
Direct Manipulation Through Surrogate Objects

Bum chul Kwon, Waqas Javed, Niklas Elmqvist, and Ji Soo Yi
Purdue University

West Lafayette, IN, USA
{kwonb, wjaved, elm, yij}@purdue.edu

Figure 1. Conceptual diagram of Surrogate Interaction for a 2D vector editor. All interaction with the surrogate is forwarded to the shapes.

ABSTRACT
Direct manipulation has had major influence on interface de-
sign since it was proposed by Shneiderman in 1982. Al-
though directness generally benefits users, direct manipula-
tion also has weaknesses. In some cases, such as when a user
needs to manipulate small, attribute-rich objects or multiple
objects simultaneously, indirect manipulation may be more
efficient at the cost of directness or intuitiveness of the in-
teraction. Several techniques have been developed over the
years to address these issues, but these are all isolated and
limited efforts with no coherent underlying principle. We
propose the notion of Surrogate Interaction that ties together
a large subset of these techniques through the use of a surro-
gate object that allow users to interact with the surrogate in-
stead of the domain object. We believe that formalizing this
family of interaction techniques will provide an additional
and powerful interface design alternative for interaction de-
signers, as well as uncover opportunities for future research.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User
Interfaces—Interaction styles; I.3.6 Computer Graphics:
Methodology and Techniques—Interaction techniques

Author Keywords
Direct manipulation, instrumental interaction, design.

General Terms
Design, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

INTRODUCTION
For well over two decades, the direct manipulation
paradigm [25, 26] has held sway in interface design, prompt-
ing designers to minimize indirection and to transform do-
main objects themselves into first-class interfaces. Despite
being criticized for its deficiencies in managing abstract,
group-based, or meta-level operations [12], challenged by
agent-based and conversational approaches [17, 27], and ex-
tended with new measures for compatibility (similar to Nor-
man’s naturalness of mapping [18]) and integration of the
input device, direct manipulation remains one of the basic
tenets of user interface design to this day [28].

Although many novel approaches to resolve the weaknesses
of the direct manipulation model have been proposed over
the years, these tend to be isolated measures that do not seem
to fit within a coherent framework. However, in this paper,
we identify a subset of these techniques that share salient
properties in how abstract, group-based, and meta-level op-
erations are managed. We call this family of techniques
Surrogate Interaction because they introduce surrogate ob-
jects that users can interact with instead of the real do-
main objects, and where changes are then propagated to the
linked objects (Figure 1). While this increases indirection—
albeit in a disciplined fashion—where direct manipulation
stipulates decreasing it, this approach supports control over
attribute-rich domain objects that would be difficult to ac-
cess using direct manipulation, seamless and visible manip-
ulation of multiple objects simultaneously, and access to ab-
stract, intangible, meta-level properties and domain objects.

Consider a 2D vector editor such as Adobe Illustrator or
the Open Source program Inkscape: graphical applications
with multiple attribute-rich domain objects, i.e., geometric
shapes. The standard solution is to provide multiple dialogs,
control panels, and context menus to change graphical prop-
erties such as the line width, stippling, stroke color, fill, tex-

ture, transparency, and gradient of the shapes, only leaving a
few attributes such as position, size, and rotation controlled
by direct manipulation. Using the surrogate interaction ap-
proach, a 2D vector editor provides a single surrogate of the
currently selected shape—or shapes—augmented with direct
manipulation controls to change these graphical attributes.
The surrogate looks like the selected shape and propagates
all interaction to it, yet is larger, located in a well-defined
place (a side panel or context menu), and can be annotated
without interfering with the image being edited.

More specifically, by providing a surrogate of a domain ob-
ject in a well-defined area of the screen, we can solve the
access problem—the surrogate can be large and, by virtue of
being a meta representation, is not required to convey infor-
mation. It is thus easy to acquire and can be decorated with
the necessary interface widgets. Furthermore, the surrogate
also clearly shows that actions on it may affect multiple do-
main objects by indicating the selected objects, and its visual
representation may unify the common attributes of the se-
lection. Finally, surrogates can also be created for intangible
properties, such as layout, ordering, or grid spacing.

In the following section, we give the background on di-
rect manipulation and some of its weaknesses. We then de-
rive the surrogate interaction framework from both new and
existing academic and commercial applications that exhibit
these commonalities. We go on to present a set of design ex-
amples for multidimensional visualization, vector drawing,
and mobile devices for embodied interaction. We conclude
with implications and constraints for user interface design.

BACKGROUND

Direct Manipulation
Introduced by Ben Shneiderman in 1982 [25, 26], the direct
manipulation paradigm has held sway over user interface
design for more than two decades. Before direct manipu-
lation, the interaction between human and computer mostly
relied on a conversation metaphor (e.g., a command-line in-
terface), which is relatively indirect and abstract. As a back-
lash against this, direct manipulation promoted a more ex-
plicit way of interacting with computers. The paradigm is
characterized by four main principles [26]:

1. Continuous representation of the object of interest;

2. Physical actions instead of complex syntax;

3. Rapid, incremental, and reversible operations whose im-
pact on the object of interest is immediately visible; and

4. Layered or spiral approach to learning that permits usage
with minimal knowledge.

These principles have helped make interaction more natu-
ral, intuitive, and predictable, thus causing applications to
become easier and more efficient to learn and use.

However, direct manipulation did not win this reputa-
tion easily. Since its introduction, many researchers have
criticized the paradigm [5, 7, 11, 12]. Among these,
Frohlich [11, 12] provided a comprehensive review of the
evolution and debate around direct manipulation. He argued

that direct manipulation is not a panacea, and it actually has
only limited utility because it is not abstract enough to fully
express the user’s intended interaction. More specifically,
he listed seven tasks that are challenging to direction ma-
nipulation [12]—see Table 1. Based on these challenges,
he predicted that the use of manipulation-based interaction
would be limited and constrained. He further claimed that,
as an alternative, conversation-based interaction (e.g., soft-
ware agents) would complement manipulation-based inter-
action because it could provide users with more abstract and
expressive interaction. The debate continued through the
discussion between Shneiderman and Maes in 1997 [27].

In spite of (or thanks to) strong criticism, direct manipula-
tion has evolved and appears to have stood the test of time.
Numerous examples of academic research and commercial
products explicitly and implicitly adopt the direct manipu-
lation paradigm in their interaction design. The influences
of direct manipulation are not limited to traditional WIMP
(windows, icons, menus, pointer) interfaces, but are widely
applied to other types of interfaces—often known as post-
WIMP [35] or reality-based interaction [15]—such as infor-
mation visualization (e.g., [37]), augmented/virtual reality
(e.g., [22]) and direct touch interfaces (e.g., [23]).

Other researchers have expanded and refined the idea of di-
rect manipulation, the most notable being the instrumental
interaction model proposed by Michel Beaudouin-Lafon [3,
4]. The main idea of this model is to separate out the concept
of an instrument as the mediator between users and domain
objects in the interaction between human and computer. In-
struments are first-class objects (e.g., a scroll bar and a paint
brush) that can be used in many different contexts (e.g., a
scrollbar that can operate on both a word processing docu-
ment and a drawing canvas). Beaudouin-Lafon also intro-
duced three properties to evaluate these instruments [3]:

1. Degree of indirection: a two-dimensional measure of the
spatial and temporal distance introduced by instruments;

2. Degree of integration: the ratio between the degrees of
freedom of the instrument and the input device; and

3. Degree of compatibility: a measure of similarity between
actions on the instrument and the feedback on the object.

Given these properties, Beaudouin-Lafon argues that an in-
strument with low indirectness, high integration, and high
compatibility will be a good instrument. These evaluation
criteria could guide and generate the design for techniques
and applications. Recently, Klokmose and Beaudouin-
Lafon [16] further expanded the model by proposing the
Views, Instruments, Governors and Objects (VIGO) archi-
tecture that allows many users to interact with multiple de-
vices through diverse interfaces and on multiple surfaces.

We revisited the challenging tasks for direct manipulation
that Frohlich listed [12]—see Table 1—and found that many
of these challenges have been overcome through several
variations of direct manipulation. When there are no proper
visual representations of an object, visual representations are
often created (or reified) to allow users to directly manipu-
late the object. For example, in order to allow a user to repeat

Challenging Tasks Solutions
1 Referring to previous actions Interaction histories
2 Scheduling actions Event scheduling
3 Identifying unseen objects Shaking, jittering
4 Identifying groups of objects Multi-object selection
5 Performing repetitive actions Visual macros
6 Performing concurrent actions Multitouch interaction
7 Specifying precise actions Zooming

Table 1. Seven challenges for direct manipulation (adapted from [12]).

a certain action, visual macros (e.g., Apple Mac OS X Au-
tomator and Yahoo Pipes [38]) have been developed. When
there already exists proper visual representations, other in-
teraction techniques have been invented to overcome the
identified issues (e.g., zooming to show the details of domain
object). Furthermore, there still exists many examples of
conversation-based interaction designs (e.g., the cron Unix
command for scheduling repeated tasks) as well as compro-
mises between conversation-based design and manipulation-
based design (e.g., the Windows XP Scheduling Wizard).
However, in general, direct manipulation seems to have tack-
led most of these challenges and has proliferated in interac-
tion design for the last decades.

Challenges of Direct Manipulation
However, not all of these challenges have been effectively
overcome for direct manipulation. Some of the limitations
that Frohlich mentioned in 1993 still exist in current direct
manipulation applications. In this work, we focus on the
following issues (corresponding to challenges 7, 6, and 3):

• Access: Manipulating small, distant, or attribute-rich ob-
jects under limited space, high density, or high precision;

• Multiple objects: Manipulating multiple objects simulta-
neously as a group (including group attributes); and

• Intangible properties: Manipulating intangible object
properties (abstract properties with no visual form).

The first of these challenges—access—is based on the fact
that manipulating small objects can be cumbersome with di-
rect manipulation. For example, when an object in a vector
drawing application becomes too small, it may be difficult
to select the object and to grab the handle instrument on the
object in order to resize it. This problem is compounded if
there are many objects in the same area of the screen, if the
objects are located in a distant part of the screen, or even
outside the screen in ubiquitous computing. Some of these
issues can be partially solved by zooming the view for more
detail and precision or other distortion techniques, but these
approaches incur additional effort and cognitive load.

Another aspect of the same problem is manifested if the ob-
jects are rich in attributes. There may not be enough vi-
sual space to expose interface controls to manipulate all at-
tributes, such as for a transistor object in an electric circuit
CAD application. Alternatively, such controls detract from
the visual appearance of the objects, such as information-
carrying marks in a visualization, where adding such con-
trols to the display would affect the visual representation.

The second problem we address is that interacting with mul-
tiple objects is often difficult using direct manipulation.
When a user selects multiple domain objects with varying
values (e.g., text with different font sizes), the aggregated
properties of all selected objects typically cannot be properly
presented, so the visual representation becomes ambiguous.

In addition, interacting with multiple objects using direct
manipulation is often not nearly as intuitive as interacting
with a single object. For example, suppose that a group of
objects are selected, and the user resizes one of the objects in
the group. How should the other objects in the group react to
this user manipulation? One popular solution used in many
applications, such as Microsoft PowerPoint, is that the single
object that the user manipulates serves as a representative for
the whole group, so the other objects in the group are also
influenced by the same manipulation. This approach saves
effort because it allows the user to resize all of the objects
in the group by resizing a single representative. However,
the approach could be criticized due to, again, its ambigu-
ity. What if the selected objects have different shapes and
sizes? Suppose that the user wants to increase the width of
every object by 10 pixels—will resizing the representative
object by 10 pixels cause the other objects to increase their
widths by the same amount, or will their widths be increased
proportionally? Much of the predictability of the direct ma-
nipulation interface has been lost in this situation.

Finally, the third problem we address deals with manipulat-
ing intangible object properties—abstract properties that
have no natural visual form. For example, the spacing be-
tween multiple objects is not easily presented as a domain
object, so it is difficult to allow direct manipulation of this
attribute. Similar examples of intangible properties could be
sorting order, layout, and object alignment. Many of these
intangible properties arise from the multiple object challenge
discussed earlier—these are attributes that do not exist other
than for a group of objects, not for individual objects.

Currently, these intangible properties are manipulated in a
relatively indirect manner. For example, Adobe Illustrator
provides a toolbox for rearranging objects, allowing a user to
choose between seven different layout types. Although the
user might see the effects of layout changes immediately,
there is significant spatial and cognitive distances between
the domain objects and the instruments.

Data visualization gives rise to another type of intangible
properties: summary statistics. These properties are espe-
cially challenging to turn into visible elements because they
also do not belong to a single object but only become mean-
ingful when multiple objects are related. Since these sum-
mary statistics might introduce visual clutter as well, it is
often challenging to include them on the display.

The common denominator among the above problems is that
they stem from the main strength of direct manipulation—
the directness of the interaction (i.e., the low degree of indi-
rection [3]). Attempting to resolve these issues would mean
relaxing this central design principle. In the next sections,
we will study how to do this in a disciplined fashion.

EVIDENCE OF SURROGATE INTERACTION
This paper proposes surrogate interaction as a unifying
model for improving access, multiplicity, and intangibility
in direct manipulation by introducing a small degree of in-
directness between the user and the domain objects through
surrogate objects. Below we review existing tools, both aca-
demic and commercial, for evidence of surrogate interaction.

3D Object Manipulation
Manipulating 3D objects is a difficult task, and different ap-
proaches have been designed to aid or solve it. Some of
these draw on a surrogate interaction model to ease the in-
teraction. Go-go interaction [22] deploys a surrogate hand to
manipulate distant objects. World-In-Miniature [30] (WIM)
are small-scale copies of the full 3D environment that the
user is currently inhabiting. The miniature is linked to a
physical plane the user is holding—yielding an out-of-body
third-person view of the world—and rotating or moving the
plane will affect the miniature world accordingly. Notably,
the WIM itself is a first-class object, allowing the user to
interact directly with objects visible in the miniature (but
which may not be visible to the user in their first-person view
of the world), thus causing the environment to be updated.

Even more relevant to surrogate interaction are the voodoo
dolls proposed by Pierce et al. [21]: miniatures of actual
first-class 3D objects in the world. Any interaction per-
formed on the voodoo doll is immediately propagated to the
real object it is linked to, and visual feedback is reflected on
the doll to indicate state changes. However, the concept does
not support manipulating more than one object at a time.
The Monkey [9] (and commercial Monkey 2) device is es-
sentially a physical Voodoo doll: a biped armature that can
be used to control a virtual 3D character on screen.

Figure 2. Paper doll interface in World of Warcraft. Changes in the doll
(surrogate) will immediately affect the character (domain object).

Computer Games
Elements of surrogate interaction also exists in a number of
computer games. For example, a common design mecha-
nism, particularly for role-playing games (RPGs) where the
player’s character is wearing all manners of armor, weapons,
and jewelry, is the paper doll interface. A paper doll is sim-
ply a miniature version of the player character where the user
can access different equipment slots to dress the character in
items from the inventory (just like a real paper doll). It is
also often combined with information about the character’s
abilities, health, and bonuses (World of Warcraft in Figure 2).

The paper doll interface is clearly an example of surrogate
interaction, where the doll is the surrogate for the player
character (the domain object). Any changes to the equip-
ment on the doll will be immediately reflected in the ap-
pearance of the character. More specifically, the mechanism
solves the access problem—exposing all of these equipment
slots on the 3D player character itself would cause visual
clutter, and the paper doll is an elegant way to avoid this.

Interactive Legends
Legends have long been used as visual dictionaries in car-
tography, and this idea has also been extended to other
applications—Edward Tufte [33] strongly advocate their
use, and exemplify them, among other ways, through surro-
gate representations of people in photographs using silhou-
ette legends [34]. With the advent of computerized maps,
cartographers have begun to propose active legends that
change color encodings as the user interacts with them [20].

Figure 3. Interactive legends for filtering in visualization [24].

This trend has also carried across into visualization, prompt-
ing interactive legends as input devices that both save dis-
play space and are intrinsically integrated into the visual rep-
resentation [32]. In particular, Riche et al. [24] evaluated the
use of interactive legends for filtering and selection in mul-
tidimensional visualization (Figure 3), and found that they
yield faster perception of data values. Similar to scented
widgets [36], which incorporate visual displays into standard
widgets, these interactive legends serve as surrogate objects
representing visual elements in the visual representation, di-
rectly selected and filtered using the surrogate object.

Drawing Editors
Graphical editors are examples of interaction-heavy applica-
tions with attribute-rich domain objects (2D shapes). Per-
haps for this reason, some editors already employ surrogate
interaction concepts. Microsoft Office 2007 uses graphical
depictions of what a selected shape will look like if different
styles are applied. Inspectors in OmniGraffle [31] (Figure 4)
are small windows containing visual surrogates that convey
the state of the selection. Similarly, Apple’s Keynote [2] in-
corporates inspectors for direct manipulation of shapes and
slides, such as the Graphic Inspector (Figure 5).

In all of these examples, the surrogates are (to lesser or
greater extent) visually reminiscient of the linked domain
object, they summarize the state of the domain object, and
they can be interacted with using direct manipulation, thus
causing updates to propagate to the linked domain objects.

Figure 4. Style inspector in OmniGraffle Professional [31] for the Mac.

Figure 5. Graphic inspector in Apple Keynote [2].

SURROGATE INTERACTION
Instead of letting users control attributes of a domain ob-
ject by interacting directly with its visual representation—
as stipulated by both direct manipulation and instrumental
interaction—surrogate interaction provides a surrogate ob-
ject to interact with. The surrogate is an archetype of the
domain objects, and any changes done to the surrogate will
immediately affect the domain objects themselves.

More specifically, drawing on evidence in existing academic
and commercial applications, we define surrogate interac-
tion by means of the following characteristics:

1. Existence of surrogate objects that are visually remini-
scient of the domain object/objects being manipulated;

2. Direct manipulation of object/meta attributes on the surro-
gate object that are propagated to the domain object; and

3. Visual summaries of the domain object state.

Consider a vector drawing editor where users can draw,
move, and edit shapes by clicking and dragging with their
pointer directly on the canvas using direct manipulation.
Supporting surrogate interaction here would imply introduc-
ing a surrogate representation of a selected shape on the
drawing canvas. This surrogate would allow users to change
line style, width, and color as well as the fill color and style.
Exposing control of these attributes in a direct manipulation
fashion on the canvas itself is not practical due to space and
layout constraints (not to mention being detrimental to the
appearance of the image that the user is drawing), and would
have had to be done using dialog boxes or context menus.

In the terms of the instrumental interaction model, introduc-
ing a surrogate object (or meta-object) such as this will in-
crease the degree of spatial indirection in the interface. How-
ever, we are still obeying the design principles of direct ma-
nipulation by providing continuous visual representations of

the domain objects with physical actions that are incremen-
tal, reversible, and provide immediate visual feedback. Sur-
rogate interaction also solves the access, multiple object, and
intangible property problems outlined earlier in this paper.
In the following subsections, we shall see how.

Manipulating Single Objects
As we have seen, accessing domain objects using direct ma-
nipulation may be difficult if the visual space is limited or
the number of attributes associated with the domain object
is high. Furthermore, maintaining a high degree of compat-
ibility between action and effect may be impossible in lim-
ited visual space. For surrogate interaction, we sidestep the
access problem by allocating a part of the display outside of
the main window to the visual representation of a large-scale
surrogate of the domain object. Even though we now have
introduced an additional level of spatial indirection, the sur-
rogate is large and therefore easy to acquire and manipulate.

Having a surrogate representation for the domain object pro-
vides a number of additional benefits. Most importantly, by
virtue of having more display space available in the surro-
gate than for the actual domain objects, we are able to inte-
grate many more user interface components for controlling
the attributes of the domain object in the visual representa-
tion of the surrogate. This way, surrogate interaction makes
it possible to maintain a high degree of compatibility even
for very rich domain object mappings.

The surrogate is a meta-object or archetype of its domain ob-
ject. That means that it is not required to carry actual mean-
ing (or it may carry aggregated meaning for several objects).
Its visual representation can be stylized and decorated with
annotations and explanations on how to interpret the data and
how to interact with the surrogate and the domain objects.

Manipulating Multiple Objects
Surrogates can be linked to just a single domain object, or
to several objects. Any changes to a surrogate will affect
all of its linked domain objects. We have already seen that
manipulating multiple objects using direct manipulation is
complex due to the ambiguity and low predictability of op-
erations performed on multiple operands. Surrogate inter-
action makes multiple object manipulation more visible and
more predictable in two important ways:

• Cardinality: Each surrogate shows the number and type
of the domain objects that will be affected by any opera-
tions performed on the surrogate.

• Scope: Surrogates communicate the scope of changes to
an attribute by indicating the range of values for the under-
lying domain objects (see visual data aggregation below).

Furthermore, object manipulation can have several levels of
multiplicity; the most common levels are the following:

• Single object: A single domain object, such as changes to
a shape surrogate affecting a single shape on the canvas;

• Set of objects: A set of domain objects, such as format-
ting changes to a word surrogate affecting the selected re-
gion in a word processor; or

• Class of objects: All instances of a particular class of
domain objects, such as changes to a bar chart surrogate
affecting all bar charts in a scatterplot.

Depending on the type of the application, it may not make
sense to support object manipulation for all levels. In the
vector editor example, however, we would allow all three
types of multiplicity levels depending on the selection: if a
single object is selected, then changes will only affect that
object, but if multiple objects are selected, then changes will
affect them all. It would also make sense to be able to select
the rectangle class, for instance, in order to be able to modify
all rectangle objects on the canvas simultaneously.

Manipulating Intangible Properties
Unlike domain objects, surrogate objects do not necessarily
have to portray actual visual entities. For direct manipula-
tion, even abstract objects must have some visual form—or
the designer must choose one—but the surrogate model re-
lieves designers from this burden by allowing them to create
only surrogates for such entities. Furthermore, this feature of
the surrogate interaction model also promotes dividing dif-
ferent concerns of an application into separate surrogates.

For example, in the vector editor, we can create an entity
representing the drawing canvas, where the user can change
grid lines and snapping options through direct manipulation
operations. Another example may be to expose the spacing
between shapes as an actual tangible attribute in the shape
surrogate—again, the user can directly change this spacing
by manipulating the surrogate, something that would be dif-
ficult to achieve on the actual domain object.

Even properties that are difficult to manipulate using direct
manipulation, such as choosing a color or selecting a stip-
pling for a line, can be made more natural by situating the
button to open the color selection dialog (or stippling drop-
down box) on top of the the surrogate. While this does not
improve the low directness of actually performing the task, it
does increase the degree of compatibility of the interaction.

Visual Data Aggregation
Because the surrogate is an archetype of its linked domain
objects (potentially several of them), it need not necessarily
convey any specific information about the dataset. In our
vector editor example, we may choose to show a stylized
shape as a surrogate. On the other hand, this presents an op-
portunity in itself—the surrogate can be designed to serve as
a visual representation of the aggregated data of its linked
objects. In other words, for the vector editor example, we
can use the surrogate shape to show data about the underly-
ing shapes and their minimum and maximum line thickness,
their different line and fill colors, and their relative sizes.

This concept can be extended to the domain object attributes
controlled by user interface components in the surrogate. By
using scented widgets similar to Willett et al. [36], we can
communicate information about the number, range, and dis-
tribution of values for attributes controlled by a particular
interface component. For example, a slider controlling line
thickness in our vector drawing program may be combined
with a histogram showing the totals of the linked shapes for

each thickness value, exposing data about the drawing to the
user. Of course, depending on the multiplicity level sup-
ported by the application, changing the value of such a wid-
get would instantly change the underlying distribution of the
linked objects (thereby instantly updating the histogram).

Cognitive Aspects
There is a fundamental cognitive difference between stan-
dard control panels and surrogate objects. Control panels
are more or less haphazard collections of user interface con-
trols (sliders, fields, buttons) and thus only have the most
abstract relation to the domain object being manipulated. In
contrast, a surrogate object—by virtue of the three character-
istics above—embed the controls in interactions and visual
representations that are compatible with the domain objects
at a deep cognitive level. In other words, surrogate interac-
tion allows us to strike a more precise and fine-grained bal-
ance between indirection and compatibility in the interface.

DESIGN EXAMPLES
In our experience, some general strategies are particularly
useful when implementing actual surrogate interfaces:

• Surrogate objects can be seen as examples of both Proto-
type and Proxy design patterns [13]. They are prototypes
because they act as archetypes of domain objects when
instantiating new objects. They are proxies because all
domain objects are manipulated through the surrogate.

• Domain objects can be seen as a simple registry of at-
tributes (name-value pairs) controlled using surrogates.
To support classes of domain objects, such as circles and
squares in a drawing editor, objects can be arranged in a
hierarchy that supports class narrowing of a set of objects.

In the examples below, we study surrogate objects applied to
data visualization, vector drawing, and mobile interaction.

Scatterplot Visualization
Let us study how we can use surrogate interaction to aug-
ment a simple 2D scatterplot [6] visualization. A scatterplot
is constructed by mapping two dimensions of the multidi-
mensional dataset to visualize to the horizontal (X) and ver-
tical (Y) axes. Entities in the dataset can now be drawn as
points in the Cartesian space formed by the axes. Displaying
additional dimensions can be done by varying the graphical
properties of the points themselves, such as using their color,
shape, and size to convey additional data. However, there is
generally a limit to what these graphical properties can com-
municate. An alternative approach that may be more scal-
able is to turn the points themselves into miniature bar chart
glyphs capable of displaying additional dimensions [1].

At this point, the scatterplot visualization is clearly a graph-
ical application with rich domain objects: the axes and the
bar charts. Controlling all of these attributes using direct
manipulation on the visualization canvas is difficult due to
the high data density and visual clutter. Instead, the practice
in visualization applications is to provide menus and control
panels where users can indirectly manipulate these settings.

Figure 6. Scatterplot of the weight (Y) and acceleration (X) of around
400 cars. The bar charts show additional information about each car.

To improve this indirect mode of interaction, we have de-
signed a scatterplot implementation that uses surrogate inter-
action to support access to all of the visualization attributes.
Figure 6 shows a screenshot of the prototype. It exposes the
two types of domain objects as surrogates in the palette:

• Scatterplot axes: The horizontal and vertical axes of the
scatterplot, allowing the user to change which dimension
to map to each axis as well as graphical attributes of the
space (background color, tick marks, grid lines, etc).

• Bar chart: The bar charts that represent the points, allow-
ing the user to control the number of bars (i.e., additional
dimensions) to show for each data point, the color scale to
use for the bars, and the size of the charts (Figure 7).

In this application, we need to maintain consistency across
all bar charts, so we do not allow selecting individual glyphs.
Instead, changing the surrogate will affect all bar charts.

Figure 7. Bar chart surrogate for the scatterplot application.

Starplot Visualization
A starplot [29] is a multidimensional visualization where
each item in a dataset becomes a circular glyph with its di-
mensions arranged around the radius of the glyph. A closed
polygon connects values for each of the dimensions mapped
to the radial axes. By creating a starplot for each data point in
a dataset and laying them out on the visual space, the viewer
can easily detect outliers and trends in the data.

Again, as is often the case in visualization, this is an example
of an application consisting of heavyweight and attribute-

Figure 8. Starplots for 77 different cereals. Each plot shows calories,
fiber, sodium, fat, and protein content for each cereal.

rich domain objects. Instead of building menus or control
panels to modify them, we apply surrogate interaction to cre-
ate a visualization based on two surrogate objects (Figure 8):

• Starplot: The starplot entities, enabling the user to
change the number of dimensions to display and the map-
ping for each radial axis. Users can also use the surrogate
to change color mapping and the glyph size.

• Plot layout: Layout is an intangible attribute that has no
visual representation, but this surrogate enables users to
change both horizontal and vertical glyph spacing as well
as the sorting order for glyphs on the visualization canvas.

In particular, the layout surrogate (Figure 9) is useful be-
cause it provides a natural place for exposing intangible at-
tributes. Glyph spacing could be seen as a glyph attribute
(the amount of padding around each glyph), but the sorting
order does not make sense anywhere else than in the layout
surrogate (the standard solution is a menu or control panel).

Figure 9. Plot surrogate object for the starplot application.

Vector Drawing Editor
Vector drawing editors have already been discussed exten-
sively in this paper as an example of precisely the kind of
application that is most suitable for surrogate interaction.
Therefore, we have built such a vector editor based on sur-
rogate interaction concepts. Figure 10 shows the basic struc-
ture the editor, closely mirroring that of the scatterplot and
starplot applications. In this screenshot, the user has utilized
the tools in the toolbar (top) to draw a set of shapes on the
main canvas. The surrogate is showing that two shapes have
been selected—note the visual aggregation in the surrogate

representation for color and line thickness—and is exposing
controls to change both shapes collectively.

Figure 10. Vector drawing editor using surrogate interaction.

The surrogates that we support in the editor are organized in
an inheritance hierarchy with the abstract shape class at the
top—all concrete shapes inherit from this class. This makes
for a structure that can be easily expanded for a realistic vec-
tor editor. When selecting shapes on the canvas using the
lasso tool, the editor will automatically narrow the surrogate
to the lowest common ancestor to the selected shapes in the
shape hierarchy. This can clearly be seen in Figure 10—
because the selected shapes are polymorphic, the surrogate
has only been narrowed to the common shape base class.

The editor currently supports the following surrogate types:

• Shape: This surrogate exposes attributes that are common
to shapes, such as line width, color, and transparency.
• Circle: Manipulation of the radius.
• Rectangle: Manipulation of height and width.
• Freehand: Editing individual vertices.

Figure 11 shows the surrogates in the vector editor. For
some attributes, we expose both numeric and direct manipu-
lation controls (signified by yellow shapes that the user can
click and drag—e.g., Line thickness and Size scaling in the
figure—whereas other attributes only have an indirect con-
trol. However, in this situation, the control is located in the
context of its effect, thus minimizing indirection.

Interaction on Mobile Devices
Ubiquituous computing is on the rise, and concepts like em-
bodied interaction [8] and tangible computing [14] are aug-
menting physical objects with computational abilities. How-
ever, the real world has the same limitations as the digital
one: we still do not want to overload physical objects with
too many controls, and we often lack metaphors for how to
control many objects simultaneously. Surrogate interaction
could be used to create surrogate interfaces of physical ob-
jects on mobile devices to control them (Figure 12).

IMPLICATIONS FOR DESIGN
There is no general panacea that resolves all issues of inter-
action design. Rather, interaction in an application should be

Figure 11. Basic components of the surrogate drawing editor. The sur-
rogate palette (top right) is used to select different shape classes. The
surrogate (left) is used to control the selected shapes (bottom right).
Absolute and relative scaling can be toggled by clicking on the size in-
dicator (percentage), giving a clear indication of scaling behavior.

Figure 12. Surrogate interface on a smartphone for interacting with
home electronic devices using surrogates (mockup).

analyzed so that the appropriate interaction model (or mod-
els) can be chosen. While our design examples demonstrate
that surrogate interaction can benefit many applications, we
should note that the method is a complement to and not
a replacement for direct manipulation and other methods.
The most beneficial use of surrogate interaction is often in
combination with direct manipulation, delegating complex,
group-based, or intangible manipulation to a surrogate.

Some tasks are simply not suitable for surrogate interaction
due to the information loss implicit in creating a surrogate
object. Below we outline some of the tradeoffs that must be
considered when applying surrogate interaction in a design:

• Increased indirection. Surrogate interaction clearly in-
creases the spatial indirection in the interface.

• Divided attention. Surrogates are separate from the main
display, forcing users to split their attention between them.

• Ex situ. Surrogates cannot convey positions because they
are removed from their context, so absolute operations
(e.g., move and resize) are best left to direct manipulation.

• Visual representation. Choosing a good visual represen-
tation, especially for abstract entities, can be challenging.

We discuss some aspects of these limitations and how to ad-
dress them in the following subsections.

Surrogate Interaction in Context
There is already some evidence of surrogate interaction in
the instrumental interaction model. Beaudouin-Lafon [3]
discusses meta-instruments that operate on or organize other
instruments; examples include toolboxes, menus, and instru-
ments that modify other instruments. Surrogate interaction
can be seen as an instance of meta-objects, a similar lifting
of domain objects to a higher abstraction level.

In other words, a surrogate object is a reification of the ab-
stract nature of domain objects. This abstraction enables
surrogate interaction to more efficiently overcome the lim-
itations of direct manipulation than other methods by better
maintaining the cognitive link between meta-object and do-
main object. This way, despite introducing spatial indirec-
tion, surrogate interaction does not necessarily sacrifice the
directness of the interaction; in fact, we believe that it may
even improve directness in certain situations.

Activating Surrogates
Our design so far has positioned the surrogate object to the
side of the main display, thus giving rise to the divided atten-
tion and ex situ problems listed above. However, it is possi-
ble to modify this design to remedy some of these issues by
making the surrogate object activation dynamic:

• Graphical context menu. Similar to current textual con-
text menus, typically activated by right-clicking on a cer-
tain object or area of the screen, we design our surrogate
objects to appear as graphical context menus on selected
domain objects. The obvious drawback is naturally that
the surrogate object is invisible at all other times.

• Trailing widget. The surrogate object could be designed
as a semi-transparent trailing widget [10] that follows the
cursor, similar to the mini toolbar in Microsoft Office
2007. The surrogate would provide in-situ visual feed-
back without being disruptive, and a quick gesture would
allow the user to acquire the surrogate for interaction.

• In-situ replacement. A third solution at the boundary
between surrogate interaction and standard direct manip-
ulation is to integrate the surrogate object with the domain
object in-situ, allowing for the domain object itself to be
replaced by the surrogate through an explicit interaction.
Similar to semantic zooming [19], this design would tem-
porarily assign more display space to the surrogate when
it is active. Note that many direct manipulation interfaces
already use a variant of this idea, for example displaying
handles on graphical objects only when they are selected.

Visual Representations
A general difficulty with direct manipulation is choosing vi-
sual representations [26, 28], and this is compounded for sur-
rogate interaction where the surrogates may represent multi-
ple, abstract, or even intangible objects. For example, in our
vector editor, we designed the visual representation of the
abstract shape surrogate as a combination of a circle, a line,
and a rectangle (Figure 10). This may be even more difficult
for intangible attributes, such as spacing, sorting, or layout.
In such instances, we found ourselves using indirect widgets
such as combo boxes or spinners to control such attributes.

However, by situating widgets in the context of their use—
e.g., on the surrogates—we can still minimize the cognitive
and spatial indirection. Moreover, surrogate interaction frees
designers from having to create visual representations suit-
able for use in the actual display, a difficult task for abstract
objects. Surrogates for abstract objects, on the other hand,
can be heavily annotated to ease understanding and usage.

CONCLUSIONS AND FUTURE WORK
We have presented surrogate interaction, a framework that
unifies a large set of existing commercial and academic
techniques into a comprehensive interaction model. In the
model, users interact with surrogates of an application’s do-
main objects. Actions to a surrogate will affect the con-
nected domain object. This avoids cluttering the display with
the multitude of controls necessary to interact with attribute-
rich objects. Furthermore, the surrogates can be used to in-
teract with multiple objects simultaneously, and can even be
created for intangible objects, such as layout or spacing, and
for attributes that only exist in the context of a group, such
as sorting order or alignment. We have also presented design
examples that showcase the interaction model.

The design space defined by direct manipulation and instru-
mental interaction is clearly very large, and surrogate inter-
action is just one example of a part of this space that can be
profitable for certain situations and for certain applications.
We will continue to explore surrogate interaction and its ap-
plications in the future, but also the whole design space of
this area. We also plan to investigate the concept of meta-
instruments and their corresponding meta-objects.

REFERENCES
1. N. Andrienko and G. Andrienko. Exploratory Analysis

of Spatial and Temporal Data: A Systematic Approach.
Springer-Verlag, 2006.

2. Apple Inc. Keynote. http://www.apple.com/
iwork/keynote/.

3. M. Beaudouin-Lafon. Instrumental interaction: an inter-
action model for designing post-WIMP user interfaces.
In Proceedings of the ACM CHI Conference on Human
Factors in Computing Systems, pages 446–453, 2000.

4. M. Beaudouin-Lafon. Designing interaction, not inter-
faces. In Proceedings of the ACM Conference on Ad-
vanced Visual Interfaces, pages 15–22, 2004.

5. B. Buxton. HCI and the inadequacies of direct manipu-
lation systems. SIGCHI Bulletins, 25(1):21–22, 1993.

6. W. S. Cleveland and M. E. McGill, editors. Dynamic
Graphics for Statistics. Wadsworth & Brooks/Cole, Pa-
cific Grove, CA, USA, 1988.

7. P. R. Cohen, M. Dalrymple, D. B. Moran, F. C. N.
Pereira, J. W. Sullivan, R. A. G. Jr, J. L. Schlossberg,
and S. W. Tyler. Synergistic use of direct manipulation
and natural language. In Proceedings of the ACM CHI
Conference on Human Factors in Computing Systems,
pages 227–233, 1989.

http://www.apple.com/iwork/keynote/
http://www.apple.com/iwork/keynote/

8. P. Dourish. Where the Action Is: The Foundations of
Embodied Interaction. MIT Press, 2001.

9. C. Esposito, W. B. Paley, and J. Ong. Of mice and mon-
keys: A specialized input device for virtual body anima-
tion. In Proceedings of the ACM Symposium on Interac-
tive 3D Graphics, pages 109–114, 1995.

10. C. Forlines, D. Vogel, and R. Balakrishnan. Hybrid-
Pointing: fluid switching between absolute and relative
pointing with a direct input device. In Proceedings of the
ACM Symposium on User Interface Software and Tech-
nology, pages 211–220, 2006.

11. D. Frohlich. Direct manipulation and other lessons. In
M. Helander, T. K. Landauer, and P. V. Prabhu, editors,
Handbook of Human-Computer Interaction, pages 463–
488. 1997.

12. D. M. Frohlich. The history and future of direct
manipulation. Behaviour & Information Technology,
12(6):315–329, 1993.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

14. H. Ishii and B. Ullmer. Tangible bits: Towards seamless
interfaces between people, bits and atoms. In Proceed-
ings of the ACM CHI Conference on Human Factors in
Computing Systems, pages 234–241, 1997.

15. R. J. K. Jacob, A. Girouard, L. M. Hirshfield, M. S.
Horn, O. Shaer, E. T. Solovey, and J. Zigelbaum.
Reality-based interaction: a framework for post-WIMP
interfaces. In Proceedings of the ACM CHI Conference
on Human Factors in Computing Systems, pages 201–
210, 2008.

16. C. N. Klokmose and M. Beaudouin-Lafon. VIGO: in-
strumental interaction in multi-surface environments. In
Proceedings of the ACM CHI Conference on Human
Factors in Computing Systems, pages 869–878, 2009.

17. P. Maes. Agents that reduce work and information over-
load. Communications of the ACM, 37(7):30–40, July
1994.

18. D. A. Norman. The Design of Everyday Things. The
MIT Press, 1988.

19. K. Perlin and D. Fox. Pad: An alternative approach
to the computer interface. In Computer Graphics (Pro-
ceedings SIGGRAPH’93), pages 57–64, 1993.

20. M. P. Peterson. Active legends for interactive carto-
graphic animation. International Journal of Geographi-
cal Information Science, 13(4):375–383, 1999.

21. J. S. Pierce, B. C. Stearns, and R. Randy Pausch. Voodoo
dolls: Seamless interaction at multiple scales in virtual
environments. In Proceedings of the ACM Symposium
on Interactive 3D Graphics, pages 141–145, 1999.

22. I. Poupyrev, M. Billinghurst, S. Weghorst, and
T. Ichikawa. The go-go interaction technique: Non-
linear mapping for direct manipulation in VR. In Pro-
ceedings of the ACM Symposium on User Interface Soft-
ware and Technology, pages 79–80, 1996.

23. J. Rekimoto. Pick-and-drop: A direct manipulation
technique for multiple computer environments. In Pro-
ceedings of the ACM Symposium on User Interface Soft-
ware and Technology, pages 31–39, 1997.

24. N. H. Riche, B. Lee, and C. Plaisant. Understanding
interactive legends: a comparative study with standard
widgets. Computer Graphics Forum, 29(3):1193–1202,
2010.

25. B. Shneiderman. The future of interactive systems and
the emergence of direct manipulation. Behaviour and
Information Technology, 1(3):237–256, 1982.

26. B. Shneiderman. Direct manipulation: A step beyond
programming languages. Computer, 16(8):57–69, 1983.

27. B. Shneiderman and P. Maes. Direct manipulation vs.
interface agents. Interactions, 4(6):42–61, 1997.

28. B. Shneiderman and C. Plaisant. Designing the User In-
terface: Strategies for Effective Human-Computer Inter-
action. Addison-Wesley, 5th edition, 2009.

29. J. H. Siegel, E. J. Farrell, R. M. Goldwyn, and
H. P. Friedman. The surgical implication of physio-
logic patterns in myocardial infarction shock. Surgery,
72(1):126–141, 1972.

30. R. Stoakley, M. J. Conway, and R. Pausch. Virtual real-
ity on a WIM: Interactive worlds in miniature. In Pro-
ceedings of the ACM CHI Conference on Human Fac-
tors in Computing Systems, pages 265–272, 1995.

31. The Omni Group. OmniGraffle Professional.
http://www.omnigroup.com/products/
omnigraffle/.

32. M. E. Tudoreanu and D. Hart. Interactive legends. In
Proceedings of the ACM Southeast Regional Confer-
ence, pages 448–453, 2004.

33. E. Tufte. The Visual Display of Quantitative Informa-
tion. Graphics Press, 1983.

34. E. Tufte. Beautiful Evidence. Graphics Press, 2006.

35. A. van Dam. Post-WIMP user interfaces. Communica-
tions of the ACM, 40(2):63–67, Feb. 1997.

36. W. Willett, J. Heer, and M. Agrawala. Scented wid-
gets: Improving navigation cues with embedded visual-
izations. IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1129–1136, Nov./Dec. 2007.

37. C. Williamson and B. Shneiderman. The Dynamic
HomeFinder: Evaluating dynamic queries in a real-
estate information exploration system. In Proceedings
of the ACM Conference on Research and Development
in Information Retrieval, pages 338–346, 1992.

38. Yahoo! Inc. Yahoo pipes. http://pipes.yahoo.
com.

http://www.omnigroup.com/products/omnigraffle/
http://www.omnigroup.com/products/omnigraffle/
http://pipes.yahoo.com
http://pipes.yahoo.com

	Introduction
	Background
	Direct Manipulation
	Challenges of Direct Manipulation

	Evidence of Surrogate Interaction
	3D Object Manipulation
	Computer Games
	Interactive Legends
	Drawing Editors

	Surrogate Interaction
	Manipulating Single Objects
	Manipulating Multiple Objects
	Manipulating Intangible Properties
	Visual Data Aggregation
	Cognitive Aspects

	Design Examples
	Scatterplot Visualization
	Starplot Visualization
	Vector Drawing Editor
	Interaction on Mobile Devices

	Implications for Design
	Surrogate Interaction in Context
	Activating Surrogates
	Visual Representations

	Conclusions and Future Work
	REFERENCES

