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ABSTRACT

Information visualization shows tremendous potential for helping
both expert and casual users alike make sense of temporal data, but
current time series visualization tools provide poor support for com-
paring several foci in a temporal dataset while retaining context and
distance awareness. We introduce a method for supporting this kind
of multi-focus interaction that we call stack zooming. The approach
is based on the user interactively building hierarchies of 1D strips
stacked on top of each other, where each subsequent stack repre-
sents a higher zoom level, and sibling strips represent branches in
the visual exploration. Correlation graphics show the relation be-
tween stacks and strips of different levels, providing context and
distance awareness among the focus points. The zoom hierarchies
can also be used as graphical histories and for communicating in-
sights to stakeholders. We also discuss how visual spaces that sup-
port stack zooming can be extended with annotation and local statis-
tics computations that fit the hierarchical stacking metaphor.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical User Interfaces (GUI); 1.3.6 [Computer
Graphics]: Methodology and Techniques—Interaction techniques

1 INTRODUCTION

Almost all data found in the real world have a temporal component,
or can be analyzed with respect to time. Temporal data is prevalent
in virtually all scientific domains, and permeates societal phenom-
ena as well—examples include computer and network logs, chrono-
logical history, political poll data, stock market information, and
climate measurements. One of the common properties of this wide
range of data is that the datasets tend to be large, not only in the cap-
tured time period but also in the number of observed attributes [2].
Visualization has been suggested as a way to handle this problem
(e.g., [18]), but effectively exploring large-scale temporal datasets
of this kind often requires multi-focus interaction [10]—the capa-
bility to simultaneously view several parts of a dataset at high detail
while retaining context and temporal distance awareness.

Consider for example a stock market analyst who is trying to pre-
dict future market trends using line graphs of stock market indices
by extrapolating from several similar situations at different times in
the past. Multi-focus interaction would allow the analyst to see sev-
eral time periods of the stock market graphs simultaneously while
understanding their individual relations, temporal distances, and the
market developments before and after each period. However, most
existing temporal visualizations—for example, TimeSearcher [18],
ATLAS [9], PatternFinder [13], and LifeLines [24, 38]—do not
fully support the requirements of multi-focus interaction.

In this paper, we present a general technique to supporting multi-
focus interaction for one-dimensional visual spaces—which in-
cludes the temporal datasets motivating this work—that we call
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Figure 1: The stack zooming technique for line graphs. The analyst
has focused on a period of radical changes in the main timeline (top).

stack zooming. The technique is based on vertically stacking strips
of 1D data into a stack hierarchy and showing their correlations
(Figure 1). To exemplify the new method, we also present a pro-
totype implementation, called TRAXPLORER (Figure 2), that sup-
ports multi-focus interaction in temporal data through stack zoom-
ing, as well as additional functionality such as local statistics com-
putation and annotation support. Our prototype would allow our
analyst to create a large number of focus regions within the time-
line to compare between and across different stocks and over time.

Beyond directly supporting visual exploration, the stack hierar-
chy also serves as a tangible graphical history [7, 17, 31] of the
visual exploration session. Recent advances in visual communi-
cation have suggested that to ameliorate the process of sensemak-
ing [27], visualization should also support collaboration and com-
munication [35, 37]. Our TraXplorer prototype takes this a step
further by introducing a presentation tree that is automatically built
during exploration, and which can then double as a management
interface for annotations, computations, and, ultimately, presenta-
tion of the results of the exploration. To complete our stock market
example, this functionality would enable our analyst to present pre-
dictions of future market trends to a manager using the tool itself,
progressively expanding selected parts of the exploration history
and displaying relevant statistics integrated with the visual display.

The contributions of this paper are the following: (i) the gen-
eral stack zooming technique and its implications to visualization
of time-series data; (ii) the implementation of our prototype system
for temporal visualization based on stack zooming and with support
for communication based on the exploration history; and (iii) a us-
age scenario conducted with the TraXplorer system showing how it
can be used for visual exploration of a large financial dataset.

2 BACKGROUND

In this section, we give the background of temporal visualization,
starting with the visual representations of time-series data, and then
focus+context techniques [15] that few existing temporal analysis
tools fully support. We also discuss collaboration and communica-
tion aspects for visualization that integrate with these ideas.
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Figure 2: Stack zooming in a stock market dataset using TraXplorer. The horizon graph segments are arranged in a stack hierarchy that was
built during visual exploration. The exploration and presentation interface of the tool is also visible on the right side of the image.

2.1 Time-Series Visualization

In the last two decades, a large number of research papers have been
published related to visualization of time-series datasets—relevant
surveys include [22, 32]. During this time, temporal visualization
has evolved from basic timeline graphs [36] (some of these dating
back hundreds of years), through becoming a novel approach for
using visualization as a problem solving technique [7], and finally
to encompass design considerations of sophisticated systems like
ATLAS [9] for visualizing massive time-series datasets.

Correspondingly, considerable research efforts have been di-
rected towards developing methods for interactive visual explo-
ration of time-series data; here follows a representative sampling.
The Perspective Wall [20] presents temporal data using a 3D ren-
dering that incorporates a natural focus+context [15] perspective
distortion. LifeLines [24] was one of the early systems that used vi-
sualization to explore discrete events in personal histories. Wang et
al. [38] recently presented a follow-up to the original LifeLines sys-
tem as a support for electronic health records. TimeSearcher [18]
is a time-series visualization tool that uses timeboxes to generate
visual queries to explore the datasets. PatternFinder [13] provides
an interface for querying temporal data of medical records. Con-
tinuum [4] is a Web 2.0 tool for faceted timeline browsing. Most
recently, LiveRAC [21] is an interactive visual exploration environ-
ment for time-series data for system management.

All of these projects concentrate mainly on interactive explo-
ration of time-series datasets. However, beyond standard low-level
visualization tasks [3], temporal visual exploration often require at-
tention to the special properties of the time dimension [1, 2]. In
particular, additional important temporal analysis tasks include [4]
support for (a) dynamic temporal hierarchies, (b) across-concept re-
lationships, and (c) large-scale overviews. Few of the above time
visualization tools, with the exception of LiveRAC [21] and Con-
tinuum [4], explicitly support all of these requirements.

2.2 Supporting Multi-Focus Interaction

We argue that the temporal analysis tasks discussed above can be
generalized to the concept of multi-focus interaction [11]. Multi-

focus interaction is a conceptual framework that integrates multiple
focus+context [15] views with guaranteed visibility to support both
focus, context, and distance awareness. This is the approach taken
by the LiveRAC system, implemented using the Accordion Draw-
ing framework [23, 33] for guaranteed focus visibility. In this paper,
we take a different approach to multi-focus interaction compared to
LiveRAC: instead of using a single integrated view with visual dis-
tortion, we take advantage of the one-dimensional nature of the data
to present hierarchies of undistorted visualization strips.

A number of general techniques have evolved to support multi-
focus interaction, e.g., split-screen [30], fisheye views [15], and
space-folding [11], etc. However, none of these techniques was
originally developed for the exploration of time-series data. The
Continuum faceted timeline browser [4] implements the above ex-
tended temporal tasks, but provides only one level of overview of
the timeline, meaning that detail and context awareness is limited.

Two existing systems are of particular relevance to the stack
zooming technique presented in this work. The multi-resolution
time slider for multimedia data presented by Richter et al. [25] uses
a hierarchical zoom stack similar to ours, but their work is primarily
an interaction technique for selecting single time periods in a hierar-
chical fashion and does not support multiple focus points. The idea
was also not designed for visual exploration. Second, the multi-
page zooming technique presented by Robert and Lecolinet [26]
defines a hierarchical zooming technique similar to our stack zoom-
ing, but is defined for hypertext document graphs and has a different
presentation approach compared to us.

2.3 Supporting Communication and Collaboration

Advances in visualization research have showcased the power of
collaboration to amplify sensemaking [27] and enable distributed
cognition [19] in a team of analysts, but collaboration requires a
strong communication component to disseminate insights across
participants [35, 37]. Communication-minded visualization [37] is
also important in its own right for ultimately disseminating the re-
sults of visual exploration to stakeholders outside the analysis team.

A recent approach in human-computer interaction has been to
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nancial crisis (starting July 1997).

Figure 3: Stack zooming in the Hongkong stock market index dataset. Transitions between views are animated, and the space-filling layout

algorithm ensures that the whole space is used optimally.

utilize automatically captured interaction histories as a means of
fostering awareness of your own (e.g. [8]) and your team’s (e.g. [6])
activities. Self and group awareness is a big research topic that is
outside the scope of this article. We concern ourselves with the spe-
cific use of visual exploration histories to support communication.
Branching interaction histories for visualization that capture
multiple exploration paths were introduced as early as in the GRAS-
PARC [7] system, and was recently utilized to great effect by
Shrinivasan and van Wijk [31] for a scatterplot visualization. Their
tool consists of a data view, a navigation view, and a knowledge
view. However, their history mechanism stores all interactions in a
visual exploration system, which can be a large and complex dataset
with no real connection to the useful outcome from the analysis. In
contrast, Heer et al. [17] use linear (non-branching) graphical his-
tories in the Tableau (formerly Polaris [34]) system. Their event
compression scheme is interesting, but the mechanism focuses on
individual analysts and thus does not support using the history as a
starting point for communicating analysis results to stakeholders.

3 STACK ZOOMING

Consider a user trying to use line graph visualizations (Figure 4) to
analyze a large-scale temporal dataset. Because such datasets often
contain more data points than can be fit on the screen, the user will
need to zoom and pan in the line graph to see details necessary to
solve a particular task. However, using just a sequence of zoom and
pan actions to support higher-level temporal analysis tasks such as
comparison and correlation over time [2, 4], both between different
time series and within the same time series, will quickly become
tedious and ineffective [15, 16].

time
>

Figure 4: Two time-series datasets visualized as line graphs.

With the stack zooming technique, the available display space is
split evenly among the currently visible line charts, or strips, that
show subsets of the time-series dataset. When the user begins to
analyze the dataset, the whole display is taken up by the full time
series drawn as a line visualization on a single strip. Using a mouse
drag on the surface of this strip, the user can create a child strip
of the main strip that displays the selected subset of the time data.
Additional zoom operations on the main dataset strip will create
additional children in the zoom stack, all of them allocated an equal
amount of the available display space for that particular level (space
allocations can be changed by dragging the borders of a strip). Each
child strip serves as a focus, and is guaranteed to always be visible.

Color-coded frames for the child strips and correspondingly
color-coded selection areas in the parent strips show the correla-
tion between parents and children, as well as provide intervening
context and distance awareness between the focus points. Dragging
a selection area in a parent strip will pan the connected child strip,
and children can be panned directly by using the arrow keys. In this
way, users can quickly explore the temporal dataset with a sequence
of simple zoom and pans while retaining multi-focus support.

In the example in Figure 3(a), the user is studying a financial
dataset of the Hong Kong stock exchange (HNGKNGI) from June
1986 to December 1997. He first creates a child strip for the Black
Monday crash of October 19, 1987 by dragging on the main strip
(see Figure 3(b)). Then, interested in comparing this crash to the
Asian financial crisis in 1997, he creates a second child strip cen-
tered around the period July to October, 1997 (Figure 3(c)). A con-
tinued description of this usage scenario can be found in Section 5.

3.1 Zoom Stacks

The basic structure in stack zooming is a hierarchical zoom stack (or
Z-stack)'. The zoom stack describes the layout of the hierarchy of
focus regions, orthogonal to the underlying visual representation.
In other words, the zoom stack can manage any one-dimensional
visual space. Just like any other tree, a Z-stack is defined by a
single root node r containing all of the nodes of the tree.

The Z-stack structure supports all basic tree operations such as
finding the depth of individual nodes, the depth of the whole tree,
the number of children, as well as all standard tree traversals.

Nodes in a zoom stack are called zoom nodes (Z-nodes). A single
Z-node n captures a single strip (a focus region in the 1D visual
space) in the stack zooming technique. Thus, the node n consists
of a range [eg, e1] describing the extents of the focus region in data
dimension space, a alloc factor describing the layout allocation for
this particular node on the screen (width or height, depending on
the orientation of the space), a parent node p, and an ordered list of
child nodes C. In our particular application, the data dimension is
time and the visual representations are temporal visualizations, but
stack zooming can be applied to any one-dimensional visual space.

Screen allocations (alloc) are specified as scale-independent ra-
tios of the full allocation of the whole zoom stack. This measure,
along with the node order in the list of children for the parent, gov-
erns the actual screen location of the node when it is visualized.
Note that the technique does not stipulate the layout of the zoom
stacks on the screen; in our examples so far, layers are stacked on
top of each other (so the space allocation is a ratio of the horizontal
space), but we will show a horizontal layout in Section 6 (where
space allocations accordingly are ratios of the vertical space).

I'Note that zoom stacks are trees and not linear lists, like normal stacks.



3.2 Layout

Nodes in a zoom stack are laid out on the visual 2D substrate using
a space-filling layout (Figure 5) that splits the vertical space by the
depth of the tree (assigning an equal amount to each tree level), and
the horizontal space by the number of siblings for each level of the
tree (assigning an equal amount to each sibling). At any point in
time, the user is able to change the layout allocations by dragging
the borders of individual strips. As discussed above, the layout may
also be reversed, using horizontal space for stacking layers in the
tree and vertical space for siblings for each level.
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Figure 5: General layout mechanism for stack zooming. Color-coded
zoom areas and corresponding colored frames show parent-child re-
lationships, and visual arrows make the relations explicit.

The ordering of child strips for each level may be significant for
the purpose of conveying the relative positions of the displayed in-
tervals of a time series to the user. Therefore, the layout manager
will always order child strips for each level in the zoom stack to be
the same as the order of their intervals on the parent strip. Over-
lapping intervals, such as when moving focus points, is a special
case—see Section 3.4.

To preserve the tree structure of the zoom stack, one design alter-
native is to not divide space equally across siblings of each level of
the zoom stack, but rather to assign space to whole subtrees. This
would mean that each child would have to stay within the extents of
its parent. This would give an explicit indication of the parent-child
relationships between strips in adjacent levels, and thus decrease
the need for explicit correlation graphics (discussed next). How-
ever, we found that because visual exploration using stack zoom-
ing often results in unbalanced zoom trees, this design would result
in suboptimal use of the available screen space. Therefore, global
space allocation across each level is a better solution.

3.3 Correlation Graphics

If we are to retain focus, context, and distance awareness for a vi-
sual space supporting stack zooming, we need to make explicit the
relationship between parent strips and child strips in adjacent levels
of the zoom stack. However, as argued above, we cannot directly
show ancestor relationships in the layout, or we may waste valuable
screen space. Therefore, we introduce correlation graphics that vi-
sually indicate the relationships between parents and children.
The correlation graphics take several forms (see Figure 5):

e Color-coded zoom areas: Parent strips show color-coded
(but semi-transparent) selection areas that indicate the posi-
tion and extents of each child strip in the time series. These
areas can also be interacted with, see the next section.

e Color-coded strip frames: Child strips have color-coded
frames that correspond to the color of its selection area in the
parent. This gives a visual link between parent and child.

e Correlation links: For a complex visual exploration session,
the above two graphics may not be sufficient to quickly un-
derstand the correlation structure in the zoom stack. We in-
troduce explicit correlation links drawn as arrows from zoom
areas in parents to the respective children. In an effort to min-
imize visual clutter, an implementation may choose to expose
these arrows as a transient overlay.

3.4 Navigation

One of the basic requirements of effective temporal exploration is
to allow the user to navigate the focus points through the dataset.
We have already described the zoom functionality, which for stack
zooming—unlike traditional visualization applications—is not a
navigation operation in itself, but used to create new focus regions.
Therefore, the zoom operation is intrinsic to stack zooming.

Instead, the main navigation operation is panning—or moving—
a focus point. In our technique, moving a focus point can either be
done by dragging the zoom area selections in a parent strip, or by
panning a child strip directly, such as using the arrows keys, or by
a dragging mouse gesture at the left and right border of the strip.

Moving a child strip may give rise to a special layout case when
the interval covered by one strip overlaps that of another strip. Dur-
ing overlap, the layout will not be changed to maintain stability of
the display, but if the temporal order of two strips change as a re-
sult of a navigation operation (i.e. a pan), the layout will switch the
relative position of the two affected strips. Overlapping has spe-
cial potential for reinforcing the awareness of a user navigating in
the time series by merging adjacent child strips when their intervals
overlap. Figure 6 gives a schematic overview in both layout and
temporal space of this operation. However, strip merging requires
that all zoom strips in a stack level cover the same length of interval
W = e —eg (i.e., all strips should use the same zoom factor), or
visual stability of the display will not be maintained. Therefore, it
may not be practical for all applications.

4 THE TRAXPLORER SYSTEM

The TRAXPLORER system is a time-series visualization tool sup-
porting multi-focus interaction using the stack zooming technique
introduced in this paper. Time series are represented as multiple
tracks, hence the name of the tool. The system was designed to
support a communication-minded [37] iterative workflow process
depicted in Figure 7 where there are three phases involved: indi-
vidual exploration, collaboration within the analysis team, and dis-
semination to external stakeholders. For the TraXplorer tool, this is
realized in the following ways (explained in subsequent sections):

e Exploration: An individual analyst, or potentially a number
of analysts, use the stack zooming technique to explore com-
plex time-series dataset in the tool and gain insights about the
data (Section 4.1). Here, the zoom stack doubles as a branch-
ing exploration history graph [7, 31].

e Collaboration: The analyst uses the zoom stack as an explo-
ration history to communicate progress and insights to other
members of the analysis team (Section 4.2). The analysis pro-
cess can now be continued, potentially by other analysts, by
backtracking to the exploration phase. We provide a method
for pruning, annotating, and calculating local statistics for in-
dividual strips or subhierarchies in the exploration history.

e Dissemination: Insights gained during the internal explo-
ration and collaboration phases are presented to external
stakeholders (Section 4.3). The TraXplorer tool has a dissem-
ination mode using the standard visual representations where
the branching exploration history is linearized into a sequence
(akin to a slide show) to better support communicating in-
sights to non-experts while retaining the link to earlier stages.
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Figure 7: Communication-minded workflow for TraXplorer.

The above workflow process gives a clear path from exploration
to dissemination [35], and bridges the gap between visualization
tools and traditional presentation tools such as MS PowerPoint.

4.1 Visual Exploration

The TraXplorer exploration interface (Figure 2) consists of the main
visualization window, the data box for getting details and statistics
about the dataset, and the layer control box for managing the visual
display of the time series data. TraXplorer was designed for loading
several tracks of time-series data (defined as comma-separated files,
or similar) into the same visual space.

The main visualization window is a visual space supporting stack
zooming. It contains a set of visualizations of time-series data on
a common time axis and potentially different value axes. The type
of visualization is independent of the layout management—our im-
plementation currently supports basic line graphs, filled line graphs,
and horizon graphs [14]. For line graphs, multiple time series will
be drawn as tracks overlaid on the same temporal axis, whereas for
filled line graphs and horizon graphs, the charts will be juxtaposed.

To help manage multiple tracks, the layer control box can be
used to move, to delete, and to toggle the visibility of individual
tracks, as well as to change color mapping, transparency, and track
title. Furthermore, using the layer control, two or several tracks can
be linked to use the same scale for the value (Y) axis, thereby sup-
porting direct comparison of values across tracks. If tracks are not
linked, they will be scaled to use the whole vertical space of each
visualization strip, independent of other tracks (useful for compar-
ing trends rather than absolute values). Layer control is also used
to determine which track should be used for the value axis labels.

Our implementation of the stack zooming technique for the main
visualization window allows the user to explore time series data
by building zoom stacks. More specifically, the user can drag the
mouse on a visualization strip to define a time interval. This will
create a child strip for that interval in the zoom stack. Color-
coded correlation graphics show the relationship between parent
and child. Dragging the time window graphic in a parent will pan
the corresponding child a corresponding amount. Each strip has ad-
ditional decorations to allow for maximizing the size of a specific
strip on the layout space, hiding it (see below), as well as deleting it.

Deleting a strip will delete all of its children. Furthermore, dragging
the border of a strip enables directly resizing its space allocation.

To further support visual exploration, we also provide a data box
that gives local statistics about the currently selected strip in the
zoom stack. This provides detail-on-demand for computing mea-
sures such as minimum, maximum, average, median, and standard
deviation metrics for a particular track. The data box also doubles
as a presentation tool; this is discussed more closely in the next sec-
tion. In addition, users can always hover their pointer over a time
series point to retrieve exact data about the point in a tooltip.

4.2 Collaboration

The TraXplorer objective is to support an analyst communicat-
ing insights gained during an individual exploration session to the
whole team, while allowing for continuing the exploration in col-
laborative mode, or iterating back to individual exploration (by the
same analyst or another) after conferring with other team members.
In other words, for this setting, the analyst will need support from
the visualization tool for a semi-structured presentation, while at
the same time being able to continue visual exploration at any time.

The zoom stack already captures the exploration history, and we
reinforce this by providing a presentation tree (top right in Figure 2)
that maintains a hierarchical representation of the zoom stack. This
approach is similar to the branching exploration histories of GRAS-
PARC [7] as well as of Shrinivasan and van Wijk [31].

In our work, we take the history concept a step further by utiliz-
ing the history as a starting point for creating a presentation of the
exploration. The analyst can prune, move, or hide individual nodes
(i.e. child strips) in the presentation tree to refine the presentation,
while at the same time being able to extend the presentation by con-
tinuing exploration at any time, even during the actual presentation.
This feature is important to allow transitioning between exploration
and presentation. Also, by selectively hiding and showing parts of
the zoom stack using the presentation tree interface, analysts can
better structure their narrative while presenting their results.

4.3 External Dissemination

Finally, there comes a point when the results collected by an analyst
team must be communicated to the external, and often non-expert,
stakeholders [37]. Our aim with TraXplorer was to bridge the gap
between the visualization tool and the presentation tool, eliminating
the need to, for example, cut and paste visualization images into
traditional presentation applications like Microsoft PowerPoint.
Instead, the analyst (or the team of analysts) can use the ex-
ploration history contained in the presentation tree to linearize the
combined exploration sessions of the data, i.e., to create a linear
sequence of views similar to a slideshow presentation suitable for
presentation to the audience. Because stakeholders may not be ex-
perts in data analysis, TraXplorer allows for hiding the exploration



interface entirely, and instead just show the visualizations (standard
line graphs) in fullscreen mode. The analyst can still revert back to
the whole branching exploration history, even during a presentation.

Mere images may not be enough for an effective presentation,
so the data box that supports details-on-demand in the exploration
phase also doubles as an annotation mechanism. Checkboxes in the
data box for each computed and user-supplied metric (i.e. annota-
tion) allows the user to toggle display of these metrics on the actual
visualization strip. In other words, this functionality can add local
statistics—such as a key, the extrema, or the average of a particular
data track—to the visual display of the track.

4.4 Implementation Notes

The TRAXPLORER system was implemented in Java using the Pic-
colo? structured 2D graphics toolkit [5]. It accepts basic comma-
separated (.csv) data files as input, and enables the user to select any
two dimensions in the dataset as the time (X) and value (Y) axes for
a particular time series. This way, the user can easily load several
data series into the tool to allow for comparison between different
datasets and not just within the same dataset.

The key components in our implementation include the time strip
class (implemented as subclasses of Piccolo’s PNode basic scene
graph node class), the actual visualization (which is orthogonal to
the strips and the layout), and the layout manager responsible for
calculating and animating the layouts for a hierarchy of strip nodes.
Although a recursive layout algorithm may seem to fit the zoom
stack hierarchy, our implementation does not use recursion because
the layout on each level is performed globally for the whole level.

5 USAGE SCENARIO

To show how TraXplorer could be utilized to analyze a particular
dataset, we return to our stock market analysis example. Our ana-
lyst, Joe, is part of a team of financial analysts studying the history
of stock market crashes to predict future behavior.

Joe has been tasked to study two crashes in particular: the Black
Monday crash of October 1987, and the Asian financial crisis of
July 1997. Because these events are spaced ten years apart in a
large temporal dataset (daily values for all major stock market in-
dices), Joe knows he will need multiple focus points, and thus loads
the datasets into TraXplorer. Since the crashes affected European
and Asian markets differently, he decides to study one represen-
tative index for each continent, and loads the UK (FTSE100) and
Hong Kong (HNGKNG]I) time series from June 1986 to December
1997. Looking at the initial view of these two tracks (Figure 8),
Joe notes that both indices were clearly affected by the two crashes.
Pairwise comparison does not make sense for this task, because the
two indices have different scales, so he does not link the tracks, but
he uses the exploration interface to change transparency and toggle
their visibility to better see the individual values.

Interested in understanding the buildup and aftermath of a crash,
Joe creates two focus points, both spanning over an interval of two
years around the events (Figure 9). This allows him to study the
behavior of the market before and after the crashes. He notes that
both indices have a steeply increasing trend prior to a crash, and the
HNGKNGI index appears more effected during the Asian market
crisis of 1997. From this data, Joe hypothesizes that there was a
“bubble” effect in both cases, with the 1997 bubble being more
confined to the Asian markets, whereas the 1987 one affected both.

Next, Joe decides to seek more insight into market behavior to
predict future market crashes. Looking at the two focus points, he
creates two additional time windows in the Black Monday focus
point. He centers one of them at the crash date and navigates the
other time window to approximately a year before the crash time.
Joe also resizes the child strips to give more visual space to the
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Figure 8: UK (FTSE100, pink) and Hong Kong (HNKNGI,
blue/purple) values for the period October 1987 to December 1997.
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Figure 9: The 1987 and 1997 crashes (UK pink, Hong Kong blue).

new focus points and enables local statistics in them (Figure 10).
By looking at these views, he notes that within only a year before
the crash, both FTSE100 and HNGKNGI saw a steep increase of
approximately 55% and 100%, respectively, and once the crash oc-
curred there was a 35% drop in the FTSE100 index and a 50% drop
in the HNGKNGI index.

Impressed by these results, he decides to repeat the same proce-
dure for the Asian financial crisis of 1997 (Figure 11). Here, he ob-
serves that for the buildup of this particular crash, there are approx-
imately 50% and 60% increases in the FTSE100 and HNGKNGI
indices, respectively, within a year before the crash. He also ob-
serves that within a week after the crash, there is a 12% drop in
FTSE100 and a 46% drop in HNGKNGI. Based on these observa-
tions, he infers that a very steep “boom” (more than 50% increase)
in the market index over a period of more than one year can signify
a “bubble”, and that this increases the risk of a major crash. He also
notes that in comparison to Black Monday, the UK market was less
affected than the Hong Kong market during the 1997 crash.

Once done with his exploration of the two datasets, Joe decides
to share his findings with his colleagues. To add more force to
his points, he uses the presentation interface of the TraXplorer sys-
tem to explain his exploration process. In doing so, Joe can use
the system itself to prune away unused exploration branches and
streamline his presentation. In addition, as he is communicating his
findings, he is able to return to the exploration phase at any time
as the discussion among the team members progresses. During the
discussion, the team observes that markets remain unstable for next



Figure 11: Buildup and aftermath of the 1997 Asian crash.

few months following any major crash. After their discussion, the
team collectively decides on a linear presentation sequence for an
upcoming board meeting where Joe will use TraXplorer to share
the team’s results with the whole company.

6 DiscussION

It is worth pointing out that although this paper has focused on
visualizing temporal data, the stack zooming technique is really
not limited to such visual representations, but can be utilized for
any one-dimensional—or virtually one-dimensional—visual space.
“Virtually one-dimensional” means that the technique could be ap-
plied to any other visual representation that has a natural extension
in one dimension, and limited in another. Examples include visual
representations of multimedia data (the multi-scale slider presented
by Richter at al. [25] uses a similar idea for this very purpose), text
and hypertext documents (see the multi-page zooming technique by
Robert and Lecolinet [26]), space-time diagrams (such as the Grow-
ing Polygons [12] causality visualization), and bipartite graphs.

The reason for this restriction is obviously that stack zooming
uses one of the dimensions of the visual space for layout. It may
be argued that we could support stack zooming in an inherently
two-dimensional visual space, such as a treemap [29], if we only
extended our technique to three dimensions, and thus used the Z
(depth) axis for layout. Another method may be to use dynamic
layout of focus regions drawn as insets on top of the main visual-
ization. However, this is outside the scope of our current work.

To illustrate another use of stack zooming, Figure 12 shows an
example of a multi-scale representation of a document visualized

Figure 12: Stack zooming in vertical layout for a multi-scale document
(mockup screenshot, not implemented in this paper).

using stack zooming. This approach might be useful for comparing
several passages of a long document (e.g., when studying an ad-
vanced software manual), or for showing several occurrences of a
specific word in a document as well as their surrounding context.

We designed the stack zooming technique to be an alternative to
existing multi-focus interaction techniques such as rubbersheet dis-
plays [28], accordion drawing [23, 33], and space-folding [11]. The
tradeoff with stack zooming in comparison to these is that the com-
peting techniques generally provide integrated focus and context,
whereas stack zooming lays out focus points as separate viewports
on the visual space. It may even be argued that stack zooming is not
a true multi-focus interaction technique because of this. However,
our intention was to provide a distortion-free display that retains
the familiarity of the original visual representations drawn on the
display, and that is what distinguishes the technique from its com-
petitors. We are naturally interested in comparing stack zooming to
these techniques through empirical user studies.

7 CONCLUSIONS AND FUTURE WORK

We have presented a theoretical background and a practical imple-
mentation of a multi-focus interaction technique called stack zoom-
ing that integrates multiple focus points in time-series dataset visu-
alizations with their respective context and relationships. We have
also shown how the zoom hierarchy built during visual exploration
can serve as an input to presenting the insights gained during a par-
ticular session. Our prototype is built using Java and showcases
the basic functionality of the stack zooming technique for temporal
data. To further showcase our contribution, we have exemplified
how to use the tool for exploring stock market crashes in a financial
dataset consisting of several market indices for a 10-year period.
Our future work will entail studying the empirical performance
of the tool in comparison to similar tools, such as LiveRAC [21],
Continuum [4], and the Mélange [11] technique. We would also
like to improve the tool to better support collaborative visual explo-
ration settings involving teams of analysts working together, and
study how the tool can help analysts fill different roles in the anal-
ysis process. Some temporal data consists of discrete events rather
than quantitative values, and we would like TraXplorer to support
this as well. Finally, we are also interested in exploring similar
applications of communication-minded visualization [37].
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