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Fig. 1: Vistrates transcend the traditional tool boundaries of analysis activities, analyst expertise, input and output devices, and
modes of collaboration to enable a truly ubiquitous visualization and analytics workflow. Each vistrate (center) is a shareable
dynamic media [40] where components encapsulating existing web technologies—such as D3 [20], Vega-Lite [64], Leaflet, and
Plot.ly—can be made to interoperate seamlessly. The document can be accessed from multiple settings, using heterogeneous de-
vices, and by multiple concurrent users in activities ranging from data wrangling and exploration, to development and presentation.

Abstract—Visualization tools are often specialized for specific tasks, which turns the user’s analytical workflow into a fragmented
process performed across many tools. In this paper, we present a component model design for data visualization to promote modular
designs of visualization tools that enhance their analytical scope. Rather than fragmenting tasks across tools, the component model
supports unification, where components—the building blocks of this model—can be assembled to support a wide range of tasks.
Furthermore, the model also provides additional key properties, such as support for collaboration, sharing across multiple devices,
and adaptive usage depending on expertise, from creating visualizations using dropdown menus, through instantiating components,
to actually modifying components or creating entirely new ones from scratch using JavaScript or Python source code. To realize our
model, we introduce VISTRATES, a literate computing platform for developing, assembling, and sharing visualization components.
From a visualization perspective, Vistrates features cross-cutting components for visual representations, interaction, collaboration,
and device responsiveness maintained in a component repository. From a development perspective, Vistrates offers a collaborative
programming environment where novices and experts alike can compose component pipelines for specific analytical activities. Finally,
we present several Vistrates use cases that span the full range of the classic “anytime” and “anywhere” motto for ubiquitous analysis:
from mobile and on-the-go usage, through office settings, to collaborative smart environments covering a variety of tasks and devices.

Index Terms—Components, literate computing, development, exploration, dissemination, collaboration, heterogeneous devices.

1 INTRODUCTION

Visualization, for all its success within academia, industry, and prac-
tice, is still very much a fragmented area with no common, unified
method that applies in all (or even most) situations [10, 13]. For any
given visualization project, the choice of tool, technique, and approach
depends heavily on the dataset, the goals of the analysis, and the ex-
pertise of the analyst and audience. Many additional factors come into
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play: At what stage is the visualization going to be used: during initial
analysis or presentation of results? Is the analyst alone, or is there a
team consisting of multiple people, each with their own roles and ex-
pertise? Are there special devices or equipment, such as smartphones,
tablets, display walls, or tabletops, that should be integrated?

All of these questions give rise to specific choices among the avail-
able tools and techniques in the visualization field today. For example,
in terms of expertise, a novice may go for a template-based visualiza-
tion tool such as Excel, a financial analyst may choose a shelf con-
figuration tool such as Tableau [71], and a data scientist may opt for
Jupyter Notebooks [55]. Early on in the sensemaking process, a devel-
oper may choose Observable [53] to interactively code their analyses
and see immediate results, whereas a more mature project may call for
a custom-designed web visualization built in D3 [20] or Vega [65], and
a final report for communication may require a narrative visualization
tool such as Graph Comics [6], Data Clips [3], or even Microsoft Pow-
erPoint. Graph data may influence a designer to pick NodeXL [31] or



Gephi [12], whereas tabular data may require Spotfire [1], and event
sequences may mean using EventFlow [50] or EventPad [21]. Obvi-
ously, there are currently few synergies between these five determining
criteria that we identify—expertise, analysis stage, data, single/multi-
user, and device—and committing to one typically means disregarding
the others. Furthermore, this fragmentation takes its toll on as partic-
ipants need to make a “collective compromise,” negotiate a common
software denominator [51], and expend additional effort to share in-
formation, import and export artifacts, and work across visualization
systems. The core issue is essentially one of interoperability: how to
combine functionality from multiple available platforms?

In this paper, we apply the vision of shareable dynamic media [40]
as well as recent advances in conceptualizing and implementing soft-
ware as information substrates [16] to the field of data analysis. Infor-
mation substrates blur the traditional distinction between application
and document, they embody content, computation and interaction, and
can evolve and be repurposed over time. We propose a component
model for assembling visualization and analytics pipelines into such
information substrates to increase their analytical scope. In this model,
a component is a unit module with internal state, inputs, and outputs.
Components provide visual analytics functionality and are reusable,
replaceable, and extendable. This allows them to become building
blocks for data analysis systems. Following the philosophy of infor-
mation substrates, these systems can be integrated in media such as
slideshows, interactive whiteboard canvases, reports, or interactive ap-
plications. Designing a comprehensive component framework is out-
side the scope of this paper, but we propose a basic library of compo-
nents based on a few examples. While the component design space is
huge, our model provides a starting point for future advances.

To demonstrate this model, we introduce VISTRATES (visualiza-
tion substrates), a web-based collaborative platform for visualiza-
tions manifested as dynamic media (Figure 1). Vistrates provides a
document-based framework of cross-cutting components for data vi-
sualization and analysis that transcends (i) both single-user and col-
laborative work, (ii) the full spectrum of data analysis activities, (iii)
all levels of expertise, and (iv) a menagerie of devices. The platform
provides a data layer for managing data, a pipeline model for con-
trolling data flow, and a canvas for organizing visualization views. It
is well suited to the type of “anywhere” and “anytime” sensemaking
characterized by Elmqvist and Irani as ubiquitous analytics [9, 28, 76].

Components in Vistrates are maintained in a component reposi-
tory as prototypes, from where they can be instantiated and composed
based on the target analytical activity, or modified, or even refactored
into new components. To this end, Vistrates follows a literate comput-
ing inspired approach,1 by providing an integrated browser-based pro-
gramming environment using the Codestrates framework [58]. While
analysts and developers with programming expertise can instantiate,
customize, or build components from scratch, Vistrates also supports
a point-and-click interface for novices (or for use on mobile devices
with limited screen size), where a pipeline can be assembled using a
graphical user interface. Meanwhile, all vistrate documents are col-
laborative, and can be viewed on any device with a web browser.

In this paper, we contribute the Vistrates platform, which applies
the concept of information substrates specifically to the activities in
visualization and data analytics, while supporting multiple expertise
levels, users, and devices. We also illustrate Vistrates and its capa-
bilities using an in-depth motivating scenario on travel journalism in
the next section and the accompanying video. Furthermore, we show-
case features of the platform in additional examples on (1) wrapping
existing toolkits such a D3, Vega, and Plot.ly as components, (2) of-
floading heavy computations from mobile devices, and (3) using the
Vistrate canvas to present the results of an analysis to an audience.

2 MOTIVATING SCENARIO

Vergil is an experienced freelance travel writer. He has been commis-
sioned by a new internet-based travel guide company called “TraLu-
ver” that is trying to “disrupt” the travel guide industry by providing

1Akin to interactive programming in Jupyter [55] and Observable [53].

customized travel plans for their clients. Their business idea is to use
data science to find an optimal match. TraLuver is rolling out their ser-
vice to a select few North American cities, and Vergil has been tasked
with curating and preparing the dataset for Toronto, Canada.

Prior to starting his field work, Vergil uses his laptop to familiarize
himself with the TraLuver platform, which is built on top of a Vistrates
installation. Vergil is not a data scientist, so he connects with Daria,
an analyst in the data science team at TraLuver’s headquarters. Using
videoconferencing and a single vistrate document, Daria takes Vergil
on a tour of the basic datasets available including Yelp! businesses and
reviews and open data provided by the City of Toronto. She constructs
a simple visualization interface, where a map of businesses in Toronto
can be filtered to see their ratings in a bar chart, by putting together
available components in the vistrate’s graphical interface without any
programming. Since Vergil knows he will be restricted to mobile de-
vices when he is out in the field, he installs a mobile view following
Daria’s example, which shows one of the available views at a time.

After learning the system, Vergil heads out to the 553-meter CN
Tower, a major landmark of the city. He installs a GPS component
to center the map in the vistrate to his location. This helps him visit
surrounding restaurants and access their reviews on the TraLuver plat-
form. He realizes that the single map view would be more useful if
it also incorporated relevant review keywords. He pulls out his tablet,
sketches this idea, and discusses it with Daria, who provides a tempo-
rary solution by adding a simple word cloud. Daria gets in touch with
Sam, a developer in TraLuver, who starts building the new component
in a copy of Vergil’s vistrate. After this, Sam calls Vergil and Daria
and adds the new Word Map component to their vistrate.

A month later, after hard work by Vergil and his TraLuver team,
Daria can finally present the finished Toronto project to the company’s
board. Basing her presentation on the same vistrate that she and Vergil
created weeks back, she has created a slideshow of multiple canvases
that show each feature, dataset, and visualization of the final product.

Fig. 2: Transcending individual silos of activities, collaboration, de-
vices, and expertise to support the vision for truly ubiquitous analytics.

3 VISION FOR UBIQUITOUS ANALYTICS

The motivating scenario showcases a unique series of activities across
multiple users with different expertise and using different devices. The
users—Vergil, Sam, and Daria—seamlessly transition between ana-
lytical tasks including exploration of multiple datasets, presentation
and sharing of ideas and insights, and development of new visualiza-
tions. They performed collaborative activities from distributed loca-
tions, with Vergil situated in the field as a mobile user. While doing so,
they were even able to involve the expert developer—Sam—to meet an
analytical need that arose during mobile use of the platform.

The common thread in the scenario is a notion that we coin tran-
scendence. Data analysis in the scenario goes beyond individual con-
texts and applications to encompass a wide variety of analytical activ-
ities (A), modes of collaboration (C), types of devices (D), and levels
of expertise (E). Transcendence across all four of these “ACDE axes”
captures the essence of ubiquitous analytics [28], where people use



multiple networked devices to analyze data anytime and anywhere.
Central to realizing this vision is the ability to transcend each particu-
lar silo and consider the analysis as a whole (Figure 2).

However, achieving the vision cannot simply be to build a new tool
that incorporates all four of the ACDE components [10]. Consider, for
example, if Tableau added robust functionality in support of all four.
In doing so, all we are left with is a yet another tool that while it has
a wider purview than the others, still is a disconnected island separate
from the rest of the data science ecosystem. We believe that instead
of focusing on applications, the solution is to focus on dynamic media
as the core building block of data analysis. Such “dynamic media”
consist of information substrates that are shareable in that they intrin-
sically support collaboration, distributable in that they can be accessed
using any device, and malleable in that they can be fully adapted by
the user [40]. They transcend the classical application boundaries by
allowing the user to mix and match tools and representations that typ-
ically are siloed in applications for particular domains.2

How would such a “dynamic media” approach to data visualization
and analytics look in practice? First and foremost, such an approach
would most likely be based on the web (C1), which at its core is the
closest we have to dynamic media [40]. Second, to capitalize on the
large and growing ecosystem of web-based visualization resources, the
approach must be open (C2) and extensible (C3) to allow for integrat-
ing existing technologies into the platform without duplicating effort.
Third, to enable recycling and magnifying prior efforts, components
of the platform should also be reusable (C4) and composable (C5) so
that new ideas can build on existing work. Finally, to truly transcend
all contexts of activity, collaboration, device, and expertise, the tool
should support multiple, adaptive, and simultaneous layers of access
(C6), enabling teams consisting of the gamut of novices through pro-
grammers to analyze data together anytime and anywhere.

4 BACKGROUND

Here we outline the background work in visualization platforms, col-
laborative visualization, and visualization across heterogeneous de-
vices to define their scope in terms of our design considerations.

4.1 Visualization Toolkits, Platforms, and Languages
Data visualizations can be created with many toolkits and platforms,
which mainly differ in terms of their target users. Visualization
tools for novice users, such as Excel, support basic charting and data
transformations. Shelf-based visualization tools such as Tableau [72]
support easier configuration of visualizations by drag-and-drop into
“shelves” of visual variables. For visualization design, iVoLVER [49]
uses visual programming to help non-programmers extract data from
multiple sources and transform it into animated visualizations. iVis-
Designer [59] supports creation of visualizations by utilizing template-
based mappings. More recently, Data Illustrator [46] and DataInk [79]
explore the concept of lazy data bindings for better expressiveness
in visualization design for non-programmers. Faceted visualization
browsers such as Keshif [80] generate predefined facets representing
data to support novice users focus on visual exploration.

For development, visualization toolkits such as Protovis [19] and
D3 [20] support web visualization with a data model that maps data
items to visual marks for SVG-based interactive graphics. D3 also
binds the data to the Document Object Model (DOM) of web browsers
and supports basic extract, transform, load (ETL) operations to cre-
ate data objects for custom visualizations. More recently, high-level
visualization specification grammars have been developed, such as
Vega [63], Vega-lite [64], and Atom [54]. These platforms are ori-
ented towards analysts with technical expertise in visualization devel-

2This is consistent with the principles of instrumental interaction [14, 15]
from HCI, where instruments transcend individual applications and instead take
a document-centric view of computing as documents manipulated using general
instruments. In instrumental interaction, you do not open Microsoft Word to
edit a document; instead you simply use the text editing instrument to modify
the document object, and you can use the same instrument to edit a webpage or
a tweet—activities that would normally require separate applications.

opment. They offer preliminary means for reusability by maintaining
online examples and promoting open source contributions [17].

4.2 Supporting Collaboration
Previous collaborative visualization platforms have covered all quad-
rants of the collaboration matrix [11, 36]. The asynchronous collab-
oration model is most common for visual analytics, exemplified by
the Sense.us [34] and ManyEyes [75] platforms that leverage crowd
intelligence through view sharing, annotation, discussion, and social
navigation [27]. Methods for maintaining group awareness [29]—
understanding of collaborators’ work—and coordination [47, 73] have
been considered through history mechanisms and notifications [32] as
well as data coverage representations and widgets [38, 62, 77].

Specialized techniques for supporting collaborative visualization
have also been explored. Collaborative brushing [30, 37] helps build
upon the group’s interactions through highlighting of the user selec-
tions. Branch-explore-merge [48] presents a co-located group analytic
technique for transition between coupled and decoupled work across
devices. For co-located collaboration, Lark [74] allows multiple users
to work together by directly manipulating the visualization pipelines.
Frameworks have also been created for developing distributed visual
analytic interfaces, such as Munin [9] and PolyChrome [7]. These
efforts support requirements for networking devices and connecting
multiple users in specific scenarios, but do not offer concrete means
for transcendence on the ACDE axes described in Section 3.

4.3 Heterogeneous Devices for Visual Analysis
Another significant effort in visualization has been to utilize heteroge-
neous devices [43]. SketchStory [44] uses touch input and sketching
as a means for storytelling. VisPorter [23] enables cross-device inter-
actions for visual exploration between large displays and smartphones.
GraSp [39] promotes flexible workflows involving physical navigation
and remote interaction between handheld devices and large displays.
VisTiles [41] presents the styles in coupling multiple small-screen de-
vices to explore data. Recently, a conceptual framework for combining
multiple devices—large displays and smartwatches—for visual analy-
sis has also been developed [35]. These advances exemplify the fact
that visual analysis has outgrown traditional desktop scenarios [60] to
support advanced applications involving heterogeneous devices.

4.4 Interactive Notebooks
Interactive notebooks have recently gained popularity in data science
and visual analytics, as they promote collaboration by sharing. They
adopt a literate computing-based approach to programming, where ex-
ecutable code is interweaved with text and images to create interac-
tive narratives. Jupyter Notebook [55] is a web-based interactive note-
book that connects to a kernel capable of executing code in languages
such as Python, R, Ruby, JavaScript and many more. Jupyter pro-
vides integrations with analytics and visualization frameworks such as
SciPy [52] for analytics and Altair [2] for declarative visualizations.
However, Jupyter does not support real-time collaboration out of the
box. Google’s Colaboratory [24] is a Jupyter implementation using
the Google Drive backend for real-time collaboration. However, col-
laboration is on the level of editing and not interaction.

Observable [53] is a JavaScript-based interactive notebook primar-
ily designed for creating interactive visualizations. It provides a re-
active programming model where re-execution of a code-block will
result in a re-execution of any code block that depends on it. While
notebooks written in Observable are easy to fork and share, they do
not yet support real-time collaboration neither in editing nor interact-
ing with the produced visualizations. Furthermore, they are not fo-
cused on analytical work across heterogeneous devices and activities
in the sensemaking beyond visualization development.

4.5 Webstrates and Codestrates
Vistrates is built on top of Webstrates and Codestrates. Webstrates [40]
is a web framework where webpages are made collaboratively editable
in real-time. Changes made to the DOM of a webpage (called a web-
strate) are persistent and synchronized to all clients of the webstrate.



Table 1: Classification of existing tools and platforms for supporting data analysis based on the ACDE axes from Figure 2. A checkmark (X)
signifies that the corresponding tool/system/framework has dedicated support for the dimension. Note that Codestrates is the only framework
here not developed for data analysis, but it is added here since Vistrates is built on top of it. (ETL implies Extract, Transform, Load.)

Systems/Frameworks Collaboration Cross-Expertise Responsive to Devices Activities

Sync Async Input Output Resources ETL Analysis Presentation Sharing
Jupyter [55] X X X
Observable X X X X
Colaboratory X X X X X
Tableau X X X X
D3 [20] X X
VisPorter [23] X X X X
ManyEyes [75] X X X
PolyChrome [7] X X X X X
Codestrates [58] X X X X X X
Vistrates X X X X X X X X X X

Codestrates [58] is an authoring environment built on top of Web-
strates. A codestrate is a webstrate that includes tools for editing its
own content, including writing and executing code, following a literate
computing approach similar to interactive notebooks. Individual code-
strates contain their implementation, which means they can be repro-
grammed from within. A codestrate is structured in sections consisting
of paragraphs of code, data, styles, and web content. Sections can be
turned into packages of functionality that can be shared between code-
strates [18]. Similar to Observable, Codestrates is JavaScript-based
and all execution happens in the run-time of the browser. This also
means that it integrates well with existing web libraries.

4.6 Summary of Related Work
Table 1 contrasts the related work against our Vistrates platform. Over-
all, Vistrates is inspired and influenced by many related works. It is
capable of leveraging frameworks such as D3, Vega, and Plot.ly [57],
while promoting reusability and extensibility in development. It uses
Codestrates and Webstrates as the underlying infrastructure specifi-
cally to (1) support interactive programming for development/exten-
sion of vistrate components, (2) synchronize documents across devices
and users, and (3) utilize package management to maintain reusable
components. By doing so, it extends the related work to ubiquitous vi-
sual analytic scenarios by defining a visualization component structure
and enabling many activities in the sensemaking spectrum [56].

5 DESIGNING VISTRATES

Vistrates is a design proposal for a component model for ubiquitous
analytics, but also a proof-of-concept implementation. It is a realiza-
tion of a set of design choices that together form the vision of a holistic
and sustainable data analysis and visualization environment.

The design of Vistrates is rooted in the principles from Webstrates
that software should be malleable, shareable, and distributable. With
Vistrates we assume that all software is expressed as (one or more)
webstrates, and hereby we inherit the quality of Webstrates that share-
ability is a fundamental premise; webstrates can be edited in real-time
by remote users, and easily shared by passing around a URL. As web-
strates are webpages, they can be accessed from any device with a
browser, which means that distributability is ensured.

To realize a visualization environment that can enable the motivat-
ing scenario and adhere to the ideals for ubiquitous analytics, we in-
troduce the following six design principles to support analytics.

5.1 Component-based Pipeline Architecture
The typical architecture to go from data to visualization is through a
visualization pipeline [22]. We propose a component-based architec-
ture, where components (Figure 3(a)) are connected together in recon-
figurable pipelines (Figure 3(b)). A component can be a data source
(e.g., serving a file, connecting to a database or API, or providing coor-
dinates from a phone’s GPS module), a computation on data (e.g., fil-
tering, aggregating, or analyzing), or a visualization (e.g., a bar chart,

scatterplot, heatmap, etc.). Visualizations do not have to be end points
in the pipeline, but can be interactive and hereby serve as data sources
as well. Components should be executable blocks of code with an op-
tional input, output, state, and view (Figure 3(d)). The pipeline should
be reactive, so when the output of a source component changes, it will
trigger updates of components that have the output of the source com-
ponent as input. Components should adhere to a minimalistic interface
for connecting them together, and what a component does and what
third-party software libraries it uses should be up to the developer.

5.2 Collaborative Pipeline
It should be possible to modify, run, and interact with components in
the pipeline collaboratively from different clients. However, for most
computations it is faster and simpler to execute them locally than to
distribute data across a potentially high-latency network. We there-
fore propose a design where each client executes its own instance of a
pipeline, but synchronizes state locally to components between them.
State includes the configuration of a component and any application
state that should be synchronized or persisted, e.g., interactions. An
example of the latter could be a rectangular selection on a map-based
visualization, or a URL to a data file that a data source component
should load into memory. It should be up to the developer to specify
what application state is synchronized, allowing, e.g., the developer of
the aforementioned map component to specify that selections should
be synchronized but not, e.g., zoom levels. Components should syn-
chronize execution between clients, i.e., rerunning a component on
one client should trigger reruns on all other clients as well.

In other words, the collaborative pipeline principle consists of (1) a
reactive data flow, (2) a shared execution flow, and (3) shared compo-
nent state between clients of the same vistrate.

5.3 Prototype-based Components
Components should be prototype-based, and components should be
instantiated by copying from a prototype and configuring the instance
into the pipeline. An instance of a component should contain its own
implementation and its state. This is a deliberate violation of the soft-
ware architectural principle to avoid code duplication. However, by
having components contain their own code they become directly re-
programmable, allowing a user to reprogram a single component and
potentially turn it into a prototype for new components.

5.4 Multiple Levels of Abstraction
Users should be able to work on multiple levels of abstraction: from
programming components, to configuring components in a pipeline,
to creating presentations of the visualizations and to interact with said
visualizations. At the lowest level of abstraction, all aspects of compo-
nents should be manipulable as code. At a higher level of abstraction,
components and their pipeline should be reconfigurable in an interac-
tive fashion, allowing for even non-programmers to reconfigure with-
out programming (Figure 3(b)). At an even higher level of abstraction,



a b c d
Fig. 3: (From left to right) Component instantiation: Existing component prototypes are available to be edited, thus, promoting reusability
and extensibility. Pipeline view: This view supports configuration through interaction—drop-down selection—to create visualizations and
interactively explore data without programming. In this example, a crime dataset from Baltimore, MD is visualized through a map and bar
charts for crime type and weapons by aggregation. A filter component is added to filter the bar charts based on the selection on the map.
Dashboard view: This vistrate view creates a grid layout for visual exploration of the data and annotation using rich text. Development view:
The lowest level of abstraction for a vistrate in which a programmer can edit the code and create new visual analytic components.

Webstrates DOM synchronization, signalling, versioning, asset 
management, and other low level APIs

Codestrates Literate computing environment, JavaScript execution 
model, and package management

Vistrates core Component model, data-flow based execution model

Pipeline Canvas Data Analytics Vis

Vistrates packages
View abstractions Composable components

Fig. 4: Vistrates architecture and relation to Codestrates/Webstrates.

visualizations should be treated as content that can be composed, e.g.,
in the form of a slide deck, a document, or a dashboard (Figure 3(c)).

Collaboration should be possible on each level of abstraction—from
writing the code to interacting with the visualizations—but it should
also be possible to collaborate on different levels of abstraction at the
same time. That is, while one user is interacting with a component,
it should in principle be possible for another user to reprogram it and
re-execute it without requiring the first user to restart their client.

5.5 Component Repository
It should be possible for a “programming literate” user to develop their
own components or redevelop other people’s components. However,
we also wish for a non-programming-savvy user to be able to construct
a visualization pipeline using components made by others. Compo-
nents should, therefore, be shareable through a common component
repository where users can publish their components, as well as re-
trieve components made by others.

5.6 Transcending Application Boundaries
It should be possible to integrate visualizations directly into other
types of media (e.g., presentations or reports). The components and
pipeline should therefore co-exist in an open-ended software ecology
with tools not only designed for analytics and visualization work.

6 IMPLEMENTATION

Vistrates3 is implemented using standard modern web technologies—
JavaScript, HTML, and CSS—as well as Codestrates [58] and Web-
strates [40]. It uses Codestrates’ literate computing and package man-
agement features [18]. Vistrates consists of a core framework package
and individual components implemented as packages (Figure 4).

3Vistrates: https://github.com/karthikbadam/Vistrates

In Codestrates, software is implemented in paragraphs grouped into
sections. There are four basic types of paragraphs: code paragraphs
containing JavaScript that can manually be executed by the user, tog-
gled to run on page load, or be imported into other code paragraphs;
style paragraphs containing CSS rules; body paragraphs that can con-
tain any web content expressible as a DOM subtree; and data para-
graphs containing JSON formatted data that can manually be edited
by users, or programmatically through JavaScript. Every paragraph
can be given a human readable name, a unique identifier, and a list
of class names. Every paragraph can be toggled to be shown in full-
screen either only local to a particular client, or for all clients. Vistrates
utilizes these abstractions—paragraphs and sections—and defines an
update logic and data flow between them, turning them into building
blocks for visualization components and analytical activities.

6.1 The Core Framework
At its core, the Vistrates framework governs the control flow through
component pipelines using the principles of inversion of control and
dependency injection of components. The backbone of Vistrates is
a singleton that registers all components in a vistrate, a component
class that implements an observer pattern for connecting the input and
output of components together, and an execution model for executing
user-provided component code.

On load, the Vistrates singleton registers all existing components
and registers observers between them. When components are updated
or new components are created, the singleton also updates observers
accordingly. All components have a controller that implements an ob-
server pattern, such that the appropriate components in the pipeline are
notified when the output of a component changes. A component con-
sist of three paragraphs grouped in a section: a code paragraph, a data
paragraph, and an optional view paragraph (web content paragraph).

The code paragraph of a component includes the definition of spe-
cific methods and properties following the format shown in Listing 1,
which include the fields data, src, props, and libs as well as
the methods init, destroy, and update. All fields and meth-
ods in a component are optional, but defines how a certain compo-
nent can function within the pipeline. Vistrates uses regular DOM IDs
as references, and the data property contains the ID of the compo-
nent’s data paragraph containing configuration and stored state. The
src property defines named sources that can be referred in its meth-
ods, and props refers to named properties of the sources that can be
remapped dynamically through its configuration data. If a component
does not have source references, it can only function as an entry node
in the pipeline, which is typical for components that load data into the
vistrate. libs is a list of references to JavaScript libraries that the
component depends on. The references can either be URLs to external
files, or file names of files uploaded as assets to the webstrate.

The first time the code paragraph is executed, a controller object is

https://github.com/karthikbadam/Vistrates


vc = {
data: "id-of-vis-data",
src: ["mySourceName_1", ..., "mySourceName_n"],
props: ["myProp_1", ..., "myProp_m"],
libs: ["myLibraryStoredAsAsset.js", "https://somecdn.com/anotherLibrary.js"],
init: function() { /* code goes here */ },
destroy: function() { /* code goes here */ },
update: function(source) { /* code goes here */ }

}

Listing 1: The code paragraph template.

{
config: {

src: {"mySourceName_1": "source_1_id", ..., "mySourceName_n": "source_n_id"},
props: {
"myProp_1": { "src": "mySourceName_1", "prop": "somePropOnSource"},
...,
"myProp_m": { "src": "mySourceName_n", "prop": "someOtherPropOnSource"}

},
view: "id-of-vis-view"

},
data: { /* The data field of the component for storing state */ }

}

Listing 2: The data paragraph template.

instantiated from the controller class, and the properties and methods
defined in the code paragraph are evaluated and copied to the controller
object. If the controller references anything in libs, these are down-
loaded and evaluated before the init method is run. After init the
update method is called, and it is subsequently called any time any
of the component’s sources update their output. Code paragraphs can
be rerun by pressing the play button, and whenever this happens, the
previous destroy method is executed (to, e.g., remove event listen-
ers) and the newly defined properties and methods are hotswapped on
the controller object. Updating the output property of a component
will trigger the update method on any observing components.

The data paragraph contains the configuration of the component
and the shared state, encoded as JSON. The data paragraph template
has the format shown in Listing 2. Besides observing the sources of a
component, a Vistrates controller also observes its data paragraph and
changes to the configuration will trigger changing dependencies to be
hotswapped and changes to the state will trigger the update func-
tion, and thereby immediately be reflected in the component views
on all clients. The chosen configuration of a component includes the
mapping between source/property reference names and the actual ids
in the vistrate, which allows users to change the mapping on the fly.
This format was chosen to be able to reference specific data items in
the output of a source component without forcing developers to fol-
low a rigid output convention. As an example, the source with ref-
erence name mySourceName 1 that is currently mapped to source
id source 1 id in Listing 2 can be changed to refer to another
source id simply by changing this mapping. Similarly, the property
myProp 1 is mapped to a specific data item in mySourceName 1.
The configuration also includes a reference to the view paragraph. The
shared state of a component can be encoded in the data field of the
data paragraph, which for instance can be the interaction state of a vi-
sualization. Webstrates will by default synchronize the DOM elements
outside transient HTML tags, hence the state encoding will also
be synchronized across clients. We have chosen an open format for
the declarative state specification, which means that it is left to the de-
veloper to define this encoding and how to behave accordingly in the
update method. The data paragraph can be edited by the user, or
updated programmatically, e.g., by the pipeline view described below.

The view paragraph is a body paragraph containing the visual out-
put of a component. The content can be any standard web content,
which is then wrapped in a transient element. Transient elements
are Webstrates-specific DOM elements that do not have their state syn-
chronized nor persisted. This means that the content of views are
not shared across clients. Clients share code and data paragraphs, but
clients are executing their own pipeline and thereby creating the con-
tent of their own views. This makes it possible to have views where
not all interactions are shared between clients. As an example, a map
component can share area selections by writing those selections to the
data paragraph, while at the same time allowing each user to define
their own viewbox and zoom level. In the controller code, the view

Fig. 5: A simple Vistrates component that calculates the average of a
single numeric data column. The component is easily reconfigurable
by changing the mappings in the data paragraph. Other components
can observe the output and act accordingly when it changes.

can be referred through the view property and its content can be re-
placed by setting the view.content property either to an HTML
string or a DOM node reference, or by referring to the root DOM el-
ement of the view using the view.element property. Finally, style
paragraphs can be added to define the appearance of a vistrate view.

Component updates in Vistrates are triggered in two ways: (1)
when the output of a source is updated, or (2) when the configuration
or the state in the data paragraph is updated. The cause of an update
is encoded in the first argument in the update method, which can
be a specific source from the src list, the configuration, or the state.
We chose this design as it allows the developer to update a visualiza-
tion differently based on the type of update; if the data input changes
the visualization needs to be redrawn, but if only the interaction state
changes the visualization can be updated in a different manner: say, by
highlighting specific visual marks. It is possible to create update cycles
between components, but it is up to the developer to ensure that these
cycles are finite. For instance, such update cycles are currently used to
develop coordinated multiple views with brushing-and-linking [61].

In essence, Vistrates adapts these paragraphs to visualization and
analytics. In contrast to Codestrates, paragraph definitions in Vis-
trates have an analytical value—the code captures the underlying logic
for processing and visualizing data, the data paragraph captures the
declarative specification to map properties to visual variables, and the
view contains the analytical outcome of the component. Furthermore,
Vistrates explicitly defines the update logic and control flow across
components made from these paragraphs. Figure 5 shows an example
component including controller (code), data, and view paragraphs that
calculates the average of a data column and views the result.

6.2 The Pipeline
Vistrates components are composable through the configuration spec-
ification in the data paragraph. The pipeline view is an abstraction
layer on top of the textual specification, which provides graphical ac-
cess to the configuration and composition of the components in a vis-
trate. In the pipeline view, components can be reconfigured and re-
composed at any time, and changes are immediately reflected in their
output, which also triggers updates of connected components. The
components’ views can be inspected within the pipeline view to im-
mediately observe the effects of a reconfiguration or recomposition.
The pipeline view is itself a component that observes the state of the
pipeline through an observer installed on the Vistrate singleton. This
means that the core of the pipeline view also follows the standard com-



ponent template with a code paragraph, a data paragraph, and a view
paragraph. The pipeline is easily reprogrammable or replaceable with
another abstraction layer. Our current pipeline view is a basic graph
implemented in D3 with unfoldable nodes that can either contain the
view or the configuration of a component. The pipeline can be ac-
cessed in a vistrate through a keyboard shortcut or by pressing the
pipeline button in the global toolbar.

6.3 The Component Repository
The component repository is implemented using Codestrates’ pack-
age management features [18]. Prototype components can be pushed
to or installed from a repository. New instances of an installed com-
ponent can be created through the “Create new Vistrate Component”
dialog accessible through the global toolbar (Figure 3(a)). Instanti-
ating a component will copy the selected prototype, insert the given
name and ids, and add it to the vistrate document.

Any component can be turned into a reusable prototype by making
it a package and pushing it to the repository. This adds metadata to the
component including a short description, a list of assets (e.g., images,
JavaScript libraries, or CSS files), dependencies to other packages, and
a changelog. This approach allows for reappropriation and customiza-
tion of existing components. Components in the repository are also
ready to use, meaning that an instance can immediately be configured
using the pipeline view and, therefore, allows users to create visualiza-
tion pipelines without programming. The current Vistrates component
repository contains components for standard visualizations such as the
bar chart, pie chart, line chart, geographical map, scatterplot, paral-
lel coordinates, etc., components to analyze, transform, combine, and
filter data, as well as utility components to load data, spawn headless
browsers, and offload heavy parts of the pipeline to strong peers.

6.4 Component Canvas
Space is an important cognitive resource; we think and work in phys-
ical space [4]. Our implementation of the “Vistrates Component Can-
vas” package, therefore, allows for such spatial arrangements of com-
ponent views on a 2D canvas. This can facilitate the sensemaking
process to externalize thoughts and for distributed cognition during
collaborative work, or it can become a dashboard for interacting with
the visualizations (Figure 3(c)). In addition, users can add rich text and
other media supported by HTML5 and annotate the canvas with a digi-
tal pen. Any content on the canvas—including component views—can
be moved, scaled, and rotated. When installed, the Vistrates interface
has a button in the global toolbar to add a component canvas para-
graph. A canvas paragraph is styled to look like a whiteboard.

6.5 Mobile List View
In contrast to the component canvas, the “Vistrates Component List
View” displays a single (selected) component view at a time. It pro-
vides a responsive component container that scales component views
according to a device’s available screen real-estate, e.g., to fully show
a component view on a smartphone (Figure 7). Any available compo-
nent view can be picked from an action menu.

7 VISTRATES IN ACTION

Here we explain the workflow when using Vistrates and describe how
it can be used to realize the motivating scenario (Section 2).

7.1 The Workflow
A fresh Vistrates workflow begins with a user creating a codestrate
with the Vistrates package installed. It can be copied by appending
?copy to the URL. Then different visualization and analytics compo-
nents can be installed by accessing the Vistrates component repository.

The first component a user will need is a component for loading
data. The user will, e.g., create an instance of the CSV loader compo-
nent from the component menu (Figure 3(a)). The user can now use
its user interface (in its view) to upload a CSV file that will be stored
as an asset on the webstrate layer. For larger datasets, a database com-
ponent can be used that uses Webstrates’ searchable CSV asset API to
store data [25]. Additional visualization and analytics components can

be instantiated and connected in the pipeline view (Figure 3(b)), or by
manually editing the configuration in their data paragraphs.

To create a new component from scratch, the user instantiates a
blank component and edits the code paragraph. A new component
can also be created by modifying an instance of an existing compo-
nent. To share a new component, it has to be turned into a package.
Finally, there is no clear boundary between development and deploy-
ment in Vistrates since all changes are immediately reflected in the
document. To get an application-like state, developers can simply use
the persisted fullscreen functionality. For instance, to create a dash-
board, the user can install the canvas package, create a canvas, expand
it to fullscreen, and add components to it through a context menu.

7.2 Realizing the Scenario
In the following, we describe how Vistrates can realize the motivating
scenario (Section 2). The accompanying video to this paper showcases
a realization of the motivating scenario built with Vistrates.

7.2.1 Starting Out
To begin with, Daria can use a CSV loader component as a proto-
type for creating components containing the datasets needed by Vergil,
and add these datasets to the component repository. Daria can create
a blank codestrate with the Vistrates package installed and share its
URL with Vergil. She and Vergil can use a WebRTC-based communi-
cation and remote pointers from Codestrates to communicate while
Daria explains how Vistrates works. Together they can add exist-
ing components from the Vistrates component repository, instantiate
them, and use the pipeline view to connect them together to, say, con-
nect a ratings bar chart to a map component, so that Vergil can fil-
ter and choose businesses based on their ratings. The pipeline view
helps transcend user expertise as pipelines can be configured by non-
programmers such as Vergil through a graphical user interface.

7.2.2 Extension
The developer, Sam, can create a new component for the custom visu-
alization (a Word Map) following the component structure (Listings 1
and 2) and add it to the component repository to enhance the analyti-
cal tools available to Vergil. Sam can integrate external libraries such
as Leaflet [42] for drawing maps. Other components are based on
graphing libraries such as Plot.ly [57] and Vega-Lite [64] (see details
in Section 8). To test his component in Vergil’s pipeline, Sam creates
a copy of the Vergil’s vistrate and integrates his component.

7.2.3 Mobile Use
Vergil can install a list view that allows for navigating the views of
components on a mobile device. He can also connect the GPS data
from his phone—provided by the JavaScript geolocation API—to a
map component to center the map on his current geographic location.
The Word Map that Sam has developed relies on computing tf-idf scor-
ing [68] and word embedding, which is too heavyweight for a mobile
device. Daria can add a component to the beginning and end of the
heavy part of the pipeline so that mobile devices will offload that part
of the computation to a desktop client or the server (see Section 8.1).

7.2.4 Transcending Activities
Vergil can use Codestrates’ rich-text editing capabilities to write re-
views and take notes. He can use the canvas component for sketching,
and also arrange selected component views in a 2D layout. This allows
Vergil to explore the data in a dashboard on his personal computer. Fi-
nally, the view paragraphs can be turned into slides allowing Daria to
create a presentation (see Section 8.3).

7.2.5 Shareability and Collaboration
Vistrates is developed for collaborative analytical workflows. Vergil,
Daria, and Sam utilize the video conferencing components to talk to
each other during the analytical process. Interaction is synchronized
across instances of a vistrate, while presenting remote pointers for col-
laborators, to support synchronous collaboration between the actors.
For instance, using this, Vergil is able highlight a region of Toronto to
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Fig. 6: A pipeline where heavy nodes are used to offload part of the
pipeline when the client of a vistrate is a weak peer, e.g., a phone. The
large datasets in the marked region—business and reviews data from
the scenario—are also not loaded.

Daria as a developing area that can be explored. Vistrates applies a
relaxed WYSIWIS model [69] to collaboration, which means a client
can have, e.g., a canvas in full screen while another shows the code or
pipeline view while their content and execution is kept synchronized.

8 ADDITIONAL EXAMPLES

In this section, we will elaborate on a few examples that showcase the
expressive power of the Vistrates platform.

8.1 Computation Offloading
When all clients of the same vistrate execute their own code, it is pos-
sible for weaker peers to offload heavy computations to stronger peers.
This can even be an entire subpart of the pipeline, as the example in
Figure 6 shows, where the highlighted part of the pipeline is offloaded
to stronger peers. Two components called Heavy Start and Heavy End
handle the offloading. The start node will signal help to other clients
if it is executed on a mobile device and pick one of the stronger clients
that offers help. The communication between clients is realized using
the Webstrates signaling API [67]. The chosen client will then execute
their pipeline using the input of the weak client. When the heavy end
node is reached, the strong client will provide the weak client with
the result, and the weak client can then continue its own execution.
This principle also works for multiple heavy start and end nodes. If
no strong peer is available, a service implemented on the Webstrates
server can be called through an HTTP request to spawn a headless
browser instance pointing to the given vistrate. Beyond this, a Heavy
Data component is also available to avoid attempting to load large
datasets on weaker clients. This way, a client can present interactive
visualizations without having to load the dataset.

This approach to computation offloading is implemented purely as
new components without any changes to the core of Vistrates. This
means that components for different approaches to distributed com-
puting could be created, e.g., to support the kind of peer-to-peer dis-
tributed computation provided by VisHive [26].

8.2 Cross-Device Visualization
A vistrate can be opened on any device with a web browser. This
provides an opportunity to create physical dashboards across multiple
devices and for mobile use of vistrates. In Figure 7, we showcase a
physical dashboard with two mobile phones and a tablet (inspired by
VisTiles [41]). This dashboard is created by installing a Mobile List
View on the vistrate from Figure 3 and selecting a single component
view on each device. The phones show visualizations of aggregated
crime data—crime type and weapon used—and the tablet show a ge-
ographical map of all the crimes in Baltimore. Filtering a view by
interaction will trigger updates to synchronize views on other devices
owing to the collaborative pipeline of Vistrates. By introducing heavy
nodes, the phones never execute any aggregation, filtering, or analysis,
but they can show the visualizations and support interaction.

Fig. 7: A physical dashboard using two phones and a tablet for the
crime analysis vistrate in Figure 3. The vistrate is opened on the web
browser with mobile list view component installed to fit to the screen.

vc = {
...
libs: ["plotly.min.js"],
init: function() {

this.plotDiv = document.createElement("div");
this.view.content = this.plotDiv;
this.update_view = () => {
let layout = {"xaxis.range": this.data};
this.Plotly.relayout(this.plotDiv, layout);

};
...
this.draw_plot = () => {
...
this.plotDiv.on(’plotly_relayout’, (eventdata) => {

this.data = [eventdata[’xaxis.range[0]’], eventdata[’xaxis.range[1]’]];
});

};
},
update: function(source) {

...
this.update_view();

}
};

Listing 3: Creating a Vistrate component from a Plot.ly line chart.

8.3 Integrating Visualizations in a Slideshow
As Vistrates is built on top of Codestrates, it is out-of-the-box compat-
ible with, e.g., a slideshow package from Codestrates. This package
wraps a view paragraph into a slide as part of a slideshow—including
cross-device presenter notes and remote pointing (Figure 1). Each
slideshow can be styled by creating a theme—a set of stylesheets—
that can specify how the visualizations and text appear in the presen-
tation. Visualizations in a vistrate, when wrapped in a slide, are still
interactive as their event handlers are retained, and this enables inter-
active and dynamic presentations when utilizing Vistrates.

8.4 Creating Vistrate Components from Existing Libraries
With Vistrates, it is easy to create new components by wrapping visu-
alizations built in existing libraries such as Plot.ly, Vega, or D3 (e.g.,
Figure 1). This provides developers with a powerful set of tools to
reuse developments not made within Vistrates, but wrap these in the
Vistrates data and synchronization flow. It further enables developers
to utilize existing charting and interaction primitives in these libraries.
As an example, Vistrates allows for making Plot.ly visualizations col-
laborative so that they can be used to create filters on the data, which
can be piped to other analyses. The code in Listing 3 showcases how
Plot.ly can be used to initialize a line chart, save the line chart selection
in the data paragraph, and update selections across clients.

9 DISCUSSION

A unified approach to transcend analytical activities, device ecologies,
levels of expertise, and modes of collaboration has the potential to
bridge the gap between data science and visualization [13] as well
as the gap between research and real-world adoption. Vistrates is a
proof-of-concept implementation that shows the technical feasibility
of such an approach. While it is a step towards fulfilling our vision
for ubiquitous analytics [28], the vision will not be accomplished by



a single group of researchers, and as such the current framework and
implementation also comes with limitations.

9.1 Limitations and Future Work
Scalability. All code in Vistrates is currently executed within a
browser, which has at least two limitations: (1) reliance on JavaScript
and (2) the available computational power. Data scientists often use
languages such as Python and R that provide multiple efficient libraries
for data transformation and machine learning, which JavaScript does
not provide to a similar extent. As a next step, we are making Vistrates
a mixed environment, where, e.g., data analysis components devel-
oped in Python can be executed in the cloud and interleaved with visu-
alization components developed in JavaScript. Beyond this, it can be
challenging to deal with large datasets and execute complex computa-
tions driving the data analysis in a web browser. Our computational of-
floading functionality showcases a first step to support mobile devices.
In fact, this feature enables viewing the word cloud and Word Map vi-
sualizations on mobile devices by offloading the tf-idf analysis and
layout computation on the large Toronto datasets to a computer (see
supplementary video). However, this offloading is still limited since
it just executes the code on a different device with better capabilities.
A future work is to extend Vistrates to support distributed and paral-
lel methods (cf. imMens [45]) and progressive visual analytics [70]
for better scalability. Finally, the downside of a vistrate containing its
entire source code is that the web browser needs to download all the
required resources on page load to execute the vistrate. This can be
slow on low bandwidth connections. In the future, we plan to add a
lightweight mode to Vistrates where resources are loaded on demand.
Usability. Another limitation of the current implementation is its us-
ability. Vistrates supports multiple levels of abstraction through de-
velopment, pipeline, and canvas views. However, the current proof-
of-concept is centered on a linear development view based on liter-
ate computing. More abstraction levels should be available to support
certain activities and users: (1) shelf-based configuration such as in
Tableau and Polestar to assemble components, (2) provenance tracking
using interaction and insight histories [33] for visual exploration, and
(3) better mobile interfaces driven by responsive visualization [5, 8].
Flexibility. The core framework in Vistrates is designed to be flexi-
ble, with only a few constraints such as the usage of predefined src,
props, and output properties described in Section 6.1. Therefore it
is difficult at this stage to provide guidelines for a good component de-
sign since the components can be defined at multiple granularities. For
instance, an aggregation algorithm can be developed to be a standalone
component as in our current approach or integrated into a visualization
component. The former is better suited for extensibility and recompos-
ability, while the latter leads to a simpler pipeline view that is easier
to use. This tradeoff between flexibility and usability exists when cre-
ating new components within Vistrates. To answer this challenge, we
are currently developing visual analytic templates—groups of compo-
nents for specific data types and tasks—that are more meaningful and
easily extensible by target users.

Another key property of the Vistrates framework is that once users
start to gain expertise, the environment allows them to exercise that
expertise by transcending abstraction levels. This property along with
the component repository offers flexibility to develop new abstraction
levels. However, leveraging this flexibility can be challenging, espe-
cially for non-programmers. To answer this, solutions at multiple lev-
els need to be investigated including documentation standards, design
patterns, and community support to share knowledge in Vistrates.

9.2 Implications
With Vistrates, we hope to advance a trend of creating software en-
vironments that can support computational thinking [78]. We be-
lieve that there is not only a pedagogical and educational challenge
to heighten computational literacy in our society, but also a need for
tools that make it easy to exploit the power of programming and bridge
the skills of experts and novices. Vistrates can also support the design
of learning environments for analytics and visualization, where the
complexity level can be increased gradually as students improve their

skills. Vistrates continues a trend set by the work on interactive note-
books for creating reproducible data analysis and science [66]. The
principles applied in the design of Vistrates allows for the creation of
digital artifacts that can include interactive visualizations and allow
the user or reader to experiment with the data, but also to peek behind
the scenes and tinker with the implementation.

9.3 Universal Component Model for Ubilytics
Our work on Vistrates have given us a unique perspective on how fu-
ture component models for ubiquitous analytics should be designed:
Standardized Integration and Embedding. Vistrates provides a
framework to make most visualizations collaborative and composable,
but existing libraries should also have some key functionality to make
them easy to integrate. All libraries already have methods to (1) trans-
late data to visualization, and (2) capture user interactions. But they
should also contain methods to (3) extract the predicates for user in-
teractions [65], and, most importantly, methods to (4) update visu-
alizations based on the interaction predicates, such that they can be
synchronized across clients. The Plot.ly line chart is an example of a
specific visualization that fulfills all these requirements.
Declarative State Specification. The Vega [65] grammar showcased
the power of declarative specifications for creating interactive graph-
ics. Similar ideas are needed to specify the state of a visualization,
such that the state can be synchronized across clients. In Vistrates,
this is currently left entirely up to the developer, which has its mer-
its and drawbacks. It would be interesting to study whether Vistrates
could support developers in creating declarative specifications of visu-
alization state and interpret them again.

10 CONCLUSION

We have presented Vistrates, a holistic and sustainable data analysis
and visualization environment designed using the principles of mal-
leability, shareability, and distributability. Built on top of the Web-
strates [40] and Codestrates [58] platforms, Vistrates provides a col-
laborative pipeline that supports the full range of visualization and
analysis activities—including data management (ETL), exploration,
sensemaking, and presentation—for teams of collaborators of diverse
expertise—including developers, analysts, and laypersons. Using the
basic Vistrate platform, we have built an initial component model
that enables bundling disparate visualization and analytics function-
ality into reusable prototype-based components. These components
can easily be instantiated and plugged into the data flow pipeline, even
using drag-and-drop on a mobile device, and can be optionally cus-
tomized down to the actual source code itself. We have demonstrated
the utility of Vistrates in a scenario involving data-driven travel plan-
ning, as well as in three examples involving server-side computation,
wrapping existing web components, and cross-device visualization.

In the future, we envision using Vistrates as a platform for a mul-
titude of visualization projects. The fact of the matter is that the core
Vistrate features are simply too convenient to give up, and they come
at minimal cost; building a Vistrate component instead of freestand-
ing D3 or Vega code will make the result collaborative, shareable, and
persistent. However, beyond such convenience arguments, an impor-
tant future research activity is to look deeper into the broad topic of
component models for visualization and analytics. The component
framework we have built using the basic Vistrate platform for this pa-
per is merely a suggestion, and we claim by no means that it is a final,
definite component model. More work on this is necessary to realize
the grand vision of a universal visualization platform [10].
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