
Tracking



Definition of Tracking

• Tracking: 
– Generate some conclusions about the motion of 

the scene, objects, or the camera, given a 
sequence of images.

– Knowing this motion, predict where things are 
going to project in the next image, so that we 
don’t have so much work looking for them.



Why Track?
• Detection and 

recognition are expensive
• If we get an idea of 

where an object is in 
the image because we 
have an idea of the 
motion from previous 
images, we need less 
work detecting or 
recognizing the object.
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Tracking a Silhouette by 
Measuring Edge Positions

• Observations are positions of edges along normals to tracked contour



Why not Wait and Process the 
Set of Images as a Batch?

• In a car system, detecting and tracking 
pedestrians in real time is important.

• Recursive methods require less computing



Implicit Assumptions of 
Tracking

• Physical cameras do not move instantly 
from a viewpoint to another

• Object do not teleport between places 
around the scene

• Relative position between camera and scene 
changes incrementally

• We can model motion 



Related Fields

• Signal Detection and Estimation
• Radar technology



The Problem: Signal Estimation

• We have a system with parameters
– Scene structure, camera motion, automatic zoom
– System state is unknown (“hidden”)

• We have measurements
– Components of stable “feature points” in the 

images.
– “Observations”, projections of the state.

• We want to recover the state components from 
the observations



Necessary Models

System Dynamics
Model

Measurement
Model (projection)

(u, v)

Previous State
Next State

State Measurement

• We use models to describe a priori knowledge about 
• the world (including external parameters of camera)
• the imaging projection process



State variable
a

A Simple Example of Estimation
by Least Square Method

• Goal: Find estimate of state     
such that the least square 
error between measurements 
and the state is minimum
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Recursive Least Square Estimation
• We don’t want to wait until 

all data have been collected 
to get an estimate      of the 
depth

• We don’t want to reprocess 
old data when we make a 
new measurement

• Recursive method: data at 
step i are obtained from 
data at step i-1
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Recursive Least Square Estimation 2

• Recursive method: data at 
step i are obtained from 
data at step i-1
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Recursive Least Square Estimation 3
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Gain specifies how much 
do we pay attention
to the difference
between what we expected
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Least Square Estimation of the 
State Vector of a Static System

1. Batch method
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Least Square Estimation 
of the State Vector 

of a Static System 2
2. Recursive method
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Dynamic System
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Recursive Least Square 
Estimation for a Dynamic System 

(Kalman Filter)
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• Predict next state as              using 
previous step and dynamic model

• Predict regions                               
of next measurements using 
measurement model and 
uncertainties

• Make new measurements xi in  
predicted regions

• Compute best estimate of next state

Tracking Steps
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Recursive Least Square Estimation for 
a Dynamic System (Kalman Filter)
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Tracking as a Probabilistic 
Inference Problem

• Find distributions for state vector ai and for 
measurement vector xi. Then we are able to 
compute the expectations      and

• Simplifying assumptions (same as for HMM) 
ix̂

)|(),,,|( -1ii-1i21i aaaaaa PP =L

)|()|()|()|,,,( ikijiiiji axaxaxaxx PPPP KK =
(Conditional independence of
measurements given a state)

(Only immediate past matters)

iâ



Tracking as Inference

• Prediction

• Correction

• Produces same results as least square approach if 
distributions are Gaussians: Kalman filter

• See Forsyth and Ponce, Ch. 19
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Kalman Filter for 1D Signals
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Applications: Structure from Motion 
• Measurement vector components: 

– Coordinates of corners, “salient 
points”

• State vector components: 
– Camera motion parameters 
– Scene structure

• Is there enough equations?
– N corners, 2N measurements
– N unknown state components from structure 

(distances from first center of projection to 
3D points)

– 6 unknown state components from motion 
(translation and rotation)

– More measurements than unknowns for every 
frame if N>6 (2N > N + 6) 

xi

• Batch methods
• Recursive methods

(Kalman filter)



Problems with Tracking

• Initial detection
– If it is too slow we will never catch up
– If it is fast, why not do detection at every frame?

• Even if raw detection can be done in real time, tracking 
saves processing cycles compared to raw detection. 
The CPU has other things to do.

• Detection is needed again if you lose tracking
• Most vision tracking prototypes use initial 

detection done by hand 
(see Forsyth and Ponce for discussion)
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