
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 1

VisDock: A Toolkit for Cross-Cutting
Interactions in Visualization

Jungu Choi, Deok Gun Park, Yuet Ling Wong, Eli Fisher, and Niklas Elmqvist, Senior Member, IEEE

Abstract—Standard user applications provide a range of cross-cutting interaction techniques that are common to virtually all
such tools: selection, filtering, navigation, layer management, and cut-and-paste. We present VISDOCK, a JavaScript mixin library
that provides a core set of these cross-cutting interaction techniques for visualization, including selection (lasso, paths, shape
selection, etc), layer management (visibility, transparency, set operations, etc), navigation (pan, zoom, overview, magnifying
lenses, etc), and annotation (point-based, region-based, data-space based, etc). To showcase the utility of the library, we have
released it as Open Source and integrated it with a large number of existing web-based visualizations. Furthermore, we have
evaluated VisDock using qualitative studies with both developers utilizing the toolkit to build new web-based visualizations, as
well as with end-users utilizing it to explore movie ratings data. Results from these studies highlight the usability and effectiveness
of the toolkit from both developer and end-user perspectives.

Index Terms—Visualization system and toolkit design, interaction design, user interface, qualitative evaluation.

F

1 INTRODUCTION

G RAPHICAL interfaces have become the norm rather
than the exception for personal computing in the last

two decades. Today’s user environments, be they based on
normal computers or mobile devices, are characterized by
high-resolution displays, rich graphics, smooth animation,
instant visual feedback, and complex transitions. Highly
graphical applications, such as Adobe Photoshop, Microsoft
PowerPoint, and CorelDraw, have evolved together with the
user environments and now provide a rich and standardized
set of cross-cutting interaction techniques for selection (by
shape, path, or free-hand), manipulation (filtering, combin-
ing, masking), and navigation (pan, zoom, overview) in
visual documents. While visualization applications are in
many ways different compared to such general applications,
they are also similar: they generally deal with manag-
ing (selecting, filtering, drilling down into) graphically-
rich objects in multiscale visual spaces larger than the
screen. However, while research has identified and isolated
several abstract interactions common to visualization appli-
cations [1], there exist no standardized implementations for
these tasks. In other words, there is much that visualization
applications can learn from general applications in terms of
interaction design and user experience. More formally, we
define this concept as applied to visualization as follows:

A cross-cutting interaction for visualization
is an interaction technique that is common to a
range of visual representations, data, and tasks.

• Jungu Choi and Yuetling Wong are with Purdue University, West
Lafayette, IN. E-mail: {choi88, wong64}@purdue.edu

• Deok Gun Park and Niklas Elmqvist are with University of Maryland,
College Park, MD. E-mail: {intuinno, elm}@umd.edu

• Eli Fisher is with Microsoft Corporation, Redmond, WA. E-mail:
fisher55@purdue.edu

The purpose of this paper is to explore and opera-
tionalize such cross-cutting interactions for visualization.
More specifically, our work concerns interaction techniques
for selection [3] (lasso, feathering, shape selection, etc),
navigation [4], [5] (pan, zoom, scroll, etc), layer manage-
ment [3], [6] (visibility, depth order, transparency, merg-
ing, etc), and annotation [7] (by point or by region) in
visualization. While many of these interaction techniques
already have been applied to visualization, such work
has been performed on a case-by-case basis. Our effort
here is unified and comprehensive, and proposes a wider
focus on user experience for visualization than traditionally
has been done outside commercial settings. To facilitate
broad adoption of best-practice interaction techniques in
visualization, we also present an SVG-based JavaScript
library called VISDOCK that provides implementations of
all of these interactions that can be easily used by any
web-based visualization implementation. VisDock consists
of a graphical user interface toolkit and an event handler
that connects predefined interaction tools to events that are
defined by the visualization creators. Therefore, VisDock
provides cross-cutting interactions to any SVG-based vi-
sualizations while giving developers flexibility for how to
handle the response to these interactions in their particular
visualization. The intended primary users of VisDock are
thus developers, who in turn build web-based visualizations
that are used by end-users exploring data using them.

To showcase the utility of VisDock, we have made the
library publicly available as Open Source along with a large
number of examples. We have also performed qualitative
usability studies both involving four developers in an in-
dependent research group, as well as with 11 end-users
taken from our university. The developers were asked to use
VisDock to augment their existing web-based visualization
projects, whereas the end-users explored movie ratings and
business review data using a VisDock-enabled web-based



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 2

annotation
MbyUregionL

VisDockUtoolbox
Mselection,Unavigations,
annotationUtoolsL

minimizeUbutton

toggleUinclusive
selection

VisDockUqueryUmanager
MselectionsUandUannotationsL

VisDockUoverview
MpanningUandUzoomingL

hostUvisualization
MmapUofUU.S.UcountiesL

selectionUarea

queryUoperations
Mdelete,UOR,UAND,UXORL

MagnifyingULens

(a) U.S. unemployment visualization with VisDock. (b) VisDock toolbox. (c) Query manager.

Fig. 1. The VisDock toolkit integrated with a U.S. map built with D3 [2] to show unemployment in 2008. With
a minimum of additional coding, VisDock provides advanced selection, query management, navigation, and
annotation functionality for the existing map visualization. The VisDock interface (right side of the image) is
inspired by graphical editors such as Adobe Photoshop and Illustrator.

visualization we developed for this purpose. Results show
that both groups found the toolkit usable and efficient;
the developers were all able to integrate the toolkit with
their existing work with minor difficulty, and end-users
made frequent and varied use of all of the cross-cutting
interactions provided by the toolkit.

2 BACKGROUND

Based on the interaction taxonomy for visualization given
by Yi et al. [1], we here review relevant work on selection,
queries, navigation, and annotation for visualization. We
also contrast each of these existing contributions with our
proposed new VisDock library.

2.1 Selection
Selection for visualization is the ability to mark something
as interesting [1], and is a very common operation when
using a visualization. Selecting an item (or items) will
usually change its visual representation, such as its fill or
outline color, and then allows further manipulation on the
item, such as zooming in, filtering out, or drilling down.
For example, when viewing a large dataset, selecting one
or several data points that are of interest allows the user
to more easily focus on those particular points. However,
the selection operation in most visualizations today is often
limited in one or several ways: (a) users can often only
select single items (by clicking on them) or use simple
bounding box selection to select multiple items, and (b)
many visualization systems do not allow for managing
more than one selection at a time, even if the selection
can contain any number of items.

It should be noted that our definition of selection encom-
passes only interactions designed as direct manipulation [8]
techniques, whereas many visualization applications instead
choose to focus on filtering [1] items, which can be seen
as a form of selection. We disregard filtering here due to
it often being a more data-driven and indirect operation
conducted using range sliders or number fields.

Furthermore, due to its importance for visual tools, there
exist several visualization systems that have implemented

powerful selection mechanisms. For example, commercial
tools such as Spotfire [9] and Tableau/Polaris [10] do
include a range of direct selection tools. In addition, the
ScatterDice [3] and GraphDice [11] systems support lasso
selection (Figure 2(a)). However, perhaps the most ad-
vanced example is the graph selection techniques proposed
by McGuffin and Jurisica [12], which interprets lasso or
rectangle selection depending on the user’s stroke. The
techniques are also structurally aware, allowing selections
based on the graph topology. The selection techniques in
VisDock are inspired by this work, but aim to provide this
functionality to a wide variety of data beyond graphs.

(a) Lasso selection + excentric labeling. (b) Query layers.

Fig. 2. Selection and queries in ScatterDice [3], [11].

2.2 Query Management
Once a set of items has been identified using selection, it
is often convenient to be able to save the selection as a
query result set, compare the set against other sets, and
combine them in various ways (often using set operations
such as union, intersection, and set difference). The benefit
that the user gains from this type of interaction is the ability
to add meta-data onto a visualization beyond the typically
static dataset. Essentially a generalization of selection, we
call this concept query management, or, as is often the
case, visual query management, since many tools use visual
representations for their query results.

Several existing visualization systems provide query
management in various forms. Heer et al. [13] applied



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 3

query relaxation techniques to allow users to generalize
selections according to different attributes in information
visualizations. ScatterDice [3] and GraphDice [11] sup-
port a type of faceted search refinement called query
sculpting, and maintain query control windows for this
purpose (Figure 2). The TimeMatrix [6] temporal graph
visualization system uses a similar overlay box to manage
visibility and transparency of different visualization layers.
While all these existing offerings are powerful, they all
represent one-time designs and cannot easily be applied to
new visualizations. The purpose of query management in
VisDock is to make advanced query management available
for virtually all visualization applications.

2.3 Navigation
Many visualizations incorporate navigation techniques to
allow the user to move the viewport and explore more of
the dataset [1]. This is particularly important for large-scale
and/or visually complex visualizations where the number
and complexity of data items may exceed the size of
the viewport or the perceptual and cognitive capabilities
of the user. Most common of these navigation operations
are panning and zooming [1], [4]—as a case in point,
zooming is included in Shneiderman’s information seeking
mantra [14]—but more advanced navigation is possible.

Since complex visual representations are often multiscale
spaces [15], many visualization tools by necessity go be-
yond simple zooming and panning. OrthoZoom [16] allows
for fast yet controlled zooming in very deep visual spaces.
Topology-aware navigation [5] and gravity navigation [17]
both utilize knowledge of the underlying visual represen-
tation to ease navigation by guiding the user along paths
and towards targets, respectively. MatrixZoom [18] use
controlled animations to transport users between different
levels of an adjacency matrix representation of a graph.
PolyZoom [19] and Mélange [20] allow for navigating
while maintaining multiple focus regions of a visual space
visible at the same time. Similarly, the Dynamic Insets [21]
technique draws cutouts of the local neighborhood of mul-
tiple off-screen targets to provide context-aware navigation.

Unfortunately, advanced navigation techniques are typ-
ically non-trivial to implement. Furthermore, the lack of
standardized navigation means that users often have a hard
time transferring knowledge from one visualization to the
next. Again, the purpose of VisDock is to provide a unified
framework that makes it easy both for developers to inte-
grate advanced navigation techniques in their applications,
as well as for users to navigate in them in a consistent way.

2.4 Annotation
With few exceptions, visualization applications tend to be
designed as viewers of read-only data, so the only way to
modify the visualization is to add meta-level annotations
on top of the data layer. An annotation is defined as user-
created meta-data associated with a visualization, view, or
dataset. Examples of annotations could include a label, a
paragraph of text, or a circled item with a scribbled note.

The design space of annotation is clearly very broad,
from being a simple acetate layer on top of the visualization
such as in Sense.us [7], to the post-it labels attached to
nodes in the DataMeadow data flow system [22]. Some
visualization systems provide entire visual languages for
annotation: examples include the semi-structured Sandbox
system for visual thinking [23], the shoebox view for
evidence marshalling in Jigsaw [24], and the knowledge
view visual markup language in the Aruvi system [25].
However, as evidenced by Sense.us [7], even very simple
visualizations can benefit from annotation support (partic-
ularly for collaboration [26]), so the goal of VisDock is to
provide such baseline annotation functionality.

2.5 Toolkits for Information Visualization
Building toolkits is a common activity in the informa-
tion visualization community, and integrating advanced
interaction and navigation techniques directly into such
toolkits is a good way to achieve widespread adoption
across a wide range of developers. Indeed, many traditional
visualization toolkits, such as Prefuse [27], IVTK [28],
and Improvise [29], do integrate an array of such complex
interaction techniques, including mechanisms for selection,
focus+context navigation, bird’s eye views, etc.

However, with the rise of the web browser as the premier
platform for visualization, a new set of JavaScript toolkits—
such as D3 [2], ProcessingJS1, and the JavaScript InfoVis
Toolkit2—has arisen to replace the old ones. Furthermore,
tools such as Lyra [30] and iVisDesigner [31] are even
allowing end-users to interactively create new visualizations
without any need for textual programming. Ellipsis [32]
allows users to create dynamic annotations in their visual-
izations by direct manipulation interface. However, the de-
sign rationale of such toolkits tend to be more minimalistic,
perhaps due to the dominantly layperson audience of web-
based visualization, so none of these toolkits provide more
than basic interaction techniques. This motivates our choice
to design VisDock as a mixin JavaScript library that can
easily integrate with existing visualization toolkits, similar
to Harper and Agrawala’s restyling tool [33] that extends
any existing D3 visualization.

Very recent work on interaction for information visual-
ization toolkits includes the declarative interaction language
proposed by Satyanarayan et al. [34]. Unlike the callback-
based event handler used in VisDock, this approach is
based on the Vega JSON-based visualization grammar
where visualizations (and interactions) are specified as data-
level interactors that operate on streams of input data. Our
contribution instead provides a concrete set of cross-cutting
interaction techniques accessed using a tool dock.

3 DESIGN: CROSS-CUTTING INTERACTION

The design space of cross-cutting interaction techniques for
visualization includes interactions that can be applied to

1. http://processingjs.org/
2. http://thejit.org/



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 4

Fig. 3. Toolbars from Adobe Illustrator (left) and the
GNU Image Manipulation Program (GIMP) (right).

a wide range of visualizations for any type of data. For
an interaction to be truly cross-cutting, however, it must
be operationalized at a sufficiently concrete abstraction
level that it can be implemented consistently across all
datasets and visual representations. For example, the seven
categories of interactions proposed by Yi et al. [1] describe
high-level tasks based on user intent, and thus are too
abstract to constitute actual cross-cutting interactions.

More specifically, we define the design space of cross-
cutting interaction techniques for visualization as follows:

• Any dataset: The technique should not be tied to a
data type. For example, the selection tools by McGuf-
fin and Jurisica [12] are designed for graph data alone.

• Any visualization: The interaction should be useful
for many different visual representations. For example,
the link-sliding technique [5] is specific to node-link
diagrams and will not directly transfer to scatterplots.

• Concrete: If an interaction technique is not specified
at a sufficiently operationalized level, it will not be
possible to build an implementation of the technique
that works across multiple representations.

• Direct manipulation: We choose to consider only
techniques based on direct manipulation, i.e., that
operate on continuous visual representations of objects
manipulated using physical actions that are rapid,
incremental, and reversible [8].

To inform our design beyond the visualization field, we
draw on examples of interaction and user experience design
from general user applications. We review these below.

Selection techniques. Many graphical applications pro-
vide advanced selection techniques, including by lasso,
paths, and shapes. Figure 3 shows toolbars for both Adobe
Illustrator as well as the GIMP. Some of the tools depicted
here include rectangular and elliptical marquee selection,
the magic wand selection tool for selecting a contiguous
area based on color, and the path tool which can be used
as a selection input. All of these are cross-cutting in that
they are highly concrete, they can be applied to virtually any
collection of graphical objects, and use direct manipulation.

Layer management. The closest to query management
tools for general graphical applications is the layer man-
agement for graphical editors such as Adobe Photoshop.
Figure 4 shows the layer control window in Photoshop
where graphical objects have been stratified into a layer
stack which controls rendering order. Individual layers can
be moved up and down in the stack, their visibility and
transparency can be changed, and they can be given names.
Photoshop and GIMP even treats text as a special layer

Fig. 4. Layer control window for Adobe Photoshop.

type, which is of interest for our annotations—what if
annotations were simply special query layers?

All of these are cross-cutting interaction techniques:
any visual representation can be split into layers without
loss of generality, and the layers can then be individually
controlled. In fact, the IVTK toolkit [28] draws node-link
diagrams as two layered visualizations, one for the links and
one for the nodes, and TimeMatrix [6] composes multiple
visual layers to produce its representation.

Navigation. Graphical editors typically operate on large,
high-resolution images and illustrations, so navigation is a
key operation in these tools. The typical navigation tech-
niques in Adobe Photoshop, GIMP, and Adobe Illustrator
are zooming as well as scrolling and panning (where the
former is conducted using the window scroll bars and the
latter using a hand tool). Recent versions of Photoshop
are now starting to incorporate more advanced navigations,
such as smooth zooming (using the GPU for high perfor-
mance), flick panning (where the viewport will continue to
glide for a bit after releasing a pan operation), and bird’s
eye views (where the user can temporarily zoom out to an
overview before zooming back in to a new location).

Fig. 5. Annotation toolbar for Adobe Acrobat Pro.

Text and annotation. Graphical editors such as Photo-
shop and the GIMP do not need annotation functionality
because they are content creation tools by design (they do
contain text tools for creating textual content, however).
Visualizations, on the other hand, are generally designed
as read-only viewers. For this reason, a better source of
inspiration for cross-cutting annotation techniques is Adobe
Acrobat Pro and Adobe Acrobat Reader. Even if the former
is a content editor, the PDF format is not suited for editing,
and thus both Acrobat applications are primarily designed
for viewing PDF documents and not creating them. Figure 5
shows the annotations toolbar in Adobe Acrobat Pro. Some
of the relevant interaction techniques shown here include
highlighting, adding a post-it note or a text box, and adding



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 5

arrows and simple shapes to the document.
Additional interactions. Current graphical editors con-

tain several additional interaction techniques that are can-
didates for adoption as cross-cutting interaction techniques
for visualization. However, many of these are specific to
content creation and modification, which is a poor fit
for visualization. For example, cut-and-paste is perhaps
the most well-known cross-cutting interaction technique
common to virtually all modern user applications, but lacks
a straightforward equivalent for read-only visual represen-
tations. Other techniques, such as search, replace, sort, etc,
are less general or do not use direct manipulation.

One particularly interesting class of interactions is tech-
niques based on surrogate interaction [35], where proxy
objects are added to the interface to allow complex manipu-
lation. Several visualization examples were proposed in the
work. Furthermore, the interactive legends by Henry Riche
et al. [36] is a similar idea. However, all of these techniques
require significant customization for each visualization, so
we currently exclude them from VisDock.

4 THE VISDOCK TOOLKIT

VISDOCK is a JavaScript library for adding cross-cutting
interaction techniques to web-based visualization. It cur-
rently supports advanced selection, query management,
navigation, and annotation. The toolkit is based on SVG
and uses a container approach for external visualization,
allowing it to be used with any SVG-based toolkit such as
D3 [2] or RaphaëlJS.3 A minimalistic interface consisting
of a toolbar, a query management window, and an overview
provides access to the toolkit’s functionality (Figure 1).

VisDock has two types of users: because it is a program-
ming API, the primary user is the client programmer who is
using the library to augment their web-based visualizations.
The end users who are using VisDock to interact with a
visualization are thus secondary users of the toolkit.

4.1 Basic Architecture
VisDock is designed as a mixin JavaScript library intended
to augment an existing SVG-based visualization while
requiring a minimum of coding. The visualization being
augmented is called the host visualization. To achieve a
minimal footprint on the host visualization, VisDock uses
a container design. Instead of creating a new top-level
SVG element (an <svg> tag), the host visualization creates
a VisDock instance, which creates the element, and then
requests the viewport from VisDock itself (Listing 1).

VisDock.init("container", {width: w, height: h});
var viewport = VisDock.getViewport();

Listing 1. Initializing VisDock to a specific DOM ele-
ment and with a desired canvas size.

The container for VisDock can essentially be any element
in the HTML document, such as the <body> or any
<div> elements. The viewport node is an SVG group
(<g>) element, which means that it can be populated

3. http://raphaeljs.com/

with the host visualization’s own graphical representation.
If the developer wishes to import the VisDock toolkit
into a web visualization consisting of multiple canvases
(e.g. Figure 10), VisDock can be initialized with arrays of
arguments as shown in Listing 2.

var container = ["#div1", "#div2"];
var sizes = [{width: w1, height: h1},
{width: w2, height: h2}];
VisDock.init(container, sizes);
var viewport1 = VisDock.getViewport(0);
var viewport2 = VisDock.getViewport(1);

Listing 2. Initializing VisDock to accommodate multiple
canvases.

VisDock creates additional scene graph nodes for internal
use: the toolkit maintains an overall panel for the entire
interface, including subtrees for the toolbox, query man-
ager, and overview. Furthermore, ancestors to the viewport
include nodes for clipping, annotation, and navigation.

4.2 Graphical User Interface

The core VisDock graphical interface (Figure 1) consists
of the main viewport (which the host visualization fully
controls), a toolbox, a query manager, and an overview.
The entire interface can be hidden by clicking a minimize
button at the top-right corner of the VisDock panel; clicking
it again will bring it back. The purpose of this feature
is to support situations where the full VisDock interface
may become too intrusive and detract from the visual
representation. The VisDock interface can also be dragged
across the viewport, allowing for optimizing space usage,
and can be docked when dragged to the corners or edges of
the viewport. The docking orientation changes from vertical
(Figures 6, 7, 8, and 9 to horizontal (Figure 12) when the
dock is dragged to the top or bottom edges of the viewport.

Furthermore, VisDock is also responsive to varying de-
vice capabilities. which means that the toolkit adapts its
size based on the amount of available screen and input
space. For instance, on a smartphone or tablet, VisDock
is initialized with the minimumized dock to give full
view of the host visualization, whereas the dock is always
visible when viewed on a computer screen. In addition,
the VisDock toolkit is designed such that when the viewer
resizes the window, the toolkit also adjusts its size so that
it fits reasonably well in the canvas. This feature is inspired
by Responsive Javascript4 and is particularly useful when
the original visualization is large.

Beyond this, all VisDock interface components can be
activated and deactivated on an individual level, even down
to specific operations. The intention is to give full control
and flexibility to the client programmer who is using the
library. For example, if the host visualization does not pro-
vide an event handler, the VisDock toolbox will not include
selection tools. Similarly, if a particular visualization does
not need a miniature overview, the client programmer can
simply disable that feature with a single line of code.

4. http://www.responsivejavascript.com



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 6

The VisDock toolbox (see Figure 1(b)) is how end users
of a VisDock-enabled visualization accesses its function-
ality. Clicking on a tool in the toolbox will make it the
currently selected tool (indicated using a highlight). Vis-
Dock tools are organized into three groups: selection, navi-
gation, and annotation tools (described below). In addition,
VisDock provides a default Pointer Tool. When the Pointer
Tool is active, all interaction in the viewport will be passed
on to the host visualization. This allows for accessing the
interactions provided by the host visualization, such as
hovering over items to show data tooltips or dragging the
nodes in a force-directed graph visualization.

Unlike the integrated pop-up widgets employed in a
number of other systems [12], [37], VisDock uses a button-
based toolbar. Pop-up widgets are often invoked by means
of a mouse click or stylus gesture. We chose a toolbar
design for VisDock to separate mouse/stylus events from
the original interactivity of the host visualization, allowing
for easy integration with new visualizations. Just like other
multi-platform systems [3], [11], VisDock-enabled visual-
izations are compatible across various platforms including
tablets and smartphones. This means users may have limited
means of accessing events (such as mouse right click).
Furthermore, the menu can be minimized if it becomes
distracting or takes up too much space, as discussed above.

4.3 Event Handling
Due to VisDock’s container design, the toolkit has no
way of determining the structure of the embedded host
visualization. Instead, the client programmer must supply
the necessary visualization-specific logic that serves as the
“glue” to the toolkit. In VisDock, this is achieved using
the VisDock event handler: an abstract interface that all
host visualizations must implement either fully or partially
(depending on which cross-cutting interactions are desired).
Listing 3 shows the interface5 for VisDock’s event handler.

var visdock.eventHandler = {

// Find intersected items given a shape
getHits: function(points, inc) { return []; },

// Mark the selection with a color
setColor: function(items, queryId) {},

// Remove a selection
removeColor: function(queryId) {},

// Modify an existing selection color/opacity
changeColor: function(style, queryId) {},
changeVisibility: function(style, queryId) {},

// Called when Pan/Zoom/Rotate events occur
viewChanged: function(view) {}

}

Listing 3. Interface for the event callback handler.

To enable specific functionality, the client programmer
is expected to create an implementation for all methods
in the event handler (if no event handler is present, all

5. JavaScript is a dynamically typed language, so it does not explicitly
support interfaces; the code only shows the spirit of the design.

VisDock operations are disabled). Because some operations
such as shape intersection (for selection) can be challeng-
ing to implement, VisDock comes with a utilities library
(visdock.utils) with helper functions, such as for
intersection testing between most common shapes.

4.4 Selection
VisDock selection tools include the following (Figure 1):

• Shape selection (e.g., rectangle, ellipse, polygon);
• Free-hand lasso selection for closed shapes; and
• Path-based selection, both free-hand and polylines.
Selection is invoked by selecting the appropriate tool in

the VisDock toolbox and then interacting in the visualiza-
tion viewport. Rubberband shapes are added to an overlay
drawn on top of the host visualization in response to such
interaction, and are removed when the operation ends. For
example, using the Rectangle Tool lets users specify the
position and dimensions of a rectangular marquee selection.

Most event handler operations (Listing 3) are used for
handling selections: determining which marks (as opposed
to background graphics) fall within a selection shape or path
as well as adding, modifying, and removing color highlights
in the visualization. The hit testing function (getHits)
can take either open or closed shapes (depending on the
points array), and also accepts a flag that indicates
whether the intersection test should be inclusive or not.
Inclusive intersection means that an item that only intersects
but is not fully contained by a closed selection shape is still
regarded as being selected. For non-inclusive intersection,
items must be fully contained within the selection to be hit.

To alleviate the client programmer’s burden, VisDock
utilities library provides standard functions for selection,
including intersection testing as well as maintaining color
sets for highlighting queries. Typically, the functions in the
utilities library create cloned layers of the original objects to
mark the selection; these are later deleted when a particular
item is deselected. More advanced behavior can be achieved
using the arguments in Listing 3. The argument points
array contains the coordinates of the outline of the bounding
shape, the items array contains original elements that
were selected for the query with the index queryID,
the style argument contains the style information of
the specific selection, and the view argument is the type
of transformation, such as panning, zooming or rotating.
Instead of following the typical example of selecting and
cloning, the client programmer may make the selected
elements shrink, expand or remove from visualization by
defining his or her own event handler.
VisDock.updateLayers();

Listing 4. Updating the cloned layers.

VisDock is also able to handle selection of dynamic SVG
elements that undergo transition in the host visualization.
The transitions can be an event-triggered one, such as
semantic zooming, or a continuous one, as for an animated
object (Figure 9). In order to update the coordinates of
these cloned layers in case of transition events, the update
function can be regularly invoked as shown in Listing 4.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 7

Fig. 6. VisDock-enabled faux-3D shaded Earth visualization with annotations by data space. These annotations
stay attached to the original elements when the globe rotates.

4.5 Query Management

The VisDock query manager maintains a list of currently
active queries. A query consists of a set of items (a subset
of the entire dataset being visualized), a name, a color,
and parameters for visibility, transparency, and depth order.
Making a selection using the VisDock selection tools will
automatically create a corresponding query for the selected
items in the query manager, assigning it a default color and
name (currently “Query N”, with incrementing N).

The query management window is a listbox with vertical
scrollbars that shows active queries (Figure 1(c)). Its design
is inspired by the layer management interfaces from Adobe
Photoshop and the GIMP. Each query is represented by a
single line giving its name and color and providing widgets
to show/hide, change transparency, and delete the query.
Queries can be selected by clicking on them, changing
their background color. Just like in Photoshop, the order
of queries in the list governs their depth rendering order.
The order can be modified by selecting a query and moving
it up or down in the list. Similarly, changing the name of a
query is done by clicking on its label (which will pop up
a dialog box), and its color can be changed by clicking on
the color box and selecting a new one in a color picker.

While maintaining a history of all selections is a useful
feature for a query manager, the potential of this cross-
cutting interaction technique is even greater. VisDock pro-
vides several set operations for combining the currently
selected queries in various ways: AND computes an inter-
section between the item sets for all selected queries (i.e.,
including only those items that appear in all of them), OR
computes a union (all items that exist in at least one query),
and XOR computes the exclusive disjunction (all items that
appear in only one query). Instead of deleting the operand
queries (which is the logic of the analogous “merge layers”
functionality in Photoshop), the results of set operations
create a new query that is added to the end of the list.

Since all of our query management tools operate on
anonymous sets of items, VisDock does not require the
client programmer to write any glue code to support most of

its operations. The only exception is that the event handler
(Listing 3) must contain implementations for adding, mod-
ifying, and removing color sets in the host visualization;
these methods are called in response to creating, changing,
and deleting visual queries. This is made slightly more
complex by the need to maintain multiple color sets, since a
single item can feature in many queries. Again, the VisDock
utility library provides helpful bookkeeping code and data
structures for this purpose.

4.6 Navigation
Two facts contribute to enabling VisDock to support ad-
vanced navigation for any SVG-based visualization:

1) The viewport containing the host visualization is an
SVG group (<g>) node, which means that it has an
affine transform that affects the visualization; and

2) Except when the Pointer Tool is active, VisDock will
intercept all inputs (such as mouse or touch presses,
drags, and releases) performed on the viewport.

This means that we can provide navigation tools that
will modify the viewport’s transform in response to inter-
action. In the current VisDock implementation, we provide
standard Pan, Zoom, and Rotate Tools which behave as
expected: they change the translation, scaling, and rotation
of the viewport’s transform, respectively. While uncommon
for visualization, the intention behind the Rotate Tool is to
be able to change the orientation of a visual representation,
such as when using it on a horizontal (i.e., tabletop) display.

var overview = visdock.getOverview();

Listing 5. Accessing the overview viewport.

Beyond these direct manipulation techniques, VisDock
also provides an overview window for displaying a minia-
ture version of the visualization. This is simply another
SVG group node; Listing 5 shows how the client pro-
grammer can access this node using JavaScript. Instead
of replicating the SVG code for the main visualization,
the client programmer may choose to use a less detailed
representation in the overview (even a bitmap image).



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 8

For all of these operations, the event handler provides a
viewChanged method that gets called everytime the 2D
view transform changes; a client visualization only needs
to implement this method to respond to such viewport
changes. Possible uses for this method is to support seman-
tic zooming [38], where the visual representation changes
depending on the magnification level, or to move the axes
of a scatterplot to a fixed location inside the viewport as
the user pans and zooms in the visualization.

VisDock also provides magnification lenses, in rectan-
gular and circular shapes, that allow users to inspect the
host visualization by focusing on a local region. A small
rectangular or circular view will appear with a magnified
view of the selected region. These features are shown in
Figures 7, 8, 9, and 12 with a bounding shape with a grey
stroke. The zoom levels of these lenses can be controlled by
first activating the lens and then rotating the mouse wheel.

The above navigation operations are naturally common,
and much more advanced and powerful techniques are
possible for future extensions to VisDock. For example,
pinching to zoom or rotate would be useful for when
interacting with VisDock using a touch screen. While not
currently supported, they may be implemented in the future.

4.7 Annotation

Annotations in VisDock use the same approach as
Sense.us [7], where user annotations are simply represented
by an overlay on top of the host visualization. This is akin
to an acetate layer overlaid over a paper illustration, where
drawing and handwriting on the acetate is independent of
the underlying illustration, yet is ultimately composed into
a single picture. Building on this metaphor, all annotations
in VisDock become layers of their own and are added to
the query management window. This gives access to the
same operations that queries have, i.e., changing name (i.e.,
the annotation text), color (for reference points or regions),
transparency, depth order, and deleting an annotation.

Annotations in VisDock are textual labels with a ref-
erence line and a reference. The mechanism is accessed
using three separate tools: by point, by region, and by data.
Annotations created by the first two methods have fixed
reference points in the Euclidean space, while annotations
by data let the user specify a single reference point and
a single SVG element. Annotation by region lets the user
draw a closed shape using a lasso to define a reference
region. In all cases, the annotation label is attached to the
reference using the reference line. The label can then be
freely moved around the visualization to a place where
it does not occlude important information. VisDock’s an-
notations are navigation-aware, so they will stay fixed to
the underlying visualization even when the user pans and
zooms in the visual space (and are shown in the overview).

While annotation by point and annotation by region
fix the reference at specific coordinates in the viewport,
annotation by data space attaches the annotation to an SVG
element. Therefore, if the underlying host visualization is
interactive or changes over time, the original information

contained in annotations with a fixed reference may become
out of date. On the other hand, annotation by data gets
updated to the appropriate location that reflects the change
in the host visualization. Annotation by data space is
showcased in the faux-3D shaded globe example6 by Derek
Watkins in Figure 6.

AnnotatedByData.layerTypes = [’.layers’];

Listing 6. Initialization for annotation By Data Space.

Implementing annotation by data space requires specify-
ing the types of SVG elements to which annotations should
be attached (Listing 6 specifies the SVG element types as
elements with the ’layer’ class identifier). These can be a
SVG tag name, polygon, ellipse, rectangle, a class identifier,
or a combination of these.

AnnotatedByData.update();

Listing 7. Updating annotation By Data Space.

Once the update event is called (Listing 7), all annota-
tions created in this manner get updated. This, however, is
a one-time update and may be invoked multiple times or
continuously for a smooth transition. In addition, in case
the host visualization undergoes a rotation event, whether
it is due to semantic events or use of the navigation tools,
all annotation text elements maintain the upright position
so that the users can read the text conveniently at all times.

More advanced annotations than the ones described here
are certainly possible. For example, on pen-based interfaces
(or current multitouch surfaces that allow the use of a
stylus), it may be useful to be able to draw and write
directly on the visual representation using free-hand input.
The VisDock design is extensible, and we anticipate adding
this kind of annotation functionality in the future.

4.8 Supporting Collaboration
VisDock allows end-users to save their markings and an-
notations by exporting the cloned layers and annotations
in a JavaScript Object Notation (JSON) format. The col-
laborative environment that VisDock offers can take place
among (1) viewers with the same visualization (2) viewers
with different visualizations that contain the same data
contents or data with similar structures. The saved JSON
data can be imported into the refreshed web visualization
or a visualization that already contains other cloned layers
created using VisDock.

4.9 Implementation
VisDock is implemented as a JavaScript library
(visdock.js) using the jQuery7 API for general
JavaScript features. In addition, VisDock interface
information for SVG and CSS components is contained in
separate files. Finally, the VisDock utility library uses the
KevLinDev computational geometry library8 and another

6. http://http://bl.ocks.org/dwtkns/4686432
7. http://jquery.com/
8. http://www.kevlindev.com/geometry/



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 9

utility library to provide basic intersection testing and
bookkeeping objects for use by client programmers.

VisDock is an Open Source project and is pub-
licly available on GitHub at http://VisDockHub.github.io/
NewVisDock. Besides the full JavaScript source, this web-
site also contains documentation, tutorials, and examples.

5 VISUALIZATION EXAMPLES

We have successfully used VisDock to add cross-cutting
interaction to a large number of web-based visualizations.9

In this section we review some representative examples.
Please note that we here in no way take credit for the
visualizations themselves; all credit is due to the original
authors (acknowledged below). Our contribution is merely
the integration of VisDock with these existing tools.

Fig. 7. VisDock-enabled rotating cluster layout [2].

5.1 Rotating Cluster Layout
The D3 website (http://www.d3js.org/) provides an example
of a tree structure organized in a radial fashion, which
has the root node in the center and the leaf nodes at
the circumference. Built by Michael Bostock,10 this ex-
ample has a text and circular element for each node and
supports interactivity where the visualization rotates with
each mouse click and drag. Figure 7 showcases annotations
by data space, panning and zooming, various selection
methods, and a rectangular magnifying lens (shown as a
grey box).

5.2 Force-Directed Layout Visualization
The force-directed layout example, also created by Michael
Bostock,11 contains nodes with an image and text that are
loosely bound by interactive force [2]. As shown in Figure 8
this force can be perturbed with the mouse click and drag,
which causes the nodes to realign. Our selection tools allow
for querying these nodes, annotations by data space help

9. http://bl.ocks.org/VisDockHub
10. http://mbostock.github.io/d3/talk/20111018/cluster.html
11. http://bl.ocks.org/mbostock/950642

Fig. 8. Node-link diagram with force-directed layout.

users to tag the queries with meaningful information, the
pan and zoom methods allow for navigation to optimize the
view space, and the magnifying lenses let the user zoom in
while leaving the main view intact.

Fig. 9. VisDock-enabled dynamic SVG elements.

5.3 Animated Elements
The tadpole example, also created by Michael Bostock,12

contains animated objects that continuously change trajec-
tory and shape. Figure 9 shows VisDock integrated into
this tadpole example, where the selection tools are used
to highlight a number of the moving tails, annotations are
used to tag the heads (all annotations will move around the
visual space as the heads move), and navigation tools are
used for closer inspection of these elements.

5.4 U.S. Unemployment Map
D3’s Choropleth example13 (also created by Michael Bo-
stock) shows U.S. unemployment rates for 2008 down to
a county level. The example uses more than 3,000 SVG
elements; one for every county. However, the visualization
is entirely static and supports no interaction.

Figure 1 shows the visualization with VisDock inte-
grated. Geographical selections can now be anything rang-
ing from an arbitrary rectangular shape in the Midwest to

12. http://bl.ocks.org/mbostock/1136236
13. http://bl.ocks.org/mbostock/4060606



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 10

a path following the West Coast. In addition, geometric se-
lection can simplify tasks such as querying specific patterns
such as: counties along the US-Canada border, and counties
that are placed within a circular area centered at major U.S.
cities. Furthermore, users can now zoom in on specific areas
of the country without the original visualization having to
be changed. As before, the VisDock integration is only a
few lines of code.

Fig. 10. MovieVis tool with its user interface elements.

5.5 MovieVis and YelpVis

The MovieVis14 visualization (Figure 10) lets users explore
movie preference patterns, whereas YelpVis15 shows the re-
lationship between local businesses, such as restaurants, and
the words that used to describe them on Yelp (Figure 10).
Viewers may explore the data space by changing data axes,
navigating the data space, and selecting and annotating
their findings. Both visualizations use VisDock to enable
sophisticated query selections. The system consists of two
canvases, and various tools for data exploration.

Based on our experiences integrating VisDock into these
two tools, we extended the library to also include sup-
port for multi-view visualizations such as these ones.
Activating multiple canvases requires the user to initial-
ize VisDock with specifications (dimensions and layout)
for each individual viewport. The client programmer can
then access each individual viewport ndx using the call
VisDock.getViewport(ndx).

Fig. 11. (left) Binary tree visualization by Peter Cook,
and (right) collapsible force layout by Michael Bostock.

14. http://vistalk3.herokuapp.com/movievis
15. http://vistalk3.herokuapp.com/yelpvis

6 USING VISDOCK FOR VISUALIZATION

To best demonstrate VisDock’s utility and ease of use, we
here present two detailed examples of how to integrate
the toolkit with existing implementations of both static
and dynamic visualizations. Figure 11 shows the initial
visualizations: a static tree, and a force-directed graph.

6.1 Static Tree Visualization
The binary tree visualization16 is a static visualization gen-
erated using a recursive algorithm with nodes branching in
random yet controlled directions. This visualization offers
some interactivity when the mouse pointer hovers over
tree nodes, which highlights the path from the node to
the root. Written using the D3 library [2], this beautiful
example contains over a thousand SVG line elements, each
representing a tree node. To add a realistic feel to the
tree structure, the algorithm generates nodes (branches) in
higher parts of the hierarchy in thicker strokes, while those
in lower in the hierarchy use thinner strokes (Figure 12).
The initialization of the VisDock toolkit can be invoked in
a straightforward manner as discussed in Section 4.

We use very simple intersection testing against line
elements. The VisDock utilities library is able to handle
any polygon shape (even non-convex). Listing 8 gives an
example of a concise JavaScript source code for implement-
ing the VisDock event handler.

visdock.eventHandler = {
getHits: function(points, inc) {

var shapebound = new createShape(points);
return shapebound.intersectLine
(viewport.selectAll("line"), inc);

},
setColor: function(items, queryId) {

for (var i = 0; i < items.length; i++) {
VisDock.utils.addLineLayer(items[i]);

}
},
changeColor: function(queryId, color) {

VisDock.utils
.changeColor(color, queryId, "stroke");

},
changeVisibility: function(style, queryId) {

VisDock.utils.changeVisibility(style, queryId)
},
removeColor: function(queryId, color) {

visdock.getViewport().select("#" + queryId)
.remove();

}
};

Listing 8. An example Event handler for binary tree
visualization (refer to the GitHub page for more details).

Because host visualizations integrating VisDock can ex-
pect their visual elements to be part of several concurrent
selections, it is not sufficient for the visualization to merely
change the color of the underlying elements. Instead, for
every selection, we clone the SVG line element representing
nodes (branches) on top of the original nodes with a user-
defined opacity. The cloned elements are tagged with a
unique ID given by VisDock, allowing the elements to be
easily retrieved for modification or removal.

16. http://prcweb.co.uk/lab/d3-tree/



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 11

The finished binary tree visualization with VisDock
integrated and in action is shown in Figure 12(left).

Fig. 12. VisDock-integrated binary tree visualization
(left) and collapsible force layout (right).

6.2 Dynamic Graph Visualization
Figure 12(right) shows the collapsible force layout exam-
ple built by Michael Bostock.17 This force-directed graph
layout example, like many other visualizations using force-
directed layout, allows users to drag nodes around as well
as hide the children of a node by double-clicking the node.
Although nodes change their coordinates in response to the
user’s pointing, the selection layers that are cloned in a
manner similar to those in the binary tree example can have
their coordinates similarly updated with a simple command:

VisDock.updateLayers();
AnnotationsByData.update();

Listing 9. Updating cloned layers and annotations to
new coordinates when the original elements animate.

Listing 9 may be invoked continuously to create smooth
animations of the annotations and cloned layers over time.

7 EVALUATION

We conducted two qualitative usability studies to assess the
utility of VisDock. Below we discuss them in detail. The
main difference between the studies was the participants:

• End users: In-depth data exploration for casual end
users with the VisDock-enabled MovieVis tool; and

• Client programmers: Informal usability study with
visualization programmers from a different research
group integrating VisDock in their current projects.

In addition, we include here feedback on the usability and
affordability of the tookit posted on the VisDock forum18

by a number of developers who used VisDock.

7.1 Data Exploration with End Users
Method. We recruited 11 (8 male, 3 female, average age
26) paid participants from the student population at our
university to use the MovieVis and YelpVis tools in 20-
minute data exploration sessions. As described in Section 5
and shown in Figure 10, these visualizations consist of
complicated data points. We imported VisDock into the
visualizations to help the viewers to explore, navigate and

17. http://bl.ocks.org/mbostock/1062288
18. http://groups.google.com/forum/?hl=en#!forum/visdock group

search for meaningful patterns instead of designing the
individual tools from scratch. Participants were given a 10-
minute training session prior to starting these sessions, and
was given a post-test survey after completing them. The
sessions consisted of using VisDock to view movie ratings
and business reviews, and to record insights from them
using comments. The participants’ comments were saved
to the server and reviewed later.

Results. Not surprisingly, all participants were able to
successfully use the VisDock interactions and gave positive
feedback on the utility of the interface. Participants wrote
a total of 71 comments for MovieVis and 52 comments for
YelpVis during the exploration sessions (an average of 6.5
and 4.7 comments per participant). All participants used
the VisDock selection tools to create queries consisting of
multiple items, and the VisDock navigation tools to zoom
and pan around in the two scatterplot views. In addition,
a majority (9 out of 11) used the annotation tools to link
their comments with points or regions on the visual rep-
resentation. Informal observations and post-test interviews
indicated no major issues with the usability or functionality
of the VisDock interface. While designing these individual
tools may be a daunting task in complex visualizations like
MovieVis and YelpVis, the fact that the participants were
able to explore the data and gather insights in VisDock-
enabled MovieVis and YelpVis reinforces VisDock’s ease-
of-use and effectiveness. Furthermore, several participants
requested more advanced selection and query management
tools, including multiple selection, sophisticated set opera-
tions, and improved navigation techniques.

7.2 Developing with Client Programmers
Method. We report the evaluation of VisDock and the
comments and feedback we gathered from developers who
used VisDock and participated in the discussion of the
system on the online forum. For the evaluation, we con-
ducted an informal focus group evaluation of VisDock
inspired by the methodology previously used by Klemmer
et al. [39]. Six graduate students from a neighboring
visualization research group at our university participated
in the study. The participants all had varying experience
in web-based visualization using JavaScript (self-reported);
one was an advanced developer, whereas the others had
novice to intermediate skills. All had built basic charts such
as scatterplots, bubble charts, and pie charts.

The study consisted of a two-hour group session with five
of our participants (the advanced-level student participated
remotely). The session started with an initial 20-minute
presentation on the VisDock toolkit. The participants were
then given access to the VisDock GitHub website and were
asked to use the tutorials, examples, and documentation to
integrate the toolkit in their own projects. They were given
a time limit of 90 minutes. Two experimenters participated
in the evaluation session, taking notes, and answering
questions. After the session, participants were asked to give
feedback on the focus group session and the toolkit.

Results. Figure 13 shows four screenshots of outcomes
from the study. The advanced participant successfully de-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 12

veloped an interactive visualization using only the online
VisDock source repository and tutorial without face-to-face
communication with the researchers. The tool visualizes the
converted frequency domain signal of a signal in the time
domain. This example indicates that the VisDock library is
accessible and understandable for expert programmers.

For the less experienced participants, all were able to
import the VisDock toolkit in their project (i.e., so that the
VisDock interface showed up in their visualization), but
only three out of five were able to properly implement the
VisDock event handler. Two of the participants were unable
to implement the event handler; we found that one of these
participants had an existing bug in their code.

All user study participants as well as independent devel-
opers noted that they were impressed with the interactions
that VisDock provides without coding. One participant
mentioned that VisDock can be useful in collaborative
working environment because any VisDock-enabled visual-
ization can allow viewers to explore and mark their findings
and share the annotated visualization with others. She even
suggested a sophisticated strategy to generate a URL to
save the annotations and markings. One developer remarked
that although VisDock saved him a lot of coding effort in
building navigation/annotation tools in his visualization, he
thinks VisDock would be more user-friendly if the toolkit
were totally separate from the canvas viewport.

On the other hand, although they had positive sentiment
toward the ease of use of importing VisDock, many thought
that the VisDock event handler could be made simpler. For
instance, one developer remarked that selection functions
can be made much more condensed so that the developer’s
coding responsibility becomes less complicated. Another
developer remarked that integrating VisDock into someone
else’s visualization is difficult because implementing the
event handler interface required knowing all details of the
visualization. In fact, implementing of Listings 1 through 6
all requires good knowledge of the structure of the host
visualization. This is not totally unexpected since adding a
new set of customized interactions would require knowl-
edge of the structure of the original visualizations. We
will work toward minimizing developers’ burden in imple-
menting VisDock while allowing for flexibly customizing
these interactions. One solution to this problem would be
a default event handler that developers can employ with a
single line of code. However, this would limit developers’
ability to customize mapping of interactions to certain
events. We also plan to add more illustrative examples to
the VisDock GitHub as guides to new developers.

8 DISCUSSION

The fact that our interactions are cross-cutting also means
that they cannot be specialized for particular datasets and
visual representations. While the scope of cross-cutting
interaction for visualization numbers more techniques than
the selection, navigation, annotation, and query manage-
ment techniques we currently include in the VisDock
toolkit, we found that these were a good and well-rounded

Fig. 13. Visualizations built in the developer study.

subset to start with. Future versions will likely incorporate
additional cross-cutting techniques, such as general filter-
ing, surrogate interaction [35], and interactive legends [36].

Furthermore, while integrating VisDock requires a min-
imum of coding on behalf of the client programmer, it is
not possible to use VisDock without any coding at all.
One solution to avoid coding altogether may have been
to let VisDock operate on the pure SVG node hierarchy,
i.e., selecting, grouping, and annotating individual shapes
and vector elements. However, virtually all non-trivial vi-
sualizations use composite graphics as visual marks, and
some graphical elements—such as tick marks, labels, and
backgrounds—are not strictly part of the visual represen-
tation itself. Off-loading some of this responsibility to the
client programmer allows for controlling these higher-level
aspects at the cost of some code integration. VisDock
currently supports multi-canvas visualizations, and efforts
to implement brushing and linking and other features are on
the way. In addition, we plan to make the VisDock design
more customizable so that developers can select specific
tools and change the appearance of the graphical interface.

VisDock is currently designed for manipulating the ge-
ometric representation of a visualization (in the form of
the SVG scene graph), not the underlying data. Unlike
Satyanarayan’s data-level interactors [34], this limits the
type of cross-cutting interactions that can be supported
using the library to those restricted to geometric features
of the visualization. Other types of interactions, such as
filtering, computing derived values, and changing layout,
require knowledge of the data representation as well. Cross-
cutting interactions in data space would allow for easily
implementing filtering, searching, and drilling down into
the data. However, this is also left for future work.

Nevertheless, we overcome a few of these limitations
by providing callbacks to the underlying visualization.
For example, annotations and cloned layers can reference
data-driven elements with little explicit coding on the
developer’s part. However, even though annotations can be
attached to SVG elements so that continuous animation is
possible, this method does not currently support annota-
tions marking a region. One way to create an annotation
referencing an area is a convex hull [3], where a polygon
is automatically created to contain the elements that fall in
the area, or using Bubble Sets [40], where elements can be



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 13

grouped into a few sets with minimal overlapping.
Checking intersections requires algorithms of high com-

plexity if the objects have non-trivial geometric shape.
We regard simple shapes as those mathematically easy to
describe, such as circles or ellipses as opposed to those
composed of numerous vertices and lines. Since VisDock
relies heavily on the algorithm that checks for intersection
based on geometric alignment of objects, subsets of SVG
elements like polylines and polygons may compromise
VisDock performance. In this regard, making VisDock
more data-centered is part of our future plans.

Finally, our argument for creating VisDock was to pro-
vide a basic set of interaction techniques for web-based
visualization. However, a potential pitfall with this approach
might be to suggest that a consensus has been reached for
“standard” interaction techniques for visualization, which is
far from true [1], [41]. This, in turn, may discourage further
invention in this area. To avoid this pitfall, our ambition is
to continue developing and improving the VisDock toolkit,
which is aided by the fact that it is an Open Source project
on GitHub. Our goal is to make the toolkit responsive,
modular, and customizable to any form of cross-cutting
interaction technique conceivable, now or in the future.

9 CONCLUSION AND FUTURE WORK

We have proposed the concept of cross-cutting interaction
techniques for visualization: general yet concrete direct
manipulation interactions that apply to a wide range of
datasets and visualization techniques. In doing so, we also
presented VisDock, a practical JavaScript/SVG library for
providing cross-cutting interactions to any web-based visu-
alization. VisDock currently provides advanced selection,
query management, navigation, and annotation support with
a minimum of additional coding on behalf of the client
programmer. We have evaluated the toolkit in two comple-
mentary settings: with a group of end-users exploring data
in a VisDock-enabled visualization, and with a group of
developers integrating the toolkit into their own projects.

Future VisDock features include an improved and
streamlined user interface, more advanced navigation tech-
niques, and the use of hotbox-like [42] interface widgets.
In particular, we will work toward implementing a new
form of annotations allowing VisDock users, both end-
users and developers, to scribble notes and marks that are
not constrained to a typed medium. The future scope of
VisDock implementation will go beyond SVG interfaces to
any web-based structures such as CSS to support a wider
range of web visualizations. A more data-centered VisDock
interface would be implemented to increase the efficiency
of the system. Finally, additional new features for the toolkit
include linking, brushing, and data-level interactions.

ACKNOWLEDGMENTS

We would like to thank S. Karthik Badam, Dennis M. Snell,
D. S. Elliott, and M. Y. Shalaginov for helpful discussions
and Ji Soo Yi, Sukwon, Lee and Sung-Hee Kim for
advice on the VisDock evaluation. Also, we would like to

acknowledge all the help we received from communicating
with a number of visualization creators, some of whose
works are cited in the paper.

REFERENCES

[1] J. Yi, Y. Kang, J. T. Stasko, and J. A. Jacko, “Toward a deeper
understanding of the role of interaction in information visualization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 13,
no. 6, pp. 1224–1231, 2007.

[2] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven docu-
ments,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 6, pp. 2301–2309, 2011.

[3] N. Elmqvist, P. Dragicevic, and J.-D. Fekete, “Rolling the dice: Mul-
tidimensional visual exploration using scatterplot matrix navigation,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 6, pp. 1141–1148, 2008.

[4] G. W. Furnas and B. B. Bederson, “Space-scale diagrams: Under-
standing multiscale interfaces,” in Proceedings of the ACM Confer-
ence on Human Factors in Computing Systems, 1995, pp. 234–241.

[5] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J.-D. Fekete,
“Topology-aware navigation in large networks,” in Proceedings of
the ACM Conference on Human Factors in Computing Systems,
2009, pp. 2319–2328.

[6] J. S. Yi, N. Elmqvist, and S. Lee, “TimeMatrix: Analyzing temporal
social networks using interactive matrix-based visualizations,” Inter-
national Journal of Human Computer Interaction, vol. 26, no. 11-12,
pp. 1031–1051, 2010.

[7] J. Heer, F. B. Viégas, and M. Wattenberg, “Voyagers and voyeurs:
supporting asynchronous collaborative information visualization,”
in Proceedings of the ACM Conference on Human Factors in
Computing Systems, 2007, pp. 1029–1038.

[8] B. Shneiderman, “Direct manipulation: A step beyond programming
languages,” Computer, vol. 16, no. 8, pp. 57–69, 1983.

[9] C. Ahlberg, “Spotfire: an information exploration environment,”
SIGMOD Record, vol. 25, no. 4, pp. 25–29, 1996.

[10] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: A system for query,
analysis, and visualization of multidimensional relational databases,”
IEEE Transactions on Visualization and Computer Graphics, vol. 8,
no. 1, pp. 52–65, 2002.

[11] A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist, and J.-
D. Fekete, “GraphDice: A system for exploring multivariate social
networks,” Computer Graphics Forum, vol. 29, no. 3, pp. 863–872,
2010.

[12] M. J. McGuffin and I. Jurisica, “Interaction techniques for selecting
and manipulating subgraphs in network visualizations,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 15, no. 6, pp.
937–944, 2009.

[13] J. Heer, M. Agrawala, and W. Willett, “Generalized selection via
interactive query relaxation,” in Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, ser. CHI ’08. New
York, NY, USA: ACM, 2008, pp. 959–968.

[14] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in Proceedings of the IEEE Symposium
on Visual Languages, 1996, pp. 336–343.

[15] S. Jul and G. W. Furnas, “Critical zones in desert fog: Aids to
multiscale navigation,” in Proceedings of the ACM Symposium on
User Interface Software and Technology, 1998, pp. 97–106.

[16] C. Appert and J.-D. Fekete, “OrthoZoom scroller: 1D multi-scale
navigation,” in Proceedings of the ACM Conference on Human
Factors in Computing Systems, 2006, pp. 21–30.

[17] W. Javed, S. Ghani, and N. Elmqvist, “GravNav: using a gravity
model for multi-scale navigation,” in Proceedings of the ACM
Conference on Advanced Visual Interfaces, 2012, pp. 217–224.

[18] J. Abello and F. van Ham, “Matrix zoom: A visual interface to
semi-external graphs,” in Proceedings of the IEEE Symposium on
Information Visualization, 2004, pp. 183–190.

[19] W. Javed, S. Ghani, and N. Elmqvist, “PolyZoom: multiscale and
multifocus exploration in 2D visual spaces,” in Proceedings of the
ACM Conference on Human Factors in Computing Systems, 2012,
pp. 287–296.

[20] N. Elmqvist, N. Henry, Y. Riche, and J.-D. Fekete, “Mélange: Space
folding for multi-focus interaction,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems, 2008, pp.
1333–1342.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 14

[21] S. Ghani, N. Riche, and N. Elmqvist, “Dynamic insets for context-
aware graph navigation,” Computer Graphics Forum, vol. 30, no. 3,
pp. 861–870, 2011.

[22] N. Elmqvist, J. Stasko, and P. Tsigas, “DataMeadow: a visual canvas
for analysis of large-scale multivariate data,” in Proceedings of the
IEEE Symposium on Visual Analytics Science and Technology, 2007,
pp. 187–194.

[23] W. Wright, D. Schroh, P. Proulx, A. Skaburskis, and B. Cort, “The
sandbox for analysis: Concepts and evaluation,” in Proceedings of
ACM Conference on Human Factors in Computing Systems, 2006,
pp. 801–810.

[24] J. T. Stasko, C. Görg, and Z. Liu, “Jigsaw: supporting investigative
analysis through interactive visualization,” Information Visualization,
vol. 7, no. 2, pp. 118–132, 2008.

[25] Y. Shrinivasan and J. van Wijk, “Supporting the analytical reasoning
process in information visualization,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems, 2008, pp.
1237–1246.

[26] J. Heer and M. Agrawala, “Design considerations for collaborative
visual analytics,” Information Visualization, vol. 7, no. 1, pp. 49–62,
2008.

[27] J. Heer, S. K. Card, and J. A. Landay, “prefuse: a toolkit for
interactive information visualization,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems, 2005, pp.
421–430.

[28] J.-D. Fekete, “The InfoVis Toolkit,” in Proceedings of the IEEE
Symposium on Information Visualization, 2004, pp. 167–174.

[29] C. Weaver, “Building highly-coordinated visualizations in Impro-
vise,” in Proceedings of the IEEE Symposium on Information Visu-
alization, 2004, pp. 159–166.

[30] A. Satyanarayan and J. Heer, “Lyra: An interactive visualization
design environment,” Computer Graphics Forum, vol. 33, no. 3, pp.
351–360, 2014.

[31] D. Ren, T. Höllerer, and X. Yuan, “iVisDesigner: Expressive inter-
active design of information visualizations,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 12, pp. 2092–
2101, 2014.

[32] A. Satyanarayan and J. Heer, “Authoring narrative visualizations with
ellipsis,” Computer Graphics Forum, vol. 33, no. 3, pp. 361–370,
2014.

[33] J. Harper and M. Agrawala, “Deconstructing and restyling D3
visualizations,” in Proceedings of the ACM Symposium on User
Interface Software and Technology, 2014, pp. 253–262.

[34] A. Satyanarayan, K. Wongsuphasawat, and J. Heer, “Declarative
interaction design for data visualization,” in Proceedings of the ACM
Symposium on User Interface Software and Technology, 2014, pp.
669–678.

[35] B. Kwon, W. Javed, N. Elmqvist, and J. S. Yi, “Direct manipulation
through surrogate objects,” in Proceedings of the ACM Conference
on Human Factors in Computing Systems, 2011, pp. 627–636.

[36] N. Riche, B. Lee, and C. Plaisant, “Understanding interactive
legends: a comparative study with standard widgets,” Computer
Graphics Forum, vol. 29, no. 3, pp. 1193–1202, 2010.

[37] C. Viau, M. J. McGuffin, Y. Chiricota, and I. Jurisica, “The
FlowVizMenu and parallel scatterplot matrix: Hybrid multidimen-
sional visualizations for network exploration,” IEEE Transactions
on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1100–
1108, 2010.

[38] K. Perlin and D. Fox, “Pad: An alternative approach to the computer
interface,” in Computer Graphics, 1993, pp. 57–64.

[39] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay, “Papier-Mache: toolkit
support for tangible input,” in Proceedings of the ACM Conference
on Human Factors in Computing Systems, 2004.

[40] C. Collins, G. Penn, and S. Carpendale, “Bubble Sets: Revealing
set relations with isocontours over existing visualizations,” IEEE
Transactions on Visualization and Computer Graphics, vol. 15, no. 6,
pp. 1009–1016, 2009.

[41] W. A. Pike, J. T. Stasko, R. Chang, and T. A. O’Connell, “The
science of interaction,” Information Visualization, vol. 8, no. 4, pp.
263–274, 2009.

[42] G. Kurtenbach, G. W. Fitzmaurice, R. N. Owen, and T. Baudel,
“The hotbox: Efficient access to a large number of menu-items,”

in Proceedings of the ACM Conference on Human Factors in
Computing Systems, 1999, pp. 231–237.

Jungu “Joe” Choi received a bachelor and
master in electrical and computer engineer-
ing in 2010 and 2012, respectively, from Pur-
due University in West Lafayette, IN, USA.
He is currently a Ph.D. student at the same
institution working on Atomic, Molecular, and
Optical (AMO) physics and engineering.

Deok Gun Park received a bachelor in elec-
trical engineering in 2000 and a master’s
degree in biomedical engineering in 2002 at
Seoul National University, Seoul, South Ko-
rea. Currently, he is pursuing a Ph.D. degree
in computer science at University of Mary-
land, College Park, MD, USA.

Yuetling Wong received a bachelor and
master in computer science and technology
in 2007 and 2010, respectively, from Ts-
inghua University in Beijing, China. She is
currently a Ph.D. student in the School of
Electrical and Computer Engineering at Pur-
due University in West Lafayette, IN, USA.

Eli Fisher received a bachelor of computer
engineering degree in 2014 from Purdue Uni-
versity in West Lafayette, IN, USA. He now
works for Microsoft Corporation in Redmond,
WA, USA.

Niklas Elmqvist received the Ph.D. degree
in 2006 from Chalmers University of Tech-
nology in Göteborg, Sweden. He is an asso-
ciate professor in the College of Information
Studies at University of Maryland, College
Park, MD, USA. He was previously an assis-
tant professor in the School of Electrical &
Computer Engineering at Purdue University
in West Lafayette, IN. He is a senior member
of the IEEE and the IEEE Computer Society.


