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Abstract
Current web-based visualizations are designed for single computers and cannot make use of additional devices on the
client side, even if today’s users often have access to several, such as a tablet, a smartphone, and a smartwatch. We
present a framework for ad-hoc computational clusters that leverage these local devices for visualization computations.
Furthermore, we present an instantiating JavaScript toolkit called VISHIVE for constructing web-based visualization
applications that can transparently connect multiple devices—called cells—into such ad-hoc clusters—called a hive—
for local computation. Hives are formed either using a matchmaking service or through manual configuration. Cells are
organized into a master-slave architecture, where the master provides the visual interface to the user and controls the
slaves, and the slaves perform computation. VisHive is built entirely using current web technologies, runs in the native
browser of each cell, and requires no specific software to be downloaded on the involved devices. We demonstrate
VisHive using four distributed examples: a text analytics visualization, a database query for exploratory visualization, a
DBSCAN clustering running on multiple nodes, and a Principal Component Analysis implementation.
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Introduction

Modern browsers have a lot to offer visualization developers,
such as advanced accelerated graphics and support for multi-
touch, gesture-based, and pen-based interactions. They also
offer seamless integration with the entire web ecosystem,
including remote databases, sophisticated web services, and
online geographical map systems. Most importantly, the web
browser is now ubiquitous on all devices—from laptop to
smartphone, tablet to smartwatch—and requires no specific
download or installation to run sophisticated applications.
For these reasons, it is not surprising that the web is now
one of the most popular target platforms for visualization.
Accordingly, a host of toolkits, frameworks, and middleware
exist for visualization development, such as D38 for creating
declarative visual data-driven representations, PolyChrome2

for duplicating visualizations across multiple devices, and
VisDock12 for providing cross-cutting interaction techniques
to visualizations in a standardized tooldock.

However, the browser is still not an ideal computational
environment for executing the kind of high-performance
algorithms—such as cluster analysis, graph layout, or
probabilistic topic modeling—that many visualization and,
in particular, visual analytics applications require. One
reason for this lies with JavaScript (one of the programming
languages of the web browser) itself: it is an interpreted
and weakly/dynamically typed scripting language that was
never intended for high-performance computation. While
it is possible to write high-performance program using
JavaScript, this requires special care and in-depth knowledge
to avoid the many pitfalls inherent in common JavaScript

coding idioms. Browser-based JavaScript until recently
had no support for multithreading, which is critical for
concurrent implementations of many popular algorithms. As
a result, JavaScript libraries for scientific computing and
other heavy computational domains were for a long time
basically inconceivable. Fortunately, the HTML5 standard
brings the Web Worker API,∗ which allows for splitting
computation across multiple concurrent threads of execution.
This API, as well as the continuous improvement of browser
JavaScript interpreters such as Google’s V8 engine (in
Google Chrome), has led to JavaScript and the browser now
also becoming a platform for scientific computing.

A major gap in web-based visualization development
remains: distribution of computation across multiple devices.
A common ecosystem14 of a web-based visualization
involves a user that has access to multiple devices in their
immediate physical surroundings. For example, if the user
is accessing the visualization using a laptop, they may
also have a smartphone in their pocket, a smartwatch on
their wrist, a tablet in their backpack, and a personal
computer in their office. While offloading computation
to a server-side or cloud-based component is certainly
possible, it would make a lot of sense if the user was
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Figure 1. VisHive creates ad-hoc and opportunistic clusters from the local devices available to a user. Here, laptops, smartphones,
and tablet devices are connected into a cluster to handle complex computations. Connected devices contribute computational
power using VisHive.

also able to fire up their additional client-side devices
and use them for opportunistically offloading any heavy
computation required by the visualization tool. Naturally, if
users are analyzing a large dataset that requires significant
computation, they can offload this to the cloud or a
dedicated server. While cloud computing is capable of
computational intensive jobs, however, it requires prior
preparation, and creating a public server is by itself a
considerable effort requiring a server-grade workstation
along with data import and export interfaces with public
access enabled. In contrast, opportunistically utilizing idle
devices to help with the computation can be a simpler,
off-the-shelf solution sufficient to extend visual analysis to
larger scale. One aspect to note here is that in this paper
we focus on datasets with a size of hundreds of thousands
of items for visualization purposes. Compared to the server-
based or cloud-based solution, this “local cloud” of co-
located physical devices brings benefits to both end-users
and developers. More specifically, the end-user can avoid any
mobile network fees and minimize latency by confining the
communication to the Local Area Network (LAN), whereas
the developer can implement concurrent computation using
JavaScript in the visualization client and without having to
worry about deploying a separate service for this purpose.

In this paper, we propose VISHIVE (Fig. 1), a JavaScript
toolkit for creating this type of ad-hoc, opportunistic
clusters consisting of local, networked devices that are
directly integrated in a web application, thus requiring no
new server-side or client-side software. VisHive distributes
stages in the visualization pipeline to multiple devices (see
Fig. 2). Many steps in this pipeline can be distributed by
chunking the data and developing independent procedures in
computational methods, thus facilitating faster computation.
Using VisHive is straightforward for developers: they create
a single web application using the framework and provide the
computational logic that transforms data into visualizations.
The assumption is that this logic has inherent parallel
aspects: it can be applied to chunks of data or multiple steps
within the logic at the same time. The framework takes care
of the rest by using the surrounding devices for creating the
visualization interface.

To demonstrate the utility of VisHive, we also present
several examples of web-based visualizations using the
toolkit instantiated from the framework to implement
computationally expensive distributed algorithms:

• Wikipedia text analytics: a distributed text ana-
lytics tool that dynamically crawls webpages from
Wikipedia, analyzes them, and visually represents the
text frequencies in a node-link diagram. It progres-
sively adds nodes and links when new pages are
crawled (data analysis, filtering, and mapping).

• Incremental database query22: a large-scale query
from a very large database is shared across multiple
nodes to incrementally calculate descriptive statistics,
such as mean, variance, minimum, maximum (data
analysis, mapping, and rendering).

• DBSCAN: a distributed implementation of the
density-based spatial clustering algorithm. The algo-
rithm manages noise and does not require specifying
the number of clusters a priori. Clustering results are
visualized before and after applying the algorithm
(data analysis, mapping, and rendering).

• Distributed PCA: a distributed eigenvector approach
for Principal Component Analysis for dimensionality
reduction (data analysis and rendering).

Performance measurements for these VisHive exam-
ples on various combinations of devices—laptop, tablet,
smartphone—show a significant time improvement using the
toolkit compared to single-device computation.

The framework provides a new opportunity to con-
veniently build visualizations that integrate opportunistic
offloading of computation to surrounding networked devices.
However, the framework augments rather than replaces
server-based, cloud-based, or cluster-based computational
frameworks that are commonly being used to power web
applications and visualizations today. To facilitate this mis-
sion, our implementation of VisHive is built in JavaScript
using standard web technologies, thus requiring no separate
download for each participating cell; off-the-shelf devices
can immediately run the toolkit. In summary, our work has
the following contributions:
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Figure 2. Basic visualization pipeline 19 (from
http://www.infovis-wiki.net/index.php/Visualization_Pipeline). Data transformations, rendering, and view
transformations can be processed in a distributed manner. The stages within dashed bounds are those that the proposed
parallelism focuses on.

• A framework for ad-hoc computational clusters
integrated with the standard visualization pipeline,
thus supporting opportunistic offloading computation
to nearby devices;

• A toolkit called VISHIVE implementing ad-hoc
computational clusters as a JavaScript library that runs
in modern web browsers with no further downloads;

• Four examples of using the VisHive toolkit to improve
the performance of visualization applications; and

• Performance measurements showing significant
speedup for VisHive applications running on multiple
devices compared to single-device implementations.

In the remainder of this paper, we first give a background
on the literature in this area. We then discuss the design
space of ad-hoc computational clusters for visualization.
We specifically discuss computational challenges for
visualization. This is followed by a description of the
VisHive toolkit itself. We present our examples and give code
snippets of how they are implemented. We conclude with a
performance evaluation, a discussion of the results, and our
concluding thoughts.

Background
In this section, we discuss existing literature on distributed
computing, especially on mobile devices, web-based
visualization methods, and visual analytics for big data. We
focus on the specific components relevant to the design and
construction of VisHive.

Distributed Computing on Mobile Devices
There is significant previous research on building distributed
computing framework on clusters consisting of mobile
devices. They use different approaches for cluster mainte-
nance and communication for information transmission. Lin
et al.31 first proposed a mobile network where nodes would
be organized into non-overlapping clusters that are inde-
pendently controlled and dynamically loaded. The proposed
cluster algorithm is robust to node failure or addition/dele-
tion. Wang et al.48 presented a bandwidth adaptive clustering
approach for mobile ad-hoc networks that maintains clusters
using local topology information only. In their approach,
the member nodes forward only the maintenance messages
probabilistically based on available bandwidth. This ensures
adaptability to network conditions and reduces message

overhead. Lee et al.30 discussed the challenges and advan-
tages of utilizing mobile devices for distributed analytics
based on an implementation of the Hadoop framework.
Based on a performance analysis of their implementation,
they concluded that current mobile devices face significant
limitations on transmitting and receiving reliable TCP data
streams, which is required to avoid interruptions during
distributed analytics. In our setting for VisHive, the physical
proximity of devices (within several meters) pushes us to use
more reliable and high-speed data transmission protocols,
i.e., wireless LAN.

A number of computation offloading frameworks have
also been proposed for computationally intensive mobile
applications26,28,42. Such applications are said to be elastic
in nature, and each approach partitions problems at different
levels of granularity at runtime. In most cases, the distributed
application processing platform is composed of a mobile
device that runs a local application, a wireless network
medium, and a remote cloud server node. In cases where
there are insufficient resources on the mobile device, an
elastic mobile application can be partitioned such that any
computationally intensive components of the application
can be offloaded during runtime. Cuckoo, a computation
offloading framework for smartphones developed by Kemp
et al.29, allows computation offloading from Android phones
to a remote server. In comparison, Hassan et al.27 showed
in their study of computing-intensive mobile applications
that outsourcing these computations to nearby residential
computers or devices may be more advantageous than public
clouds due to network impact. This is also one of the
motivations for our work. Shiraz et al.42 showed that current
mobile computational offloading frameworks implement
resource-intensive procedures for offloading. This involves
the overhead of transmitting application binary code as
well as deploying distributed platforms at runtime. Runtime
computational offloading is also useful in decentralized
distributed platforms, such as mobile ad-hoc networks.
Shiraz et al. note, however, that remote server nodes are
unpredictable and computational offloading should therefore
be performed on an ad-hoc basis at runtime. This motivated
us to design our framework as an ad-hoc network of nearby
mobile devices that perform computations on demand.
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Visualization on the Web

Towards the turn of the century, the pervasiveness of the
web had led to many changes, including one important
application: visualization in the browser. Rohrer et al.39 note
that the web is essentially a fundamentally new medium for
visualization. Today, virtually all computational devices—
both personal computers and mobile devices—provide full-
fledged web browsers as part of their standard software
distributions. Mobile devices have grown increasingly
capable and have enjoyed widespread adoption, even in
countries with less advanced technical infrastructures. For
this reason, mobile computing has quickly become the
universal computing platform of the world.5

Web-based visualization toolkits include Protovis7 and
D38 as well as more generic graphics toolkits such as
Processing.js, Raphaël, and Paper.js. Most prominent of
these is D3, proposed by Bostock et al.8, which provides
a direct binding between the input data and the document
object model (DOM). Because of its prominence, we use D3
as the target platform for web-based visualization in VisHive.

Meanwhile, work in distributed computing is trying to
achieve the same success by using the browser and the
web as the base platform for parallel and high-performance
computing. Martinez and Val36 first proposed the idea of
using standard web technologies for distributed computation
across multiple devices in 2014, and later presented the
Capataz37 framework for distributed algorithms across the
web. While similar in scope if not in goal to VisHive toolkit
(Capataz lacks visualization integration), their framework
uses a client/server architecture with a dedicated web server.
VisHive, meanwhile, is a pure peer-to-peer system and
requires no specific server-side code or even dedicated
computational server.

Big Data Analytics and Visualization

Big data visualization typically involves two main chal-
lenges: perceptual and computational scalability20. Percep-
tual scalability is outside the scope of this paper; represen-
tative work includes that of Ahlberg and Shneiderman1 for
filtering, Das Sarma et al.15 for spatial sampling, and Carr
et al.9 for aggregation for scatterplots. Furthermore, tech-
niques to handle big data have been introduced for specific
data types and application domains. For example, Fisher et
al.23 showcase techniques for tackling business intelligence,
Wong et al.49 discuss challenges facing extreme-scale visual
analytics, and Steed et al.45 developed a visual analytics
system for the analysis of complex earth simulation datasets.

Recent years have seen an influx of work on computational
scalability for visualization. Liu et al.34 developed a visual
analysis system called imMens, which uses WebGL for data
processing and is based on the principle that scalability
should be limited by the chosen resolution of the visualized
data and not the total number of records. Nanocubes33 is
another approach focused on visualizing and analyzing very
large datasets based on a compact data cube representation.
Choo and Park13 propose methods such as data scale
confinement, classification of pre-clustered data, and linear
transforms of higher dimensions to deal with scalability for
visualization.

Finally, a recent trend in tackling big data for visualization
is progressive visual analytics (PVA)46 and incremental
visualization41, where partial results from complex and
lengthy computations are visualized during the process,
allowing the user to better guide the analysis. Several PVA
and incremental visualization systems exist; for example, in
recent work, Badam et al.3 propose a computational steering
interface for controlling and guiding PVA and incremental
approaches while they are executing. Our work in this paper
is primarily focused on computational scalability, since the
framework is intended to increase the performance of a
visualization application using multiple devices at a low level
of abstraction. For this reason, the proposed framework is
not a competitor to PVA and incremental visualization; in
fact, the toolkit can help provide the underlying backbone
for progressive and incremental visual analytics.

Computational Challenges for Visualization
With the rise of big data and increasingly sophisticated
analysis methods, scale remains the dominant computational
challenge for visualization. Put simply, the bandwidth,
memory, and computational demands of modern data
problems are often too large for a single workstation to
manage. These challenges are exacerbated by the fact that
visualization is increasingly being moved to the web39 and
thus no longer have full access to the computational power
of a desktop computer; in fact, with the proliferation of
mobile computing, it is even more likely that a visualization
is viewed on a mobile device such as a tablet or a smartphone
than a personal computer altogether.5

The standard solution for resource-hungry visualization
applications is to turn to client/server solutions, where a
thin client in the user’s browser offloads the bulk of any
computation to a server with significant capacity. However,
in this paper, we propose a complementary solution based
on opportunistically creating ad-hoc computational clusters
utilizing local devices in the vicinity of the user. Below we
discuss the strengths and weaknesses of both approaches.

Standard: Cloud or Server-based Computing
If the visualization client is insufficient for a resource-heavy
computation, the standard solution—particularly for web-
based ecologies, where there already is a server infrastructure
in place—is to offload the computation to a server on the
Internet (or in the cloud). This requires the use of server-side
middleware, such as Node.js†, Flask‡, or Ruby on Rails§,
which will communicate with the client using protocols built
on top of HTTP.

• Strengths: Flexible, powerful, and standardized.
• Weaknesses: Non-trivial setup, prior planning, poten-

tially costly, security concerns.

Novel: Ad-Hoc Computational Clusters
Our main contribution in this work is ad-hoc computational
clusters on the client that take advantage of opportunistic

†http://nodejs.org/
‡http://flask.pocoo.org/
§http://rubyonrails.org/
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ecosystems of devices in the near vicinity. The goal is to
simply leverage the idle computing power of these devices
to mitigate scale for visualization computations. By virtue of
integrating this distributed computing capability within the
visualization client itself, our framework provides a tighter
loop that allows for several parts of the visualization pipeline
to be offloaded onto multiple devices.

• Strengths: Lightweight, no setup, no downloads,
no prior configuration, leverages existing and idle
computing power.

• Weaknesses: Limited in scale, bandwidth-intensive,
requires distributed computing knowledge on behalf of
the visualization programmer.

Design Framework: Ad-hoc Computational
Clusters for Web-based Visualization
The web is becoming a ubiquitous medium for sensemaking
through visualizations8, sharing visual insights from data,
and harnessing collective intelligence.47 However, there is
a lack of research in ad-hoc mechanism for executing
computationally intensive algorithms commonly needed for
visualization and visual analytics on the local client. As
discussed in the previous section, the goal of our ad-hoc
computational cluster framework is to facilitate the creation
of ad-hoc device clusters using standard web technologies.
The driving scenario behind the framework is the fact that
people today tend to carry more than a single device with
them at all times. Leveraging these devices together can help
scale our analytics applications to the challenges of big data.

In general, visualizations follow a transformative pipeline
that turns data into interactive graphical representations
through multiple stages.11 To target visual analytics of
big data, we need distributed frameworks integrated with
the visualization pipeline using connected local devices to
generate a visual representation and handle user interaction.
For this purpose, below we list seven design guidelines
driving the ad-hoc computational cluster framework.

Networked Devices
The fundamental requirement for a distributed system is a
network of connected nodes. Thus, the framework should
be capable of connecting multiple devices into a distributed
system.

D1 Cross-platform support: The devices used by analysts
for personal computing and sensemaking can be
diverse, ranging from personal computers to mobile
devices. Therefore, the framework should work
independent of the underlying platforms, modality,
and physicality of these devices.

D2 Ad-hoc connectivity: A user should be capable of
opportunistically creating a cluster from available
devices. This includes adding to or removing devices
from the clusters at any point.

Peer-to-peer networks are ideal for this purpose4,24 as they
do not set a hierarchy among the devices, and they do not
require a dedicated server infrastructure to create clusters.

Responsive Distribution
Once the devices are connected into a distributed system,
supporting computation on the device cluster requires
intelligent management of the connected devices. The
challenge in this case is to ensure that adding or removing
devices at any point does not interfere with user activity
within the visual analytics system.

D3 Responsive computation management: All available
devices should be free to contribute processing power
to computational activities. Computation jobs assigned
to devices within a cluster should not only be based
on the processing power and available memory on the
device, but also based on their current use.

D4 Fault-tolerance: Devices entering the cluster should
immediately be assigned new jobs, and devices leaving
it should be able to return a job unfinished so that other
devices may take up the remainder of the job. This
mechanism should also be robust in the face of device
or network failure.

Supporting Visualization and Interaction
Visual analytics systems often utilize computationally
complex algorithms. For example, browsing histories of
users can be used to generate and visualize spanning
trees in order to understand their web traversal history.18

Machine learning and data mining models are also used to
identify specific features, visualize interesting patterns, and
prompt user exploration.25,35 While some of these models
are inherently parallelizable in their logic, it should also
be possible to configure how the underlying algorithm can
spread across the clusters of varying sizes and resources.

The data transformation, rendering, and view transfor-
mations are the basic data manipulation processes in the
visualization pipeline (Fig. 2). Our goal is to distribute tasks
to the whole computational cluster and make the processes
parallel within the pipeline, to reduce the overall delay of
visualization systems.

D5 Distributed processing: Algorithms for distributed
processing, such as MapReduce16, should be applied
to chunks of data across the ad-hoc clusters. The
framework should also support defining a distributed
version of an algorithm at each stage of the
visualization pipeline (Fig. 2) with features to adapt
the algorithm to the specific cluster.

D6 Data-driven distribution: The distribution of jobs to
multiple devices should be adapted to the dataset
itself based on the attributes, data types, and sources.
Computations in the visualization pipeline involve
transforming data of one form (input) to another
(output) at each step. Similar to popular big data
systems (e.g., Hadoop HDFS44, Google BigTable10),
it should be possible to create job chunks for devices in
the cluster by splitting any dimension of the data. For
example, in spatiotemporal data, jobs can be created
either by splitting data based on time or space, in order
to reveal incremental details in the visualization when
the data is being processed by the cluster.

D7 Handling user interaction: User interactions are
essential for interactive visualization in visual data
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analysis. Interaction steers the visualization pipeline
to focus on specific data subsets and encodings
to promote focused visual analysis. Specifically,
corresponding computations should respond to user
interactions; outdated computations should be stopped
and new computations should be started based on the
user’s focus conveyed through interaction.

The VisHive Toolkit
The VisHive toolkit was developed for building ad-hoc and
opportunistic clusters of computing devices for web-based
visualization. It is implemented completely in JavaScript
to target the web platform, thus providing cross-platform
support (D1). It uses the WebRTC standard by W3C¶ for
establishing peer-to-peer connections across web browsers.
Since the web is the target platform, the devices—called
cells—are connected into a device cluster—known as a
hive—as soon as they open a VisHive application webpage
on the web browser (D2). The toolkit provides modules for
structural definitions of distributed algorithms based upon
the attributes of the hive (D3), and handles entering/leaving
cells in the hive (D4). The toolkit integrates closely with
the visualization pipeline, allowing developers to handle the
stages in the pipeline in parallel using the connected devices
(D5, D6, D7). Figure 3 shows the network architecture of an
VisHive toolkit example. The VisHive toolkit is open-source
and can be accessed online ‖.

Computation Job Sharing Channel (P2P)

Hive

Chunks

Cells

Figure 3. Example VisHive application network architecture.

System/Network Architecture
The VisHive toolkit consists of five components to fulfill the
design requirements above (Figure 4):

C1 Job partition layer that divides a high-level computa-
tion operation into computation jobs (chunks);

C2 Communication layer to share chunks across cells;

C3 Integration layer that combines the results from all
cells and passes them to the web visualization;

C4 Job control layer handling cells entering and leaving
the hive (fault tolerance); and

C5 Matchmaking service that connects multiple devices in
a specific physical space into clusters (hives).

Figure 4 depicts the VisHive architecture with these
components. VisHive uses a peer-to-peer (P2P) network

architecture established across the browsers of the cells using
WebRTC technology, popularly used for real-time video calls
over the web browser ∗∗. Our implementation uses the open
source PeerJS framework †† for establishing peer-to-peer
connections across the cells. The P2P connection creates
the communication layer (C2) for transferring chunks to the
cells within the hive. Only the matchmaking service (C5) is
centralized and requires a dedicated server component (this
is commonplace for many peer-to-peer applications); other
components are based solely on standard web technologies.
Providing a centralized matchmaking server is easy and can
be achieved with scalability to serve a large number of hives.

The control of the distributed system lies inherently with
the instance that the user actively interacts with. The toolkit
is not designed for collaborative visualization; thus, VisHive
supports just one active user interacting with a distributed
application on a device. This way, the controlling instance,
or master, takes the help of other idle devices, or slaves, to
share computations amongst them. One thing to note here
is the difference between a typical P2P architecture and our
implementation. While the devices are connected by the P2P
network, the VisHive master keeps track of computations
assigned to each of the slaves to collect the computed results
back from them. The master therefore manages the splitting
and sharing of computations. This structure is resilient as
it takes advantage of the P2P connection, while flexibly
allowing any device to act as the master based on the user’s
focus. In general, if the user focuses on a device, results are
expected to be shown on that device, so it acts as the master.

Job Control Layer

Job Partition Layer

Master

Shared by Master and Slaves

Communication Layer (P2P)

Computation Layer

M
at

ch
m

ak
in

g 
se

rv
ic

e

Figure 4. VisHive toolkit infrastructure containing five
components to create and manage distributed computation jobs
(chunks). Master manages job control and partition. Both
master and slaves share communications and can join as a cell
for computation. Matchmaking service can reside on any
devices, including master and slaves.

Matchmaking and Communication
Hives are initialized on the matchmaking service, a modified
web server built in Node.js that typically runs on a local
device such as a laptop or, alternatively, on a remote
cloud-based server. The first device to connect to the hive
automatically becomes the master; this can be manually

¶http://www.w3.org/TR/webrtc/
‖Website anonymized for double-blind reviews.
∗∗https://apprtc.appspot.com/
††http://peerjs.com/
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changed. Additional cells are connected by navigating their
browsers to the matchmaking URL, thus adding them to the
peer-to-peer communication channel. As these cells join the
hive, they share details on their capabilities based on the
client and operating system.

The matchmaking server only manages the peer-to-peer
session for the hive. It does not handle data management,
job allocation, or computation. These are the responsibility
of the master, which is a special cell. Since the VisHive
toolkit targets ad-hoc and opportunistic device clusters (for
example, between an analyst’s smartwatch, smartphone, and
laptop), this registration process ensures that distribution
happens in an environment-aware fashion.

After the cell registration process, individual cells are
capable of accepting the computation chunks involved in
each stage of the visualization pipeline (C1). When a master
shares computation jobs with the slaves in the hive, the cells
accept the jobs and look up the input data from the job
definition. Cells will then perform the required computations
on the input using the shared computational models and send
the output back to the master to be recombined.

Masters and Slaves
Regardless of whether a cell is a master or a slave, they
use the same JavaScript codebase, thus making application
development simple (Listing 1). The client programmer
simply has to provide a master implementation, consisting
of the visualization and interaction part of the web
application, as well as a separate slave implementation,
which handles the computation. The programmer also has
to provide an implementation for recombining results. This
follows practice in distributed algorithm design, such as
MapReduce17.

vishive.init(url);
peerid = vishive.getChannel();
var hive = vishive.connect(peerid,

function (hive) {
# Master implementation
# ... visualization and interface setup
# ... job distribution
# ... manage results

},
function (hive, data) {
# Slave implementation
# ... computation on subset

});

Listing 1: JavaScript code for initializing VisHive in a
standard web-based visualization.

Due to VisHive’s clear separation of concerns between
masters (interface and visualization) and slaves (computa-
tion), a hive consisting of only a master would not make
any progress on the computational task. In practice, VisHive
allows the master to also run a slave instance in a parallel
thread (web worker) to allow the application to perform the
computation on the same device. This ensures that progress
can be made even if no computational resources are available
other than the device on which the master is running.

Note that the master-slave architecture is independent of
the matchmaking service mentioned above. The matchmak-
ing server can reside on any device within the same network.
It may or may not be one of the devices in the hive. It only

manages establishing the connections between participating
devices. This is quite common in P2P architectures.4

Job Allocation and Control
Job allocation and control within the VisHive distributed
system is handled by the C1 and C4 components of the
toolkit. Each computation job (chunk) is treated as a mapping
from input to output generated by shared computation logic,
similar to the MapReduce model17 for processing big data on
parallel and distributed systems. The default configuration
for job partitioning involves splitting the input data for a
high-level computation into jobs that each slave works on
parts of the data. The job allocation module creates the
chunks based on the available resources on each cell and
the number of cells in the hive (including the master and the
slave cells).

Take mean calculation, for example. Assume the dataset
has 1, 000 entries and one column data point for simplicity,
and there are 4 devices available for computation. The job
allocation is to split the dataset into 4 chunks (250 entries one
chunk for an even split), assign each chunk to each device
(sending data). Devices compute mean of the partial dataset
and send results back. The actual allocation process of how to
splitting data is provided as API (discussed in later section),
so the user can define their own data chunks.

Explicit application logic created by the VisHive
application developer (end-user developer) for splitting a
computation (and input) into chunks is also supported.

Fault tolerance
The job control component (C4) is responsible for
automatically detecting when existing cells leave or new
cells enter the hive. Leaving the hive also includes device
or network failure, when devices leave unexpectedly. This is
detected by the master, in which case the assigned chunk is
retracted and added to the top of the queue for reassignment.
Similarly, a cell that enters a hive gets added to the queue of
available computation cells immediately. When master fails,
the matchmaking service assigns the next device that first
joins the hive as the master.

When a slave cell receives a job chunk to process but does
not respond back to the master in a timely manner (this may
be due to disconnection, node failure, or slow computation),
the cell will be regarded as failing and this chunk of job will
be reassigned to other available cells. In this way, VisHive
deals with cells entering and leaving the hive at any time.
Generally speaking, to make the system simple and easy to
maintain, master treats all non-responsive cells as failing.
This may cause duplicate jobs when one cell has network
problems, causing the master to assign the job to another cell,
only to have the original cell return with the result. While this
does waste computational resources (for one chunk), it is an
efficient way for VisHive to operate reliably.

VisHive provides all of the mechanisms for distributed
algorithms, but does not actually implement any specific
algorithm. Thus it is up to the application developer
to implement the data processing algorithms in the
visualization pipeline, including how the data is split to
distribute the jobs. In particular, the toolkit assumes that any
conflicts occurring during the integration process that are
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application-specific are handled by explicit application logic
developed by the client programmer.

Figure 5. VisHive console widget showing controls and status
for the hive, its cells, and the current computation.

Visual Interface
The VisHive toolkit is closely integrated with the
visualization pipeline.19 Following this model, each stage of
the pipeline involves transforming an input into an output.
Beyond supporting the main visualization interface, the
toolkit provides a console (Figure 5) that contains the status
of all the devices within the existing computational cluster.
Implemented as a separate widget that can be hidden as
needed, the console gives both controls as well as shows the
status of the current hive, connected cells, and any ongoing
computation progress. This supports monitoring progress
in each of the visualization stages. For example, data
cleansing involves converting the raw data into a structured
data structure, which requires going through individual data
points, parsing them, and processing through each cell. This
can be managed through the interface. In case of large
datasets, this operation can be expensive due to the sheer
amount of data. VisHive can split the data into chunks and
assign them to different computational jobs that can be
processed across the cells in the connected hive (component
C1), while at the same time enabling real-time updates and
control of the process.

Implementation Notes
VisHive is a pure JavaScript toolkit implemented using the
PeerJS toolkit for peer-to-peer communication and using the
D38 toolkit for rendering visualizations. More specifically,
VisHive events can be explicitly bound to D3 joins so that the
visualization can be automatically updated when the data is
loaded, a chunk is calculated, or the computation is finished.
For example, the “plot” function in VisHive API (Listing. 2)
handles D3 states (enter, update, and exit) execution. When
the function is called, it recomputes the join and maintains
the correspondence between elements and data6. In this way,
visualizations in VisHive are integrated with D3 joins. With
the exception of the matchmaking service, all components
run directly in a modern web browser without requiring
specific software. The matchmaking service can either be run
locally, in which case a Node.js installation is required, or on
a remote cloud server.

VisHive API
To demonstrate how to use the VisHive toolkit to aid with
distributed computing for visualization, we here discuss the

functions in the API that developers can override to integrate
into the VisHive toolkit. Code for function declarations
are in Listing 2. The API contains five main functions:
data preprocessing, split, integration/reduce the results, job
process on devices, and visualization.

# Connect to matchmaking service
visHive.connect(config, sessionId);

# VisHive event handler definition
visHive.eventHandler = {

dataPreProcess: function(rawData) {
# pre-process the data
return formattedData;

},

splitData: function(chunkId, formatData) {
# split the data
return chunks;

}

mergeData: function (chId, chunk, mergedData) {
# merge the results into the main result
return mergedData;

}

process: function (receivedData, dataDice) {
# compute the results on the slave
return results;

}

plot: function (data) {
# bind D3 joins with updated data,
# handle enter, update, and exit states.

}
}

Listing 2: VisHive API declaration in JavaScript.

Examples
To showcase the utility and the flexibility of the VisHive
toolkit, we implemented four examples that demonstrate
different common computational needs for visualization
applications: (1) a distributed text analytics visualization,
(2) a distributed incremental database query for exploratory
visualization, (3) a clustering algorithm, and (4) eigenvector
calculation for Principal Component Analysis. To detail the
implementation use cases, we provide the pseudocode and
explanation of the progressive text analytics visualization
example.

Distributed Text Analytics for Large Document
Corpora
Visualizing results from text analytics can reveal character-
istics of and relations between articles in a document corpus.
However, many information retrieval algorithms involving
word frequency counting are limited due to significant
processing time for large-scale document collections. This
process can be made faster through multiple devices, each
working on a different part of the document corpus.

Our text visualization example is designed for visualizing
Wikipedia by counting word frequencies for Wikipedia arti-
cles in a distributed manner, crawling text documents from
Wikipedia web, calculating TF-IDF scores across multiple
devices, and visualizing articles and their relationships using
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(a) 200 nodes

(b) 500 nodes

(c) 1000 nodes

(d) Tooltip

Figure 6. Node-link diagram visualization for different number of Wikipedia articles. (a), (b) and (c) show 200, 500, 1000 pages,
respectively; (d) is the tooltip with top frequent terms for one article (deep learning); nodes are Wikipedia articles, labeled initials of
article name (e.g. DL = “Deep Learning”); links represent hyperlinks between pages; mouse hover shows info on each page.

a node-link diagram (Figure 6). We use TF-IDF40 for sim-
plicity; other, more sophisticated, text analytics metrics are
also possible.

# handle initial connection for each peer.
peer.on(’open’, function(id, clientIds) {

# do nothing for master
conn.on(’data’, function(data) { # slave
# receive indicator from master.
if (data == "master")

conn.send("ready");
else

var tf = processFunc(data.pages, data.links);
return data.links, tf;

});
});
# handle peers that are already connected.
peer.on(’connection’, connect);

function connect(conn) {
conn.on(’data’, function(data) {
if (master)
# receive ready from slave
if (data == ’ready’)
# send data
else
# receive results, merge it

mergeData(data, TFStorage);
if (all results received)
plot(data);

}
}

Listing 3: Pseudocode implementation for Wikipedia text
analytics.

Implementation: In our distributed implementation, the
master assigns article links (English) from a central FIFO
queue to cells in a breadth-first article crawler. Cells retrieve
the articles using the Wikipedia API ‡‡, calculates the word
frequency table for the article, and identifies all of the
internal Wikipedia article hyperlinks. The frequency table is
returned to the master, updating the central word frequency
table as well as the TF-IDF rankings for the existing nodes.
Furthermore, new hyperlinks that have not yet been crawled
are added to the central queue. The corresponding node-link

visualization on the master is updated with top keywords
once all the results are returned from all the slaves. Master
deletes the existing SVG and renders new one using D3 when
new computations are finished due to user interactions.

Figure 6 shows screenshots of the master visualization
with 200, 500, and 1,000 nodes crawled on a laptop, where
the queue has been seeded with a specific Wikipedia article.
We use force-directed layout framework in D38 to visualize
relations between articles. Nodes represent pages and links
are hyperlinks between pages. Each node is labeled with
intials of the page name. Tooltips with article name and
top ten keywords (TF-IDF) will show up when the mouse
is hovered on the node. Listing 3 shows the pseudocode to
handle master/slave data transferring and processing. String
“ready” is sent from slave to indicate master that the device
is ready for computation. Once master receives the message,
it sends one chunk to the slave for processing.

Exploratory Visualization: Incremental
Database Query
In the new era of big data, even when all of the data is
available in a massive-scale database, querying the data can
be forbiddingly expensive. However, many times the analyst
is not interested in detailed results from a query but only
need some rough idea of the contents of the data to serve
as a stepping stone in the analysis23. For example, given a
very large dataset of numeric data, the user may want to
quickly calculate some descriptive statistics while discarding
the actual data itself. From a visualization perspective, partial
visual analysis is a quick and efficient way to get an overview
of the data. It follows Shneiderman’s visual information
seeking mantra43 of “overview first, zoom and filter, then
details on demand,” and insert user interaction before
zooming in, which saves both computational resources and
shortens the time for analysis.

‡‡https://www.mediawiki.org/wiki/API:Main_page
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Figure 7. DBSCAN implementation of 5,000 points using VisHive, including before (left) and after (right) the algorithm has been
applied. Different colors represent different clusters.

Implementation: In this example, we use VisHive to
implement an incremental database query based on the idea
proposed by Fisher22. The master splits the entire dataset
into manageable chunks (row indices for, say, 1,000 rows
each) that can be assigned to cells that are part of the
hive. A job in the cell simply consists of retrieving the
chunk data, calculating some partial descriptive statistics
(min, max, mean, and variance), and then discarding the data
before sending back the results to the master. The master
combines the results. For simplicity, we use a large flat file
as the database. The approaches such as MPI-BLAST32 have
achieved parallel implementation of databases but require
framework setup.

Distributed DBSCAN Algorithm
DBSCAN21 is a density-based clustering algorithm that
groups points based on their proximity. It is also one of the
most common clustering algorithms since, unlike k-means,
it does not require the user to specify the number of clusters
a priori, it allows for arbitrarily shaped clusters, and it is
robust to noise and outliers. Our algorithm of distributed
DBSCAN applies to the data pre-processing stage of the
pipeline involving computations of distances between pairs
of points.

Implementation: Our DBSCAN implementation for
VisHive (Figure 7) uses a distributed algorithm based on first
computing the distance metrics (Euclidean, Manhattan, or
other distance metrics) of each pair of candidate points in
a distributed manner. Specifically, the master divides total
points into chunks, and assigns a chunk (group of points)
to a cell. Each cell computes the distance metric between
the chunk of points and all the other points. The master
then combines all the distance metric, computes the matrix
decomposition, and sums up the clusters of points in the final
merging stage.

Figure 7 shows a scatterplot of the points before and after
the DBSCAN algorithm. Clusters are represented in different
colors.

Distributed Principal Component Analysis
Principal Component Analysis (PCA) is a common approach
to dimension reduction in data science that is based
on projecting a high-dimensional dataset into lower-
dimensional subspace using a set of values of linearly
uncorrelated variables called principal components. These
components are selected so that they each have a maximal

variance in order to best model the data in the dataset.
Determining the orthogonal components actually involves
deriving the eigenvectors of the covariance matrix. Similar
to the previous example, PCA is an important tool for data
analysis and visualization since it reduces high-dimensional
data to lower dimensions. These projections (for instance, 3D
to 2D) are common for visualization tasks.

Implementation: Our VisHive implementation of dis-
tributed PCA splits the entire matrix on the master based on
rows and participating cells compute the partial covariance
matrix for sub-matrices. This can be achieved using SVD
or eigenvalue decomposition. The master will finish the
algorithm by estimating the whole covariance matrix based
on results of sub-matrices, computing the global principal
components, and choosing the first k dimensions that the
cells can utilize in projecting chunks of the dataset in a
second distributed phase.

Performance Evaluation
We evaluated the VisHive toolkit using our four example
implementations from the previous section. In order to study
the impact of concurrent computation, we varied the device
hardware conditions for the cluster and measured the total
completion time. The WiFi used is the standard high speed
university wireless network. One thing to note is that we
use web workers (multi-threading) in all the evaluations with
laptops so as to enable task running on the master. Each
performance test was run 20 times for an algorithm and
a specific device combination. Table 1 shows the average
performance results in seconds.

Our four examples had the following dataset conditions:

• Wikipedia Text Analytics: 1,000 Wikipedia articles;
• Incremental database query: 200,000 rows and 10

columns of floating point values stored in a flat file;
• DBSCAN: 5,000 2D floating point values; and
• Distr. PCA: 10,000 × 200 floating point matrix.

The hardware used in these experiments was the
following:

• Laptop 1 (master): a Windows laptop with 4 Intel
core i7 CPUs and 8 GB of memory;

• Laptop 2: a MacBook Pro with 4 Intel core i7 CPUs
and 16 GB of memory; and

• Smartphone: a Huawei Ascend 7 Mate running
Android with a HiSilicon Kirin 925 CPU (four Cortex-
A15 cores).
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• Tablet: a Samsung Galaxy S 10 with Quad-core Krait
400 CPU.

As can be seen from the performance results in Table 1,
there are significant improvements in completion time when
involving additional devices beyond the initial laptop master.
In particular, when three devices are involved, the completion
time is less than half of the original for all four examples.
We take this as an indication that the overall idea and current
implementation behind the VisHive toolkit is sound.

In addition, we instrument our code to measure the actual
time spent in computation and data transfer (includes sending
data and returning results, etc) for different devices. For
laptops, the average ratio of transferring time over total
computation time is between 10-20%, whereas it is 25-
35% for smartphones. We also evaluated the performance
by adding more smartphones into the hive to detect data
transferring overhead. When 3 or more smartphones are
involved, the overall computation time does not increase
significantly due to the heavy transferring time on mobile
devices. The time is mainly determined by network situations
and I/O speed, and this varies across devices and networks.
Since smartphones have much smaller I/O throughput, when
data becomes larger, I/O constraints will hinder massive
deployment of the toolkit. These limitations are discussed
below.

Discussion
Our work on the VisHive toolkit in this project is focused on
distributing JavaScript code and computational tasks across
multiple devices. Meanwhile, IPython38 Notebooks—a web-
based interactive shell for Python—are quickly becoming
the main platform for scientific computing in the web
browser. One of the reasons for the success of IPython for
scientific computing is the immense ecosystem of Python
packages available for all conceivable computational needs.
Obviously, VisHive is not a replacement for IPython, but
rather fills a niche that is very different from the greater
mandate of IPython: integrating computation in a web-based
visualization setting, which is already going to be JavaScript-
based given the current state of visualization toolkits for the
web. IPython, in contrast, is still speciality software that is
not considered useful for the general population, is therefore
not integrated with standard browser installations, and thus
requires a separate download.

The same argument extends to general server-based,
cloud-based, or cluster-based computational platforms.
VisHive is not intended to replace such platforms, but
instead provides an example solution for the common
situation when a user has access to multiple local devices
that could be formed into an ad-hoc cluster to help with
computation performed in the browser running one of them.
Since mobile devices as well as personal computers are
exclusively designed for focused use—i.e., with one user
using a single device, and not many devices at once—these
additional devices are underutilized anyway. Our toolkit
offers a lightweight approach to leverage these devices that
is easily integrated with current web development practices.

Another aspect to note is that VisHive does not provide
any explicit support for how to distribute computation so
that it can be assigned into manageable chunks, sent off to

separate cells, performed separately, and then recombined
correctly by the master. Our focus in this work has
been on the distributed computation mechanism itself,
and not the distributed algorithms you would run on the
individual cells. There exists vast amount of work in fields
such as parallel computing, distributed systems, and high-
performance computing that can begin to guide the design of
suitable algorithms that can be run on top of VisHive.

While VisHive can provide advantages and convenience
to performance in visualization without additional costs
but a browser, there are some essential limitations for this
framework that are stated below:

• Comparison to existing distributed computing:
Even if VisHive aims for computational offloading,
it is not a replacement of any existing distributed
computing frameworks. The main scalability issues
include the following:

– Large Clusters: VisHive is not well suited for
deploying tasks to a large number of devices.
Our approach utilizes nearby available resources
to aid computation that are otherwise often
ignored. We have tested with up to 10 devices
connected to form a cluster. However, due to the
limited computing resources of the web browser,
performance is poor when the number of devices
are larger than 10. From our experience, the
optimal number of devices are between 3 and 6,
which aligns with the typical number of devices
one person would have in the office.

– Bandwidth: Since VisHive hosts all the data
on the master and slaves and masters exchange
tasks and data, the toolkit requires significant
bandwidth and memory for large datasets.

• Limitations for Mobile Devices: While we have
illustrated a framework in this paper for the advantages
of using mobile devices to speed up computation, such
devices are not always ideal for this purpose:

– Battery: Battery life is a precious resource
for most mobile devices. In fact, many mobile
devices are designed to go to sleep if left inactive
to conserve energy, which typically suspends
JavaScript execution.

– Computational Resources: Many mobile
devices provide limited computational resources
so as not to be worthwhile to include in an
ad-hoc cluster to contribute to a task. In a typical
VisHive setting with (2-4 devices), the same
amount of computation takes 3-4 times longer in
mobile devices compared to a laptop. This may
be due to the I/O constraints and less powerful
CPUs on the mobile devices.

– Networks: VisHive may trigger additional
wireless network charges if an algorithm requires
each participating device to download a duplicate
of the dataset. On the other hand, as discussed in
the evaluation section, data transfer over wireless
networks take an inevitable portion (usually
between 10%-35%) of task processing time,
which limits large scale computation tasks.
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Algorithm 1 Laptop 1 Laptop + 1 Phone 1 Laptop + 1 Tablet 2 Laptops 2 Laptops + 1 Phone

Wiki node link 220 182 168 135 98
Database query 23 18 17 14 10

DBSCAN 150 120 112 85 60
PCA 59 46 43 36 27

Table 1. Computation time (in seconds) for our four different example implementations for five different device combinations
involving laptops, smartphone, and tablet.

It is important to acknowledge that VisHive is not devoid
of a server, as a NodeJS server is used in the current
VisHive implementation for matchmaking purposes, and
matchmaking usually happens once for each device to
initiate P2P connection. However, when one device fails and
rejoins the cluster, matchmaking happens again. While it is
easy to connect cells and establish the hive, a server is not
the optimal solution for matchmaking in many situations,
especially for mobile devices. Typing in IP address is also
slow and complicated, and sometimes raises security issues.
One alternative way is to use Bluetooth or other near-field
communication protocols. These protocols are applicable
for portable devices, but have restrictions on data transfer
speed and the distance range of connecting devices. Another
approach is that cells take a picture of QR code to join the
hive. The prerequisite for this method to work is a camera
and QR code identification application or mechanism on
the device. Finally, we also envision creating a centralized
and common matchmaking server that could easily scale to
matchmaking for thousands of concurrent VisHive clusters.

Nevertheless, we think VisHive outlines an exciting
area for the future as the toolkit is easy to use without
any additional packages installations, and computation and
network connectivity becomes increasingly cheaper in the
future. We also believe that VisHive can encourage other
ideas from the field to better tackle these limitations.

Conclusion and Future Work

We have presented VisHive, a JavaScript toolkit that
allows for connecting multiple devices into an ad-hoc
cluster using just the web browser as the computational
platform. Devices become cells in a hive where a master
allocates and recombines jobs to slaves that perform the
actual calculation. The communication between the cells
is performed using direct browser-to-browser connections
in a peer-to-peer architecture, thus requiring no central
computation management server or connection to the
Internet. The matchmaking service needs to reside on a
server within the same local network to provide connections
in the cluster. We briefly discussed the VisHive API and
declaration of some functions for public access. To showcase
the utility of the technique, we presented four example
implementations of distributed algorithms, including a
distributed web crawler with text analytics, an incremental
database query, a density-based clustering algorithm, and a
dimension reduction method. Our performance evaluations
using these four applications show a significant speedup
basically linear with the number of connected cells.

We see many potential refinements and improvements of
the VisHive toolkit in the future. For example, we envision

continuing our work on making all steps of the visualization
pipeline in a distributed manner, including not just data
transformations and the visual encoding, but also the view
transformations and input management. Furthermore, we are
interested in investigating how to use the slave cells not just
as headless computational units, but also for collaboration
(for multiple users) or for supporting the main device
with additional views and input surfaces (for a single user
with multiple devices). Finally, we would like to study the
usability aspects of firing up multiple devices to offload
a main device, and how this discovery and handshaking
process can be streamlined.
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