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Fig. 1. Conceptual overview of the VASA system, including four simulation components for weather, critical infrastructure, road
network routing, and supply chains, as well as the VASA Workbench binding them together.

Abstract—We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of
distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on
critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation
model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and
parameter exchange format. At the heart of VASA is the Workbench, a visual analytics application providing three distinct features: (1)
low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively
configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components;
and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run. We showcase the utility of the
platform using examples involving supply chains during a hurricane as well as food contamination in a fast food restaurant chain.

Index Terms—Computational steering, visual analytics, critical infrastructure, homeland security.

1 INTRODUCTION

Highways, interstates, and county roads; water mains, power grids,
and telecom networks; offices, restaurants, and grocery stores; sewage,
landfills, and garbage disposal. All of these are critical components of
the societal infrastructure that help run our world. However, the com-
plex and potentially fragile interrelationships connecting these com-
ponents also mean that this critical infrastructure is vulnerable to both
natural and man-made threats: twisters, hurricanes, and flash floods;
traffic, road blocks, and pile-up collisions; disease, food poisoning,
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and major pandemics; crime, riots, and terrorist attacks. How can a
modern society protect its critical infrastructure against such a diverse
range of threats? How can we design for resilience and preparedness
when perturbation in one seemingly minor aspect of our infrastructure
may have vast and far-reaching impacts across society as a whole?

Simulation, where a real-world process is modeled and studied over
time, has long been a standard tool for analysts and policymakers to
answer such questions [10]. Using complex simulations of critical in-
frastructure components, expert users have been able to create “what-
if” scenarios, calculate the impact of a threat depending on its severity,
and find optimal mitigation measures to address them. In fact, analysts
have gone so far as to name simulation as the “new innovation” [33]:
instead of endeavoring to produce the perfect solution once and for all,
this new school of thought is to create a whole range of possible so-
lutions and determine the optimal one using modeling and simulation.
For example, during the Obama reelection campaign, it was reported
that Organizing for Action data analysts ran a total of 62,000 simu-
lations to determine voter behavior based on data from social media,
political advertisements, and polling [42]. Basically, the philosophy
with big data analytics driven by simulation is not to get the answer
perfectly right, but to be “less wrong over time” [32]. Put differently,
while it would be inappropriate to state—as others have done [2]—that
big data will ever overtake theory, it is clear that large-scale simulation
is a new and powerful tool for making sense of the world we inhabit.

Applying simulation to the scope of entire critical infrastructures—
such as transportation, supply chains, and power grids—as well
as the factors impacting them—such as weather, traffic, and man-



made threats—requires constructing large asynchronous simulation
pipelines, where the output of one or more simulation models becomes
the input for one or more other simulations arranged in a sequence with
feedback. Such a system-of-systems [11, 28] (SoS) will enable lever-
aging existing high-fidelity simulation models without having to cre-
ate new ones from scratch. However, this approach is still plagued by
several major challenges that all arise from the complexity of chaining
together multiple simulations in this way: (C1) monolithic simulations
that are designed to be used in isolation, (C2) complex configurations
for each model, (C3) non-standard data exchange for passing data be-
tween them, (C4) long execution times for each individual simulation
that are not amenable to interactive visual analytics, and (C5) uncer-
tain and inaccurate simulations compounded by their composition.

To address these challenges, we present VASA (Visual Analytics for
Simulation-based Action), a visual analytics platform for interactive
decision making and computational steering of these types of large-
scale simulation pipelines based on a visual analytics approach. The
VASA Workbench application itself is an interactive desktop appli-
cation that binds together a configurable pipeline of distributed sim-
ulation components. It enables the analyst to visually integrate, ex-
plore, and compare the inter-related and cascading effects of systems
of systems components and potential final alternative outcomes. This
is achieved by visualizing both intermediate and final results from the
simulation components using a main spatiotemporal view as well as
multiple secondary views. The tool provides an interface for the an-
alyst to navigate in time, including stepping backwards and forwards,
playing back an event sequence, jumping to a particular point in time,
adding events and threats to the timeline, and initiating mitigation
measures. Moreover, it allows them to select between or combine dif-
ferent ensemble outputs from one simulation to be fed to other SoS
components and explore consequences. Using this interface, an an-
alyst could for example add a weather event (e.g., either an existing
hurricane from a historical database, the union of several output paths,
or simulation of a new one) to a particular time, and then step forward
a week to see its impact on roads, power, and food distribution.

The simulation components provide the main functionality to the
VASA platform. Each simulation component communicates with the
Workbench using a representational state transfer (REST) API that
standardizes the data and parameter exchange. The data flows and pa-
rameters passed in the pipeline can be configured in the Workbench ap-
plication using a graphical interface. Furthermore, the Workbench also
includes a local simulation proxy for each remote simulation compo-
nent that provides real-time approximations of each simulation model
to enable using them for interactive visual discourse. This feature also
provides the computational steering functionality of the Workbench:
after configuring a simulation run in an interactive fashion, the analyst
can launch the (possibly lengthy) execution from the Workbench. The
Workbench then provides tools to manage the simulation pipeline, for
example to prematurely shut down a simulation component to accept
a partial result, skip a run, or rerun a component with new parameters.

Our work on the VASA project has been driven by stakeholders in-
terested in supply chain management of food systems, with an initial
working example of a food production to restaurant system. For this
reason, other than the VASA Workbench application and the protocols
and interfaces making up the platform, we have also created VASA
components for simulating weather (including storms, hurricanes, and
flooding), the power grid, supply chains, transportation, and food poi-
soning. We describe these individual components and then present an
example of how the VASA platform can be used to explore a what-
if scenario involving a major hurricane sweeping North Carolina and
knocking out a large portion of the road networks and power grid. We
also illustrate how the tool can be used to simulate food contamina-
tion outbreaks and how this information can be used to track back the
contaminated products to the original distribution centers.

2 BACKGROUND

Visual analytics [36], can be a powerful mechanism to harness simu-
lation for understanding the world. Below we review the literature in
visual analytics for simulation and computational steering, as well as

appropriate visual representations for such spatiotemporal data.

2.1 Simulation Models
The potential for applying visual analytics to simulation involves not
only efficiently presenting the results of a simulation to the analyst, but
also building and validating large-scale and complex simulation mod-
els. For example, Matkovic et al. [26] show that visual analytics can
reduce the number of simulation runs by enabling users to concentrate
on interesting aspects of the data. Maciejewski et al. [23] apply visual
analytics techniques to support exploration of spatiotemporal models
with kernel density estimation and cumulative summation. This ap-
proach has also been applied to epidemic modeling and decision im-
pact evaluation [1]. Similarly, Andrienko et al. [5] propose a compre-
hensive visual analytics environment that includes interactive visual
interfaces for spatial modeling libraries, including selection, adjust-
ment, and evaluation. Our work is different from this prior art in that
our approach combines multiple components in a simulation pipeline,
where each stage in the pipeline provides visualization for analysis.

Supply chain management is another multi-decisional context
where what-if analyses are often conducted to capture provenance and
processes of supplies. Simulation is recognized as a great benefit to
improve supply chain management, providing analysis and evaluation
of operational decisions in the supply process in advance [35]. With
the IBM Supply Chain Simulator (SCS) [9] and enterprise resource
planning (ERP), IBM is able to visualize and optimize nodes as well
as relations in the supply chain [20]. Perez also developed a supply
chain model snapshot [29] with Tableau. However, existing visualiza-
tions of supply chains are mostly limited to either local supply nodes
or a metric model rather than managing the overall supply process.

2.2 Computational Steering
Computational steering refers to providing user control over running
computations, such as simulations. Mulder et al. [27] classify uses of
computational steering as model exploration, algorithm experimenta-
tion, and performance optimization. Applications include computa-
tional fluid dynamics (CFD) [12], program and resource steering sys-
tems [38], and high performance computing (HPC) platforms [7].

For all of the above applications, the user interface is a crucial
component that interprets user manipulation for configuring data, al-
gorithms, and parameters. Controlling, configuring, and visualizing
such computational steering mechanisms is an active research area.
Waser et al. proposed World Lines [39], Nodes on Ropes [40], and
Visdom [31] as well as an integrated steering environment [31] to help
users manage ensemble simulations—multiple runs of the same or re-
lated simulation models with slightly perturbed inputs—of complex
scenarios such as flooding. Endert et al. [13] show how to embed ana-
lysts in the analytics loop using computational steering. In the business
domain, Broeksema et al. [8] propose the Decision Exploration Lab to
help users explore decisions generated from combined textual and vi-
sual analysis of decision models rooted in articifical intelligence.

2.3 Spatiotemporal Data
Spatiotemporal visual analytics systems enable users to investigate
data features over time using a visual display based on geographic
maps [3]. In these systems, color, position, and glyphs display fea-
tures of different regions by directly overlaying the data on the map.

Many approaches to visual analytics for spatiotemporal data ex-
ist [6]; a relevant sampling follows. Andrienko and Andrienko [4] use
value flow maps to visualize variations in spatiotemporal datasets by
drawing silhouette graphs on the map to represent the temporal aspect
of a data variable. Hadlak et al. [16] visualize attributed hierarchical
structures that change over time in a geospatial context. Fuchs and
Schumann [15] integrate ThemeRiver [17] and TimeWheel [37] into a
map to visualize spatiotemporal data. Finally, Ho et al. [18] present a
geovisual analytics framework for large spatiotemporal and multivari-
ate flow data analysis using bidirectional flow arrows coordinated and
linked with choropleth map, histograms, and parallel coordinate plots.

Some approaches enable analysis of spatially-distributed incident
data, which is of particular relevance here. Maciejewski et al. [22]



propose a system for visualizing syndromic hotspots, while Malik et
al. [24] develop a visualization toolkit utilizing KDE (Kernel Density
Estimation) to help police better analyze the geo-coded crime data.
The latter system has also been extended [25] to historic response op-
erations and assessment of potential risks in maritime environments.

3 DESIGN SPACE: STEERING SYSTEM-OF-SYSTEM SIMULA-
TIONS FOR MODELING SOCIETAL INFRASTRUCTURE

Computational steering is defined as user intervention in an au-
tonomous process to change its outcome. This approach is commonly
utilized in visual analytics [36] when embedding a human analyst into
the computation loop for the purpose of creating synergies between
the analyst and computational methods. In our work, the autonomous
processes we are studying are simulation models (often based on dis-
crete event models) that are chained together into asynchronous sim-
ulation pipelines where the output of one or several simulations be-
comes the input to one or several other simulations. Such a simu-
lation pipeline is also a system-of-systems [11, 28] (SoS): multiple
heterogeneous systems that are combined into a unified, more com-
plex system whose sum is greater than its constituent parts. Synthe-
sizing all these components yields the concept of visual analytics for
steering system-of-system simulations: the use of visual interfaces to
guide composite simulation pipelines for supporting sense-making and
decision-making. In this work, we apply this idea to modeling societal
infrastructure, such as transportation, power, computer networks, and
supply chains. Below we explore the design space of this concept, in-
cluding problem domains, users, tasks, and challenges. We then derive
preliminary guidelines for designing methods supporting the concept.

3.1 Domain, User, and Task Analysis
The concept of creating large-scale system-of-system simulation
pipelines is applicable to a wide array of problem domains. Our par-
ticular domain is for business intelligence for supply chain logistics in
the fast-food business, but we see multiple other potential applications:

• Supply chain logistics: Impact of large-scale weather events on
the distribution of goods (particularly perishables, e.g., food).

• Public safety: Crime, riots, and terrorist attacks on critical in-
frastructure, such as on roads, bridges, or the power grid.

• Food safety: Incidence, spread, and causes of food contamina-
tion, often due to weather (power outage) or transport delays.

• Cybersecurity: Societal impact of cybersecurity attacks, such
as on power stations, phone switches, and data centers.

The intended audience for computational steering of simulation
models using visual analytics is what we call “casual experts:” users
with deep expertise in a particular application domain, such as trans-
portation, supply chain, or homeland security, but with limited knowl-
edge of simulation, data analysis, and statistics. Their specific back-
ground depends on the problem domain; for example, they may be
logistics analysts for supply chain applications, police officers for pub-
lic safety, and homeland security officials for food safety and cyber-
security. Because of this “casual” approach—a term we borrow from
Pousman et al.’s work on casual information visualization [30]—our
intended users are motivated by solving concrete problems in their
application domain, but are not necessarily interested in configuring
complex simulation models and navigating massive simulation results.

Even if our primary audience is these casual experts, it is likely that
the outcome of a simulation analysis will be disseminated to managers,
stakeholders, or even the general public [36]. Thus, a secondary user
group for consuming our analysis products is laypersons with an even
more limited knowledge in mathematics, statistics, and data graphics.

In our particular application, we identified tasks for simulation
steering by working with a group of analysts from a restaurant chain
that has a very large number of restaurants across the U.S, as wel as a
food supply chain involving farms, food processing centers, and food
distribution centers. The two main concerns voiced by these analysts
are better understanding and traceability of their supply chain and un-
derstanding resiliency/vulnerability of their food supply network, es-

pecially in relation to pertain to (C1) severe weather and (C2) food poi-
soning: understanding the impact of natural disasters (e.g., hurricanes)
on their food supply chain, processing facilities, and restaurants, as
well as determining the source and distribution of food contamination
cases in relation to their restaurants. More specifically, our analyst au-
dience wants to perform the following high-level tasks in relation to
these two concerns:

• Increasing preparedness for potential scenarios;
• Improving the resilience of the restaurant chain; and
• Planning for mitigation and response to a situation.

A motivating example for our target analysts is to understand the
impact of severe weather (e.g., hurricanes) on power plants and roads,
which may directly or indirectly impact food processing centers, distri-
bution centers, and restaurants. Direct impacts include power outages,
flooding, and evacuation. Indirect impacts, on the other hand, occur
due to direct impacts earlier in the supply chain, such as a farms, food
processing or distribution centers going offline causing shortages and
redistribution of products. Both types of impacts may cause closing
of facilities, which in turn may lead to indirect impacts downstream
in the supply chain. Detecting such closures allows the analysts to
mitigate their impact, for example by rerouting deliveries from other
distribution centers, or even transporting back frozen products from a
restaurant lacking refrigeration due to an extended power outage. In a
hurricane scenario, the primary task then becomes determining which
facilities will be closed, which routes will be impassible, and the im-
pacts and duration these will have throughout the supply chain. Simi-
lar effects can be caused by power failures caused by other events (e.g.,
severe summer demand, tornadoes, power grid cyberattacks). These
failures can also impact food safety (C2) due to spoilage and condi-
tions favorable for contamination. If this is not prevented, it leads to
the second task named by our target analysts: the capability to model
food contamination and backtrack to its source so that the contami-
nation can be stopped. Similar to the hurricane example above, this
also requires coordinating multiple interdependent simulation models.
Unfortunately, our user group does not currently have tools for per-
forming a series of simulations to explore these scenarios.

3.2 Challenges
Modeling the real world is a tremendously difficult and error-prone
process. However, we leave concerns about the fidelity, accuracy, and
quality of a simulation to researchers from the simulation field. Rather,
in this subsection we concern ourselves with the challenges intrinsic
to connecting multiple individual simulation models into large-scale
pipelines. In the context of simulation steering for such pipelines, we
identify the following main challenges from our analyst audience:
C1 Monolithic simulations: While individual high-fidelity simula-

tion models exist for all of the above components and threats,
these models are monolithic and not designed to work together.

C2 Complex relationships: Each high-fidelity simulation model
consists of a plethora of parameters and controls that require
expertise and training, which is exacerbated when several such
models are combined into a single model.

C3 Non-standard data: No standardized data exchange formats ex-
ist for passing the output of one simulation model, such as for
weather, as input to another model, such as supply chain routing.

C4 Long execution times: Most state-of-the-art, high-fidelity sim-
ulation models require a non-trivial execution time, often on
the order of minutes, if not hours. Such time frames are not
amenable for real-time updates and interactive exploration.

C5 Uncertainty and fidelity: Chaining together multiple simula-
tions into a pipeline may yield systematically increasing errors
as uncertain output from one model is used as input to another.
This is compounded by the fact that heterogeneous simulation
models may have different levels of fidelity and accuracy.

3.3 Design Guidelines
Based on our review of the problem domain, users, and tasks above, as
well as the challenges that these generate, we formulate the following



tentative guidelines for designing visual analytics methods for steering
system-of-system simulation pipelines:
G1 Simulations as standardized network services: Distributing sim-

ulation models as network services avoids the trouble of integrat-
ing a monolithic design with another system (C1) and automati-
cally provides a data exchange format (C3). The simulations also
become decoupled, which means they can be parallelized and/or
distributed in the cloud to manage long execution times (C4).

G2 Simulation proxies for interactive response: Meaningful sense-
making in pursuit of one of the high-level tasks in Section 3.1
requires real-time response to all interactive queries. This means
that long execution times (C4) of simulation models in the
pipeline should be hidden from the user. We propose the concept
of a simulation proxy as an approximation of a remote simulation
service that is local and capable of providing real-time response
at the cost of reduced (often significantly) accuracy.

G3 Visual and configurable relationships: The interactive visual in-
terfaces routinely employed in visual analytics may help to sim-
plify and expose the complex configurations necessary for many
high-fidelity simulation models (C2), even for non-expert users.

G4 Partial and interruptible computational steering: Once an an-
alyst has configured a simulation run using simulation proxies
(G2) and visual mappings (G3), the full simulation pipeline must
be invoked to calculate an accurate result. A full-fledged sim-
ulation run may take minutes, sometimes hours, to complete.
The computational steering mechanisms provided by the soft-
ware should provide methods for continually returning partial
results [14] as well as interrupting a run halfway through.

G5 Visual representations of both intermediate and final results: To
fully leverage the power of visual analytics, we suggest using in-
teractive visual representations of simulation results. Such visu-
alizations should be used for both intermediate data generated by
a simulation component anywhere in the pipeline—which would
support partial results and interrupting a run at any time—as well
as for the final results. All visual representations should be de-
signed with uncertainty in mind (C5), and providing interme-
diate visualizations should also help in exposing propagation of
increasing error. Finally, it may also be useful to use visual repre-
sentations for the approximations created by simulation proxies
(G2), but these should be clearly indicated as such.

G6 Spatiotemporal focus: The primary data dimension of interest
for results from simulation pipelines has both spatial and tempo-
ral attributes; for this reason, we will base the visual analytics
interface on spatiotemporal visualization [3, 6]. Secondary visu-
alizations may focus exclusively on time, space, or quantities.

4 VASA: OVERVIEW

VASA (Visual Analytics for Simulation-based Action) is a distributed
component-based framework for steering system-of-system simula-
tions for societal infrastructure. Figure 1 gives a conceptual model of
the system architecture. At the center of the system is the VASA Work-
bench (Figure 2), a user-driven desktop tool for configuring, steering,
and exploring simulation models, impacts, and courses of action. The
workbench provides a visual analytics dashboard based on multiple
coordinated views, an event configuration view, and a computational
steering view. The workflow of the workbench revolves around initi-
ating, controlling, analyzing, exploring, and handling events from the
remote simulation components as well as the local simulation proxies.

Within the dashboard, events are displayed in a selectable calen-
dar view (a) where each event’s name, dates and a user-selected rep-
resentative attribute (e.g., storm’s maximum wind speed) are shown.
The selected events from (a) are listed chronologically in the event
viewer (b), where a user can select times for investigation. A tool-
bar (b-1) provides buttons for initiating simulations (e.g., cyberattack,
storm simulations, distribution re-routing), selecting combinations of
events (union, intersection, difference), selecting event visualization
modes (polygons, contours), and triggering chronological playback.

Users can select a time within an event for comparison (right-
clicking on a event’s black rectangle), causing a red mark to be shown

in the upper right corner of the associated event (b-2), and the corre-
sponding impact to be highlighted in the main geospatial view (d-1,
Sandy, red). This allows for comparing across different events and ef-
fects. We provide a legend window (c) for selected properties and the
geographical view (d) renders the simulation results, including event
evolution, routing paths, and impacts on critical infrastructures. Sev-
eral of the dashboard widgets are plugged in from the simulation com-
ponents. For example, a food delivery schedule to each store within a
supply chain is provided in (e) where the x-axis presents corresponds
to different restaurants while the y-axis represents different food pro-
cessing centers or different types of foods. Here, the darker the red, the
larger the quantity of the delivered food. The quantity information is
provided in a tooltip that helps a user to estimate possible losses. This
view enables traceback analysis (e.g., which type of food was contam-
inated from which processing centers, how much contaminated food
was delivered to which store, etc) for food contamination incidents.

5 VASA: COMPONENTS

The VASA suite currently provides four simulation components:
weather, critical infrastructure, routing, and supply chains. Data from
each component and proxy is processed and merged before being vi-
sualized in the Workbench. Each proxy not only processes and stores
data for its own visualization but also communicates with other prox-
ies upon request. For example, to visualize new delivery routes, the
routing proxy asks the infrastructure proxy for impacted stores before
approximating new routing information. In this way, the VASA sys-
tem uses a loosely coupled state that is distributed across components
and proxies. We review each of the VASA components below.

5.1 Weather Component
To provide analysts with a one-stop source for weather data, we im-
plemented a server that asynchronously amasses data from on-line
sources and presents it to clients through a RESTful web interface.
This provides access to weather data—both historical, current, and
modeled—through a singly authenticated VASA component. The ser-
vice can be queried by the user or set into a push-mode to send new
events to the VASA Workbench during severe weather season (e.g.,
hurricane, flood, tornado season, etc).

5.1.1 Simulation Model and Simulation Proxy
Beyond historical data, the VASA weather component currently col-
lect both ADCIRC and NOAA weather models. The ADCIRC (AD-
vanced CIRCulation) model is a collaboration of several research cen-
ters off the East and Gulf coasts of the United States. Active during
hurricane season, these models are run every four hours when storms
are presents, producing ADCIRC-formatted datasets at fixed intervals
forward from the start point. These results are made publicly available
using THREDDS and OPeNDAP for cataloging, discovery and data
access. Similarly, NOAA produces wind-speed probabilities along the
tracks of many types of storms as contours at 34, 50, and 64-knot lev-
els. When updated datasets appear on the respective dissemination
sites, we import them onto the VASA weather server, which provides
a simple API to access the data in convenient multi-resolution formats.

The proxy in this component has two roles. The first role is to
prepare all event datasets from the remote event server. Therefore, the
system first checks for new updates from the server. If there is a new
update, it retrieves the data and caches it on the local workbench for
faster loading. The second role is to visualize new status of an event on
the date that a user selected and notify the status change of the event
to other proxies. An example status change is a user changing the
start date of a hurricane in the event viewer. When this happens, the
proxy visualizes a new state of the hurricane on that date and notifies
this change to other components, which initiates work by downstream
proxies (e.g., estimating an area without power and impassable roads).

For visualizing weather data, the user can select the visual repre-
sentation either as polygons or as contours as shown in Figure 2 (b-2,
the last button). In polygonal mode, two probability models (blue with
two different opacities) are projected as shown in the magnification
view in Figure 2. Here, the smaller polygon represents a predicted path
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Fig. 2. Multiple coordinated views in the VASA Workbench. (a) Calendar view with available events (e.g., weather, food poisoning, cyberattack,
etc). (b) Event timeline for configuring events. (b-1) Event buttons. (b-2) Fixed event. (c) Map legend. (d) Geographical map. (d-1) Fixed Sandy
estimation (red). (e) Pixel/schedule view showing food deliveries. Each area divided by a blue line means a route that visits 3–4 restaurants, 3
times a week. This view also can be used for pixel-based visualization.
with high probability, and a larger one represents a predicted path with
low probability. When a user selects a hurricane, the hurricane turns
red for comparison to other hurricane paths. For example, in Figure 2
the paths of Hurricane Irene on August 24, 2011 (blue) and Hurricane
Sandy on October 27, 2012 (red) are both rendered for comparison.

In contour mode, on the other hand, hurricanes are drawn using
three different sizes of contours, each representing mean areas in dif-
ferent wind speeds (e.g., Hurricane Irene in our simulation model has
64 knot highest wind speed at the innermost contour, and 34 knot low-
est wind speed at the outermost contour as shown in Figure 6). To
utilize different wind speeds in simulation steering, a user can set up a
threshold for infrastructures (e.g., a power generation unit is disabled
if the wind hitting the plant has speed higher than 34 knot). In addition,
a user can apply one of the contours for a time. For example, Figure 6
(top-right) presents which power generation units are affected when
a contour with 34 knot hits the area. Here, red circles represent af-
fected restaurants and purple circles represent power generation units
supplying electricity to those restaurants.

5.1.2 Input and Output
The weather component often serves as a starting point for analysis
by alerting severe weather conditions, and thus typically has no up-
stream component dependencies. Instead, simulation runs are often
initiated by the analyst by adding weather events—current, modeled,
or historical—to the timeline. Available weather events currently only
include hurricanes, but are being expanded to other severe storm alerts,
and are listed in a calendar view (Figure 2(a)).

5.1.3 Implementation Notes
The VASA weather component is implemented as a web service ac-
cessed using the common VASA RESTful API. All data objects are
represented by URLs that encode procedures and parameters that,

when issued, return JSON objects containing the results. This pro-
vides a very simple interface for use both by browser-based visualiza-
tion UIs that use AJAX to issue requests asynchronously, and other
platforms that provide access through language-specific interfaces.

5.2 Critical Infrastructure Component

Widespread emergencies such as hurricanes, flooding, or cyberattacks
will often affect multiple societal infrastructures. High winds and
flooding from a hurricane, for example, could knock out parts of the
power grid, the effect of which would cascade to traffic signals, the
communications network, the water system, and other infrastructures.
The flooding might simultaneously make parts of the road network
impassable. These breakdowns would affect critical facilities such as
schools, hospitals, and government buildings. For longer-lived disas-
ters, food distribution might break down due to power outage, route
disruption, or other cascading effects. The purpose of VASA’s critical
infrastructure component is to simulate how such external emergen-
cies, modeled in other components, will impact critical infrastructure.

5.2.1 Simulation Model and Proxy

To capture these complex, multifarious, and dynamic effects, the
VASA critical infrastructure component takes into account the interre-
lationships between critical infrastructure systems. The simulation is
built within the Vu environment [41] (Figure 3), which provides a rule-
based framework for integrating multiple infrastructure submodels at a
high level. This results in an interdependency ontology. Thus, for ex-
ample, a breakdown of a power substation would immediately cascade
to power loss at points on its distribution network. If a school were a
node in the distribution network, it would be switched to backup power
that, after a given time, would also shut down. Likewise, telecommuni-
cation nodes would switch to backup power that might also shut down
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Fig. 3. Critical infrastructure server containing the pre-computed en-
semble database and Vu environment with its simulation submodels.

after its prescribed duration. There could also be outages due to power
load imbalances at other points in the grid.

The infrastructures we currently model include the electric grid; the
communications network including TV stations, radio stations, cellu-
lar switch controls, and cell towers; transportation facilities including
airports, bus terminals, rail lines and terminals, bridges, tunnels, and
ports; the road network including main and secondary roads; natu-
ral gas pipelines and pumping stations; critical facilities including fire
stations, police stations, schools, hospitals, emergency care facilities,
manufacturing locations, government buildings, and hazmat facilities.
Figure 4 shows the electric grid, which includes the complete transmis-
sion network down to substations for both North and South Carolina.
Parts of the distribution network are also included, especially for crit-
ical installations. Figure 5 shows the transportation network for North
Carolina, including roads, airports, rail lines, etc. For the purposes of
VASA, we have also added store and distribution center locations for
a large food chain in North and South Carolina. These facilities are
linked to the power grid and road networks.

The proxy for the critical infrastructure component maintains a sim-
plified connectivity network of critical infrastructure. In this graph,
restaurants are connected to the nearest plant. When the proxy re-
ceives a signal of a new event (e.g., storm path change, new day for
approximation), it computes which infrastructures are affected by the
event. For example, when a user moves the hurricane simulation for-
ward to a new day, our proxy checks which infrastructures are newly
affected and produces an estimate and its corresponding visualization
(e.g., color changes for restaurants affected by power disruptions).

5.2.2 Input and Output
The primary inputs of this component comes from the weather com-
ponent represented as polygons of severe weather, such as wind speed,
precipitation, and temperature data. Furthermore, the component also
accepts direct manipulation of simulation parameters for particular fa-
cilities from the Workbench itself, such as the user manually shutting
down a power substation. The outputs returned from the component is
a list of facilities (e.g., restaurants, food processing centers and distri-
bution centers) that are closed, and a duration of their closures.

Our prototype system currently uses data from the state of North
Carolina, and the data collection and organization process involves lo-
cating and identifying components of the various infrastructures for
the state. We use publicly available data sources, in some cases identi-
fying infrastructure components by indirect means. For example, com-
prehensive information about the electrical grid is closely held by the
utility companies. However, we have shown our results to utility com-
pany officials and received confirmation as to their high accuracy.

5.2.3 Implementation Notes
As for all the other VASA simulation components, we use a web ser-
vice that can accept requests from the VASA Workbench and return
simulation results ready to be presented in the user interface (see Fig-
ure 1). The critical infrastructure server itself has two components.

Fig. 4. Power transmission grid with parts of the distribution network.

Fig. 5. Transportation network including transportation facilities.

One contains a searchable database of the pre-computed ensemble of
simulation runs. The other accepts current storm path and other inputs
from the weather component, converts them into courses of action,
and computes a fresh set of cascading infrastructure disruption results
via the Vu environment. When a request is issued via the user inter-
face, the simulation proxy determines the weather inputs to send to
the ensemble database component that immediately selects the closest
ensemble simulation for use in the visual analysis. This proxy is then
replaced by the more accurate result from the Vu model based on the
current weather simulation as soon as it is available. Both the ensem-
ble selection and the Vu model are depicted in Figure 3. Therefore, an
emergency response manager can make initial decisions based on the
proxy and then refine them once the up-to-date result is available.

5.3 Supply Chain Component

Most food systems involve a number of firms from on-farm production
of inputs through processing, distribution and retail sales. For the fast
food system in VASA, three different firms have collaborated to pro-
vide the data on normal system performance: a vertically integrated
poultry firm (hatchery to processed chicken), a warehouse and distri-
bution firm, and a fast food restaurant firm. Each firm contributed data
from their portion of the supply chain to enable modeling of prod-
uct movement from farm to restaurant. The type of data provided
includes geospatial information on the facilities involved (e.g., feed
mills, hatcheries, poultry farms, poultry processing facilities, distribu-
tion centers and restaurants), normal transportation routes and sched-
uled times from each facility to the next facility in the system and
details on actual shipment quantities on average (hatchery through
processing) or actual shipment records for a limited time frame (dis-
tribution centers to restaurants). As an illustration of the amount of
data that drives these systems, one week of data on product delivered
from the two distribution centers to the nearly five hundred individual
restaurants alone constitutes more than 120,000 individual records.

Hurricanes pose significant risks for normal supply chain operation
from impassable roads, power outages, and floodings disrupting facil-
ity operation and distribution of products in the system. Understanding
which routes and locations are likely to be at risk from a storm would
enable a firm to develop contingency plans in advance of a storm,
thus reducing operational losses immediately after a storm. Given that
daily sales at larger fast food restaurants can be $4,300-$7,400, losses
can mount quickly. For an impending storm or immediate aftermath,
rerouting could enable firms to most efficiently maintain their distribu-
tion systems for both maintaining product distribution and retrieving
food from restaurants without power to minimize spoilage losses.



5.3.1 Simulation Model and Proxy
The primary objective of the supply chain component is to model dis-
tribution of product from food processing plant, through food distribu-
tion center, and to the restaurants. The routing of transports are han-
dled in another component (Section 5.4); however, a primary concern
of this component is to track product for the purpose of food safety.

Food contamination can occur both intentionally or as a malicious
act at any point in the supply chain and can result in significant public
health consequences, from morbidity to mortality. While firms are re-
quired to have information one step forward and one step back in their
supply chain, they often have difficulty gaining visibility beyond that.
By gathering data from each step in the supply chain, it is possible to
trace product from farm through to restaurant and from restaurant back
to farm. Using data on actual lot sizes from the firms involved, two il-
lustrative contamination scenarios were constructed to illustrate how
differently seemingly similar contamination scenarios would transpire.
This system also illustrated a common problem of “hidden nodes” in
the system, i.e., facilities that one firm in the system does not realize
are part of its supply chain. One of the poultry slaughter and process-
ing facilities ships raw poultry to a further processing facility that then
ships the resulting product to the distribution centers. If there were a
contamination at the “blind” facility, neither the distribution firm for
the restaurant firm would initially know that it was part of their sup-
ply chain. A contamination scenario builder is now under development
that would enable users to model a wide range of contamination events
and see how they would propagate through the supply chain.

Our simulation model can generate food-borne illness data based on
an approach similar to the Sydovat [21] system. There are two major
components of the model for generating synthetic illness data: tem-
poral and spatial data. A time series is contructed from its individual
components (day-of-week, interannual, interseasonal, and remainder)
similar to seasonal trend decomposition. To generate the time series
of food-borne illnesses for a user-injected restaurant location, the user
defines the mean daily count of illnesses along with seasonal and day
of week components. If historical data is available, then seasonal and
day of week components can be selected from this historical data. Spa-
tial locations for temporal data are generated based on the population
density distribition in that area. The analyst can also customize the
grid size and density distributions.

Our simulation proxy for the supply chain component maintains a
low-fidelity representation of the transport network. This is used to-
gether with the weather polygons to approximate when a distribution
center and store must shut down. For food poisoning scenarios, this
inherently contains spatially-distributed points of ill people simulated
based on the simulation model (Section 5.3.1). To visualize the spatial
distribution and the hotspots of the poisoned people, the proxy in this
component uses a modified variable kernel density estimation tech-
nique with varying scales of the parameter of estimation based upon
the distance from a patient location to the kth nearest neighbor [34].
The model used for estimating the number of people poisoned is the
same model utilized in Maciejewski et al. [1, 21], but we adjust param-
eters to consider different population densities in different regions.

5.3.2 Input and Output
This component accepts closures, including their durations, on supply
chain facilities from the critical infrastructure component as well as
severe weather polygons from the weather component. It then main-
tains and provides three types of information: (1) geo-information of
all facilities of the supply chain, (2) delivery schedules, and (3) food
products inventory in all locations (weight, size, and price).

5.3.3 Implementation Notes
The supply chain component is built in ArcGIS and Arc Network
Modeler so that storm impacts can model solutions accounting for
restaurants out of service (power, flooding) and impassable roadways.

5.4 Routing Component
The purpose of the routing component is to provide a mechanism for
other VASA components to find appropriate routes from one facility to

another given a dynamically changing world model, where roads may
become impassable due to weather or other widespread emergencies.

5.4.1 Simulation Model and Proxy
The input to the routing component is a polygon representing an area
impacted by severe weather (such as a hurricane). The component
uses this input as a polygon barrier in the road network. Attributes of
the road network are weighted to create a friction surface that iterates
through routing options to determine the optimal route. The model
does not currently include current traffic conditions or construction
activity, but these factors could be added in the future. Each route min-
imizes the travel time between the distribution center and the first store
or between stores. This set of routes represents the baseline scenario:
how delivery trucks would travel under normal circumstances. Since
delivery trucks can no longer reach outlets covered by the weather bar-
rier, the routing service recomputes the routes with the barrier in place
and returns new routes which avoid the outlets and roads covered by
the barrier. If the barrier covers a distribution center, no deliveries will
be made to outlets serviced by the center.

The main focus of the proxy in the routing component is on ap-
proximating the number of routes that will be replaced if a complete
simulation result exists. The proxy investigates which nodes in routes
are expected to be disabled when there is an event. Then, after the
investigation, it builds a polygon by connecting outer-most nodes and
visualizes the polygon. This gives awareness to a user that the routes
in the polygon are likely to be changed after a complete simulation.

5.4.2 Input and Output
The severe weather data is ingested into the component as GeoJSON
objects from the weather simulation component. Similarly, the calcu-
lated routes are output as a set of large GeoJSON objects and sent back
to the caller (most often the supply chain component). One important
input in this component is the impact area provided by the workbench
that is presented by a polygon. Once this input is received, this com-
ponent recalculate routes for the area in the polygon.

The geospatial database used by the component currently includes
the addresses of two distribution centers and 505 fast-food outlets in
our dataset, including the route information that links the centers to
the outlets. This also includes the N shortest path routes, where N is
the number of routes specified in the input data. The road network has
a long list of attributes used to determine the shortest route, including
road class, speed limit, number of lanes, and weight restrictions.

5.4.3 Implementation Notes
We implemented the routing component using ArcGIS Server 10.2
with the Network Analyst extension and the StreetMap Premium
(TomTom North America data) road network. In general, the Esri suite
of Geographical Information System (GIS) tools is widely used in a
variety of industries and provides a robust set of tools and data. The
server provides web-based services through REST endpoints and a ro-
bust API accessed with HTTPS GET or POST requests. The VASA
workbench initiates a request to the routing service by providing a
GeoJSON representation of the affected area. The affected area poly-
gon is sent to Network Analyst Service to recalculate the route to tra-
verse around the affected area. The response is two large GeoJSON
objects containing a list of outlets no longer reachable, incremental
travel time between stops, and the new route. Currently, the route pro-
cessing requires 2-3 minutes to complete; this can be significantly im-
proved in the future by commissioning a dedicated production server.

6 EXAMPLES

Here we demonstrate how the VASA system provides situational
awareness using two examples: the impact of weather on macro-scale
supply chains, and foodborne illness contamination and spread.

6.1 Supply Chains During Hurricane Season
Our first example is the potential impact of hurricanes on North Car-
olina’s critical infrastructure, especially our food distribution network,
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Fig. 6. In this simulation, power generation units were hit by up to 34 knot during Hurricane Irene on August 27, 2011. Our hurricane proxy
instantly estimates the impacted restaurants (right-top, left-top). Note that one distribution center (green) is outside the hurricane. After a complete
power-grid simulation run is finished (by clicking the circled lightning button), a polygon representing the power outage area is shown. Next, this
polygon is sent for use in computing new food delivery paths. Note that food is not delivered to the power outage area (right-bottom, red box).
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Fig. 7. If the power substations could have resisted up to 50 knot winds,
the number of impacted restaurants would have been much smaller.

in North Carolina (NC). Our exploration begins by selecting appro-
priate historial hurricanes for examination using the calendar view
as shown in Figure 2, where each hurricane name, duration, and se-
lected summary attribute (e.g., maximum hurricane wind speed) are
provided. While we investigate the paths of these historical hurricanes,
we see that Irene in 2011 and Sandy in 2012 passed over NC. Because
Sandy passed over only a small area in upper NC (Figure 2 (d), red
polygon), we choose to focus on Irene for further investigation.

One interesting date is August 27, 2011 when Irene passed directly
over eastern North Carolina, an area with many power generation fa-
cilities as shown in Figure 6 (top-right, purple circles). After we set
up the wind tolerance value for these facilities to be 34 knots, our hur-
ricane proxy instantly estimates which restaurants will be impacted
based on the relationships between the units and the restaurants, col-
oring the impacted restaurants red. Here, we also initiated a com-
plete simulation for power outages and transportation network dam-
age. Next, a polygon is shown representing an area where restaurants
are disabled and roads are blocked (bottom-left in Figure 6). To effi-
ciently manage distribution, this impact requires the food provider to
change its delivery schedule, and this new routing is computed based
on the impacted restaurant polygon and road conditions (e.g., blocked
by flooding). After a simulation to compute the new routes (by click-

ing the truck button in a red circle, right-bottom Figure 6), we see that
the updated delivery paths do not include the affected restaurants. The
economic loss caused by this event is estimated based on the model
in Section 5.3 as being up to $1.13 million. Another possible what-if
question is “How different would the result be if the power generation
units could resist winds up to 50 knots?” Figure 7 shows the first step
of the analysis where we see many fewer restaurants affected com-
pared to Figure 6 top-right (units are resilient to 34 knots). In this
case, the estimated losses are less than $333,000.

6.2 Fast Food Contamination

Food poisoning is an illness caused by eating contaminated food
containing viruses, bacteria, and germ-generated toxins. There are
many possible causes of food contamination including storage at in-
appropriate temperatures [19], improper food handling, and cross-
contamination during processing or packaging. As unfortunately ex-
perienced several times per year, tracing back the cause of the con-
tamination is a very difficult and lengthy process. In this example, we
explore a hypothetical scenario demonstrating how VASA can be used
to trace-back the root causes of an incident of foodborne illness.

To create the distribution of the ill population, we simulate the dis-
tribution of contaminated food to stores, then simulate the illnesses in
the neighboring areas using the simulation model discussed in Sec-
tion 5.3. This creates the common base scenario of reports of people
who are ill, their date of illness, and their location to create the food
contamination scenario for the trace-back investigation.

For example purposes, we simulated these illnesses occurring dur-
ing a three day span (September 1, 2011 to September 3, 2011) as
shown in Figure 8. Since this is almost one week after Hurricane
Irene, one may assume that power outages during the storm could be
the possible reason behind the contamination. To confirm this hypoth-
esis, we looked at the hot spots in Figure 8 and identified the stores
closest to these hot spots. On cross comparison, we can identify the
common products/lots in those stores, their distribution center, as well
as their delivery mechanisms. As shown in Figure 8 bottom matri-
ces, the rows represent 3 food processing centers and 4 types of food,
and there is a column for each restaurant. Each cell is colored such
that the darker the red color, the higher the amount of each product
provided. Here, the restaurants in the affected area that are selected
in the box in the top-left are highlighted with light green boxes. For
stores S9 and S12, only one food processing center provided products,
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Fig. 8. Ill people caused by contaminated food is presented using a KDE hotspot visualization. In (a), the darker location has a larger number of
poisoned people. Brown points mean ill people in the reported location. The locations highlighted by a green box in (a) is magnified in (b), (c) and
(d) on different dates. As the timeline shows, the number of ill people increased until 9/2/2011, then started decreasing on 9/3/2011. The bottom
matrices show which food processing centers (1–3) were involved and which foods (1–4) were delivered to which store in 8/30/2011, two days
before the illness. Here, the restaurants in the light green boxes are the those selected by the thicker green box in (a). We see that a large quantity
(darkest red pixels in blue circles) of two foods (third and fourth rows) are commonly provided to restaurants in the area.

while other processing centers supplied most of the food throughout
the network. Upon further inspection, one can determining that prod-
uct lots in row 3 and 4 are common in most of the restaurants yielding
ill individuals. Some example routes are shown in Figure 2(e), where
each route supplies 3-4 restaurants. A red bar represents the supplied
food and the green bar represents the food consumed at a restaurant.
Here, we see that a large amount of the third and fourth foods (blue
circles in Figure 2(e)) are delivered and will all be consumed within
a few days. Therefore, these two product lots are good candidates for
further inspection in tracing back the contaminated food item.

7 DISCUSSION

We have received some initial feedback from various user groups as to
the value of the VASA system. Our food supply chain experts helped
develop the pipeline and tailor it for their workflow. We have also had
very positive feedback from numerous regional and federal govern-
ment officials on the value of the VASA workbench for use in com-
mand centers at the local and regional level for increased situational
awareness and the ability for plan for both resiliency and response be-
fore and during an event. Feedback from regional Federal Emergency
Management Agency (FEMA) personnel is that this system is novel
in that it could enable unprecedented work within their organization:
visual investigation on large multiple simulation runs and instance ap-
proximations under severe weather conditions. They noted that the
system enables “The Whole Community” approach to meet the actual
needs of residents, emergency managers, organizational and commu-
nity leaders, government officials, and the general public when ex-
treme weather impacts various societal infrastructures. They felt that
the VASA tool would enable each community to make informed and
timely decisions about how to manage throughout an extreme weather
event. They also suggested extending our system to real-time weather
data to respond to all warnings and alerts from the National Weather
Service. We have also received similar positive feedback from non-
governmental aid organizations.

While the VASA system is full-featured, it may be overkill for sim-
ple analyses that only require using a few simulation components. Fur-
thermore, sometimes which simulations to use is not clear a priori,
and analysts may have to explore the problem in-depth before they
can make a decision. This is also one of the strengths of the VASA
system: the VASA Workbench does not stipulate a specific simulation
pipeline, but leaves this choice to the analyst. It also provides proxies
to estimate simulations prior to a run, and visual and interactive rep-
resentations of intermediate results. However, it is also true that for a
limited simulation involving only a single simulation, using the entire
VASA system may be excessive and introduce a lot of overhead.

A more general question is how the VASA approach to interactive

computational steering will impact the overall analysis process. Since
we have yet to conduct formal user studies with our target audience for
the VASA project, it is too early to conclusively answer this question.
However, our intuition is that the core benefit of VASA is to introduce
interactive visual analytics to a domain that is fundamentally asyn-
chronous and off-line. We speculate that this, in turn, will yield the
same kind of rapid, iterative exploration of simulation scenarios that
Fisher et al. [14] observed when introducing visualization of partial
results to large-scale database computations. We think that this will
contribute to analysts wasting less time on configuring their simula-
tion runs and will yield more informed and well-designed results.

8 CONCLUSION AND FUTURE WORK

We have introduced the notion of visual analytics for simulation
steering within the context of societal infrastructure. To our knowl-
edge, ours is the first to study visual analytics for simulation from a
systems-of-systems [11] perspective, where multiple heterogeneous—
often physically distributed—systems are combined into a unified,
more complex system in which the linkages between components
provide a sum greater than its constituent parts. This notion tran-
scends individual simulation models and instead chains together mul-
tiple high-fidelity simulations into large-scale asynchronous pipelines.
The VASA system we presented as a practical example of such an ap-
proach is a distributed application framework consisting of a central
Workbench controlled by an analyst and a set of loosely coupled sim-
ulation components implemented as distributed network services.

Big data simulation is a powerful new tool for data science, and
while our work on applying visual analytics to this domain is concep-
tually complete, it really only scratches the surface of what is possible.
Future work on the VASA system will involve integrating even more
advanced and detailed simulation components, such as high-fidelity
power grid models, gas pipelines, and power plants for energy infras-
tructure; bridges, tunnels, and causeways for transportation networks;
and hospitals, police stations, and fire stations for societal infrastruc-
ture. In doing so, we envision designing additional novel visual rep-
resentations and interactions for configuring these components as well
as visualizing their proxy, intermediate, and final results.
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