2008) we demonstrated
our approach by constraining the Charniak parser
(Charniak, 2000), and achieved an improvement in
the accuracy/efficiency tradeoff curve. However, as
mentioned earlier, the existing complicated system
of search heuristics in the Charniak parser makes in-
terpretation of the results more difficult. What can
be said from the previous results is that constraining
parsers in this way can improve performance of even
the highest accuracy parsers. Yet those results do not
provide much of an indication of how performance
is impacted for general context-free inference.

For this paper, we use an exact inference (exhaus-
tive search) CYK parser, using a simple probabilis-
tic context-free grammar (PCFG) induced from the
Penn WSJ Treebank (Marcus et al., 1993). The
PCFG is transformed to Chomsky Normal Form
through right-factorization, and is smoothed with a
Markov (order-2) transform. Thus a production such
as Z → Y X W V becomes three rules: (1)
Z → Y Z:X+W ; (2) Z:X+W → X Z:W+V ;
and (3) Z:W+V →W V . Note that only two child
categories are encoded within the new factored cate-
gories, instead of all of the remaining children as in
our previous factorization example. This so-called
‘Markov’ grammar provides some smoothing of the
PCFG; the resulting grammar is also smoothed us-
ing lower order Markov grammars.

We trained on sections 2-21 of the treebank, and
all results except for the final table are on the devel-
opment section (24). The final table is on the test
section (23). All results report F-measure labeled
bracketing accuracy for all sentences in the section.

To close cells, we use a discriminatively trained
finite-state tagger to tag words as being either in B
or not, and also (in a separate pass) either in E or
not. Note that the reference tags for each word can
be derived directly from the treebank, based on the
spans of constituents beginning (or ending) at each
word. Note also that these reference tags are based
on a non-factored grammar.

For example, consider the chart in Figure 1 for the
five symbol string “abcde”. Each cell in the chart is
labeled with the substring that the cell spans, along
with the begin and end indices of the substring, e.g.,
(3, 5) spans the third symbol to the fifth symbol:

abcde
(1, 5)

abcd
(1, 4)

bcde
(2, 5)

abc
(1, 3)

bcd
(2, 4)

cde
(3, 5)

ab
(1, 2)

bc
(2, 3)

cd
(3, 4)

de
(4, 5)

a
(1, 1)

b
(2, 2)

c
(3, 3)

d
(4, 4)

e
(5, 5)

Figure 1: Fragment of a chart structure. Each cell is labeled
with the substring spanned by that cell, along with the start and
end word indices. Cell shading reflects b 6∈ E and d 6∈ E
constraints: black denotes “closed” cells; white and gray are
“open”; gray cells have “closed” children cells, reducing the
number of midpoints requiring processing.

cde. If our tagger output is such that b 6∈ E and
d 6∈ E, then four cells will be closed: (1, 2), (1, 4),
(2, 4) and (3, 4). The gray shaded cells in the figure
have some midpoints that require no work, because
they involve closed children cells.

4 Constraint Selection
4.1 High Precision vs Complexity Bounding
The chart constraints that are extracted from the
finite-state tagger come in the form of set exclu-
sions, e.g., d 6∈ E. Rather than selecting constraints
from the single, best-scoring tag sequence output by
the tagger, we instead rely on the whole distribu-
tion over possible tag strings to select constraints.
We have two separate tagging tasks, each with two
possible tags of each word wi in each string: (1) B
or ¬B; and (2) E or ¬E, where ¬X signifies that
wi 6∈ X for X ∈ {B,E}. The tagger (Holling-
shead et al., 2005) uses log linear models trained
with the perceptron algorithm, and derives, via the
forward-backward algorithm, the posterior probabil-
ity of each of the two tags at each word, so that
Pr(B) + Pr(¬B) = 1. Then, for every word wi
in the string, the tags B and E are associated with a
posterior probability that gives us a score forwi ∈ B
and wi ∈ E. All possible set memberships wi ∈ X
in the string can be ranked by this score. From this
ranking, a decision boundary can be set, such that
all word/set pairs wi ∈ B or wj ∈ E with above-
threshold probability are accepted, and all pairs be-
low threshold are excluded from the set.

The default decision boundary for this tagging

649



task is 0.5 posterior probability (more likely than
not), and tagging performance at that threshold is
good (around 97% accuracy, as mentioned previ-
ously). However, since this is a pre-processing step,
we may want to reduce possible cascading errors by
allowing more words into the sets B and E. In
other words, we may want more precision in our
set exclusion constraints. One method for this is to
count the number c of word/set pairs below poste-
rior probability of 0.5, then set the threshold so that
only kc word/set pairs fall below threshold, where
0 < k ≤ 1. Note that the closer the parameter k
is to 0, the fewer constraints will be applied to the
chart. We refer to the resulting constraints as “high
precision”, since the selected constraints (set exclu-
sions) have high precision. This technique was also
used in the previous paper.

We also make use of the ranked list of word/set
pairs to impose quadratic bounds on context-free
parsing. Starting from the top of the list (high-
est posterior probability for set inclusion), word/set
pairs are selected and the number of open cells (case
3 in Section 2) calculated. When the accumulated
number of open cells reaches kN for sentence length
N , the decision threshold is set. In such a way, there
are only a linear number of open, case 3 cells, hence
the parsing has quadratic worst-case complexity.

For both of these methods, the parameter k can
vary, allowing for more or less set inclusion. Fig-
ure 2 shows parse time versus F-measure parse ac-
curacy on the development set for the baseline (un-
constrained) exact-inference CYK parser, and for
various parameterizations of both the high preci-
sion constraints and the quadratic bound constraints.
Note that accuracy actually improves with the im-
position of these constraints. This is not surpris-
ing, since the finite-state tagger deriving the con-
straints made use of lexical information that the sim-
ple PCFG did not, hence there is complementary in-
formation improving the model. The best operating
points—fast parsing and relatively high accuracy—
are achieved with 90% of the high precision con-
straints, and 5N cells left open. These achieve a
roughly 20 times speedup over the baseline uncon-
strained parser and achieve between 1.5 and 3 per-
cent accuracy gains over the baseline.

We can get a better picture of what is going on by
considering the scatter plots in Figure 3, which plot
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Figure 2: Time to parse (seconds) versus accuracy (F-measure)
for the baseline of exact inference (no constraints) versus
two methods of imposing constraints with varying parameters:
(1) High precision constraints; (2) Sufficient constraints to im-
pose O(N2) complexity (the number of open cells ≤ kN ).

each sentence according to its length versus the pars-
ing time for that sentence at three operating points:
baseline (unconstrained); high precision at 90%; and
quadratic with 5N open cells. The top plot shows up
to 120 words in the sentence, and up to 5 seconds of
parsing time. The middle graph zooms in to under
1 second and up to 60 words; and the lowest graph
zooms in further to under 0.1 seconds and up to 20
words. It can be seen in each graph that the uncon-
strained CYK parsing quickly leaves the graph via a
steep cubic curve.

Three points can be taken away from these plots.
First, the high precision constraints are better for
the shorter strings than the quadratic bound con-
straints (see bottom plot); yet with the longer strings,
the quadratic constraints better control parsing time
than the high precision constraints (see top plot).
Second, the quadratic bound constraints appear to
actually result in roughly linear parsing time, not
quadratic. Finally, at the “crossover” point, where
quadratic constraints start out-performing the high
precision constraints (roughly 40-60 words, see mid-
dle plot), there is quite high variance in high preci-
sion constraints versus the quadratic bounds: some
sentences process more quickly than the quadratic
bounds, some quite a bit worse. This illustrates
the difference between the two methods of select-
ing constraints: the high precision constraints can
provide very strong gains, but there is no guarantee
for the worst case. In such a way, the high preci-
sion constraints are similar to other tagging-derived
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Figure 3: Scatter plots of sentence length versus parsing time
for (1) baseline exact inference (no constraints); (2) high pre-
cision begin- and end-constituent constraints (90% level); and
(3) O(N2) constraints (5N open cells).

constraints like POS-tags or chunks.

4.2 Combining Constraints
Depending on the length of the string, the quadratic
constraints may close more or fewer chart cells
than the high precision constraints—more for long
strings, fewer for short strings. We can achieve

F-measure time
Constraints accuracy (seconds)
None (baseline CYK) 74.1 3646
High Precision (90%) 77.0 181
Quadratic (5N ) 75.7 317
Quad (5N ) + HiPrec (90%) 76.9 166

Table 1: Speed and accuracy of exact-inference CYK parser
on WSJ section 24 under various constraint conditions, includ-
ing combining quadratic bound constraints and high precision
constraints.

worst-case bounds, along with superior typical case
speedups, by combining both methods as follows:
first apply the quadratic bounds; then, if there are
any high precision constraints that remain unap-
plied, add them. Table 1 shows F-measure accuracy
and parsing time (in seconds) for four trials on the
development set: the baseline CYK with no con-
straints; high precision constraints at the 90% level;
quadratic bound constraints at the 5N level; and a
combination of the quadratic bound and high preci-
sion constraints. We can see that, indeed, the com-
bination of the two yield speedups over both inde-
pendently, with no significant drop in accuracy from
the high precision constraints alone. Further results
with worst-case complexity bounds will be com-
bined with high precision constraints in this way.

The observed linear parsing time in Figure 3 with
the quadratic constraints raises the following ques-
tion: can we apply these constraints in a way that
guarantees linear complexity? The answer is yes,
and this is the subject of the next section.

5 Linear andN log2N Complexity Bounds

Given the two sets B and E, recall the three cases of
chart cells (i, j) presented in Section 2: 1) wj 6∈ E
(cell completely closed); 2) wj ∈ E and wi 6∈ B
(cell open only for incomplete constituents); and 3)
wi ∈ B and wj ∈ E (cell open for all constituents).
Quadratic worst-case complexity is achieved with
these sets by limiting case 3 to hold for only O(N)
cells—each with linear work—and the remaining
O(N2) cells (cases 1 and 2) have none or constant
work, hence overall quadratic (Roark and Holling-
shead, 2008).

One might ask: why would imposing constraints
to achieve a quadratic bound give us linear observed
parsing time? One possibility is that the linear num-
ber of case 3 cells don’t have a linear amount of
work, but rather a constant bounded amount of work.
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If there were a constant bounded number of mid-
points, then the amount of work associated with case
3 would be linear. Note that a linear complexity
bound would have to guarantee a linear number of
case 2 cells as well since there is a constant amount
of work associated with case 2 cells.

To provide some intuition as to why the quadratic
bound method resulted in linear observed parsing
time, consider again the chart structure in Figure 1.
The black cells in the chart represent the cells that
have been closed when wj 6∈ E (case 1 cells). In
our example, w2 6∈ E caused the cell spanning ab
to be closed, and w4 6∈ E caused the cells span-
ning abcd, bcd and cd to be closed. Since there is
no work required for these cells, the amount of work
required to parse the sentence is reduced. However,
the quadratic bound does not include any potential
reduced work in the remaining open cells. The gray
cells in the chart are cells with a reduced number of
possible midpoints, as effected by the closed cells
in the chart. For example, categories populating the
cell spanning abc in position (1, 3) can be built in
two ways: either by combining entries in cell (1, 1)
with entries in (2, 3) at midpoint m = 1; or by com-
bining entries in (1, 2) and (3, 3) at midpointm = 2.
However, cell (1, 2) is closed, hence there is only
one midpoint at which (1, 3) can be built (m = 1).
Thus the amount of work to parse the sentence will
be less than the worst-case quadratic bound based on
this processing savings in open cells.

While imposition of the quadratic bound may
have resulted (fortuitously) in constant bounded
work for case 3 cells and a linear number of case
2 cells, there is no guarantee that this will be the
case. One method to guarantee that both conditions
are met is the following: if |E| ≤ k for some con-
stant k, then both conditions will be met and parsing
complexity will be linear. We prove here that con-
straining E to contain a constant number of words
results in linear complexity.

Lemma 1: If |E| ≤ k for some k, then the
amount of work for any cell is bounded by ck
for some constant c (grammar constant).

Proof: Recall from Section 2 that for each cell
(i, j), there are j−i midpoints m that require com-
bining entries in cells (i,m) and (m+1, j) to create
entries in cell (i, j). If m > i, then cell (i,m) is
empty unless wm ∈ E. If cell (i,m) is empty, there

is no work to be done at that midpoint. If |E| ≤ k,
then there are a maximum of k midpoints for any
cell, hence the amount of work is bounded by ck for
some constant c.2

Lemma 2: If |E| ≤ k for some k, then the num-
ber of cells (i, j) such that wj ∈ E is no more
than kN where N is the length of the string.

Proof: For a string of length N , each word wj in
the string has at most N cells such that wj is the
last word in the substring spanned by that cell, since
each such cell must begin with a distinct word wi in
the string where i ≤ j, of which there are at mostN .
Therefore, if |E| ≤ k for some k, then the number
of cells (i, j) such that wj ∈ E would be no more
than kN .2

Theorem: If |E| ≤ k, then the parsing complex-
ity is O(k2N).

Proof: As stated earlier, each cell (i, j) falls in one
of three cases: 1) wj 6∈ E; 2) wj ∈ E and wi 6∈ B;
and 3) wi ∈ B and wj ∈ E. Case 1 cells are com-
pletely closed, there is no work to be done in those
cells. By Lemma 2, there are at maximum kN cells
that fall in either case 2 or case 3. By Lemma 1, the
amount of work for each of these cells is bounded
by ck for some constant c. Therefore, the theorem is
proved.2

If |E| ≤ k for a constant k, the theorem proves
the complexity will be O(N). If |E| ≤ k logN ,
then parsing complexity will be O(N log2N). Fig-
ure 4 shows sentence length versus parsing time
under three different conditions1: baseline (uncon-
strained); O(N log2N) at |E| ≤ 3 logN ; and linear
at |E| ≤ 16. The bottom graph zooms in to demon-
strate that the O(N log2N) constraints can outper-
form the linear constraints for shorter strings (see
around 20 words). As the length of the string in-
creases, though, the performance lines cross, and the
linear constraints demonstrate higher efficiency for
the longer strings, as expected.

Unlike the method for imposing quadratic
bounds, this method only makes use of set E, not
B. To select the constraints, we rank the word/E
posterior probabilities, and choose the top k (either
constant or scaled with a logN factor); the rest of
the words fall outside of the set. In this approach,

1Selection of these particular operating points for the
N log2N and linear methods is discussed in Section 6.
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Figure 4: Scatter plots of sentence length versus pars-
ing time for (1) baseline exact inference (no constraints);
(2) O(N log2N) constraints; and (3) O(N) constraints.

every word falls in the B set, hence no constraints
on words beginning multi-word constituents are im-
posed.

6 Results

Figure 5 plots F-measure accuracy versus time to
parse the development set for four methods of
imposing constraints: the previously plotted high
precision and quadratic bound constraints, along
with O(N log2N) and linear bound constraints us-
ing methods described in this paper. All meth-
ods are employed at various parameterizations, from
very lightly constrained to very heavily constrained.
The complexity-bound constraints are not combined
with the high-precision constraints for this plot.

As can be seen from the plot, the linear and
O(N log2N) methods do not, as applied, achieve as
favorable of an accuracy/efficiency tradeoff curve as
the quadratic bound method. This is not surprising,
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Figure 5: Time to parse (seconds) versus accuracy (F-
measure) for high precision constraints of various thresholds
versus three methods of imposing constraints with complexity
bounds: (1) O(N2) complexity (number of open cells ≤ kN );
(2) O(N log2N) complexity (|E| ≤ k log N ); and (3) linear
complexity (|E| ≤ k).

given that no words are excluded from the set B
for these methods, hence far fewer constraints over-
all are applied with the new method than with the
quadratic bound method.

Of course, the high precision constraints can be
applied together with the complexity bound con-
straints, as described in Section 4.2. For combining
complexity-bound constraints with high-precision
constraints, we first chose operating points for both
the linear and O(N log2N) complexity bound meth-
ods at the points before accuracy begins to de-
grade with over-constraint. For the linear complex-
ity method, the operating point is to constrain the
set size of E to a maximum of 16 members, i.e.,
|E| ≤ 16. For the N log2N complexity method,
|E| ≤ 3 logN .

Table 2 presents results for these operating points
used in conjunction with the 90% high precision
constraints. For these methods, this combination
is particularly important, since it includes all of the
high precision constraints from the set B, which are
completely ignored by both of the new methods. We
can see from the results in the table that the com-
bination brings the new constraint methods to very
similar accuracy levels as the quadratic constraints,
yet with the guarantee of scaling linearly to longer
and longer sentences.

The efficiency benefits of combining constraints,
shown in Table 2, are relatively small here because
the dataset contains mostly shorter sentences. Space
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F-measure time
Constraints accuracy (seconds)
None (baseline CYK) 74.1 3646
High Precision (90%) 77.0 181
Quad (5N ) + HiPrec (90%) 76.9 166
N log2N (3logN ) + HP (90) 76.9 170
Linear (16) + HiPrec (90%) 76.8 167

Table 2: Speed and accuracy of exact-inference CYK parser
on WSJ section 24 under various constraint conditions, includ-
ing combining various complexity bound constraints and high
precision constraints.

limitations prevent us from including scatter plots
similar to those in Figure 3 for the constraint combi-
nation trials, which show that the observed parsing
time of shorter sentences is typically identical under
each constraint set, while the parsing time of longer
sentences tends to differ more under each condition
and exhibit characteristics of the complexity bounds.
Thus by combining high-precision and complexity
constraints, we combine typical-case efficiency ben-
efits with worst-case complexity bounds.

Note that these speedups are achieved with no
additional techniques for speeding up search, i.e.,
modulo the cell closing mechanism, the CYK pars-
ing is exhaustive—it explores all possible category
combinations from the open cells. Techniques such
as coarse-to-fine or A∗ parsing, the use of an agenda,
or setting of probability thresholds on entries in
cells—these are all orthogonal to the current ap-
proach, and could be applied together with them
to achieve additional speedups. However, none
of these other techniques provide what the current
methods do: a complexity bound that will hold even
in the worst case.

To validate the selected operating points on a dif-
ferent section, Table 3 presents speed and accuracy
results on the test set (WSJ section 23) for the exact-
inference CYK parser.

We also conducted similar preliminary trials for
parsing the Penn Chinese Treebank (Xue et al.,
2004), which contains longer sentences and differ-
ent branching characteristics in the induced gram-
mar. Results are similar to those shown here, with
chart constraints providing both efficiency and ac-
curacy gains.

7 Conclusion
We have presented a method for constraining a
context-free parsing pipeline that provably achieves

F-measure time
Constraints accuracy (seconds)
None (baseline CYK) 73.8 5122
High Precision (90%) 76.8 272
Quad (5N ) + HiPrec (90%) 76.8 263
N log2N (3logN ) + HP (90) 76.8 266
Linear (16) + HiPrec (90%) 76.8 264

Table 3: Speed and accuracy of exact-inference CYK parser
on WSJ section 23 under various constraint conditions, includ-
ing combining various complexity bound constraints and high
precision constraints.

linear worst case complexity. Our method achieves
comparable observed performance to the quadratic
complexity method previously published in Roark
and Hollingshead (2008). We were motivated to
pursue this method by the observed linear parsing
time achieved with the quadratic bound constraints,
which suggested that a tighter complexity bound
could be achieved without hurting performance.

We have also shown that combining methods for
achieving complexity bounds—which are of pri-
mary utility for longer strings—with methods for
achieving strong observed typical case speedups can
be profitable, even for shorter strings. The result-
ing combination achieves both typical speedups and
worst-case bounds on processing.

The presented methods may not be the only way
to achieve these bounds using tagger pre-processing
of this sort, though they do have the virtue of
very simple constraint selection. More complicated
methods that track, in fine detail, how many cells
are open versus closed, run the risk of a constraint
selection process that is itself quadratic in the length
of the string, given that there are a quadratic number
of chart cells. Even so, the presented methods criti-
cally control midpoints for all cells only via the set
E (words that can end a multi-word constituent) and
ignoreB. More complicated methods for using both
sets that also achieve linear complexity (perhaps
with a smaller constant), or that achieve O(N logN)
complexity rather than O(N log2N), may exist.
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Abstract

This paper introduces three new syntactic

models for representing speech with repairs.

These models are developed to test the intu-

ition that the erroneous parts of speech repairs

(reparanda) are not generated or recognized as

such while occurring, but only after they have

been corrected. Thus, they are designed to

minimize the differences in grammar rule ap-

plications between fluent and disfluent speech

containing similar structure. The three models

considered in this paper are also designed to

isolate the mechanism of impact, by systemat-

ically exploring different variables.

1 Introduction

Recent work in recognition of speech with repairs

has shown that syntactic cues to speech repair can

improve both overall parsing accuracy and detection

of repaired sections (Hale et al., 2006; Miller and

Schuler, 2008; Johnson and Charniak, 2004). These

techniques work by explictly modeling the structure

of speech repair, specifically the tendency of repairs

to follow unfinished constituents of the same cate-

gory. This is the essence of what was termed the

well-formedness rule by Willem Levelt (1983) in his

psycholinguistic studies of repair.

The work presented here uses the same motiva-

tions as those cited above (to be described in more

detail below), in that it attempts to model the syn-

tactic structure relating unfinished erroneous con-

∗This research was supported by NSF CAREER award

0447685. The views expressed are not necessarily endorsed by

the sponsors.

stituents to the repair of those constituents. How-

ever, this work attempts to improve on those mod-

els by focusing on the generative process used by a

speaker in creating the repair. This is done first by

eschewing any labels representing the presence of

an erroneous constituent while processing the text.

This modeling representation reflects the intuition

that speakers do not intend to generate erroneous

speech – they intend their speech to be fluent, or

a correction to an error, and can stop very quickly

when an error is noticed. This corresponds to Lev-

elt’s Main Interruption Rule, which states that a

speaker will “Stop the flow of speech immediately

upon detecting the occasion of repair.” Rather than

attempting to recognize a special syntactic category

called EDITED during the processing phase, this

work introduces the REPAIRED category to signal

the ending of a repaired section only.

The second part of the modeling framework is

the use of a right-corner transform on training data,

which converts phrase-structure trees into heavily

left-branching structures. This transformation has

been shown to represent the structure of unfinished

constituents like those seen in speech repair in a nat-

ural way, leading to improved detection of speech

repair (Miller and Schuler, 2008).

Combining these two modeling techniques in a

bottom-up parsing framework results in a parsing

architecture that is a reasonable approximation to

the sequential processing that must be done by the

human speech processor when recognizing spoken

language with repairs. This parser also recognizes

sentences containing speech repair with better accu-

racy than the previous models on which it is based.
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Therefore, these syntactic models hold promise for

integration into systems for processing of streaming

speech.

1.1 Speech Repair Terminology

A speech repair occurs when a speaker decides to

interrupt the flow of speech and restart part or all

of an utterance. Typically speech repair structure

(Shriberg, 1994) is considered to contain a reparan-

dum, or the part of the utterance to be replaced, and

an alteration, which is meant to replace the reparan-

dum section. There are also frequently editing terms

(for example, ‘uh’ and ‘um’) between the reparan-

dum and alteration, which may be used to signal the

repair, or to indicate that the speaker is thinking, or

just to maintain control of the dialogue.

1.2 Related Work

This work is related to that of Hale et al.(2006) in

that it attempts to model the syntactic structure of

speech repair. In that paper speech repair detec-

tion accuracy was increased by explicitly account-

ing for the relation between reparanda category and

alteration category. This was done by so-called

“daughter annotation,” which expanded the set of

EDITED categories by appending the category be-

low the EDITED label to the end of the EDITED

label – for example, a noun phrase (NP) reparanda

would be of type EDITED-NP. In addition, this ap-

proach made edit detection easier by propagating the

-UNF label attached to the rightmost unfinished con-

stituent up to the EDITED label. These two changes

in combination allow the parser to better recognize

when a reparandum has occurred, and to make sib-

lings of reparanda and alterations with the same ba-

sic category label.

Another model of speech repair that explicitly

models the structure of speech repair is that of John-

son and Charniak (2004). That model has a differ-

ent approach than the context-free parsing approach

done in the present work. Instead, they run a tree-

adjoining grammar (TAG) parser which traces the

overlapping words and part-of-speech tags that oc-

cur in the reparandum and alteration of a speech re-

pair. This approach is highly accurate at detecting

speech repairs, and allows for downstream process-

ing of cleaned up text to be largely free of speech

repair, but due to its TAG component it may present

difficulties incorporating into an architecture that

operates on streaming text or speech.

This work is also similar in aim to a component of

the parsing and language modeling work of Roark

and Johnson (1999), which used right-binarization

in order to delay decision-making about constituents

as much as possible. For example, the rule

NP → DT NN

might be right-binarized as two rules:

NP → DT NP -DT

and

NP -DT → NN

The result of this binarization is that when predicting

the noun phrase (NP) rule, a top-down parser is de-

laying making any commitments about the category

following the determiner (DT). This delay in predic-

tion means that the parser does not need to make

any predictions about whether the next word will

be, e.g., a common noun (NN), plural noun (NNS),

or proper noun (NNP), until it sees the actual next

word.

Similarly, the model presented in this work aims

to delay the decision to create a speech repair as

much as possible. This is done here by eliminating

the EDITED category (representing a reparandum)

during processing, replacing it with a REPAIRED

category which represents the alteration of a speech

repair, and by eliminating implicit cues about repair

happening before a decision to repair should be nec-

essary.

Finally, this work is most directly related to that

of Miller and Schuler (2008). In that work, the au-

thors used a right-corner transform to turn standard

phrase-structure trees into highly left-branching

trees with sub-tree category labels representing in-

complete but in-progress constituent structure. That

structure was shown to have desirable properties in

the representation of repair in syntax trees, and this

work leverages that insight, while attempting to im-

prove the input representation such that the right-

corner representation does not require the parser to

make any assumptions or decisions earlier than nec-

essary.
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2 Syntactic Model

This section will first describe the default represen-

tation scheme for speech repair in the Switchboard

corpus and the standard representation after applica-

tion of a right-corner transform, and then describe

why there are shortcomings in both of these repre-

sentations. Descriptions of several alternative mod-

els follow, with an explanation of how each of them

is meant to address the shortcomings seen in previ-

ous representations. These models are then evalu-

ated in Section 3.

2.1 Standard Repair Annotation

The standard representation of speech repair in the

Switchboard corpus makes use of one new category

label (EDITED), to represent a reparandum, and a

new dash-tag (-UNF), representing the lowest unfin-

ished constituent in a phrase. An example tree with

both EDITED and -UNF tags is shown in Figure 1.

SBAR

WHNP-2

DT

that

S

EDITED

S

NP-SBJ

PRP

you

VP-UNF

MD

could

NP-SBJ

PRP

you

VP

MD

could

VP

VB

use

PP-PRP

IN

for

NP

NN

landfill

Figure 1: A fragment of a standard phrase-structure tree

from the development set, containing both an EDITED

constituent and an -UNF tag.

This sentence contains a restarted sentence (S)

constituent, in which the speaker started by saying

“you could”, then decided to restart the phrase, in

this case without changing the first two words. One

important thing to notice is that the EDITED label

contains no information about the structure beneath

it. As a result, a parser trained on this default anno-

tation has no information about the attempted con-

stituent type, which, in the case of restarts would ob-

viously be beneficial. As described above, the work

by Hale et al. using daughter annotation was meant

to overcome this shortcoming.

Another shortcoming of this annotation scheme

to consider is that the EDITED tag is not meaning-

ful with respect to constituent structure. Attempt-

ing to learn from this structure, for example a prob-

abilistic context-free grammar, will result in the rule

that a sentence (S) consists of a reparandum, a noun

phrase, and a verb phrase, which is an odd way of

thinking about both constituent structure and mean-

ing. A more intuitive understanding might be that a

sentence may consist of a noun phrase followed by a

verb phrase, and during the production of that rule,

an interruption may occur which causes the rule to

restart.

2.2 Right-Corner Transform

The work described above by Miller and Schuler

(2008) uses a right-corner transform. This transform

turns right-branching structure into left-branching

structure, using category labels that use a “slash” no-

tation α/γ to represent an incomplete constituent of

type α “looking for” a constituent of type γ in order

to complete itself. Figure 2 shows the right-corner

transformed tree from above.

This transform first requires that trees be bina-

rized. This binarization is done in a similar way to

Johnson (1998) and Klein and Manning (2003).

Rewrite rules for the right-corner transform are as

follows, first flattening right-branching structure:1

A1

α1 A2

α2 A3

a3

⇒

A1

A1/A2

α1

A2/A3

α2

A3

a3

(1)

A1

α1 A2

A2/A3

α2

. . .
⇒

A1

A1/A2

α1

A2/A3

α2

. . . (2)

then replacing it with left-branching structure:

1Here, all Ai denote nonterminal symbols, and αi denote

subtrees ; the notation A1:α0 indicates a subtree α0 with la-

bel A1; and all rewrites are applied recursively, from leaves to

root. In trees containing repairs, the symbol ET represents any

number of editing terms and the sub-structure within them.
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S

S/NP

S/PP

S/VP

S/VP

S/S

S/S

· · · WHNP

that

EDITED-S

S/VP

NP

you

VP-UNF

could

NP

you

MD

could

VB

use

IN

for

NP

landfill

Figure 2: Right-corner transformed tree fragment.

A1

A1/A2:α1 A2/A3

α2

α3 . . . ⇒

A1

A1/A3

A1/ A2:α1 α2

α3 . . .

(3)

This representation has interesting properties,

which work well for speech repair. First, the left-

branching structure of a repair results in reparanda

that only require one special repair rule application,

at the last word in the reparandum. Second, the ex-

plicit representation of incomplete constituents al-

lows many reparanda to seamlessly integrate with

the rest of the parse tree, with the EDITED label

essentially acting as an instruction to the parser to

maintain the current position in the unfinished con-

stituent. This subtle second point is illustrated in the

tree in Figure 2. After the EDITED section is de-

tected, it combines with a category label S/S to form

another sub-tree with category label S/S, essentially

acting as a null op in a state machine looking to com-

plete a phrase of type S.

This representation also contains problems, how-

ever. First, note that the (bottom-up) parser uses one

set of rules to combine the reparandum with the cur-

rent state of the recognition, and another set of rules

when combining the alteration with the previous in-

put. While it is a benefit of this approach that both

rule sets are made up of fluent speech rules, their

way of combining nonetheless requires an early pre-

monition of the repair to occur. If anything, the re-

pair should require special rule applications, but in

this representation it is still the case that the reparan-

dum looks different and the alteration looks “nor-

mal.”

A better model of repair from a recognition per-

spective would recognize the reparandum as flu-

ent, since they are recognized as such in real time,

and then, when noticing the repeated words, declare

these new words to be a repair section, and retroac-

tively declare the original start of the phrase to be

a reparandum. It is this conception of a recognition

model that forms part of the basis for a new syntactic

model of speech repair in Section 2.3.

A second problem with this representation is ev-

ident in certain multi-word repairs such as the one

in Figure 2 that require an extra right branch off of

the main left branching structure of the tree. As a

result, a multi-word reparandum structure requires

an extra unary rule application at the left-corner of

the sub-tree, in this case S/VP, relative to the inline

structure of the fluent version of that phrase. This

extra rule will often be nearly deterministic, but in

some cases it may not be, which would result essen-

tially in a penalty for starting speech repairs. This

may act to discourage short repairs and incentivize

longer reparanda, across which the penalty would

be amortized. This incentive is exactly backwards,

since reparanda tend to be quite short.

The next section will show how the two issues

mentioned above can be resolved by making mod-
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ifications to the original structure of trees containing

repairs.

2.3 Modified Repair Annotation

The main model introduced in this paper works by

turning the original repair into a right-branching

structure as much as possible. As a result, the

right-corner transformed representation has very flat

structure, and, unlike the standard right-corner trans-

formed representation described above, does not re-

quire a second level of depth in the tree with differ-

ent rule applications. This can also be an important

consideration for speech, since there are parsers that

can operate in asymptotically linear time by using

bounded stacks, and flat tree structure minimizes the

amount of stack space required.

This model works by using an “interruption”

model for the way a repair begins. The interrup-

tion model works on restarted constituents, by mov-

ing the repaired constituent (the alteration) to be

the right-most child of the original EDITED con-

stituent. The EDITED label is then removed, and

a new REPAIRED label is added. This of course

makes the detection of EDITED sections possible

only retrospectively, by noting a REPAIRED section

of a certain syntactic category, and tracing back in

the tree to find the closest ancestor of the same cate-

gory.

This can be illustrated schematically by the fol-

lowing rewrite rule:

A0

EDITED

A1

α0
A2

α1

ET

. . .

A1:α2

⇒

A0

A1

α0
A2

α1
REPAIRED-A1

ET

. . .

A1:α2

(4)

Figure 3 shows how the example tree from Fig-

ure 1 looks when transformed in this manner. The

result of these transformations may appear odd, but

it is important to note that it is merely an intermedi-

ate stage between the “standard” representation with

an EDITED label, representing the post-recognition

understanding of the sentence, and the right-corner

representation in which recognition actually occurs.

This right-corner representation can be seen in Fig-

ure 2.3.

This representation is notable in that it looks ex-

actly the same after the first word of the repair

(‘you’) as the later incarnation of the same word in

the alteration. After the second word (‘could’), the

repair is initiated, and here a repair rule is initiated.

It should be noted, however, that strictly speaking

the only reason the REPAIRED category needs to

exist is to keep track of edits for the purpose of eval-

uating the parser. It serves only a processing pur-

pose, telling the parser to reset what it is looking for

in the incoming word stream.

WHSBAR

WHNP

DT

that

S

NP

PRP

you

VP

MD

could

REPAIRED-S

S

NP

PRP

you

VP

MD

could

VP

VB

use

PP

IN

for

NP

NN

landfill

Figure 3: REPAIRED-INT transformation

The next model attempts to examine the im-

pact of two different factors in the REPAIRED-INT

representation above. That representation had the

side effect of creating special rules off of the alter-

ation (REPAIRED) node, and it is difficult to as-

sign praise or blame to the performance results of

that model without distinguishing the main modi-

fication from the side effects. This can be recti-

fied by proposing another model that similarly elim-

inates the EDITED label for reparanda, and uses

a new label REPAIRED for the alteration, but that

660



S
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S/PP

S/VP

S/VP
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S/VP

S/S

WHNP

that

NP

you

MD

could

NP

you

MD

could

VB

use

IN

for

NP

landfill

Figure 4: REPAIRED-INT + right-corner transformation

does not satisfy the desire to have reparanda occur

inline using the “normal” rule combinations. This

model does, however, still have special rules that

the REPAIRED label will generate. Thus, if this

model performs equally well (or equally as poorly)

as REPAIRED-INT, then it is likely due to the model

picking up strong signals about an alteration rule

set. This modification involves rewriting the origi-

nal phrase structure tree as follows:

A0

EDITED

A1:α0

ET

. . .

A1:α1 ⇒

A0

A1

A1:α0 ET

. . .

REPAIRED-A1

A1:α1

(5)

A tree with this annotation scheme can be seen in

Figure 5, and its right-corner counterpart is shown

in Figure 6.

The final modification to examine acts effectively

as another control to the previous two annotation

schemes. The two modifications above are essen-

tially performing two operations, first acting to bina-

rize speech repairs by lumping a category of type X

with a category of type EDITED-X, and then explic-

itly marking the repair but not the reparandum. This

modification tests whether simply adding an extra

layer of structure can improve performance while re-

taining the standard speech repair annotation includ-

ing the EDITED category label. This modification

will be denoted EDITED-BIN.

EDITED-BIN trees are created using the follow-

ing rewrite rule:

WHSBAR

WHNP

DT

that

S

S

NP

PRP

you

VP-UNF

MD

could

REPAIRED-S

NP

PRP

you

VP

MD

could

VP

VB

use

PP

IN

for

NP

NN

landfill

Figure 5: REPAIRED-BIN transformation

S

S/NP

S/PP

S/VP

S/VP

S/REPAIRED-S

S/S

WHNP

that

S

S/VP

NP

you

VP-UNF

could

NP

you

MD

could

VB

use

IN

for

NP

landfill

Figure 6: REPAIRED-BIN + right-corner transformation

A0

EDITED

A1:α0

ET

. . .

A1:α1 ⇒

A0

A1

EDITED-A1

A1:α0

ET

. . .

A1:α1

(6)

After this transform, the tree would look identical

to the REPAIRED-BIN tree in Figure 5, except the

node labeled ‘REPAIRED-S’ is labeled ‘S’, and its

left sibling is labeled ‘EDITED-S’ instead of ‘S.’

An EDITED-BIN tree after right-corner transforma-

tions is shown in Figure 7. This explicit binariza-

tion of speech repairs may be effective in its own

right, because without it, a ‘brute force’ binariza-

tion must be done to format the tree before apply-

ing the right-corner transform, and that process in-
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volves joining chains of categories with underscores

into right-branching super-categories. This process

can result in reparanda categories in unpredictable

places in the middle of lengthy super-categories,

making data sparse and less reliable.

S

S/NP

S/PP

S/VP

S/VP

S/S

S/S

WHNP

that

EDITED-S

S/VP

NP

you

VP-UNF

could

NP

you

MD

could

VB

use

IN

for

NP

landfill

Figure 7: EDITED-BIN + right-corner transformation

3 Evaluation

The evaluation of this model was performed using a

probabilistic CYK parser2. This parser operates in

a bottom-up fashion, building up constituent struc-

ture from the words it is given as input. This parsing

architecture is a good match for the structure gen-

erated by the right-corner transform because it does

not need to consider any categories related to speech

repair until the repaired section has been completed.

Moreover, the structure of the trees means that the

parser is also building up structure from left to right.

That mode of operation is useful for any model

which purports to be potentially extensible to speech

recognition or to model the human speech proces-

sor. In contrast, top-down parsers require exhaustive

searches, meaning that they need to explore interpre-

tations containing disfluency, even in the absence of

syntactic cues for its existence.

These experiments used the Switchboard corpus

(Godfrey et al., 1992), a syntactically-annotated cor-

pus of spontaneous dialogues between human inter-

locutors. This corpus is annotated for phrase struc-

ture in much the same way as the Penn Treebank

2The specific parser used is the Stanford parser described in

Klein and Manning(2003), but run in “vanilla PCFG” mode.

Wall Street Journal corpus, with the addition of sev-

eral speech-specific categories as described in Sec-

tion 2.1. For training, trees in sections 2 and 3 of

this corpus were transformed as described in Sec-

tion 2, and rule probabilities were estimated in the

usual way. For testing, trees in section 4, subsec-

tions 0 and 1, were used. Data from the tail end of

section 4 (subsections 3 and 4) was used during de-

velopment of this work.

Before doing any training or testing, all trees in

the data set were stripped of punctuation, empty

categories, typos, all categories representing repair

structure, and partial words – anything that would

be difficult or impossible to obtain reliably with

a speech recognizer. A baseline parser was then

trained and tested using the split described above,

achieving standard results as seen in the table be-

low. For a fair comparison to the evaluation in Hale

et al. (2006), the parser was given part-of-speech

tags along with each word as input. The structure

obtained by the parser was then in the right-corner

format. For standardized scoring, the right-corner

transform, binarization, and augmented repair anno-

tation were undone, so that comparison was done

against the nearly pristine test corpus. Several test

configurations were then evaluated, and compared

to three baseline approaches.

The two metrics used here are the standard Parse-

val F-measure, and Edit-finding F. The first takes the

F-score of labeled precision and recall of the non-

terminals in a hypothesized tree relative to the gold

standard tree. The second measure marks words in

the gold standard as edited if they are dominated by

a node labeled EDITED, and measures the F-score

of the hypothesized edited words relative to the gold

standard (recall in this case is percentage of actual

edited words that were hypothesized as edited, and

precision is percentage of hypothesized edited words

that were actually edited).

The first three lines in the table refer to baseline

approaches to compare against. “Plain” refers to a

configuration with no modifications other than the

removal of repair cues. The next result shown is a

reproducton of the results from Hale et al. (2006)

(described in section 1.2)3. The next line (“Standard

3The present work compares to the standard CYK parsing

result from that paper, and not the result from a heavily opti-

mized parser using lexicalization.
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Right Corner”) is a reproduction of the results from

Miller and Schuler (2008).

The following three lines contain the three ex-

perimental configurations. First, the configuration

denoted EDITED-BIN refers to the simple bina-

rized speech repair described in Section 2.3 (Equa-

tion 6). REPAIRED-BIN refers to the binarized

speech repair in which the labels are basically re-

versed from EDITED-BIN (Equation 5). Finally,

REPAIRED-INT refers to the speech repair type

where the REPAIRED category may be a child of

a non-identity category, representing an interruption

of the outermost desired constituent (Equation 4).

System Configuration Parseval-F Edited-F

Baseline 71.03 17.9

Hale et al. 68.47†† 37.9††

Standard Right Corner 71.21†† 30.6††

EDITED-BIN 69.77∗∗ †† 38.9∗∗ ††

REPAIRED-BIN 71.37∗ 31.6∗∗ ††

REPAIRED-INT 71.77∗∗ 39.2∗∗ ††

Table 1: Table of parsing results. Star (∗) indicates sig-

nificance relative to the ‘Standard Right Corner’ baseline

(p < 0.05), dagger (†) indicates significance relative to

the ‘Baseline’ labeled result (p < 0.05). Double star and

dagger indicate highly significant results (p < 0.001).

Significance results were obtained by perform-

ing a two-tailed paired Student’s t-test on both the

Parseval-F and Edit-F per-sentence results. This

methodology is not perfect, since it fails to account

for the ease of recognition of very short sentences

(which are common in a speech corpus like Switch-

board), and thus slightly underweights performance

on longer sentences. This is also the explanation

for the odd effect where the ‘REPAIRED-BIN’ and

‘REPAIRED-INT’ results achieve significance over

the ‘Standard Right Corner’ result, but not over the

‘Baseline’ result. However, the simplest alternative

– weighting each sentence by its length – is probably

worse, since it makes the distributions being com-

pared in the t-test broadly distributed collections of

unlike objects, and thus hard to interpret meaning-

fully.

These results show a statistically significant im-

provement over previous work in overall parsing ac-

curacy, and obvious (as well as statistically signif-

icant) gains in accuracy recognizing edited words

(reparanda) with a parser. The REPAIRED-INT

approach, which makes repair structure even more

highly left-branching than the standard right-corner

transform, proved to be the most accurate approach.

The superior performance according to the EDIT-

F metric by REPAIRED-INT over REPAIRED-BIN

suggests that the improvement of REPAIRED-INT

over a baseline is not due simply to a new category.

The EDITED-BIN approach, while lowering overall

accuracy slightly, does almost as well on EDITED-F

as REPAIRED-INT, despite having a very different

representation of repair. This suggests that there are

elements of repair that this modification recognizes

that the others do not. This possibility will be ex-

plored in future work.

Another note of interest regards the recovery of

reparanda in the REPAIRED-INT case. As men-

tioned in Section 2.3, the EDITED section can be

found by tracing upwards in the tree from a RE-

PAIRED node of a certain type, to find an non-

repaired ancestor of the same type. This makes an

assumption that repairs are always maximally local,

which probably does not hurt accuracy, since most

repairs actually are quite short. However, this as-

sumption is obviously not true in the general case,

since in Figure 3 for example, the repair could trace

all the way back to the S label at the root of the tree

in the case of a restarted sentence. It is even possible

that this implicit incentive to short repairs is respon-

sible for some of the accuracy gains by discounting

long repairs. In any case, future work will attempt to

maintain the motivation behind the REPAIRED-INT

modification while relaxing hard assumptions about

repair distance.

4 Conclusion

This paper introduced three potential syntactic rep-

resentations for speech with repairs, based on the

idea that errors are not recognized as such until a

correction is begun. The main result is a new rep-

resentation, REPAIRED-INT, which, when trans-

formed via the right-corner transform, makes a very

attractive model for speech with repairs. This rep-

resentation leads to a parser that improves on other

parsing approaches in both overall parsing accu-

racy and accuracy recognizing words that have been

edited.
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Abstract

Human sentence processing involves integrat-
ing probabilistic knowledge from a variety of
sources in order to incrementally determine
the hierarchical structure for the serial input
stream. While a large number of sentence pro-
cessing effects have been explained in terms of
comprehenders’ rational use of probabilistic
information, effects of local coherences have
not. We present here a new model of local
coherences, viewing them as resulting from a
belief-update process, and show that the rele-
vant probabilities in our model are calculable
from a probabilistic Earley parser. Finally, we
demonstrate empirically that an implemented
version of the model makes the correct predic-
tions for the materials from the original exper-
iment demonstrating local coherence effects.

1 Introduction

The task of human sentence processing, recovering
a hierarchical structure from a serial input fraught
with local ambiguities, is a complex and difficult
problem. There is ample evidence that comprehen-
ders understand sentences incrementally, construct-
ing interpretations of partial structure and expecta-
tions for future input (Tanenhaus et al., 1995; Alt-
mann and Kamide, 1999). Many of the main behav-
ioral findings in the study of human sentence pro-
cessing have now been explained computationally.
Using probabilistic models trained on large-scale
corpora, effects such as global and incremental dis-
ambiguation preferences have been shown to be a
result of the rational use of syntactic probabilities

(Jurafsky, 1996; Hale, 2001; Narayanan and Juraf-
sky, 2001; Levy, 2008b; Levy et al., 2009). Simi-
larly, a number of other effects in both comprehen-
sion and production have been modeled as resulting
from rational strategies of languages users that take
into account all the probabilistic information present
in the linguistic signal (Genzel and Charniak, 2002;
Genzel and Charniak, 2003; Keller, 2004; Levy and
Jaeger, 2007).

One class of results from the literature that has
not yet been explained in terms of a rational com-
prehender strategy is that of local coherence effects
(Tabor et al., 2004; Gibson, 2006; Konieczny and
Müller, 2007), cases in which it appears that the
parser is systematically ignoring contextual infor-
mation about possible syntactic structures and pur-
suing analyses that are probable only locally. These
effects are problematic for rational models, because
of the apparent failure to use all of the available in-
formation. This paper describes a new model of lo-
cal coherence effects under rational syntactic com-
prehension, which proposes that they arise as a re-
sult of updating prior beliefs about the structures
that a given string of words is likely to have to pos-
terior beliefs about the likelihoods of those struc-
tures in context. The critical intuition embodied in
the model is that larger updates in probability distri-
butions should be more processing-intensive; hence,
the farther the posterior is from the prior, the more
radical the update required and the greater the pro-
cessing load. Section 2 describes the problem of lo-
cal coherences in detail and Section 3 describes ex-
isting models of the phenomenon. Following that,
Sections 4–5 describe our model and its computa-
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Figure 1: The difficulty of explaining local-
coherence effects as traditional garden-pathing.

tion from a probabilistic Earley parser. Section 6
presents the results of an experiment showing that
our model makes the correct predictions for the lo-
cal coherence effects seen in the original paper by
Tabor et al. (2004). Finally, Section 7 concludes and
discusses the insight our model gives into human
performance.

2 Local coherences

The first studies to report effects of local coherences
are described in Tabor et al. (2004). In Experiment
1, they use a self-paced reading task and materials
containing relative clauses (RCs) attached to nouns
in non-subject position as in (1).

(1) a. The coach smiled at the player tossed a
frisbee by the opposing team.

b. The coach smiled at the player who was
tossed a frisbee by the opposing team.

c. The coach smiled at the player thrown a
frisbee by the opposing team.

d. The coach smiled at the player who was
thrown a frisbee by the opposing team.

Their experimental design crossed RC reduction
with verb ambiguity. RCs are either reduced (1a,1c)
or unreduced (1b,1d), and the RC verb is either lex-
ically ambiguous between a past tense active and a
past participle (1a–1b), or is unambiguously a past
participle (1c–1d).

Tabor et al. point out that in one of these four
conditions (1a) there is a locally coherent string the
player tossed a frisbee. Out of context (e.g., if it
were starting a sentence) this string would have a
likely parse in which tossed is a past tense active
verb, the player is its agent, and a frisbee is its
theme (Figure 1, left). The preceding context within

the sentence, however, should rule out this interpre-
tation because the player appears within a PP and
hence should not be able to be the subject of a new
sentence (Figure 1, right). That is, given the preced-
ing context, the player tossed a frisbee must begin
a reduced RC, such that there is no local ambiguity.
Thus, if comprehenders are making full use of the
linguistic context, (1a) should be no more difficult
than the other examples, except insofar as ambigu-
ous verbs are harder than unambiguous verbs, and
reduced RCs are harder than unreduced RCs, pre-
dicting there would be only the two main effects of
RC reduction and verb ambiguity on reading times
for the tossed a frisbee region.

Tabor et al., however, predict an interaction such
that (1a) will have added difficulty above and be-
yond these two effects, because of the interference
from the locally coherent parse of the player tossed a
frisbee. Concordant with their predictions, they find
an interaction in the tossed a frisbee region, such
that (1a) is super-additively difficult. Because this
result requires that an impossible parse influences a
word’s difficulty, it is in direct opposition to the pre-
dictions of theories of processing difficulty in which
the probability of a word given context is the pri-
mary source of parsing difficulty, and more gener-
ally appears to be in opposition to any rational the-
ory, in which comprehenders are making use of all
the information in the linguistic context.

3 Existing models

With the results showing local coherence effects
in mind, we can ask the question of what sorts
of theories do predict these effects. This section
briefly describes two recent examples of such the-
ories. The first involves dynamical systems models
to explain the effects and the second uses a mathe-
matical model of the combination of bottom-up and
top-down probabilistic information.

In Tabor and Hutchins’s (2004) SOPARSE (self-
organized parse) model, reading a word activates a
set of lexically anchored tree fragments. Through
spreading activation between compatible fragments
and inhibition between incompatible ones, these tree
fragments then compete in a process which is sen-
sitive only to the local environment, i.e., ignoring
the global grammatical context. Eventually, the sys-
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tem stabilizes to the correct parse, and reading times
for each word are modeled as the time the system
takes to stabilize after reading a word. Stabilization
takes longer for locally coherent regions because the
locally coherent parse will be created and compete
with the globally grammatical parse.

There are, however, unresolved issues with this
model. The model has a number of free parameters,
relating to the equations used for the competition,
the method by which links between fragments are
formed, as well as the question of precisely what
tree fragments a given word will activate. While Ta-
bor and Hutchins (2004) work out these questions
in detail for the types of sentences they model, it is
unclear how the model could be scaled up to make
predictions for arbitrary types of sentences. That is,
there is no principled system for setting the three
types of parameters mentioned, and thus no clear in-
terpretation of their values. The model put forward
in this paper is an attempt to remedy this situation.

A recent proposal by Gibson (2006) can also ex-
plain some of the local coherence results. Gibson’s
proposal is that part-of-speech ambiguities have a
special status in parsing; in effect, lexical part-of-
speech ambiguities can be thought of as one-word
local coherences. In this model, a probability func-
tion P̃ is calculated over part-of-speech tags given
a word. This probability for tag ti and a word w,
P̃ (ti|w), is proportional to the context-independent
probability of ti given the word w, P (ti|w) – the
bottom-up component – multiplied by a smoothed
probability Ps of the tag given the context – the top-
down component:

P̃ (ti|w) =
P (ti|w)Ps(ti|context)∑

t∈T
P (t|w)Ps(t|context)

(1)

Difficulty is predicted to be high when the probabil-
ity P̃ of the correct tag is low.

Because the top-down probabilities are smoothed
to allow for all possible parts-of-speech, any word
which is lexically ambiguous will be more difficult
to process, regardless of whether it is ambiguous or
not in its context. This can thus explain some of the
difference between the ambiguous and unambiguous
verbs in Tabor et al. (2004). It is not clear, however,
under such a model why the super-additive interac-
tion would obtain—that is, why (1a) should be so

much harder than (1b) starting at the word tossed.
In addition, Gibson’s model is a bit underspecified:
he does not discuss how the top-down probabilities
are calculated, nor what the precise linking hypothe-
sis is between the final P̃ and reading times. Finally,
it is not at all clear why the top-down expectations
should be smoothed, since the smoothing actually
has negative consequences on the processor’s per-
formance.

4 Parsing as belief update

The basic intuition behind the model presented here
is that incrementally processing a sentence can be
conceptualized as a process of updating one’s be-
liefs. Such an analogy has been used to moti-
vate surprisal-based theories of sentence processing
(Hale, 2001; Levy, 2008a), where beliefs about the
structure of a sentence after seeing the first i − 1
words in the sentence, which we denote as wi−1

0 ,
are updated upon encountering wi. In this case, the
surprisal of a word (− logP (wi|wi−1

0 )) is equiva-
lent to the Kullback-Leibler divergence of the beliefs
after wi0 from the beliefs after wi−1

0 (Levy, 2008a).
Our model focuses on another belief-update process
in sentence processing: updating beliefs about the
structures that a string of words is likely to have in-
dependent of context to beliefs about what structures
it is likely to have in context. A bit more formally, it
views the process of integrating a string of words
wji into a sentence as beginning with a ‘bottom-
up’ prior distribution of syntactic structures likely to
spanwji and integrating that with ‘top-down’ knowl-
edge from the previous words in the sentence wi0 in
order to reach a posterior distribution conditioning
on wj0 over which structures actually can span wji .
This belief update process can be viewed as a ratio-
nal reconstruction of the Tabor and Hutchins (2004)
model, where – instead of the system dynamics of
competition between arbitrary tree fragments – dif-
ferences between prior and posterior probability dis-
tributions over syntactic structures determine pro-
cessing difficulty.

More formally still, when integrating wji into a
sentence, for each syntactic category X , we can de-
fine the prior probability conditioned only onwji that
wji will form the beginning of that category, i.e., that
anX exists which begins at index i and spans at least

667



through j:

Prior: P (Xk≥j
i |wji ) (2)

It is important to note here that this prior probability
is conditional only on the value of wji and not the
values of i or j; that is, in the prior probability, i and
j should be interpreted merely as a way to coindex
the start and end points of the string of words being
integrated with a category X potentially spanning
them, and not as making reference to position in the
full sentence string.

For each categoryX , this prior probability will be
updated to the posterior probability of that category
spanning wji given all the words seen so far:

Posterior: P (Xk≥j
i |wj0) (3)

In the equation for the posterior, of course, the in-
dices i and j are positions in the sentence string, and
not merely coindices.

Given these prior and posterior beliefs, we pre-
dict difficulty to arise in cases where the prior re-
quires substantial modification to reach the poste-
rior, that is, cases in which the prior and poste-
rior make substantially different predictions for cat-
egories. A strong local coherence will have sharply
different prior and posterior distributions, causing
difficulty. We represent the prior and posterior be-
liefs as vectors of the probabilities of each syntactic
category spanningwji , and measureMij , the amount
of modification required, as the summed K-L diver-
gence of the prior from the posterior vector. That is,
if N is the set of nonterminals in the grammar, the
size of the belief update is modeled as1

Mij
def=
∑

X∈N
D
(
P (Xk≥j

i |wj0) ||P (Xk≥j
i |wji )

)

In the remainder of the paper, we show how to com-
pute Mij by using Bayesian inference on quanti-
ties calculated in ordinary probabilistic incremen-
tal Earley parsing with a stochastic context-free

1Note that for each syntactic category X ∈ N , the proba-
bility distribution P (Xk≥j

i |I) for some information I is over a
binary random variable indicating the presence of X . The dif-
ferent syntactic categories X that could span from i to any k
are not mutually exclusive, hence we cannot define size of be-
lief update as a single K-L divergence defined over multinomial
distributions.

grammar (SCFG), and show that our model makes
the correct predictions using an SCFG for English
on the original local-coherences experiment of Ta-
bor et al. (2004).

5 Computing priors and posteriors

For SCFGs, a probabilistic Earley parser (Earley,
1970; Stolcke, 1995) provides the basic quantities
we need to compute the prior (2) and posterior
(3) for each category X . Following Stolcke, we
use capital Latin characters to denote non-terminal
categories and use lowercase Greek characters to
denote (possibly null) sequences of terminals and
non-terminals. We write the probability that a non-
terminal X can be recursively rewritten by SCFG
rules as a certain series of symbols µ by

P (X ∗⇒ µ)

An edge built from the rule X → λµ where λ has
been recognized as beginning at position i and end-
ing at position j is denoted

j : Xi → λ.µ

The forward probability of that edge at position j,
αj , is defined to be the joint probability that the root
node will generate all words recognized so far wj0 as
well as the edge

αj(Xi → λ.µ)

With this terminology, we are now in a position to
describe how we calculate the posterior and prior
probability vectors for our model.

5.1 Calculating the posterior
To calculate the posterior, we first use the definition
of conditional probability to rewrite it as

P (Xk≥j
i |wj0) =

P (Xk≥j
i , wj0)

P (wj0)

In a context-free grammar, given the syntactic cat-
egory that dominates a string of words, the words’
probability is independent from everything outside
the category. Thus, this is equivalent to

P (Xk≥j
i |wj0) =

P (wio, Xi)P (wji |X
k≥j
i )

P (wj0)

=
P (S ∗⇒ wi0Xν)P (X ∗⇒ wjiµ)

P (S ∗⇒ wj0λ)
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5.1.1 Posterior: the numerator’s first term
The first term in the numerator P (S ∗⇒ wi0Xν)

can be computed from a parse of wi0 by summing
forward probabilities of the form

αi(Xi → .µ) (4)

5.1.2 Posterior: the denominator
Similarly, the denominator P (S ∗⇒ wj0λ) can be

computed from a parse of wj0 by summing forward
probabilities of the form

αj(Y → λwjj−1.µ) (5)

for all Y. This is because the forward probability of
a state is conditioned on generating all the previous
words.

5.1.3 Posterior: the numerator’s second term
The second term in the numerator P (X ∗⇒ wjiµ)

for an arbitrary category X cannot necessarily be
calculated from a probabilistic Earley parse of the
sentence, because the parser does not construct
states that are not potentially useful in forming a sen-
tence (i.e., states that would have a forward proba-
bility of zero.) However, to calculate the probability
of X generating words wji we can parse wji sepa-
rately with a goal category of X . From this parse,
we can extract the probability of wji being generated
from X in the same way as we extracted the proba-
bility of wj0 being generated from S, i.e., as a sum of
forward probabilities at j (Eq. 5).2

5.2 Calculating the prior

To calculate the prior, we first use Bayes rule to
rewrite it as

P (Xk≥j
i |wji ) =

P (wji |X
k≥j
i )P (Xk≥j

i )

P (wji )
(6)

Recall that at this point, i and j do not refer to in-
dex positions in the actual string but rather serve to
identify the substring wji of interest. That is, P (wji )
denotes the probability that at an arbitrary point in

2To calculate the posterior, it is not necessary to parse wj
i

separately, since these states are only excluded from the parse
when their forward probability is zero, in which case the first
term in the numerator will also be zero. A separate parse is nec-
essary, however, when using this term to calculate the prior.

Table 1: Event space for the prior

Event Description
E0: There are at least i′ words |w| ≥ i′
E1: A category X begins at i′ Xi′

E2: An Xi′ spans at least through j Xk≥j
i′

E3: There are at least j words |w| ≥ j
E4: Words wj

i′ are these specific w̃j
i′ wji′ = w̃ji′

an arbitrary sentence, the next j − i words will be
wji , and P (Xk≥j

i ) denotes the probability that an ar-
bitrary point in an arbitrary sentence will be the left
edge of a category X that spans at least j − i words.
None of the three terms in Eq. 6 can be directly ob-
tained. However, we can obtain a very good approx-
imation of Eq. 6 as follows. First, we marginalize
over the position within a sentence with which the
left edge i might be identified:

P (Xk≥j
i |wji ) =

∑

i′=0,1,...

(
P (wji′ |X

k≥j
i′ )P (Xk≥j

i′ )

P (wji′)

)
P (i = i′)

(7)

In Eq. 7, i′ is identified with the actual string position
within the sentence.

Second, we rewrite the first term in this sum with
event space notation, using the event space given in
Table 1.

P (wji′ |X
k≥j
i′ )P (Xk≥j

i′ )

P (wji′)
=
P (E0,3,4|E0...3)P (E0...3)

P (E0,3,4)

=
P (E4|E0...3)P (Eo...3)

P (Eo,3,4)

Applying the chain rule, we can further simplify.

=
P (E4|E0...3)P (E1...3|E0)P (E0)

P (E3,4|E0)P (E0)

=
P (E4|E0...3)P (E1...3|E0)

P (E3,4|E0)

=
P (E2...4|E0, E1)P (E1|E0)

P (E3,4|E0)
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Switching back from event space notation and sub-
stituting this term into Eq. 7, we now have

P (Xk≥j
i |wji ) =

∑

i′=0,1,...

(
P (wji′ |Xi′ , E0)P (Xi′ |E0)

P (wji′ |E0)

)
P (i = i′)

(8)

Thus, by conditioning all terms on E0, the presence
of at least i′ words, we have transformed the proba-
bilities we need to calculate into these four terms,
which are easier to calculate from the parser. We
now consider how to calculate each of the terms.

5.2.1 Prior: the numerator’s first term
The first term in the numerator can be simplified

because our grammar is context-free:

P (wji′ |Xi′ , E0) = P (wji′ |Xi′)

= P (X ∗⇒ wji′)

This can be computed as described in Section 5.1.3.

5.2.2 Prior: the numerator’s second term
The second term in the numerator can be rewritten

as follows:

P (Xi′ |E0) =
P (Xi′ , E0)
P (E0)

=
P (S ∗⇒ ẘi

′
0Xµ)

P (S ∗⇒ ẘi
′

0 µ)

where ẘi
′

0 denotes any sequence of i′ words. Given
a value i′ we can calculate both terms by parsing
the string ẘi0X , where each word ẘ in ẘi0X is a
special word that can freely act as any preterminal.
The denominator can then be calculated by summing
the forward probabilities of the last word ẘii−1 as in
Eq. 5, and the numerator by summing the forward
probability of X , as in Eq. 4.

5.2.3 Prior: the denominator
The denominator in the calculation of the prior

can be calculated in a way analogous to the numera-
tor’s second term (Section 5.2.2):

P (wji′ |E0) =
P (wji′ , E0)
P (E0)

=
P (S ∗⇒ ẘi

′
0w

j
i′µ)

P (S ∗⇒ ẘi
′

0 µ)

5.2.4 Prior: starting position probability
Finally, we must calculate the second term in

Eq. 8, the probability of the starting position
P (i = i′). Given that all our terms are conditional
on the existence of all words in the sentence up to
i′ (E0), the probability of a starting position P (i) is
the probability of drawing i′ randomly from the set
of positions in sentences generated by the grammar
such that all words up to that position exist. For most
language grammars, this distribution can be easily
approximated by a sample of sentences generated
from the SCFG, since most of the probability mass
is concentrated in small indices.

6 Experiment

We tested the predictions of an implemented ver-
sion of our model on the materials from Ta-
bor et al. (2004). To generate quantitative predic-
tions, we created a small grammar of relevant syn-
tactic rules, and estimated the rule probabilities from
syntactically annotated text. We calculated summed
K-L divergence of the prior from the posterior vector
for each word in the Tabor et al. items, and predict
this sum to be largest at the critical region when the
sentence has an effect of local coherence.

6.1 Methods
6.1.1 Grammar

We defined a small SCFG for the problem, and es-
timated its rule probabilities using the parsed Brown
corpus. The resulting SCFG is identical to that used
in Levy (2008b) and is given in Table 2.

6.1.2 Lexicon
Lexical rewrite probabilities for part-of-speech

tags were also estimated using the entire parsed
Brown corpus.

6.1.3 Materials
The materials were taken from Experiment 1 of

Tabor et al. (2004). We removed 8 of their 20 items
for which our trained model either did not know the
critical verb or did not know the syntactic structure
of some part of the sentence. For the other 12 items,
we replaced unknown nouns (9 instances) and un-
known non-critical verbs (2 instances), changed one
plural noun to singular, and dropped one sentence-
initial prepositional phrase.
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Table 2: The SCFG used in Experiment 3. Rule
weights given as negative log-probabilities in bits.

Rule Weight
ROOT → S 0
S → S-base CC S-base 7.3
S → S-base 0.01
S-base → NP-base VP 0
NP → NP-base RC 4.1
NP → NP-base 0.5
NP → NP-base PP 2.0
NP-base → DT NN NN 4.7
NP-base → DT NN 1.9
NP-base → DT JJ NN 3.8
NP-base → PRP 1.0
NP-base → NNP 3.1
VP/NP → VBD NP 4.0
VP/NP → VBD 0.1
VP → VBD PP 2.0
VP → VBD NP 0.7
VP → VBD 2.9
RC →WP S/NP 0.5
RC → VP-pass/NP 2.0
RC →WP FinCop VP-pass/NP 4.9
PP → IN NP 0
S/NP → VP 0.7
S/NP → NP-base VP/NP 1.3
VP-pass/NP → VBN NP 2.2
VP-pass/NP → VBN 0.4

6.2 Procedure

For these 12 items, we ran our model on the four
conditions in (1). For each word, we calculated
the prior and posterior vectors for substrings of
three lengths at wi. The summed K-L divergence
is reported for a substring length of 1 word us-
ing a prior of P (Xk≥i

i−1 |wii−1), for a length of 2
using P (Xk≥i

i−2 |wii−2), and for a length of 3 us-
ing P (Xk≥i

i−3 |wii−3). For all lengths, we predict the
summed divergence to be greater at critical words
for the part-of-speech ambiguous conditions (1a,1b)
than for unambiguous (1c,1d), because the part-of-
speech unambiguous verbs cannot give rise to a prior
that predicts for a sentence to begin. For a substring
length of 3, we also predict that the divergence is
superadditively greatest in the ambiguous reduced
condition (1a), because of the possibility of starting
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a sentence with the player tossed.

6.3 Results
The results of the experiment are shown in Figures
2–4. For all three substring lengths, the model pre-
dicts difficulty to be greater in the ambiguous condi-
tions at the critical words (tossed/thrown a frisbee).
For 1-word substrings, the effect is localized on the
critical verb (tossed/thrown), for 2-word substrings
it is localized on the word directly following the
critical verb (tossed/thrown a), and for 3-word sub-
strings there are two effects: one on the critical verb
(the player tossed/thrown) and one two words later
(tossed/thrown a frisbee). Furthermore, for 3-word
substrings, the effect is superadditively greatest for
the player tossed. These results thus nicely confirm
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both of our predictions and demonstrate that a model
in which large belief updates from a bottom-up prior
to a posterior induce difficulty is capable of account-
ing for effects of local coherences.

7 Conclusion

This paper has described a model of local coherence
effects in sentence processing, which views the pro-
cess of integrating a string of words wji into a sen-
tence as a process of updating prior beliefs about
the structures spanning those words to posterior be-
liefs. These prior beliefs are simply the probabilities
of those structures given only the words being inte-
grated, and the posterior beliefs are the probabilities
given the entire sentence processed thus far. Diffi-
culty is predicted to result whenever this update is
large – which we model in terms of a large summed
K-L divergence of the prior from the posterior vec-
tor. We demonstrated a method of normatively cal-
culating these probabilities from probabilistic Ear-
ley parses and used this implemented model to make
predictions for the materials for the original experi-
mental result of effects of local coherences (Tabor et
al., 2004). Our results demonstrated that the model
predicts difficulty to occur at the correct part of the
sentence in the correct condition.

We improve on existing models in two ways.
First, we make predictions for where local coher-
ences should obtain for an arbitrary SCFG, not just
one particular class of sentences. This allows the
model to scale up for use with a broad coverage

grammar and to make predictions for arbitrary sen-
tences, which was not possible with a model such as
Tabor & Hutchins (2004).

Second, our model gives a rational basis to an ef-
fect which has typically been seen to result from ir-
rationality of the human sentence processor. Specif-
ically, the cost that our model describes of updating
bottom-up prior beliefs to in-context posterior be-
liefs can be viewed as resulting from a rational pro-
cess in the case that the bottom-up prior is available
to the human sentence processor more rapidly than
the in-context posterior. Interestingly, the fact that
the prior is actually more difficult to compute than
the posterior suggests that the only way it would be
available more rapidly is if it is precomputed. Thus,
our model provides the insight that, to the extent
that comprehenders are behaving rationally in pro-
ducing effects of local coherences, this may indi-
cate that they have precomputed the likely syntac-
tic structures of short sequences of words. While it
may be unlikely that they calculate these probabil-
ities for sequences directly from their grammar as
we do in this paper, there could be a number of ways
to approximate this prior: for example, given a large
enough corpus, these probabilities could be approx-
imated for any string of words that appears suffi-
ciently often by merely tracking the structures the
string has each time it occurs. Such a hypothesis for
how comprehenders approximate the prior could be
tested by manipulating the frequency of the relevant
substrings in sentences with local coherences.

This work can be extended in a number of ways.
As already mentioned, one logical step is using
a broad-coverage grammar. Another possibility re-
lates to the problem of correlations between the dif-
ferent components of the prior and posterior vec-
tors. For example, in our small grammar, whenever a
ROOT category begins, so does an S, an S-base, and
an NP-base. Dimensionality reduction techniques on
our vectors may be able to remove such correlations.
These steps and more exhaustive evaluation of a va-
riety of datasets remain for the future.
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