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Abstract

Classification is one of the key issues in the fields of decision sciences and knowledge discovery. This paper presents a new

approach for constructing a classifier, based on an extended association rule mining technique in the context of classification. The

characteristic of this approach is threefold: first, applying the information gain measure to the generation of candidate itemsets;

second, integrating the process of frequent itemsets generation with the process of rule generation; third, incorporating strategies

for avoiding rule redundancy and conflicts into the mining process. The corresponding mining algorithm proposed, namely

GARC (Gain based Association Rule Classification), produces a classifier with satisfactory classification accuracy, compared

with other classifiers (e.g., C4.5, CBA, SVM, NN). Moreover, in terms of association rule based classification, GARC could filter

out many candidate itemsets in the generation process, resulting in a much smaller set of rules than that of CBA.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction trees, Bayesian networks, support vectors machine,
Classification is one of the key issues in the field of

decision sciences, a field which plays an important role

in supporting business and scientific decision-making.

In recent years, it has also been one of the focal points

in data mining and knowledge discovery. Classifica-

tion is finding a classifier that results from training

datasets with predetermined targets, fine-tuning it with

test datasets, and using it to classify other datasets of

interest. There exists various ways of constructing

classifiers in the form of, for example, rules, decision
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etc. [12,14–16,21,24,26,29–31]. Decision trees classi-

fiers, such as Quinlan’s C4.5/5.0 classifier and its

extensions [30], have received considerable attention

due to its speed and understandability. Moreover, a

number of efforts have been put forward to focus on

the various aspects of improvements [5,9,25,33]. An-

other type of classification technique that has attracted

an increasing number of attempts in recent years is

finding classification rules based on association rule

mining techniques, e.g., Refs. [4,20–23,29].

A classification rule is of the form XZ C, where X

is a set of data items, and C is a class (label) and a

predetermined target. With such a rule, a transaction

or data record t in a given database could be classified

into class C if t contains X. Apparently, a classifica-
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tion rule could be regarded as an association rule of a

special kind.

Roughly speaking, an association rule is a relation-

ship between data items. Two measures, namely the

Degree of Support (Dsupp) and the Degree of Confi-

dence (Dconf), are used to define a rule. For example, a

rule like bMilkZ Diaper with Dsupp=20%, Dconf=

80%Q means that b20% of the customers bought

both Milk and DiaperQ and that b80% of the customers

who bought Milk also bought DiaperQ. That is, Dsupp

corresponds to statistical significance, while Dconf is a

measure of the rule’s strength [3].

Formally, let I ={Ii, i =1,. . .,s} be a set of items.

A transaction database T is a set of transactions,

where each transaction t is a set of items such that

tp I. An association rule is of the form XZ Y,

where Xo I, Yo I are called itemsets, and

X\Y=F. A transaction t is called to contain X, if

Xp t. Let Dsupp(X) be the fraction of transactions

that contain X in a database T, Dsupp(X) = ||X|| / |T|.

The degree of support and degree of confidence for

a rule XZ Y are defined as follows:

Dsupp XZYð Þ ¼ jjX [ Y jj=jT j

Dconf XZYð Þ ¼ jjX [ Y jj=jjX jj

where X and Y are itemsets with X\Y=F, T is the set

of all the transactions contained in the database

concerned, ||X|| is the number of the transactions in T

that contain X, ||X[Y|| is the number of the transac-

tions in T that contain X and Y, and |T| is the number of

the transactions in T. In other words, Dsupp(XZ Y) is

the percentage of transactions containing both X and Y

in the whole dataset, while Dconf (XZ Y) is the ratio of

the number of transactions that contain X and Y over

the number of transactions that contain X. They are

used to evaluate a rule against given thresholds, mini-

mal support a and minimal confidence b, respectively.
In particular, if Dsupp of an itemset X is no less than a
(i.e., Dsupp(X)za), then X is called a frequent itemset,

otherwise called an excluded itemset. There have been

many efforts proposed to discover association rules in

various ways [1,2,8,11–13,17,28,32,34,37], among

which the Apriori algorithm by Agrawal and Srikant

[1] is usually deemed as a classical algorithm.

In the classification based on association rules

mining, a well-known method, namely the CBA
method proposed by Liu et al. [21] and its modifica-

tions [20,23], uses an Apriori-type association rule

mining approach [1] to generate classification rules,

which usually generates all the frequent itemsets,

followed by the rule generation process. Subsequent-

ly, filters may be applied to the rules so as to eliminate

non-interesting ones such as conflicts and so on. In

other words, basically, CBA directly employs the

Apriori-type approach for a particular kind of associ-

ation rule, namely classification rules in forms of

XZ C. Thus, its efficiency heavily relies on the pro-

cess of generating frequent itemsets. Like convention-

al association rules, classification rules are generated

based on all the frequent itemsets generated. Then

these rules are sorted according to a filtering measure,

if desired.

While classifiers in forms of rules are often appeal-

ing for use and explanation by decision makers, di-

rectly applying the Apriori-type approach may

however result in a large number of itemsets and

then of rules, which would further increase the effort

for understanding the rules as well as for resolving

rule redundancy and conflicts. Therefore, it is consid-

ered desirable if some strategies such as itemset re-

duction and redundancy/conflict resolutions could be

incorporated into the process of frequent itemsets

generation, such that fewer itemsets need to be gen-

erated and therefore with fewer resultant rules. Ap-

parently, a smaller set of classification rules is often

preferable than a larger set at the same level of accu-

racy in terms of rule understandability.

Moreover, in the process of frequent itemsets gen-

eration, the Apriori-type method usually considers all

the combinations of items in candidate itemsets. With

massive datasets, the number of these combinations is

generally very large. In fact, different items in these

combinations may play different roles in measuring the

degrees of support and degrees of confidence. There-

fore, it is deemed desirable if only a part of the items

(e.g., those binformativeQ ones) in candidate itemsets

need to be considered in generating frequent itemsets.

This paper addresses some of the above-men-

tioned issues and presents a new approach for con-

structing a classifier, based on an extended

association rule mining technique in the context of

classification. Section 2 describes the issues of con-

cern along with the notion of information gain to be

used in the mining process to reduce the number of
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candidate itemsets, as well as with the notions and

certain related properties of rule redundancy and con-

flicts. In Section 3, the new mining algorithm called

GARC (Gain based Association Rule Classification)

is presented, which combines the processes of fre-

quent itemsets generation and rule generation, where

the measures for redundancy and conflicts avoidance

and information gain are incorporated. Finally, results

and respective analyses of data experiments are pro-

vided in Section 4.
2. Classification rules

2.1. Basic notions

As mentioned previously, the classification rules

mining problem can be regarded as a special case of

the association rules mining problem [21,22,27].

The task of classification is to find a set of rules

so as to identify the classes of undetermined trans-

actions. In classification, a classifier is usually built

based upon a dataset that is divided into two

groups: one is for training, and the other for testing,

each consisting of data items and class labels. In

terms of association rules, these class labels are

special cases of items. For the sake of clarity, we

hereafter refer to them separately, otherwise indicat-

ed where necessary.

Let T be the dataset with each transaction composed

of a number of distinctive items in the set of all items I

and a class label inG ={C1, C2, . . ., Cg}, X be a subset

of I (i.e., Xp I), and Ck be a class label in G(k =1,

2,. . .,g). Notably, in classification-oriented association
rule mining, only those rules each with one single class

label as its consequent need to be considered; therefore

in this paper, each itemset (such as XCk) is used to

represent a rule (such as XZ Ck) identically. In other

words, itemset XCk corresponds to rule XZ Ck, with

Dsupp(XCk)= ||XCk|| / |T|, and Dconf (XCk)= ||XCk|| /

||X||. A transaction t in T is called to contain X if

ttX. XCk is called to be a p-itemset, if X contains p

items. If Dsupp(XCk)za, then XCk is called a frequent

itemset. Furthermore, if Dconf (XCk)zb, then XCk is

called a qualified itemset, and can be used to produce a

classification rule such as XZ Ck. For a rule XZ Ck,

sometimes X is referred to as the antecedent of the rule

and Ck as the consequent of the rule. Moreover, for the
sake of convenience, two parameters namely lcount

and wcount are sometimes used to denote ||X|| and

||XCk||, as the number of transactions containing X

and the number of transactions containing XCk, respec-

tively. Thus, mining classification rules is used to

discover such qualified association rules as XZ Ck,

for k =1, 2, . . .,g.

2.2. Information gain

Information gain is one of the measures used to

select best split attributes in decision tree classifiers

[7,35]. In this paper, it could also be used as a measure

to reduce the number of itemsets. In the process of

frequent itemsets generation, instead of considering

all the combinations of items in candidate itemsets in

the Apriori-type method, information gain measure

will be used to select the best attribute. In this way,

only those items containing the best item with maxi-

mum information gain need to be selected to further

generate candidate itemsets.

Suppose an attribute A has n distinct values that

partition the training dataset T into subsets T1, T2, ...,

Tn. For a dataset SpT, freq(Ck, S) represents the

number of transactions in S that belong to class Ck.

Then info(S) is defined as follows to measure the

average amount of information needed to identify

the class of a transaction in S:

info Sð Þ ¼ �
Xg
k¼1

freq Ck ; Sð Þ
jSj � log2

freq Ck ; Sð Þ
jSj

��

where |S| is the number of transactions in S and g is

the number of classes.

After the dataset T is partitioned in accordance

with n values of attribute A, the expected information

requirement could be defined as:

infoA Tð Þ ¼
Xn
i¼1

jTij
jT j � info Tið Þ

The information gained by partitioning T according

to attribute A is defined as:

gain Að Þ ¼ info Tð Þ � infoA Tð Þ

Among all attributes in dataset T, the best split

attribute is the one that maximizes the information gain.
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2.3. Rule redundancy and conflicts

Though classification rules can be discovered

using Apriori-type association rule mining techni-

ques directly, the whole set of classification rules

(i.e., rules satisfying a and b) might be poor in

quality. First, the number of classification rules

may be too large to easily construct classifiers.

More seriously, from the viewpoint of classification,

there may exist conflicting rules (e.g., XZ Ci and

XZ Cj) and redundant rules (e.g., XZ Ci and

XYZ Ci, with Dconf (XZ Ci)zDconf (XYZ Ci)). The

conflicting rules will lead to identifying a transaction

into two classes, while the redundancy will result in

a rule like XYZ Ci that is semantically meaningless

for classification (given XZ Ci).

Definition 2.1. Rule r is called to precede rule rV if

either Dconf (r)NDconf (rV), or Dconf (r)=Dconf (rV)
and Dsupp(r)NDsupp(rV).

Definition 2.2. Let W be a set of discovered classifi-

cation rules. Then rule ZZ Ci in W is called redundant

if there already exists a rule XZ Ci in W such that

ZsX. Moreover, for i p j, rules ZZ Cj and XZ Ci in

W are called conflicting if there already exists a rule

XZ Ci in W such that either Z =X, or ZsX and

ZZ Cj does not precede XZ Ci.

Apparently, coping with such rule redundancy and

conflicts is desirable because otherwise (1) a transac-

tion containing X may be classified into two classes

(e.g., Ci and Cj), (2) a rule (e.g., XYZ Ci) may not be

regarded useful (i.e., redundant) for identifying a

transaction due to the existence of another rule (e.g.,

XZ Ci), and (3) a transaction containing XY may be

classified into two classes (e.g., Ci and Cj); or XYZ Cj

is not significant enough to be used, compared with

XZ Ci. It is worth mentioning, however, that these

notions of redundancy and conflict are particularly

relevant for classification and may not be of concern

for association rules in general.

Usually, given a (nonempty) set W of discovered

classification rules, i.e., W ={r|r is a classification

rule, Dsupp(r)za and Dconf (r)zb}, filters can be

built to deal with the redundancy and conflicts. It

can be seen that for any nonempty W there exists a

corresponding nonempty set Wc of rules with such

redundancy and conflicts removed. Wc is referred to
as a compact set of W. A constructive way to obtain

Wc is a repetitive resolution procedure as follows:

First set Wc=W, then repeat the following steps

until no further changes are made for Wc.

(i) check each rule XYZ Ci in Wc, if there exists a

rule XZ Ci in Wc, then delete XYZ Ci. That is,

Wc=Wc�{XYZ Ci}.

(ii) check each rule XZ Ci in Wc, if there exists a

rule XZ Cj in Wc that does not precede XZ Ci,

then delete XZ Cj. That is, Wc=Wc�{XZ Cj}.

(iii) check each rule XYZ Cj in Wc, if there exists a

rule XZ Ci in Wc that precedes it, then delete

XYZ Cj. That is, Wc=Wc�{XYZ Cj}.

Obviously, Wc is nonempty if W is nonempty.
Moreover, Wc is not unique, depending on the order

in which the above three steps are performed. Notably,

in this paper, our primary attention is not paid to

developing a separate filter to derive Wc from W,

but to exploring certain ways to avoid rule conflicts

and redundancy, which could be incorporated in the

integrated mining process.

2.4. Strategies in avoiding rule conflicts and

redundancy

When the strategies are incorporated into the pro-

cess of generating W, the rules in W will be free of

redundancy and conflict. More importantly, these strat-

egies will help identify excluded (i.e., not frequent)

itemsets inside the process of candidate itemsets gen-

eration, resulting in fewer itemsets to be generated.

With regard to the redundancy stated in Defini-

tion 2.2, the strategy that could be applied is that, if

XZ Ci holds, then any candidate itemset containing

XCi need not to be produced, because any such item-

sets as XYCi (i.e., Z =XY) would not be regarded

semantically necessary from the perspective of classi-

fication. In other words, if XZ Ci holds, it means that

any transaction containing X will be classified into

class Ci, including any transaction containing XY.

Note that the number of candidate itemsets to generate

is reduced.

Next, consider rule conflicts for Z=X in Definition

2.2. The following theorem indicates that it can sim-

ply be avoided if the pre-specified minimal confi-

dence b is set to be over 0.5, which is regarded

reasonable in many real applications.



G. Chen et al. / Decision Support Systems 42 (2006) 674–689678
Theorem 2.1. If bN50%, then rules XZ Ci and

XZ Cj will not hold in T simultaneously.

Proof. Without loss of generality, assume that XZ Ci

holds in T with Dconf (XZ Ci)zb N50%. For gz2,

sinceOXO¼OXCiOþ
Pg

j¼1
jpi

OXCjO; and
OXO
OXO ¼OXCiO

OXO þPg
j¼1
jpi

OXCjO
OXO

, then
Table 1

Training dataset

TID Outlook Temperature Humidity Windy Class

1 Sunny Mild Normal True Play

2 Sunny Hot High True Don’t play

3 Sunny Hot High False Don’t play

4 Sunny Mild High False Don’t play

5 Sunny Cool Normal False Play

6 Overcast Mild High True Play

7 Overcast Hot High False Play

8 Overcast Cool Normal True Play

9 Overcast Hot Normal False Play

10 Rain Mild High True Don’t play

11 Rain Cool Normal True Don’t play

12 Rain Mild High False Play

13 Rain Cool High False Play

14 Rain Mild High False Play

15 Overcast Cool High False Don’t play
Xg

j¼1

jpi

OXCjO

OXO
¼ 1� Dconf XZCið Þ:

From
OXCjO
OXO z0, for j=1, 2, . . .,g, we have

OXCjO
OXO V1� Dconf XYCið Þb50%bh, which means

that XZ Cj does not hold in T.

In other words, if both XZ Ci and XZ Cj hold

simultaneously, both of them must involve two mu-

tually disjoint sets of transactions (denoted as TXCi

and TXCj
) containing XCi and XCj respectively. Oth-

erwise, if a transaction t is involved in generating both

rules, we will have XCiCjp t, which is a contradic-

tion to the structure of t, for t contains only a single

class label of G={C1,C2,. . .,Cg}. That is, TXCi
\

TXCj
=F. Since these two sets are the subsets of TX

(where TX is the set of transactions containing X), we

have |TXCi
| / |TX| + |TXCj

| / |TX|V |TX| / |TX| =1. Semanti-

cally, the following relationship exists: ||XCi
|| /

||X|| + ||XCj
|| / ||X||V ||X|| / ||X| |=1, which means that

Dconf (XZ Ci)+Dconf (XZ Cj)V1. Apparently, how-

ever, this is a contradiction to the supposition that

Dconf (XZ Cj)Vb N0.5 and Dconf (XZ Ci)zb N0.5.

In brief, the strategy to set b to be over 0.5 will

prevent the rule conflict from happening.

In addition, the following theorem can be used to

further reduce the number of candidate itemsets. This

also corresponds to rule conflicts stated in Definition

2.2. It will be proved in Theorem 2.2 that, if XZ Ci

holds in T and if Dconf (XZ Ci)N1�a or

Dsupp(X)b2a, then XYZ Cj does not hold in T.

Theorem 2.2. Suppose rule XZ Ci holds in T, (1) if

1�Dconf (XZ Ci)ba, then any itemset like XYCj is an

excluded itemset; (2) if ||X||b2|T|a, then any itemset

like XYCj is an excluded itemset; where Y\X=F,

Y\Ck=F, k=1, 2,. . ., g, and gz2.

Proof. (1) Since OXO¼OXCiOþ
P

j¼1
j p i

g OXCjO; then
OXCjO
OXO V1� Dconf XZCið Þ: 5

5

Further, OXYCjO
OXO V OXCjO

OXO V1� Dconf XZCið Þ; thus
OXYCjO

jT j V OXYCjO
OXO V1� Dconf XZCið Þ:

Then since 1�Dconf (XZ Ci)ba, then
OXYCjO

jT j ba,
which means Dsupp(XYCj)ba. That is, XYCj is an

excluded itemset.

(2)Since ||X||b2|T|a, then OXO�OXCiO
jT j b

2jT ja�OXCiO
jT j :

From OXCiO
jT j za, we have ||XCi||z |T|a.

Then OXO�OXCiO
jT j b

2jT ja�jT ja
jT j ¼ a:

Since OXYCjO
jT j V OXO�OXCiO

jT j , Dsupp(XYCj)ba.

That is, XYCj is an excluded itemset.

Thus, if rule XZ Ci holds in T, and the conditions

of Theorem 2.2 are satisfied, then the rule conflicts

can be avoided, because hereby any itemset like XYCj

is an excluded itemset. Accordingly, this strategy may

be applied to the mining process, in which the itemset,

XYCj, does not need to be considered further in

generating larger candidate itemsets.

Example 1. Given a dataset as shown in Table 1, with

b =0.8 and a =0.21. After the first scan of the dataset,

rule bovercastZ play (Dconf=1, Dsupp=0.29)Q can be

obtained. Before executing the second scan, it has

been already known that any larger candidate itemset

such as {overcast, Y, don’t play} is an excluded item-

set, because 1�1ba according to Theorem 2.2,

where Yp{Temperature, Humidity, Windy}.



G. Chen et al. / Decision Support Systems 42 (2006) 674–689 679
If another transaction as follows is added to

Table 1:
15 j Overcast j Cool j high j False j Don’t Play
then Dconf (overcastZ play)=0.8, so we have 1�
Dconf (overcastZ play)=1�0.8=0.2b0.21. Likewise,

{overcast, Y, don’t play} is an excluded itemset.

Suppose that the class label of transaction 9 in

Table 1 is changed to be Don’t play, with b =0.7

and a =0.15. Then from ||overcast|| =4b2|T|a =2�
14�0.15=4.2 (Theorem 2.2), itemsets {overcast,

play} and {overcast, don’t play} can be excluded

from the itemsets used to generate larger candidate

itemsets.

3. Discovering classification rules

In this section, an algorithm called GARC (Gain

based Association Rule Classification) will be pre-

sented, which could discover the compact set of clas-

sification rules. Though the general idea is in the spirit

of association rule mining, it differs from convention-

al CBA techniques that directly apply the Apriori-type

association rule mining procedures. The main charac-

teristic of the proposed algorithm is threefold. First, it

combines the conventional itemset generation and rule

generation processes, and makes use of the informa-

tion maintained for both rule itemsets and excluded

itemsets. Second, the information gain measure is

incorporated so as to only generate the itemsets in-

cluding the best-split attribute value, which leads to a

reduction of candidate itemsets. Third, certain strate-

gies are applied into the mining process such that

conflicting/redundant rules are avoided as well as

the number of candidate itemsets generated is re-

duced. As a result, the resultant compact set is more

condensed and understandable (in terms of fewer

rules), and in the mean time, as revealed by data

experiments in the next sections, the classification

accuracy turns out to be satisfactory.

3.1. GARC: gain based association rule classification

Generally speaking, one transaction in T with s

items can generate around 2s candidate itemsets. To

cope with this, the information gain measure is first

used here to reduce the number of candidate itemsets.

That is, only those candidate itemsets including the
best split attribute value will be generated. Concretely,

after the first scan of the database, all of 1-itemsets

can be obtained and saved in a variable named Cand.

According to the lcount and wcount values of each

candidate itemset, information gain for each attribute

A, which could be used to partition the database T into

n datasets, may be calculated as follows:

infoA Tð Þ ¼
Xn
i¼1

jTij
jT j �info Tið Þ ¼ �

Xn
i¼1

jTij
jT j

�
Xg
k¼1

f req Cj; Ti
� �
jTij

�log2
f req Cj; Ti

� �
jTij

 !

¼ �
Xn
i¼1

Dsupp A ¼ við Þ

�
Xg
k¼1

Dcconf ikð Þ � log2Dconf ikð Þ
 !

where Ti corresponds to the dataset whose attribute A’s

value equals vi, g is the number of classes, ik represents

itemset {vi,Ck}. As a result, a best split attribute (called

bestattr) can be selected after the first scan of the

database. Then during the next scan of the database,

only those itemsets containing this best split attribute

specified by bestattr will be generated. The following

example helps illustrate the idea.

Example 2. Let us consider Table 1 again. After the

first scan of the dataset in Table 1, among the four

attributes, attribute outlook is selected as the best split

attribute. Then during the second scan of the database,

tuple 1 can produce the following three candidate

itemsets: {sunny, mild, play}, {sunny, normal,

play}, and {sunny, true, play}. Note that {mild, nor-

mal, play}, {mild, true, play}, and {normal, true,

play} will not be generated.

In addition to information gain, certain conflicts/

redundancy avoidance strategies are used to improve

the quality of the rule set as well as to reduce the

number of candidate itemsets, which is detailed in the

next subsection, along with how excluded itemsets are

dealt with.

3.2. Algorithmic details

As stated previously, an itemset XC is interchange-

ably referred to as a rule XZ C. A qualified itemset
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Algorithm GARC

Table 3

Sub-algorithm gain
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XC corresponds to a qualified rule XZ C. In addition,

for XC, X is referred to the antecedent of XC, denoted

by antecedent(XC)=X. The main algorithm is shown

in Table 2.

Lines 1–3 perform the first scan of the database.

It produces all the 1-itemsets from which qualified

1-itemsets are generated. By the method described

above, the best split attribute is selected by gain,

which employs the information gain measure and

helps reduce the number of candidate itemsets

(Table 3). Lines 6–24 perform the consecutive

scans of the database. coverall(rule) tests whether

rules already contain all of transactions in the

training dataset, and if true, the main iteration

breaks. During each scan, for a certain transaction

t, CandidateGen(t, bestattr, k) generates all k-item-
sets with each containing the bestattr. Working on

these itemsets in Ct, maintCand(rule, excluded, c,

cand) then generates and maintains candidate item-

sets according to qualified itemsets and excluded

itemsets. Note that the itemsets returned by main-

tCand will be redundancy-free, and will not pro-

duce any conflicting rules if the conditions of

Theorem 2.2 are satisfied. In the mean time, this

will lead to generating fewer itemsets inside the pro-

cess. Moreover, since rule conflicts with regard to

Theorem 2.1 will be avoided if its condition

(b N0.5) is satisfied, lines 4–5 and 17–20 further

remove conflicting rules (rV) when the conditions of

Theorems 2.1 and 2.2 do not hold. The advantage of

incorporating the conflict resolution strategy at the

stages inside the k-itemset generation process (rather

than after the process as a separate filter) is to further

reduce the number of candidate itemsets generated

(for kz1). Finally, all rules are sorted, when the

main procedure is terminated.

Note that each of the rules included in the

classifier built by the above algorithm satisfies the

pre-specified minimal support and minimal confi-

dence thresholds (i.e., (a and b). Moreover, the

rules that cannot be predicated to be excluded

itemsets according to Theorem 2.2 (line 6 in Table

4) will be added to the set of candidate itemsets and

further counted. If c contains a qualified itemset or an

excluded itemset, the class attribute in c is substituted

by a fixed mark q that is different from all class labels

of G (i.e., G is the set of all class labels) in the

database for the purpose of counting lcount while

not affecting wcount (Tables 4 and 5). In addition,



Table 5

Sub-algorithm addToCand

addToCand(c, cand);

Table 4

Sub-algorithm maintCand
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the rules that are redundant according to Definition

2.2 will not be included (generated) in cand (line 13 in

Table 4, and line 14 in Table 5).

Finally, the algorithm will terminate in a finite

number of m passes at most, where m is the number of

attributes. Notably, the set of resultant classification

rules is a compact set. Moreover, if the discovered rule

set without using the redundancy/conflict resolution

strategies is not empty (e.g., if the set of qualified 1-

itemsets is not empty), the compact set will not be

empty either.

1.    begin
2.         find=0; count=1;
3.             for each candidate itemset ci in cand do
4.             if c = ci then
5.                 ci.wcount= ci.wcount+1;
6.                 ci.lcount= ci.lcount+1;
7.                 find = 1;
8.             else
9.                 if ancetedent(c) = ancetedent(ci) then
10.               ci.lcount = ci.lcount+1;
11.               count = count + ci.lcount;
12.           end if;
13.       end for;
14.       if find = 0 and (consequent of c is not equal to q) then
            //when c is not redundant//
15.           c is included in cand with c.lcount=count and
                c.wcount=1;
16.       end if;
17.  end;
4. Experimental results

This section shows an empirical performance

evaluation of algorithm GARC, along with some

comparisons with other algorithms. The experiments

consist of five parts. The first part is to compare

GARC with C4.5-type [30], CBA [21], NN [10], and

SVM [37] classifiers on accuracy. The second part of

the experiments is to test how the pruning strategies

affect the efficiency and further examines the execu-

tion time of GARC. The third part discusses the

impact of minimal support and minimal confidence

thresholds on GARC outcomes. In the fourth part,

the use of information gain for rule reduction is
examined. The last part compares GARC with the

CBA classifier in terms of the number of rules

produced. The experiments were conducted in the

environment with Windows 2000 Server, Intel Pen-

tium 4 1.5 GHz, 512 MB RAM and Visual C++. It

should be mentioned that, all the following experi-

ments are tested based on datasets from a commonly

used benchmarking database in the field, namely the

UCI Machine Learning Repository [27], including

the 26 datasets that CBA method selected. In total,

30 datasets are used.

The basic information of the datasets is listed in

Table 6.

Since some data are continuous and Apriori-type

methods mainly focus on discrete data, the entropy

based discretization method is applied in order to

deal with continuous attributes for the experiments.

More concretely, a recursive entropy minimization

heuristic is used for discretization and combined

with the Minimum Description Length criterion to

control the number of intervals produced over a

continuous space [15].

4.1. Accuracy

Accuracy is one of the basic performance mea-

sures for classification algorithms. For a classifier,



Table 6

Basic information of the 30 UCI datasets

Dataset Attributes Number of

attributes

Null value

(Y/N)

Number of

training data

Number of

testing data

1 Anneal Discrete, continuous 38 Y 598 300

2 Australian Discrete, continuous 14 N 460 230

3 Auto Discrete, continuous 26 Y 136 69

4 Breast Continuous 10 Y 466 233

5 Cleve Discrete, continuous 13 N 202 101

6 Crx Discrete, continuous 15 N 490 200

7 Diabetes Continuous 8 N 512 256

8 German Discrete, continuous 20 N 666 33

9 Glass Continuous 9 N 142 72

10 Heart Continuous 13 N 180 90

11 Hepatitis Discrete, continuous 19 Y 103 52

12 Horse Discrete, continuous 22 Y 300 68

13 Hypothyroid Discrete, continuous 29 Y 2514 1258

14 Ionosphere Continuous 34 Y 234 117

15 Iris Continuous 4 N 100 50

16 Labor Discrete, continuous 16 Y 40 17

17 Led7 Discrete 7 N 200 3000

18 Lymph Discrete 18 N 98 50

19 Pima Continuous 8 N 512 256

20 Sick Discrete, continuous 29 Y 2800 972

21 Sonar Continuous 60 N 138 70

22 Tic-tac-toe Discrete 9 N 638 320

23 Vehicle Continuous 18 N 564 282

24 Waveform Continuous 21 N 300 1000

25 Wine Continuous 13 N 118 60

26 Zoo Discrete 16 N 67 34

27 Balance Continuous 4 N 416 209

28 Lenses Discrete 4 N 16 8

29 Monk2 Discrete 6 N 169 432

30 Vote Discrete 16 N 300 135
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its classification accuracy is the ratio of the number

of cases truly predicted by the classifier over the

total number of cases in the test dataset, e.g.,

Accuracy ¼ num test predicted ¼ trueð Þ
num totaltest

� 100%:

In this experiment, we compared GARC with C4.5

rule, CBA, NN and SVM classifiers based on the 30

UCI datasets. We obtained the accuracy results as

shown in Tables 7, 8. It will be discussed in later

subsections on how the settings of the thresholds are

considered.

The results shown in Tables 7 and 8 indicate

that the classification accuracy of GARC is satis-

factory. On average, the accuracy of GARC
seemed to be higher than that of the C4.5 rule

and similar to that of CBA. Moreover the GARC

classifier appeared to be more stable than CBA and

C4.5 rule classifiers in terms of standard deviations

of accuracy. These findings could be further justi-

fied by statistical significance tests. Moreover,

Table 8 shows that the accuracy of GARC is

lower than that of NN or SVM, and that the

standard deviation of GARC is lower than that of

NN and SVM. However, it is important to note

that GARC, NN, SVM are not significantly differ-

ent in accuracy.

Thus, we could test the significance of the accu-

racy mean difference for any two algorithms by

approximately constructing a confidence interval at

a given confidence level [6,18]. The testing results

revealed that on average the accuracy of GARC was



Table 7

Algorithms’ accuracy on C4.5, CBA and GARC

Datasets C4.5% CBA% GARC%

1 Anneal 88.70 98.00 89.30

2 Australian 87.00 86.96 87.39

3 Auto 62.70 72.46 71.32

4 Breast 95.70 96.57 94.85

5 Cleve 77.20 81.19 80.13

6 Crx 83.00 83.50 82.50

7 Diabetes 69.10 74.22 71.03

8 German 73.40 76.35 75.20

9 Glass 62.50 65.28 68.06

10 Heart 83.30 83.33 80.57

11 Hepatitis 80.80 76.92 86.69

12 Horse 85.30 80.88 75.00

13 Hypothyroid 99.20 98.20 94.79

14 Ionosphere 88.00 93.16 90.64

15 Iris 92.00 94.00 94.01

16 Labor 82.40 88.24 82.35

17 Led7 67.50 57.67 56.53

18 Lymph 70.00 84.00 77.56

19 Pima 76.60 76.17 73.83

20 Sick 99.00 96.50 93.83

21 Sonar 74.30 64.29 74.30

22 Tic-tac-toe 82.20 99.06 100.00

23 Vehicle 67.70 70.21 61.89

24 Waveform 70.40 75.66 71.15

25 Wine 85.00 86.67 83.46

26 Zoo 85.30 79.41 82.35

27 Balance 77.50 72.73 71.29

28 Lenses 62.50 62.50 75.32

29 Monk2 65.00 67.13 65.74

30 Vote 97.00 95.56 89.67

Mean 79.68 81.23 80.03

Derivation 1.23 1.40 1.15

Standard deviation 11.09 11.84 10.72

GARC is running with default setting of a =0.01, b =0.7.

Table 8

Algorithms’ accuracy on SVM, NN and GARC

Datasets SVM% NN% GARC%

1 Anneal 100.00 98.67 96.67

2 Australian 86.96 90.00 87.39

3 Auto 72.46 63.77 71.00

4 Breast 96.14 94.85 95.71

5 Cleve 82.18 81.19 81.19

6 Crx 82.50 85.00 85.50

7 Diabetes 73.83 78.13 74.61

8 German 71.86 75.15 76.35

9 Glass 79.17 73.61 68.06

10 Heart 88.88 87.78 88.00

11 Hepatitis 84.62 78.85 86.54

12 Horse 86.76 80.88 88.24

13 Hypothyroid 100.00 98.01 94.79

14 Ionosphere 96.58 94.87 94.85

15 Iris 94.00 96.00 96.00

16 Labor 100.00 94.12 82.35

17 Led7 68.97 67.73 67.47

18 Lymph 82.00 86.00 80.00

19 Pima 79.69 78.52 76.17

20 Sick 96.71 97.02 93.83

21 Sonar 88.57 78.57 74.30

22 Tic-tac-toe 99.38 97.50 100.00

23 Vehicle 79.08 78.37 67.36

24 Waveform 80.85 81.06 71.55

25 Wine 98.33 95.00 86.67

26 Zoo 88.24 88.24 85.29

27 Balance 99.04 92.34 73.21

28 Lenses 62.50 75.00 87.50

29 Monk2 84.72 100.00 74.54

30 Vote 97.78 99.26 96.30

Mean 86.73 86.18 83.38

Deviation 1.11 1.03 1.00

Standard deviation 10.52 10.13 10.01

SVM classifier use LIBSVM software package available online at

http://www.csie.ntu.edu.tw/~cjlin/libsvm Ref. [36]. For SVM, the

parameters will largely affect the results. With default settings by

LIBSVM, the average accuracy is 79.84. After parameters selec-

tion with 10-fold cross validation, SVM is running on the best

situation.

NN classifier is using WEKA software package [35]. A 3-level

Back-Propagation Model has been constructed, with the number of

neurons set to 2, 4 and 8. The results are not sensitive to the

number of neurons. NN is also running on the best situation.

GARC is running on the best situation with corresponding a
and b.
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not significantly different from that of CBA, C4.5,

NN or SVM. These have been shown in Table 9.

In addition, two C4.5 extensions, namely C4.5 tree

and C4.5 tree pruning [30], were tested on the same

30 datasets by means of confidence intervals, reveal-

ing that the accuracy of GARC was not significantly

different from that of either C4.5 tree or C4.5 tree

pruning at 95% confidence level. Furthermore, our

test on the 30 datasets is, however, not supportive to

the statement in Ref. [21] that the accuracy of the C4.5

rule is higher than that of either C4.5 tree or C4.5 tree

pruning.

In summary, GARC is satisfactory in terms of

accuracy, compared with CBA, C4.5-type, NN and
SVM. Worthwhile to mention is that, compared with

non-rule-based classifiers (e.g., NN and SVM),

GARC produces a classifier in the form of explicit

rules, which are often appealing for use and expla-

nation to decision makers.

http://www.csie.ntu.edu.tw/(cjlin/libsvm


Table 9

Confidence intervals on the mean difference for accuracy of classi-

fiers

Confidence level % Interval% Significance

GARC–CBA 95 [�6.92,4.51] No

90 [�6.00,3.59] No

GARC–C4.5 rule 95 [�5.17,5.87] No

90 [�4.28,4.98] No

GARC–NN 95 [�8.71,1.74] No

90 [�7.87,0.90] No

GARC–SVM 95 [�9.35,1.30] No

90 [�8.49,0.44] No

Table 11

Functions’ definitions

Function 2:
Class A: ((age<40) ^ (50k≤salary≤100k))∨
      ((40≤age<60) ^ (75k≤salary≤125k))∨
      ((age60)  ^ (25k≤salary≤75k)).
Function 5:
Class A: ((age<40) ^
      (((50k≤salary≤100k)) ? (100k≤loan≤300k) : 
      (200k≤loan≤400k))))∨
      ((40≤age<60)^
      (((75k≤salary≤125k)) ? (200k≤loan≤400k) :∨  
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4.2. GARC with pruning strategies

This subsection examines GARC’s pruning strat-

egy effectiveness in terms of accuracy, understand-

ability (e.g., the number of rules generated) and

computational efficiency (e.g., the number of can-

didate itemsets generated, execution time, etc.). By

a pruning strategy we mean the strategy discussed

in Section 2.4 and incorporated in the mining pro-

cess. Since we are to study the GARC performance

with and without the strategy incorporation, the data-

set used needs to be expansible and adjustable in size

and complexity. Apparently, the previously used 30

datasets can hardly serve this purpose. Hence, as

proposed in Ref. [3] for similar experiments, a syn-

thetic database is employed. Each transaction in the

database has 9 attributes shown in Table 10. There are

ten classification functions available to produce data

distributions with varied complexities. IBM Re-

search Center developed a series of classification

functions of increasing complexity that used the
Table 10

Attributes of the synthetic database

Attribute Value

Salary Uniformly distributed from 20000 to 150000

Commission If salary z75000, commission=0 else uniformly

distributed from 10000 to 75000

Age Uniformly distributed from 20 to 80

Ed_level Uniformly chosen from 0 to 4

Car Make of the car, uniformly chosen from 1 to 20

Zipcode Uniformly chosen from 9 available zipcodes

Housevalue Uniformly distributed from 0.5*k*100000 to

1.5*k*100000, where 0Vk V9 and depends on

the zipcodes

Years owned Uniformly distributed from 1 to 30

Loan Uniformly distributed from 0 to 500000
above attributes to classify people into different

groups [19]. Four of them are selected, which in-

clude the low-complexity (function 2), mid-com-

plexity (function 5 and 8) and the most complex

function 10. Specifically, function 10 is one of the

hardest to characterize and could result in the high-

est classification errors (Table 11). The Data gener-

ator source is from Ref. [19].

Since GARC works with categorical attributes, the

non-categorical attributes were discretized first. We

used a simple equal-width method for discretization.

The interval width and the number of intervals are

shown in Table 12.

The performances of GARC with and without those

(pruning) strategies proposed in Section 2 are shown in

Fig. 1. The findings indicated that GARC with the

strategies was superior to that without the strategies

in three respects, namely, computational efficiency

(fewer candidate itemsets and shorter execution time

as shown in Fig. 1a,b), understandability (fewer rules
      (300k≤loan≤500k) )))∨
      ((age≥60)^    
      (((25k≤salary≤75k)) ? (300k≤loan≤500k) :
      (100k≤loan≤300k))))

Function 8: 
     disposable = (0.67 × (salary + commission) – 5000 × elevel 
     –20k)
Class A: disposable  >0 

Function 10
      hyears < 20⇒ equity=0
      hyears ≥ 20⇒  equity=0.1 hvalue (hyeares 20)
      disposable = (0.67 (salary+commission) 5000  × elevel + 0.2 
      equity –10k)
Class A: disposable >0

* A ? B : C stands for a logic expression meaning that if A is TRUE

then B, else C.
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Fig. 2. Running time vs. data size.

Table 12

Discretization of the attribute values

Attribute Interval width No. of intervals

Salary 25 ,000 6

Commission 10,000 7

Age 10 6

Ed_level – 5

Car – 20

Zipcode – 9

Housevalue 100 ,000 14

Years owned 3 10

Loan 50 ,000 10

G. Chen et al. / Decision Support Systems 42 (2006) 674–689 685
as shown in Fig. 1c), and accuracy (similar rates as

shown in Fig. 1d).

Further, Fig. 2 illustrates the execution time of

GARC (e.g., for function 10) with the number of

training samples increasing from 100,000 to 500,000,

showing a near-linear computational complexity in

time. This was also done for CBA and resulted in

almost the same outcome.

4.3. Settings of minimal support and minimal confidence

As mentioned in previous subsections, the experi-

ments were conducted with a setting of a =0.01 and

b =0.7 for min-support and min-confidence. In this

section, we will discuss further the impact of such

settings on the accuracy of GARC. With each of the

same datasets, we could obtain the best setting of a and

b in yielding the highest accuracy. Obviously, the best

setting for one dataset is generally different from that

for another dataset. To determine a single setting to be

used in comparison for 30 datasets, we chose a=0.01
With
Strategies

With
Strategies

Without
Strategies

Without
Strategies

Without
Strategies

Without
Strategies

With
Strategies

With
Strategies

Function 2 21 13.24     179.10 
Function 5 21 21     190 
Function 8 87 14.74      16.25 
Function 10

Function 2
Function 5
Function 8
Function 10

Function 2
Function 5
Function 8
Function 10

Function 2
Function 5
Function 8
Function 1029 11.21     182.39 

(a) Number of Candidate Itemsets (b) Execution Time (sec.) 

5179    22231 0.84     0.83 
10302      26951 0.81     0.85 
11056   12000 0.90     0.90 
8435     28059 0.84     0.86 

(c) Number of Rules (d) Accuracy

228
336
144
249

Fig. 1. Performances of GARC with and without strategies.
and b =0.7, as they appeared quite often (e.g., about 19

times out of 30 for a =0.01 and 14 /30 for b =0.7).

Table 13 shows the details.

Moreover, our experiments showed that as min-

confidence increases, the accuracy would increase

first then decrease. This may be because when min-

confidence is too low, many useless rules will be

generated, which will disturb the classifier. On the

other hand, when min-confidence is too high, many

actually meaningful rules will not be discovered, which

will lead many transactions to being classified into the

default class, resulting in lower accuracy. Generally, it

could be found that the best performance of accuracy is

around the situation where a =0.01 and b =0.7.

4.4. Impact of the information gain measure in GARC

As discussed previously, GARC uses information

gain to retrieve the best split attribute. In this section,

some experimental results are given to show how this

measure affects the accuracy and efficiency of GARC.



Table 13

Settings of a and b vs. accuracy

Highest

accuracy

Highest accuracy

at a =0.01
Accuracy

at a =0.01,

% a b % b b =0.7 (%)

Anneal 96.67 0.01 0.95 96.67 0.95 89.33

Australian 87.39 0.01 0.7 87.39 0.7 87.39

Auto 71 0.01 0.7 71 0.7 71.07

Balance 73.21 0.01 0.85 73.21 0.85 71.29

Breast 95.71 0.01 0.95 95.71 0.95 94.85

Cleve 81.19 0.01 0.9 81.19 0.9 80.2

Crx 85.5 0.05 0.9 84.5 0.9 82.5

Diabetes 74.61 0.01 0.85 74.61 0.85 71.48

German 76.35 0.01 0.75 76.35 0.75 76.05

Glass 68.06 0.01 0.7 68.06 0.7 68.06

Heart 88 0.01 0.5 88 0.5 81.11

Hepatitis 86.54 0.01 0.7 86.54 0.7 86.54

Horse 88.24 0.01 0.85 88.24 0.85 75

Hypo 94.79 0.01 0.7 94.79 0.7 94.79

Ionosphere 94.87 0.01 0.95 94.87 0.95 91.45

Iris 96 0.01 1 96 1 94

Labor 82.35 0.01 0.7 82.35 0.7 82.35

Led7 67.47 0.02 0.5 66.33 0.5 57

Lenses 87.5 0.07 0.8 75 0.7 75

Lymph 80 0.02 0.8 78 0.8 78

Monk2 74.54 0.01 0.95 74.54 0.95 67.13

Pima 76.17 0.01 0.85 76.17 0.85 73.83

Sick 93.83 0.01 0.7 93.83 0.7 93.83

Sonar 74.3 0.01 0.7 74.3 0.7 74.3

Tic-tac-toe 100 0.01 0.7 100 0.7 100

Vehicle 67.36 0.01 0.7 67.36 0.7 67.36

Vote 96.3 0.01 0.95 96.3 0.95 89.67

Waveform 71.55 0.02 0.7 69.51 0.9 71

Wine 86.67 0.09 0.7 83.33 0.7 83.33

Zoo 85.29 0.05 0.95 82.35 0.7 82.35

Table 14

Accuracy by using information gain and not using information gain

Datasets Information gain

incorporated

Information gain

not incorporated

Anneal 89.33 90

Australian 87.39 87.39

Auto 71.07 65.22

Balance 71.29 72.25

Breast 94.85 94.85

Cleve 80.2 68.32

Crx 82.5 81.5

Diabetes 71.48 67.97

German 76.05 72.55

Glass 68.06 66.67

Heart 81.11 81.11

Hepatitis 86.54 86.54

Horse 75 75

Hypo 94.79 94.79

Ionosphere 91.45 91.45

Iris 94 94

Labor 82.35 82.35

Led7 57 55.8

Lenses 75 75

Lymph 78 78

Monk2 67.13 67.13

Pima 73.83 73.83

Sick 93.83 93.83

Sonar 74.3 67.14

Tic-tac-toe 100 100

Vehicle 67.36 63.83

Vote 89.67 84.44

Waveform 71 71.98

Wine 83.33 83.33

Zoo 82.35 82.35

Mean 80.34 78.95

Standard deviation 10.35 11.29

Table 15

Confidence intervals on the mean difference for accuracy

Information gain–No

information gain

Confidence

level%

Interval% Significance

Accuracy 95 [�4.09,

6.87]

No

90 [�3.21,

5.99]

No
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The results revealed that the average accuracy with

information gain was slightly higher than that without

information gain. Statistically, the accuracy with infor-

mation gain is significantly similar to that without

information gain at both 95% and 90% confidence

levels. These are shown in Tables 14 and 15.

In addition, considering the average number of rules

and running times, the results revealed that information

gain would lead to much fewer rules and less compu-

tational time remarkably. This is largely due to the fact

that the number of candidate itemsets has been consid-

erably reduced through introducing information gain in

the mining process. On average, the number of rules

with information gain was only around 39% of that

without the gain, and the execution time with informa-

tion gain was only around 3.2% of that without infor-
mation gain, according to the experiment (shownin

Table 16).

4.5. GARC and CBA

Though GARC and CBA are all based on associ-

ation rule mining, they are different: CBA is basically



Table 17

Number of rules generated by GARC and CBA

GARC CBA

Anneal 72 533

Australian 17 1518

Auto 650 4505

Balance 4 147

Breast 21 21

Cleve 23 478

Crx 21 2686

Diabetes 11 40

German 78 1501

Glass 17 32

Heart 12 166

Hepatitis 23 700
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of Apriori-type, whereas GARC is not. The main

difference is that GARC combines rule generation

with respective frequent itemset generation, making

use of excluded itemsets in generating candidate item-

sets. In addition, GARC uses information gain to

reduce the number of candidate itemsets, which

could then reduce the number of rules. Moreover,

the number of rules could also be reduced using

pruning/resolution strategies such that certain

conflicting and redundant rules could be avoided,

whereas the CBA algorithm itself will generate more

rules. Table 17 tabulates the comparative results based

on the 30 benchmarking datasets that were used pre-
Table 16

Number of rules and running time by using information gain (IG)

and not using information gain (NIG)

Number of rules Running time (s)

IG NIG IG NIG

Anneal 72 85 21.422 7269.953

Australian 17 17 0.125 0.0160

Auto 650 2156 3785.860 116901.047

Balance 4 10 0.000000001 0.063

Breast 21 25 20.5 237.328

Cleve 23 37 253.564 1578.468

Crx 21 64 2.031 61.812

Diabetes 11 13 25.985 112.078

German 78 188 559.766 21953.438

Glass 17 21 2.062 12.687

Heart 12 12 0.000000001 0.00000001

Hepatitis 23 23 0.063 0.010

Horse 26 26 0.125 0.016

Hypo 48 48 0.265 0.094

Ionosphere 67 67 0.360 0.160

Iris 7 10 0.000000001 0.000000001

Labor 15 42 0.093 0.266

Led7 33 51 0.234 1.766

Lenses 12 13 0.000000001 0.000000001

Lymph 17 17 0.296 0.100

Monk2 2 2 0.000000001 0.000000001

Pima 6 6 6.016 33.594

Sick 56 56 0.281 0.172

Sonar 16 33 2.765 549.750

Tic-tac-toe 26 26 0.063 0.010

Vehicle 112 543 173.688 4852.828

Vote 32 96 0.937 49.969

Waveform 25 168 0.250 30.078

Wine 16 16 0.093 0.010

Zoo 90 151 2.390 60.313

Mean 51.83 134.07 161.97 5123.53

IG/NIG 39% 3.2%

Horse 26 988

Hypo 48 1557

Ionosphere 67 2891

Iris 7 14

Labor 15 52

Led7 33 533

Lenses 12 12

Lymph 17 2172

Monk2 2 397

Pima 6 21

Sick 56 1659

Sonar 16 883

Tic-tac-toe 26 200

Vehicle 112 3043

Vote 32 953

Waveform 25 3851

Wine 16 738

Zoo 90 2869

Mean 51.83 1205.33

GARC/CBA 4.3%
viously. Clearly, GARC generated much fewer rules

than CBA, providing better understandability (at sim-

ilar levels of accuracy). This can easily be verified by

statistical significance tests. On average, the number

of rules generated by GARC was only around 4.3% of

that by CBA, according to the experiment.
5. Conclusions

Classification is one of the important issues in

decision science and knowledge discovery. This

paper has presented a new approach to discovering

classification rules based on the concept of association

rules. In doing so, the corresponding algorithm pro-

posed, namely GARC, has integrated the generation
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of itemsets and rules, and incorporated information

gain and certain conflicts/redundancy resolution strat-

egies into the mining process. Finally, a compact set

could be derived. Compared with other classifiers

(e.g., CBA, C4.5-type, NN and SVM classifiers),

the new approach could achieve a similar level of

accuracy. Moreover, the experimental results have

shown the advantages of GARC over CBA in terms

of number of rules, and over SVM/NN in terms of

explicit rules for use and explanation by decision

makers. Future studies are centering on explorations

of other optimization strategies so as to further im-

prove the mining efficiency.
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