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Figure 1: Overview of our pipeline enabling visualizing data for visually impaired users. A barchart stored as a raster image is retrieved
from the web. Our pipeline automatically detects the chart type, extracts the shapes, recovers the substrate, and parses the labels. The data
is extracted as a data table. This data table can then be used for several purposes (from the top): with a screen reader for a visually impaired
person, re-visualized for a sighted person, or as raw data for a robot (search engine).

Abstract

The majority of visualizations on the web are still stored as raster images, making them inaccessible to visually impaired users.
We propose a deep-neural-network-based approach that automatically recognizes key elements in a visualization, including a
visualization type, graphical elements, labels, legends, and most importantly, the original data conveyed in the visualization.
We leverage such extracted information to provide the reading of the extracted information to visually impaired people. Based
on interviews with visually impaired users, we built a Google Chrome extension designed to work with screen reader software
to automatically decode charts on a webpage using our pipeline. We compared the performance of the back-end algorithm with

existing methods and evaluated the utility using qualitative feedback from visually impaired users.

CCS Concepts

o Human-centered computing — Visual analytics; Visualization toolkits;

1. Introduction

Intrinsic to visualization is that it is visual, i.e., that it makes use of
the human visual system to effectively convey data to the viewer.
Obviously, this visual theme permeates the entire discipline—the
scientific community is alive with visual design guidelines, graphi-
cal perception studies, and practical advice on color theory. As Card
et al. [CMS99] note, much of human thinking is couched in visual
terms, in that to understand something is called “seeing it,” in that
we want to bring our thoughts into “focus,” and in that we strive
to make our ideas “clear.” But what if all you have are words and
no pictures; that is, what if you are visually impaired? Is the power
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of visualization forever closed to you, or worse, are you actively
barred from accessing important data about our world?

Such is certainly the case on today’s internet, where the web,
for all its revolutionary impact on improving information access for
the visually impaired [CP15], still holds hundreds and thousands of
charts encoded in bitmap images where data is locked away for all
but sighted users. (The correct term is really pixel map, or pixmap,
to signify color rather than black-and-white images, but we will use
the colloquial “bitmap” term throughout this paper.) The core as-
sistive technology for the visually impaired, screen readers, which
transform a visual display to non-visual means such as text [HJOS],
sound [Iful7, MW94], or Braille [RSKS00, MW94], do not work
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well for such data-rich images. Too often, webpages do not contain
the raw data that generated these visuals, and while accessibility
standards are on the rise [CP15], there is a vast collection of legacy
charts on the web where no such data will ever be made available.

In this paper, we propose to bring visualization to the non-visual
through an automated pipeline that analyzes the contents of bitmap
images, detects the chart type, reads the labels, extracts the shapes
into a vector graphics format, and decodes the data stored in them.
To our best knowledge, our proposed deep neural network based
method is the first to extract the data from charts for visually im-
paired users in fully automatically. The vector shapes, labels, and
annotations can then be transformed into appropriate displays, such
as a screen reader, an alternate visual representation more suitable
for partially sighted users, or even a physical visualization. We also
present a prototype implementation of a Google Chrome extension
that can transparently detect static chart images on a website and
translate them into non-visual means using our engine. The ex-
tension also provides information about charts such as the chart
type and number of data items and an alternative accessible interac-
tive charts that are even useful for sighted users. We compared the
performance of the back-end algorithm with ReVision [SKC*11],
which is one of the state-of-the-art algorithms. We also conducted
a qualitative evaluation with three visually impaired users. Their
input has guided refinement of the prototype and provided insights
about strengths and weaknesses of our work.

2. Related Work

Here we review relevant prior efforts to enable comprehension of
visual charts for visually impaired users.

2.1. Assistive Technologies

While much of the public discourse around technology and people
with disabilities tend to focus on problem areas, computing has in
general had a revolutionary impact on inclusiveness and access for
people with cognitive, developmental, intellectual, mental, physi-
cal, and sensory impairments [CP15]. The overall term for tech-
nologies that support disabled people in daily living is assistive
technologies, and they include a range of devices from low-tech,
mechanical ones, such as walkers and wheelchairs, to more tech-
nologically advanced ones, such as hearing aids and Cochlear im-
plants for people with hearing impairments, and memory aids and
conversation cues [WMMF15] to support cognitive impairment.

2.2. Assistive Technologies for Visual Impairment

Vision in particular is a critical sensory channel for effectively
navigating the world. According to the World Health Organiza-
tion [GLO] there are approximately 285 million visually impaired
users in the world today, 39 million of them totally blind. In the
United States, this number is approximately 10 million and 1.3 mil-
lion, respectively (National Federation for the Blind (NFB), 2018:
[Bli]). The approach taken by most assistive technologies is sen-
sory substitution [CP15], where input from one sensory modality
can be augmented with input from another sensory modality; for
example, by converting written text into spoken language.

Sound is commonly used as a substitute because it is easy to
generate without special hardware. Audification refers to the use
of speech audio [MW94], whereas sonification refers to the use
of non-speech audio [KWB*10]. Screen readers, which transform
text on a screen into voice, are examples of speech-based methods,
and have quickly become integral for many visually impaired users
when accessing the web.

Other than auditory sensors, tactile sensory input have been
widely used; an example is a Braille-based book. Mynatte et
al. [MW94] designed GUIB, which translates graphical web inter-
faces into textual displays. Refreshable Braille displays or Braille
terminals can show a low-resolution image in addition to the tradi-
tional tactile characters [RSKS00]. Jayant et al. [JRW*07] devel-
oped a processing methods to translate figures into a form that is
appropriate for Braille display. Kim and Lim proposed an assistive
device, Handscope, which can translate a statistical graph (even a
tag cloud) into tactile feedback [KL11]. Engel et al. [EW17] stud-
ied how design can improve readability of tactile charts and pro-
posed improved base guidelines for chart design.

2.3. Visualization for the Non-Visual

Visualization leverages the human visual system to enable aug-
menting the user’s cognition by transforming symbolic data into
geometric representations [CMS99]. For this reason, it has always
been particularly alarming for the field of visualization to consider
the “non-visual;” users who are visually impaired, and are thus po-
tentially forever cut off from the benefits of visualization. While vi-
sualization research has considered color-blind users (e.g., people
with color vision deficiencies), addressing full or even partial visual
impairment has received relatively little attention in the community.

Sensory substitution using sound for visualization is either re-
stricted to toolkits such as HighCharts, which provide native sup-
port for accessible charts [amC], or proper sonification efforts,
where the data is converted to non-speech audio. For the latter,
Zhao et. al [ZPSLOS8] investigated the use of nonverbal sound to ex-
plore georeference data using coordinated maps and tables. Goncu
et. al [GMMM15] developed a web service that generates an ac-
cessible floor plan. Ferres et al. [FLST13] proposed a system that
verbally describes line charts. Fact remains that if a chart is not con-
structed in an accessible way from the beginning, existing screen
readers or sonification techniques will not work.

Touch can also be used to substitute for vision even for charts.
Refreshable Braille displays can be used in lieu of a text-to-
speech screen reader for the machine-readable portions of a
chart [RSKS00], as well as more advanced method such as the
Braille mouse [HHP11], which combines some features of a normal
mouse with a Braille display, and embossed touch maps [dAVTO05],
which convey data in a 2D area using shape. Initial work [XIP*11]
applies the TeslaTouch [BPIH10] electrovibration mechanism to al-
low for sensing 2D data using touch. Fitzpatrick et al. used the sta-
tistical software R [FGS17], and Yu et al. combined tactile conver-
sion with sound [YBO02] to produce accessible statistical graphs for
web. However, few of these efforts have been specifically targeted
at visualization, and much work remains to be done in unlocking
the thousands of raster charts available on the web today.
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Perhaps the most promising approach to accessible data visual-
ization is data physicalization [JDI*15], where physical artifacts
are used to convey data. While the original data physicalization
manifesto does not consider accessibility as one of its corner stones,
it certainly has potential for improving the inclusiveness of the vi-
sualization field. For example, Kane and Bigham present work on
supporting visually impaired and blind students through 3D-printed
tangible maps [KB14], and Holloway et al. [HMB 18] suggested re-
placing tactile maps with 3D models for the blind.

2.4. Extracting Data from Charts

The web has had a transcendental impact on information access
for disabled people in general, and visually impaired people in
particular [CP15]. The advent of accessibility guidelines for web-
sites and screen readers that transform written text into non-visual
means such as sound [Iful7, MW94], touch [XIP*11], or refre-
shable Braille displays [RSKSO00] have leveled the playing field
somewhat. However, image data locked away in raster files remains
a hurdle for visually impaired and blind users.

To overcome this limit, there have been attempts to extract data
from charts in an image file using heuristics and expert rules. For
non-raster images, Shao and Futrelle [SFO5] extract simple graphi-
cal entities from SVG images in PDF for chart classification, while
Battle et al. [BDM* 18] propose a web crawler that collects and
classifies SVG images using image elements.

For raster images, Zhou and Tan used the Hough transform al-
gorithm to extract information from bar charts, even hand-drawn
ones [ZT00]. Huang and Tan extracted information from additional
chart types, including pie charts and line charts [HT07]. Similarly,
Gao et al. [GZB12] extract data tables from raster images for acces-
sibility use. SIGHT generates summary of a simple bar chart for vi-
sually impaired users [CESM* 12]. Chester et al. proposed a system
that transforms gray scale charts into XML format [CEO5]. How-
ever, none of these proposed approaches are able to handle general
web-based rasterized charts, which have varying colors and shapes.

Because of the variations in the format of the charts, the perfor-
mance of these systems can be improved with human guidance, as
demonstrated by the ChartSense tool [JKS*17]. Software packages
exist that extract information from certain charts [Roh11, TumO06].
iVOLVER [MNV16] extracts data from existing raster chart im-
ages and generates interactive animated visualization. Saava et
al. developed a system called ReVision, to classify images of
charts into five categories and extract data from bar charts and pie
charts [SKC*11]. They also allow users to build an alternative rep-
resentation or change the color and the font of an input chart im-
age. While these techniques require the interaction of users, such
as annotating the x-label of a chart, our proposed system performs
extraction without any intervention.

Poco and Heer proposed an automatic pipeline for extracting a
visual encoding specification given a raster chart image [PH17].
Poco et al. focused on recovering the color mappings of charts
that include a color legend [PMHI18]. However, their approach
mainly focuses on extracting specific components of a chart and
does not extract raw data. Although there exist automatic systems
to extract data from charts, they focus on only one specific chart
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type [AZG15, CMG15, CRMY17]. Otherwise, we propose auto-
matic pipeline for three types of charts and utilize state-of-the-art
modules based on deep neural networks.

3. Domain Characterization

The goal of our work is to extract data that is currently locked away
in raster images containing charts in order to make the data acces-
sible to visually impaired users. To do this, we need to understand
how visually impaired users handle graphs and charts. For this pur-
pose, we conducted a domain characterization on this topic.

3.1. Method

We conducted interview sessions to understand how visually im-
paired people currently access charts. We interviewed three visually
impaired users using a structured interview format [LFH17]. Two
are professional IT developers working in the web-accessibility do-
main (P1, P3), and the other is an undergraduate student (P2). P1
was born blind while P2 and P3 lost their vision about 10 and 20
years ago. All were male and completely blind. We conducted indi-
vidual remote interviews with P1 and P3, and an on-site interview
with P2. Each interview lasted approximately 30 minutes. Below
we summarize our findings.

3.2. Findings

Visually impaired people typically browse the web using screen
readers. P1 uses both a Braille display and speech, sometimes turn-
ing off the sound to use only the Braille display. P2 prefers the
Braille display when the pronunciation of the screen reader is not
clear. P3 uses only a screen reader. However, participants note that
Braille displays are mostly limited to one line of characters, and
that graphical Braille displays are still experimental.

For the Windows operating system, common screen readers are
NVDA [NVA] and JAWS [JAW]. P1 and P2 use NVDA, because it
is better integrated with the operating system, and is an open source
project. P3 uses NVDA for web and JAWS for office productivity.
Because NVDA is an open source project, we adopted NVDA as
a development and test platform for our project. For mobile en-
vironments, Apple’s builtin VoiceOver [App] for iOS or Google’s
TalkBack [Wha] for Android are commonly used. P1 uses Firefox
because it works well with NVDA, and sometimes uses Google
Chrome because it is fast. P2 uses Internet Explorer as a main
browser because of its accessibility features and its JAWS integra-
tion. P3 uses Chrome because of specific accessibility features.

All screen readers announce whenever they detect an image. If
there is an alternative text for it, that text is read aloud (or shown
on the Braille display). If not, P1 and P3 use screen readers for its
built-in OCR function to provide an idea of the image contents. P2
and P3 felt that the formatting on websites rarely follows acces-
sibility standards, which makes it hard to read text or data tables.
P2 often copied a webpage to a text editor to see only the textual
information. For charts in SVG format, screen readers can use the
alternative text for each element, or an accompanying data table if
available. All participants rarely pay attention to images or charts.
They rely on the textual content to understand the visual content.
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Figure 2: Overview of our automatic pipeline for extracting chart data, in this case for a bar chart. (1) We first classify the input image, and
(2) extract labels in the chart with their values and roles. (3) Next, we extract basic graphical elements, such as rectangles, lines, etc, using
our object detection model. (4) Finally, we reconstruct data values and visual encoding.

However, there were some exceptions, such as when P2 was taking
a statistics course. In that case, he needed to understand the course
contents for the class, and had to rely on a human reader assigned
by the university. According to P2, most people are not good as
readers because they read what they think important, but not nec-
essarily at the level of detail required by the visually impaired user.
But when such readers were not available, he had to rely solely on
textual contents. He sometimes used voice calling to get help from
a sighted person. For P3, there were a few times when he wanted
to access chart contents, such as when he had to read a consumer
market research report that contained charts.

Data tables are an important aspect of accessing information that
is otherwise expressed with graphs. Each screen reader provides its
own mode and shortcut keys for table navigation. Some websites,
such as government statistics sites, helpfully provide raw data ta-
bles with the charts. However, this can become tedious and diffi-
cult to overview for very large data tables. For P1, analyzing data
table becomes challenging when there are more than 20 rows and
10 columns. P3 once analyzed a data table containing more than
100 rows and 50 columns; this may indicate that visually impaired
users need superior memory capability instead of the external cog-
nition [SR96] afforded by visual representations.

Technology can help visually impaired users in their computer
usage. P1 had used sonification and was generally positive about
its use for providing an overview of large data tables. He suggested
that students who rely on data, or people who trade stocks, might be
interested in using this technology. P3 felt that training is needed to
use sonification effectively. P2 carries his own desktop keyboard in
his bag wherever he goes, because he feels using varying physical
keyboards is detrimental for his computer usage.

4. Extracting Data from Chart Images

We propose a fully automatic deep learning-based pipeline (Fig-
ure 2) that accepts a raster image as input and generates a structured
representation of the chart in the image, including its original data.
The system supports bar charts, pie charts, and line charts. Since
charts in a webpage have various shapes, we make a few restric-
tions in chart styles as follow. First, input images should not have
3D effects and contain only one type of chart. Second, the system
supports vertical bar charts, excluding horizontal bars and stacked
bars. In the case of pie charts and line charts, legends should have
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Figure 3: FigureQA example composed of chart images with anno-
tated data and their types as well as labels and bounding boxes.

distinct colors. We train deep neural networks for chart type classi-
fications, text region detection and recognition, and data extraction.
Below we present the components of our pipeline.

4.1. Chart Classification

Our system applies different methods to extract data from a given
chart depending on its type. It first classifies input images into four
classes: bar charts, line charts, pie charts, and others. Other types
of charts not supported by our system as well as images that do not
include charts are classified as “others.”

We adopt Convolutional Neural Networks (CNNs) [KSH12,
HZRS16] as a classification model, which have shown im-
pressive performance on image classification tasks. Whereas
previous studies [PH17, JKS*17] used AlexNet [KSH12] and
GoogLeNet [SLI*15] for classification, we use residual net-
works [HZRS16] that yield state-of-the-art performance in most
computer vision tasks. Specifically, we employ existing Resnet
trained on the Imagenet dataset [RDS*15] and append a global
average pooling layer before the last fully connected layer. We
then fine-tune the model on our dataset using the Adam optimizer,
where we set the learning rate as 0.0005. Each image was resized
to 512 x 512 pixels.

For training and validation data, we crawled chart images for
each chart type from Google image search. We then removed im-
ages that do not contain charts, 3D charts, as well as multi-layer
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charts that include multiple chart types, which account for 13 per-
cent of the initial chart corpus. We finally obtained 938 bar charts,
627 pie charts, and 833 line charts. We used the Visual Object
Classes (VOC) dataset to train the model in classifying images that
do not include charts.

4.2. Text Extraction

Labels in a chart play an important role in conveying the underlying
semantics of the data. Chart legends indicate the number of cate-
gories and how each category is encoded. The x and y axes indicate
the actual value of the plots. The title, the x label, and the y label of
a chart give detailed information about the data. Therefore, we must
identify these text values and determine the role of the text to ex-
tract accurate data from a chart. Previous work [SKC*11,JKS*17]
rely on human guidance to localize text regions and extract text
values. However, this approach is not appropriate for visually im-
paired users. We therefore fully automated text extraction using
deep learning. Text extraction consists of three sub-tasks: textual
region detection, text recognition, also known as optical character
recognition (OCR), and text role classification, e.g., whether a par-
ticular text string corresponds to legends, axis labels, tick labels, or
titles (Fig. 4).

4.2.1. Textual Region Detection

For text localization, we employ the PixelLink [DLLC18] model
that shows state-of-the-art performance in text detection tasks. This
model applies VGG16 [SZ14] as a feature extractor, predicts text
and link, and performs instance segmentation. The model takes an
input image and predicts the bounding box, which informs coor-
dinates in the image for each label. To enhance text localization
performance, we first train it on the SynthText dataset [GVZ16] for
400K iterations. We then fine-tune the model using the FigureQA
dataset [KMA*17], which consists of 100,000 images with ground
truth bounding boxes for texts in bar, pie, and line charts (Fig. 3).
Each chart image in this dataset varies in terms of font and size of
text strings, tick, and span.

4.2.2. Text Recognition

Text recognition from an image, also known as optical character
recognition (OCR), is still a challenging task. We first crop text in
a chart image using bounding boxes predicted by the text localiza-
tion model, and run the OCR model. For our OCR model, we tried
two models, Tesseract, a publicly available OCR library, and con-
volutional recurrent neural networks (CRNNs) [SBY15]. CRNN is
composed of convolutional layers that extract feature maps and pro-
duces sequence of feature vectors, recurrent layers that capture con-
textual features within a sequence, and transcription layers that con-
vert predictions into label sequence [SBY15]. We compared these
two models using the FigureQA dataset and found that CRNNs rec-
ognize y-tick numerical data much better than Tesseract, which is
critical to extract exact data from a chart. The model sometimes
makes mistakes on certain numbers in y-tick labels. To enhance
OCR performance, we apply a few heuristics for y-tick labels such
as replacing “o0” to “0”, “c” to “0” and “i” to “1”.
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4.2.3. Text Role Classification

For text role classification, we adopt the method introduced by
Poco and Heer [PH17]. They classify the text of charts into title,
y-tick, y-label, x-tick, y-label, legend label, legend title, and text la-
bel using support vector machines (SVMs). The feature vector of
each text element in the image is defined by bounding boxes and
their geometric information. We initially applied their method on
the FigureQA dataset, which offers bounding boxes for text, with
some success. However, the trained model performed poorly on
chart images parsed from webpages, which have various font sizes,
label orientations, and label lengths.

To increase the prediction accuracy, we modify the dimension of
the feature vector to 8 from its original 14. The features brought
from prior work are normalized center coordinates of the text, an-
gle with respect to the image center, vertical score and horizontal
score, and normalized width and height of the text. The vertical
and horizontal score are defined by the number of boxes that inter-
sect the current box vertically and horizontally, respectively, over
the total number of boxes. We add the chart type predicted by the
classifier to the feature vector. For our classifier, we train a gradient
boosting tree with feature vectors, where we set the number of in-
dividual learners as 1,000, the learning rate as 1, and the maximum
tree depth as 20. The FigureQA dataset does not contain bounding
boxes of the legend title and the text labels, and thus we exclude
them and train the model to classify texts into 6 classes. Texts that
are not part of these six classes, such as the watermark of a chart or
other redundant labels, are classified as “others.”

4.3. Data Extraction

We extract data from three types of charts, each using varying vi-
sual encodings. This meant that we had to design extraction algo-
rithms for each chart type. Here we demonstrate how object detec-
tion and text extraction are utilized. We then describe the method
used for each chart type.

4.3.1. Decoding Visual Encodings of Charts

Different types of charts have numerous variations of their forms
and shapes. For example, some charts have 3-dimensional shapes as
well as multiple categories. Moreover, the color encoding scheme
and the aspect ratio of a chart vary across images. Even so, most of
charts share common basic graphical elements such as lines, bars,
or circles. From this perspective, a crucial part of data extraction is
to detect these graphical elements in a reliable manner. To this end,
we adopt an integrated approach that carefully combines the object
detection model that extracts circles, rectangles, and lines from a
given raster image, as well as those results obtained from the text
extraction module and data extraction algorithms.

4.3.2. Decoding Bar Charts

To extract data from a bar chart, we first detect bars with the
Yolo2 [RF16] object detection model, which performs faster and
more accurately than other detection models such as Faster R-
CNN [RHGS15] or SSD [LAE*16]. We train this model using the
FigureQA dataset, which contains a ground truth bounding box for
each bar. The object detection model identifies bars of a bar chart



Choi et al. / Visualizing for the Non-Visual

60 e & @ Tick Value: 10

“10" 100 § # of pixels: 100
H Scale: 10

(20, 140)
s0 W

40
30 20" 201§ 30

20

10
(140, 740)

_ ! ... :
Gy - Lot : 5 gray blue seafoam coral

[50, 32, 43, 56,20]

orange

Q [600, 384, 516, 672, 240] —_—

Figure 4: Data extraction for a bar chart. Our method first detects
bars and finds the baseline coordinate. Next, it determines the tick
value, the tick span, and the conversion rate from a single pixel to
the data value. We then convert the height of bars into values.

from left to right and predicts the top left and bottom right positions
of bounding boxes as highlighted in red dots in Fig. 4(a). The height
of each bar can be simply computed by subtracting the minimum
y value from the maximum y value of the predicted bounding box.
The base of the detected bars should be aligned because they start
from an identical baseline. However, the detected bounding boxes
of bars may not always have the same starting position. Therefore,
we set the baseline as the mean value of the y position for the base
of each bounding box (seen in Fig. 4(a) as a red dotted line).

To convert bar heights into actual data values, we must calcu-
late the scale of the chart as the ratio of the number of pixels
with respect to the tick span of the y-axis. These two values are
driven by the results of the text extraction module. We first denote
aset {b;,0;} where (b; € R*) as the bounding box information and
(0; € R) as the OCR results for every i-th text classified as the "y-
tick’. The set is sorted by the minimum y value of b;. We compute
the tick span value of the y-axis (s;) by subtracting the tick value of
the current index (o;) from the tick value of the next index (0;41).
We repeat this process for all adjacent element pairs in the set. Tick
spans of two adjacent y ticks are highlighted in red in our exam-
ple (Fig. 4(b)). The OCR module often fails to correctly recognize
the tick value, and the text detection model occasionally misses the
y-tick (Fig. 4(b)). An example of this is seen in Fig. 4(b), where it
misses the “30” y tick, therefore producing an incorrect tick span
value of 20. To handle this type of error, the tick span is determined
as the most frequent values among s;. In the case where y-ticks
are not explicit numbers (e.g., 1M, 1B, 1K), we separate charac-
ters from the y-tick and notify users about them as the unit of the
chart. The number of pixels between ticks is similarly determined
by computing the distance of two adjacent texts and finding the
most frequent value. The tick value and the number of pixels are
determined as 10 and 100, respectively, and therefore the scale is
computed as 10 in our example (Fig. 4(b)). Finally, by multiplying
the scale with the height of each bar, the actual values are obtained.

Due to failures in the object detection or text detection models,
the number of detected bars and the number of detected x-ticks
may sometimes be different. To solve this problem, we assign the
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Figure 5: Data extraction for a pie chart. We first convert the ex-
tracted patches into gray scale. Next, we find the most frequent col-
ors for each patch. We then crop the circle and obtain its pixel col-
ors. Finally, we calculate the color distribution from the histogram.

extracted value to the label that has minimum distance between the
bounding box of the bar and the label.

4.3.3. Decoding Pie Charts

For a pie chart, the text extraction model first predicts labels, which
indicate the name of the element, with their text and bounding
boxes (Fig. 5(a)). If a pie chart includes legends (57% of pie charts),
we crop the input image to small patches next to legend labels to
identify the colors in legends, (Fig. 5(b)). Otherwise, we extract
patches from a middle point of the center of the circle and the cen-
ter of bounding boxes. We then convert the patch color into a gray
scale. We find the most frequent color value of a preview patch
and set this value as the color indicator of the corresponding legend
label. For example, the color value of “Oxygen” is 91 and “Hydro-
gen” is 112, which are encoded as red and yellow, respectively. If
colors of the sectors have the same luminance, we convert the color
space as HSV (hue, saturation, and value).

The next step is to identify the proportions of each color. We
crop the circle that includes all the arcs of the pie chart, with the
bounding box predicted by the object detection model. Since the
bounding box of a circle does not always include all region of the
pie chart, we add some padding to the bounding box when cropping
(Fig. 5(c)). We then convert the colors of the cropped image into
gray scale, as we did in the preview patches, and compute the his-
togram of pixel colors in the cropped image. As shown in Fig. 5(d),
the histogram presents the number of pixels for every color value
of gray scales. We obtain the data value of each legend label by cal-
culating the ratio of pixel counts of the color indicator with respect
to the total number of pixels.

4.3.4. Decoding Line Charts

Our system interprets line charts by decoding the corresponding y
values for every x-tick. The data extraction process starts by deter-
mining the tick value and the number of pixels between two spans.
We apply the same method we used for bar charts (Fig. 6(a)).

(© 2019 The Author(s)
Computer Graphics Forum (©) 2019 The Eurographics Association and John Wiley & Sons Ltd.



Choi et al. / Visualizing for the Non-Visual

o eTick Value: 10 ” @ G

10" 50} o
Za0 # of pixels: 50 40 :
H Scale: 5 :
10" 511 H
30 30
1050 §
<20 20 i
107 50%
<10 wof N~ ‘
H 1300 ‘ 1 1
¥ E i i H
015 2016 2017 2018 2015 2016 2017 2018 | \ 9015 2016 2017 2018
— - Il |
:_._!Datal :__': Data2 B Datal Data2 ol b \Lﬂ o M Datal Data2

Figure 6: Line chart data extraction process. We count pixels with respect to tick value. Next, we find the baseline of the chart. We then
convert pixels into HSV and find the most frequent color values. We calculate the distance of the x-tick and a line.

We then determine the y coordinate of the baseline (Fig. 6(b)).
The y coordinate of the baseline can be simply obtained by the
bounding box of the x-tick. However, some charts do not start the
y-axis at zero. For these, we calculate the baseline y coordinate as

1 n
y=-Yci—a-o, M
i

where ¢; is the y coordinate of the i-th bounding box of the y-tick,
0; is the i-th y-tick value, a is the number of pixels per value, and n
is the number of y-ticks.

We then convert the color space of the input image into HSV
(Fig. 6(c)). In this step, we make a few assumptions to simplify
the process. First, the color of the line should be different from
the color of texts or background. For multiple lines, all categorical
colors should be different, and the legends should go with color
indicators and their labels. 90% of all collected line charts satisfy
these assumptions.

We compute the color histogram of the converted charts using
the hue channel. If the line chart has legends, we apply similar pro-
cesses as for the pie chart to find the color indicator. We crop the
image to a small patch next to the legend label, convert the color
space to HSV, and find the color indicator. If the line chart has only
a single data element, we set the color indicator of the line as the
most frequent color value on the hue channel. Some colors, such
as red and black, have the same values on the hue channel; in such
cases, we use the value channel instead.

The next step of data extraction is to compute the distance be-
tween x-ticks and the line. Starting from the baseline we calculated,
we determine the height of a line by moving the point vertically un-
til we find pixels with an identical hue as that of the color indicator
(Fig. 6(d)). We repeat this procedure for every detected x-tick. We
finally convert heights into actual values, as we did for bar charts.

4.4. Browser Plugin for Visually Impaired Users

We implemented a Google Chrome extension that detects images
in a webpage, sends the URL to a web service implementing our
model, and then dynamically appends the data table and accessible
interactive charts onto the original webpage (Fig. 7). The extension
first parses image URLs from a browser whenever a new page is
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1995 1996 1997

Source: COC/NCHS Nalional Hospital Discharge Survey. 1995-97

This is the automatically generated table for image.
We think this image is bar chart. We recognized 3 items.

Item Value
1995 238.24
1996 220
1997 173.97

Figure 7: Example of a generated data table from a chart image.
The data table can be read through text-to-speech conversion by
screen reader tool or played with a third-party sonification tool.

loaded. Classifying all images on a webpage using the full model
requires considerable computation. We therefore apply a rule-based
heuristic to simplify the process. The classifier omits those images
whose width or height is smaller than a particular threshold (200
pixels); such images are mostly icons or logos. The system pro-
ceeds with the remaining steps for data extraction if the image is
classified as a pie chart, a bar chart, or a line chart. We then convert
the extracted data into HTML table and attach it to the webpage.
Visually impaired users can access to the data table of charts with
screen readers. We used an iterative design process for the Chrome
extension using formative interviews with visually impaired users
which is described in Section 6.

Furthermore, the Chrome extension also adds a more accessible
interactive version of the charts (Fig. 8). Visual impairment is a
diverse spectrum. For minor visual impairment, the extracted infor-
mation can be used to help in these scenarios. Users can change the
type of the charts according to their preferences. The text or image
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Figure 8: To improve universal accessibility, an interactive version
of the chart can be generated from a bitmap chart image.

segment can be augmented with an interactive tooltip overlaid over
the static raster image, such that when the user hovers their mouse
over specific segment of bar charts, the label and data point can be
verbally spoken. Such an interactive version of charts will improve
accessibility to people with poor vision, such as the elderly.

5. Quantitative Evaluation

This section presents experimental results for our model.

5.1. Evaluation Dataset

To evaluate our system, we sample 100 images for each type of
chart from a validation set from the FigureQA dataset. The images
found on the web are far more varied than those included in Fig-
ureQA. We therefore randomly sample 100 images from the web
image corpus for each chart type and use them as additional test
set. Since most images collected from the web do not contain raw
data, two authors manually annotated chart types, bounding boxes,
and textual contents as well as numerical value for each x-label.

5.2. Recognition Accuracy

We evaluate the text and datas extraction modules of our system
using the two datasets. We also compare our method with existing
systems: ReVision [SKC*11] and ChartSense [JKS*17].

5.2.1. Chart Type Classification

We remove the evaluation set from the collected chart corpus and
use the remaining images as the training set. The trained model

Ours Poco & Heer ChartSense  ReVision
Area 96% 95% 67% 88%
Bar 98% 97% 93% T8%
Line 99% 94% 78% 73%
Map 97% 96% 88% 84%
Pareto 100% 89% 85% 85%
Pie 96% 98% 92% 79%
Radar 94% 93% 86% 88%
Scatter 98% 92% 86% 79%
Table 92% 98% 94% 86%
VennDiagram  97% 91% 67% 75%
Avg 97% 94% 90% 80%

Table 1: Chart classification results compared to Poco &
Heer [PHI7], ChartSense [JKS*17], and Revision [SKC*11] us-
ing 10 chart types in Revision dataset.

FigureQA Web-collected
Prec. Rec. F1 Prec. Rec. F1
Bar 93.5% 94.0% 93.7% 929% 64.5% 76.1%
Lin 999% 98.7% 99.3% 91.6% 66.1% 76.8%
Pie 100% 99.0% 99.5% 82.0% 753% 78.5%
Avg 978% 972% 97.5% 88.8% 68.6% T77.1%

Table 2: Text detection results for both datasets.

perfectly classifies all charts in the evaluation set of FigureQA
and the web-collected dataset. To compare our model with previ-
ous work, we also validate our classification model on the ReVi-
sion [SKC*11] dataset, which includes 2,084 images in 10 classes.
Following the test protocol used by Poco and Heer [PH17], we split
the ReVision dataset into 75% and 25% for training and evaluation
sets. The model classifies all charts without any failure when us-
ing bar charts, pie charts, and line charts. Our classifier also shows
state-of-the-art performance in classifying 10 chart types in the Re-
Vision dataset as shown in Table 1.

5.2.2. Text Extraction

We first evaluate the text detection model using the Intersection-
Over-Union (IOU) metric. This metric finds the best matching
bounding boxes between the ground truth and the predicted ones,
computes the area of the intersecting region divided by the area of
their union region for each match, and regards it as successful pre-
diction if the IOU measure is higher than the threshold, e.g., 0.5. As
shown in Table 4 (left), our model detects most labels for the Fig-
ureQA dataset. For the web-collected dataset, our model achieves
a high precision but a relatively low recall value (Table 4(right)).
A main reason for the low recall is due to low-resolution images
in the web-collected dataset, as shown in Fig. 9(d). The lower the
resolution of a chart image is, the more failure of text detection oc-
curs. The model also fails to detect long sequences of words as a
single text, as shown in Fig. 9(c). If the model detects it as several
text regions of words, the IOU values will be below the threshold,
and this metric will consider them as failures.

We then evaluate the text role classification model. As shown in
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FigureQA Web-collected

Prec. Rec. F1 Prec. Rec. F1
title 100% 100% 100% 52% 8% 62%
y-label 100% 100% 100% 65% 40% 49%
y-tick 96% 100% 98% 95% 91% 93%
x-label  100% 70% 82% 52% 22% 35%
x-tick 95% 99% 97% 9% 95% 94%
legend 93% 86% 89% 2% 82% 76%

Table 3: Text role classification results (both).

FigureQA Web-collected
Prec. Rec. F1 Prec. Rec. F1
Bar 935% 94.0% 93.7% 92.9% 64.5% 76.1%
Lin 999% 98.7% 99.3% 91.6% 66.1% 76.8%
Pie 100% 99.0% 99.5% 82.0% 753% 78.5%
Avg 978% 972% 97.5% 88.8% 68.6% T77.1%

Table 4: Text detection results for both datasets.

Table 3, the text classifier achieves over 90% F1 scores on the Fig-
ureQA dataset, except the x-label and the legend label. If legend
labels are located near the x-label, as shown in Fig. 9(b), the model
often recognizes the x-label as a legend label. Charts of the web-
collected dataset have high variances in the locations and font sizes
of texts. These variances cause the F1 score of text role classifica-
tion to degrade (Table 3). However, F1 scores of the y-tick, x-tick,
and legend labels are similar to FigureQA dataset, which are the
most critical components of texts for data extraction.

5.2.3. Data Extraction

To the best of our knowledge, despite many efforts to extract data
from chart images [JKS*17,Roh11], a fully automated system does
not so far exist. Our work is also one of the first system that aids vi-
sually impaired to access visualizations on the web. Thus, we com-
pare our model to a semi-automatic approach, ReVision [SKC*11],
using both the FigureQA dataset and the dataset that we collected
from the web. As ReVision cannot detect text automatically, we
manually annotated bounding boxes in the evaluation datasets with
the interface that ReVision provides to crop text regions for OCR.

We evaluate systems based on success rate, which indicates the
proportion of the number of charts extracted without failure with re-
spect to the total number of charts. The extracted results are treated
as successful only if the model predicts all data elements without
missing out and the error rate [JKS*17] is lower than the threshold,
e.g., 5. We also use the mean error rate [JKS*17], defined as

_1 |gi — pil
mer = nZZi R 2)

where g; is the ground truth value of the i-th element, p; is a pre-
dicted value of the i-th element, and #n is the number of charts ex-
tracted successfully. We exclude charts whose error rate is over the
threshold when computing mean error rate because these outliers
might make the comparison less meaningful.
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Figure 9: Common examples of data extraction failure. Object de-
tection errors, text classification errors, and text detection errors
account for 21.6%, 49.7%, and 29.7% of total number of errors.
Most errors occur in low resolution images.

Our model ReVision [SKC*11]
FQA web data FQA web data
Bar 99% 89% 49% 25%
Pie 92% 86% 100% 70%
Line 72% 88% - -
Average 87.67% 87.67% 74.5% 47.5%

Table 5: Charts extracted for our system compared to ReVision.

Table 5 presents success rates of our system and ReVision.
Our system performs superior to ReVision on both the FigureQA
dataset and the web-collected dataset. The difference between
mean error rates of our model and ReVision becomes larger for the
web-collected dataset (Table 6). Only in the case of pie charts does
ReVision perform slightly better than our system for the FigureQA
dataset, whose charts are simple and clear. However, the success
rate of ReVision is lower than ours while the mean error rate is
almost the same for the web-collected dataset, indicating the supe-
riority of our system to ReVision for various charts. Since ReVision
does not support a line chart, we only evaluate this in our system.
Line charts in both dataset consist of multiple lines with multiple
categories, which leads to the mean error rate to be increased.

Object detection errors, which account for 21.6% of the to-
tal failure, occur when the bar has grid effects or color gradients
(Fig. 9(a)). Because the charts we collected have a number of vari-
ations in their texts, 49.7% of failure was due to errors on text clas-
sification (Fig. 9(b)). The system also often fails to localize labels if
texts have large space between words or are not aligned at a single
horizontal line (Fig. 9(c), with 29.7% failure rate).



Choi et al. / Visualizing for the Non-Visual

Our model ReVision [SKC*11]
FQA  web data FQA web data
Bar  0.33 0.45 0.5 2.23
Pie 1.01 0.81 0.12 0.57

Line  2.58 2.07 - -

Table 6: Mean error rate for our model vs. ReVision.

6. Qualitative Evaluation

In addition to the quantitative evaluation comparing the perfor-
mance of our model, we conducted an qualitative evaluation to col-
lect feedback from visually impaired users.

6.1. Method

Evaluating with visually impaired users can be difficult due to
the relatively low number of appropriate participants. Using proxy
users, e.g., individuals without disabilities simulating disabilities
is not desirable because visually impaired people typically develop
other skills over time to overcome their disability, while proxy users
lack them [LFH17]. Elmqvist and Yi [EY 15] suggested using qual-
itative expert reviews for such situations. Hence, we engaged three
visually impaired people (P1, P2, and P3) in such an expert review.

We asked our participants to view web-based charts and use the
NVDA screen reader to hear the output from data tables extracted
using our Google Chrome extension. Then the participants were
asked a few questions about the data. For example, we asked the
participants to find the maximum and the minimum value of bar
and pie charts, and to describe the shape of line charts. After the
session, we asked the participants for their general feedback. Each
session was conducted individually and lasted half an hour.

6.2. Findings

Our experts found several usability issues that we corrected during
iterative development. The first issue was the format of the gen-
erated HTML table. P1 suggested the use of the accessible table
format that supports keyboard shortcuts (for accessible tables, refer
to [Web]. P2 pointed out web accessibility errors in the gener-
ated table. While the table is acceptable for sighted people, non-
compliance to accessibility standards such as the use of scope at-
tribute in the table row headers slowed down the table comprehen-
sion. We fixed this concern and confirmed the update with P3.

Our experts also found that the descriptive caption was originally
too long, slowing their navigation when read by the screen reader.
We moved captions to a text paragraph prior to the generated table,
which looked identical to sighted users, while it was a significant
accessibility improvement for our participants. P1 suggested to add
a subtle sound cue when a new table is generated from a chart.

We also found that the presentation of numbers can also affect
user perception. For example, when the values from the pie charts
are presented, it was given as a long floating-point number. This
number format was detrimental because the users had to memorize
the entire table to build an overview. Changing it to a simple integer
value helped this mental process by reducing the memory footprint.

In addition to specific usability feedback, our participants also
provided general feedback about the system. P1 stated that our
tool is innovative in that it can extract data even for charts that do
not provide any web-accessibility features. Previously, he manually
used an OCR tool to extract text from an image and used it to guess
chart type and collect some text labels from the image. P1’s pri-
mary concern was about how the system is robust to errors. Error
types include incorrect, missing, or misaligned data values as well
as incorrect OCR results. Misaligned error means mismatching the
data values and data labels, which can result in off by one error
for all table rows. P1 felt that incorrect data values and incorrect
OCR results would not be a critical issue, because users can easily
fix these kinds of errors. Furthermore, they are accustomed to these
kind of errors and can try to verify with other available OCR tools.
However, misaligned and missing data values are potentially prob-
lematic because it can lead to a completely different understanding
of the data. Nevertheless, P1 felt that the gain from our approach
significantly exceeds the potential risk, given that the overall recog-
nition performance improves over time. P3 suggested to use sound
according to the confidence of the algorithm. For example, when
data is uncertain, the tool can use a suggestive musical chime.

An interesting point about the screen reader is that it works as an
environment for multiple plugins. For example, P1 used a strategy
of running an OCR plugin on a chart image when our tool failed. P1
noted that our tool could fit into this plugin ecosystem by providing
the unique role of extracting data tables from raster images. Ideally
the OCR programs should have the ability to transform the images
to the description and the charts into the data tables.

P1 and P3 suggested that our tool would be particularly useful in
educational settings for visually impaired. After learning about var-
ious statistical charts, users would be able to build mental images
of the charts using the data table as well as visual shape of charts
such as bar, line, and pie. This is helpful because each chart form
has a unique characteristic and usage area, and being able to build a
mental visualization can be better than having only the data table.

7. Conclusion and Future Work

We have presented a method to automatically reconstruct visualiza-
tions stored in raster images into their original geometric shapes,
and then use this information to extract the underlying data. Our
application for this data is to support the visually impaired in under-
standing chart images. Our method interfaces with current screen
readers, thus making previously locked-away data accessible to a
huge population. We present a Google Chrome extension that au-
tomatically detects, extracts, and presents any raster charts as a
thumbnail, a multi-level textual summary, and as a raw data table.

In our future work, we will continue studying the use of visual-
ization for visually impaired users. In particular, we believe that
we can do better than just presenting the raw data to the user,
but instead automatically derive insights about the data. Further-
more, methods such as ours are fascinating because they essentially
mimic our own perceptual system. We will refine our model so that
it can eventually recognize, decode, and extract data from general
visual representations, not just familiar ones.
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