Looking Inside the Box: Context-Sensitive Translation for CLIR

Ferhan Ture, Jimmy Lin, and Douglas W. Oard
University of Maryland
{fture|jimmylin|oard}@umd.edu

State-of-the-art approaches in statistical MT
- model translation with synchronous context-free grammars (SCFGs)
- allow reordering of non-consecutive phrases
- can handle 1-to-many and many-to-1 translations

Decoding
- searching for top N translations of a given sentence
- takes < 1 sec with modern decoders

\[t^* = \text{argmax}_{t \in \text{Hyp}} \text{score}(t) \]

\[\text{score}(t) = \lambda \text{score}(t_{\text{base}}) + (1-\lambda) \text{score}(t_{\text{interp}}) \]

Example derivation
\[s = \{ \text{"maternal leave in Europe"} \} \]
- \[R_1 : \{ X \} ||| \{ X \} ||| \{ X \} \]
- \[\sum_{t \in \text{Hyp}} \text{score}(t) \]
- \[R_2 : \{ X \} ||| \{ X \} \]
- \[\text{score}(t) = \lambda \text{score}(t_{\text{base}}) + (1-\lambda) \text{score}(t_{\text{interp}}) \]

\[t = \{ \text{"congé de maternité en Europe"} \} \]

Our Approach

- CLIR literature \(\rightarrow \) MT systems have been treated as a **"black box"** \(\rightarrow \) (Maged et al, 2011) show improvements when this is changed.
- Our approach \(\rightarrow \) Looking inside the box:

Efficiency
Processes in all CLIR models:
- word-aligning bitext to train the translation model
- initialization
- query generation
- document retrieval

For MT-based CLIR approaches:
- extra processes: grammar extraction + decoding
- compact representation \(\rightarrow \) retrieval takes less time

10-best MT approach saves over 40% time!

Effectiveness
Experimental results on TREC-S6 (54 English topics and 164,778 Chinese documents):

- Differences are not statistically significant.
- Results are consistent with theoretical expectations:
 10-best > 1-best
 10-best > bitext
 interp > 10-best

Grid search to find best-performing interpolation:
\[\lambda^{*} = 0.85 \]
\[\text{MAP} = 0.3404 \]

\[\text{Pr}_{\text{interp}} > \text{Pr}_{\text{base}} \] in 36 out of 54 topics.