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ABSTRACT

People generally remember locations in visual spaces with respect
to spatial features and landmarks. Geographical maps provide
many spatial features and hence are easy to remember. However,
graphs are often visualized as node-link diagrams with few spa-
tial features. We evaluate whether adding static spatial features to
node-link diagrams will help in graph revisitation. We discuss three
strategies for embellishing a graph and evaluate each in a user study.
In our first study, we evaluate how to best add background features
to a graph. In the second, we encode position using node size and
color. In the third and final study, we take the best techniques from
the first and second study, as well as shapes added to the graph as
virtual landmarks, to find the best combination of spatial features
for graph revisitation. We discuss the user study results and give
our recommendations for design of graph visualization software.
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1 INTRODUCTION

Revisitation in graphs is the task of remembering where nodes in
the graph are located and how they can be reached [22], and is a
common problem in navigating and understanding graphs [11, 14].
For example, a social scientist using a graph viewer to study a social
network of Wikipedia contributors may need to remember the loca-
tion of different cliques of contributors as he navigates the graph
to answer specific research questions. However, revisitation is typ-
ically a complex task because standard node-link diagrams—with
visual bubbles representing vertices and visual links their edges—
often have a single-color background and lack significant graphical
features. In contrast, graphs representing road networks are typi-
cally much easier to revisit because the geographical features of the
map aids the viewer in remembering the locations of nodes.

More specifically, people often remember locations of objects in
an environment with respect to spatial features [20]. On maps, this
could take the form of remembering locations as being “near the
river” or “close to the Eiffel tower.” Even in daily life, people use
features and landmarks to memorize locations and give directions,
such as “turn left at the gas station” or “the house next to city hall”.

In this paper, we evaluate how to add spatial features to node-link
diagrams to improve graph revisitation. Just like for geographical
maps, these spatial features are static and serve as cognitive anchors
that help users build better mental maps of the graph. We define
three orthogonal approaches for these static spatial graph features:

SE Substrate encoding: Inspired by geographical maps, this ap-
proach adds graphical structure to the background, or visual
substrate, of the node-link diagram, such as colored fields and
textures in various spatial arrangements.
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NE Node encoding: The use of graphical attributes of the nodes
to encode spatial information, such as varying their size,
shape, and color depending on their location.

LM Virtual landmarks: Adding discrete graphical objects of
unique shape and color to the graph to serve as landmarks
for remembering the local graph neighborhood.

To evaluate these approaches, we designed three user studies. In
the first study, we explored different combinations of spatial con-
figuration and graphical features for the substrate encoding ap-
proach. In the second, we did the same for graphical node attributes
for the node encoding approach. In the third and final experiment,
we studied the best of the substrate and node encoding techniques
together with the virtual landmarks approach to find the best com-
bination of static spatial graph features for graph revisitation.

Our results indicate that substrate encoding using solid colors
arranged in a grid was the best technique from the first study. Sim-
ilarly, encoding spatial information using the combination of node
size and color was optimal in the second. For the final study, we
found that substrate encoding coupled with landmarks resulted in
optimal performance; surprisingly, node encoding did not have a
significant impact on performance. Therefore, provided that the vi-
sual variables and the increased clutter associated with these spatial
features do not conflict with a graph visualization, we recommend
to use these strategies to aid the revisitation task.

2 RELATED WORK

We surveyed the literature to find evidence of adding spatial fea-
tures to visual spaces. Below we present our findings within this
domain. For particularly relevant work, we indicate which of the
above strategies (SE, NE, or LM) that specific work employs.

2.1 Spatial Cognition

People commonly remember places in the real world with respect
to spatial features, such as landmarks and other reference points,
which serve as cognitive anchors and aid in building a mental map
of the area [9, 17] (LM). Siegel and White [21] showed that peo-
ple remember places better as their experience with those places
increases (the more we visit a place, the better we remember it).
Spatial memory aids recall [1]. Robertson et al. [20] leveraged
this by spatially organizing web bookmarks in the Data Mountain,
and showed that spatial memory supports faster recall compared to
standard bookmarks (SE). Spatial memory also persists over time.
Czerwinski et al. [5] found that users can easily retrieve items that
they placed in a spatial arrangement even after several months.
Bateman et al. [2] study what Edward Tufte calls “chart junk™, and
show that charts with these seemingly unnecessary embellishments
are easier to remember than those without, even after a few weeks
(SE). The argument is that embellished charts have more spatial
features that increase their memorability and ease of revisitation.

2.2 Spatial Features

Many visualization systems use spatial features to enhance the effi-
ciency of a visualization. Havre et al. [10] propose the ThemeRiver,
which has a characteristic sinuous shape for displaying patterns and
relationships in large document collection (SE). Bubble Sets [4] use



spatial features to show set memberships (SE). Graphical encoding
of items in the form of color, shape, or size could also be used to
convey information about the spatial position of items [16] (NE).

Research in virtual environments indicate that spatial features in
3D worlds aid navigation [7, 19] (SE, LM). For example, Darken
and Sibert [6] showed that real-world wayfinding can be applied to
virtual environments. They added structure to the 3D environment,
such as paths, boundaries, and directional cues, and found that these
help users to keep orientation and navigate in the world.

2.3 Navigation in Graphs

Navigation is an essential feature of graph visualization [11]. There
are numerous techniques for navigation in graphs, each having its
particular pros and cons. We review a representative sample below.

Scrolling is the simplest navigation technique, but quickly be-
comes cumbersome for exploring large spaces [13]. Pan and
zoom [18] is commonly used for graphs, but can be tedious for ex-
ploring distant nodes in large networks. More complex techniques
based on space distortion such as fisheye views [8] magnify the
focus region while still showing context with less detail. However,
these focus+context techniques are not visually stable and may con-
fuse the user because the transition between focus and context is not
uniform. Overview and detail is another commonly used technique
that utilizes two windows to show the focus region as well as the
whole visual space. It is effective for navigating large networks but
requires additional interaction [12].

2.4 Reuvisitation in Graphs

Our work is motivated by social scientists who use graphs in their
daily work (see the next section). Many tasks require them to revisit
a particular part of a social network [14]. This implies that effective
revisitation mechanisms would help make overall navigation faster.
Skopik and Gutwin [22] introduce visit wear, defined as visual
representations of places that have already been visited, and apply
them to fisheye views for revisitation in graphs (NE, LM). These
are dynamic spatial features that appear as the user interacts with
and navigates in the graph. Our work, on the other hand, adds static
features—fixed embellishments of a visual space—that are inde-
pendent of interaction and can thus be applied to any graph visu-
alization. Furthermore, Skopik and Gutwin’s technique is dynamic
(it adds visual cues to the graph as the user moves the mouse) and
requires explicit activation, whereas our technique is passive and
always active and thus better supports ad hoc revisitation tasks.

3 MOTIVATION: SOCIAL NETWORK ANALYSIS

Our work is motivated by collaborations with social scientists who
use visualization tools for social network analysis (SNA) as part of
their regular duties. We observed that these scientists would often
experience some trouble orienting themselves when returning to a
previously studied social network. To get to the bottom of this issue,
we performed structured interviews with two of our collaborators
(both faculty members at our university and SNA experts).

Both scientists currently use UCINET [3] and the associated Net-
Draw application for all of their SNA needs. Depending on the
project, they stated that they would use these tools 2-4 times a
month in sessions spanning multiple (3+) hours, and in 50-60% of
the cases the network they study would be one they had studied be-
fore. However, despite this intense usage, sessions would often be
irregularly scheduled, sometimes with several days or a week in-
between. Even though both scientists thought that they generally
remembered the overall structure of a known graph, they conceded
that the spring-embedding algorithm in NetDraw often causes slight
variations in graph layout that make recall and revisitation more
difficult. Moreover, ad hoc observations of social scientists per-
forming SNA showed that more than 50% of all navigations in a
node-link diagram was between previously visited parts of a graph.

4 STATIC SPATIAL GRAPH FEATURES

The memorability of a visual space is a measure of a generic user’s
ability to remember information about the space. Revisitation is
the task of remembering where objects in the visual space are lo-
cated and how they can be reached. Memorability is thus intricately
linked to revisitation. As discussed above, the purpose of our work
is to study how to add spatial features to node-link representations
of a graph to increase its memorability, thus aiding the revisitation
task. Based on our survey of the literature, we study three differ-
ent classes of static spatial graph features: substrate encoding, node
encoding, and virtual landmarks. We describe these below.

4.1 Substrate Encoding

Substrate encoding mimics geographical maps by adding graphical
features to the visual representation of the graph. In a map, these
features are typically spatial regions, such as roads, city limits, state
lines, etc. The regions themselves are generally identifiable through
unique colors or textures. The features can then be used as reference
points, but also increase the visual complexity of the map.

We identify two degrees of freedom for substrate encoding: the
partitioning of the space into regions, and the encoding of identity
into each region to allow the user to separate them (Figure 1):

e For partitioning, we can either use a space-driven or detail-
driven approach: the former splits space into regions of equal
size, whereas the latter splits space into regions with equal
numbers of items (i.e. nodes). The advantage of a detail-
driven approach is that if nodes are clustered in a small area of
the whole graph, then we will allocate more partitions in that
area. For uniform partitioning, a majority of the nodes may
end up in the same partition, overloading its use for recall and
potentially reducing the memorability of the visual space.

e For identity encoding, the simplest approach is to use a solid
color, but a texture may yield better memorability and details
that can serve as reference points [20].

4.2 Node Encoding

This approach uses the nodes (and potentially the edges) of a graph
to encode information about the spatial position of the node. The
graphical variables available for this include the size, shape, and
color of a node. This approach has the advantage of not introducing
a high degree of visual clutter. However, some of these graphical
variables may already be utilized to convey underlying information
about the data in many existing graph visualizations.

4.3 Virtual Landmarks

The basic idea with virtual landmarks mimics the role of landmarks
in the real world—they serve as static reference points that can be
used for orientation (e.g., the Eiffel tower in Paris). Unlike sub-
strate encoding, which adds identifiable regions to the background
of the graph, these landmarks are discrete objects that are evenly
distributed in visual space. For this reason, landmarks typically
give rise to less visual clutter than substrate encoding techniques
without affecting the visual representation of the graph itself.

5 USER STUDIES

We perform three studies to evaluate the above approaches to static
spatial graph features. In the first study, we find the optimal sub-
strate encoding technique. In the second, we find the optimal node
encoding. Finally, in the third study, we compare the optimal sub-
strate and node encodings with virtual landmarks to find the best
overall combination of static spatial graph feature techniques.

In this section, we list the common features of all three experi-
ments, including the apparatus, the experimental platform, the task,
and the procedure followed for all studies.



5.1 Apparatus

The studies were conducted on a 3.00 GHz dual-core PC with 4 GB
of memory, running Microsoft XP and equipped with a 24" monitor
set to a resolution of 1600 x 1200 pixels.

5.2 Experiment Platform

For the purposes of these user studies, we built a node-link graph
viewer in Java. We disabled node labels, as they are orthogonal
to our approach. The viewer has both overview and detail win-
dows, where the overview window shows a miniature of the whole
workspace and the detail window shows the current focus. The
overview includes a rectangle to show the location of the focus.

Participants panned the workspace either by dragging the mouse
in the detail window or by dragging the cue rectangle in the
overview window. Zooming was not possible. The overview win-
dow had a resolution of 300 x 300 pixels and the detail window
was 1024 x 768 pixels. The overall size of the visual space was
3300 x 3300 pixels, i.e., approximately 3 x 4 detail screens.

5.3 Task and Dataset

All three studies involved a revisitation task similar to that used
by Skopik and Gutwin [22]. It consisted of two phases: an initial
learning phase, followed by a revisitation phase.

1. Learning: Participants were shown N blinking nodes in se-
quence (visible in both overview and detail views) and were
asked to visit each node and learn its position.

2. Revisitation: Participants were asked to revisit the nodes
whose location they had learned in the previous phase, and
in the same order as before.

Nodes to visit were selected randomly by the study platform
from separate regions of the graph such that they had approximately
the same total path length and thus similar a priori memorability for
each trial. The order of nodes was randomly selected to be either
clockwise or counter-clockwise to avoid the user having to move
back and forth several times across the whole space.

Skopik and Gutwin [22] use N = 6 in their work, whereas our
three studies use 4, 4, and 5, respectively. The reason for the differ-
ence is that Skopik and Gutwin used dynamic features to identify
visited nodes, which clearly differentiate visited nodes from other
nodes, while we only use static visual features. Our task is therefore
more difficult, motivating a shorter sequence of nodes to remember.

We used a random graph with 108 nodes and 158 edges orga-
nized using a lin-log layout [15]. Because the lin-log algorithm
is nondeterministic, the layout will be different for each trial, thus
avoiding systematic learning effects. The algorithm also allows for
optionally clustering nodes depending on the graph topology.

5.4 Procedure

Participants received training before each technique block to ensure
that they knew how to solve trials using the technique. For each
trial, participants clicked on a button to indicate they were ready to
start the trial with the learning phase.

In the learning phase, participants were shown the full graph
with any spatial features active in both detail and overview win-
dows. They could navigate freely around by panning or moving
the focus rectangle in the overview window. During this phase, one
of the nodes in the graph would be blinking. This blinking node
was visible in both windows. When the participant navigated the
view and clicked on the node—thus learning its location—the node
would stop blinking and another node would start blinking. The
node could only be clicked in the detail window (the overview win-
dow was used only for showing the position of blinking nodes).
After the participant had clicked N nodes, the learning phase would
end. We did not record time or accuracy for this phase.

In the revisitation phase, the view was reset to the center of the
workspace and participants were asked to revisit nodes in the same
order they had visited them in the learning phase. A node was re-
visited by clicking it in the detail window.

The experiment platform recorded the following metrics:

e Completion time: The time from the start of the revisitation
phase to when the N:th node had been clicked.

e ID errors: Number of selected nodes that were not in the
recall sequence at all.

e Out-of-order errors: Number of nodes in the recall sequence
that were selected in the wrong order.

o Overall correctness: Whether a sequence was perfectly re-
called (both ID errors and out-of-order errors zero).

Participants were allowed to rest between trials. After the exper-
iment we collected user preferences and comments using a ques-
tionnaire and a short interview.

(c) Voronoi with color.

(d) Voronoi with texture.

Figure 1: Matrix of substrate encoding methods for Study 1. Partition-
ing is mapped to the vertical axis, identity encoding to the horizontal.

6 STUDY 1: SUBSTRATE ENCODING

In our first study, we add spatial features to the background of the
graph. This study lasted approximately 50 minutes, including the
initial training session and post-experimental questionnaire.

6.1 Participants

We recruited 16 paid volunteers (eight male and eight female),
screened not to be color blind. All participants were university stu-
dents with ages varying from 20 to 31 years (average 26), and all
were regular computer users (more than 16 hours/week).

6.2 Experimental Conditions

6.2.1 Partitioning

Following our discussion above, we derive partitioning techniques
for both equal-sized regions, as well as regions with equal numbers
of items. For consistency, we fix the number of regions to 9 for both
techniques (derived using an initial pilot study).



e Grid. A regular grid is the simplest space partitioning tech-
nique for equal-sized regions. We use a 3 x 3 grid to divide
the space into the 9 regions (Figure 1(a) and (b)).

e Voronoi diagram. Partitioning space into regions with equal
numbers of items requires us to group the graph nodes into 9
disjoint clusters based on their Euclidean distances. We then
use a Voronoi diagram, summing up the cells for node in each
cluster, to find the regions covered by these nodes. This yields
an irregular partitioning focused on areas of high detail, pre-
sumably improving its memorability (Figure 1(c) and (d)).

6.2.2 Identity Encoding

We use two approaches for encoding identity into regions:

e Color. A solid color is the most straightforward way to differ-
entiate between regions. We select 9 standard colors that are
easily distinguishable (Figure 1(a) and (c)).

o Texture. A texture will yield more internal detail to a re-
gion, potentially increasing its memorability. We choose 9
landscape images, selected from the Web to have distinctive
visual appearance (Figure 1(b) and (d)).

6.2.3 Layout

Graph layout was added as a factor to determine whether detail-
driven (Voronoi) or space-driven (grid) partitioning perform differ-
ently for different layouts. Towards this end, we used two separate
lin-log [15] layouts: one yields uniform node distribution with uni-
form edge lengths (more readable but with no clustering), and the
second clusters similar nodes based on the graph topology.

6.3 Study Design

Crossing two partitioning and two encoding techniques, we tested
four techniques 7 in this study (Figure 1): grid with color (GC),
grid with texture (GT), Voronoi diagram with color (VC), and
Voronoi diagram with texture (VT). We used a within-subject full
factorial experimental design: 2 partitionings (P) X 2 encodings
(E) x 2 layouts (L) x 3 repetitions (R) = 24 total trials. We coun-
terbalanced the order of the techniques and blocked on technique;
the layout factor was administered in random order. With 16 par-
ticipants, we collected time and correctness for a total of 384 trials.

6.4 Hypotheses

H1 Voronoi diagram will be faster and more accurate than grid for
spatial partitioning.

H2 Texture will be more accurate than color for identity encoding.

6.5 Results

We analyzed the average of all repetitions for each condition as
the final measurement—see Figure 3 for boxplots of the comple-
tion times and errors using each technique. Table 1 summarizes
the effects on time and errors using a repeated-measures analysis of
variance. The completion time violated the normality assumption,
so we analyzed its logarithm (which conformed to normality).

Posthoc tests (Tukey’s HSD) showed that GC was significantly
faster than all other techniques (p < .05), and GT was significantly
more accurate than VT for ID errors (p < .05).

Figure 3(c) shows subjective ratings for techniques in terms of
efficiency, enjoyability, and clutter (1 = low, 5 = high). Differences
in ratings were significant for efficiency and visual clutter (Fried-
man test, p < .05), but not for enjoyability.

[ Factors [ DF [ Time | ID Errors |

Partitioning (P) | 1,15 | **13.28 *4.98
Encoding (E) 1,15 | **18.60 1.19
Layout (L) 1,15 0.18 0.33
P*E 1,15 *5.61 2.26

¥=p<0.05, ¥ = p < 0.001.

Table 1: Effects of factors on time and error for Study 1 (RM-ANOVA,
F-values in columns). Nonsignificant interactions elided.

6.6 Summary
We can summarize the above results in the following way:

e Space-driven partitioning using a grid yields significantly
faster and more accurate performance than detail-driven par-
titioning using a Voronoi diagram (rejecting H1);

e Encoding regions using a solid color yields significantly faster
performance, with no significant difference in errors, than en-
coding using a texture (rejecting H2); and

e There is no significant effect of graph layout on completion
time or accuracy.

These results suggest that the combination of grid with color
(Figure 1(a)) is the optimal substrate encoding technique for this
particular revisitation task. The findings also mean that we need
not study graph layout in further studies, and we thus use the uni-
form lin-log layout [15] for the remainder of this paper.
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Figure 2: Overview of node encoding techniques for Study 2.

7 STUDY 2: NODE ENCODING

In the second study, the spatial position of nodes was encoded in
their size and color. This study was conducted in conjunction with
Study 1, and used the same participants as that study. Because we
used the same basic task and scenario in both studies, we counter-
balanced the order of the studies to mitigate systematic effects of
practice. This study lasted approximately 40 minutes.

7.1 Experimental Conditions
We included a single factor: the type of node encoding.

e Size. We vary node width based on horizontal position on
the substrate and node height based on their vertical position
(Figure 2(a)). The idea behind this technique is to allow users
to remember nodes using their dimensions. The color of the
nodes remains fixed in this technique.

e Color. Here we vary the color of nodes by changing hue based
on horizontal position and brightness based on vertical posi-
tion (Figure 2(b)). Nodes are thus assigned a unique color
depending on their position in the graph, thereby increasing
the memorability of the whole graph. The size of the nodes
remains fixed in this technique.
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Figure 3: Participant performance and ratings for different substrate encoding techniques (Study 1).

e Size and Color. We also study the combination of size and
color to encode position (Figure 2(c)). We allow the hue of
the node (saturation and brightness is fixed at 100%) to change
depending on horizontal position, and node radius to change
depending on vertical position. We varied the hue because
this is most easily distinguishable.

7.2 Study Design

We used a within-subject full factorial design: 3 techniques (T") X
5 repetitions (R) = 15 total trials. We again counterbalanced the
order of the techniques and blocked at each technique. With 16
participants, we collected time and errors for a total of 240 trials.

7.3 Hypothesis

H3 Size and color combined will be the best node encoding tech-
nique in terms of both time and accuracy.

7.4 Results

We analyzed the collected data using a repeated-measures ANOVA
(completion time violated the normality assumption, so we ana-
lyzed its logarithm). Figures 4(a) and 4(b) show completion times
and errors. The main effect for completion time between different
techniques T was significant (F(2,30) = 12.00, p < .0001), as was
the main effect for ID errors (F(2,30) = 5.48,p < .01).

We further analyzed these effects using a posthoc Tukey’s HSD
and found that Size+Color was significantly faster and more ac-
curate than both Size or Color alone (p < .05), but there was no
significant difference between these other two.

Figure 4(c) shows average ratings for the techniques in terms of
efficiency and enjoyability (1 is low, 5 high). Differences in ratings
were significant for both metrics (Friedman test, p < .05).

7.5 Summary

Our results confirm H3: the combination of size and color for en-
coding position is both faster and more accurate than each of these
techniques separately. This suggests we choose this combination as
the optimal node encoding technique.

8 STUDY 3: COMBINATIONS OF TECHNIQUES

In this last study, we select the best techniques from Study 1 (Grid
with Color) and Study 2 (Size and Color) as well as the virtual
landmarks approach to find the optimal combination of static spa-
tial features for the revisitation task in graphs. Because we combine
several techniques in this experiment, we opted to increase the dif-
ficulty of the task to N =5 (instead of N = 4) to get more separation
between the individual combinations of techniques.

8.1 Participants

We recruited 16 paid volunteers (eleven male and five female),
screened not to be color blind. This pool of participants was dif-
ferent from Study 1 and 2. All participants were university students
with ages varying from 20 to 32 years (average 24). All participants
reported that they used computers more than 16 hours/week.

8.2 Experimental Conditions

This study included three factors that governed whether a partic-
ular spatial feature was active or not: spatial encoding SE, node
encoding NE, and virtual landmarks LM.

Virtual landmarks are created by adding 9 discrete graphical ob-
jects of different shapes and colors as reference points to the graph
background (Figure 5(b)). Just like landmarks in the real world, we
hope these will aid users in remembering node locations. Because
Study 1 showed that space-driven partitioning yields better perfor-
mance than detail-driven partitioning, we opted to space out these
9 landmarks in the centers of the 9 cells of a regular grid.

8.3 Study Design

Crossing the three spatial feature factors results in eight differ-
ent techniques 7 evaluated in this study (Figure 5): SE, NE, LM,
SE+NE, SE+LM, NE+LM, SE+NE+LM, and simple graph (SG)
(all features disabled). We used a within-subject full factorial de-
sign: 2 levels of spatial encoding (SE) x 2 levels of node encoding
(NE) x 2 levels of landmarks (LM) x 5 repetitions (R) = 40 total
trials. We counterbalanced and blocked on the technique 7. With
16 participants, we collected data for 640 trials.

8.4 Hypotheses

H4 Techniques utilizing substrate encoding will be faster and more
accurate than node encoding and landmarks.

HS5 The combination of all three spatial graph feature techniques
will be fastest and most accurate.

8.5 Results

We analyzed the average of all repetitions for each condition and
participant—see Figure 6 for plots of completion time and errors
per technique. Table 2 summarizes the effects on completion time
and errors using a repeated-measures ANOVA (completion time vi-
olated the normality assumption, so we analyzed its logarithm).
We analyzed both of these effects using a Tukey HSD. Figure 7
depicts pairwise significant differences (p < .05) for completion
time. For ID errors, Tukey HSD showed that SE, LM, SE+LM,
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Figure 4: Participant performance and ratings for different node encoding techniques (Study 2).

(f) SE+LM
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Figure 5: Overview of the eight techniques used in Study 3.

| Factors | DF | Time | ID Errors |
Spatial encoding (SE) | 1,15 | #*33.35 **27.55
Node encoding (NE) | 1,15 2.94 0.64
Landmarks (LM) 1,15 *6.04 *#%21.42

¥=p<0.05, ¥ =p<0.001.

Table 2: Effects of factors on completion time and errors for Study 3
(RM-ANOVA, F-values in columns). No interactions were significant.

SE+NE, and SE+NE+LM all were significantly more accurate than
SG (p < .05); no other pairwise difference was significant.

Finally, Figure 6(c) shows ratings for the techniques in terms of
efficiency, enjoyability, and clutter (1 = low, 5 = high). Differences
were significant for all metrics (Friedman test, p < .05).

8.6 Summary

‘We can summarize the above results as follows:

e Techniques with substrate encoding were significantly faster,

and were not less accurate (partially confirming H4);

o SE+NE+LM was not significantly faster and more accurate
than all other techniques (rejecting HS); and

e Virtual landmarks is a generally promising strategy, perform-
ing second only to substrate encoding.

These results suggest that the best approach to static spatial
graph features is substrate encoding, followed by virtual landmarks.
Both of these techniques—especially in combination—performed
significantly better than the competing techniques. Node encoding
seems not to make much difference either way, which is perhaps
why the combination of all three approaches is good, but not sig-
nificantly better than others—a somewhat counterintuitive result.

9 DiscussION

We can summarize our overall findings as follows:

e Substrate encoding is the dominant strategy, in particular us-
ing space-driven partitioning with a solid color.



e Virtual landmarks help significantly in revisitation.
e Node encoding does not perform as well as the other two.

e The combination of virtual landmarks and substrate encoding
is the optimal technique for the revisitation task.

Many of our results are surprising and do not fully obey our in-
tuition about graph navigation. We discuss these below.

For substrate encoding, we initially hypothesized (H1) that
detail-driven partitioning would be better than space-driven parti-
tioning for two reasons: (1) the detail-driven approach will adapt
the graphical features depending on the data clustering, and (2)
the irregular boundaries arising from this partitioning will increase
graph memorability. However, our results disproved this hypothe-
sis. For reason (1), we believe this is because graphs in Study 1 did
not have pathological situations with all nodes clustered in a few
places—our layout factor did not introduce clustering to the level
needed to affect the results. For reason (2), some of the participants
commented during the exit interview that the irregular boundaries
of the detail-driven approach confused rather than helped them.

We also hypothesized (H2) that texture will yield better accu-
racy than color. However, the results show no significant differ-
ence in accuracy. In interviews, participants stated that they clearly
preferred texture, because it helped them remember nodes with re-
spect to visual features in the photographs such as lakes, mountains,
grass, etc. We believe the reason for this discrepancy is that in our
experiment, the grid cells are sufficiently small that the color and
boundary of a cell provides adequate memorability for accurate re-
call. In support of our belief, some participants stated that they
memorize nodes first by background color and then with respect to
region boundaries, and thus if the node is somewhere in the center
of the region, it is difficult to remember. For large regions, we think
that texture encoding will be more accurate, but another approach to
improve color can be to add landmarks as reference points in each
region. This is also what the results from Study 3 suggest.

The subjective ratings (Figure 3(c)) indicate that participants pre-
fer space-driven partitioning and texture encoding both in terms of
efficiency and enjoyability. Most of the participants commented
that with texture background, the task was much more enjoyable
compared to other techniques. However, they also thought that tex-
ture adds more visual clutter. Color is not as enjoyable but has much
less visual clutter. Overall, all sixteen participants stated that they
liked having access to substrate encoding.

For node encoding, we hypothesized (H3) that Size+Color would
be the fastest and most accurate technique, and results also confirm
this. Size+Color was also favored by participants in interviews and
ratings. They thought that size and color alone was difficult to re-
member, whereas Size+Color gives a more memorable identity to
nodes. Thirteen out of sixteen participants stated that they would
like node encoding to be present to aid graph revisitation.

For the last study, we hypothesized (HS) that the combination of
all three techniques would perform the best, but this was not the
case. Results show that node encoding is not particularly effective
for this task, and therefore, the combination of SE+LM+NE does
not perform significantly better than all other techniques (Figure 7).
Several participants commented that when they used this technique,
they did not utilize the node encoding for recall, possibly because it
is more difficult to use compared to the other two. Substrate encod-
ing, on the other hand, performed well (H4) because background
color and graphical boundaries were easy to remember, according
to participants. As for landmarks, participants said they were use-
ful as reference points. Participants also stated that the combination
of substrate encoding and landmarks was the optimal technique be-
cause it allowed them to remember the nodes on two levels: glob-
ally by background color, and /ocally by landmarks and boundaries.

Figure 6(c) shows subjective ratings for Study 3. The key in-
sight here is that participants thought SE+LM and SE+NE+LM

are the most efficient and most enjoyable techniques. However,
SE+NE+LM has more perceived visual clutter. All sixteen partici-
pants overall stated that they liked spatial features for revisitation.

While we measured out-of-order errors as the number of cor-
rect nodes that were selected in the wrong order, our results showed
that this type of error was very uncommon. This is probably be-
cause our sequence of nodes to recall was chosen in a regular order.
Therefore, our results above do not report these errors.

Note that we also analyzed the overall correctness (trials with
both zero ID and zero order errors) using logistic regression and
found nearly identical effects to the ANOVA results (p < .05).
We also analyzed pairwise differences in subjective ratings using
Wilcoxon signed-rank tests, and found the expected trends in rat-
ings. However, due to limited space, we elide these results here.

9.1 Limitations

As it is often the case with controlled experiments, we had to make
a large number of decisions on how to design our studies. For ex-
ample, we decided to include an overview of the visual space. We
did this so that the visual space could be larger than the screen,
preventing participants from remembering nodes by absolute posi-
tions on the screen rather than by spatial features. Furthermore, the
overview was scaled down to a factor of about 10, making it dif-
ficult for participants to remember nodes using just the overview;
also, nodes could not be clicked or selected in the overview.

Our choice of textures for Study 1 may also be open to debate.
We selected landscape images because they are neutral and have
many spatial features that improve their memorability. However, it
is plausible that other textures, such as regular or stochastic (e.g.,
Perlin noise) patterns, would yield different results. The same could
be said for our color choices, which are somewhat oversaturated.

We should note that our static approach to spatial graph features
relies on the graph layout being static, and that a dynamic layout
(such as a force-directed one) may cause the user’s conceptual map
of the graph to become inaccurate. This is an intrinsic limitation of
our approach, but is also true of dynamic spatial features (e.g. [22]).

Finally, we do not evaluate virtual landmarks in a separate study
to save space and time. However, there may exist additional design
variations of landmarks that warrant separate studies of their own.

9.2 Generalization

Overall, we think that our results can be generalized for virtually
any graph, and our recommendation is to use the combination of
substrate encoding and virtual landmarks. These features also tend
to make graph navigation more enjoyable (Figure 6(c)), perhaps ap-
proaching the enjoyability of geographical map navigation that mo-
tivated our work in the first place. However, the techniques will add
visual clutter to a visualization, and some graph features may also
conflict with existing visual variables used for a different purpose.

Scalability is a concern for larger graphs. We speculate that a
hierarchical spatial subdivision may be appropriate here, and it is
also possible that the more detail provided by a texture encoding
will yield better memorability for such graphs.

Our results from the Study 1 notwithstanding, a truly general
approach to static spatial graph features should probably be detail-
driven to be able to deal with pathological cases with high amounts
of node clustering. Since our participants indicated that irregular
boundaries confused them, one idea may be to combine detail-
driven partitioning with rectangular shapes to yield more regular
and predictable boundaries. This is left for future research.

10 CONCLUSION AND FUTURE WORK

We present several ways of adding static spatial features to graphs
and show that they help revisitation in graphs by performing three
orthogonal studies. In our first study, we evaluate different substrate
encoding techniques and show that grid with color is optimal. In the
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Figure 6: Participant performance and ratings for different combinations of static spatial graph feature techniques (Study 3).
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Figure 7: Significant pairwise differences in completion time (Tukey’s HSD, p < .05). Arrows indicate which technique was faster than another.

second study, we found that encoding spatial location in node size
and color is the best node encoding technique. Finally, in the last
study, we show that substrate encoding, landmarks, and their com-
bination are optimal techniques for graph revisitation in general.

Revisitation is important in many other scenarios—such as find-
ing icons on the screen, traversing file systems, navigating web
browsers history, etc—so our future work entails designing tech-
niques for aiding these scenarios as well.
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