Queries Revisited

Dana Angluin

Computer Science Department
Yale University
P. O. Box 208285
New Haven, CT 06520-8285
angluin@cs.yale.edu

Abstract. We begin with a brief tutorial on the problem of learning a fi-
nite concept class over a finite domain using membership queries and/or
equivalence queries. We then sketch general results on the number of
queries needed to learn a class of concepts, focusing on the various no-
tions of combinatorial dimension that have been employed, including the
teaching dimension, the exclusion dimension, the extended teaching di-
mension, the fingerprint dimension, the sample exclusion dimension, the
Vapnik-Chervonenkis dimension, the abstract identification dimension,
and the general dimension.

1 Introduction

Formal models of learning reflect a variety of differences in tasks, sources of
information, prior knowledge and capabilities of the learner, and criteria of suc-
cessful performance. In the model of exact identification with queries [1], the
task is to identify an unknown concept drawn from a known concept class us-
ing queries to gather information about the unknown concept. The two most
studied types of queries are membership queries and equivalence queries. In a
membership query, the learner asks if a particular domain element is included
in the unknown concept or not. In an equivalence query, the learner proposes a
particular concept, and is told either that the proposed concept is the same as
the unknown concept, or is given a counterexample, that is, a domain element
that is classified differently by the proposed concept and the unknown concept.
If there are several possible counterexamples, the choice of which one to present
is generally assumed to be made adversarially.

Researchers have invented a wonderful variety of ingenious and beautiful
polynomial-time learning algorithms that use queries to achieve exact identifi-
cation of different classes of concepts, as well as important modifications of the
basic model to incorporate more realism, e.g., background knowledge and errors.
However, this survey will focus on the question of how many queries are needed
to learn different classes of concepts, ignoring other computational costs. The
analogous question in the PAC model [19] is how many examples are needed to
learn different classes of concepts. In the case of the PAC model, bounds in terms
of a combinatorial property of the concept class called the Vapnik-Chervonenkis

N. Abe, R. Khardon, and T. Zeugmann (Eds.): ALT 2001, LNAT 2225, pp. 12-31] 2001.
© Springer-Verlag Berlin Heidelberg 2001



Queries Revisited 13

dimension early provided a satisfying answer [7I§]. In the case of learning with
queries, the development has been both more gradual and more variegated.

2 Preliminaries

The domain X is a nonempty finite set. A concept is any subset of X, and
a concept class is any nonempty set of concepts. We ignore the issues of how
concepts and domain elements are represented. We distinguish certain useful
concept classes: the class 2% of all subsets of X, and the class S(X) of singleton
subsets of X. We also define S*(X), the class S(X) together with the empty
set.

One way to visualize a domain X and a concept class C' is as a binary matrix
whose rows are indexed by the concepts, say ¢y, ca, ..., cy, and whose columns
are indexed by the elements of X, say, x1,xs,...,2y, and whose (4, j) entry is
1if z; € ¢; and 0 otherwise. An example is given in Figure[ll

1 X2 T3
C1 1 0 1
C2 0 0 1
C3 1 1 0
cq 1 0 0
Fig. 1. Matrix representation of the concept class Co = {c1,c2,c¢s,ca}, where ¢1 =

{z1,23}, c2 = {xs}, cs = {1, 22}, ca = {21}

The rows (representing concepts) are all distinct, though the columns need
not be. For our purposes the columns (representing domain elements) may also
be assumed to be distinct, because there is no point in distinguishing between
elements x and z’ that are contained in exactly the same set of concepts. Thus,
a domain and concept class can be represented simply as a finite binary relation
whose rows are distinct and whose columns are distinct. This makes clear the
symmetry of the roles of the domain and the concept class.

For any concept ¢ C X we define two basic types of queries with respect to
c. In a membership query, the input is an element x € X, and the output is 1 if
x € cand 0 if x € c. In an equivalence query, the input is a concept ¢ C X, and
the output is either “yes,” if ¢’ = ¢, or an element z in the symmetric difference
of c and ¢, if ¢ # ¢. Such an element z is a counterezample. The choice of a
counterexample is nondeterministic.

A learning problem is specified by giving the domain X, the class of con-
cepts C, and the permitted types of queries. The task of a learning algorithm is
to identify an unknown concept ¢ drawn from C' using the permitted types of



14 D. Angluin

queries. Because we ignore computational resources other than the number of
queries, we use decision trees to model learning algorithms.

A learning algorithm over X is a finite rooted tree that may have two types
of internal nodes. A membership query node is labelled by an element z € X
and has two outgoing edges, labelled by 0 and 1. An equivalence query node is
labelled by a concept ¢ C X and has |X| + 1 outgoing edges, labelled by “yes”
and the elements of X. The leaf nodes are unlabelled. An example of a learning
algorithm T that uses only membership queries is given in Figure Bl

T1
LN
x3
S
X2

Fig. 2. MQ-algorithm Ty over domain X = {z1, 22,23}

Given a learning algorithm 7" and a concept class C, we recursively define
the evaluation of T on C as follows. Each node of T" will be assigned the subset
of C' consistent with the answers to queries along the path from the root to that
node.

The root node is assigned C' itself. Suppose an internal node v has been
assigned the subset C’ of C. If v is a membership query labelled by z, then the
0-child of v is assigned the subset of C’ consisting of concepts ¢ such that = € c,
and the 1-child of v is assigned the subset of C’ consisting of concepts ¢ such
that z € c. In this case, the set C” is partitioned between the two children of v. If
v is an equivalence query labelled by ¢, then for each z € X, the z-child of v is
assigned the subset of C’ consisting of concepts ¢ such that z is in the symmetric
difference of ¢’ and ¢. The “yes”-child of v is assigned the singleton {¢'} if ¢ € C’,
otherwise it is assigned the empty set. In this case, we do not necessarily have
a partition; a concept in C’ may be assigned to several of the children of v. The
assignment produced by evaluation of the tree Ty on the concept class Cp is
shown in Figure B

A learning algorithm T is successful for a class of concepts C' if in the evalu-
ation of T' on C, there is no leaf £ of T' such that two distinct concepts c,c’ € C
are assigned to £. This implies that T has at least |C| leaves, because in the eval-
uation of T on C' each element of C' is assigned to at least one leaf, and no two
elements of C' are assigned to the same leaf of T'. It also implies that the decision
tree T may be used to identify an unknown concept ¢ € C by asking queries
starting with the root and following the edges corresponding to the answers,



Queries Revisited 15
{c1,c2,c3,ca}
{ea} {ei,c3,ca}
{es, ca} {ei}
{ca} {es}

Fig. 3. Assignment produced by evaluation of Ty from Figure Blon Co

until a leaf is reached, at which point exactly one concept ¢ € C' is consistent
with the answers received.

Let T be a learning algorithm over X. The depth of T, denoted d(T) is the
maximum number of edges in any path from the root to a leaf of T'. Let ¢ C X
be any concept. The depth of ¢ in T, denoted d(c,T), is the maximum number
of edges in a path from the root to any leaf assigned c¢ in the evaluation of T' on
the class {c}. This is the worst-case number of queries used by the algorithm T
in identifying c. Figure 2 shows that Ty is successful for Cy, and d(cq, To) = 3.

3 Membership Queries Only

A MQ@Q-algorithm uses only membership queries. The partition property of mem-
bership queries implies that every concept is assigned to just one leaf of a MQ-
algorithm. If a MQ-algorithm T is successful for a concept class C', then

log |C] < d(T), (1)

because T is a binary tree with at least |C| leaves.

Let Tho(C') denote the set of MQ-algorithms T that are successful for C, and
have no leaf assigned () in the evaluation of C. To see that Tho(C) is nonempty,
consider the ezhaustive MQ-algorithm that systematically queries every element
of X in turn. Certainly, no two concepts are assigned to the same leaf, although
some leaves may be assigned (. If so, redundant queries may be pruned until every
leaf is assigned exactly one concept from C'. This MQ-algorithm is successful for
every concept class over X. Its depth is at most |X]|.

Define the MQ-cost of a class C of concepts over X, denoted #MQ(C), as

#MQ(C) = rein  max d(c,T). (2)
Then
log [C] < #MQ(C) < | X], 3)

because any MQ-algorithm successful on C has depth at least log |C|, and the
exhaustive MQ-algorithm has depth | X|. For the class 2%, the upper and lower
bounds are equal. MQ-algorithms are equivalent to the mistake trees of Little-
stone [I5].



16 D. Angluin
4 Equivalence Queries Only

Consider the learning algorithm 77, which uses only equivalence queries over X,
presented in Figure @l The evaluation of T on the concept class Cy is presented
in Figure

{71, 23}

“yes” T1\ 22 T3

Fig. 4. Equivalence query algorithm T}

{c1,¢2,c3,ca}

“yes” T1\ 22 T3
{ea} {e2} {es}  {er, 2}
“yes” T1\ 22 3
{er} {ea} 0 0

Fig. 5. Evaluation of T1 on Cj

The algorithm T} is successful for Cy, because no two concepts from Cj are
assigned to the same leaf of T7. The concept cs is assigned to two different leaves
of Ty, illustrating the non-partition property of equivalence queries.

Given a concept class C, a proper equivalence query with respect to C' is
an equivalence query that uses an element ¢ € C. We use the notation EQ
for equivalence queries proper with respect to a class C, and XEQ for extended
equivalence queries, which are unrestricted. A useful generalization allows equiv-
alence queries from a hypothesis class H containing C, but for simplicity we do
not pursue that option. The equivalence queries in 77 involve only concepts that
are elements of Cp, namely ¢4 = {z3} and ¢; = {x1,23}. Consequently, we say
that 77 is an EQ-algorithm for Cy.

Given a concept class C, let T (C) denote the set of EQ-algorithms suc-
cessful for C, and let Tx gq(C) denote the set of XEQ-algorithms successful for
C. Clearly, Tgq(C) C Txgq(C). To see that Tro(C) is nonempty, consider the
erhaustive EQ-algorithm for C, which consists of making an equivalence query



Queries Revisited 17

with every element of C, except one, in some order. This gives an EQ-algorithm
of depth |C] — 1 that is successful for C.
Define

#EQ(C) = TeirpElcrgl(C) max d(e,T), (4)

and
#XEQ(C) = el ) e d(e,T). (5)

For every concept class C,
4XEQ(C) < 4BQ(C) < [C] — 1. (6)

For the class of singletons, S(X), a simple adversary argument shows that
#EQ(S(X)) = |X| — 1, attaining the upper bound above. For the same class,
a single XEQ with the empty set discloses the identity of the target concept,
therefore, #XEQ(S(X)) = 1.

5 Membership and Equivalence Queries

Algorithms may involve both membership and equivalence queries. We distin-
guish MQ&EQ-algorithms, in which all the equivalence queries are proper for the
concept class under consideration, from MQ&XEQ-algorithms, in which there
is no restriction on the equivalence queries. Figure [0 shows To, a MQ&EQ-
algorithm that is successful for the class Cy.

{z1}
“yes” T1\ 22 T3

Tl

N

Fig. 6. MQ&EQ-algorithm T for the concept class Co

Let TargaeqQ(C) denote the set of MQ&EQ-algorithms successful for the
concept class C. Define

#MQ&EQ(C) = min maxd(c,T). (7)

TeTmQarq(C) ceC

For any concept class C, because MQ&EQ-algorithms have both types of
queries available, we have the following inequalities.

#MQLEQ(C) < #MQ(C), (8)

and



18 D. Angluin

#MQEEQ(C) < #EQ(C). (9)

For the concept class C, let Thrgexro(C) denote the set of MQ&XEQ-
algorithms successful for C'. Define

MQ&XE = i T). 1
#MQEXEQ(C) = | min maxd(c,T) (10)

Clearly,
H#MQEXEQ(C) < #MQEEQ(C). (11)

6 XEQ’s, Majority Vote, and Halving

The first query in the algorithm 73 is very productive, in the sense that no child
of the root is assigned more than half the concepts in Cj. The existence of such
a productive query is fortuitous in the case of EQ’s, but is guaranteed in the
case of XEQ’s. In particular, for any class C' of concepts over X, we define the
magority vote of C, denoted ¢, (C), as follows.

(Ve € X)[z € c,n(C) & {d € C:z e} >|C|/2]. (12)

That is, an element x is placed in ¢, (C) if and only if more than half the
concepts in C' contain z. Thus, any counterexample to the majority vote concept
eliminates at least half the possible concepts. The majority vote concept for Cy
is {z1} = ca.

The halving algorithm for C' may be described as follows. Starting with the
root, construct the tree of XEQ’s and the evaluation of the tree on C' concur-
rently. If there is a leaf assigned C’ and C’ has cardinality more than 1, then
extend the tree and its evaluation on C by replacing the leaf with an XEQ la-
belled by the majority vote concept, ¢,,, (C'). Because the set of concepts assigned
to a node can be no more than half of the concepts assigned its parent, no path
in the tree can contain more than |log|C|] XEQ’s. Thus, for any concept class
of

#XEQ(C) < [log|C|]. (13)

The halving algorithm is good, but not necessarily optimal [TBT6].

7 An Optimal XEQ-Algorithm

Littlestone [15] defines the standard optimal algorithm, which achieves an XEQ-

algorithm of depth #XEQ(C) for any concept class C. He proves the non-obvious
result that

XEQ(C) = ind(c,T). 14

#XEQ(C) ponax . min (c,T) (14)

That is, the optimal number of XEQ’s to learn a class C is the largest d such

that there is a MQ-algorithm successful for C' in which the depth of each leaf is
at least d.



Queries Revisited 19

Maass and Turdn [16] use this result to show that

#XEQ(C)/log(#XEQ(C) 4+ 1) < #MQ&EXEQ(C). (15)

This shows that the addition of MQ’s cannot produce too much of an improve-
ment over XEQ’s alone.

To prove this, let d = #XEQ(C) and consider a MQ-algorithm T" successful
for C such that every leaf is at depth at least d. Let V denote the set of nodes
v at depth d in T such that a concept ¢ € C assigned to a descendant of v is
consistent with the all the replies to queries so far. Initially, V contains 2¢ nodes.

An adversary answers MQ’s and XEQ’s so as to preserve at least a fraction
1/(d 4+ 1) of V as follows. For a membership query with element z, if at least
half the current elements would be preserved by the answer 1, then answer 1,
else answer 0. For an equivalence query with the concept ¢’ (not necessarily in
(), consider the node v at depth d in T that ¢’ is assigned to. If we consider the
d nodes that are siblings of nodes along the path from the root to v, at least one
of them, say v’ must account for a fraction of at least 1/(d + 1) of the current
elements of V. If the label on the parent of v’ is x, then answer the equivalence
query with x. Thus, after j queries, there are at least 2¢/(d + 1)7 elements left
in V. Thus, the adversary forces at least d/log(d + 1) queries.

8 Dimensions of Exact Learning

In this section we consider some of the dimensions introduced to bound the cost
of learning a concept class with various combinations of queries. For some of
these we have suggested different names, to try to bring out the relationships
between these definitions.

8.1 The Teaching Dimension

Given a concept class C' and a concept ¢ € C, a teaching set for ¢ with respect to
C'is aset S C X such that no other concept in C classifies all the examples in .S
the same way ¢ does. For example, {x1,x3} is a teaching set for the concept ¢;
with respect to Cy because no other concept in Cjy contains both elements. Also,
{1} is a teaching set for the concept ¢y with respect to Cy because every other
concept in Cy contains x;. If a learner is presented with an unknown concept
from C, by making membership queries for each of the elements in a teaching
set for ¢, the learner can verify whether or not the unknown concept is c.

The teaching dimension of a concept class C, denoted TD(C), is the maxi-
mum over all ¢ € C' of the minimum size of a teaching set for ¢ with respect to C
[LOJL8]. It is the worst case number of examples a teacher might have to present
to a learner of a concept ¢ € C' to eliminate all other possible concepts in C.

Ezxamples. The teaching dimension of Cj is 2. The teaching dimension of
S(X), the set of singletons over X, is 1 because each set contains an element
unique to that set. However, the teaching dimension of S*(X), the singletons



20 D. Angluin

together with the empty set, is | X|, because the only teaching set for the empty
set in this situation is X itself.
In terms of MQ-algorithms, we have

TD(C) =max min d(c,T). (16)
c€C TeTumq(C)

This is true because the labels on any path from the root to a leaf assigned ¢ in
a MQ-algorithm successful for C' constitute a teaching set for ¢ with respect to
C — any other concept in C' must disagree with ¢ on at least one of them, or it
would have been assigned to the same leaf as c. Conversely, given a teaching set
S for ¢ with respect to C'; we can construct a MQ-algorithm that asks queries
for those elements first, stopping if the answers are those for ¢, and continuing
exhaustively otherwise. This will produce a MQ-algorithm successful for C' in
which c¢ is assigned to a leaf at depth |S|. Thus the minimization finds the size
of the smallest teaching set for a given ¢, and this is maximized over ¢ € C.

Note that the max and min operations are exchanged in the two equations
(@) and (@G), and therefore by the properties of max and min,

TD(C) < #MQ(C). (17)

(Note that (@), (I4) and () involve three out of the four possible combinations
of max, min, ¢ € C, and T € Tyo(C).)

8.2 The Exclusion Dimension

The teaching dimension puts a lower bound on the number of examples a teacher
may need to convince a skeptical student of the identity of a concept in C. What
about concepts not in C? For a concept ¢ ¢ C, how many examples does it
take to prove that the concept is not in C? For technical reasons, we consider a
slightly different notion, namely, the number of examples to reduce to at most
one the set of concepts in C that agree with ¢’ on the examples.

If C is a class of concepts and ¢’ an arbitrary concept, then a specifying set
for ¢’ with respect to C is a set S of examples such that at most one concept
¢ € C agrees with the classification of ¢’ for all the elements of S. If ¢/ € C, then
a specifying set for ¢’ with respect to C' is just a teaching set for ¢’ with respect
to C.

Suppose ¢’ € C and suppose S is a specifying set for ¢’ with respect to C.
There are two possibilities: either there is no concept ¢ € C that agrees with the
classification of ¢’ for every example in S, or there is exactly one such concept
c € C. If there is one such, say ¢, we can add to S a single example on which ¢/
and ¢ disagree to construct a set S’ such that no concept in C' agrees with the
classification of ¢’ on every example in S’. Thus, a specifying set may require at
most one more example to become a “proof” that ¢’ ¢ C.

Define the ezclusion dimension, denoted XD(C'), of a concept class C as the
maximum over all concepts ¢’ € C, of the minimum size of any specifying set
for ¢ with respect to C. If C' = 2%, define the exclusion dimension of C' to be 0.



Queries Revisited 21

This is the same as the unique specification dimension of Hegediis [12] and the
certificate size of Hellerstein et al. [13].

Ezamples. XD(S(X)) = |X| — 1 because for the empty set we must specify
| X |—1 examples as not belonging to the empty set to reduce the possible concepts
to at most one (the singleton containing the element not specified.) However,
for | X| > 2, XD(ST(X)) = 1 because any concept not in ST(X) contains at
least two elements, and specifying that one of them belongs to the concept is
enough to rule out the empty set and all but one singleton subset of X. We
have XD(Cy) = 1, because each of the concepts not in Cy has a specifying set of
size 1. For example, the empty set has a specifying set {z;} with respect to Cp,
because only ¢z also does not include z1, and the set {21, 2, 23} has a specifying
set {z2} with respect to Cp, because only c3 also includes 5.

The argument for (I6) generalizes to give

XD(C) =max min d(d,T). (18)
c'gC TETMq(C)

Let T be any MQ-algorithm that is successful for C'. Consider any concept
¢ & C, the leaf ¢ of T that ¢’ is assigned to, and the set S of elements queried
on the path from the root to ¢. Because at most one element of C' is assigned to
¢, S is a specifying set for ¢’.

Conversely, if ¢/ € C and S is a specifying set for ¢/, then we may construct
a MQ-algorithm successful for C' by querying the elements of S. If an answer
disagrees with the classification by ¢, then continue with the exhaustive MQ
algorithm. If the answers for all the elements of S agree with the classifications
by ¢, then there is at most one concept in C' consistent with those answers, and
the algorithm may halt.

Hence, the smallest specifying set for ¢’ has size equal to the minimum depth
of ¢ in any MQ-tree successful for C, and (IR)) follows.

Also, for any concept class C,

XD(C) < #MQ(C). (19)

Consider any MQ-tree of depth #MQ(C) that is successful for C. Every
¢ & C has a specifying set consisting of the elements queried along the path in
T that ¢’ is assigned to, which is therefore of size at most #MQ(C).

8.3 The Extended Teaching Dimension

The combination of the teaching dimension and the exclusion dimension yields
the extended teaching dimension [12]. The extended teaching dimension of a
concept class C, denoted XTD(C'), is the maximum over all concepts ¢’ C X, of
the minimum size of any specifying set for ¢’ with respect to C. Clearly, for any
concept class C,

XTD(C) = max{TD(C), XD(C)}. (20)
From (I6) and (I¥]) we have
XTD(C) =max min d(c,T). (21)

c€2X Te€Th o (C)



22 D. Angluin

From (I7) and (19), we have
XTD(C) < #MQ(C). (22

Ezamples. XTD(Cyp) = 2 = max{2,1}. If | X| > 2, XTD(S(X)) = |X| -1
and XTD(ST (X)) = |X].

9 The Testing Perspective

In the simplest testing framework there is an unknown item, for example, a
disease, and a number of possible binary tests to perform to try to identify
the unknown item. There is a finite binary relation between the possible items
and the possible tests; performing a test on the unknown item is analogous
to a membership query, and adaptive testing algorithms correspond to MQ-
algorithms. Hence the applicability of Moshkov’s results on testing to questions
about MQ-algorithms. The frameworks are not completely parallel. Moshkov
introduces the analog of equivalence queries for the testing framework [17].

We take a brief excursion to consider the computational difficulty of the
problem of constructing an optimal testing algorithm (or, equivalently, MQ-
algorithm.) There is a natural (and expensive) dynamic programming method
for constructing an optimal MQ-algorithm. Hyafil and Rivest show that it is
NP-complete to decide, given a binary relation and a depth bound, whether
the relation has a MQ-algorithm with at most that depth [I4]. Arkin et al. [3]
consider this problem in the context of the number of probes needed to determine
which one of a finite set of geometric figures is present in an image. They prove
an approximation result for the natural (and efficient) greedy algorithm for this
problem, which we now describe.

An MQ-algorithm and its evaluation on C' are constructed top-down and
simultaneously. For each leaf node assigned more than one concept from C,
choose a membership query that partitions the set of concepts assigned to the
node as evenly as possible, and extend the tree and its evaluation until every leaf
node is assigned exactly one concept from C. Arkin et al. show that this method
achieves a tree whose height is within a factor of [log |C|] of the optimal height.
(This greedy tree-construction method is a standard one in the literature of
constructing decision trees from given example classifications, although decision
trees compute classifications rather than identifications.)

10 XTD and MQ-Algorithms

Using a specifying set S for a concept ¢/, we can replace an equivalence query
with ¢’ by a sequence of membership queries with the elements of S as follows.
If a membership query with x gives an answer different from the classification
by ¢/, we proceed as though the equivalence query received counterexample x in
reply. If the answers for all the elements of S are the same as the classifications



Queries Revisited 23

by ¢/, then at most one element of C' is consistent with all these answers, and
the learning algorithm can safely halt.

If we apply this basic method to replace each XEQ of the halving algorithm
by a sequence of at most XTD(C) MQ’s, we get the following for any concept
class C.

#MQ(C) < (XTD(C)) - ([log [C1])- (23)

We could instead replace each XEQ in the standard optimal algorithm by a
sequence of at most XTD(C') MQ’s to obtain

#MQ(C) < (XTD(C)) - (#XEQ(C)). (24)

Hegediis [12] gives an improvement over (23), achieved by an algorithm with
a greedy ordering of the MQ’s used in the simulation of one XEQ.

#MQ(C) < (2XTD(C)/(log XTD(C))) - ([log |C1]). (25)

He also gives an example of a family of concept classes for which this improved
bound is asymptotically tight.

These results give a reasonably satisfying characterization of the number of
membership queries needed to learn a concept class C' in terms of a combinatorial
parameter of the class, the extended teaching dimension, XTD(C'). The factor of
roughly log |C| difference between the lower bound and the upper bound may be
thought of as tolerably small, being the number of bits needed to name all the
concepts in C. Analogous results are achievable for algorithms that use MQ’s
and EQ’s and for algorithms that use EQ’s alone.

11 XD and MQ&EQ-Algorithms

Generalizing Moshkov’s results, Hegediis [T2] bounds the number of MQ’s and
EQ’s needed to learn a concept class in terms of the exclusion dimension. Inde-
pendently, Hellerstein et al. [I3], introduce the idea of polynomial certificates to
characterize learnability with a polynomial number of MQ’s and EQ’s.

For any concept class C,

XD(C) < #MQEEQ(C) < (XD(C)) - ([log|C)). (26)

An adversary argument establishes the lower bound. Let ¢/ ¢ C' be any concept
such that the minimum specifying set for ¢’ has size d = #MQ&EQ(C). An
adversary can answer any sequence of at most (d — 1) MQ’s and EQ’s as though
the target concept were ¢’. (Note that because EQ’s must use concepts in C,
there cannot be an equivalence query with ¢’ itself.) At this point, there must
be at least two concepts in C consistent with the answers given, so a successful
learning algorithm must ask at least one more query.

The upper bound is established by a simulation of the halving algorithm. If
an XEQ is made with concept ¢, then if ¢ € C, it is already an EQ and need
not be replaced. If ¢ € C, then we take a minimum specifying set S for ¢’ with



24 D. Angluin

respect to C and replace the XEQ by MQ’s about the elements of S, as described
in Section [10l

Using the standard optimal algorithm instead of the halving algorithm gives
the following.

#MQELEQ(C) < (XD(C)) - (#XEQ(C)). (27)
Again Hegediis improves the upper bound of (28] by making a more careful

choice of the ordering of MQ’s, and gives an example of a family of classes for
which the improved bound is asymptotically tight.

#MQELEQ(C) < (2XD(C)/(log XD(C))) - ([log |C1])- (28)

The key difference in the bounds for MQ-algorithms and MQ&EQ-algorithms
is that with both MQ’s and EQ’s, we do not need to replace an XEQ with a
concept ¢ € C, so only the specifying sets for concepts not in C' matter, whereas
with only MQ’s we may need to simulate XEQ’s for concepts in C, so specifying
sets for all concepts may matter.

12 A Dimension for EQ-Algorithms?

Can we expect a similar characterization for learning a class C' with proper
equivalence queries only? The short answer is yes, but the story is a little more
complicated.

We'll need samples as well as concepts. A sample s is a partial function from
X to {0,1}. A sample may also be thought of as a subset of elements of X
and their classifications, or a function from X to {0, 1,*}, with % standing for
“undefined.” If we identify a concept ¢ with its characteristic function, mapping
X to {0,1}, then a concept is a special case of a sample. Two samples are
consistent if they take the same values on the elements common to both of their
domains. A sample s’ extends a sample s if they are consistent and the domain
of s is a subset of the domain of s’.

It is interesting to note that the partial equivalence queries of Maass and
Turdn [I6] can be characterized as equivalence queries with samples instead of
just concepts.

12.1 The Fingerprint Dimension

Early work on lower bounds for equivalence queries introduced the property of
approximate fingerprints [2], which is sufficient to guarantee that a family of
classes of concepts cannot be learned with a polynomial number of EQ’s. This
technique was applied to show that there is no polynomial-time EQ-algorithm
for finite automata, DNF formulas, and many other classes of concepts.
Gavalda [9] proved that a suitable modification of the negation of the approx-
imate fingerprint property is both necessary and sufficient for learnability with
a polynomial number of proper equivalence queries. Hayashi et al. [IT] general-
ized the definitions to cover combinations of various types of queries. Stripped of
details not relevant to this development, the ideas may be formulated as follows.



Queries Revisited 25

If C is a concept class, ¢ € C, and d is a positive integer, then we define ¢ to
be 1/d-good for C' if for every x € X, a fraction of at least 1/d of the concepts in
C agree with the classification of x by c. This idea generalizes the majority vote
concept for a class C, which is 1/2-good for C. If we make an EQ with a concept
c that is 1/d-good for C, then any counterexample must eliminate a fraction of
at least 1/d of the concepts in C.

Given a concept class C, we say that C’ C C'is reachable from C' if there exists
a sample s such that C’ consists of all those concepts in C' that are consistent
with s. Not every subclass of a concept class is necessarily reachable.

Ezamples. For C = S*(X), the subclasses {{z}} are reachable (using the
sample s = {(z,1)}), and subclasses consisting of ST(Y') for Y C X are reachable
(using a sample that maps the elements of X —Y to 0), but the subclass S(X),
consisting of the singletons, is not reachable.

Given a concept class C, the fingerprint dimension of C, denoted FD(C), is
the least positive integer d such that for every reachable subclass C’ of C, there
is a concept ¢’ € C’ that is 1/d-good for C".

To see that FD(C) is well-defined, note that for any concept class C' and any
concept ¢ € C, ¢ is at least 1/|C|-good for C, because ¢ at least agrees with
itself. A concept class C' containing only one concept has FD(C) = 1, but any
concept class C' containing at least two concepts has FD(C') > 2.

We now show that the fingerprint dimension gives bounds on the number
of EQ’s necessary to learn a class of concepts for any class C' of concepts, as
follows.

FD(C) — 1 < #EQ(C) < [FD(C)ln|C]]. (20)

If C has only one concept, then 0 = FD(C) — 1 = #EQ(C), so both inequal-
ities hold in this case. Assume C' has at least two concepts, and let d = FD(C).
Clearly d > 2.

We describe a learning algorithm to achieve the upper bound. At any point,
there is a class C’ reachable from C that is consistent with the answers to all
the queries made so far. If C’ contains one element, then the algorithm halts.
Otherwise, by the definition of FD(C') there is a concept ¢’ € C’ that is 1/d-good
for C’, and the algorithm makes an EQ with this concept ¢’.

Either the answer is “yes,” or a counterexample = eliminates a fraction of
at least 1/d of the concepts in C’. This continues until exactly one concept
c € C is consistent with all the answers to queries. Then ¢ queries are sufficient
if (1 —1/d)!|C| < 1. Hence, [dIn|C|] EQ’s suffice.

For the lower bound, because d is a minimum, there is a reachable subclass
C’ of C that has no 1/(d — 1)-good concept. For this to be true, |C’| > d. Thus,
for each concept ¢’ € C’, there exists an element € X such that the fraction
of concepts in C’ that agree with the classification of x by ¢’ is smaller than
1/(d — 1). (This = could be termed a 1/(d — 1)-approximate fingerprint for ¢/
with respect to C".)

Let s be the sample that witnesses the reachability of C’ from C. That is,
C" consists of those elements of C' that are consistent with s. We describe an



26 D. Angluin

adversary to answer EQ’s for C' that maintains a fraction of at least (d — i —
1)/(d — 1) of the concepts in C” consistent with the answers to the first i EQ’s.

This is clearly true when ¢ = 0. For an EQ with ¢ € C, if ¢ € C’, then ¢ must
not be consistent with s, and the adversary returns as a counterexample any
element x such that s and c classify x differently. If ¢ € C’, then by our choice
of C’, there is an element x such that the fraction of elements of C’ that classify
x the same way as c is smaller than 1/(d — 1). The adversary returns any such x
as a counterexample. Queries of the first type do not eliminate any elements of
C’, and queries of the second type eliminate fewer than (1/(d —1))|C’| elements
of C, so after d — 2 EQ’s, there are at least

C/(d-1) > 1

concepts in C’ consistent with all the answers the adversary has given. Hence,
any EQ-algorithm must use at least d — 1 EQ’s, establishing the lower bound.

12.2 The Sample Exclusion Dimension

Balcézar et al. introduce the strong consistency dimension [6], which also yields
bounds on the number of EQ’s to learn a concept class. We give a slight variant
of that definition, which generalizes the exclusion dimension from concepts to
samples.

Let C be a concept class and s a sample. A specifying set for s with respect
to C'is a set S contained in the domain of s such that at most one concept ¢ € C
is consistent with the sample s’ obtained by restricting s to the elements of S.
Note that this coincides with our previous definition of a specifying set if s is
itself a concept.

Define the sample exclusion dimension of a class C of concepts, denoted
SXD(C), to be the maximum over all samples s such that s is not consistent
with any ¢ € C, of the minimum size of any specifying set for s. This generalizes
the exclusion dimension from concepts not in C' to samples not consistent with
any concept in C. For C' = 2% we stipulate that SXD(C) = 0.

Because the maximization is over samples and not just concepts, for any class
of concepts C,

XD(C) < SXD(C). (30)

This differs from the strong consistency dimension introduced by Balcdzar et
al. [6] by at most 1, and coincides, in the case of equivalence queries, with the
abstract identification dimension, also introduced by Balcdzar et al. [4].
Examples. To get a sense of the difference between the exclusion dimension
and the sample exclusion dimension, consider the concept class C7, presented in
Figure [ This is a version of addressing, described by Maass and Turédn [16].
The empty set is not an element of Cy, but it has a specifying set {1, x2},
because only ¢; also does not include either x; or x3. However, the sample

s = {(yla 0)7 (y2a 0)7 <y37 0)? <y4’ 0)}7



Queries Revisited 27

T T2 Y1 Y2 Ys Ya
c1 0 0 1 0 0 0
c2 0 1 0 1 0 0
c3 1 0 0 0 1 0
C4 1 1 0 0 0 1

Fig. 7. Concept class C1, a version of addressing

which is not defined for x; and 2, is not consistent with any element of C7,
but its smallest specifying sets have 3 elements, for example, {y1,y2,y3}. Gen-
eralizing this example to 2" concepts with n address bits gives an exponential
disparity between the exclusion dimension and the sample exclusion dimension.

The sample exclusion dimension is a lower bound on the number of EQ’s
needed to learn a concept class C. For any concept class C,

SXD(C) < #EQ(C). (31)

If C = 2%, then SXD(C) = 0 and the bound holds, so assume C # 2%. We
describe an adversary to enforce at least d = SXD(C) EQ’s. Let s be a sample
that is not consistent with any ¢ € C' such that the size of the smallest specifying
set for s with respect to C has size d. Any EQ with a concept ¢ € C can be
answered with an element z in the domain of s, because s is not consistent with
any ¢ € C. Up to (d — 1) EQ’s can be answered thus, and there will still be at
least two concepts in C' consistent with all the answers given, so any successful
learning algorithm must make at least one more EQ.
Combining (29) and (BI)), we have

SXD(C) < #EQ(C) < [FD(C) In |C]]. (32)

The sample exclusion dimension also gives an upper bound on the fingerprint
dimension.

FD(C) < SXD(C) + 1. (33)

If C contains only one concept, then FD(C) = 1 and SXD(C) = 0, and the
bound holds. Assume that C contains at least two concepts, and let d = SXD(C).
Clearly d > 1. Consider any subclass C’ reachable from C, and let s be the
sample that witnesses the reachability of C’. That is, C’ is the set of concepts in
C consistent with s. We show that C” contains a concept ¢’ that is 1/(d+1)-good
for C'.

Define another sample s’ as follows. Let s'(x) = 1 if a fraction of more than
d/(d + 1) concepts in C’ contain z, and let §'(x) = 0 if a fraction of more than
d/(d+1) concepts in C’ do not contain z. Note that s’ is not defined for elements
x for which the majority vote of C’ does not exceed a fraction d/(d + 1) of the



28 D. Angluin

total number of elements of C’. Note that s’ extends s because all of the elements
of C" agree on elements in the domain of s.

We claim that s’ is consistent with some element of C. If not, then by the
definition of SXD(C'), there exists a specifying set S for s’ with respect to C
that contains at most d elements. Consider the set of elements of C’ that are
consistent with s’ for all the elements of S. Agreement with s’ on each element of
S eliminates a fraction of less than 1/(d+ 1) of the elements of C’, so agreement
on all the elements of S eliminates a fraction smaller than d/(d + 1) of the
elements of C’. Thus, at least one element of C’ is consistent with s’ on all the
elements of S, contradicting the assumption that s’ is not consistent with any
element in C.

Thus, there is some element ¢ € C consistent with s’, and since s’ extends s,
¢ € C'. Thus, the concept ¢ is a 1/(d+1)-good element of C’. Because C’ was an
arbitrary reachable subclass of C, we have that FD(C) < (d + 1), establishing
the bound.

As a corollary of (33)) and the upper bound in (29)), we have

#EQ(C) < [(SXD(C) + 1) In|C]]. (34)

12.3 Inequivalence of FD(C) and SXD(C)

Despite their similar properties in bounding #EQ(C), the two dimensions FD(C')
and SXD(C) are different for some concept classes.

Let Xog41 = {x1,22,...,22r41} and let Cy, consist of all subsets of Xox 41 of
cardinality at most k. Then |Cy| = 2% and In |C| = O(k).

We have SXD(C%) = k because the only samples inconsistent with every
concept in C must take on the value 1 for at least k + 1 domain elements, and
a minimum specifying set will contain & domain elements with the value 1. On
the other hand, FD(C}) = 2, because every reachable subclass of C}, contains its
majority vote concept. Of course, #EQ(C)) = k, by a strategy that begins by
conjecturing the empty set, and adds positive counterexamples to the conjecture
until it is answered “yes.”

Thus, for the family of classes Cj, the sample exclusion dimension gives
a tight lower bound, k, and a loose upper bound, O(k?), while the fingerprint
dimension gives a loose lower bound, 1, and an asymptotically tight upper bound,
O(k), on the number of EQ’s required for learning. This is asymptotically as large
as the discrepancy can be, as witnessed by (B2)), which is the combination that
gives the strongest bounds on #EQ(C) at present.

13 What about the VC-Dimension?

Because the Vapnik-Chervonenkis dimension is so useful in PAC learning, it is
natural to ask what its relationship is to learning with queries. A set S C X
is shattered by a concept class C if all 2/5| possible labellings of elements in S
are achieved by concepts from C. The VC-dimension of a class C' of concepts,



Queries Revisited 29

denoted VCD((C), is the maximum cardinality of any set shattered by C. It is
clear that for any concept class C,

VCD(C) < log|C. (35)

This and (B) imply
VCD(C) < #MQ(C). (36)

As Littlestone [I5] observed, an adversary giving counterexamples from a shat-
tered set can enforce VCD(C) XEQ’s, and therefore

VCD(C) < #XEQ(C) < #EQ(C). (37)

Maass and Turdn [16] show that for any concept class C,
1
?VCD(C) < #MQEEQ(C). (38)

They give an example of a family of concept classes that shows that the constant
1/7 cannot be improved to be larger than 0.41, and also show that

;VCD@ < #MQUXEQ(C). (39)

14 More General Dimensions

Balcazar et al. present generalizations of the dimensions XTD(C'), XD(C) and
SXD(C) to arbitrary kinds of example-based queries [4], and beyond [5]. Tt is
outside the scope of this sketch to treat their results fully, but we briefly describe
the settings. For convenience we identify a concept ¢ with its characteristic func-
tion, and write ¢(z) =1 if z € c.

In [], for an example-based query with a target concept ¢, the possible
replies are identified with samples consistent with ¢, that is, with subfunctions
of c¢. Thus, for a membership query about z, the reply is the singleton sample
{(z,c(x))}. For an equivalence query with the concept ¢/, the possible replies
are either a counterxample z, which is represented by the sample {(z, ¢(z))}, or
“yes,” which is represented by the sample equal to ¢, completely specifying it. For
a subset query with ¢/, the possible replies are either a counterexample, which
is a singleton sample {(x,0)} such that ¢/(x) = 1 and ¢(z) = 0, or “yes,” which
is represented by the sample consisting of all pairs (z, 1) such that ¢/(z) = 1.

A protocol is a ternary relation on queries, target concepts, and possible an-
swers. Two conditions are imposed on the relation. One is completeness, which
requires that every possible query and target concept, there is at least one possi-
ble answer. The other is fair play, which requires that if an answer a is possible
for a query ¢ and a target concept ¢, then for any other target concept ¢’ such
that the answer a is a subfunction of ¢/, a is a possible answer for ¢ with target
concept /. The fair play condition ensures that an answer cannot “rule out”
a candidate hypothesis unless it is inconsistent with it. For this setting, a very



30 D. Angluin

general dimension, the abstract identification dimension, is defined and shown
to generalize the extended teaching dimension, the exclusion dimension, and the
sample exclusion dimension.

In [5], Balcdzar et al. define an even more general setting, covering many
kinds of non-example-based queries. In this setting, the answer to a query is
identified with a property that is true of the target concept, or equivalently, a
subset of concepts that includes the target concept, or a Boolean function on
all possible concepts that is true for the target concept. For example, if the
target concept is ¢, a restricted equivalence query with the concept ¢’ returns
only the answers “yes” (if ¢/ = ¢) and “no” (if ¢’ # ¢), with no counterexample.
The reply “yes” can be formalized as the singleton {c}, specifying ¢ completely,
while the reply “no” can be formalized as the set 2X — {¢’}, which gives only the
information that ¢ # ¢'. In this setting, the authors define the general dimension
for a target class and learning protocol and prove that the optimal number of
queries for the class and the protocol is bounded between this dimension and
this dimension times [In|C|].

15 Remarks

The approach of bounding the number of queries required to learn concepts from
a class C using combinatorial properties of C' has made great progress. This
sketch has omitted very many things, including the fascinating applications of
these results to specific concept classes. One major open problem is whether
DNF formulas can be learned using a polynomial number of MQ’s and EQ’s.
The reader is strongly encouraged to consult the original works.

Acknowledgements. Preparation of this paper was supported in part by the
National Science Foundation, grant CCR-9610295.

References

1. D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.

2. D. Angluin. Negative results for equivalence queries. Machine Learning, 5:121-150,
1990.

3. E. M. Arkin, H. Meijer, J. S. B. Mitchell, D. Rappaport, and S. S. Skiena. Decision
trees for geometric models. In Proceedings of the Ninth Annual Symposium on
Computational Geometry, pages 369-378, San Diego, CA, 1993. ACM Press.

4. J. L. Balcazar, J. Castro, and D. Guijarro. Abstract combinatorial characteriza-
tions of exact learning via queries. In Proceedings of the 13th Annual Conference
on Computational Learning Theory, pages 248-254. Morgan Kaufmann, San Fran-
cisco, 2000.

5. J. L. Balcdzar, J. Castro, and D. Guijarro. A general dimension for exact learning.
In Proceedings of the 14th Annual Conference on Computational Learning Theory,
2001.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19

Queries Revisited 31

J. L. Balcdzar, J. Castro, D. Guijarro, and H.-U. Simon. The consistency dimen-
sion and distribution-dependent learning from queries. In Proceedings of the 10th
International Conference on Algorithic Learning Theory - ALT 99, volume 1720
of LNAI pages 77-92. Springer-Verlag, 1999.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and
the Vapnik-Chervonenkis dimension. J. ACM, 36:929-965, 1989.

A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on
the number of examples needed for learning. Inform. Comput., 82:247-261, 1989.
R. Gavalda. On the power of equivalence queries. In EUROCOLT: European
Conference on Computational Learning Theory, pages 193—203. Clarendon Press,
1993.

S. A. Goldman and M. J. Kearns. On the complexity of teaching. J. of Comput.
Syst. Sci., 50:20-31, 1995.

Y. Hayashi, S. Matsumoto, A. Shinohara, and M. Takeda. Uniform characteri-
zations of polynomial-query learnabilities. In Proceedings of the 1st International
Conference on Discovery Science (DS-98), volume 1532 of LNAI, pages 84-92,
1998.

T. Hegediis. Generalized teaching dimensions and the query complexity of learning.
In Proceedings of the 8th Annual Conference on Computational Learning Theory,
pages 108-117. ACM Press, New York, NY, 1995.

L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. How many
queries are needed to learn? In Proceedings of the Twenty-Seventh Annual ACM
Symposium on the Theory of Computing, pages 190-199, 1995.

R. Hyafil and R. L. Rivest. Constructing optimal binary trees is NP-complete.
Information Processing Letters, 5:15-17, 1976.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285-318, 1988.

W. Maass and G. Turan. Lower bound methods and separation results for on-line
learning models. Machine Learning, 9:107-145, 1992.

M. Moshkov. Test theory and problems of machine learning. In Proceedings of the
International School-Seminar on Discrete Mathematics and Mathematical Cyber-
netics, pages 6-10. MAX Press, Moscow, 2001.

A. Shinohara and S. Miyano. Teachability in computational learning. New Gen-
eration Computing, 8(4):337-348, 1991.

L. G. Valiant. A theory of the learnable. Commun. ACM, 27:1134-1142, 1984.



	Introduction
	Preliminaries
	Membership Queries Only
	Equivalence Queries Only
	Membership and Equivalence Queries
	XEQ's, Majority Vote, and Halving
	An Optimal XEQ-Algorithm
	Dimensions of Exact Learning
	The Teaching Dimension
	The Exclusion Dimension
	The Extended Teaching Dimension

	The Testing Perspective
	XTD and MQ-Algorithms
	XD and MQ&EQ-Algorithms
	A Dimension for EQ-Algorithms?
	The Fingerprint Dimension
	The Sample Exclusion Dimension
	Inequivalence of $ensuremath {unhbox voidb @x hbox {FD}(C)}$ and $ensuremath {unhbox voidb @x hbox {SXD}(C)}$

	What about the VC-Dimension?
	More General Dimensions
	Remarks

