A Memory-Eflicient Hashing by Multi-Predicate
Bloom Filters for Packet Classification

Heeyeol Yu and Rabi Mahapatra
Computer Science Department
Texas A&M University
College Station, TX 77843
Email: {hyyu,rabi}@cs.tamu.edu

Abstract— Hash tables (HTs) are poorly designed for multiple
off-chip memory accesses during packet classification and criti-
cally affect throughput in high-speed routers. Therefore, an HT
with fast on-chip memory and high-capacity off-chip memory
for predictable lookup-throughput is desirable. Both a legacy
HT (LHT) and a recently proposed fast HT (FHT) [1] have the
disadvantage of memory overhead due to pointers and duplicate
items in linked lists. Also, memory usage for an FHT did not
consider the bits in counters for fair comparision with an LHT.
In this paper, we propose a novel hash architecture called a
Multi-predicate Bloom-filtered HT (MBHT) using parallel Bloom
filters and generating off-chip memory addresses in the base-
2* number system, xe{1,2,---}, which removes the overhead
of pointers. Using a larger base of number system, an MBHT
reduces on-chip memory size by a factor of log, b,/ log, b; where
b, and b, are bases of number system (b,>b;). Compared to an
FHT, the MBHT is approximately x(log, n + 4)/(2log, n) times
more efficient for on-chip memory, where n is the number of
keys. This results in a significant reduction in the number of off-
chip memory accesses. A simulation with a dataset of packets
from NLANR [2] shows the on-chip memory reductions by 1.7
and 2 times over an LHT and an FHT are made. Besides, an
MBHT of base-16 needs less off-chip memory accesses by 2117
in total URL queries of NLANR, compared to an FHT.

1. INTRODUCTION

The demand for high-speed and large-scale routers con-
tinues to increase, especially in legacy networking. As a
result, fast packet classifications have become critical data
path functions for many emerging networking applications [3,
4]. Networking devices to support firewall, access control list,
and quality of service in several network domains use these
functions. For instance, in layer 4 using TCP or UDP port
[5, 6], provision of efficient URL switching is important in
large scale content distribution networks due to the following
reasons: URLs are much longer than IP addresses, URLs are
not stable, and new URLs are continuously being created
[7-9]. To meet seamless packet classification in wire-speed
for high-speed routers, it is desirable to use high-bandwidth
and small on-chip memory while the database of rules for
packet classification resides in the slower and higher capac-
ity off-chip memory [1, 10]. For predictable classification-
throughput in the worst case, the speed of a packet clas-
sification algorithm is generally measured by the number of
off-chip memory accesses. An interesting approach is the use

of Ternary Content Addressable Memory (TCAM) to achieve
deterministic, high-speed LPM for packet classification and
IP lookup [11-13].

TCAM use, however, incurs high cost and power consump-
tion. Approaches using a Bloom filter (BF), which address
the cost and power issues, have been widely documented
in the networking literature [1, 10, 14, 15], especially for
packet classification. Dharmapurikar er al. [10] introduced
the first algorithm to employ BFs working in parallel for
LPM essential to IP routing lookup. A BF is a generalized
form of a hash table (HT) using numerous hash functions and
is essentially a fast binary predicate for membership testing
on a set with efficient memory by returning ’Yes’ if a queried
item exists in the set or 'No’ otherwise.

Traditionally for a fast search, an HT is used for per-
forming fast associative lookups, which requires O(1) average
memory access per lookup under reasonable assumptions.
The major concern in hashing is to reduce collision among
keys, because even if the hash function is well designed, it is
impossible to hash universal elements without any collisions.
For example, the famous “birthday paradox” asserts that if
23 or more people are present in a room, chances are good
that two of them will have the same month and day of
birth. In other words, if we select a random function, which
maps 23 keys into a table of 365 buckets, the probability
that no two keys map into the same location is only 0.4927
[16]. Literature has proposed various collision resolutions,
such as open addressing and chaining methods. Chaining
method, especially like those described by [1], needs pointers
to resolve hash collisions among items.

A typical application of an HT is packet processing in a
network [1,8]. Song et al. [1] proposed a fast HT (FHT)
with the help of a BF to reduce the number of off-chip
memory accesses compared to a legacy hash table (LHT)
This benefit comes from sharing k linked lists, each indexed
by one of the k£ hash functions so that only the shortest
linked list is used in the search, i.e. geury operation. Sharing
k linked lists, however, not only has the generic memory
overhead of a pointer in a linked list, it also has the following
disadvantages. First, due to the merging of k linked lists,
chance that duplicate items are saved in off-chip memory
is ample enough that an FHT needs three times more off-

978-1-4244-2026-1/08/$25.00 © 2008 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2467

chip memory than an LHT [1]. Although searching for an
item is expedited by choosing the shortest linked list, the
insert and delete operations take approximately k off-chip
memory accesses. These operations are not suitable for a
dynamically changing set because any change in the set by
one item needs 2k times of off-chip memory access. Also, to
get better performance over an LHT, an FHT also needs many
buckets in on-chip memory to reduce collision, resulting in
large number of wasted buckets. The number of buckets,
which work as starting pointers in on-chip memory, affects
the collision rate as a hash function is based on the number
of the total buckets, i.e. the on-chip memory size in bits.
The load factor, defined as the number of elements over
the number of buckets, is a useful metric to measure the
efficiency of memory usage, as well as the collision rate and
the length of the linked list. As the load factor is decreased,
the rate of collision is reduced. Yet, if the load factor is
set very small value for predictable throughput as an FHT
sets it 0.07, most of the buckets are not used during three
operations.

Beyond previous approaches like TCAM, with its high cost
and power consumption, or an FHT, with duplicate copies
of items and shared linked lists requiring more memory
accesses, we propose a novel hash architecture that uses a set
of BFs in parallel for packet processing applications. Also,
BFs used in our hash mechanism are designed to support
a multi-predicate rather than a simple membership tester,
i.e. binary-predicate, of a legacy BF. There are two benefits
for using a Multi-predicate Bloom-filtered HT (MBHT) as
regards to on-chip and off-chip memory. In on-chip memory,
a multi-predicate BF reduces the memory size in base-2*
number system by x times compared to that of base-2!
number system with a binary predicate BF, where x is a
positive integer 1. The insert and delete operations are done
on each BF in constant time in parallel in contrast to an FHT
that takes O(k) in an optimal case. For off-chip memory, by
abolishing the linked list mechanism used to resolve collision
in buckets, our MBHT saves memory by removing pointers
in a linked list. Furthermore, an MBHT does not save the
duplicated items, resulting in reduced oft-chip memory.

This research makes the following contributions:

« For fast search, an MBHT scheme is proposed using a
contiguous memory space in off-chip memory without
a linked list.

« New algorithms on insert, query, and delete operations
are proposed for the MBHT that reduce the on-chip
memory.

o It is shown that the MBHT performs % and
5 times better in terms of space, compared to other
contemporary techniques of an LHT and an FHT, re-
spectively, where n is the number of items and x is an
postive integer in the base-2* number system.

o It is shown that the saved on-chip memory through
a multi-predicate BF can be utilized to make average

access per search to off-chip memory smaller for the

query operation.

The paper is organized as follows. Sec. II explains the
basic concepts, and Sec. III shows the design of an MBHT
and the memory efficiency of a multi-predicate BF. Sec. IV
presents analyses of memory efficiency and access time of
an LHT, an FHT, and an MBHT for comparison. Related
works and conclusions are presented in Sec. V and Sec. VI,
respectively.

II. Baic THEORY OF BLOOM FILTER

To understand the fundamental relationship among the
number of buckets, m; the number of items, n; and the
number of hash functions, k, we present the mathematics
about a BF and a false positive, or f-positive. We then
introduce the mechanism of insert, query, and delete
operations.

A legacy BF for representing set S={eg,ej,...,e,1} of
n elements is described by an array of m bits with each
initially set to 0. A BF uses a set H of k independent hash
functions hy, hy, ..., hx.; with range [0:m-1]. For mathematical
convenience, we make a natural assumption that these hash
functions map each item in the universe to a random number
uniform over the range. For each element e;€S, the bits
indexed by hyp(e;) are set to 1 for 0<k’<k-1, 0<j'<n-1. To
verify that item ¢’ is in S, we check whether k bits in a
BF indicated by Ay (e’) are 1. If not, then clearly ¢’ is not a
member of S. Even if chosen bits indexed by A (y) have a
value 1, there may be a probability called f-positive that item
y is falsely believed to belong to set S due to the random

gathering of k bits of value 1 set by independent items.

The above probability f of f-positive can be formulated
in a straightforward way, given our assumption that hash
functions are perfectly random. Among m bits, the chance
of a bit being value O by one /& is 1/m. After all n elements
of § are hashed k times into the BF, i.e. totaling k-n times,
the probability that a specific bit is still O is asymptotically
p=(1-1/m)"~e~*/m Then, the probability of an f-positive by
randomly choosing k bits among m bits is

kn p

r={i- (1 - %) bea-pizapmr
because k bits with probability of becoming 0, or p, could
independently become more than O when a membership test
is requested. This probability is bounded and the optimal
k, the number of hash functions, that minimizes f is eas-
ily found k=1In2(m/n) according to the results of Broder
and Mitzenmacher [17]. After some algebraic manipulation,
Broder and Mitzenmacher [17] claimed that the requirement
of f < e suggests

"> n—l"gfn“z/ i @)

Two important lemmas can be derived from Eq. (2), de-
scribed as follows

~ 1.44nlog,(1/e€).

Lemma 1 (LINEAR PROPERTY) Linear property between m and
n exists in Eq. (2) because given f requires that variable
n is linearly proportionate to variable m. Therefore, if n is

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2468

reduced by half or decreased by constant a, the desired m
for a given f is reduced by half or decreased by the constant
of a-1.441og,(1/e), respectively.

Lemma 2 (REVERSE EXPONENTIAL PROPERTY) The change of m
has an exponential effect on f for a given n from Eq. (2). That
is, if m is increased by constant a or multiplied x times, f is
exponentially divided on base-2 by the power of constant a/c
or by the power of xm/c times where x>1, constant c=1.44n.

These Linear and Reverse Exponential Properties are used
in introducing a y-BF so that an MBHT has the benefit of
memory saving in on-chip memory by the Linear Property,
and, thereinafter the saved memory is designed to decrease
f by the Reverse Exponential Property.

III. MuLtI-PREDICATE BLOOM-FILTERED HASH TABLE

Fig. 1 shows the macro view of our architecture with
two MBHTs, I-MBHT and r-MBHT, and a queue of free
addresses residing in on-chip memory while there is a rule
table of n=22 entries in off-chip memory. One of MBHTSs
is involved in insert operation depending on [/r-register.
This register is to be switched / or r whenever n inserts
are made on one MBHT so that once a window of the queue
is used up the peer MBHT is cleaned up for future insert.
Through this rotation, without counting BFs of 4-bit counters
dual MBHTSs can provide seamlessly delete operations for
incremental updates of rules. In contrast, both of MBHTs are
involved in query and delete operations because it is not
known where a wanted item is located.

rule table queue of
free addyr.

Loo]

off—chip Z used index

! key table

| |
y I-MBHT | 2
r—reg . ‘

Mmopuim

on—chip

Fig. 1. Macro view of an MBHT in on/off-chip memory of base-2. n=22.
Indexes 10, 11, and 00 in order are used in insert.

A. Insert operation in an MBHT

Beyond an FHT [1] and a scheme of multiple binary pred-
icates [10], we propose a new hashing architecture capable
of indexing off-chip memory space in the base-2* number
system and confirming that the indexed entry of a table in
off-chip memory is for a wanted item, that is exact matching.
Unlike a BF for shared linked lists in an FHT, we design an
MBHT with a set of multi-predicate BFs. Although a BF
is returning value one, we use an augmented y-BF capable
of y-predicate membership testing returning value y when a
membership test is met.

Denote y-BF a y-predicate BF composed of a legacy BF
and indicator y in x bits for the base-2* number system.

MSB LS
000 el 0-BF': {e, ¢, ¢, ¢}

1-BF’: {e, ¢, &, &}

aad;. bits
0-BF!:{ey ¢, ¢, 6}
1-BF : {e, e, ¢, ¢}
key table

i 0-BF2: {ey ¢, ¢, &)}
1-BF?: {e, ¢, e, ¢}

. on—chip

© hash table ;] 0-BF

-~ _ ' 1-BF
—= path fore,

MSB: Most significant bit
LSB: Least significant bit
] enerated bits for addr.

Fig. 2. Partitioning of 8 elements in base-2 with 0-BF's and 1-BF's.

Furthermore, assume there are n elements to hash in off-chip
memory where they are saved in contiguous and flat memory
space, unlike a saving scheme of shared linked lists [1]. The
n elements are saved in an arbitrary order at address A’ of
off-chip memory, where b is the base-b number system in
the form of 2%, x€{1,2,---}. Given n and the base-b number
system, there are r=1log, n digits, and address A” is composed
of r digits of x bits, i.e. AgA;---A, |, A;€{0,---,2"-1}. Now,
given the address space is based on a number system of
base-b, we are about to partition the address space with a set
of y-BF's, ye{0,---,2-1}, so that each A; in base-2* is to be
covered by A;-BF', 0<i<r-1. After the digits are partitioned
column-wise by a set of y-BFs, one y;-BF for A; is involved
in an insert operation to cover its own digit, the relevant
y-BF from each column is to return value y in the query
operation explained in Section III-B.

Fig. 2 shows an example of the base-2 number system with
23 elements and three pairs of 0-BFs and 1-BFs. The index
addresses to a table in the upper figure are drawn based on
the base-2 number system, where each column has the same
number of 0/1 digits. Below, 8 elements are regrouped in
every column according to their bits in the column, so that
each of 0-BF"s and 1-BF"s, ve {0, 1,2}, has its own set for
insert as shown in the right side. For instance, suppose
e1=eq1, 18 to be saved at address 001, of off-chip memory.
For an MBHT, 0-BF°, 0-BF', and 1-BF? from column 0,
1, and 2, respectively, are involved in saving e; as shown
in the figure. Even if the address space in one column is
partitioned by two BFs, they can be accessed with the same
memory address by stacking BFs in the following ways: 1)
two BFs in separate memory modules are accessed in the
interleaving way and 2) two m-bit vectors are glued together
so that one memory location has two bits for two BFs.

The base-2 number system used in Fig. 2 can be expanded
into an arbitrary number system for the benefit of memory
efficiency, as shown in Fig. 3. All address spaces in subfigures
are partitioned column-wise and grouped by multi-predicate
BFs. The address space for 2° elements in the base-2 number

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2469

10000
000001

g Hollol|o ‘
3 II|(32): ‘ [0 _1(16)
3 0-BF " ;oimaey O-BF
! ! [
|1 :\ (N
411 e el
el?qujitj‘k” rhp- 19
o I -1y
N |
! R]
l2liziial . e (19
| :
e I N A RO 1))
- bl b 3=-BF~
7251 0% !313i31\
n—11 ,‘ ,‘ ,‘
“l' l’iA — —e t—index

dgaj ayaz ay ds
(a) Base—2 number system

g a; a;
(b) Base—4 number system

Fig. 3. Conversion of the base-2 number system to base-4 for 64 elements.
n = 2% By (X), X means the number of the same digits in a BF.

system in Fig. 3 (a) is transformed to other address space of
base-4 number systems in Fig. 3 (b), resulting in the fewer
columns in each address space. However, this transformation
does not affect addressing off-chip memory. For example,
suppose item epi1010, for base-2 is located at 011010,. This
can be at 122, of base-22 as shown in Fig. 3 (b).

With this invariant, given the base-b; number system and
requirement of f, Linear Property of Lemma 1 regarding
variables m and n claims that even if the number of new
BFs, b,, is increased in a column in new base-b,, the total
memory size for the column remains the same. Although the
number of elements to hash for each new BF in the column
is reduced, the total number of items for the new column in
base-b, is the same as that for base-b;.

In general, considering two MBHTs the total memory
usage in bits for the base-b number system as a function
of f requirement is calculated as follows:

My=2xCxB=2x {logb n} X {b(l.44(n/b) logz(l/f))}

:2X{]0g_2n

3
log, b ©)

} x {1.44n 1og2(1/f)},

where C is the number of columns, and B is the number
of bits in a series of BFs in one column. Note that M,
does not consider the memory of an indicator in a y-BF,
which is minuscule enough to ignore. From this equation,
denominator term log, b makes M,(f) smaller as it increases
provided that n and f are constants. This is manifested in
Fig. 4 showing the total memory usage in bits considering
only BFs in several number systems based on Eq. (3). Along
with n axis of b=2, M,(f) increases greatly for a given f
due to log,n and n terms in Eq. (3). Similarly, the change
rates in axes of f and n for a smaller b are much larger than
those of a larger b. Furthermore, the gap of M,(f) among
different bs is large enough that the saved memory can be
used to reduce the f-positive of each BF. Therefore, rather
than using base-2, using larger base-2* number system is
advantageous because of x times on-chip memory saving.
However, choosing the appropriate base system depends on

the current technology of memory hardware. For example,
b=2?, the largest base system, could be the best choice for
n=2?" because that gives the highest memory efficiency. In
contrast to theoretical benefit, in real hardware it is very hard
to probe 22° memory modules for all BFs at the same time
in high speed to generate index address. Although this paper
does not suggest a solution of choosing the approprioate base,
hardware architect must consider the trade-off.

oo

=N

I

Memory size in bits
(5]

wo

f-positive, f 00

The # of items, n

Fig. 4. Memory size M(f) for b =2,4,8,16, and 32 with f and n.

The detailed procedure of the insert operation is de-
scribed in Algorithm insert. Address A fed to Algorithm
insert is provided by a queue of free addresses. The first
vertically-lined for loop in it is executed in parallel at each
column. Also, the second for loop is done in parallel, as in
the conventional BF. Therefore, the time complexity in on-
chip memory is ©(1) on the conditions that hash functions
return indexes in constant time, and each column conducts
hashing in parallel. Moreover, the number of off-chip mem-
ory accesses Mem[A], where Mem is off-chip memory and
A is a given address, is exactly 1 because item e is saved in
the designated address A as shown in the last line. Therefore,
the complexity of Algorithm insert for off-chip memory
access is ©(1). In contrast, an FHT was calculated to be a
time complexity of Omk?*/m + k), which is not suitable for
dynamic update in database for packet processing [18].

Algorithm 1: insert(x, e, A)
Input: x-MBHT x € {/, r}, item e and address
A =ApA;---A,_; in base-b
Result: Encoded MBHT about e
1 for columni=0tor—1do

/* On-chip Op. */

2 for t=0to k—1 do

3 8= ht(e); .

4 Ai-BF[g] = 1, /* gth bit in A;-BF)[g] */
5 end

6 end

7 Mem[A] =e ; /* 0ff-chip Memory Access */

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2470

B. Query operation in an MBHT

After all elements are saved contiguously in off-chip
memory and encoded in a set of BFs in on-chip memory,
the remaining and ultimate goal of an HT is to search for an
item by a fast query operation. There are two kinds of search
patterns: a successful search in which an item is found; and
an unsuccessful time-consuming search for an item that does
not exist in an HT.

Before we examine two kinds of searches with possible
false access, let us introduce definitions of a true index and
a false index. A true index, or 7-index, is defined as a series of
indicators resulting from true membership testing. They are
interconnected and back-to-back of each other from column
0 to column r-/, where r is the number of columns in the
base-b number system, making a sequence of full address
bits. The sequence of bits is also matched with an arbitrary
memory address associated with an element saved in off-chip
memory. Also, the number of returned indicators should be
r.

For instance, item e is to be saved at address 122, in base-
4 as shown in Fig. 3 (b). In base-4, sequence 1224 from
1-BF°, 2-BF"', and 2-BF? are involved as a -index to save
the item e. From the definition of a 7-index, we can conclude
the following corollary: Once item e is saved at address A
with a series of r=log, n BFs, i.e. yo-BF® .-+ y,.1-BF™!, in
base-b, the involved BFs should return ygy; ---y,; for the
query operation of item e if membership testing is met as a
legacy BF returns 1. Due to the independent and identically
distributed (i.i.d) property of BFs, it is possible that irrelevant
BFs could return their predicates in the query operation.

In addition, a false index, caused by the irrelevant predi-
cates, is defined as the following: In the query operation of
item e, in each column i of an MBHT, a group of BF's in
column 7 not pertaining to a ¢-index for the insert operation
can return their indicator values. The indicator values in the
column i could lead to a false index, f-index, with other
BF’s, j#i involved in the insert operation. Therefore, an
f-index is a combination of indicator values of BFs irrelevant
and relevant to the insert operation of item e and by using
MUX device in each column, BFs responding to membership
test for item e return their indicator values. Also, the length
of an f-index should be r=log,n. From the above two
definitions, the numbers of f-indexes for a successful and an
unsuccessful search are at most n-1 and n, respectively. This
means that a 7-index for an item leads to one off-chip memory
access to a wanted item like an LHT and an FHT, while the
number of f-indexes corresponds to the number of off-chip
memory accesses right before an access to the wanted item in
a linked list. The next important step is to recognize a t-index
and annul a series of false positives randomly scattered in an
MBHT so that the possibility of a f-index can be reduced.

1) False indexing for a successful search in a MBHT:
We have explained the definitions of #-index and f-index
and how they can both occur in the query operations on
an MBHT. Now, we derive and calculate the probability

of the number of false accesses in a successful search.
In a query for a successful search, at least one BF in
each column needs to return its indicator value so that the
sequence of ApA; - - A, forms the full address A, i.e. t-index.
Furthermore, in case of an f-index, false addresses can be
created through false positives in each BF of each column
can be constituted.

Suppose X; is a random variable of the number of false
positives from BFs irrelevant to the #-index of a successful
query operation at column i. Due to the i.i.d f-positives of
the BFs, the probability density function of X7 is a binomial
distribution, B(b-1, f). Also, assume that the random variable
X* for a successful search denotes for the total number of f-
indexes in a given query operation. Then, random variable
X® is defined as the product of random variable X:s, i.e.
([T (X*+1))-1, because of the i.i.d property of each column
and the probability of X* = x is the following

PriX*=x}= PriXg=xo, -, X} | =X_1} C))]
(xo+ 1) (xp 1 +1)=x+1

= > PriXg=x) - PriXi=xi) e PriX) =x).
(xg+1)-(xpp+D=x+1

Also, the mean of X* is calculated based on the i.i.d property
of X7 as shown

n—1

r—1
E[X*] = Zr PrX =1} = E[(ﬂ(xg +1)-1]
=0 i=0

&)

r=1
= HE[X;+ H-1=[+@G-Df-1.

i=0

[Xs] (log scale)

s

Prob. of X and E

Fig. 5. Probability of X*, false memory access, in a successful search.
n =26, Required f=2"1 for an LHT & an FHT

Fig. 5 shows the probabilities for three base systems
(2%, 2%, and 2°) derived from Eqgs. (4) and (5). For a fair
comparison, each memory size of My, M, and M,s are set
equally so that inequality f>3>f4>f>s is satisfied based on
Lemma 2 where f»3, f>4, and f>s are f-positives of each BF
in base-23, base-2*, and base-2, respectively. The lines in
Fig. 5 are not shown in monotonic decrease due to binomial
coefficient in binomial distribution B(b-1, f). However, the
average value of X* from Eq. (5) is decreased as the number
system of base-b increases.

2) False indexing in an unsuccessful search in a MBHT:
In addition to ensuring a low probability of more than one
access to off-chip memory in a successful search, the design

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2471

must also ensure the low probability of an unsuccessful
search is. Unlike a successful search, an unsuccessful search
has no valid index, which means that all BFs return their
predicates as an f-positive. However, by definition of f-
index, each column should have at least one BF return its
predicate as an f-positive, otherwise a group of f-positives
can not constitute an f-index. Therefore, we expect a much
lower probability because of the product of each independent
f-positive probability of BFs.

Let X denote a random variable of the number of false
positives from BFs at column i. Then, the probability density
function of X' follows a binomial distribution B(b, f) due
to the i.i.d f-positives of the BFs. Also, suppose random
variable X* is the number of f-indexes in an unsuccessful
search on an MBHT. Then, random variable X“ can be

formulated with random variable X* into []. X“. In general,
the probability of X* becomes

PriX" =x} = Z PriXy = xo, -+, Xy = X1}
X0 Xy =X
= Z PriXg=xo} - PriX{=x1}--- PriX; =x.1}.
X0 Xp] =X

Finally, the mean of random variable X“ can be calculated
with i.i.d property:

n r—1
EIX“= "1t Prix“ =1} = E[[| X/1 = (/7. ©)
=0 i=0

Algorithm 2: query(MBHT, e)

Input: An MBHT and item e
Output: Set of A’ = Aj---A,_; including false indexes

1 for columni=0tor—1in an MBHT do

2 for r=0tob—1do

3 if ¢ € +-BF' then

4 Sa =S4 Ulth

5 end

6 end

7 end

8 S,=0; /* Set of i-index and f-indexes */
9

S = make_paths(S,,,-
10 return S ,;

84
/* No off-chip memory access */

The query operation shown in the Algorithm query only
considers on-chip operation and it needs to be called twice
on [-MBHT and r-MBHT. Therefore, the average of random
variables X“ and X* for an unsuccessful and successful
search, respectively, using two MBHTs are

E[X"] =2-E[X"] and E[X'] = E[X"] + E[X"],

because for an unsuccessful search both MBTHs do not
have the wanted item and for a successful search one of
MBHT does not have the wanted item. The time complexity
of overall query is ©(1) on the condition that function
make_paths making false indexes from set S 4,, 0<i<r-1 is
performed in constant time as is done in hashing. Also, time
complexities of accessing off-chip memory depend on Eq.
(5) and (6) for a successful and an unsuccessful search.

C. Delete operation in MBHTs

113 | tail

132 | head

After delete
012 | tail

113
132 | head

queue

Fig. 6. An example of delete for item e located at 0124 in base-4.

Unlike the two kinds of searches in query operations, we
consider delete operation for a successful deletion. The
delete operation needs two query operations on both /-
MBHT and r-MBHT, where only one of MBHTs has a
relevant item e. Fig. 6 shows an example with n=64 for
delete. Initially, -MBHT has been fully used for insert,
l/r-reg. indicates the r-MBHT for future insert, and the
stack has 1134 and 1324 for insert. Suppose item e was
inserted in 0-BF°, 1-BF' and 2-BF? in checked boxes as shown
in the figure. Once item e for delete operation is confirmed
by accessing off-chip memory with the address 0124, it is to
be put on the stack for future insert.

Like the query operation, if there are an f-index and a
t-index associated an item, two accesses are necessary. There-
fore, when random variable Z is denoted as the number of
accesses to off-chip memory with both MBHTs, the average
memory access for a delete operation on the condition that
the item exists, i.e. in a successful delete, is

n n—-1
E[Z] = (Z v PriX" = v}) + [1 + > vePHX =)

v=1 v=1

=[bf1"+[1+ @ - DS,

where the first term accounts for an unsuccessful search
on one of MBHTs while the second term explains the a
successful search on the other.

The detailed procedure of the delete operation is shown
in Algorithm delete. The complexity in on-chip memory is
O(1) because the complexity of query used in the algorithm
is O(1). The complexity of memory access is O(E[Z]) on
average for a successful delete, and it is to be constant as
E[X®] is O(1).

Algorithm 3: delete(I-MBHT,-MBHT ,e)

Input: Two MBHTSs and item e
Result: Update associated BF in each column

1 S, ysar=query(l-MBHT .e) ; /* Only on-chip Op. */
2 S, upur=query(r-MBHT ,e) ; /% Only on-chip Op. */
3 for A €S ypur YS .mpur do /¥ A=AoA A F/
4 if Mem[A] == e then /% O0ff-chip Mem. Acc. */
5 push(A,queue); /* push A to queue */
6 end

7 end

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2472

IV. ANALYSIS AND SIMULATION

In this section, we present analyses of memory efficiency
and the average access of search (AAS) to off-chip memory
for three schemes; an LHT, an FHT, and an MBHT. Also,
we analyze a phenomenon of duplicated keys in an FHT.
Finally, we perform one simulation for determining the on-
chip memory usage and AAS with three traces. Among a
class of universal hash functions, a scheme of [19] we choose
for our simulation is suitable for hardware implementation.

A. On/Off-Chip memory usage

In this section, we present and compare the memory usage
about on- and off-chip for each scheme. Given f-positive
f=2" and the number of elements n, the memory usages in
bits of an LHT and an FHT are the product of the number
of layers, L,, and the number of bits in one layer, B,, ve{L, F}
as follows:

M, =Ry x By = {mg2 n} x {1.44n log,(1/ f)} and
My = Ry X By = {mg2 n+ 4} x {1.44n logz(l/f)}, ®)
respectively, where 4 accounts for the number of bits in a

counter. Thus, based on Egs. (8) and (3, memory efficiency
ratio Ry p of My to My in base-2* becomes

Ru e My _ x(log, n+4)w N x(log, n+4)
M2 (log, n - 1.44n(log,(1/f)+a)} 2-log, n(w+a) 2log,n
©)

where a=log,(b-1) due to coeflicients in the binomial func-

tions, and the size of a queue, nlog, n, not is considered for
on-chip memory comparision. Also, the memory efficiency
ratio Ry;p of My to M, is

M X wo
log, n - 1.44n(log,(1/ f)+a)}

X
2 wta 2

Ry = %1 (10)

Memory efficiency ratio
wn

3

16 >
n (log2 scale) 121 b (log2 scale)

Fig. 7.
=27

Memory efficiency ratios of Ry, and Ry r with various b and n.

Fig. 7 shows two ratios, Ry r and Ry, calculated from
Eq. (9) and (10) in the range [2':2°] for base-b and in the
range [2'2:2%2] for n. In the figure, we see that without
doubt the turning point for a better memory efficiency ratio

surely begins at =23 due to a set of two MBHTs. However,
due to coeflicients in binomial functions B(b-1, f) and B(b, f)
the acquired memory gain demonstrates the less probability
values of X* and X at base-2* by increasing memory of
each BF. Given b, the memory gain does not change much as
shown in the figure, although the change rate of memory gain
for a given n is manifested along the b axis. Thus, compared
to an LHT and an FHT, Fig. 7 proves that our approach
using a multi-predicate BF can gain much memory as long
as a larger base number system is used.

In terms of off-chip memory usage, Fig. 10 in [1] shows
an FHT has up to 3 times of duplicate keys than an LHT.
By empirical testing on various k in a hundred runs as
shown in Fig. 8, we realized that the average number of
saved keys is proportional to k, which now is proportional
to log,(1/f) according to Eqgs. (1) and (2). This means that
given requirement of a high-precision search, i.e. small value
of f, the larger is log,(1/f), the larger is k, leading to more
duplicate keys on off-chip memory. Note that the number of
keys to save is the same as the # of saved keys in an MBHT
as shown in two bottom lines of the figure.

-
©

< ~ #ofkeys -0~ J(
— # of keys saved in an MBHT -
X 16 # of keys saved in an FHT %

S
S 14l *
e
2
< 12
172]
Sy
o LK
#= 10 e
S
2
= 8
Z
= 6 % !
4 6 8 10
k

Fig. 8. Duplicate keys in off-chip memory according to k when n=21°.

B. Average access of search

Let us define the average access of search (AAS) as
the number of off-chip memory accesses under different
successful search rates. For AAS of an LHT, an FHT, and
an MBHT, denote A$ and A%, v € {L, F, M}, average successful
and unsuccessful search accesses, respectively, where L, H,
and M are abbreviations of an LHT, an FHT, and an MBHT,
respectively. Besides A; and Ay calculated in [20] and [1],
Eq. (6) and Eq. (5) for the average off-chip memory access in
unsuccessful and successful searches, respectively, are used
to get AAS Ay, as following:

Ay=p,(EIX°"1+D+p, E[X“]=p,[1+(b-Df1+(1-p)lbf1. (11)

Fig. 9 shows the expected search accesses, A;, Ar, and Ay,
in terms of the number of off-chip memory accesses for an
LHT, an FHT, and an MBHT. For a fair comparison the
memory size of My, My, and M), is equal. As noted in Eq.
(8), consideration of 4 bits for a counter affects Ap in a
situation that My, M, and M), are set equal each another.
Therefore, Ar marked with ’corrected FHT” in Fig. 9 has a

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2473

A foran LHT ——

A for a corrected FHT
Ag for an FHT
Ay for an MBHT

Avg. access a search (log scale)

-3 -2 -1 0
Successful search probability(Ps) (log scale)

Fig. 9. Average access of search for an LHT, an FHT, and an MBHT.
n=2'% and f=2"19 for an LHT and an FHT. b=2* for an MBHT.

larger value than that marked with "FHT’ used by Song et
al. [1] because they did not consider counter bits in on-chip
memory. The result in Fig. 9 indicates that the lower the
successful search rate, the better the access time performance
of an MBHT compared to the performance of other schemes.

Operation insert query delete
LHT o) o) o)
FHT O(nk*/m + k) o) O(nk*/m + k)

MBHT 0(1) o) f (1)
"In detail, O(ps(1 + E[X*]) + p E[X"]).
TABLE 1

OPERATION cOMPARISONS OF AN LHT, aN FHT, anp AN MBHT.

Table I summarizes the complexities of off-chip memory
access regarding insert, query and delete operations in
an LHT, an FHT, and an MBHT. The big difference is in
an FHT, which involves the labored complexities of insert
and delete operations depending on variables n, k, b, and
m. In contrast, the complexities of an MBHT and an LHT
are constant.

C. URL switching

As one application of an MBHT to packet processing, we
used NePSim [21] for URL switching where all the incoming
packets to a switch are parsed and forwarded according to
URL. This kind of switching is a commonly used content-
based load balancing mechanism [7,9]. Kachris et al. [9]
used a simlpe XOR hash to reduce the collisions among
Block RAMs in connection manager for web switching, and
Prodanoff et al. in [8] proposed URL signatures using CRC32
to reduce the size of routing tables and aggressive hashing
with chaining of a linked list to speed-up routing lookups in
large-scale content distribution networks.

Table II shows the memory size in bytes of an LHT, an
FHT, and an MBHT for three trace databases on the condition
that requirement of f is 272° and the load factor becomes
0.034 accordingly. Each trace of UC Berkeley, NLANR,
and CA*netll has 149,344, 504,967, and 2,552,045 URLs,

respectively. We can realize that we have at most 1.7 times
on-chip memory reduction at an MBHT in base-16 against
an LHT as shown in the table. If comparison is set for an
FHT, about 2 times of the memory reduction is observed due
to consideration of counter bits in an FHT.

URL Traces LHT FHT MBHT MBHT
base-8 base-16

UC Berkeley??] 9024KB 11124KB 6860KB 5393KB
NLANRX 33634KB 40735KB 25570KB 20102KB
CA*netlI®!| 190953KB 226841KB 1145171KB 114127KB

TABLE 1T

ON-cHIP MEMORY USAGE FOR THREE TRACES. THE LOAD FACTOR Is 0.034, K=1024.

While authors in [21] validated NePSim with SDRAM,
SRAM and six microengines against the IXP 12000 archi-
tecture in terms of performance and power, we measured
the number of accesses to SDRAM with NLANR trace on
the condition that an LHT, an FHT, and an MBHT were
implemented in SRAMs. Especially, given a query an MBHT
is to return indexes in parallel with a set of SRAMs. Table

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

Schemes LHT FHT MBHT(b=8) MBHT(b=16)
AAS” 1.026306 1.002472 1.002411 1.000092
Total # of Acc.”| 968861.7 946231.9 946303.9 944114.4

° It means the total number of off-chip accesses provided the URL
queries of NLANR.

TABLE III
AAS IN A SUCCESSFUL SEARCH OF NLANR TRACE ABOUT THREE SCHEMES. f=2"10

III shows the measured accesses to SDRAM in NePSim with
NLANR. The first row is the average access for a successful
search. While an FHT needs 2.4E-3 extra accesses on average
for a successful search, our MBHT with =16 asks 9.2E-5.
Although this value could be minuscule, when it comes to
the difference between the numbers of off-chip accesses in
an FHT and an MBHT, the gap between them is 2117.

V. RELATED WORKS

Since the burgeoning interest in a BF in late 1990’s, several
types of BFs have been suggested in various application
domains, despite disadvantages such as false positives and
the incapability of delete operation. Besides our main com-
parative literature [1] and packet processing literature [14,
15,24], literature on several applications using BFs will be
discussed in this section as in [17].

A legacy BF does not support deletion operation because
a bit-location in a bit-vector can be overlapped by more than
one key. To avoid this problem, Fan et al. [25] introduced
the idea of a counting BF, in which each entry in the BF is
a counter of 4 bits costing 4 times memory size. However,
our MBHT does not adapt to use counters. Bonomi et al.

2474

[26] introduced Approximate Concurrent State Machines.
While similar in spirit to BFs, the scheme is based on a
combination of hashing and fingerprints, using d-left hashing
to obtain a near-perfect hash function in a dynamic setting.
Surprisingly, its data structure takes much less space than a
comparable counting BF. Cohen and Mattias [27] introduce
Spectral Bloom Filter, an extension of the original BF to
multi-sets, allowing the filtering of elements whose multi-
plicities are below a threshold given at query time. Using
memory only slightly larger than that of the original BF,
SBF supports queries on the multiplicities of individual keys
with a guaranteed, small error probability.

Besides theoretical approaches, Metwally et al. [28] pro-
vide duplicate detection in data streams of the World Wide
Web utilizing various applications, including fraud detection.
In an application of overlay networks, continuous reconfig-
uration of virtual topology by overlay management strives
to establish paths with the most desirable end-to-end char-
acteristics. The approximate reconciliation tree of Byers et
al. [29] uses BFs on top of a tree structure to minimize the
amount of data transmitted for verification.

VI. ConcrusioN AND FUTURE WoORK

We have proposed a novel hash architecture, generating an
off-chip memory address with a set of multi-predicate BFs in
base-b(=2"*) number system with n items to hash. The BFs
work systematically, or in parallel, in the query operation
so that a subset of them in row i determine A;, which
is a part of a whole address A’=A,---A, ;. From Lemmas
1 and 2, we realized that adapting a larger base number
system saves significant on-chip memory by approximately
% and 5 times compared to an FHT and an LHT,
respectively. The saved memory, therefore, can be utilized
to decrease the probabilities of X* and X* for the query
operation In addition, we provided the insert and delete
operations on MBHTs with complexities of ®@(1) and O(1),
respectively, while those of an FHT are O(nk*/m + k) and
O(nk*/m + k), respectively. This benefit manifests itself in
incremental updates on an HT for packet processing because
frequent updates by insert and delete are as important as
fast operation of query in that environment [18]. In analysis,
we derived a memory efficiency ratio of an MBHT over an
LHT and an FHT, and showed that base-23 is the starting
point of better memory efficiency for an MBHT. Furthermore,
simulation with NLANR showed an MBHT had less oft-chip
memory accesses in URL switching by utilizing the saved
memory. As a future work, we plan to use our scheme in
wireless sensor network where enormous data centric routing
is necessary.

REFERENCES

[1] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast Hash
Table Lookup using Extended Bloom Filter: An Aid to Network
Processing,” in SIGCOMM °05.

[2] NLANR Sanitized Cache Access
ftp://ircache.nlanr.net/Traces

Logs. [Online]. Available:

[3]
[4]
[5]

[6]
[7]

[8]

[9]

[10]
(11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22

(23]

[24]

[25]

[26]

[27]

(28]

[29]

F. Baboescu and G. Varghese, “Scalable Packet Classification,”
IEEE/JACM Trans. Netw., vol. 13, no. 1, pp. 2-14, 2005.

A. Basu and G. Narlikar, “Fast Incremental Updates for Pipelined
Forwarding Engines,” IEEE/ACM Trans. Netw., vol. 13, 2005.

J. Xu and M. Singhal, “Cost-effective flow table designs for high-
speed routers: Architecture and performance evaluation,” IEEE Trans.
Comput., vol. 51, no. 9, pp. 1089-1099, 2002.

W. F. FE. Chang and K. Li, “Approximate Caches for Packet Classifi-
cation,” in INFOCOM 2004, vol. 4, March 2004, pp. 2196-2207.

A. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and D. Saha,
“Design, Implementation, and Performance of a Content-Based Swith,”
in INFOCOM 2000.

Z. G. Prodanoff and K. J. Christensen, “Managing Routing Tables for
URL Routers in Content Distribution Networks,” Int. J. Netw. Manag.,
vol. 14, no. 3, 2004.

C. Kachris and S. Vassiliadis, “Design of a Web Switch in a Recon-
figurable Platform,” in ANCS '06. New York, NY, USA: ACM Press,
2006.

S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest Prefix
Matching using Bloom Filters,” in SIGCOMM 03, 2003.

V. Ravikumar and R. Mahapatra, “TCAM Architecture for IP Lookup
using Prefix Properties,” MICRO, IEEE, vol. 24, no. 2, 2004.

V. C. Ravikumar, Rabi N. Mahapatra and Laxmi Narayan Bhuyan,
“BaseCAM: An Energy and Storage Efficient TCAM-Based Router
Architecture for IP Lookup,” IEEE Trans. Comput., vol. 54, 2005.
K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algo-
rithms for Advanced Packet Classification with Ternary CAMS,” in
SIGCOMM ’05. New York, NY, USA: ACM Press, 2005.

T. S. Sarang Dharmapurikar, Praveen Krishnamurthy and J. Lockwood,
“Deep Packet Inspection using Parallel Bloom Filters,” in MICRO 37.
New York, NY, USA: ACM Press, 2004, pp. 52-61.

H. C. Deke Guo, Jie Wu and X. Luo, “Theory and Network Applica-
tions of Dynamic Bloom Filters,” in INFOCOM 2006.

D. E. Knuth, The Art of Computer Programming. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1978.

A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” pp. 485-509, 2002. [Online]. Available:
citeseer.ist.psu.edu/broder02network.html

A. Basu and G. Narlikar, “Fast Incremental Updates for Pipelined
Forwarding Engines,” IEEE/ACM Trans. Netw., vol. 13, 2005.

E. F. M. V. Ramakrishna and E. Bahcekapili, “A Performance Study
of Hashing functions for Hardware Applications,” in Proceedings of
Int. Conf. on Computing and Information, 1994, pp. 1621-1636.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. New York: McGraw-Hill, 1990.

Y. Luo, J. Yang, L. N. Bhuyan, and L. Zhao, “NePSim: A Network
Processor Simulator with a Power Evaluation Framework,” IEEE
Micro, vol. 24, no. 5, pp. 34-44, 2004.

Monthly Log Files 2000, Computer Science Division,
University of California, Berkeley. [Online]. Available:
http://www.cs.berkeley.edu/logs/http

Sanitized Log Files from Canada’s Coast to Coast
Broadband Research Network (CA*netIl). [Online]. Available:

http://ardnoc41.canet2.net/cache/squid/rawlogs

J. X. Abhishek Kumar and E. W. S. Zegura, “Efficient and Scalable
Query Routing for Unstructured Peer-to-Peer Networks,” in INFOCOM
2005, 2005, pp. 13-17.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: a
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281-293, 2000.

Flavio Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh and G.
Varghese, “Beyond Bloom Filters: From Approximate Membership
Checks to Approximate State Machines,” in SIGCOMM ’06.

S. Cohen and Y. Matias, “Spectral Bloom Filters,” in SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM Press, 2003.

A. Metwally, D. Agrawal, and A. E. Abbadi, “Duplicate Detection in
Click Streams,” in WWW °05: Proceedings of the 14th international
conference on World Wide Web, 2005.

J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
Content Delivery Across Adaptive Overlay Networks,” in SIGCOMM
'02. New York, NY, USA: ACM Press, 2002, pp. 47-60.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2475

