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direction. Thus, the input to the servomechanism computed
from the imagery is the position of the focus of expansion-
or a small uncertainty area containing the FOE. As mentioned
before, such an area can be found using simple search tech-
niques. A possible area for the FOE can be determined by
exploiting the particular structure of the areas that contain
both positive and negative values, as well as vectors of value
zero, in the copoint pattern. To simplify matters, let us con-
centrate on the parallel copoint vectors only; that is, vectors
of constant direction (n~, ny). In most situations, the depth
of the scene in view is not completely unconstrained but lies
within a range, and thus, W/Z is constrained. If, in eq.
(3), we substitute Tmin for the minimum value and Tmax
for the maximum value of W/Z, and we set un to zero, we
obtain two equations of hyperbolas. These equations de-
fine the boundaries of the area in which motion vectors in
direction (nx, ny) of length zero can be found. We refer
to these areas as motion bands (see Fig. 10). The motion
bands consist of two areas meeting at the point S... Through
Su. and the FOE passes the line gp, which also separates
the translational motion components (Fig. 9b). The slope
of the line is known; it is perpendicular to the direction of
the motion vector (nx, ny). The exact position of the line
is defined by the exact position where the band is thinnest.
We can approximate these bands by localizing the vectors of
value zero or, similarly, patches, where both positive and
negative vectors occur. It may not be possible to locate
the exact line, only a bounded area that contains the line.
The intersection of at least two such bounded areas corre-

sponding to motion vectors in different directions gives an
area in which the FOE lies. This is demonstrated in Figure
11 using a synthetic normal flow field. The localization of
the FOE using these constraints could be implemented in a
very simple way with a Hough transform-like scheme; we
partition the image into a large number of cells. For ev-

ery flow direction (nx, ny) considered, we check whether a
cell contains vectors of value zero (or equally both positive
and negative values). If not, the cell votes for a line passing
through the cell perpendicular to (nx, ny); that is, we increase
a counter in all cells containing that line. After voting in all
cells for all directions, the FOE is found in the cells with
highest counters.

If instead of using only vectors of values greater than, less
than, or equal to zero, we also consider vectors greater or
smaller than some threshold Vn, we obtain similar structures
and patterns, and we can use much more data and additional
constraints for the estimation of the motion (Fermüller and
Aloimonos 1994).

But a situation in which the robot moves with a general
3D motion rarely arises in specific systems. In the sequel,
we consider a situation in which the motion of the robot is
not totally unconstrained, and we present a solution and an
actual implementation of the problem of Task 1 using the
global representations introduced before.

The retinal motion field perceived by the robot’s camera is
due to translation and rotation. The direction of translational
motion is defined by the angle between the direction in which
the robot is moving and the direction in which the camera is
pointing. The rotation originates from body motion and is
mainly due to the robot’s turning around the y-axis. There
could also be some rotation around the x-axis because the
surface on which the robot is moving might be uneven, but
there will be no or only very small rotation around the z-axis
(cyclotorsion).

Recall that the goal of the visual task is to change the
robot’s motion such that the direction of the forward motion
and the direction of the heading have the same projection
on the xz-plane of the camera coordinate system. Stated in
terms of motion parameters, this means that we want the ~-
coordinate of the FOE to be zero, but we do not care about
the y-coordinate.

Let us now investigate the patterns of positive and negative
flow vectors that correspond to such motion. We first consider
the copoint patterns with parallel motion vectors. If the FOE
is on the y-axis (i.e., zo = 0), (8) describing the translational
vectors becomes

or

which constitutes a line perpendicular to the gradient (nx, ny)
with intercept yo. In particular for the horizontal gradient
direction (nix = 1, ny = 0), we obtain the simplified equation

During the process of steering while the FOE is not aligned
with the y-axis, the flow field due to translation is separated
into positive and negative vectors through

and the horizontal flow vectors are separated by

Tracking is achieved by an independent servo loop imple-
menting (Pahlavan 1993). The rotation around the y-axis
is controlled by the robot’s steering mechanism. There-

fore, the robot is knowledgeable of this rotation and the
tracking rotation, and can compensate for the resulting
flow component perceived on the image by subtracting it

from the visual motion field. Of course, we cannot as-

sume the exact amount of rotation around the y-axis, but
we can assume that we know a good approximation to
it. This additional knowledge makes one of the patterns,

 at UNIVERSITY OF MARYLAND on August 27, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


11 

Fig. 11. Localization of FOE: (a) Motion band due to normal motion vectors of length zero parallel to the ~-axis and
corresponding curves g(x, y) and h(~, y), defining the boundaries of the positive and negative areas. By localizing where this
motion band is thinnest, a bounded area for the line separating the translational normal motion components is found (marked
by diagonal lines). (b) Motion band due to normal motion vectors of length zero parallel to the y-axis with overlaid curves
g(x, y) and h(~, y), and localization of bounded area for the line separating the translational normal motion components
(marked by diagonal lines). (c) The intersection of these areas gives a bounded area for the FOE.

namely, the copoint pattern with gradient (1, 0), partic-
ularly suitable for fast estimation of the parameters to be
controlled.

Let us consider the rotational components of the copoint
pattern with gradient (1, 0). Within the visual field of view,
the rotation around the x-axis gives rise to flow vectors that
are mostly parallel to the y-axis and thus are perpendicular
to the chosen gradients. As a result, the components along
the gradient direction (1, 0) are close to zero. The remaining
(not derotated) rotation around the y-axis is nearly parallel to
the gradients and thus causes a small, nearly constant com-
ponent to be added to every flow vector. In summary, the

contribution of the rotation to the pattern can be described as
follows: The line in the translational pattern will be shifted

by a small amount in the direction defined by the sign of the
(not derotated) rotation around the y-axis.

For the purpose of the servoing task, it will be sufficient
to approximate the copoint pattern with gradient (1, 0) by its
translational flow field components. Using this approxima-
tion gives us the advantage of deriving the x-component of
the FOE with very little effort; we just fit a line perpendicular
to the gradient direction separating positive from negative
vectors. This approximation will not affect the successful
accomplishment of the task. As the robot approaches its
goal, the steering motion it has to apply becomes smaller and
smaller, and thus, the additional rotational flow field com-

ponent also decreases, which in turn allows the FOE to be
estimated more accurately.

If it is certain that the rotation around the x-axis is also

very small, then any other copoint pattern with some gradi-
ent (nx, ny) could be used in addition to estimate the FOE’s
coordinates using the approximation of considering the pat-
tern to be translational.

Instead of using copoint vectors, we could equally well
employ a class of coaxis vectors, namely, those that corre-
spond to axes in the XY-plane, the (A, B, 0) coaxis patterns.
For these patterns, the hyperbola separating the positive from

the negative translational vectors becomes

Since within the field of view, f is much larger than the
quadratic terms in the image coordinates (~2, y2, ~y), (11)
can be approximated by h as

or

which describes a line with slope B and intercept Axo +
yo.

If zo = 0, the intercept is yo. Again, one of these patterns,
which allows us to directly derive ~o, is of particular interest.
This is the pattern corresponding to the axis (1, 0, 0). We call
this pattern the a-pattern and the corresponding vectors the
a-vectors, since they do not contain any rotation around the
x-axis (denoted in the equations by a):

which simplifies to

The a-vectors do not contain any rotation around the ~-

axis, and the components due to rotation around the y-axis are
nearly constant. As in the previous case, we can approximate
the a-pattern by its translational component, which is of a
particular simple form. And again, if we know that rotation
around the ~-axis is small, to obtain more data we can employ
many (A, B, 0) coaxis patterns in the estimation of the FOE.
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2.4. Servo System

To set up the control loop equation, we must relate the robot’s
motion to the image motion. Referring to the coordinate
systems defined in Figure 1, we denote the velocity of the
robot’s forward translation by S and the velocity of its rota-
tion around the y-axis by ,Q. Bx and Oy are the pan and tilt,
respectively, of the orientation of the camera with respect to
the coordinate frame of the robot. Using the subscripts R and
C to denote the robot and the camera, respectively, we can
express the motion of the robot in the camera’s coordinate

system as follows. First, let P be the position vector that
relates the origins of the two coordinate frames. The rotation
matrix eRR that relates the orientations of the frames is of
the following form:

Using T to denote translation and w to denote rotation, we
can express the motions of the robot and the camera in their

respective coordinate frames as follows:

Thus, the coordinates of the FOE (~o, yo) that we computed
for the camera motion are related to pan and tilt as follows:

The position of ~o is used as the input to the servo system to
control the amount of steering the robot has to perform. If the
servo system is operated with a proportional controller, the
rotational speed ~3 of the robot will be given by {3 = Kzo.

Writing {3 as &horbar;~ and substituting (12) for ~o, we obtainCM

d = 01, f . Approximating tano by 0y and cos0> by 1,dt cos 0. v

we obtain a linear control equation /3 = d = K9y.

3. Task 2: Perimeter Following
3.1. Estimating Functions of Depth

For many visual tasks requiring some depth or shape infor-
mation, instead of computing exact depth measurements, it
may be sufficient to compute less informative descriptions of
shape and depth, such as functions of depth and shape where
the functions are such that they can be computed easily from
well-defined image information. This idea is demonstrated
here by means of the task of perimeter or wall following.

Perimeter following in our application is described as fol-
lows : A robot (car) is moving on a road which is bounded
on one side by a wall-like perimeter. On the basis of visual
information, the robot has to control its steering to keep its
distance from the perimeter at a constant value and maintain
its forward direction as nearly parallel to the perimeter as pos-
sible. The perimeter is defined as a planar textured structure
in the scene (connected or not) perpendicular to the plane of
the road.

Usually, perimeter following is addressed either through
general motion and depth reconstruction or by computing the
slopes of lines parallel to the road (boundary lines on high-
ways), which means that the boundary first has to be detected,
and thus, the segmentation problem has to be solved.
The strategy applied here to the perimeter following task

is as follows. While the robot is moving forward, it has its
camera directed at some point on the perimeter. As it con-
tinues moving, it maintains the relative orientation of the
camera with regard to its forward translation. It compares
distance information derived from flow fields obtained dur-

ing its motion with distance information computed from a
flow field obtained when it was moving parallel to the road.
This distance information will reveal what the robot’s steer-

ing direction is with respect to the perimeter.
The distance information we use is the scaled directional

derivative of inverse depth along (imaginary) lines on the
perimeter. From the observed flow field, normal flow mea-
surements along (imaginary) lines through the image cen-
ter are selected and compared to normal flow measurements
along (imaginary) lines of equal slope in the reference flow
field (Fig. 12). The details of the computations are outlined
below.

3.2. Direct Visual Depth Cue

As the robot is moving along its path, the motion parameters
perceived in the images change. For comparison reasons, we
assume that the angle 9y and the angle Bx between the for-
ward direction and the camera direction (determining xo and
yo) remain constant. The robot’s rotational velocity (around
the ~-axis and y-axis) can change in any way. The technique,
however, is independent of these parameters. Next, we in-
vestigate the motion fields perceived during motion and how
depth is encoded in the flow values.
The motion perceived in the images is due to a translation

(U, V, W ) and a rotation (a, {3). Thus, from (3), if we divide
un by n~ (if nx 7~ 0), we obtain a function fn(x, n) = Q
of the image coordinates x = (x, y) and the normal direction
n = (n~, ny):
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Fig. 12. By comparing measurements of directional flow-
wherever available-along lines of equal slope passing
through the center, we derive ordinal depth information ade-
quate to accomplish the perimeter following task.

Let us choose n = (nx, ny) in the direction of the (0, 0)
copoint vectors, that is, perpendicular to lines through the
image center. For these directions, we obtain

Along each of these lines, ~ is constant, and thus, (-U -
V~) and (cx f n - ~3 f ) are also constant, and (14) describes
fn(x, n) as a function that is linear in the inverse depth. For
any two points Pt and P2 with coordinates Xt and x2 along
such a line, the difference ( fn(xl, n) - fn(x2, n)) is indepen-
dent of the rotation. We thus compute the directional deriva-
tive D(fn(x, n))&dquo;1 of fn(x, n) at points on lines with slope
k n- in the direction of a unit vector n1 = (-ny, n.)
parallel to the image lines. Dropping, in the notation of the
directional derivative, the dependence of fn on x and n, we
obtain

We next derive D( z 1 ).j-. Referring to Figure 13, the cam-
era is mounted on the robot and the robot is moving forward
with velocity S. The camera is directed toward a point F
on the perimeter. We fix a coordinate system XYZ to the
robot such that the Z-axis is aligned with the optical axis of
the camera and the XY-plane is perpendicular to it. Let m

Fig. 13. Geometric configuration during perimeter following.

be the line in the image parallel to n1 along which we com-
pute depth, and let M be the corresponding line in 3D on the
perimeter. Let Zo be the depth at the fixation point, and let
V be the angle between the Z-axis and M. The depth Zp of
any point P on M is

where Lp is the value of the parallel projection of FP on the
XY-plane. LP projects perspectively onto lp (along n1) in
the image plane, where lip = Lpf ; thus, dropping subscript
P, for any depth value Z, we obtain

For points with coordinates lnl and gradient direction n, we
obtain

and (15) for any point along the line m becomes
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Fig. 14. Three reference coordinate systems.

In the remainder of this section, we demonstrate the de-

pendence of D( fn)&dquo;1 on the robot’s steering direction. In

particular, we show that ~D(f~,)&dquo;1 ~ along certain directions
n1 decreases as the robot steers toward the perimeter or that
for any two flow fields corresponding to motion configu-
rations CI and C2 depending on parameters (~ 1, Zo, ) and
(V2, ZÛ2)’ ID(.fn)n1 ~i > ((D(.fn)n1 12 if [Vi < [V2[. Here,
using the absolute value allows us to provide a general nota-
tion that describes fixations of the robot to its left and to its

right.

3.3. Comparing Ordinal Depth Information

We describe vectors with respect to three orthogonal coor-
dinate systems XYZ, X’Y’Z’ and X&dquo;Y&dquo;Z&dquo; that are being
rotated into each other (see Fig. 14). The orientations of these
coordinate systems are such that the Z-axis is parallel to the
direction of translation when the robot is moving parallel to
the perimeter, the Z’-axis is parallel to the robot’s viewing
direction in configuration Cl , and the Z&dquo;-axis is parallel to
the robot’s viewing direction in configuration C2. The ori-
entations of the frame X’Y’Z’ and the frame X&dquo;Y&dquo;Z&dquo; are
related to the orientation of the frame XYZ through rotation
matrices R’ and R&dquo;, as described below, which are dependent
on parameters 0’ x 0’ y and 0’ x 0&dquo; y (rotation around the x-axis

is the same), where 10&dquo; y 1>1 10’ y 1:

Any vector V in XYZ corresponds to V’ in X’Y’Z’ and
V&dquo; in X&dquo;Y&dquo;Z&dquo;, where

and

with R1T being the transpose of R’ and R&dquo;T being the trans-
pose of R&dquo;.

Let (in Ci ) m’ be the line in the image with slope k == &horbar; &dquo;~
along which measurements are taken, which is described by
the following line equation:

To obtain a vector in 3D on the corresponding line M’ on the
perimeter, we intersect the plane Y’ = kX’ with the plane
of the perimeter, which is at a distance d from the robot, and
thus is described through equation X = d in the coordinate
system X YZ or r~ ~ X’ +r21 Y’ +r31 Z’ = d in the coordinate
system X’Y’Z’. Thus, a unit vector a along M’ in X’Y’Z’
is computed as

and a unit vector b along the Z’-axis in X’Y’Z’ is

The cosine of the angle Vi between a and b is thus

and
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Let d be the distance from the camera to the perimeter. d is
measured along the X-axis in XYZ. Any vector V in XYZ
that is parallel to the Z’-axis is described as ~(r31, r12, r33)T ,
with A being a scalar. Thus, for a vector V of length Zo, ,
d = Ar’,, and the value of Zo, amounts to

and thus

Assuming that the time between measurements is small, and
thus the horizontal distance d in C2 is the same as in Cl, we
obtain for C2 (see Fig. 15)

Comparing (17) and (18), we are thus interested in values k
for which

or

[ cos ~y - k sin 0’ x sin 4>~ [ > cos ~~ - k sin 0’ x sin ~y ~.
This inequality is true for all (ksin4>~sin4>~ > 0), assuming
that I 4>~ < 45° and I 4>~ < 45°. (This assumption is
used only to allow for a general notation and is not needed
if different sign cases are listed separately.) On the basis
of this result, the input to the control system for deriving
the steering direction can be generated. At any point in time,
D( fn)&dquo;1 for directions n1 such that ( -llii. sin 4>~ sin 4>’y > 0)

ny x y

are computed from the visual flow field and compared to
prestored values D(fn).-L due to a forward motion parallel to
the perimeter, the computed sign of the change in I D(fn),,-L I
defines the sign of the change in the steering angle.

In the analysis above, the assumption was made that the
horizontal distance d does not change. When this assump-
tion does not hold, the same principle can still be applied to
a smaller number of values if enough image gradients are
available. If the distance d decreased between C1 and C2,
then ril + kr2i ~ may be smaller than rii + kr21 ~ for
values of ~ k smaller than some threshold T, but must be
larger for values of k ~ greater than T, and thus, if gradients
on a line with k ( > T are available, these measurements
can still be used for comparison.

Finally, we want to characterize the lines for which

(ksin4>~sin4>~ > 0). Comparing such a line to the image
of a line parallel to the road on the perimeter passing through
the image center, we find that the slopes of the two lines are
of the opposite sign. For example, if the camera’s optical axis
is pointing down and to the right (as in Fig. 13), then 4>~ is

negative and 4>~ is positive and the slope of the parallel line is
positive, whereas the slope of the line we use for comparison
has to be negative.

Fig. 15. Comparing the values from two configurations.

Fig. 16. Trajectory generated by the servo system.

4. Experiments
4.1. Task 1

The first experiments used simulations of the robot’s trajec-
tory. The robot is initially moving at an angle relative to the
z-axis. It is then required to steer itself so that it is heading
along the z-axis, where the feature p is located at a distance
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Fig. 17. 3D configuration as studied in Task 1.

of 5 m away. The robot is moving with a constant forward
speed of 1.5 m/s.
The mobile platform is a conventionally steered vehicle;

the instantaneous radius of curvature r of its trajectory is

related to the steering angle of its wheel 9R as follows:

where L is the body length of the vehicle. The field of view
of the camera used in the simulation is 50°. We created the

synthetic normal flow field from a scene with random depth,
and we added zero-mean Gaussian noise with a standard de-
viation of 1 pixel to the normal flow measurements. For the
estimation of ~o, we employed the a-vectors, where (as de-
scribed in Section 2.3) we approximated the a-hyperbola by
a straight line, which was estimated using a linear classifier.

Figure 16 shows the trajectories for two different values of
the proportionality constant K generated by the servo system.
The two curves correspond to values of K = 0.1 and K =
0.3. As can be seen, the system has a poor rise time and
insufficient damping-typical of a proportional controller.

In our experiments with real images, the mobile platform
on which the camera was mounted was a conventionally
steered vehicle. The camera had a focal length of 1136 pixels,
and the image dimensions were at 720 x 576; thus, the field of
view was approximately 30°. Considering that the steering

Fig. 18. Task 1: Some scenes along the trajectory.

movements must be small so as to reduce interframe disparity
and allowing for the computation of image flow, especially
since the focal length of the camera was very large, we chose
to operate the servo system with a proportionality constant of
K = 0.1. Figure 18 shows some images taken by a camera
mounted on a mobile platform as the latter is making steer-
ing movements. The feature p corresponds to the star in the
center of the image, mounted on a tripod and initially located
at a distance of 5 m from the camera. Tracking was accom-
plished by implementing the algorithm of Pahlavan (1993),
with occasional fast saccadic movements compensating for
drifting; during these saccadic movements, body control was
disabled. Figure 17 displays the configuration of this setting
including the robot’s trajectory. Figures 18a, 18c, and 18e
show images taken by the system at three time instants (as
marked in Fig. 17) with the normal flow fields superimposed.
Figures 18b, 18d, and 18f show the positive and negative a-
vectors as computed from the normal flow fields in black and
white and the line approximating the a-hyperbola which has
been fitted, at frame rate, to the data. The normal flow as
shown in the figures was derived only if the spatial gradient
was above some threshold, and the sign of the a-vector at
a point was taken to be the sign of the normal flow there if
the spatial gradient was within 5° of the orientation of the
a-vector.
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Fig. 19. Task 2: The robot moves along an alley.

4.2. Task 2

In the experiments in Task 2, a mobile platform with a cam-
era mounted on it moved along an alleylike perimeter. The
camera had a focal length of about 1000 pixels, and the im-
age dimensions were 512 x 512. The servomechanism was

implemented as a simple proportional control relating the
robot’s rotational speed around the y-axis to the directional
derivative of fn (as defined in Section 3.2). The scene con-
tained a highly textured perimeter. We thus derived image
measurements along a number of lines and used the mean of
the computed estimates as input to the servo system. Fig-
ure 19a shows one of the reference images, which was taken
when the robot was moving parallel to the perimeter. The
lines along which image measurements were taken are over-
laid on the image in white. Figure 19b shows the normal
flow field computed for this same image. The success of

the technique was tested by studying whether and how the
system corrected its path when we moved it either closer
to or farther away from the perimeter. In the experiment
shown, the system always recovered to a movement paral-
lel to the perimeter. Figure 19c displays an image when the
robot steered toward the perimeter, and Figure 19d shows the
image when it moved away from the perimeter again.

5. Conclusion

A new way of making use of visual information for au-
tonomous behavior has been presented. Visual represen-

tations that are manifested through geometrical constraints
defined on the flow in various directions and on the normal
flow were used as input to the servomechanism. Specifi-
cally, the constraints described are global patterns in the sign
of the flow in different directions whose position and forms
are related to 3D motion and patterns of normal flow along
lines in the image that encode ordinal 3D distance informa-
tion. 3D motion and structure representations derived from
these constraints were applied to the solution of navigational
problems involving the control of a system’s 3D motion with
respect to its environment. Some of the constraints described
are of a general nature, however, and thus might be used in
various modified forms for the solution of other navigational
problems.
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