
Sherpa: Leveraging User Attention for Computational
Steering in Visual Analytics

Zhe Cui, Jayaram Kancherla, Héctor Corrada Bravo, and Niklas Elmqvist
University of Maryland, College Park

Figure 1: Sherpa Gene: a web-based visual analytics application for genomics incorporating attention-based computational
steering. The gene track and gene expression heatmap display the user’s current focus. The ideogram (bottom) serves as the data
space view on which the user controls the yellow navigation window, which governs computational priority.

ABSTRACT

We present Sherpa, a computational steering mechanism for pro-
gressive visual analytics that automatically prioritizes computations
based on the analyst’s navigational behavior in the data. The intu-
ition is that navigation in data space is an indication of the analyst’s
interest in the data. Sherpa implementation provides computational
modules, such as statistics of biological inferences about gene reg-
ulation. The position of the navigation window on the genomic se-
quence over time is used to prioritize computations. In a study with
genomic and visualization analysts, we found that Sherpa provided
comparable accuracy to the offline condition, where computations
were completed prior to analysis, with shorter completion times. We
also provide a second example on stock market analysis.

1 INTRODUCTION

As per the definition of visual analytics (VA) [35], many VA applica-
tions require significant computations—such as clustering [19], word
embedding [14], and inferential statistics—to be run on new datasets
prior to presentation to the user. However, real-world datasets are
increasingly reaching a volume and complexity where such com-
putation can be forbiddingly costly in terms of time and resource
which the analyst may not be able to spare. To remedy this, big
data analytics [12] is increasingly turning to partial, progressive, and
incremental methods, where instead of waiting for computation to
finish prior to viewing the data, the user is shown an intermediate
view of the data that is continuously updated throughout the com-
putation [1, 47]. While advanced database techniques can provide
reliable partial results of even large datasets [13], we could be using

our computational resources more efficiently if we knew which part
of the data the user was interested in. For example, given ten years
of stock market data, clustering stock trends for each time segment
starting from the beginning of the recorded time period is inefficient
if the user is only interested in the stock from last year. Unfortu-
nately, to ensure efficient usage of the tool, most current interfaces
for this kind of computational steering [27, 43] of time-consuming
algorithms often require the user to have significant expertise of the
computation itself, which only few data analysts possess.

We propose SHERPA, a method for leveraging the user’s attention
to implicitly derive priorities for computational operations on a
dataset. The idea is straightforward: Sherpa provides a data space
view (Figure 1) where the user can control their current locus of
attention using a navigation window. For example, in the 10-year
stock market example, the user may pan and zoom their navigation
window to focus solely on the last year in the dataset. Sherpa uses
the dynamically changing navigation window to implicitly derive the
priority of computation for each portion of the dataset. The Sherpa
scheduler will prioritize finishing calculations for those areas of the
dataset that the user has expressed an interest in using the navigation
window. The main visualization will show a progressively updating
view of the currently selected subset of the data as computation
proceeds. Priorities decay over time, allowing the user to change
their focus throughout an analysis process.

The Sherpa method is independent of application, and could be
applied to any dataset provided that computations can be localized
to specific regions of the data, such as the stock market, time-series
data, and local network metrics. We have implemented Sherpa in
two application domains: genomics and stock market. In the human
genomics application, where multiple data modalities—gene expres-
sion and DNA methylation—across four cell types (colon, lung,
breast and thyroid) and their corresponding normal tissue are spa-
tially indexed over genomic position across 23 chromosomes (over



3 billion possible positions in total). The computations in this appli-
cation are statistical inferences that reveal mechanisms underlying
gene regulation and expression. The progressively updated visualiza-
tion (Figure 1) shows a track displaying gene location and structure
within the focused genomic region, another track displaying ge-
nomic blocks of significant methylation difference between tumor
and normal tissue, and a heatmap of gene expression across multiple
tissues. The tool will gradually add multiple small scatterplots and
block tracks to the main visualization view for statistically signif-
icant tests (based on correlation and block overlap computations).
The data space view uses the spatial position within the chromosome
to order data, and the user’s movement of the navigation window
will change the priorities of which data to compute.

We have evaluated our Sherpa implementation for the genomics
application under three conditions: (1) a classic static condition,
where only the final computation is shown to the user (which serves
as a baseline); (2) a progressively updating condition, where the
display updates as computation proceeds but where the user cannot
steer the computation; and (3) a Sherpa condition, where the user’s
navigational behavior on the sequence will steer the order of com-
putation. In our study, participants were asked to answer high-level
questions about specific aspects of the data. Our results show that
implicit computational steering using the Sherpa approach provides
significant time improvements for tasks that are specific to known
gene locations (e.g., specific genes of interest). This suggests that
computational steering can be beneficial for visual analytics, even
when the user lacks the expertise to control the computation.

We propose the following contributions: (1) the Sherpa method
for implicitly deriving computational priorities for a dataset based
on the user’s navigational behavior in data space as a proxy of their
attention; (2) a Sherpa implementation for genomic data (Sherpa
Gene) for multiple tracks over an entire chromosome sequence,
where the computation calculates test statistics based on genomic re-
gion overlaps and correlation of quantitative measurements indexed
by genomic location, as well as one for stock market data (Sherpa
Stock) for calculating market indicators at scale for a massive finan-
cial dataset; and (3) results from a user study comparing implicit
computational steering using Sherpa with two baseline conditions
for the genomics application.

2 BACKGROUND

Our work straddles several topics: computational steering, progres-
sive visual analytics, mixed-initiative interaction, and visit wear.

2.1 Computational Steering
Many computational algorithms, particularly for scientific and
simulation purposes, are extremely resource-intensive and time-
consuming, often requiring massive computational clusters. For this
reason, the notion of computational steering —interactive control
over a computation during execution [39]— is very attractive, as it
allows the scientist or engineer to guide the process in real-time in
order to faster converge on a desirable solution. Mulder et al. [27]
enumerate uses of computational steering as model exploration,
algorithm experimentation, and performance optimization. Exam-
ples of well-known computational steering environments include
SCIRun [28], Progress/Magellan [41, 42], and VASE [18]; some ap-
plications include fluid dynamics (CFD) [7], program and resource
steering [41], and high performance computing (HPC) platforms [4].

Most computational steering mechanisms are explicit, in that they
give the user control over the ongoing computation using operations
that are specific to the domain. However, this requires significant
expertise on behalf of the user. Recent efforts have focused on
coupling interactive visualization with computational steering to
display intermediate results as well as provide direct controls. World
Lines [44], Nodes on Ropes [45], and Visdom [32] are all examples
of such integrated steering environments, typically used to control

multiple runs of the same or related simulation models with slightly
perturbed inputs. Similarly, VASA [23] is a VA system for asyn-
chronous computational steering of large simulation pipelines.

2.2 Progressive Visual Analytics
The tremendous leap in computational power over the last few
decades has so far mostly benefited confirmatory analysis, where
the analyst initializes a model and executes it, waiting minutes,
hours, and sometimes days for the computation to finish. A more
exploratory data analysis [38], such as those supported by interac-
tive visualization and analytics [35], requires a tightly optimized
feedback loop with latency of at most 10 seconds (often around 0.5
seconds [25]). To make big data analytics [12] responsive in such
interactive and exploratory settings, recent work has proposed the
concept of progressive visual analytics (PVA) [1,47], where interme-
diate results are continuously fed back to the visualization to show
gradual progress. While PVA nominally includes computational
steering as one of its main components [47], few practical imple-
mentations provide steering capabilities. The original ProgressiVis
Python toolkit [11] has “optional input slots”, but these are never ex-
plained in detail. Zgraggen et al. [47] evaluate PVA for three output
conditions, including blocking, instantaneous, and progressive, but
do not involve user-controlled steering in their study. PANENE [20]
is a progressive tree structure for nearest neighbor computations, but
does not expose steering controls to users.

In contrast, Badam et al. [1] explore user interfaces for PVA in
particular, providing process controls (pause, stop, and progress bars)
and algorithm-specific options for controlling the ongoing execution.
However, the process controls are simplistic, whereas the algorithm
options merely expose the raw parameters of the computation, and
thus require some expertise to manipulate. The incremental query
visualizations proposed by Fisher et al. [13] provide similar basic
controls for pausing, resuming, and canceling an ongoing query. Fi-
nally, a recent progressive implementation of t-SNE dimensionality
reduction allows the user to control which part of the data to focus
on first [29]. This approach is highly relevant to our approach in that
it provides a user-controlled Magic Lens [5] that will also steer the
computation. However, the approach is specific to t-SNE, and does
not focus on the navigational behavior as a proxy for attention.

2.3 Mixed-Initiative Interaction
Computers are typically treated as tools, albeit highly advanced ones,
but new trends are proposing a computer-as-partner paradigm [2, 3],
where the digital medium itself is an active participant. One example
of this paradigm is mixed-initiative interaction, where people and
computers alike contribute to solving a task together [16, 17]. Inci-
dentally, this type of dialog between man and machine is a canonical
form of visual analytics [35], where a human’s analytical process is
aided by computational processes and visual interfaces.

Several examples of mixed-initiative interaction applied to visual-
ization exist. Endert et al. [8, 9] propose semantic interaction, where
the user’s interaction is back-propagated into statistical models, al-
lowing them to learn and change based on the user’s implicit input.
Finally, the VASA tool [23] lets the analyst explore “what-if” scenar-
ios by interleaving their decision-making with computer simulations
of weather, supply chains, and roads.

2.4 Visit Wear and View Mining
Examples of visit wear both include navigation histories [34], such
as for web browsers, as well as the geographic footprints on online
maps suggested by TrailMap [48] and GroupTrail [46].

What if we could determine user interest merely by what part
of a digital object they view? View mining uses machine learning
methods to extract common viewpoints based on user interaction
data. Singh and Balakrishnan [33] mine camera movements in 3D
space to extract optimal viewpoints for a scene. Most relevant to



Sherpa, Lagun and Lalmas [24] and Grusky et al. [14] study the
concept of “viewport time”—the position of a user’s viewport on a
document over time—as an indication of user attention. In Grusky’s
study, navigation behavior was strongly correlated with eye-tracking
data, yet requires no specific and costly hardware to capture.

3 ATTENTION FOR COMPUTATIONAL STEERING

The Sherpa model is an implicit form of computational steering for
priority-based processing of a dataset based on user’s attention. The
intuition behind the model is to prioritize computations on those
areas of the dataset that the user deems important. We derive user
attention from the location and dimensions of an interactive navi-
gation window on an overview representation of the dataset (data
space view). Figure 2 gives an overview of the Sherpa interface.

Figure 2: Overview of the Sherpa user interface components.

3.1 Basic Model
Sherpa is a general model that can be instantiated for specific ap-
plications, datasets, and computations. It makes a few assumptions
about the application that we outline below.

First of all, Sherpa requires a dataset with natural location-based
semantics; this could either be truly spatial, such as for locations on
a map or positions in a gene sequence, or temporal, such as positions
in time. The dataset should be of sufficient size where it cannot just
be trivially processed prior to shown to the user; in such a case, the
Sherpa method (or any other PVA method) is not necessary.

Second, Sherpa requires a corresponding computation on the
dataset that can be performed on data items in random order. In other
words, the computation must be parallelizable so that a particular
computation has no dependencies to results for other parts of the
data. Note that it is possible that computations could be restricted to
chunks of items—such as genes in a genome—instead of individual
items, as long as there are sufficiently many chunks so that their
order of computation is significant.

Third, the method requires a visualization that (1) can represent a
specific subset of the dataset, and (2) can be progressively updated
over time as new calculations are completed. The former property is
required so that the user’s navigation in data space actually affects
the main visualization view (otherwise there is no purpose of the
user to navigate in the data space view); the latter is also needed so
that the view can be refreshed as new results are produced.

3.2 Steering Functionality
Given an application that fulfills the above assumptions, Sherpa
maintains a central priority queue for each data item (or chunk of
items). The queue is initialized so that each item has the same prior-
ity at the start of computation, and the items are ordered based on

the semantic position in the dataset. Thus, if the priorities are never
changed, the computation will proceed from whatever is defined
as the “beginning” of the dataset to its “end.” The computation
executes one data item at a time, which has the highest priority but
is not processed in the queue at the time of execution.

Starting from when the Sherpa application is launched, a concur-
rent computational engine will run computation based on the priority
queue. A practical implementation will realize this engine either as
a background, multi-threaded process, or on the server side.

The Sherpa interface includes a basic steering panel, modeled
after work by Badam et al. [1], which provides simple steering con-
trols that interface with the computational engine: starting, stopping,
and pausing the computation. The panel also shows current progress.

3.3 Data Space View
Given a dataset with location semantics, the data space view is a
spatial representation of the dataset. Depending on the application,
the data view can be 1D or 2D in nature: for a gene sequence or
timeline, for example, it would be represented by a single dimension,
whereas for a geographic map or spatial data structure, it would be
two-dimensional. A key aspect of the data view is that it commu-
nicates the position in the dataset using labels, ticks, or grid lines
(or a combination of these), allowing users to orient themselves and
navigate accurately in the spatial dimension. The view also contains
a summary visualization, a priority queue, and a progress indicator.

3.4 Navigation Window
Finally, the navigation window on the data space view represents the
user’s attention on the dataset, which will guide the computational
steering. It is represented by its extents: for a one-dimensional
data space, this is a simple interval [emin,emax], whereas for a two-
dimensional one, it is a bounding box [xmin,ymin,xmax,ymax]. As
such, the navigation window is initialized at the beginning of the
exploration to cover the entire dataset [0,1] or [0,0,1,1] (inclusive).

Interacting with the navigation window can be done by panning
(translating the extents) or zooming (changing the size of the window
emax − emin). The main visualization window should be synchro-
nized to always display only the portion of the data that is currently
selected by the navigation window. Typically this is done by, for ex-
ample, moving the window by dragging on the window itself using
a mouse or finger touch (panning), changing window dimensions
by dragging on one of the window borders using a mouse or finger
(zooming), or changing the window size by rotating the mouse wheel
or pinching (zooming). The extents will be kept in the range [0,1].

Figure 3: Mining attention as navigational behavior over time.

3.5 Mining Attention
The final piece is leveraging the user’s attention. We use the naviga-
tional behavior of the user as a proxy for their attention. We base
this on the intuition that the user’s interaction with the navigation



window in data space is a representation of which part of the data
the user is interested in. The behavior of the navigation window is
then used to adjust the priority of each data item.

More specifically, we view attention as the position and dimen-
sion of the navigation window over time. Let us assume that the user
confers a constant 1.0 units of attention on the view per time unit.
If the entire dataset of N items (or segments of items) is within the
navigation window, then each item will be receiving 1.0/N units of
attention per time unit. No specific item will be receiving more atten-
tion than the others, leaving the priority queue unchanged. However,
if the navigation window is zoomed, reducing its size to a smaller
n < N, then all of the items still within the new navigation window
will be receiving 1.0/n of attention per time unit. Numerically in-
tegrating this attention over time will enable Sherpa to essentially
model user attention on the dataset (Figure 3).

Since attention may change over time, we also introduce a tempo-
ral decay function that gradually reduces the accumulated priority of
each data item over time. We have experimented with several decay
functions; the most useful is a radioactive decay function:

P(t) = P0

(
1
2

) t
t1/2

where P0 is the initial priority, t is the time parameter, and t1/2 is the
half-life of the priority decay. Values for specific constants will need
to be determined for each application.

Finally, while we have not focused on collaborative aspects in this
work, the method does allow for modeling the attention of multiple
analysts based on their navigational behavior on the data space view.
This will provide a mechanism for a team to collectively steer the
computation. However, the accumulation of attention over time may
have to be modified to prevent one user from gaming the system
by shrinking their navigation window to incur a high attention on a
small part of the dataset, thus prioritizing only their view.

4 SHERPA FOR GENOMICS DATA

To showcase the Sherpa framework, we developed an interactive
visual analytics tool—SHERPA GENE—that uses Sherpa to support
attention-based computational steering in functional genomics (Fig-
ure 1). This tool fulfills the general Sherpa requirements as follows:

• Dataset: We use genomics data, gene expression, and DNA
methylation indexed by location within the human genome.

• Computation: Our user group is interested in understanding
mechanisms in which DNA methylation regulates the expres-
sion of genes of interest in cancer and corresponding normal
tissue, and whether these mechanisms are consistent across dif-
ferent tumor types. To understand these mechanisms, statistical
inferences are used based on measuring correlation between
DNA methylation and gene expression within specific tissues
(understanding mechanism within tissue), correlation between
expression or DNA methylation across tissues (understanding
the consistency of mechanism across tissues), and overlap of
regions of differential methylation in cancer (understanding the
consistency of mechanism across tissues). The computations
required to calculate these statistical measures of biological
importance are easily parallelizable.

• Visualization: We use several progressive visualizations that
summarize the current focused region: a genes track indicat-
ing specific genes contained in the region of interest, a gene
expression heatmap showing similarity (and dissimilarity) of
expression for multipe tissues, scatterplots showing trends in
expression or DNA methylation within and across multiple
tissues, line tracks showing DNA methylation values at their

corresponding genomic position, and region tracks showing re-
gions of differential methylation in different tumor types from
which the overlap of these regions of interest can be observed.

The interactive workflow of Sherpa Gene typically involves ex-
ploring specific regions of interest. Therefore, we use the user’s
genomic location within the chromosome to steer the computation.

4.1 Dataset

Sherpa Gene contains human transcriptome data from the Gene
Expression Barcode Project [26] for 105 different tumor and normal
tissues. The database also contains methylation signal data [36] for
6 different tissue types and includes both cancer and tumor samples.
We selected four tissue types in the implementation: colon, thyroid,
breast, and lung, across two different conditions: tumor and normal.
Overall, the database contains over 50,000 rows of gene expression
data per gene and over 480,000 rows of DNA methylation data at
specific locations in the human genome. We also include regions
of differential DNA methylation between tumor and corresponding
normal tissue (referred to as “blocks”). The number of blocks range
from 1,000 to 2,000 regions across different cancer types.

4.2 Computational Algorithms

Our data includes three data modalities indexed by genomic location:
gene expression, DNA methylation at specific locations, and blocks
of differential DNA methylation between tumor and corresponding
normal tissue. While there are many types of computations that can
be applied to such data, Sherpa Gene implements the following:

• Promoter DNA Methylation-Gene Expression Correla-
tion: Correlation between the DNA methylation and gene
expression of specific tissues (normal and tumor). DNA methy-
lation is the best understood epigenetic mechanism of gene
regulation. Measuring the correlation between DNA methy-
lation and expression in a specific tissue provides insight into
this mechanism for specific genes in a tissue of interest.

• Methylation Block Overlaps: Identifying genomic regions
where DNA methylation is statistically different between tu-
mor and corresponding normal tissue is essential to understand
the role of DNA methylation in cancer. Once these regions of
interest are identified for each tumor type of interest, comput-
ing the overlap of these regions across tissues provides insight
about the consistency, or uniqueness, of this mechanism across
cancer types, which is a characteristic of biological importance.
We compute the ratio of block overlap between pairs of tissue
for a specific genomic region.

• Gene Expression or DNA Methylation Correlation: Corre-
lation between gene expressions or DNA methylation between
pairs tissues within a genomic region. This indicates similarity
in gene regulation between tissues. Similarities of interest are
those tumor types that show similar gene regulation, as well as
normal tissues that show similar gene regulation.

• t-test for Differential Expression or Differential Methyla-
tion: We also compute a t-statistic for expression or DNA
methylation between pairs of tissue within a genomic region.
We do this to measure the dissimilarity in gene regulation
across pairs of tissues. As above, dissimilarities of interest are
those tumor types that show different gene regulation, as well
as normal tissues that exhibit different gene regulation.



A

B

C ED

Figure 4: Example charts from Sherpa Gene (also see Figure 1 for the genes track and heatmap for gene expression across breast, colon,
thyroid, and lung tissues). (A): Methylated Block track: indicating differentially methylated genomic regions within which DNA methylation
is significantly different (according to an offline statistical inference) between tumor and the corresponding normal tissue for the four tissues
under study; (B): Methylation line track: shows the difference in DNA methylation between tumor and corresponding normal tissue at specific
genomic positions; (C): Scatterplot of gene expression for two different tissues, illustrating correlation between gene activity in those tissues;
(D, E): Scatterplot of gene expression for two tissues, illustrating difference of gene expression in those two tissues measured by a t-statistic.

Figure 5: Detail of a chromosome ideogram—an idealized depic-
tion of a chromosome—used as a data space view in Sherpa Gene.
Navigating the chromosome will steer the server-side computation.

4.3 Steering Interface

Our prototype implements the Sherpa steering interface at the bottom
of the display. The steering control panel (Fig. 1) allows for starting
and stopping the server-side computation. The data space view is
implemented as a chromosome ideogram (Figure 5), which is an
idealized graphic representation of a chromosome. The navigation
window is a yellow region showing the current focus. A progress
bar shows the current status, which will gradually begin to fill in
with a transparent blue color as the computation proceeds.

Moving the navigation window on the data space ideogram will
both steer the computation as well as govern which visualizations
will be shown in the main view (see below). Pilot testing caused us
to immediately give regions inside the navigation window in Sherpa
Gene top priority. If the user does not navigate, or if the computation

for a specific focus region has finished, the computation will continue
on other genomic regions based on accumulated priorities.

4.4 Progressive Visualization
The main view of Sherpa Gene is consumed by progressive visual-
izations that show the currently selected genomic region of focus.
Additional charts showing results are added as they are produced.

More specifically, the genes track (Fig. 1) is shown in the top of
the main view to provide an overview of the genes within a region.
A heatmap (Fig. 1) with cell and tissue types as rows, and genes
as columns allows for comparing expression values. Methylation
block overlaps (Fig. 4A) are shown in a stacked blocks track for all
tumor types. A DNA methylation values line track (Fig. 4B) makes
it possible to investigate changes and trends in detail. The space
below these charts is used for adding scatterplots (Fig. 4C, D, E),
one by one, each representing correlations in expression or DNA
methylation between normal and tumor tissue types.

4.5 Implementation Notes
The Sherpa Gene implementation uses a client/server architecture.
The client interface was developed with modern web technology:
HTML5, JavaScript, and CSS3, along with Polymer 2.0 [31] and
the Epiviz web component library [21]. The backend server consists
of (1) a MySQL database, which stores the genomic data; (2) the
Epiviz data provider [10], which extracts data from database; and (3)
a computational server, that runs all the computations and provides
a websocket endpoint using the Python Flask framework. The data
provider ensures fast retrieval of the data from the MySQL server,
and the websocket connection enables streaming results back from
server to client through chunks when one batch is finished.



5 QUALITATIVE EVALUATION

The goal of the Sherpa toolkit is to enable an analyst to steer a compu-
tational process using their navigation alone. Thus, we are building
on the notion of progressive visual analytics [11], which does include
both visual updates (output) as well as computational steering (in-
put), but which does not stipulate how computation should be guided.
Our hypothesis is that the interest-based computational steering (pro-
gressive input and output) that Sherpa embodies will perform better
than just gradually updating the visualization (progressive output
only). To test this hypothesis, we conducted a qualitative expert
review [37] using our Sherpa Gene implementation.

5.1 Participants
We recruited in total 5 participants (4 male, 1 female): 2 from a
visualization group and 3 from a bioinformatics lab at our university.
Participants were between 24 and 33 years of age, had normal or
corrected-to-normal vision, and were experienced computer users. In
particular, all participants had significant experience in visualization,
bioinformatics, or computer science, had research training, and were
well-versed in visualization and genomics.

5.2 Experimental Design
We organized each session into three within-participant conditions:

• Blocked: In this condition, the computation was completed
prior to a trial commenced, thus giving the user immediate ac-
cess to the full results. The participants were merely informed
of the full execution time required to perform this computa-
tion (5-6 minutes depending on genome size); they were not
required to wait for the duration of this time. The experimen-
tal software used was our genomics prototype application—
Sherpa Gene, as described in the previous section—but with
progressive and steering functionality disabled.

• Progressive output: Here, the computation was launched at
the same time as the trial was started, but the Sherpa attention-
based steering functionality in our tool was disabled. Thus, the
computation proceeded from the beginning of the genome until
it reached its end (which, as stated above, took approximately
5-6 minutes). During this time, the main visualizations in the
genomic application were progressively updated, and partici-
pants could interact with the tool to perform tasks. Participants
could use the data space view and navigation window to move
around the dataset, but their navigation was not used to modify
priorities; i.e., there was no computational steering support.

• Progressive output & input: In this condition, we enabled the
full Sherpa functionality, including attention-based computa-
tional steering. Computation started simultaneously with the
trial, and participants had full access to all features of the tool.

5.3 Task and Procedure
For the purposes of the expert review, we asked our participants to
answer a collection of five tasks related to a specific chromosome.
With three conditions, we created three separate such sets of tasks
for three different chromosomes. These were balanced between the
three conditions, but the order of conditions was always the same to
enable precomputation to finish prior to each session for the initial
blocked condition. Given that our study is qualitative, we think that
the lack of counterbalancing had little impact on our results. In
fact, presenting the non-progressive version first, where all data is
immediately available, provides a useful baseline comparison.

Participants were encouraged to solve tasks in any order. We
asked participants to follow a think-aloud protocol, and recorded
their utterances. The experimenter took extensive notes, and the soft-
ware stored an interaction log. Each session lasted 45–55 minutes.

The tasks were exclusively location-based in nature, i.e., about
genomic regions containing a specific gene of interest that a par-
ticipant could navigate to using the data view. While this certainly
favors the Sherpa method, where navigational behavior will affect
computation order, this was precisely the purpose of our expert re-
view. We wanted to understand the utility of this method rather than
study completion time and task accuracy for a fully ecologically
valid use case. We leave such studies for future work.

6 RESULTS

We first report results from the evaluation as well as the think-aloud
comments, then describe observations and post-study interviews.

6.1 Performance Results
All five participants successfully finished the tasks in all three exper-
imental conditions. When first starting the application, participants
all experimented with the data space view and navigation window to
understand the steering functionality. They were pleased to see re-
sults gradually update as computation proceeded in the background.
One participant said, “I don’t care about how the computation works,
but I think showing intermediate results is absolutely necessary.”

Compared with the progressive output condition, the Sherpa func-
tionality gave participants more perceived control over the visualiza-
tions, thus making it easier to access the results. While we did not
measure the time for individual tasks, we observed that participants
spent less time in total to finish the tasks in the Sherpa condition than
with progressive output. Three participants said they were frustrated
when they realized there was no interactive steering in this condition.
With respect to the blocked condition, where computations were
pre-completed, the overall usage time for finishing all five tasks was
only slightly faster than the Sherpa condition.

6.2 Usability Feedback
Overall, participants were all very interested in the Sherpa frame-
work and praised our effort at combining computational steering
and visual analytics. All participants thought Sherpa Gene was very
useful for exploratory analysis, and 2 participants said that it was
even more helpful for search tasks, in which one needs to explore
multiple regions within the data, such as “find the region that has the
highest correlation between colon tumor and normal tissue.” One
participant mentioned that the prototype application “makes me mo-
tivated to control the computation,” essentially forming an analytical
partnership between the user and the computer [6]. When given
a task where participants needed to look into multiple regions to
find the answer, e.g., a search task, they would navigate to those
regions and get familiar with the results, which would be progres-
sively computed based on the navigation. In other words, the use of
attention as a prompt conformed well with our participant’s intuition
when foraging for information [30]. Furthermore, one participant
said, “different orders of exploration [computations] may produce
more insights, which users can control easily [in Sherpa].” From
our observations, we also saw that participants often selected diverse
regions seemingly at random (many not related to the task) to merely
gain understanding about the data.

As for the conditions in the study, all five participants thought
the Sherpa condition was the superior one. Three stated that the
blocked condition with pre-loaded computations was not appropriate
because a common task is to just get a quick view of a small region
in the dataset, and they would not want to wait for all computation
to finish. One noted that pre-loading all computations in one shot
is not feasible. Pre-computing results may also incur unnecessary
waiting time since different tasks may need different computations.

Surprisingly, the progressive output condition was the least pre-
ferred condition. One participant claimed that he would not want to
use a tool without steering: “When I select a region, I’d like to see
the results [in that region], that’s the purpose of my selection.”



One participant also suggested the tool would be useful in the un-
derstanding of how disease correlates with gene regulations, where
analysts would navigate to genes with similar functionality on the
same disease but which may not be located closely w.r.t. position.

6.3 Points of Improvements
Participants also provided valuable suggestions on how our tool can
be improved. Two participants thought that it would be useful to
maintain a history of user-selected regions. This may be particularly
helpful for complex tasks that require comparing data across multiple
regions. In a way, our numerical integration of priority over time
does serve this purpose, as it will “remember” parts of the data space
the user has visited, and prioritize their computation.

Beyond that, some participants felt that our visualizations easily
become difficult to understand when the corresponding computations
are complex. While not strictly related to our method, it is true that
progressively updating visualizations exacerbates such complexity.

Finally, one participant also raised a concern about the trade-offs
between how much computational power the user wants to leverage
and how fast steering should work. While this is an interesting
question, it is beyond the scope of this paper.

7 SHERPA FOR STOCK MARKET DATA

We also present SHERPA STOCK, which applies Sherpa to attention-
based market indicators for massive stock market data (Figure 6):

• Dataset: We use market data for a set of stocks on a daily basis,
including the stock name, price at opening/closing, high and
low prices during the day, and volume traded. The temporal
dimension is the Sherpa location. Our example here uses an
S&P 500 dataset,1 but obviously any such data can be used.

• Computation: We calculate several standard market indicators
on a daily basis using the dataset: moving averages, autocor-
relation with specific lags, and cross-correlations between the
pairs of stocks. In order to fulfill the parallelizability require-
ment, our calculations must be independent of calculations for
other time points in the dataset. While this is not a concern, it
also means that several optimizations (for example, a global
moving average) cannot be used. With 500 stocks over 5 years,
our calculations usually take 8-10 seconds per day to complete.

• Visualization: Our implementation uses a single progressive
line graph visualization for different market indicators as well
as stock prices (Figure 6). The line graph will progressively fill
in with visual data points as the computations are completed.

Stock market analysis is often closely tied to positions in time.
For this reason, we use temporal navigation to steer the computation.

7.1 Steering Interface
The Sherpa steering interface in Sherpa Stock is located at the bottom
of the display (Figure 7). The data space view essentially provides
an overview of the full time period covered by the dataset as a
timeline. The navigation window is a light gray rectangle on top of
the data space, and moving or resizing this rectangle—by dragging
or rolling the mouse wheel—will change the position or extents of
the data in the main visualization window. In other words, using the
“overview+detail” model [15], the data space is the overview, and
the main line graph is the detail.

The data space shows a low-fidelity version of the stock market
index over the full time period. Furthermore, the data space will
show the actual plot for regions that the computations have finished,
an approximation line for those that the computations have not. The
exact order of the computation is obviously controlled by the Sherpa

1https://www.kaggle.com/camnugent/sandp500

attention-based steering mechanism, but the entire data space will
eventually be filled in with exact data points when the computation
has finished for the whole dataset.

7.2 Implementation Notes
Sherpa Stock uses the same basic Sherpa framework and architec-
ture as Sherpa Gene, including a client/server architecture based on
HTML5, JavaScript, and CSS3. The frontend uses Google Polymer
2.0 [31] for user interface and web components. The backend server
communicates with the client using a Python Flask interface. All
computations on stock market indicators are performed using a com-
putational engine built in Python. The prototype uses a stock market
dataset stored as a local (uploaded) file; a realistic implementation
would instead query a financial data provider for full flexibility.

8 DISCUSSION

Here we attempt to explain our results for implicit computational
steering and then discuss limitations of our work.

8.1 Explaining the Results
In the user study with Sherpa Gene, the framework provided a sig-
nificant advantage for participants solving location-based tasks, par-
ticularly when the task involves searching through multiple regions.
Compared with only progressive visualization and pre-computed
conditions, participants were more engaged in the exploratory data
analysis process in the Sherpa condition. This is not surprising:
steering, even implicitly using navigation behavior, provides direct
control over the computation. With no steering, participants could
not see the outputs for a region until computation was finished.

However, we were somewhat surprised to see only a small dif-
ference between Sherpa and the pre-computed condition—the gold
standard, where all results were immediately available. One ex-
planation is that in Sherpa Gene, the individual computations are
lightweight and can be finished quickly, which means that navigat-
ing to a specific region will quickly yield results. Initial results
would come in within just half a minute, which would not be much
slower than for the precomputed condition. A more time-consuming
server-side computation would not yield the same responsiveness.

Another surprising observation is that all participants preferred
the blocked over the progressive output condition. This indicates
that interaction is an essential part of PVA. These results cause
us to speculate that progressive visualization without steering may
actually have a negative effect on user experience. Of course, we did
not compare the output-only condition to a truly blocked condition
where the participants had to sit through a progress bar slowly filling
up for the entire duration of the computation.

8.2 Limitations
As mentioned before, the tasks in our evaluation were all location-
based questions. This was intentional to elicit findings specifically
about Sherpa’s steering functionality, but means that the study is not
fully representative of realistic genomics workflows. Future studies
should include more general and ecologically valid tasks.

While we are using a real-world genomics dataset [26], we se-
lected our computations to be parallelizable so that they would fit
within the Sherpa framework, which is certainly not true of all algo-
rithms used for functional genomics. Nevertheless, we believe they
were complex enough to generate realistic exploratory tasks that
enabled studying the utility of Sherpa. Besides, the visualization in
Sherpa Gene draw from the Epiviz framework [21], which has been
proven to be easily scalable and reusable to other genomics datasets.

As a result, however, our evaluation using Sherpa Gene involved
computations that merely lasted 5-6 minutes in total to finish. This
was a deliberate choice to balance the various conditions: it would
have been quite frustrating for our participants if we had forced them
to wait up to, say, 30 minutes to complete the trials in the progressive

h


S&P 500 
Stock Index Price

Google 
Stock Price

Apple
Stock Index Price

Steering Control

Data Space View

Figure 6: Example of the Sherpa Stock application being used to calculate market indicators for 10 years of the S&P 500 stocks. This image
shows three visualizations within the focused region: S&P 500 index, Apple, and Google stock price. The bottom overview visualization is the
data space view that user controls the gray navigation window.

Text shows current focused date Current focus region

Region finished 
computation

Approximation line
computation unfinished 

Figure 7: Detail of the Sherpa Stock timeline. The line graph
visualization shows a stock market index—the S&P 500 in this
case—as an abstraction of the stock market behavior over time.
The gray rectangle shows the position of the navigation window.
Unfinished regions will show a straight line as an approximation.

output condition. Needless to say, it is trivial to add on a significant
amount of computation for genomic data such as this. In fact, our
Sherpa Gene tool is built to be modular and extensible so that it can
easily be customized with the computations our users require.

You could even argue that a more realistic setting would require
participants in the blocked condition to sit and stare at a progress
bar while the computation completed. Such an approach is, after all,
currently dominant in tools such as this. Again, we chose to skip the
waiting stage entirely and instead merely presented the final result in
the interest of making our participants’ experience less frustrating.

Finally, utilizing navigation behavior for computational steering
is susceptible to a variant of the “Midas touch” problem in HCI [40]:
distinguishing between interaction for exploration (implicit) vs. in-
teraction for selection (explicit). Put differently, some navigation
behavior may not be a direct indication of interest, but rather merely
a form of epistemic action [22] (cf. pragmatic ones) that helps the an-
alyst get an overview of the dataset. We saw indications of this in our
study: some participants would idly “click around” on the ideogram
bar to view various regions. We see this as a caution against attempt-
ing to infer too much from navigation behavior alone.

9 CONCLUSION AND FUTURE WORK

While the emergent research topic of progressive visual analytics
(PVA) provides an exciting, realistic, and future-proof method for
managing even massive datasets in an interactive workflow [11, 47],
existing PVA systems have—with a few exceptions [1, 14]—largely
left the input side of the equation unexplored. To remedy this, we
have proposed the SHERPA method for computational steering in
PVA based on user navigation, thus eliminating the need for the
analyst to explicitly control the computation order. We implemented
two use case examples with genomic data (Sherpa Gene) and stock
market data (Sherpa Stock). Results from our expert review with
bioinformaticians using Sherpa Gene for genomics analysis provide
empirical validation for our approach; while obviously having imme-
diate access to computational results is preferable, our participants
felt that the Sherpa model was more empowering and efficient than
merely seeing progressive visual updates. We also presented another
illustrative example of how the Sherpa model could be applied to
financial stock market data evolving over time.

In the future, we intend to explore the Sherpa model further,
including applying it to new datasets and computations, integrating
it with an insight notification system [6], and investigating additional
implicit computational steering mechanisms beyond navigation. We
are also interested in studying how mining attention using Sherpa
can be best realized for collaborative data analysis.

ACKNOWLEDGMENTS

This work was partially supported by the U.S. National Institutes of
Health grant R01GM114267. The funders had no role in study de-
sign, data collection and analysis, decision to publish, or preparation
of the manuscript.

REFERENCES

[1] S. K. Badam, N. Elmqvist, and J.-D. Fekete. Steering the craft: UI
elements and visualizations for supporting progressive visual analytics.



Computer Graphics Forum, 36(3):491–502, 2017. doi: 10.1111/cgf.
13205

[2] M. Beaudouin-Lafon. Instrumental interaction: an interaction model
for designing post-WIMP user interfaces. In Proceedings of the ACM
Conference on Human Factors in Computing Systems, pp. 446–453.
ACM, New York, NY, USA, 2000. doi: 10.1145/332040.332473

[3] M. Beaudouin-Lafon. Designing interaction, not interfaces. In Pro-
ceedings of the ACM Conference on Advanced Visual Interfaces, pp.
15–22. ACM, New York, NY, USA, 2004. doi: 10.1145/989863

[4] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali.
Parallel computational steering and analysis for HPC applications
using a ParaView interface and the HDF5 DSM virtual file driver. In
Proceedings of the Eurographics Conference on Parallel Graphics
and Visualization, pp. 91–100. Eurographics Association, Geneva,
Switzerland, 2011. doi: 10.2312/EGPGV/EGPGV11/091-100

[5] E. Bier, M. Stone, and K. Pier. Enhanced illustration using magic
lens filters. IEEE Computer Graphics and Applications, 17(6):62–70,
Nov./Dec. 1997. doi: 10.1109/38.626971

[6] Z. Cui, S. K. Badam, A. Yalçin, and N. Elmqvist. DataSite: Proactive
visual data exploration with computation of insight-based recommen-
dations. Information Visualization, 18(2):251–267, 2019. doi: 10.
1177/1473871618806555

[7] H. Doleisch, H. Hauser, M. Gasser, and R. Kosara. Interactive fo-
cus+context analysis of large, time-dependent flow simulation data.
Simulation, 82(12):851–865, 2006. doi: 10.1177/0037549707078278

[8] A. Endert, P. Fiaux, and C. North. Semantic interaction for visual text
analytics. In Proceedings of the ACM Conference on Human Factors in
Computing Systems, pp. 473–482. ACM, New York, NY, USA, 2012.
doi: 10.1145/2207676.2207741

[9] A. Endert, S. Fox, D. Maiti, and C. North. The semantics of clustering:
analysis of user-generated spatializations of text documents. In Pro-
ceedings of the ACM Conference on Advanced Visual Interfaces, pp.
555–562. ACM, New York, NY, USA, 2012. doi: 10.1145/2254556.
2254660

[10] Epiviz data provider, 2018. doi: 10.5281/zenodo.1422712
[11] J.-D. Fekete. ProgressiVis: a toolkit for steerable progressive analytics

and visualization. In Proceedings of the IEEE VIS Workshop on Data
Systems for Interactive Analysis, p. 5. IEEE, Piscataway, NJ, USA,
2015.

[12] D. Fisher, R. DeLine, M. Czerwinski, and S. M. Drucker. Interactions
with big data analytics. ACM Interactions, 19(3):50–59, 2012. doi: 10.
1145/2168931.2168943

[13] D. Fisher, I. Popov, S. Drucker, and m. c. schraefel. Trust me, i’m
partially right: incremental visualization lets analysts explore large
datasets faster. In Proceedings of the ACM Conference on Human
Factors in Computing Systems, pp. 1673–1682. ACM, New York, NY,
USA, 2012. doi: 10.1145/2207676.2208294

[14] M. Grusky, J. Jahani, J. Schwartz, D. Valente, Y. Artzi, and M. Naaman.
Modeling sub-document attention using viewport time. In Proceedings
of the ACM Conference on Human Factors in Computing Systems, pp.
6475–6480. ACM, New York, NY, USA, 2017. doi: 10.1145/3025453.
3025916

[15] K. Hornbaek, Bederson, B. B., and C. Plaisant. Navigation patterns
and usability of zoomable user interfaces with and without an overview.
ACM Transactions on Computer-Human Interaction, 9(4):362–389,
2002. doi: 10.1145/586081.586086

[16] E. Horvitz. Principles of mixed-initiative user interfaces. In Proceed-
ings of the ACM Conference on Human Factors in Computing Systems,
pp. 159–166. ACM, New York, NY, USA, 1999. doi: 10.1145/302979.
303030

[17] E. J. Horvitz. Reflections on challenges and promises of mixed-
initiative interaction. AI Magazine, 28(2):3, 2007. doi: 10.1609/aimag.
v28i2.2036

[18] D. J. Jablonowski, J. D. Bruner, B. Bliss, and R. B. Haber. VASE: The
visualization and application steering environment. In Proceedings of
the ACM/IEEE Conference on Supercomputing, pp. 560–569. IEEE,
Piscataway, NJ, USA, 1993. doi: 10.1109/SUPERC.1993.1263505

[19] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.
ACM Computing Surveys, 31(3):264–323, 1999. doi: 10.1145/331499.
331504

[20] J. Jo, J. Seo, and J.-D. Fekete. PANENE: A progressive algorithm
for indexing and querying approximate k-nearest neighbor. IEEE
Transactions on Visualization and Computer Graphics, PP(1):1–14,
2018. To appear. doi: 10.1109/TVCG.2018.2869149

[21] J. Kancherla, A. Zhang, B. Gottfried, and H. C. Bravo. Epiviz web
components: reusable and extensible component library to visualize
functional genomic datasets. F1000Research, 7, 2018. doi: 10.12688/
f1000research.15433.1

[22] D. Kirsh and P. P. Maglio. On distinguishing epistemic from prag-
matic action. Cognitive Science, 18(4):513–549, 1994. doi: 10.1207/
s15516709cog1804 1

[23] S. Ko, J. Zhao, J. Xia, S. Afzal, X. Wang, G. Abram, N. Elmqvist,
L. Kne, D. V. Riper, K. P. Gaither, S. Kennedy, W. J. Tolone, W. Rib-
arsky, and D. S. Ebert. VASA: Interactive computational steering
of large asynchronous simulation pipelines for societal infrastruc-
ture. IEEE Transactions on Visualization and Computer Graphics,
20(12):1853–1862, 2014. doi: 10.1109/TVCG.2014.2346911

[24] D. Lagun and M. Lalmas. Understanding user attention and engage-
ment in online news reading. In Proceedings of the ACM Conference
on Web Search and Data Mining, pp. 113–122. ACM, New York, NY,
USA, 2016. doi: 10.1145/2835776.2835833

[25] Z. Liu and J. Heer. The effects of interactive latency on exploratory
visual analysis. IEEE Transactions on Visualization and Com-
puter Graphics, 20(12):2122–2131, 2014. doi: 10.1109/TVCG.2014.
2346452

[26] M. N. McCall, H. A. Jaffee, S. J. Zelisko, N. Sinha, G. Hooiveld,
R. A. Irizarry, and M. J. Zilliox. The gene expression barcode 3.0:
Improved data processing and mining tools. Nucleic Acids Research,
42(D1):D938–D943, 2013. doi: 10.1093/nar/gkt1204

[27] J. D. Mulder, J. J. van Wijk, and R. van Liere. A survey of computa-
tional steering environments. Future Generation Computer Systems,
15(1):119–129, Feb. 1999. doi: 10.1016/S0167-739X(98)00047-8

[28] S. G. Parker and C. R. Johnson. SCIRun: A scientific programming en-
vironment for computational steering. In Proceedings of the ACM/IEEE
Conference on Supercomputing. IEEE, Piscataway, NJ, USA, 1995.
doi: 10.1145/224170

[29] N. Pezzotti, B. P. F. Lelieveldt, L. van der Maaten, T. Hollt, E. Eise-
mann, and A. Vilanova. Approximated and user steerable tSNE for
progressive visual analytics. IEEE Transactions on Visualization and
Computer Graphics, 23(7):1739–1752, July 2017. doi: 10.1109/TVCG
.2016.2570755

[30] P. Pirolli and S. Card. The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis. In
Proceedings of the International Conference on Intelligence Analysis,
vol. 5, pp. 2–4. The MITRE Corporation, McLean, VA, USA, 2005.

[31] Polymer. https://www.polymer-project.org/, 2019.
[32] H. Ribicic, J. Waser, R. Fuchs, G. Bloschl, and E. Gröller. Visual

analysis and steering of flooding simulations. IEEE Transactions on
Visualization and Computer Graphics, 19(6):1062–1075, 2013. doi: 10
.1109/TVCG.2012.175

[33] K. Singh and R. Balakrishnan. Visualizing 3D scenes using non-
linear projections and data mining of previous camera movements. In
Proceedings of the International Conference on Computer Graphics,
Virtual Reality, Visualisation and Interaction in Africa, pp. 41–48.
ACM, New York, NY, USA, 2004. doi: 10.1145/1029949.1029956

[34] A. Skopik and C. Gutwin. Improving revisitation in fisheye views with
visit wear. In Proceedings of the ACM Conference on Human Factors
in Computing Systems, pp. 771–780. ACM, New York, NY, USA, 2005.
doi: 10.1145/1054972.1055079

[35] J. J. Thomas and K. A. Cook. Illuminating the Path: The Research and
Development Agenda for Visual Analytics. IEEE Computer Society
Press, Los Alamitos, CA, USA, 2005.

[36] W. Timp, H. C. Bravo, O. G. McDonald, M. Goggins, C. Umbricht,
M. Zeiger, A. P. Feinberg, and R. A. Irizarry. Large hypomethylated
blocks as a universal defining epigenetic alteration in human solid
tumors. Genome Medicine, 6(8):61, 2014. doi: 10.1186/s13073-014
-0061-y

[37] M. Tory and T. Möller. Evaluating visualizations: Do expert reviews
work? IEEE Computer Graphics and Applications, 25(5):8–11, 2005.
doi: 10.1109/MCG.2005.102

https://www.polymer-project.org/


[38] J. W. Tukey. Exploratory Data Analysis. Pearson, Reading, MA, USA,
1977.

[39] R. van Liere, J. D. Mulder, and J. J. van Wijk. Computational steering.
Future Generation Computer Systems, 12(5):441–450, Apr. 1997. doi:
10.1016/S0167-739X(96)00029-5

[40] B. M. Velichkovsky, A. Sprenger, and P. Unema. Towards gaze-
mediated interaction: Collecting solutions of the ”Midas touch prob-
lem”. In Proceedings of the INTERACT Conference, pp. 509–516.
Springer, Boston, MA, USA, 1997. doi: 10.1007/978-0-387-35175-9 7

[41] J. Vetter and K. Schwan. Progress: A toolkit for interactive program
steering. In Proceedings of the International Conference on Parallel
Processing, pp. 139–142. CRC Press, Boca Raton, USA, 1995.

[42] J. Vetter and K. Schwan. High performance computational steering
of physical simulations. In Proceedings of the International Parallel
Processing Symposium, pp. 128–132. IEEE, Piscataway, NJ, USA,
1997. doi: 10.1109/IPPS.1997.580866

[43] J. S. Vetter. Computational steering annotated bibliography. SIGPLAN
Notices, 32(6):40–44, 1997. doi: 10.1145/261353.261359

[44] J. Waser, R. Fuchs, H. Ribicic, B. Schindler, G. Bloschl, and E. Gröller.
World lines. IEEE Transactions on Visualization and Computer Graph-

ics, 16(6):1458–1467, 2010. doi: 10.1109/TVCG.2010.223
[45] J. Waser, H. Ribicic, R. Fuchs, C. Hirsch, B. Schindler, G. Bloschl, and

E. Gröller. Nodes on ropes: A comprehensive data and control flow for
steering ensemble simulations. IEEE Transactions on Visualization and
Computer Graphics, 17(12):1872–1881, 2011. doi: 10.1109/TVCG.
2011.225

[46] Y. L. Wong, J. Zhao, and N. Elmqvist. Evaluating social navigation vi-
sualization in online geographic maps. International Journal of Human-
Computer Studies, 31(2):118–127, 2015. doi: 10.1080/10447318.2014.
959106

[47] E. Zgraggen, A. Galakatos, A. Crotty, J.-D. Fekete, and T. Kraska. How
progressive visualizations affect exploratory analysis. IEEE Transac-
tions on Visualization and Computer Graphics, 23(8):1977–1987, 2017.
doi: 10.1109/TVCG.2016.2607714

[48] J. Zhao, D. Wigdor, and R. Balakrishnan. TrailMap: facilitating infor-
mation seeking in a multi-scale digital map via implicit bookmarking.
In Proceedings of the ACM Conference on Human Factors in Comput-
ing Systems, pp. 3009–3018. ACM, New York, NY, USA, 2013. doi:
10.1145/2470654.2481417


	Introduction
	Background
	Computational Steering
	Progressive Visual Analytics
	Mixed-Initiative Interaction
	Visit Wear and View Mining

	Attention for Computational Steering
	Basic Model
	Steering Functionality
	Data Space View
	Navigation Window
	Mining Attention

	Sherpa for Genomics Data
	Dataset
	Computational Algorithms
	Steering Interface
	Progressive Visualization
	Implementation Notes

	Qualitative Evaluation
	Participants
	Experimental Design
	Task and Procedure

	Results
	Performance Results
	Usability Feedback
	Points of Improvements

	Sherpa for Stock Market Data
	Steering Interface
	Implementation Notes

	Discussion
	Explaining the Results
	Limitations

	Conclusion and Future Work

