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Abstract—Many 2D visual spaces have a virtually one-dimensional nature with very high aspect ratio between the dimensions:
examples include time-series data, multimedia data such as sound or video, text documents, and bipartite graphs. Common
among these is that the space can become very large, e.g., temperature measurements could span a long time period,
surveillance video could cover entire days or weeks, and documents can have thousands of pages. Many analysis tasks for
such spaces require several foci while retaining context and distance awareness. In this extended version of our IEEE PacificVis
2010 paper, we introduce a method for supporting this kind of multi-focus interaction that we call stack zooming. The approach is
based on building hierarchies of 1D strips stacked on top of each other, where each subsequent stack represents a higher zoom
level, and sibling strips represent branches in the exploration. Correlation graphics show the relation between stacks and strips
of different levels, providing context and distance awareness for the foci. The zoom hierarchies can also be used as graphical
histories and for communicating insights to stakeholders, and can be further extended with annotation and integrated statistics.
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1 INTRODUCTION

LARGE visual spaces are becoming increasingly
common as we apply modern information tech-

nology to the data deluge facing our society today;
examples include online maps, handheld GPS navi-
gation systems, graphical documents, and so on. A
considerable portion of these visual spaces can be
regarded as skewed-aspect spaces: while they may have
a small and constant extension in a second dimension,
they extend primarily in a single dimension. Examples
of such visual spaces include visualizations of time-
series data (such as temperature measurements or
stock values over time), graphical representations of
multimedia data (such as sound or video streams), or
long documents of text and images.

Navigating in this kind of visual spaces is challeng-
ing due to the unbalanced ratio between the dimen-
sions [2], the difficulty of creating an overview [3], and
the arbitrarily large scale of the primary dimension
of the space. In particular, this large scale—days or
weeks of surveillance video, years of time-series data,
or hundreds of pages in a document—means that a
user performing some analytical task in the space
may have to spend considerable time panning and
zooming between different areas of interest, a tedious,
error-prone, and potentially disorienting process [4].
In this paper, we argue that such tasks requires multi-
focus interaction [5]—the capability to simultaneously
view several parts of a space at high detail while
retaining awareness of context and spatial relations.
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Consider for example a stock market analyst who
is trying to predict future market trends using line
graphs of stock market indices by extrapolating from
several similar situations at different times in the
past. Multi-focus interaction allows the analyst to
see several time periods of the stock market graphs
simultaneously while understanding their individual
relations, temporal distances, and the market devel-
opments before and after each period. However, most
existing temporal visualizations—for example, Time-
Searcher [6], ATLAS [7], and LifeLines [8]—do not
support the requirements of multi-focus interaction.

In this extended version of our IEEE Paci-
ficVis 2010 paper [1], we present stack zooming, an
overview+detail technique for multi-focus interaction
in skewed-aspect visual spaces—which includes the
temporal dataset examples discussed above. The tech-
nique is based on stacking strips of 1D data into a
stack hierarchy and showing their relations. We discuss
the general approach for implementing stack zooming
for any skewed-aspect space, regardless of the visual
representation and application used. To exemplify
the new method, we also present several concrete
applications of stack zooming. We then validate the
work with a case study deploying the technique for
network management, as well as with a quantita-
tive experiment comparing its efficiency to classic
overview+detail methods.

The contributions of this paper are the following:
(i) the general stack zooming technique for skewed-
aspect visual spaces; (ii) four applications of stack
zooming for different domains; (iii) a case study for
log analysis involving analysts in a network man-
agement setting; and (iv) results from a controlled
experiment evaluating the utility of stack zooming
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compared to standard overview+detail layout. The
latter three (ii-iv) of these contributions are new to
the journal version of the work, and thus significantly
extends the work in the IEEE PacificVis 2010 paper [1].

2 MOTIVATION

We define an skewed-aspect visual space as a space
consisting of a primary and a secondary dimension.
The term is derived from the potentially very large as-
pect ratio caused by the primary dimension becoming
very long, whereas the secondary is typically much
shorter. Examples of primary dimensions include time
for temporal data, page sequence for documents, and
temporal sequence for multimedia streams. The sec-
ondary dimension, on the other hand, either has a
fixed size or is space-filling, meaning that it can be
adapted to whatever size it is allocated.

Because of this, the aspect ratio of this kind of
visual space can also either be fixed or space-filling.
This gives rise to some complications when allocat-
ing display space to the visual space. For example,
for a time-series visualization using line graphs, the
primary dimension is time, and convention usually
assigns this to the horizontal (X) dimension. The sec-
ondary dimension—the vertical size allocation for the
graph—can be adapted to whatever space is available
(i.e., it is space-filling). For a document, the primary
dimension is the length of the document (by conven-
tion usually assigned to the vertical dimension) and
the secondary dimension (the width of the document)
is fixed. In other words, for documents, the aspect
ratio of the space must be fixed to avoid distortion.

Many analytical tasks for large visual spaces in-
volve correlation between several areas of interest. We
call an area of interest a focus or focus region. Users
generally need to be able to view all focus regions at
high resolution, while retaining an awareness of the
context surrounding each region, the context between
the regions, and the relative spatial relations of the
focus regions. This style of interaction is generally
known as multi-focus interaction [5].

2.1 Problem Statement

While multiscale navigation is challenging for all
large visual spaces [9], the lopsided relation between
the primary dimension and secondary dimension for
skewed-aspect visual spaces makes navigation par-
ticularly difficult. Consider the length (primary) and
width (secondary) dimensions of a text document; the
latter is fixed, whereas the former is not. Therefore,
unlike for a 2D visual space like a map, it is typi-
cally not possible to attain a useful overview [3] of
a skewed-aspect visual space—at least not without
relaxing the linear layout of the primary dimension,
such as in the space-filling thumbnail approach for
document browsing proposed by Cockburn et al [10].

Even for visual spaces where the secondary dimen-
sion is space-filling, such as for line graphs of time-
series data, the skewed aspect ratio between the di-
mensions may cause misperceptions [2].

Because primary and secondary dimensions are de-
coupled in skewed-aspect visual spaces, we argue that
multi-focus interaction tasks are particularly difficult
to perform in this setting. The user typically has to
resort to one of the following strategies:

• Navigation: Pan and zoom between the areas of
interest, a tedious and error-prone process [4]; or

• Split-screen: Splitting the screen into multiple
views, one for each focus region. Context and
spatial relations between focus regions are lost.

2.2 Design Goals

While existing multi-focus techniques such as space-
folding [5] and multiple fisheye views [11] are gener-
ally focus+context techniques that use distortion, this
is actually not a hard requirement. Actually, distortion
can sometimes be confusing because it introduces
non-linear elements into the display, elements that
are typically not visually stable under translation [12].
Therefore, we include an additional design goal (G5)
beyond those of standard multi-focus interaction [5]:
G1 Multiple foci: guaranteed visibility of all focus

regions at independent levels of zoom;
G2 Surrounding context: show as much as possible

of the space surrounding each focus region;
G3 Intervening context: convey an awareness of the

space between focus regions;
G4 Spatial relation: communicate the relative dis-

tance and position of the foci on the space; and
G5 No distortion: the display should not be non-

linearly distorted and should be visually stable.
In the rest of this paper, we will discuss a novel

approach to achieving these design goals for the
skewed-aspect visual spaces discussed here.

3 RELATED WORK

Multi-focus interaction [5] is a conceptual framework
that integrates multiple focus+context [4] views with
guaranteed visibility to support both focus, context,
and spatial awareness. There are many ways to sup-
port multi-focus interaction (see Table 1):

• Standard navigation techniques like pan and
zoom, generally requiring repeated interaction;

• Focus+context techniques that integrate the foci
in the context of the space as a whole;

• Split-screen techniques where the viewport is
partitioned into several smaller viewports that
each show different parts of the space;

• Overview+detail techniques where a bird’s-eye
view shows the overall context and a detail view
shows the focus region; and
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Fig. 1. Stack zooming in a stock market dataset using TraXplorer (one of our applications of stack zooming).
The line graph segments are arranged in a zoom stack that was built during visual exploration.

• Hierarchical navigation techniques that allow
for progressive panning and zooming.

These are all described in the following subsections.

TABLE 1
Multi-focus interaction design goals supported by

existing interaction and navigation techniques.

Technique G1 G2 G3 G4 G5 Examples
Pan + zoom – – – – X [13], [14]
Fisheye views X X X – – [4]
Rubber sheet X X X X – [15]
Split-screen X X – – – [11]
Overview+detail – X X X X [16], [17]
Space folding X X X X – [5]
Multi-resolution – X X X X [18]
Hierarchical zoom X X X – X [19]

3.1 Standard Navigation Techniques

Panning and zooming are the most basic of navigation
operations for large visual spaces [9], and can be
found in virtually all graphical applications such as
map viewers, document editors, and web browsers.
However, basic pan and zoom do not directly support
any of our above design goals (except G5) [5].

More advanced panning and zooming interactions
exist that achieve better performance, such as com-
bining panning and zooming [9], [20], coupling zoom
factor to scrolling speed [14], and using a second
dimension for zoom speed [13].

3.2 Focus+Context Techniques

Focus+context [4] is one particularly powerful ap-
proach for seeing details while maintaining overview
where views of the focus regions are integrated into
their surrounding context. This lets the user to see foci

in direct relation to their context, but requires space
to be distorted (violating G5).

The most widely known focus+context techniques
are fisheye views [4], including techniques for multi-
ple fisheyes [11], and the rubber-sheet metaphor [15].
The latter class of techniques are particularly relevant
because they allow for freely deforming space to
guarantee visibility of several focus points, and is the
approach taken by the LiveRAC system [21].

Space-folding [5] is a recent alternative approach
that is similar to rubber-sheet techniques, but which
explicitly folds space away into 3D instead of com-
pressing or stretching it. The visual representation of
the folded space better supports the spatial relation
(G4) design goal than rubber sheet methods.

However, all of the above techniques are based
on non-linear space distortion, which can be non-
intuitive, visually unstable, and difficult to under-
stand [12]. To combat these issues, Zanella et al. [22]
studied how to add visual cues to decrease the impact
of distortion, and Gutwin [12] dynamically adapted
the distortion depending on the user’s interaction.
Most recently, the Sigma lens framework [23] general-
izes focus+context lenses to other dimensions beyond
space, such as time and translucence; this allows for
supporting the no distortion (G5) design goal as well.

3.3 Split-Screen Techniques

A straightforward way to support multiple focus re-
gions (G1) is simply to create a separate viewport for
each of the foci, i.e., to split the screen, a common
approach in desktop applications. Shoemaker and
Gutwin [11] present a multi-focus technique that au-
tomatically splits the screen when the focus points are
moved too far apart. However, standard split-screen
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techniques provide no awareness of the intervening
context or spatial relation between the focus regions.

3.4 Overview+Detail Techniques
A specialization of split-screen techniques are
overview+detail [16] techniques that provide both a
view of the current focus region as well as a bird’s-
eye view of the surrounding context of the focus
(often with a visual indication showing where the
focus is located in the context). This requires the user
to split their attention between several viewports,
but allows for showing detail without distortion.

Hornbæk and Frøkjær [17] showed that
overview+detail can outperform focus+context [4]
techniques in some situations, but most existing
overview+detail implementations do not support
multiple focus points (G1). For example, the
Continuum faceted timeline browser [24] supports
many multi-focus interaction goals, but provides only
one level of overview of the timeline, meaning that
detail and context awareness is limited.

3.5 Hierarchical Navigation Techniques
Two existing systems are of particular relevance to the
stack zooming technique presented in this work. The
multi-resolution time slider for multimedia data pre-
sented by Richter et al. [18] uses a hierarchical zoom
stack similar to ours. However, theirs is primarily an
interaction technique for selecting single time periods
and does not support multiple focus points.

Second, the multi-page zooming technique pre-
sented by Robert and Lecolinet [19] defines a hierar-
chical zooming technique similar to our stack zoom-
ing technique. However, their technique is applied to
web browsers and uses a node-link diagram to show
the zoom hierarchy that does not communicate the
spatial relation of focus regions (G4), compared to the
explicit spatial hierarchy representation that we use.

4 DESIGNING STACK ZOOMING

Stack zooming is a hierarchical overview+detail tech-
nique that supports multi-focus interaction as follows:
G1 Multiple segments: display space is split among

multiple segments, or strips, of the visual space;
G2 Subset context: segments show the context

around each focus point;
G3 Overall context: focus regions are arranged in a

hierarchy so that the full space is always visible;
G4 Correlation: visual cues correlate one segment to

its children, showing their spatial relations; and
G5 No distortion: the hierarchical overview+detail

approach means that distortion is not necessary.
When the user begins to analyze a temporal visu-

alization using stack zooming, the whole display is
taken up by the full time series on a single (main)
strip. Dragging on the surface of this strip, the user

Fig. 2. General layout mechanism for stack zooming.
Color-coding show parent-child relationships, and cor-
relation graphics make the relations explicit.

can create a child strip of the main strip that displays
the selected subset of the data. The size of the created
strip thus directly controls the zoom level. Further
zoom operations on the main strip will create addi-
tional children in the zoom stack, all of them allocated
an equal amount of the available display space for that
particular level (space allocations can be changed by
dragging the borders of a strip). Each child strip is a
focus region, and is guaranteed to be visible.

Color-coded frames for the child strips and cor-
respondingly color-coded selection areas in the par-
ent strips show the correlation between parents and
children, as well as provide intervening context and
distance awareness between the focus points. Drag-
ging a selection area in a parent strip pans the child
strip, and children can be panned directly by using
the arrow keys. In this way, users can quickly explore
the temporal dataset with a sequence of simple zoom
and pans while retaining multi-focus support.

4.1 Visual Space

Stack zooming is just a space management technique,
and can be applied to other visual spaces such as mul-
timedia streams, bipartite graphs, or text documents.

Furthermore, although in this section we will use
a horizontal layout where stacks are layered on top
of each other, stack zooming can also just as easily
use a vertical layout arrangement. In this setup, stacks
are arranged in vertical columns, and strips split
each column into horizontal rows. The appropriate
layout orientation depends on the application; for a
timeline, a horizontal layout works best, whereas for a
document viewer, vertical layout is more appropriate.

4.2 Zoom Stacks

The basic structure in stack zooming is a hierarchical
zoom stack (note that zoom stacks are trees and not lists
like normal stacks). Just like any other tree, a zoom
stack is defined by a single root node r containing all
of the nodes of the tree. The zoom stack supports basic
tree operations such as finding the depth of individual
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nodes, the depth of the whole tree, the number of
children, as well as all standard traversals.

Nodes in a zoom stack are called zoom nodes. A
single zoom node captures a single strip (a focus
region in the 1D visual space) in the stack zoom-
ing technique. Thus, the node consists of a range
[e0, e1] describing the extents of the focus region in
the primary dimension of the visual space, a layout
allocation for this particular node on the screen (width
or height, depending on the orientation of the space),
a parent node, and an ordered list of child nodes.

Screen allocations are specified as normalized ratios
of the full allocation of the whole zoom stack. This
measure, along with the node order in the list of
children for the parent, governs the actual screen
location of the node when it is drawn.

4.3 Layout

Nodes in a zoom stack are laid out on the visual
2D substrate using a space-filling layout (Figure 2)
that splits the vertical space by the depth of the tree
(assigning an equal amount to each tree level), and the
horizontal space by the number of siblings for each
level of the tree (assigning an equal amount to each
sibling). As discussed above, the layout may also be
rotated, using horizontal space for stacking layers in
the tree and vertical space for siblings for each level.

There is naturally a perceptual limit to how many
layers and strips can be added to the screen before
individual segments are no longer legible. This limit is
proportional to the amount of display space allocated
to the whole stack zooming canvas. One approach
to manage this problem is to introduce scrolling for
both spatial dimensions, but this means that visibility
of layers and segments will be violated. Another
approach is to dynamically resize the dimensions of
segments depending on interaction history: for exam-
ple, segments or layers that were not clicked recently
could be smoothly shrunk to minimal size to give
more space to segments that are currently in focus.

The ordering of child strips for each level may be
significant for the purpose of conveying the relative
positions of the displayed intervals of a time series to
the user. Therefore, the layout manager will always
order child strips for each level in the zoom stack to be
the same as the order of their intervals on the parent
strip. Overlapping intervals, such as when panning
focus points, is a special case—see Section 5.4.

To make the tree structure of the zoom stack ex-
plicit, one design alternative is to not divide space
equally across siblings of each level of the zoom
stack, but rather to assign space to whole subtrees
(somewhat similar to the node-link approach taken
by Robert and Lecolinet [19]). This would mean that
each child would have to stay within the extents
of its parent. It would also give a visual indication
of the parent-child relationships between strips in

adjacent levels, and thus decrease the need for ex-
plicit correlation graphics (discussed next). However,
because visual exploration using stack zooming often
results in unbalanced zoom stacks, this design would
result in suboptimal use of the available screen space.
Therefore, global space allocation across each level is
generally the better design alternative.

4.4 Correlation Graphics

If we are to retain focus, context, and distance aware-
ness for a visual space supporting stack zooming,
we need to make explicit the relationship between
parent strips and child strips in adjacent levels of the
zoom stack. However, as argued above, we cannot
directly show ancestor relationships in the layout
using proximity cues, or we will waste valuable screen
space. Therefore, we introduce correlation graphics that
visually indicate these relationships (Figure 2):

• Color-coded zoom areas: Parent strips show
color-coded (but semi-transparent) selection areas
that indicate the position and extents of each
child strip in the time series.

• Color-coded strip frames: Child strips have
color-coded frames that correspond to the color
of its selection area in the parent. This gives a
visual link between parent and child.

• Correlation links: Arrows show relations from
zoom areas in parents to the respective children.

• Brushing: Hovering the pointer over a focus re-
gion will highlight (e.g., using color or shadows)
the entire ancestor hierarchy above the focus.

5 IMPLEMENTING STACK ZOOMING

Many graphical applications, such as digital maps,
visualization applications, and photo viewers, sup-
port successive zooming operations. The difference
for stack zooming is that successive zoom operations
do not exchange the old view with the new view, but,
instead, all views are kept on screen at all times. The
layout algorithm, which manages the space allocation
of each view, is therefore central to stack zooming.

5.1 Layout

The layout algorithm uses 2D geometric space to cre-
ate a visual hierarchy of zoomed regions. Depending
on whether the arrangement is vertical or horizontal,
the algorithm will use the dominant axis—X for vertical
layouts, Y for horizontal ones—for layers, and the
other, non-dominant, axis for siblings in each layer.
Given an skewed-aspect space and a zoom stack (a
hierarchy of focus points, i.e. position and extents) in
this space, the layout algorithm proceeds as follows:

1) Layer allocation: Allocate display space in the
dominant axis to layers by splitting the available
space by the number of zoom stack levels.
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2) Main allocation: Allocate the full extents of the
non-dominant axis to the top level zoom region
that shows the primary axis of the visual space.

3) Strip allocation: For each layer, allocate display
space along the non-dominant axis to siblings
by splitting the available space by the number
of siblings on this level in the zoom stack.

These space allocations may optionally be con-
trolled by the user (typically by dragging the mouse
on layer and sibling borders) so that they are only
default values when a new layer or sibling is created.

Fig. 3. Three different strategies for reshaping strips.
The appropriate strategy depends on the visual space.

5.2 Reshaping Strips
One practical problem that arises as an effect of the
above layout algorithm is that the aspect ratio of
individual zoom regions will change dynamically as
layers and strips are added to the zoom stack. For
visual spaces with a space-filling secondary dimen-
sion, like a time-series visualization, this is typically
no problem; the visualization will reshape to what-
ever geometry it is given (although aspect ratios are
often important for correctly interpreting trends in
line graph visualizations [2]). However, when the
secondary dimension is fixed, such as for a document
or a video stream, changing the aspect ratio will cause
deformations (interfering with design guideline G5).

Figure 3 shows three different reshaping strate-
gies, characterized by whether the aspect ratio and
the extents of the focus regions are kept fixed. The
leftmost alternative, with fixed extents and variable
aspect ratio, is the default and works well for most
visualizations. For when the aspect ratio must be kept
fixed to avoid deformation (G5), either the extents can
be changed to suit the aspect ratio (center alternative
in Figure 3), or the whole region can be uniformly
scaled to fit available display space (right in Figure 3).

Adopting the changing extent approach means it is
not always possible to show everything selected by
the user using a bounding box selection. In situations
like this it is better to adopt a line or point-based
selection and then fit as much data as possible, while
keeping the aspect ratio constant. Bounding box selec-
tion can be used with the third approach, i.e., using

uniform scaling to achieve both fixed aspect ratio and
fixed extent. However, this may results in not making
full use of the available space. Which strategy works
best depends on the application, or could be left in
the hands of the user in a practical implementation.

5.3 Navigation

The zoom operation is intrinsic to stack zooming and
creates new focus regions. It is therefore not a naviga-
tion operation in itself. Instead, the main navigation
operation for stack zooming is panning a focus point.
Panning can either be done by dragging the zoom area
selections in a parent strip, or by panning a child strip
directly (arrow keys or mouse).

5.4 Overlapping and Merging

Panning a child strip may give rise to a special layout
case when the interval covered by one strip overlaps
that of another strip. During overlap, the layout will
not be changed to maintain stability of the display
(G5), but if the temporal order of two strips change
as a result of a navigation operation (i.e. a pan), the
layout will switch the relative position of the two
affected strips. Overlapping reinforces the awareness
of a user navigating in the time series by merging
adjacent child strips when their intervals overlap.
Figure 4 shows an overview of this operation.

However, strip merging requires that all zoom
strips in a stack level cover the same length of interval
(i.e., all strips should use the same zoom factor), or
visual distortion will result (violating G5). Therefore,
it may not be practical for all applications. An al-
ternative solution is to let strips overlap and merely
replicate the visual representation on all overlapped
strips. In such cases, strips will be ordered according
to their minimum boundary (e0).

6 APPLICATIONS

We present four novel applications of stack zooming
in different domains and contexts:

• TraXplorer: a time-series visualization tool;
• SZ-Timeline: a time-series visualization compo-

nent for the Web that uses JavaScript and SVG;
• Hugin-TraXplorer: a collaborative visualization

designed for digital tabletops; and
• PDF-StackZoom: a stack-zooming PDF viewer.
We will describe each of these applications below.

6.1 Time-series Visualization: TraXplorer

The TRAXPLORER system is a time-series visualiza-
tion tool supporting multi-focus interaction using the
stack zooming technique introduced in this paper
(Figure 1). Time series are represented as multiple
tracks, hence the name of the tool.
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Fig. 4. Strip merging during overlap. (a) Two strips, A and B, of the same width are approaching. (b) Overlap
between A and B, causing the layouts to merge into a single strip. (c) There is no longer overlap, so the strips
are separate and with correct order in layout space.

6.1.1 Related Work: Time-series Visualization

Much research has been published related to visu-
alization of time-series datasets; see Aigner et al.’s
survey [25]. During this time, temporal visualization
has evolved from basic timeline graphs (some of
these dating back hundreds of years) to sophisticated
visualization systems designed for various purposes.

The Perspective Wall [26] presents temporal data
using a 3D rendering that incorporates a natural
focus+context [4] perspective distortion. LifeLines [8]
was one of the early systems that used visualization
to explore discrete events in personal histories. Time-
Searcher [6] is a time-series visualization tool that uses
timeboxes to generate visual queries to explore the
datasets. Continuum [24] is a Web 2.0 tool for faceted
timeline browsing. ATLAS [7] is a system for visu-
alizing massive time-series datasets. Most recently,
LiveRAC [21] is a multi-focus visual exploration tool
for time-series data in system management.

6.1.2 Visual Exploration

The TraXplorer exploration interface (Figure 1) con-
sists of the following components:

• Visualization window: The main visualization
window is a visual space supporting stack zoom-
ing. It supports visualizations of time-series data
on a common time axis and on potentially dif-
ferent value axes. The type of visual representa-
tion in the visualization window is independent
of the layout management—our implementation
currently supports basic line graphs, filled area
charts, and horizon graphs [27] (the first one
overlaid, the latter two juxtaposed [28]).

• Data box: This interface component gives local
statistics about the currently selected strip in the
zoom stack. This provides details-on-demand for
computing measures such as minimum, maxi-
mum, average, median, and standard deviation
metrics for a particular track.

• Layer control: The layer control box moves,
deletes, and toggles the visibility of individual
tracks, as well as to change color mapping, trans-
parency, and track title. Furthermore, using the
layer control, tracks can be linked to use the same

scale for the value (Y) axis, thereby supporting
direct comparison across tracks.

The visualization window supports the main stack
zooming interactions. Dragging the mouse on a visu-
alization strip will create a child strip, which can be
panned by moving the selection or by using arrow
keys inside the focus region. Each strip can also be
maximized, hidden, and deleted. Deleting a strip will
delete all of its children. Furthermore, dragging the
border of a strip enables resizing its space allocation.

6.1.3 Implementation Notes
The TRAXPLORER system was implemented in Java
using the Piccolo structured 2D graphics toolkit [29],
[30]. The key components in our implementation in-
clude the time strip class (implemented as subclasses
of Piccolo’s PNode basic scene graph node class), the
visual representations, and the layout manager.

Fig. 5. Stack zooming in JavaScript and SVG for web-
based horizon graphs [27] of stock market indices.

6.2 Stack Zooming on the Web: SZ-Timeline
SZ-TIMELINE is a stack zooming implementation for
the Web using JavaScript and SVG for dynamic vector
graphics in the browser (Figure 5). Implemented as a
Google Visualization API1 component, this applica-
tion is publically available on the Web2 and can be
applied to any standard online data source to display
time-series data in visualization mashups.

1. http://code.google.com/apis/visualization/
2. https://engineering.purdue.edu/∼elm/projects/gvis/
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6.2.1 Related Work: Visualization on the Web
Visualization on the Web allows for social data anal-
ysis in asynchronous, distributed collaboration set-
tings [31]. It has become particularly important with
the advent of information visualization for the masses,
primarily through projects like NameVoyager [32],
Sense.us [33], and Many Eyes [34].

There are many different alternatives for building
visualizations for the Web, ranging from classic Java
applets, to more recent RIA technologies like Adobe
Flash/Flex and JavaScript coupled with SVG. A num-
ber of visualization toolkits have also been developed
for these platforms, including the Google Visualiza-
tion API, the Java InfoVis Toolkit3, and D3 [35].

6.2.2 Visual Representations
Utilizing the fact that stack zooming is a space man-
agement technique that is independent of the struc-
ture of the visual space, our JavaScript/SVG stack
zooming timeline supports several different visual
representations. Beyond standard line graphs, we
have also implemented juxtaposed filled area charts,
horizon graphs [27], and braided graphs [28].

6.2.3 Implementation Notes
As discussed above, our implementation is built in
JavaScript and uses SVG (Scalable Vector Graphics)
for rendering vector graphics directly into the web
browser. Because some web browsers do not di-
rectly support SVG rendering (notably the current
version of Microsoft Explorer, version 8), we use the
Raphaël4 JavaScript library, which transparently uses
VML (Vector Markup Language) for these browsers
instead. With full stack zooming support and four
different visual representations, our implementation
is merely 182 lines of commented code.

6.3 Collaborative Visualization: Hugin-TraXplorer
Beyond the asynchronous and distributed collabora-
tion supported by the SZ-Timeline component, we
have also built a stack zooming implementation called
HUGIN-TRAXPLORER for synchronous collaboration
on direct-touch tabletop displays [36]. Our focus here
is on the collaborative aspects, and thus this imple-
mentation only supports line graph representations.

6.3.1 Related Work: Collaborative Visualization
Collaborative visualization is gradually becoming
a necessity to better support real-world problem-
solving and decision-making processes, and results
point to the benefits of collaborative data analysis
(e.g., [37]). Furthermore, new computer platforms—
like wall-sized and tabletop displays—open up excit-
ing new possibilities for collaborative visualization.

3. http://thejit.org/
4. http://raphaeljs.com/

Fig. 6. Time-series visualization using stack zooming
designed for collaborative digital tabletops.

Existing work already apply visualization to syn-
chronous and co-located collaboration on large direct-
touch displays [38], [39], but the potential is huge and
much work remains to be done here.

Fig. 7. Stack zooming in a PDF document using the
PDF-StackZoom tool. The user has created two focus
regions in the document and can move them freely
through the visual space defined by the document.

6.3.2 Collaborative Stack Zooming
Hugin-TraXplorer is designed for synchronous col-
laborative analysis on multi-touch tabletops. Studies
have shown that effective co-located collaborative
visualization requires multiple coordinated views to
allow for changing collaboration styles [39]. Therefore,
we design our implementation to have a single shared
timeline, and then allow participants to create a linked
personal interaction workspace where they can view
and interact with the data (Figure 6).

Individual workspaces can be scaled, resized, and
moved using standard multitouch gestures. Because
our current hardware platform—a two-projector mul-
titouch tabletop display built in our laboratory—does
not explicitly support user identity tracking, we rely
on social protocols for protecting workspaces [40]. The
following stack zooming operations are supported on
the time-series data inside a workspace:

• Create focus region: Users can create a focus
region using a two-point gesture inside a strip.

• Pan focus region: Dragging on a selection area
(Figure 6) will pan the associated focus region.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2012 9

• Delete focus region: Double-tapping on a selec-
tion area will remove the focus region.

Our implementation also supports awareness and
coordination mechanisms [39] such as overviews,
telefingers (remote touches appearing as “ghost” fin-
gers on the local tabletop surface), and access control.

6.3.3 Implementation Notes
Just like the original TraXplorer application, Hugin-
TraXplorer is built in Java and uses the Piccolo [29]
structured 2D graphics library. The collaborative ver-
sion was built from scratch to fully support multi-
touch interaction and multiple concurrent users.

6.4 Document Navigation: PDF-StackZoom
Reading a digital document on a computer screen is
challenging due to many reasons [41], an important
one being the difficulty of navigating within the docu-
ment. Many tasks require correlating several different
parts of a document, i.e., multi-focus interaction tasks.

To support these operations, we have designed
PDF-StackZoom (Figure 7), a prototype PDF doc-
ument viewer that supports multi-focus interaction
within different portions of a document.

6.4.1 Related Work: Document Navigation
Over the years, many researchers have proposed dif-
ferent methods to improve navigation through digital
documents [10], [42]. However, we are aware of no re-
search or commercial document viewers that support
multiple focus areas within a document.

6.4.2 Multi-Focus Document Navigation
Unlike the other application examples discussed so far
in this paper, the PDF-StackZoom tool uses a vertical
layout where layers in the zoom stack are columns
instead of rows (see Figure 7). Furthermore, similar
to the Continuum browser [24], we only support two
levels in the zoom stack: an overview, and a focus.

Consequently, the application consists of two
frames: the overview frame and the focus frame. The
overview frame is equivalent to the root node in the
zoom stack, and displays the fixed-size thumbnails of
all the pages in the current document. The focus frame
displays a different focused regions of the document,
stacked on one another.

Interaction is a key aspect of multi-focus document
navigation. New focus regions can be created by
simply selecting a rectangular area to view on the
overview frame. Panning a focus region is done by
either dragging the selection area in the overview
frame, grabbing the canvas and dragging in the fo-
cus itself, or scrolling up or down using the arrow
keys when the region has keyboard focus. Similarly,
regions can be resized by dragging the border of the
selection or region. We aso provide ways to both
delete and minimize focus regions to permanently or
temporarily give more space to other focus regions.

6.4.3 Implementation Notes
PDF-StackZoom was implemented in Java, and uses
Piccolo2D [29]. All PDF functionality is provided
through the PDF Renderer5 Java library.

7 CASE STUDY: NETWORK MANAGEMENT

To validate the usefulness of the stack zooming tech-
nique, we enlisted the help of the network manage-
ment group at our local institution. The group admin-
isters close to 200 servers and more than 30 Terabytes
of storage space. It also manages the web server
cluster, with in excess of 6 million hits per month.
Working with the software team in this group, we
were able to conduct an in-field case study involving
log file analysis using stack zooming.

7.1 Interviews
In the formative stages of this evaluation, we inter-
viewed the members of the group, first in an individ-
ual hour-long background session with its manager,
and then with two of the senior system analysts at
two different occasions. Unlike normal support staff
in the network management group, these analysts
focus on long-term special projects involving system
software, security, and debugging. They are thus very
representative of the user group targeted in our work.

Below we summarize some of the findings we
collected from these formative interview sessions:

• Data: The most common form of temporal data
used by the analysts is log files from the many
computer systems managed by the group. This
data takes one of two forms: either standard sys-
tem logs, which are time-stamped discrete events
(represented by text messages), or quantitative
performance data, which show value over time
(such as CPU load, bandwidth, disk usage, etc).

• Application: The most common use for log data
is for diagnostic, debugging, and troubleshooting
purposes. The analysts noted that the initiating
factor for viewing log data is often some kind
of incident of either a security-related (intrusion,
attack, or scan) or technical (hardware failure,
network connectivity, or software fault) nature.

• Usage: Log file data is typically studied in an
off-line and post-mortem manner after an inci-
dent has happened. The analysts stated that they
seldomly used the dynamic log feed, although
one of them always had a dedicated window
open for this data. The stated purpose of this
was to “keep an ear to the ground”, i.e., main-
tain situational awareness of activity on the local
network. However, none of the analysts regularly
used graphical views of the log data, instead
preferring to view (and search in) the raw textual
output from system logs. Instead they use regular

5. https://pdf-renderer.dev.java.net/
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expression filters to color important (or fatal)
messages in red or blue so that they stand out.

• Collaboration: Our two analysts said that collab-
oration between them is common, but only for
difficult tasks that require expertise from them
both. They estimated that 90% of tasks could be
solved individually. Furthermore, even when col-
laborating, most collaboration was asynchronous
through e-mail even though their offices were
within a one-minute walk of each other. Only in
very rare cases (less than 1%) would they meet
up in the same office to solve a problem together.

Thus, we decided to proceed by deploying the SZ-
Timeline tool because its web setting best fits the
asynchronous work pattern of the two analysts.

7.2 Limited In-Field Deployment
Working with the systems group, we were given
access to an excerpt of approximately 24 hours of
the system performance logs for all ten machines (4
Apache web servers and 6 Zope application servers)
of the web cluster maintained by the network man-
agement group. The log contained average CPU load
and network bandwidth consumption (bytes sent per
second) synchronously sampled at 1-minute intervals
for each machine. All in all, the log data was a
comma-separated file containing approximately 1,500
measurements for eight different dimensions.

We loaded this data into a Google Spreadsheet and
created an instance of the SZ-Timeline tool to visualize
it (the systems group requested we not expose the
data or any visualizations due to it potentially being
used by would-be attackers). We then sent a link to the
tool to the analysts before arranging to interview them
about the tool’s utility, strengths, and weaknesses.

The overall impression that we received from these
interviews was very positive. Analysts commented
that they had found it easy to understand how to
create new focus points, and remarked on the use-
fulness of having access to both an overview as well
as multiple focus points simultaneously. One analyst
noted that this technique made them see visualization
“in a new light.” The analysts did note that creating
multiple focus points quickly diminished the available
space allocated to each individual focus point, and
requested a way to resize or temporarily minimize
particular focus points to make more space for others.

Another concern that the analysts had was that
there was no way to create persistent URLs of particu-
lar states that they could paste into an e-mail and send
to someone else for further analysis. Furthermore,
our bare-bones SZ-Timeline implementation does not
support adding comments or annotating the visual
representation. The analysts thought that this was a
necessity for effective collaboration. A production ver-
sion of SZ-Timeline for network management collab-
oration would have to include these features, perhaps
similar to Many Eyes [34] and Sense.us [33].

Another comment came in regards to the visual
representation and the separation of time-series data.
SZ-Timeline allows the user to switch between stan-
dard line graphs, horizon graphs [27], and braided
graphs [28]. The analysts wanted several new ways
of aggregating and combining data, such as separate
time-series for different machines into different charts,
or to overlay different metrics for the same machine
in the same chart. This is currently not supported in
our implementation.

Unfortunately, our visualization did not give rise to
any new insights on behalf of the analysts for the 24-
hour logs they studied. Nevertheless, at the end of the
interviews, the analysts expressed the desire to get the
stack zooming technique implemented into produc-
tion use. They said that they would very likely use
both the visualization and the interaction technique
in their daily routine if it was integrated into their
standard network management software.

In summary, we collected the following findings for
using stack zooming to visualize network log data:

• Maximizing, minimizing, and otherwise manu-
ally adjusting layout is an important aspect of
stack zooming (supported by TraXplorer);

• Annotating, highlighting, and saving stack zoom-
ing layouts would improve collaboration; and

• More complex data management, aggregation,
and pivoting is necessary for in-depth analysis.

8 CONTROLLED EXPERIMENTS

Stack zooming suffers from space limitations as the
number of focus region grows, whereas standard
overview+detail techniques do not allow multi-focus
interaction. To shed some light on the advantages
and disadvantages of each technique, we performed
two controlled user studies designed to compare their
performance. Both studies used similar experimental
conditions but focused on two different tasks that
were chosen as representative of exploring time-series
datasets [28]: visual search vs. visual comparison.

(a) Study 1

(b) Study 2

Fig. 8. Example scenarios for both studies.

8.1 Participants
We recruited 12 paid students (9 male and 3 female)
from our university (average age 23) to participate
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in both user studies. No participant was color blind
and all had normal or corrected-to-normal eye sight.
Participation was voluntary and self-selected. All par-
ticipants had at least basic computer knowledge and
were familiar with simple line graphs.

(a) Overview+Detail (b) Stack Zooming

Fig. 9. Techniques T in the user study.

8.2 Apparatus
Both studies were conducted on a standard desktop
computer equipped with a 3 GHz dual-core processor,
and running Microsoft Windows XP. The computer
had a 19” LCD monitor set to 1280×1024 resolution
and a standard two-button mouse was provided to
interact with the experimental application. The exper-
imental application was 800×800 pixels in size and
positioned at the center of the monitor screen.

8.3 Interaction Technique (T)
The main experimental factor was the technique T :

• Standard Overview+Detail (O): The viewport con-
sists of a detailed view as well as an overview.

• Stack Zooming (S): The viewport supports stack
zooming, allowing the user to create any number
of detail views on different levels.

8.4 Software
We implemented a Java application for using both
overview+detail and stack zooming to explore a line
graph visualization (Figure 9). Our application sup-
ported the basic stack zooming interactions.

For the standard overview+detail technique, we
divided the available vertical space equally between
the overview and the detail view. This was to avoid
unnecessary performance drawbacks because of small
overview size, and made this condition essentially the
same as stack zooming with only one focus region.
For stack zooming, any number of focus regions on
any number of levels could be created. For both tech-
niques, a focus region of the size of a single pattern
could be created with a single click, and moved by
dragging its associated highlighted rectangular area
across the line graph. Further, focus regions could be
deleted by double-clicking inside their extents.

8.5 Dataset

A new dataset was randomly generated for each trial
to avoid learning effects. For each trial, we generated a
palette of 32 distinct patterns (small segments of data),
and assembled the dataset as a random sequence
of these patterns. To make the data continuous, we
joined two adjacent patterns by using the last data
point of a pattern as the starting point for the first
point of the next pattern in the sequence.

The patterns in the pattern palette were generated
such that the correlation coefficient (i.e., a measure
of their similarity) between any two patterns in the
palette was less than 0.5. This was to ensure that any
two patterns were easy to differentiate. For both stud-
ies, we used the number of data points in each pattern
as a factor, Pattern Length (L). For each pattern, the
difference in any two consecutive data points was
randomly selected from a set of five values {-2, -1, 0,
1, 2}. This was to avoid sudden peaks in the dataset.

8.6 Procedure

Participants performed the two studies back-to-back
(typical duration was 60 minutes in total); the or-
der in which participants performed the studies was
therefore balanced to counteract learning effects. Each
study was divided into two blocks based on tech-
nique. At the start of each block, participants were
given instructions about the task and the technique
used in the block. Before moving to the experimental
trials, participants were asked to perform training
exercises to ensure that they completely understood
the task and the technique. Participants were allowed
to perform as many training exercises as they wanted.

All trials were interleaved with an intermission
screen. Trial time was measured from when the par-
ticipant clicked on a button to proceed, and until
the participant recorded an answer for the trial. We
also recorded the correctness for each trial, but this
information was not conveyed to the participant. Par-
ticipants were instructed to try their best to give a
correct answer in a minimum amount of time.

9 STUDY 1: UNGUIDED VISUAL SEARCH

Searching for recurring patterns is a common task
while exploring time-series data. For such tasks it
is common not to have any prior knowledge about
the position of similar patterns, hence an unguided
search. This was the task we chose for Study 1.

9.1 Hypotheses
H1 S will yield better correctness than O. Seeing mul-

tiple parts of line graphs simultaneously will let
participants search them more accurately.

H2 S will be faster than O. For the same reason as H1,
stack zooming will help participants finish faster.
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9.2 Task

Upon starting a trial, a randomly selected pattern in
the dataset was chosen as the template pattern and was
highlighted using a gray region overlaid on top of
the line graph (Figure 8(a)). The participant was then
asked to find the single reoccurrence of this template
pattern anywhere else on the graph. We replaced
another pattern with the selected pattern to ensure
that there was always one identical pattern. Further,
the template pattern was drawn in red inside a focus.

Participants were asked to try their best to find
an identical pattern, but if they failed they were
told to find the segment of the graph that was most
similar. To solve the task with overview+detail, par-
ticipants could create only one focus region on the
line graph, while for stack zooming they could create
multiple focus regions. To finish a trial, participants
were instructed to double-click inside the focus region
aligned over the pattern that they wanted to record
as their answer. We correlated this pattern with the
highlighted input pattern as a measure of correctness.
Participants were not allowed to record the starting
pattern or any portion of it as their answer.

9.3 Experimental Design

Besides technique T and length L, we also used
distance D between template and answer as a factor:

12 participants
× 2 Interaction Technique T (O, S)
× 3 Pattern Length L (10, 15, 20)
× 3 Answer Distance D (5, 10, 15)
× 2 repetitions

432 Total trials (36 per participant)
The order of T was counterbalanced and the order

of L and D was randomized to avoid learning ef-
fects. We measured completion time and the Pearson
correlation between the highlighted pattern and the
answer. Correlation ranges from -1.0 to 1.0, where 1.0
means the two patterns are exactly same.

9.4 Results

We analyzed the correctness data using a repeated-
measures analysis of variance (RM-ANOVA, all as-
sumptions valid) and found a significant effect of
interaction technique T on correctness (F (1, 11) =
5.53, p < .05). Figure 10(a) shows correlation factor as
factor of interaction technique; the average correlation
factor for overview+detail was 0.53 (s.d. 0.45) while it
was 0.67 (s.d. 0.4) for stack zooming. We found no
significant effect of any other factor on correctness.

We also analyzed completion time using an RM-
ANOVA. We found that the time measure violated the
normality assumptions of the RM-ANOVA, so follow-
ing common practice, we analyzed the logarithm of
the time instead (all assumptions valid). Surprisingly,
the analysis showed no significant effect of technique

T on completion time (F (1, 11) = 1.33, p = .28).
Nevertheless, stack zooming (mean 93 s, s.d. 84 s)
performed better than overview+detail (mean 113 s,
s.d. 119 s). Figure 10(b) shows time by technique.

(a) Correctness. (b) Completion time.

Fig. 10. Performance metrics for Study 1 by T .

9.5 Discussion
Our analysis shows that participants achieved bet-
ter correctness with stack zooming than with
overview+detail, confirming our hypothesis H1. The
reason for this difference is likely that being able
to create multiple focus regions so that the template
pattern was always in view allowed the participants
to achieve higher accuracy in their answers.

Stack zooming allowed participants to record their
answers quickly while maintaining high accuracy.
However, the difference in completion time for the
two techniques was not significant, and so we remain
unable to confirm our hypothesis H2. We speculate
that the ability to directly compare their answer
with the template pattern encouraged participants to
search for more accurate answers and this behavior is
reflected in the non-significant time difference.

10 STUDY 2: GUIDED COMPARISON

While exploring a time-series dataset, it is common
to want to compare multiple regions of the dataset.
Therefore, Study 2 compared stack zooming with
standard overview+detail for such a comparison task.

10.1 Hypothesis
H3 S will perform faster than O. We think that the

multi-focus support in stack zooming will help
participants compare line graph segments faster
than when using standard overview+detail.

10.2 Task
Upon the start of each trial, participants were shown a
line graph with multiple rectangular transparent gray
regions (Figure 8(b)). Each of these rectangular regions
was aligned exactly over a randomly selected position
in the dataset. We modeled the number of rectangular
regions as a factor N and restricted it to be an odd
number. Furthermore, we generated two additional
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distinct but very similar patterns (correlation factor
between 0.97 and 0.98). We randomly replaced each
highlighted pattern with one of the two new patterns,
such that across all the N highlighted regions, one
pattern is repeated once more than the other.

A task consisted of having the participant finding
which of the two new patterns was repeated more of-
ten. For standard overview+detail, participants were
only allowed to create a single focus region. For stack
zooming, on the other hand, they were permitted
to create multiple focus regions; if desired, one for
each rectangular region. Trials were completed by
double-clicking inside the focus region aligned over
the pattern they thought was dominant. To discourage
random answer selection, the system did not allow
the participants to finish a trial without looking at all
rectangular regions at least once in a detail window.

10.3 Experimental Design
As in Study 1, we again used technique T and length
L as factors, as well as the number of highlights N :

12 participants
× 2 Interaction Technique T (O, S)
× 3 Pattern Length L (10, 15, 20)
× 3 Highlighted Regions N (3, 5, 7)
× 3 repetitions

648 Total trials (54 per participant)
The N factor would encourage creating multiple

foci, allowing us to measure the effect of space limi-
tations on stack zooming performance. We measured
correctness and completion time for each trial.

10.4 Results
Given the nature of the task, the correctness measure
for Study 2 was more than 95% for both the tech-
niques, and so we did not study this measure further.

We analyzed the completion times using a repeated-
measures analysis of variance. We again found that
the time measure violated the normality assumptions
of the analysis of variance, and thus we used its
logarithm in the analysis (all assumptions were met).
Figure 11 shows box plots for completion time as a
function of interaction technique T and pattern length
L. Significantly, we found an effect of technique T on
the completion time (F (1, 11) = 6.85, p < .05).

10.5 Discussion
Our analysis of the data from Study 2 shows that
stack zooming performed significantly faster than
standard overview+detail, confirming hypothesis H3.
This increase in performance is likely a direct effect of
the multi-focus interaction supported by stack zoom-
ing. For the overview+detail technique, participants
needed more time because they had to remember the
patterns and revisit them time and again to confirm
their answer. For stack zooming, on the other hand,
they created focus regions for each of the highlighted
patterns, and this helped them to perform faster.

(a) Completion time. (b) Completion time by L.

Fig. 11. Performance metrics for Study 2 by T .

11 CONCLUSIONS AND FUTURE WORK

We have presented a theoretical background and a
practical implementation of a multi-focus interaction
technique called stack zooming that integrates multiple
focus points in skewed-aspect visual spaces with their
respective context and relationships. We have also
presented four separate instantiations of this idea for
different platforms and for different domains, includ-
ing for stock market data, in collaborative visualiza-
tion settings, and for asynchronous collaboration on
the Web. The technique has been validated for log
visualization in a case study involving actual network
analysts, as well as in a controlled experiment involv-
ing 12 human subjects solving comparison and search
in time-series datasets using the technique.

Our future work will entail studying the empirical
performance of stack zooming in comparison to simi-
lar techniques, such as LiveRAC [21], Continuum [24],
and Mélange [5]. We also anticipate applying the
technique to other domains, as well as studying how
to extend it to two-dimensional visual spaces.
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