
CS685 - Lecture Notes, Jana Košecká

1 Modelling Dynamical Systems

The behavior of the system is best characterized in terms of state and its evolution over time.
Before we proceed, we informally set up some terminology which will enable us to characterize
behaviors of dynamical systems and design controllers for variety of systems. The basic entities
which describe the behavior of the dynamical system are :

• X set of states of the system and the environment.

• Y set of outputs. Information available to the controller, since the information about the
entire state is often not available to the controller.

• U set of control actions.

The domains from which these entities can come from depends on what type of behavior we are
trying to capture. For example on case of mobile robot the state X = (x, y, θ) ∈ <×<×S1, while if
the subject of our control is washing machine, the part of the state can be the water in the washing
machine which can be X = {hot, warm, cold}.

Example Consider your new digital camera. Defined this system in terms of its state, input and
output, i.e. specify the domains of each.

1.1 System State Equations

From the control theoretic standpoint we distinguish two entities: the subject of our control, which
is in control literature often also referred to as plant and the controller.

The behavior of the system is described by time trajectories x(t),y(t),u(t). We will focus
for the moment on the trajectories, obeying laws, which can be described in terms of differential
equations :

ẋ = f(x(t),u(t)) (1)
y = g(x(t)) (2)

or in terms of difference equations:

x(t + 1) = f(x(t),u(t)) (3)
y(t + 1) = g(x(t)) (4)

For a special class of linear systems, the system state equations have the following form:

ẋ = Ax(t) + Bu(t)
y = Cx(t) (5)



where A,B, C are matrices of appropriate dimensions. For linear systems, there is an ample of
techniques which give us guidelines how to characterize system’s performance, stability, controlla-
bility, observability and how to design control laws which are optimal with respect to some chosen
objective.

The set of states, inputs and output is finite the trajectories of the system can be for example
described by finite state machine, with inputs and outputs. The goal of control is then do design a
control policy, which specifies what control actions should be done in every possible situation. In
the most general setting the control policy can be viewed as a mapping

π : Hx → U or π : Hy → U

from state or output histories Hx,Hy to control actions.

Point Mass Here we demonstrate a simple instance of such system state equations for a point
mass system and how to go from between dynamic equations and system state equations. Consider
a point mass in ideal environment with no friction under influence of external forces Fext. The
dynamic equations of this system are fully characterized by Newton’s second law:

mẍ = Fext

The behavior of the system is at each instance characterized by it’s position and its velocity. Hence
the state of the system x = [x, ẋ]T . The system state equation, which captures the evolution of the
system’s state over time can then be described as differential equation

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0

1/m

]
u(t)

1.2 Control strategies

Lets have a look at some examples and different components of the control law. In the following
examples we will assume that the output of the system y is directly the state x. Consider mass-
spring-damper mechanism, first in the absence of any external forces

mẍ + ksx + kdẋ = 0

In the homework we had a chance to observe how the behavior of the state x = [x, ẋ]T depends on
the choice of constants ks, kd and initial conditions. Hence the open loop dynamics of the system
is

ẋ(t) =
[

0 1
−ks

m −kd
m

]
x(t)

and the control input in this case is zero. Suppose now that we will apply some external force of
the following form Fext = −kpx − kvẋ which is proportional to the current position and current
velocity of the mass. This would yield following dynamics equations

mẍ + ksx + kdẋ = −kpx− kvẋ (6)
mẍ + (ks + kp)x + (kd + kv)ẋ = 0 (7)

Note that the second question describes the system of the same type, but by adding the external
force terms, we effectively changed the coefficients of the system and hence change the system’s
behavior.



Example For mass-spring-damper system above, suggest the formula for Fext such that the
dynamic equations of the closed-loop system will have the following have the following dynamics,
will behave as a simple point mass

ẍ = F

We did this example in class (Fext will be some function on F ).

Example Consider again a simple point mass system (with no damping and no friction).

ẍ = Fext

We would like the point mass follow particular trajectory which was computed ahead of time
ẍd, ẋd, xd. Suppose we first apply external force

Fext = ẍd

If we simply use this control law the dynamics of the system would be

ẍ = ẍd

In case we would like to compensate for the possible initial errors in x, ẋ let’s consider the following
control law

Fext = ẍd − kv ė− kpe

with e = θ − θd. This would yield the following system dynamics

ẍ = ẍd − kv ė− kpe (8)
ë + kv ė + kpe = 0 (9)

This derivation can vary depending on how is the error defined. The above equations now described
the error dynamics. We can now investigate the behavior of the error as a function of time and
choose the constants kp, kv appropriately to yield the desired performance. In the context of robotics
this control law is also referred to as computed torque law. The ẍd part of the control law is also
referred to as feed-forward term and it would be sufficient if our model is perfect.

Proportional Derivative Control Even simplest control law which we can apply is to

Fext = −kv ė− kpe

Compared to previous case this control law has no feed-forward term. In practice, when the
objective is to track very complex trajectories it is quite hard to achieve without the feed-forward
term. Furthermore proportional derivative control law leaves some steady state error. In order to
compensate for steady state errors additional term integral term can be added to the system.

Fext = −(kv ė + kpe + ki

∫
edt)

• What is difference between closed-loop an open-loop system ?

• What is the role of feed-back in the control system ?



• What is the role of feed-forward term in the control system ?

Note that the names of the terms actually correlate with the way the arrows are drawn in the
system.

• The proportional control law at each instance of time responds to the current error in position.
How fast should it respond is specified by constant kp which is called proportional gain. If
the gain is too high the system can overshoot and eventually lead to oscillations. Damping
can be used to prevent the oscillations.

• The derivative control is used to correct momentum of the system depending how far away
it is from the goal. It is proportional to the derivative of position (or error).

• The integral control provides another improvement to the control law since it integrates the
steady state errors over time to compensate for errors.


