Lecture 4
Mobot Kinematics and Control

CSE390/MEAM420-520

Some notes taken from Siegwart&Nourbakhsh

Review: Algebra and Geometry
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Vectors
e Ordered set of numbers: (1,2,3,4)

e Example: (x,y,z) coordinates of pt in space.
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Distance = norm

Vector Addition
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Scalar Product

av =a(x,x,)=(ax,,ax,)

av

e

Inner (dot) Product

v/ o
%W = (X, %,).(V1, ¥2) = X)) + X,.),

The inner product is a SCALAR!

Angle:



Unit circle, angle

v-w = cos(a)

Inner (dot) Product

w vw = (x,X,).(1,1,) = 50, + X,.,
Angle: VW= (x,x,).(y,¥,) =[|v] ][ w] cosa

vww=0<v.lw

< =>V,W are independent of each other



Matrices

a, dap L a,, <
um:
a, a, L a,, C 4
= +B
Anxm a31 a32 L a3m nxm nxm nxm
M MO M _
c; =a;+ bl.j
Ay Apy L Ay
' A and B must have the same
dimensions
Matrices
Product:

Counp=ApmBu,  AandB musthave
compatible dimensions

m

Cij - Z aikb]‘j Anannxn g annAnxn
=1

Is matrix multiplication associative?



Matrices
Product:

Counp=ApmB.,  AandB musthave
compatible dimensions

m

c,= Y a,b,
! Z ey A B =B A

nxn nxn nxn nxn

Identity Matrix:

Matrices
Transpose:
mel’l = ATnxm (A + B)T = AT + BT
Cy=dj (AB)" =B" 4"
f A =4 A is symmetric

Dot product: V- = @’wT



A
sy

Scaling Equation

p
| P=(x,y)
P P'=(sx,sy)
5 P'=s-P
X S.X SX s 07 Tx
P— || = :
MEIN
p-s.p S

Rotation




Rotation Equations

Counter-clockwise rotation by an angle 6

xv
P’ 3’
0

y ¥ P P'=R.P

cosf —sinH”x]

sinf cosO ||y

Degrees of Freedom

x' cos —-sinf1[x
) y

R is 2x2 —> 4 elements

sinf@ cosf

BUT! There is only 1 degree of freedom: 6

The 4 elements must satisfy the following constraints:
R-R"=R"'R=1
det(R) =1



Stretching Equation

: P=(x,y)
"
E P: P - (Sx'x9 Syy)
S X s 07rx
e P'% X — X .
& Ky 0 s
n » AL
X Sx.X S
P'=S-P
Matrices
Determinant: A must be square
det % = G e = a4y, —dydp,
a, a4y ay 4y
a, 4 4 @ a a.. a 4. a
detla, a, ay|-a, »n Ay —a, 21 Ap ray, 21 Ao
32 Ui a3 ds; as A4y
a3 Ay g



Volume = determinant

()

= |vywy — vown|

|

det|v; w]

ol|||w||sin(a)

v

Cross product

=1 X W w

X is normal to
both v and w

»
>

x = det|(i, 7, k); v; w]




Inverse:

Matrices

A must be square

Anan_lnxn = A_lnannx = ]

o Inertial reference frame (I) v

@ Robot references frame

(R)

@ Robot pose

n

1 a,, —4ap
ay Ay — 0y, |~ 04y ay

X




robot motion: &; = [4,7,0]";

@ The relation between the references frame is through the
standard orthogonal rotation transformation:

cos(#) sin(#) 0 . X
R(f)= | —sin(#) cos(f) 0 !
0 0 1
0 =0,—06 v
‘HR
$r=R(0)¢ TN
> 'rl’
@ R. Siegwart, I. Nourbakhsh
o Forward kinematics
. x - -
£ - y - 7‘:(‘;91 a(fjn Bla .Bm:.Bla . :.Bm)
)
o Inverse kinematics
[ ¥1 “n h Bm B Bm } = f(x,y,@)
o Why not y
' v(t)
X 1
y | =f(e1,. ., 0n 81, .. Bm) 0
)

the relation is not straight forward. See later.




Kinematics Models of wheel
(rolling and sliding contraints)

l

Mobil robot(mobot) maneuverability
(possible space and velocity it can reach)

\4

Mobot Kinematic Control
(Sequence of movements toward target)

Movement on a horizontal plane
Point contact of the wheels Xy
Wheels not deformable Q7
Pure rolling ﬂ ————— 2

v = 0 at contact point v d
No slipping, skidding or sliding |

No friction for rotation around contact point
Steering axes orthogonal to the surface
Wheels connected by rigid frame (chassis)

© R. Siegwart, I. Nourbakhsh



Speed of wheel:v = rp

robot motion: {;:1 = [z, 7, Q]TE I

/7
&B .
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obot chassis |
— = — —sanN{ 0, r
|

> |
P | > Xp
robot motion: &; = [, 4, Q]T;| \Speed of wheel:v = ?”Lp‘

7/
\B .
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Robot chassis
J. DODOL CRASSH. N 0, r
1 A Vv +
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robot motion: &; = [i,7,6]7;) Speed of wheel:v = rp

P \ T AR
Rotation: v .
Vyotate = —1COS (ﬁ)@

Robot chassis Sl
- — — — — — (p, r
l A § :

robot motion: &; = [i#,7,60]T;  Speed of wheel:v = r¢

v =rp = [sin(a + flE, —cos(a + 3)5, —lcos()6]

l

[sin(a + 3], —cos(a + 3), —lcos(B)] - &1 —rp =0




robot motion: &; = [i#,7,60]T;  Speed of wheel:v = r¢

v =rp = [sin(a + flE, —cos(a + 3)5, —lcos()6]

l

[sin(a + B, —cos(a + ), —lcos(B)] [RBw) — & =0

Yp
A l
, Transformation to the
/&B . Reference frame
/- -
Robot chassis < l
______ -
o |
| -z

Motion caused by wheel motion, rolling constraints:

0

[sin(a+ ], —cos(a + 3), —lcos(3)] - RO — = 0

Motion in the orthogonal plane must be 0, sliding constraints:

[cos(a + B) sin(a+ B) |- sin(B)|R(Ar)ér = 0




Kinematics Models of wheel
(rolling and sliding contraints)

!

Mobil robot(mobot) maneuverability
(possible space and velocity it can reach)

\4

Mobot Kinematic Control
(Sequence of movements toward target)

Suppose we have a total of N=N,+ N standard wheels
We can develop the equations for the constraints in matrix forms :
Rolling

- oy — | s
LBOROK + 1,0 =0 w(0=| 7/

J
J1(By) = [ I %g ) ] = diag(r;---ry)

(N/+N5j]3



Suppose we have a total of N=N,+ N standard wheels
We can develop the equations for the constraints in matrix forms :

Rolling

I(BORO®%; +7:9=0 ol =| ©

Lateral movement

. C ,
Ci(BHRO)S, =0 C,(B,)= Lf

Cls(/@s)

N +N B

Examples: differential drive + omidirectional drive



Mobile Robot Maneuverability:|Degree of Mobility

To avoid any lateral slip the motion vector R(0)&, has to satisfy the
following constraints:

CiyR©O)S, =0 Ciy
. C,(B,) = C ( 3 )
Ciy(BOR©O)S; =0 1s\s
Mathematically:
R(6)&; must belong 1o the null space of the projection matrix Ci(By)

Null space of C,(B,) is the space N such that for any vector nin N

Ci(B,)xn=0

Mobile Robot Maneuverability: More on Degree of Mobility

Robot chassis kinematics is a function of the set of independent
constraints rank[C,(B,)]
the greater the rank of , C,(B) the more constrained is the mobility

"»" ] / ICR

Ackermann seering ’ Bicycle

The rank(Cy) defines the number of independent
constraints

ICR is the Null space of the C1



Geometrically this can be shown by the Instantaneous Center of Rotation

(ICR)
== |
:}!’:' ICR i'a' ICR
Ackermann seering ' Bicycle

ICR is the Null space of the Ci1; Null(C1) + Rank(C1) =3

The degree of mobility is defined by the dimensionality of
the null space of C; which for a mobile platform is equal

to:
Om = dim(null(Cy)) = 3 — rank(Cy)



The degree of mobility is defined by the dimensionality of
the null space of C; which for a mobile platform is equal

to:
Om = dim(null(Cy)) = 3 — rank(Cy)

Robot Om
Examples: Differential drive 2
Bicycle 1

@ Steerability is the number of independent DOF that can

be controlled
ds = rank(Cys)

@ Similarly the degree of maneuverability is defined as

M = Om + 0



* Degree of Maneuverability
8y =6, +0,

» Two robots with same 0, are not necessary equal
» Example: Differential drive and Tricycle (next slide)

» For any robot with 8); =2 the ICR is always constrained
to lie on a line

» For any robot with 8,; =3 the ICR is not constrained an
can be set to any point on the plane

* The Synchro Drive example: Oy =0, +0,=1+1=2

Mobile Robot Maneuverability: Wheel Configurations

¢ Differential Drive Tricycle

b)




Omnidirectional
5M =3
O =3
o =0

Differential
6M =2
6]“ =2

=0

s

Omni-Steer

6M =3
6m =
o, =1

(

Tricycle
6M =2
Oy =1
o, =1

Palm Pilot Robot, CMU

Two-Steer
Oy =3
S, =1
o =2



Kinematics Models of wheel
(rolling and sliding contraints)

!

Mobil robot(mobot) maneuverability
(possible space and velocity it can reach)

\4

Mobot Kinematic Control
(Sequence of movements toward target)

Motion Control: Open Loop Control

trajectory (path) divided in motion segments of
clearly defined shape:

straight lines and segments of a circle. "
control problem:

pre-compute a smooth trajectory

based on line and circle segments
Disadvantages:

1t is not at all an easy task to pre -compuite
a feasible trajectory

limitations and constraints of the robots
velocities and accelerations

does not adapt or correct the trajectory if dynamical Xy
changes of the environment occur.

The resulting trajectories are usually not smooth

© R. Siegwart, I. Nourbakhsh



Motion Control: Feedback Control, Problem Statement

Find a control matrix K, if
exists

Motion Control:

Kinematic Position Control

22 k

23

K _ |:k11 k12 le]

with &, ~k(,e)
such that the control of v(7)

and w(t)
R
V(f)] =K-e=K- |y
o(t) 0
drives the error e to zero.
lime(r) =0

t— o

@ R. Siegwart, I. Nourbakhsh

The kinematic of a differential drive mobile
robot described in the initial frame {x, v, 6}
is given by,

I

X cosf@ 0
il=lsme 0 v]
. ) w
0 0 |

where and are the linear velocities in the
direction of the x; and y; of the initial frame.
Let o denote the angle between the x, axis
of the robots reference frame and the vector
connecting the center of the axle of the
wheels with the final position.

@ R. Siegwart, |. Nourbakhsh



Coordinates transformation into polar coordinates
with its origin at goal position:

p = JAY +AY

o = —0+atan2(Ay, Ax)

B=-0-«




Coordinates transformation into polar coordinates
with its origin at goal position:

p = JAY +AY

o = —0+atan2(Ay, Ax)

B=-0-0

System description, in the new polar coordinates

. —cosa. 0 . cosa O
P SN o ! P SIN O
: ) smo. )
al — sing._, al 1 | 1
B 8] 0} [3 P 0}
_sino. 0 sino.
| P il | P
T T ;
Jor I, = (—;. ;:I Jor I, =(-n,-m/2]u(n/2, w]

©R. Siegwart, |. Nourbakhsh

Kinematic Position Control: Remarks

The coordinates transformation 1s ; as 1 such
a point the determinant of the Jacobian matrix of the transformation
1s not defined, 1.¢. 1t 1s unbounded

For o€ /, the forward direction of the robot points toward
the goal, for o e /7, itis the backward direction.

By properly defining the forward direction of the robot at its 1nitial
configuration, it is always possible to have ¢ e /1t =0. However
this does not mean that o remains in /; for all time 7.

@R. Siegwart, I. Nourbakhsh



Kinematic Position Control; The Control Law
It can be shown, that with

v = k,p ® = k,0 +kgP

\

: —cosct 0
P .
X Simol v
o = -1
B P |:(r):|
sin o
S 5
/ P
P —k,pcoso.
a| = |k,sino—k 0 — kgP
B —k,sina

Kinematic Position Control: The Control Law
It can be shown, that with
v = k,p o = k,0+ kP

the feedback controlled system

P —k,pcosa
0| = [kysino—Kk, o — kg
B —k,sino

will drive the robot to (p, a,ﬁ) = (0,0,0)
The control signal v has always constant sign,
the direction of movement is kept positive or negative during movement

parking maneuver is performed always in the most natural way and
without ever inverting its motion.



Kinematic Position Control: Resulting Path

Robot trajectory

2(
40 |

Kinematic Position Control: Stability Issue

It can further be shown, that the closed loop control system 1s locally
exponentially stable 1f

kp>0 : kﬁ<0 : kﬂ—kp>0




Why there is a “S” curve shape to the path?

Kinematics Models of wheel
(rolling and sliding contraints)

!

Mobil robot(mobot) maneuverability
(possible space and velocity it can reach)

I Optional Slides, will return to
\ 4 this in path planning lectures.

Mobot Kinematic Control
(Sequence of movements toward target)



Degree of Freedom DOF

= possible space (x,y,theta) a robot can reach

What is the DOF of the Ackerman vehicle?

Is Degree of Freedom of robot same as its maneuverability?

Ackermann seering ’ Bicycle

Differentiable Degree of Freedom DDOF

= possible velocity (i, 7, §) a robot can reach

DDOF = degree of Mobility, Om

Bicycle: 6,, =6 +6 =1+1 DDOF =1; DOF=3

Omnibot: 5M = 5m +5s =3+0= 3:

DDOF =3; DOF = 3.



Mobile Robot Workspace: Degrees of Freedom, Holonomy

DOF degrees of freedom:
Robots ability to achieve various poses
DDOYF differentiable degrees of freedom :
Robots ability to achieve various path

DDOF <6,, < DOF

m =
Holonomic Robots

A holonomic kinematic constraint can be expressed a an explicit finction
of position variables only

A non-holonomic constraint requires a different relationship, such as the
derivative of a position variable

Fixed and steered standard wheels impose non-holonomic constraints

Robot is Holonomic <=> DDOF = DOF

Path / Trajectory Considerations: Omnidirectional Drive

x, 5 0
A
| v()
/] X(1)
7 B¢y
» 1/ [s]
= X 1 2 3

©R. Siegwart, |. Nourbakhsh



Path / Trajectory Considerations: Two -Steer

Yy
) Bs1, By
' "
| 60°L Byt
' wk—+7 1 >4 =g,
| x, v, 0
| 'y
O—+—|— — QP+f— — - x(t)
= o v 0(1)
o X 12 3 4 5 t/fs]

© K. Siegwart, [. Nourbakhsh

Mobile Robot Kinematics: Non-Holonomic Systems

yr XL Y1

O
S1=82, S1RZSoR, S1.55 /

but: X1 z X2 ) y,]. £y2 S1L |S1 S1R

S2r X2, 12

/ 52 9 G

/ SzR —7

Non-holonomic systems . x;
differential equations are not integrable to the final position.

the measure of the traveled distance of each wheel is not sufficient to
calculate the final position of the robot. One has also to know how this
movement was executed as a finction of time.

© R. Siegwart, I. Nourbakhsh



Non-Holonomic Systems: Mathematical Interpretation

A mobile robot 1s running along a trajectory s(7).
At every instant of the movement its velocity v(7) 1s:

ds  Ox av .
V(1) =— =—c0s0 +—sin 0
ar ot ot

ds = dxcosB + dysin 0

Yr

v(t)
5(1)

-T[

Function v(7) is said to be integrable (holonomic) if there exists a trajectory function s(?)

that can be described by the values x, y, and 6 only.
s =s(x,7,0)

This is the case 1f =

a’s  a's  d%s d%s d*s ds
oxdy oydx ~ 0x00 00dx ~ 9y08 969y

Condition for integrable function

With s = s(x,1,6) we get for ds ds = d_ 0s

ox ay

il dx+—dy+£d9
6 a0

® R. Siegwart, I. Nourbakhsh



