
skWiki: A Multimedia Sketching System
for Collaborative Creativity

Zhenpeng Zhao,1 Sriram Karthik Badam,1 Senthil Chandrasegaran,2 Deok Gun Park,1
Niklas Elmqvist,1 Lorraine Kisselburgh,3 and Karthik Ramani1,2

1School of Electrical & Computer Engineering, 2School of Mechanical Engineering, and 3Brian Lamb School of Communication
Purdue University, West Lafayette, IN 47907, USA

{zhaoz, sbadam, senthil, park573, elm, lorraine, ramani}@purdue.edu

Figure 1. Two parallel paths of concept sketches of a toy helicopter in skWiki. skWiki supports multiple co-existing revision histories for the same
multimedia object. This is possible using paths, which track state changes over time and users so that the complete operation history is preserved.

ABSTRACT
We present skWiki, a web application framework for collab-
orative creativity in digital multimedia projects, including
text, hand-drawn sketches, and photographs. skWiki over-
comes common drawbacks of existing wiki software by pro-
viding a rich viewer/editor architecture for all media types
that is integrated into the web browser itself, thus avoiding
dependence on client-side editors. Instead of files, skWiki
uses the concept of paths as trajectories of persistent state
over time. This model has intrinsic support for collaborative
editing, including cloning, branching, and merging paths
edited by multiple contributors. We demonstrate skWiki’s
utility using a qualitative, sketching-based user study.

ACM Classification Keywords
H.5.3 Information Interfaces and Presentation: Group and
Organization Interfaces—Web-based interaction

Author Keywords
Collaborative editing; creativity; wikis; sketching.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI’14, April 26–May 1, 2014, Toronto, Canada.
Copyright c© 2014 ACM 978-1-4503-2473-1/14/04...$15.00.
http://dx.doi.org/10.1145/2556288.2557394

INTRODUCTION
While more of a design philosophy than a technology in its
own right, the Web 2.0 revolution has turned the traditional
content creation model on its head. Instead of a few highly
institutionalized creators distributing content to a mass au-
dience, these new technologies are empowering users them-
selves to become creators, distributors, and marketers of dig-
ital content in vast collaborative enterprises on the Internet.

So far, computer support for such large-scale distributed
collaboration has mostly centered on convergent processes:
processes where the outcome is a single artifact, concept,
or idea; where the role of the computer is to mediate com-
munication, arbitrate conflicts, and consolidate information.
However, intellectual pursuits are often a combination of
convergent (or analytical) processes and divergent (or cre-
ative) processes [22]. For example, during early design for
a new line of toys, the goal is to generate as many and as
diverse ideas as possible rather than to prematurely fixate
on a particular one. Most computer-supported collabora-
tion tools, be they for socially constructed knowledge bases
such as Wikipedia, collaborative text editors such as Google
Docs, or product lifecycle management (PLM) systems such
as Enovia, are designed for analytical and convergent pro-
cesses, but have little provisions for divergent ones.

Inspired by source code management (SCM) systems [24]
such as Git or SVN, where branching—creating a divergent
version of a project, directory, or a single file—is a natu-
ral operation in any project, we adopt the concept of paths

as persistent state over time owned by a particular user. A
document or file represented as a path is thus stored as the
ordered (and timestamped) sequence of document-specific
operations that created and modified it. For example, a dig-
ital photograph is the sum of all its changes, such as im-
porting pixels from a digital camera, adding a Gaussian blur
filter, and finally changing the image data to grayscale. Fur-
thermore, because paths also track ownership, the concept
intrinsically supports divergent collaborative editing: mod-
ifying someone else’s entity simply branches its path and
creates a new list of changes since the original state. Conver-
gent processes are also supported: merging two paths means
accepting all or some of the changes into the merged path.

To validate the path concept, we present SKWIKI (pro-
nounced Squeaky), a web-based collaborative content edit-
ing framework that implements the path model for diver-
gent creative digital media processes. skWiki supports mul-
tiple multimedia path types beyond the marked-up text tra-
ditionally supported by Wiki software. Each such multime-
dia type, implemented as a plugin in the skWiki framework,
comes with separate viewers and editors. Viewers are used
to render the content that users see in their web browser
when visiting a skWiki page. Editors, on the other hand,
provide basic editing operations for each entity type inside
the browser itself. This eliminates the dependency on of-
fline client-side media editors—e.g., Photoshop, Visio, and
CorelDRAW—and provides a unified editor interface inside
the user’s own web browser. Our skWiki prototype currently
supports rich text, free-hand sketches, and photographs.

Beyond these viewers and editors, one of the main compo-
nents of skWiki is the path viewer: a visual management
interface for viewing and navigating in the evolving graph
structure formed by the media paths in the system. The path
viewer visually represents how these paths are created, mod-
ified, deleted (although deletion is not persistent in the path
model), branched, and merged. Most of these path opera-
tions are transparent from the user’s point of view. For exam-
ple, the path viewer allows a user to view and edit a path—
their own or someone else’s—at any time, thereby creating
a new branch from that point. Similarly, changes to a media
entity are automatically saved and committed to the skWiki
system. Because of this automatic support for both collab-
oration and revision control, we posit that skWiki can be
adopted by virtually any audience involved in digital content
creation, including both product, industrial or web designers
as well as engineers, researchers, and creative artists.

RELATED WORK
In today’s highly networked and increasingly complex
world, most intellectual endeavors are collaborative in na-
ture [2]. Many digital media projects today are built by a
wide range of contributors distributed across the Internet.
Wikipedia is a prime example, with more than 24 million ar-
ticles in 285 different languages that is maintained by more
than 100,000 active contributors working together. This
form of collaborative editing of digital media is now gain-
ing acceptance in a broad set of domains. In this section,
we describe the prior art in wikis, creative design, version
control, and collaborative editing.

Wikis for Collaboration
Ward Cunningham developed the first Wiki in 1995, call-
ing it “the simplest online database that could possibly
work” [17]. Wikis quickly caught on as a means for col-
laboratively creating, vetting, and maintaining online doc-
uments, its application made famous by Wikipedia. Wag-
ner [34], emphasizes its versatility in providing a repository
and a means for many-to-many collaboration by incorporat-
ing aspects of various communication tools such as email,
chat, and multimedia applications, with a temporal database
for history support. Traditional wiki systems such as Me-
diaWiki, TWiki, and Confluence, enable such collaborative
editing via a web browser, and support rollback, external
links, and heterogeneous content such as code, documents,
images, and rich text content. The use of wikis for content
creation and not just content storage was extended to soft-
ware development as well [17], especially for project man-
agement, where project documentation and discussion can
be placed in context with project content. The use of tradi-
tional wikis is further extended by semantic wikis that cap-
ture and identify metadata in wikis using RDF and OWL
frameworks, such as IkeWiki [28], SeMedia Wiki [3], and
PlatypusWiki [32].

Recent work on wikis are starting to extend the traditional
wiki history model for text. Sabel’s work [26] on version
history of a wiki page considers an adoption coefficient that
is defined by the structural similarity between two versions
of a text document, and uses it to arrange versions of a wiki
page into a weighted tree. Similarly, Priedhorsky and Ter-
veen [21] discuss implementation challenges and solutions
for maintaining a single global state and history for non-
textual objects using the Cyclopath geowiki as an example.
They propose solutions for some of the challenges inherent
with maintaining multiple object types, such as a ordering
revisions, global state and undo, and access control.

Collaboration in Design
Design is often defined as an ill-defined problem whose solu-
tion is obtained through creative exploration alternated with
pruning of the design space [22]. This alternating of the cre-
ative or divergent processes and the analytical or convergent
processes has been studied extensively, resulting in now-
commonplace creative methods such as brainstorming [20],
brainwriting [25], and collaborative sketching [29]. While
technology has long been used in an attempt to scaffold cre-
ativity, part of the challenge in this endeavor lies in the na-
ture of creativity itself. Torrance [33, p. 47] describes cre-
ativity as “the process of sensing difficulties, problems, gaps
in information, missing elements, something askew; making
guesses and formulating hypotheses about these deficien-
cies; evaluating and testing these guesses and hypotheses;
possibly revising and retesting them; and finally communi-
cating the results.” This continuous inspiration, guesswork,
and evaluation results in a stream of ideas, only some of
which are developed further.

Early work in collaborative creative support for design was
in the form of multi-user drawing support [14, 19, 31]
for collaboration between geographically distributed partic-
ipants. The i-LAND environment [30] was pioneering in its

use of (now) ubiquitous technology such as display walls
and tabletops along with conventional computers in support
of creativity. Recent work in this area includes IdeaVis [7],
TEAM STORM [10], and GAMBIT [27].

Greene [8] lists support for exploration and experimentation,
collaboration, iteration, and domain-specific action as essen-
tial for applications intended to support creativity. Hilliges
et al. [13] also recommend an interface that allows actions
to be carried out both individually and collaboratively.

Version Control and Collaborative Editing
Version control systems manage content change and main-
tain a history of its evolution, and are commonplace in the
software industry. The Source Code Control System (SCCS)
was one of the earliest source code management systems de-
veloped in the early 70s to store, update, and retrieve all
versions of code [24]. Currently popular SCM systems in-
clude CVS, Subversion, and Git. More recent developments
record and visualize developer activity at interaction level to
enhance program history representations [23, 35].

While these version control systems were primarily created
for software engineering, most can be used for any text file,
and, to some extent, binary files as well. Furthermore, while
not strictly classified as version control, systems such as
Chronicle [9]—which clusters, probes, and visualizes a doc-
ument’s workflow history—and MeshFlow [6]—which vi-
sualizes, clusters, annotates, and filters the history of opera-
tions on polygonal meshes—are significant contributions to-
wards managing history on binary files.

Collaborative editing is essentially a version control system
integrated with the editor itself, and has a rich history in the
CSCW field [1]. Social code-hosting repositories such as
GitHub have been studied to gain insight into the influences
of activity volume, commit histories, community interest,
and personal interest of contributors [5]. A modern collab-
orative editor such as Google Docs allows multiple users to
work on a document by propagating all edits in real time,
thus alleviating the explicit need to commit/save versions of
the document to a server. This means that the only way to
“branch out” (diverge) at a given time is to make an explicit
copy of the document. Google Docs maintains a history of
edits to the document ordered by timestamps.

Recovering editing operations for binary data is more dif-
ficult than for text, posing another challenge for collabora-
tive editing of digital media. To address this, Chen et al. [4]
propose a version control system for image editing that inte-
grates with the image manipulation program itself to capture
the drawing commands that transformed the image. This
work is perhaps the most related to skWiki, but differs in
several important ways: (1) skWiki is a collaborative system
designed for more than a single user; (2) we support revi-
sion control of multiple media types beyond photographs,
including text and sketches; and (3) our system is entirely
web-based and requires no dedicated client-side software.

SUPPORTING DIGITAL CREATIVITY
Our goal with the skWiki project is to support digital cre-
ativity in collaborative, potentially distributed, teams. Here
we explore the design space for this research topic.

Requirements
Based on the literature and our collaborations with profes-
sional designers, we formulate the following requirements
for a software framework to support digital creativity:

R1 Mobility: A basic goal is that the platform should be de-
signed for mobile devices so that the designer can bring
skWiki to any design session “anywhere, anytime;”

R2 Collaboration: Virtually all realistic design endeavors
involve more than one participant working together in
teams [2], often distributed in time and/or space [1];

R3 Revision history: Effective collaborative content creation
requires support for branching, editing, and merging dif-
ferent versions of the media entities being manipulated;

R4 Transparency: Complexities of collaboration and revi-
sion histories should be hidden from non-expert users;

R5 Rich media: Even simple digital media projects today
often incorporate a wide range of media types, such as
rich text, photographs, audio, video, and illustrations; and

R6 Divergent/creative work: We want to support creative
work where the focus is on creating multiple, separate,
and diverse content, often drawing on other collaborators.

We found no existing software framework that fully sup-
ported all of these requirements. For this reason, we decided
to create our own software framework for collaborative cre-
ativity called SKWIKI, which is described in the next section.
In designing skWiki, we also felt that there was need for a
new theoretical model that would capture these requirements
on a storage level. Drawing from work on semantic-level re-
vision control of images by Chen et al. [4], we propose the
idea of paths for digital media. This is reviewed next.

The Paths Model
We define a path as a tuple 〈I,O,R,L〉 consisting of a unique
entity identifier I, an owner O, a reference to a parent re-
vision R (possibly empty), and an ordered and timestamped
list L of state transformation operations that, when taken to-
gether, recreates the current state of the entity. One way to
think of a path is thus as persistent state over time, i.e., all of
the different versions of a particular file from the time it was
created. However, this view is somewhat misleading since
paths are not snapshots, or even deltas, at different times,
but rather the actual operations that yielded those states.

Abstractly speaking, a state transformation operation is a
function fT : S→ S for revision number T (a serial number
starting from 0) that takes an entity state sT−1 ∈ S from the
previous revision number and produces a transformed state
sT ∈ S. A revision R for a particular path is thus a pair 〈I,T 〉
comprising a path identifier and the revision number referred
to in its operation list. Recreating the state for any revision
number T thus becomes a function composition series

sT = fT ◦ fT−1 ◦ fT−2 ◦ . . .◦ f0(/0).

The benefit of representing paths in this way is that it avoids
storing entire snapshots of the entity at every time step. In
fact, in many cases, using a sequence of operations will also
result in a more economic representation even than storing
binary deltas of an entity’s state. For example, whereas a

file diff would have to replicate the entire image data if a
photograph is inverted, a path just stores the invert operation.

Similar to files in a traditional file system, there are several
fundamental operations defined for paths:

Create: A new path is created by allocating a unique entity
identifier, assigning the owner reference, and initializing
the operations list to /0. Paths are tied to owners; the owner
reference is an immutable part of the path tuple.

Render: Rendering an entity is similar to recreating its en-
tire state up to a certain revision number T (it is also possi-
ble to map a specified time to a revision number using the
time stamp associated with each operation). This is per-
formed using the function composition above. Rendering
a branched path (i.e., one with a non-null parent revision
R, see below) will first recursively render the parent revi-
sion R before rendering the child path.

Modify: Changing a path is equivalent to adding one or
more transformation operations to the operations list in
the path. All operations are timestamped and have a re-
vision number, which is a monotonically increasing serial
number (starting from 0). Note that only the owner of a
path can modify it; others would first have to branch it.

Delete: Paths cannot be deleted. However, a null operation
(f (s) = /0) can be added to the end of the operations list,
which effectively renders the path’s state empty. Prior ver-
sions of a deleted path can always be rendered up to the
penultimate revision number to recover deleted state.

Branch: Paths cannot be copied, but can be branched.
Branching a path creates a new path with a unique identi-
fier, appropriate owner reference, and a parent revision R
that specifies the original path and revision number. The
operations list L for the branched path will initially be
empty, but rendering it will recursively render its parents.

Merge: A path pA can be merged with another path pB by
selectively appending one or several operations from pA
into pB. Both paths are preserved by this operation, and
the net effect is simply that pB is modified. For a merge
operation to make sense, however, the paths should be re-
lated, e.g., one of them being an ancestor of the other.

Note that operations can never be removed from the oper-
ation list in a path; a change can only be undoed either by
(a) branching from a previous state, or by (b) appending the
inverse operation to the end of the operations list. This is be-
cause branching for paths relies on parent revisions to never
disappear, which would otherwise cause inconsistencies.

Implementing Paths
Actually realizing the theoretical paths model above requires
overcoming several implementation challenges. Representa-
tion is perhaps central amongst them: the optimal way to im-
plement paths using current technology is to use a database
management system (DBMS) that stores individual paths in
one table, and all of the operations in another using the path
identifier as a primary key and including the revision serial
number. Users should be represented in another table that
can be used to track path ownership and access permissions.

Below we review additional challenges in implementing
paths and our recommendations for how to tackle them.

Transformation Operations
Representing the actual transformation operations is a major
challenge. Because operations are specific to different types
of data, this consideration is dependent on the document
formats that the paths implementation supports. The best
solution may be to store source code in a domain-specific
language (DSL) [18] for each document format. A particu-
lar paths implementation may have to support several DSLs,
one for each document format supported. Also, care must be
taken to not mix incompatible DSL operations in one path.

The database representation for an operation thus becomes
a table consisting of a path reference, a revision number
(a serial number unique to each path), a time stamp, and
an operation string. For example, an operation string for
a bitmap image DSL might have the form crop(100,
100, 1024, 768) to crop an image to 1024×768 di-
mensions starting at position (100, 100), whereas one for
text might be insert("d", 10) to insert the character
“d” in position 10 in the current state. If the database inputs
are cleaned appropriately, it might even be possible to exe-
cute these operation strings using direct evaluation (i.e., with
the eval() function for a DSL built in JavaScript).

Operation Chunking
To minimize the number of operations for each path, a prac-
tical solution might be adopt the chunking approach used in
graphical histories [12, 16] to group together related opera-
tions. For example, a sequence of character insertions that
together spell the word “design” might be more economi-
cally represented as a single insertion of the whole word.
Similarly, a list of movements of a graphical object could be
replaced by a single translation for the resulting vector.

The disadvantage of operation chunking is that the time
stamp for each chunked event is replaced by a single one,
making it impossible to branch from the constituent events.
However, such fine branch granularity is generally not nec-
essary for practical path implementations.

Path Caching
The paths model takes a somewhat extreme view of state as
the sum of all operations performed on an entity. For this
reason, rendering a path may sometimes be a lengthy opera-
tion, particularly if the path has undergone many revisions or
if individual operations are time-consuming. For example,
certain image filters (edge detection, motion blur, image dis-
tortions) may take up several seconds to complete. In such
situations, it is not practical to render a path from scratch.
Instead, we use path caching to speed up the process.

Formally speaking, a path cache is the complete rendered
state sT for a path up to revision number T . Rendering any
paths at revision numbers T +N now simply reduces to per-
forming the abbreviated function composition

sT+N = fT+N ◦ fT+N−1 ◦ fT+N−2 ◦ . . .◦ fT+1(sT).

In practice, this means that when rendering a revision num-
ber T , the render operation first fetches the cached path with

the most recent revision number T ′ ≤ T . These cached ver-
sions should be saved under unique file names in an internal
directory and tracked using a cache table in the database.
Caching itself should be transparently performed, for exam-
ple whenever rendering a path, or when encountering a par-
ticularly time-consuming operation (or sequence of opera-
tions). By the same token, a practical implementation should
probably incorporate a path cleaning mechanism that period-
ically removes cached versions (from both cache table and
directory) whenever they have not been accessed recently.

Transparent Path Operations
The paths model may appear complex, but most of its com-
plexity can be hidden from the point of view of the end user.
In fact, to achieve most benefit from the concept, a practi-
cal implementation should most likely make all of the path
operations transparent to the user. For example, a paths im-
plementation needs no explicit “save” functionality, but will
instead automatically commit all modifications (using the
modify command). Similarly, rendering (particularly in the
presence of any path caching), deleting, and branching paths
should also not expose the above details to the end user.

Perhaps the only path operation that cannot be entirely trans-
parent is the merge, which requires that the user explicitly
selects the operations to merge from a source path into a
destination path. At the same time, it might be possible to
encapsulate this operation in a form of copy-and-paste that
most users are already familiar with, or to use a smart merge.

Path Navigation
In a normal file system, a file explorer is sufficient to navi-
gate and manage files and directories. In a paths implemen-
tation, however, it is not only necessary to be able to navigate
the path structure (which may or may not incorporate the
traditional hierarchical structure of classic file systems), but
also to navigate the revisions of each path. In other words, a
practical paths implementation needs a path explorer.

Several considerations factor into creating an effective path
explorer. One visual representation of a path is to display
the list of operations, suitably chunked into semantic units.
However, this may result in a representation that is unfamil-
iar to users who are accustomed to traditional file systems.
An alternative representation may use rendered snapshots
(as thumbnail images or summaries, for example) of the path
at various time intervals. Such a representation would even
be amenable to semantic zooming, where zooming in would
reveal a different visual representation with more detail, and
zooming out would afford a broad overview of the path’s
evolution. Furthermore, it might be advantageous to use this
visual snapshot representation to highlight changes from one
snapshot to the next using a suitable visualization.

Several additional operations are needed in a practical path
explorer. For example, the visualization should visualize
branching to show how different paths build on other paths,
as well as different users and their individual paths. The
interface should also contain mechanisms for searching for
paths by name, time, or owner, as well as bookmarking, fil-
tering, and tagging paths. Such an interface would not only
aid creative collaboration, but would also provide a frame-

work for determining contributions, ownership, and influ-
ences of ideas, especially in early stages of design.

THE SKWIKI SYSTEM
Based on our exploration of the design space of digital
creativity support, we developed a web-based collabora-
tive editing framework for multimedia documents called
SKWIKI. skWiki is based on a web service architecture
(Figure 2) with server-side components to manage persis-
tence using a practical paths implementation, and any num-
ber of users participating in the collaboration using only a
web browser. The framework supports digital media projects
consisting of multiple media types, such as text, hand-
drawn sketches, vectorized illustrations, and digital pho-
tographs. skWiki clients can run on standard computers,
mobile phones, and tablets with popular operating systems
such as Android, iOS, and WebOS. The framework is built
to allow extensions with additional media types as plugins.

Path updates

operations

Path database

Client side

Web service

Server side

Figure 2. skWiki system architecture. The client maintains workspace
and local paths storage, whereas the server is the main paths repository.

skWiki was designed primarily to support divergent creative
processes, i.e., early design, brainstorming, conceptual art,
ideation, and design alternatives. We will now explain the
implementation of the paths model in skWiki, and how its
practical features support collaborative creativity.

• Transformation Operations: Because skWiki is a con-
trolled deployment of the paths model (as opposed to, say,
implementing it for an entire operating system), we bound
the operation set to the domain-specific languages used to
create and modify the state. Our implementation currently
supports four DSLs: bitmaps (for digital photographs),
rich text (in HTML format), drawings (including free-
hand sketching and vector drawing), and layouts (hierar-
chical and spatial arrangements of entities on a page).
Note that some operations in the above table include ob-
ject identifiers as arguments to name newly created ob-
jects. Object identifiers are used by other operations, such
as removeShape(), to refer to specific objects, and
they must be explicitly named so that the operations list
is a complete representation of the state of a path.
• Operation Chunking: Our current implementation per-

forms only a minimum of operation chunking; for ex-
ample, sequences of character insertions or deletions are
chunked into strings, and long series of lines captured

from a user sketching are chunked into polylines. How-
ever, similar to caching, chunking is a largely independent
mechanism that can be progressively improved to be more
aggressive without affecting overall skWiki functionality.
• Path Caching: The current implementation of skWiki

uses no explicit path caching. We found that none of our
DSL operations were particularly time-consuming to per-
form, and thus render each path completely from their cre-
ation. Furthermore, since browser-based web applications
have very limited support for local storage, we wanted to
avoid large network transfers of cached state. However, a
practical skWiki implementation in the future should cer-
tainly provide an appropriate level of caching.
• Transparent Operations: All path operations in the

skWiki implementation are transparent from the view-
point of the user, including branching, undoing, and delet-
ing paths. In our informal evaluation, we found that nor-
mal users still prefer access to standard operations such
as “save” and did not fully understand the new concep-
tual model underlying skWiki. For this purpose, we pro-
vided an “add bookmark” button to replace the traditional
“save.” This is a transitional remedy until the paths con-
cept becomes more familiar to our end users.
• Path Navigation: We implemented a traditional graph

viewer, similar to those used in source code manage-
ment systems, to explore and manage paths. We currently
use bookmarked revisions to guide which important states
to visualize in the path viewer. This also supports the
users’ mental model that their bookmarked revisions are
the main units of the history. Of course, the path imple-
mentation allows the user to also drill into any revision
between bookmarked ones whenever necessary.
• Viewers and Editors: A Viewer is an interpreter for

a domain-specific language that is capable of decoding
a sequence of transformation operations implemented in
a DSL and recreating the corresponding digital content.
Similarly, an Editor is a command generator that can gen-
erate new DSL operations in response to user interaction.
Viewers and Editors in skWiki are thus plugins tied to a
specific media type. Both Viewers and Editors are part
of the same user interface. Viewers get allocated a con-
tent space for its associated path. Content spaces may also
have an associated Editor that will partner with the Viewer
to allow path modifications. The Editor will also provide
a DSL-specific toolbar (Figure 3) to support editing.

Interactions
The skWiki client is a JavaScript web application that runs
entirely in the user’s own browser, regardless of operating
system, hardware platform, and with no special software de-
pendencies. Figure 3 shows an annotated screenshot of the
main skWiki interface, which includes the editing toolbar
and the path explorer. In addition to the tree-based path ex-
plorer, we also provide a gallery-based path explorer where
entities are represented by thumbnails of their latest revision,
but can be traversed in time using the mouse wheel.

Implementation Notes
The skWiki front-end web application is implemented in
Java using the Google Web Toolkit (GWT). GWT com-

Editing
Toolbar

Pathviewer
Toolbar

Pathviewer

Revision

Preview pane

Canvas

Figure 3. The skWiki browser-based user interface showing the editing
toolbar and the path viewer for a sketch entity.

piles Java code into JavaScript, which runs in virtually any
web browser as a rich internet application (RIA). This en-
ables building web applications without requiring expertise
in browser quirks, JavaScript, and AJAX requests.

The skWiki server is implemented as a Java Servlet hosted in
an Apache Tomcat servlet container. The server also runs a
PostgreSQL database for storing all paths and DSL informa-
tion. The client talks to the server using GWT-RPC (Remote
Procedure Call). When the skWiki servlet receives a request,
it fetches information from the database and performs the re-
quired operations. It then sends a reply to the skWiki client,
which updates its own state in response. This architecture
makes client-side editing into a real-time and synchronous
process, whereas network-intensive or computationally ex-
pensive operations such as searching, rendering, and sorting
remain asynchronously performed on the server.

USER STUDY
Our goal with skWiki is to support digital creativity in col-
laborative teams, both co-located as well as distributed. To
evaluate our prototype, we performed a study of co-located
teams on a creative task. Since free-form creativity not only
takes training but is also difficult to quantify, we used a form
of controlled brainstorming called C-sketch [29]. C-sketch
is a sketch-oriented adaptation of the more generic method
of 6-3-5 brainwriting [25], contextualized in a design envi-
ronment. In the C-sketch method, designers first spend 6-10
minutes sketching out an idea, and then pass it on to the
next person. Each designer then spends the next 6-10 min-
utes working on editing or extending the design idea given
by their teammate. This process continues for 2-3 iterations,
at the end of which all designs sketched initially have un-
dergone iterative development by at least 3 people. The C-
sketch workflow is shown in the left part of Figure 4.

Experimental Conditions
One of the main drawbacks of methods such as C-sketch is
that some promising ideas can be lost in the series of iterative
edits. Additionally, at the end of the session, there are only
as many ideas as there are designers, with intermediate—and
potentially promising—ideas being “lost”. We hypothesized
that the history support afforded by skWiki, along with the
option to branch out and create multiple versions of the same
sketch, will provide designers with more potential sources of
inspiration and development for the design problem at hand.

Participant 1 Participant 2 Participant 3 Participant 1 Participant 2 Participant 3

C-sketch: Traditional model C-sketch: skWiki model

Sketches
at end of
Round 1 (3)

Sketches
at end of
Round 2 (3)

Sketches
at end of
Round 3 (3)

Sketches
at end of
Round 1 (3)

Sketches
at end of
Round 2 (6)

Sketches
at end of
Round 3 (9)

Figure 4. Schematic diagram of the two processes used in the user study: traditional (left) versus the skWiki version of C-sketch (right). Each column
shows sketches made or modified by each participant (team of three). The grey arrows show the paths of the traditional C-sketch method, and
colored arrows show a departure from the model enabled by skWiki. Potential paths are shown as translucent arrows, while actual paths taken are
shown with solid arrows. The traditional C-sketch model emulates the pen-paper paradigm, with no duplication, and no saved states for the sketches.
Thus, there are only three concepts available at the end of this session, with all intermediate concepts lost. The skWiki model allows duplication and
multiple copies at each round (shown as aquamarine arrows), as well as for branching from earlier states (shown as orange arrows). The team thus
has more choices at the end of each round, and nine concepts at the end of the session.

In order to study the effects of the affordances offered by
skWiki, we involved each team in two different conditions:

• Traditional: The team used a traditional three-round C-
sketch workflow as described above, with only sketch
movement (no copying) between participants, and with
only the latest sketch version available for each round.
• Full skWiki: Here the team used the same three-round

method as above, with two main differences: (1) at the be-
ginning of the second and third rounds, they could choose
any sketch to work on except the sketch they had created
in the previous round, and (2) when selecting a final de-
sign (end of round 3), they could choose sketches from
rounds earlier than the immediately preceding one.

While the C-sketch method typically involves sketching on
paper. our intent was not to compare paper vs. digital media.
We thus used skWiki for both versions: a version without
branching and history “rollback” for the C-sketch condition,
and a version with both these features for the full skWiki
condition. The aquamarine and orange arrows in Figure 4
show the branching and rollback operations respectively.

Participants
We recruited 4 teams of 3 paid participants each (11 me-
chanical engineering graduate students and 1 post-doctoral
researcher, all male). Participants were aged between 21 and
33 years. 10 participants were comfortable with sketching,
and 5 considered themselves proficient. 4 participants had
prior knowledge of the C-sketch method. Participants were
randomly assigned to teams based on available time slots.

Apparatus
All participants used Microsoft Surface Pro tablets, equipped
with the Surface Pen for sketching and annotations. Both
conditions used different versions of the skWiki interface,
running on the Google Chrome browser. For the tradi-
tional C-sketch condition, the skWiki interface was provided

with curbed features based on the C-sketch method, such as
adopting a sketch and editing it, with no copy or history sup-
port. The skWiki C-sketch condition also required a level
of feature curbing: history support was minimized to what
was available at the end of each round, but not to a stage
between them. These constraints helped control the exper-
iment conditions, in addition to allowing the participants to
concentrate on the method rather than spend their time on
learning and remembering commands.

Tasks
The teams were assigned two tasks, one for each condition:
(1) design a toy catapult with an innovative launching mech-
anism, and (2) design a new kind of somersaulting toy. The
order of conditions and tasks were varied among the team to
balance out learning effects as well as testing bias.

Each task was split into three rounds of 6 minutes each. In
the first round, participants were asked to sketch one idea
each for the toy, and annotate it so that their team could un-
derstand the idea without additional explanation. No verbal
communication between team members was allowed during
the three sketch rounds. In the second and third rounds, each
participant was asked to develop or edit the sketch of another
participant, without completely erasing it. In the case of the
traditional C-sketch method, participants were asked to cir-
culate their sketches clockwise to their adjacent teammate.
For the full skWiki condition, participants could choose any
of their teammates’ sketches from any stage, but not their
own. This restriction was imposed to prevent participants
from continuously working on their own idea for the dura-
tion of the session. At the end of the session, participants
were asked to spend 5 minutes to discuss and select the most
promising concept from the set of available concepts.

Data Collection
Participants were asked to respond to questions pertaining
to the usefulness and ease of the methods on a Likert scale.

A log of participant choices in rounds two and three in
the skWiki condition was also recorded to identify cases of
departure from the traditional method afforded due to the
branching (creating copies) and history support (choosing a
sketch from the first round during the third). Finally, each
team’s selection of the “most promising idea”, and its corre-
sponding round, was noted.

RESULTS AND DISCUSSION
The branching operations performed by participants in each
team for both the traditional C-sketch and the full skWiki
conditions are shown in Figure 5. Below we discuss how
features that are unique to skWiki were used by the teams.

Cloning and History Rollback
The C-sketch flow of design follows a linear sharing model
through a “passing the paper around” paradigm prescribed
by the method that the participants were required to follow.
For the skWiki method, participant activity shows instances
of multiple copies of a sketch in every round, for every single
team. Of these instances, three teams branched out (cloned)
from earlier versions of their team members’ sketches, made
possible through the “history rollback” support. Three out
of four teams selected their final design from the last set of
iterations, shown by the “starred” nodes in Figure 5. How-
ever, it is noteworthy that one team selected a design from
their second round, which would have been lost had it not
been for the history rollback support.

Participant responses to survey questions support the use-
fulness of the branching and history rollback afforded by
skWiki: of the 12 participants, 11 preferred the full skWiki
model of C-sketch. Reasons cited for the preference ranged
from the ability to choose a more promising idea, the avail-
ability of a larger variety of ideas to choose from, and the
ability to see more popular or “growing ideas”, as one partic-
ipant put it. Participants also cited the ease of collaboration
as another reason for preferring skWiki. The one partici-
pant who preferred the traditional C-sketch model of sharing
cited his reason as the full skWiki system allowing the de-
signer to stick to a limited set of designs if he so chooses, as
opposed to C-sketch, which ensured that everyone worked
on everyone else’s designs. However, all 12 participants re-
ported that they found the option to select ideas useful.

Path Viewer with Preview
Recall that the traditional C-sketch path viewer for the user
study was configured to show only the latest sketches of
all the users at any point of time, while for the skWiki
model it showed the revisions of all users that were up-
loaded at the end of each 6-minute session. The post-survey
responses suggest that a majority of the users (average of
75%) found it easy to decide on a version to download for
the next round during full skWiki model even though more
versions are shown than in the traditional C-sketch. For the
full skWiki sharing model, we anticipated a decrease in the
ease of browsing and choosing ideas in later rounds owing
to an increase in the number of ideas to choose from. Par-
ticipant responses, however, were mixed: 7 out of 12 par-
ticipants mentioned that it was easy for them to choose an
idea to work on in the second round, while 1 participant re-
ported finding it difficult. 4 participants were undecided.

Surprisingly, the number of participants who found it easy
to choose ideas increased for the third round to 9 partici-
pants, while 3 participants found it difficult. Interestingly,
this increase was accompanied by a mix of transitions: all
participants who found it difficult to choose in the previous
round found it easier to choose in the last round, whereas 3
participants who found choosing in the second round easy,
had the opposite experience in the third round. The increase
in participant ease could be explained by a greater famil-
iarity with their team member’s designs by the third round,
assuming changes are clear in the thumbnail view. A more
complex design change, however would entail checking out
the sketch and examining it closely, a process that becomes
more tedious the more choice one has. This is echoed by the
participants: some suggested using larger previews, or larger
thumbnails with the facility to flip through them easily.

Paths in C-sketch

p1 p2 p3

Paths taken by teams using skWiki
Team 1 Team 2 Team 3 Team 4

p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3

(all teams)

Figure 5. Comparison between paths taken in the C-sketch model (left)
and skWiki (right) in the user study. Each gray node represents a
sketch by a participant (labeled as p1, p2, p3) at the end of every round.
Standard “passing on a sketch” operations are shown as gray arrows,
branching to create multiple copies is aquamarine, and branching from
history is orange. Stars indicate a sketch was selected as the best design.

From a methodology point of view, it is premature, based
on this study alone, to conclude that more choice for the de-
signer is better. In fact, allowing the designer, especially a
design engineer, to freely choose a design could lead to fix-
ation, as engineers tend to favor previously encountered de-
signs or designs they developed themselves [15]. However,
the purpose of skWiki is not to merely provide choice, but to
preserve every stage of work as well as to allow for poten-
tial branching (cloning) of ideas at every such stage. In the
context of the C-sketch method, Shah et al. state saturation—
participants feeling “that they could no longer contribute to
the idea generation process” [29, p. 191]—as one of the is-
sues of their method. With skWiki, this saturation can be de-
layed since each designer can have the opportunity to work
on every other designer’s initial design, without incremental
additions or modifications of features done by other design-
ers, thus geometrically increasing the number of potential
iterations. Additionally, designers can return to the problem
days later and pick up where they left off, owing to the per-
sistence of every state of their design on the server. Finally,
as seen with Team 2 in Figure 5, skWiki preserves promising
ideas that would otherwise be lost to further iterations.

DESIGN IMPLICATIONS
A user of the Web 2.0 generation is not only a consumer
of digital content, but a creator, distributor, and marketer
as well. However, most current content creation tools are
geared towards convergent processes which strive to create a
single article, a unified data table, or a common illustration
agreed upon by all. In this work, we have tackled a diamet-
rically opposite approach—a collaborative creativity frame-

work for divergent processes: many design alternatives, mul-
tiple iterations, and competing yet comfortably coexisting
versions. However, in traversing this path (no pun intended),
we had to make several design decisions that affected the
final skWiki implementation presented in this paper.

Our skWiki implementation uses the paths concept to sup-
port effortless collaborative creating, sharing, and merging
for multimedia. A key component for managing these mean-
dering paths is the path explorer, which not only tracks paths
in space but also in time and across multiple users. However,
a visual path explorer of this type will inevitably encounter
presentation difficulties as the number of revisions and users
grows. For example, our current explorer implementation
uses a node-link representation that would not scale to more
than a few hundred revisions and users. Because of this,
applying it on a large scale in a system such as Wikipedia
would simply not be feasible. More work is required here
not only in visual summaries and alternate representations,
but also in methods for filtering, navigating, and searching
within paths and between users in the path explorer.

Scale also affects more than the mere interface layer of the
system. One weakness of the paths model is that it could
lead to a profliferation (if not explosion) of concurrent paths,
with much of the data being redundant and replicated. Even
deleted files would remain in storage forever, effectively
making it impossible to ever “clean up” a hard disk or stor-
age system. On the other hand, a paths model with appro-
priately designed DSL operations can also be significantly
more economical than an equivalent file system. For one
thing, storing an operation is often less space-consuming
than storing its effect; one example is inverting a raster
image. Second, the branch operation in the paths model,
which corresponds to a copy in a traditional file system, is
extremely lightweight: an empty branch simply contains a
few bytes to store the new path identifier and track the par-
ent path and revision number. Nevertheless, we recognize
that the paths model described here is not a general replace-
ment for a traditional file system by any measure. We simply
found it well suited to our overall design rationale.

One potential weakness of the paths model is the merge op-
eration, which is somewhat difficult to characterize to the
user. It is partly a copy operation, because it replicates one
or more transformation operations from a source path to a
destination path. Also, it is typically performed on paths
that are somehow related, for example, having a common
ancestor. In our current implementation, merging two paths
is operationally equivalent to branching a new child from
one of the two paths followed by applying one or more latest
operations of the other. However, merging is an even more
powerful concept, which for example can allow identical op-
erations to affect a large set of paths based on the operation
sequence. More work is needed to explore the potential of
the merge operation in future versions of skWiki. Further,
the current version of skWiki does not incorporate consen-
sus: a final idea or set of ideas that are selected by a team. In
our model, all ideas exist simultaneously, and final ideas are
not explicitly shortlisted or tagged for future reference. We
plan to explore the use of collaborative tagging [11] to allow
for tag-based selection and filtering in the paths.

One of the most closely related existing projects for skWiki
is Google Docs, which supports much of the same function-
ality for collaborative multimedia authoring while retaining
a revision history. However, compared to skWiki, Google
Docs lacks many of our visualization mechanisms as well as
multi-user revision tracking. It is also designed for a con-
vergent workflow. For a group of brainstorming toy design-
ers, one alternative be to use a single Google Docs docu-
ment where each designer works on separate pages while
routinely referring to each other’s work. However, branch-
ing from another designer’s work is not a native operation in
Docs, and requires replicating that work first before editing.

Finally, it is worth comparing skWiki to wikis, which the
system at least shares some common ancestry with. For one
thing, wikis are notoriously difficult to use with anything
other than textual content. Images are not first-class objects
in a typical wiki software, and must be edited using offline
desktop applications. Part of the goal for skWiki is to pro-
vide a multimedia authoring environment that is not depen-
dent on offline desktop applications, at least not for the most
common operations. However, the differences go a lot fur-
ther than this: a traditional wiki and skWiki represent two
radically different designs. Whereas a wiki has one copy
of each document and will always show its latest version,
skWiki is based on the very concept of multiple and concur-
rent versions of a document across time, space, and users.

CONCLUSION AND FUTURE WORK
We have presented skWiki, a web-based content authoring
framework for creative processes that implements an ab-
stract paths model in favor of a traditional file system. Paths
represent entity state over time, and consists of the opera-
tions that were performed to create and modify an entity
rather than snapshots or diffs. This model is particularly
powerful for multi-user collaborative settings where the aim
is to brainstorm and generate many design alternatives for a
particular theme. The skWiki system is a practical paths im-
plementation and allows users to collaborative work on mul-
timedia documents consisting of images, vectors, sketches,
layouts, and rich text. To validate the work, we conducted
a qualitative user study involving four teams of three engi-
neering students using the tool for designing children’s toys.

This work is merely one contribution to a dialogue of how to
support the new content authoring model where users them-
selves are involved in all stages of the process. We expect
this dialogue to continue well into the future. Our own fu-
ture research directions include supporting additional media
types, improving the fluidity of the interface where it en-
tirely replaces desktop applications, and further exploring
the paths model presented here to its full potential.

ACKNOWLEDGMENTS
This work is partly supported by the U.S. National Science
Foundation on grants IIS-1227639, IIS-1249229, and IIS-
1253863, as well as the Donald W. Feddersen Chaired Pro-
fessorship and the Purdue School of Mechanical Engineer-
ing. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

REFERENCES
1. Baecker, R. M. Readings in Groupware and

Computer-Supported Cooperative Work. Morgan
Kaufmann Publishers, San Francisco, 1993.

2. Bruffee, K. A. Collaborative learning and the
conversation of mankind. College English,
46(7):635–652, 1984.

3. Buffa, M., Erétéo, G., and Gandon, F. A wiki on the
semantic web. In Emerging Technologies for Semantic
Web Environments: Techniques, Methods and
Applications, 115–137, 2008.

4. Chen, H.-T., Wei, L.-Y., and Chang, C.-F. Nonlinear
revision control for images. ACM Transactions on
Graphics, 30(4):105:1–105:10, 2011.

5. Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. Social
coding in GitHub: transparency and collaboration in an
open software repository. In Proc. ACM Computer
Supported Cooperative Work, 1277–1286, 2012.

6. Denning, J. D., Kerr, W. B., and Pellacini, F.
MeshFlow: interactive visualization of mesh
construction sequences. ACM Transactions on
Graphics, 30(4):66:1–66:8, 2011.

7. Geyer, F., Budzinski, J., and Reiterer, H. IdeaVis: a
hybrid workspace and interactive visualization for
paper-based collaborative sketching sessions. In
Proceedings of the Nordic Conference on
Human-Computer Interaction, 331–340, 2012.

8. Greene, S. L. Characteristics of applications that
support creativity. CACM, 45(10):100–104, 2002.

9. Grossman, T., Matejka, J., and Fitzmaurice, G.
Chronicle: capture, exploration, and playback of
document workflow histories. In Proc. ACM User
Interface Software & Technology, 143–152, 2010.

10. Hailpern, J., Hinterbichler, E., Leppert, C., Cook, D.,
and Bailey, B. P. TEAM STORM: demonstrating an
interaction model for working with multiple ideas
during creative group work. In Proceedings of the ACM
Conference on Creativity & Cognition, 193–202, 2007.

11. Halpin, H., Robu, V., and Shepherd, H. The complex
dynamics of collaborative tagging. In Proc. ACM
Conference on the World Wide Web, 211–220, 2007.

12. Heer, J., Mackinlay, J. D., Stolte, C., and Agrawala, M.
Graphical histories for visualization: Supporting
analysis, communication, and evaluation. IEEE
Transactions on Visualization and Computer Graphics,
14(6):1189–1196, 2008.

13. Hilliges, O., Terrenghi, L., Boring, S., Kim, D., Richter,
H., and Butz, A. Designing for collaborative creative
problem solving. In Proceedings of the ACM
Conference on Creativity & Cognition, 137–146, 2007.

14. Ishii, H., and Kobayashi, M. ClearBoard: a seamless
medium for shared drawing and conversation with eye
contact. In Proceedings of the ACM Conference on
Human Factors in Computing Systems, 525–532, 1992.

15. Jansson, D. G., and Smith, S. M. Design fixation.
Design Studies, 12(1):3–11, 1991.

16. Kurlander, D., and Feiner, S. Editable graphical
histories. In Proceedings IEEE Workshop on Visual
Language, 127–134, 1988.

17. Louridas, P. Using wikis in software development.
IEEE Software, 23(2):88–91, 2006.

18. Mernik, M., Heering, J., and Sloane, A. M. When and
how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316–344, Dec. 2005.

19. Minneman, S. L., and Bly, S. A. Managing a trois: A
study of a multi-user drawing tool in distributed design
work. In Proceedings of the ACM Conference on
Human Factors in Computing Systems, 217–224, 1991.

20. Osborn, A. Applied imagination; principles and
procedures of creative problem-solving. Scribner, 1963.

21. Priedhorsky, R., and Terveen, L. Wiki grows up:
arbitrary data models, access control, and beyond. In
Proceedings of the International Symposium on Wikis
and Open Collaboration, 63–71, 2011.

22. Rittel, H., and Webber, M. Dilemmas in a general
theory of planning. Policy Sciences, 4(2):155–169,
1973.

23. Robbes, R., and Lanza, M. A change-based approach to
software evolution. Electronic Notes in Theoretical
Computer Science, 166:93–109, 2007.

24. Rochkind, M. J. The source code control system. IEEE
Trans. in Software Engineering, 1(4):364–370, 1975.

25. Rohrbach, B. Creative nach regeln: Methode 635, eine
neue technik zum lösen von problemen.
Absatzwirtschaft, 12(19):73–75, 1969.

26. Sabel, M. Structuring wiki revision history. In
Proceedings of WikiSym, 125–130, 2007.

27. Sangiorgi, U. B., Beuvens, F., and Vanderdonckt, J.
User interface design by collaborative sketching. In
Proceedings of the ACM Conference on Designing
Interactive Systems, 378–387, 2012.

28. Schaffert, S. IkeWiki: A semantic wiki for
collaborative knowledge management. In Proceedings
of the IEEE International Workshop on Enabling
Technologies, 388–396, 2006.

29. Shah, J. J., Vargas-Hernandez, N., Summers, J. D., and
Kulkarni, S. Collaborative sketching (c-sketch)–an idea
generation technique for engineering design. Creative
Behavior, 35(3):168–198, 2001.

30. Streitz, N., Geissler, J., Holmer, T., Konomi, S.,
Müller-Tomfelde, C., Reischl, W., Rexroth, P., Seitz, P.,
and Steinmetz, R. i-LAND: An interactive landscape
for creativity and innovation. In Proc. ACM Conf. on
Human Factors in Computing Systems, 120–127, 1999.

31. Tang, J. C., and Minneman, S. L. VideoDraw: a video
interface for collaborative drawing. ACM Transactions
on Information Systems, 9(2):170–184, 1991.

32. Tazzoli, R., Castagna, P., and Campanini, S. E. Towards
a semantic wiki wiki web. Demo at ISWC, 2004.

33. Torrance, E. P. The nature of creativity as manifest in
its testing. In The Nature of Creativity: Contemporary
Psychological Perspectives. Cambridge Univ. Pr., 1988.

34. Wagner, C. Breaking the knowledge acquisition
bottleneck through conversational knowledge
management. Information Resources Management
Journal, 19(1):70–83, 2006.

35. Yoon, Y., Myers, B. A., and Koo, S. Visualization of
fine-grained code change history. In Proceedings of the
IEEE Symposium on Visual Languages and
Human-Centric Computing, 2013.

