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Fig. 1: Summary of the Scanner Deeply pipeline. Pipeline for developing a gaze prediction model that, given an image as an
input, produces a saliency map for an image containing a visualization. First, we collect more than 10,000 images that contain one
chart per image (A). Second, using the collected images we conduct a crowdsourced study on Amazon Mechanical Turk to gather
gaze logs using a webcam eyetracker (B). Third, using the image collection with gaze log annotations, we train a model called
SimpleNet, a CNN-based neural network model (C). Gaze predictions are shown in (D) in the form of saliency maps.

Abstract—Visual perception is a key component of data visualization. Much prior empirical work uses eye movement as a proxy to
understand human visual perception. Diverse apparatus and techniques have been proposed to collect eye movements, but there is
still no optimal approach. In this paper, we review 30 prior works for collecting eye movements based on three axes: (1) the tracker
technology used to measure eye movements; (2) the image stimulus shown to participants; and (3) the collection methodology used to
gather the data. Based on this taxonomy, we employ a webcam-based eyetracking approach using task-specific visualizations as
the stimulus. The low technology requirement means that virtually anyone can participate, thus enabling us to collect data at large
scale using crowdsourcing: approximately 12,000 samples in total. Choosing visualization images as stimulus means that the eye
movements will be specific to perceptual tasks associated with visualization. We use these data to propose a SCANNER DEEPLY, a
virtual eyetracker model that, given an image of a visualization, generates a gaze heatmap for that image. We employ a computationally
efficient, yet powerful convolutional neural network for our model. We compare the results of our work with results from the DVS model
and a neural network trained on the Salicon dataset. The analysis of our gaze patterns enables us to understand how users grasp the
structure of visualized data. We also make our stimulus dataset of visualization images available as part of this paper’s contribution.

Index Terms—Gaze prediction, visualization, webcam-based eye-tracking, crowdsourcing, deep learning.

1 INTRODUCTION

Your eyes are not just windows to your soul, but also to your ability
to read and perceive the visual content on a computer screen. Thus,
the ability to detect, track, and predict one’s eye movements is used
in numerous fields such as computer vision [32, 63], human-computer
interaction [27, 48], and natural language processing [2, 12]. This is
doubly true for data visualization, where tracking the user’s gaze on
an interactive chart is key to understanding sophisticated mechanisms
behind how humans perceive them [3,35]. However, current eyetracker
hardware is bulky and costly, thus preventing widespread use, and the
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resulting data is often large in scope and difficult to interpret. Recent
progress in machine learning and computer vision has made web-based
eyetracking using standard webcams feasible [33, 52, 55]. However,
such techniques tend to be less accurate than specialized eyetracking
hardware and are sensitive to varying lighting conditions, webcam
placement, and even the user’s appearance.

At the same time, universally available eyetracking would undoubt-
edly be highly useful during the design and development phases of a
data visualization, allowing the designer to quickly gauge the appear-
ance and salience of a visual representation. What if you could, for
example, figure out whether a peak in data stands out, or if a relation-
ship between two items can be seen in the visual clutter? However, to
the best of our knowledge, such functionality does not yet exist.

In this paper, we propose a virtual eye tracker using deep learning—a
SCANNER DEEPLY—that, given an image of a visualization as an input,
automatically generates a gaze heatmap for the image. Figure 1 outlines
our approach for developing this deep learning-based eye tracker. We
first gathered a large corpus of some 11,000 visualization images from
the web. Then we collected eyetracking data at scale by conducting a
crowdsourced user study on Amazon Mechanical Turk that leverages an
existing webcam-based eyetracking technique [55] to collect gaze logs
for our visualization corpus. We used these images and the annotated



Table 1: Taxonomy of prior work. We categorize the 30 papers that collect eye movement data with three dimensions: (1) the tracker, (2) image
stimulus, and (3) collection methodology. Note that the papers are listed in chronological order. We found that there is no work that employs the
same collection approach as ours, i.e., collecting webcam-based crowdsourcing eye movements on chart images.

Title (shortened) Year Eyetracker Image Stimulus Collection Methodology

1 A Model of Saliency-Based Visual Attention for Rapid... [26] 1998 eyetracker natural lab experiment
2 Using Eye Tracking to Investigate Graph Layout... [25] 2007 eyetracker charts lab experiment
3 Visual Perception of Parallel Coordinate Visualizations [64] 2009 eyetracker charts lab experiment
4 Learning to Predict Where Humans Look [30] 2009 eyetracker natural lab experiment
5 Eye Movements During Mindless Reading... [59] 2010 eyetracker texts lab experiment
6 Evaluation of Traditional, Orthogonal, and Radial... [6] 2011 eyetracker charts lab experiment
7 Findings while Investigating Visualizations for... [35] 2012 eyetracker table lab experiment
8 User-Adaptive Information Visualization - Using Eye... [66] 2013 eyetracker charts lab experiment
9 Predicting Affect from Gaze Data During Interaction... [28] 2014 eyetracker texts lab experiment
10 A Crowdsourced Alternative to Eye-tracking for... [34] 2015 mouse/cursor charts crowdsourcing
11 TurkerGaze: Crowdsourcing Saliency with Webcam... [71] 2015 webcam natural crowdsourcing
12 Constructing Models of User and Task Characteristics... [16] 2015 eyetracker charts lab experiment
13 SALICON: Saliency in Context [29] 2015 mouse/cursor natural lab experiment
14 Predicting Confusion in Information Visualization... [40] 2016 eyetracker charts lab experiment
15 Do graph readers prefer the graph type most suited to... [67] 2016 eyetracker charts lab experiment
16 WebGazer: Scalable Webcam Eye Tracking Using User... [55] 2016 webcam natural crowdsourcing
17 Eye Tracking for Everyone [37] 2016 phone camera eye gaze crowdsourcing
18 Beyond Memorability: Visualization Recognition and... [3] 2016 eyetracker charts lab experiment
19 Zone out no More: Mitigating Mind Wandering... [14] 2017 eyetracker texts lab experiment
20 Learning Visual Importance for Graphic Designs and ... [10] 2017 mouse/cursor charts crowdsourcing
21 SearchGazer: Webcam Eye Tracking for Remote... [54] 2017 webcam web crowdsourcing
22 Fauxvea: Crowdsourcing Gaze Location Estimates for... [18] 2017 mouse/cursor charts crowdsourcing
23 Saliency Revisited: Analysis of Mouse Movements... [68] 2017 mouse/cursor natural lab experiment
24 Patterns of Attention: How Visualizations are Read... [49] 2017 eyetracker charts lab experiment
25 Revisiting Video Saliency: A Large-scale Benchmark... [70] 2018 eyetrackers natural lab experiment
26 Exploring Visual Attention and Saliency Modeling... [56] 2018 eyetrackers natural lab experiment
27 Predicting Visual Importance Across Graphic Design... [15] 2020 mouse/cursor natural/graphics crowdsourcing
28 Visual Saliency Model Based on Crowdsourcing Eye... [11] 2020 webcam natural crowdsourcing
29 TurkEyes: A Web-Based Toolbox for Crowdsourcing... [52] 2020 mouse/cursor/zoom natural crowdsourcing
30 Gaze-driven Adaptive Interventions for MSNV... [41] 2021 eyetracker charts lab experiment

– SCANNER DEEPLY (OUR WORK) 2022 webcam charts crowdsourcing

gaze logs to train a state-of-the-art convolutional neural network-based
model [58] that predicts gaze heatmap when an image is given as an
input. Based on the images created from Scanner Deeply, we present its
qualitative features and evaluate our work using a model trained on the
Salicon dataset and the DVS model. We also present a preprocessing
method that effectively removes noisy gaze dots that improves the
quality of webcam-based gaze dots. Our work demonstrates that gaze
patterns on visualizations are task- and domain-specific.

Contributions. To sum up, the contributions of our work are
• Our Scanner Deeply pipeline, which collects large-scale chart im-

ages and uses webcam-based eyetracker, a low-technology require-
ment, to collect gaze dots and train the model on a neural network.
Our approach is based on a taxonomy of 30 prior works.

• A preprocessing technique to effectively remove noise from raw eye
movement data.

• Qualitative and quantitative evaluations of our work compared with
other gaze prediction models.

• The disclosure of the dataset upon the acceptance of our work.

2 OVERVIEW

We review works that study visual perception via human eye move-
ments. As summarized in Table 1, diverse apparatus and techniques
have been proposed to collect eye movements data. We taxonomize
those works based on three axes: tracker technology, image stimulus,
and collection methodology. We detail why some choices are not prac-
tically desirable given the recent research trends. We conclude this
section with a discussion on our choices.

2.1 Understanding Visual Perception via Eye Movements
Research on understanding human perception using eye movement
started more than three decades ago [26], and the methods for col-
lecting eye movements have made advances over time. One form of

early works that involve studies with eye movement data explore differ-
ent human reactions and patterns as a lab study. Eye movement data
are typically collected using eyetracking hardware. Examples of these
experiments include understanding mind wandering patterns when read-
ing text [59], how people react under tabular visualizations [35], and
how people make sense of unfamiliar visualizations [43]. Another form
of early work aims at developing gaze prediction models. First intro-
duced by Itti et al. [26], there has been many attempts to build models
predicting gaze views of natural images, e.g., models using concepts
from information theory to predict salience on natural images [5, 22].

As eyetracker started to gain more popularity in human perception re-
search than the past, there has been growing demand for gaze prediction
models with high quality. This brought light to numerous data-driven
gaze prediction models [47, 53] and also to large-scale gaze logs on
natural image datasets [30]. Two most commonly used image datasets
for training and evaluating saliency models are (1) CAT2000 bench-
mark [8] and (2) Salicon [29]. CAT2000 contains 2,000 images from
20 different categories, and Salicon contains 10,000 images drawn from
MS COCO [44]. Salicon provides highly varied and natural images
along with ground-truth fixation annotations. With rapidly developing
deep learning techniques, the performance of saliency maps on the
benchmark datasets have also rapidly ameliorated [13, 38, 39]. Further-
more, as crowdsourced platforms became available, various methods
have been developed to democratize the eyetracking process, such as
cursor-based eyetrackers [33], or webcam-based eyetrackers [55, 71].

Initial work in the visualization community on gaze prediction builds
models using natural image datasets [19]. Inspired by the works show-
ing that humans focus on texts while analyzing charts, Matzen et al.
proposed DVS [50], a gaze prediction model that utilizes a linear combi-
nation of a model based on natural images [22] and text optimizers [50].
However, it has been unclear whether those models based on natural
images are effective on visualization images. In evaluation (§5.1), we
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1. Participants are asked to look and 
click the dots near the boundaries.

2. The server calculates the calibration 
accuracy.

3. If the accuracy is > 70%, they can 
proceed to gaze collection phase.

1. Gaze logs are collected while 
participants are looking at the chart for 7 
secs.

2. Participants must answer what 
visualization it was after viewing images.

3. By, clicking go button, they can 
proceed to the next image.

Fig. 2: Calibration and gaze collection. Participants click on 8 dots that are placed near the boundaries of the screen. Each dot turns yellow
once the user has clicked on it five times (A-1). Then, the calibration accuracy is measured by making users look at the middle dot at the center of
the screen (A-2). If the accuracy is above 70%, then participants can proceed to the gaze collection phase (A-3). In the gaze collection phase,
participants are asked to look at the chart for 7 seconds, during which time the user’s gaze is tracked (B-1). Then, they are asked to answer what
type of chart the image is (B-2). After they submit the answer, participants look at the next image by clicking “Go” button at the question “Ready
for the next image?” We customize the code WebGazer developed by Papoutsaki et al. [55] in creating the website.

show that such a model is less effective than our models trained on a vi-
sualization dataset, which necessitates developing a task-specific—i.e.,
focusing on data visualization—data corpus. It also has been unknown
whether neural networks that improve the performance of gaze pre-
diction tasks in natural image domains, are effective for visualization
images, especially for charts. Our work aims at addressing this knowl-
edge gap by collecting a large-scale gaze dataset of charts and training
neural networks for gaze prediction on the data.

2.2 Choice of Apparatus and Techniques in Prior Work
Building gaze prediction models requires a corpus of eye movement
data. Prior work therefore utilizes diverse apparatus and techniques
for collecting datasets. Here, we review 30 prior works and assess the
advantages and disadvantages of their collection methods. We collect
those papers from visualization (IEEE TVCG, IEEE VIS, etc.), com-
puter vision (IEEE CVPR, IEEE ICCV, etc.), and human-computer
interaction (ACM CHI, ACM UIST, etc.). We consider studies compre-
hensively, i.e., they deal with eye movements on visualizations, natural
images, texts, and webpages. We then evaluate their choices based
on three axes: (1) the tracker that is used to track eye movement of a
participant, (2) the image stimulus, or the type of images that is shown
to participants, and (3) the collection methodology that is used to gather
the data from participants. We have listed those works in Table 1.

Eyetracker. Understanding one’s eye movement patterns provide
us with various information about the attention the person is focusing
on. For example, the fixation data about an image play as indicators
of important regions within the image. In the field of visualization,
by knowing which part of the chart would people’s attention be most
focused, the visualization designer can slightly change her design to
better meet her intentions. There exist three types of methods that
are used for eyetracking: specialized eyetracking hardware, indirect
measurement methods, and general-purpose webcams.

To begin with, the benefit of eyetracking hardware is that it provides
an accurate measurement of one’s eye gaze. As a result, it has been
extensively used in lab experiments. However, the quality of gaze dots
are largely dependent on their prices. The performance of some of the

inexpensive ones is somewhat questionable, and high-end eyetrackers
can cost upwards of $20,000. For this reason, and also because of the
difficulty in recruiting participants for laboratory sessions, experiments
involving eyetracking devices are generally known to be expensive.

As an alternative, there have been attempts to collect gaze infor-
mation without directly tracking the user’s eyes. One approach is the
cursor-based gaze collection technique. This is based on the assumption
that the movement of cursor is correlated with the eye movement when
looking at a screen [24]—or at least that participants can reliably be
asked to use the mouse cursor in this way. Cursor-based eyetrackers
are effective in conveying the person’s location of visual attention [24].
Because of this characteristics, various research collects gaze dots using
this approach [29, 33, 34]. However, cursor-based approaches do have
limits and are not a completely accurate replacement for eyetracking
devices. It loses some of its information, because it cannot track the
person’s eye when she is moving her eyes without moving the cursor.

There is another alternative that is being studied—the use of general-
purpose webcams as an eyetracking method. However, webcams have
one infamous hurdle that needs to be addressed: consistent calibration
of the eye to the screen. This is mainly because calibration in webcams
are very sensitive to even small head motions. Jiang et al. [29] argue
that collecting large-scale dataset via general-purpose webcams is not
possible, especially in an uncontrolled setting. Because of this, with
current technology, gaze collection can only be maintained for a short
period of time after calibration [71]. Furthermore, although it is still
imperfect technology, we think that it is by far the best method to
measure directly one’s eyes, affordably, and still yield large-size data.

Image Stimulus. Two types of data can be used to predict gaze
for visualization studies: visualization images, and natural images.

For the former, stimulus is often confined to a particular type of
chart (e.g., node-link diagrams, parallel coordinate diagrams, etc.), and
the size of the data corpus is typically small, not exceeding 300 images.
Recently, a large-scale visualization dataset, called the MASSVIS
dataset [7], has been developed. The dataset contains more than 5,000
different types of static visualizations from four topics: government,
infographic, news, and science.



Natural image datasets are also referenced to imitate gaze dots about
chart images. For example, despite being collected on a different
domain of images and not intended to be used for visualization images,
the reaction to low-level features (e.g., color, contrast, motion, etc.)
of an image in natural image datasets and chart images is similar on
certain tasks (e.g., exploration tasks) [56]. Furthermore, since early
large-scale gaze datasets are collected using natural image datasets
as the stimulus, their results have often been deployed in predicting
saliency in visualizations.

Collection Methodology. There are two main choices for collec-
tion methodology: lab experiment and crowdsourcing.

Lab experiments are optimal for collecting small-scale but high-
quality eye movement data. As mentioned before, these lab experiments
are mainly done using eyetracking hardware. The accuracy and quality
of eyetracking dots are high as it deploys a specialized eyetracker and
the experiment can be fully controlled. However, collecting gaze dots
via lab experiments is expensive, impractical and time-consuming to
involve a large number of participants.

Crowdsourced platforms such as Amazon Mechanical Turk (AMT)
or Innocentive are beneficial in that it is easier to recruit at a relatively
affordable price. Consequently, many researchers use crowdsourced
platforms to obtain human-involved datasets in a large scale. However,
existing technologies for tracking eye movements are not as accurate
as real eyetracking hardware.

2.3 Our Approach
Based on our assessments, the most desirable approach is to develop
a gaze prediction model that provides the highest accuracy, but at the
same time using the least possible resources (i.e., reducing time and
cost). Neural network models trained on large-scale natural image
datasets achieves superior performance over other methods. We there-
fore aim to apply this approach to visualization in order to construct a
gaze prediction model that we call a SCANNER DEEPLY.

To do this, we choose to gather chart images as our image stimulus,
as we hypothesize this will lead to a more specialized model with better
performance for chart input. For the collection methodology, we choose
to use a crowdsourced platform to be able to collect sufficiently large
number of data samples for training neural network models. To reduce
the confusion of a model, we only collect eyetracking data for images
that contain a single static chart.

We set a task that can provide answers on the generability of tasks.
Matzen et al. [50], while describing the DVS, mention the possibility of
a general-purpose gaze prediction model. However, several researchers
provide empirical evidence that gaze patterns are task-specific. For
example, Yarbus’ [72] and Michal and Franconeri’s [51] works on
gaze research suggest that human attentions are guided by the task
she is conducting. Prior work [50] showed that the ideal visualization
has a strong overlap between the regions (1) that are most likely to
draw the viewer’s attention (bottom-up) and (2) the regions that convey
important information (top-down) about a task. We choose a task that
satisfies both conditions and can also be evaluated with a gaze dataset
collected in a short time (7 seconds). Specifically, we ask participants
to figure what type of chart it is after they view the chart for 7 seconds.

Another question remains—it is not clear how large the image stimu-
lus dataset should be to yield a sufficient amount of eye movement data.
To the best of our knowledge, the largest known visualization dataset
is the MASSVIS dataset [7] which contains 5,000 static visualization
images. However, the dataset is not suitable for our task as images in
the infographics category have more than two charts per image, and
the subset includes images far smaller than 5,000. For comparison, the
Salicon dataset [29] has gaze annotations for 10,000 images, while they
are natural images. It means the amount of images in MASSVIS is not
sufficient for training neural networks. To that end, we decide to create
our own image dataset that contains 10,000 images.

For the tracker, we choose a low-technology requirement consistent
with our crowdsourced platform. Between cursor-based method and
webcams, we choose to go with webcams. The reason is two-fold. First,
webcams are the only method to collect gaze dots that are actually
directly measured from one’s eyes in a crowdsourced platform. The

Table 2: Example queries for collecting chart images from the web.
Each query (on the right) is a combination of two keywords from our
topical analysis of papers (on the left) and a chart type (in the middle).

Topic Keywords Chart Search Query

culture, anomaly bar culture anomaly bar chart
normal, politics line politics normal line chart

artist, history pie history artist pie chart
global, media tree global media tree diagram

meeting, crime heatmap meeting crime heatmap
sports, outlier spider sports outlier spider map
newyork, time bubble newyork time bubble chart

market, medical scatter market medical scatterplot
museum, weather violin museum weather violin

argument in this decision is not at all in manifesting the superiority
of current webcam-based gaze collection over other methods. Our
intention is just to reinforce that it is a choice worth studying because
of the benefits we would gain if conducted successfully. Second, the
use of webcams as the tracker, chart images as the stimulus on a
crowdsourced platform is a choice that has not yet been investigated
and verified in the literature. This may be because of the intrinsic issue
that there may be noise in gaze dots collected from webcams and that
consequently the result is unpredictable. However, if we can devise a
method that can successfully ease the impact of noise and successfully
train the model, then this can also lead to another contribution.

Given the gaze dataset obtained from crowdsourcing, we train Sim-
pleNet, a neural network devised by Reddy et al. [58]. SimpleNet is
a state-of-the-art saliency map generating model that utilizes convo-
lutional neural network architectures (e.g., ResNets [23]), to generate
gaze heatmap. It requires less computational resources to train or
predict than existing networks designed for gaze prediction.

3 TASK-SPECIFIC CROWDSOURCED DATA COLLECTION

Here, we delineate the steps taken to collect task-specific gaze dots
using webcams on a crowdsourced platform. We first describe how we
crawled chart images from the web. Then we describe the processes
taken to conduct the crowdsourced study on Mechanical Turk.

3.1 Visualization Image Collection
The goal in collecting chart images is to collect a dataset that aligns
with the distribution of charts that can be found in the web, so that
the trained model becomes as versatile as possible. To collect crowd-
sourced eyetracking data at scale, we first needed a large-scale dataset
of visualization images. While the large-scale MASSVIS dataset con-
tains 5,000 images, this may not be sufficient for training a neural
network. Furthermore, the dataset also contains images containing mul-
tiple individual charts. We base our scale on the Salicon dataset, which
contains 10,000 gaze dots. Accordingly, we choose 10,000 images as
our target quantity.

We gather images by querying Google Image1 using three keywords
each time, where two keywords are chosen from 379 keywords derived
from the topical analysis [1] of papers in scientific communities over
the past 10 years (2011–2020), and the last keyword stands for the type
of charts (e.g., line chart, bar chart, or heatmap). Examples of these
keywords are shown in Table 2. Through a series of search queries,
we gathered 280,000 images from the web. These images contain not
only charts, but also natural images pertaining to the topic. We only
kept the images that (1) have one chart in an image, (2) both width and
height of an image are larger than 400 pixels, (3) have heights or widths
less than 4 times of the other, and (4) are without texts whose sizes are
unreadably small. We also removed all duplicates.

In the end, we were able to retrieve 10,960 chart images. To roughly
identify the distribution of charts, we randomly sampled 1,000 of the
images, and counted them by their chart types. Fig. 3 shows the 10
most frequent chart types in a random sample of 1,000 images in our

1https://images.google.com

https://images.google.com


Fig. 3: Chart type popularity. We show the 10 most popular charts
from a set of 1,000 samples randomly chosen from our image collection.
This provides an estimate on the chart type distribution in our dataset.

collection. We can observe that bar charts, line charts, and pie charts
are the three most commonly used graphs on the web.

3.2 Gaze Collection Setup

We collect eyetracking data using crowdsourcing on AMT. We design
the procedure with three goals in mind: (1) obtaining high quality
gaze dots, (2) obtaining large dataset, and (3) lessening the burden of
participants. The task involved participants identifying the kind of chart
after looking at the image for a few seconds; while they did so, we
tracked their gaze using a webcam eyetracker.

Eyetracking Mechanism We created our experimental platform
with the help of WebGazer, an eyetracking technique developed by
Papoutsaki et al. [55]. Prior to finalizing our experiment environment,
we conducted pilot studies with members of our research group at the
University of Maryland to find the optimal settings. We identified two
issues in deploying general-purpose webcams as eyetrackers: (1) the
sensitivity and accuracy for webcam eyetrackers, and (2) maintaining a
high level of concentration from participants.

Calibration in webcams is sensitive to slight movements of the
head. Even state-of-the-art webcam eyetrackers exhibit poor robustness
against changing head posture. This is exacerbated when testing in the
wild, i.e., using a crowdsourcing platform on the internet. During their
experiment with webcams, Xu et al. [71] note that eyetracking requires
frequent calibration, and to minimize the number, the viewing time
must be short. To alleviate this problem, we limit our eyetracked tasks
to 7 seconds per image and conduct calibration every 6 images.

Secondly, to check if participants are concentrating, we add atten-
tion trials throughout the experiment to determine if participants are
concentrating. We select 400 attention images. These attention images
are all bar charts given the assumption that all participants know what a
bar chart is, and hence can answer questions without difficulty. Further-
more, as Figure 3 shows, the bar chart is also the most common visual
representation in our dataset. If the user does not correctly answer the
attention trial, then we stop the participant from further proceeding
with the experiment. This fact—that participants remain focused on the
trials—is clearly communicated at the outset of the experiment.

Participants. We recruit participants who are fluent in English, do
not have color blindness or any other kind of color vision deficiency,
and are at least 18 years old. We let participants be aware that the
experiment is about charts. Furthermore, we ask them to use computing
device with a webcam, have monitors with a screen resolution or 1280×
720 or higher, and use Google Chrome or Microsoft Edge web browsers
(these requirements are imposed by our eyetracking software).

Apparatus. We build a website for collecting data while partici-
pants perform pre-defined tasks. While they are doing so, we track their
eye movements. We use JavaScript and jQuery to build our website
and use Python Flask v1.1.1 to run it on our university-hosted virtual
machine (VM). We allocate 2 GB RAM and 32 GB storage to the VM.

3.3 Participant Task
Below we describe steps taken for collecting gaze dots from participants
on a crowdsourced platform.

Getting Consent. Participants are first presented with a consent
form, including a brief introduction to what the study is about and how
the study is run. Afterwards, we lead participants to a website hosted
on our server. The server was created by the authors and is run on a
Linux-based virtualization environment provided by the department of
Computer Science at the University of Maryland.

Calibration. Prior to conducting the experiment we provide several
suggestions to participants to help them get past the accuracy threshold
during the calibration phase: (1) conducting the experiment in a well-lit
environment, (2) situating their heads within the green box shown on
the camera view, and (3) trying not to change their head posture during
the experiment, as it will decrease the calibration accuracy.

After participants allow access to the camera, the calibration can
proceed. Fig. 2 (A) illustrates the steps required for calibration. Cali-
bration takes place in the following manner: Participants are asked to
hold their head steady and place their head on the box shown in the
camera view. Then, they are asked to synchronously look at and click at
8 dots placed near the margins of the browser five times each. The gaze
dot, or the estimated gaze location of the participant, is represented by
a small moving red-colored dot. Every time a target button is clicked,
the opacity of it gets lower until it eventually turns into yellow to signal
that it has been fully clicked 5 times. These clicks adjust the calibration
between the participant’s eyes and the browser window. After all dots
turn yellow, a new red-colored button shows up at the center of the
browser to measure the accuracy of the calibration. The participants are
required to look at the dot until it turns yellow. Accuracy is measured
by the proportion of gaze dots that are placed near the center and those
that are not. As described in the previous part, if that proportion is
higher than 70%, then participants can proceed to the gaze collection
phase. If the accuracy is below 70%, then participants must repeat the
process until the accuracy rises above the threshold.

Data Collection. The next step is where the gaze log collection
process starts. Fig. 2 (B) explains the steps taken to collect gaze logs.
Once participants click the button “Go” from the question “Are you
ready?,” an image appears at the center of the screen. The image
appears for 7 seconds. During the 7-second period, gaze logs are
collected at a refresh rate of 20 Hz. After 7 seconds have passed, the
screen changes into a 20-multiple choice question that polls the chart
type. The participants can choose to answer between the choices, select
“I don’t know,” or provide a new answer after choosing “other.”

As stated before, we compose one unit block as one calibration fol-
lowed by 6 gaze trials. The intention is to keep one human intelligence
task (HIT) under 3 minutes, including the calibration. From our pilot
study, collecting gaze logs from a full block averaged around 1 minute
and 10 seconds. Among the 6 trials in a block, one is an attention trial
and 5 are used for the experiment. After each HIT is complete, we
collect a packet from the server that contains information on (1) the
gaze log information, (2) width, height, and size of the browser (e.g.,
the exact displacement of the image, the size of the screen, etc.), (3)
answers to the questions asked, and (4) the name of the image. We do
not capture nor reference videos from the webcam; the latter is clearly
stated to participants prior to participating in the experiment.

One HIT is composed of three blocks. Based on our pilot study, it
took approximately 3 minutes and 33 seconds to complete one HIT.
Based on the targeted rate of $15 per hour upon successful completion
of the experiment, we pay each participant $0.90 per HIT. For those
that perform more than one HIT, we compensate them in the form of
bonuses, at the rate of $0.30 per block. We gave compensation to any
participants that conducted the experiment even if only partially. We
paid participants no more than five days after the date of submission.

3.4 Collection Results
For the 10,960 images, we ran this collection process until we had at
least one annotation per image, resulting in 12,504 gaze dots. It took
60 days to collect the data. We exclude the gaze dots from participants



Fig. 4: Illustration of procedures for constructing oracle heatmaps. We use the final heatmaps for training our neural networks. Gaze dots
collected by using webcams contain rich information that enables further analysis, e.g., temporal changes in human visual perception (see §5.4
for the analyses), but they are also noisy to learn. We address this challenge by carefully pre-processing gaze dots. The second column shows the
dots in the raw data from webcams, and we blur dots and remove some of them not in the human’s area of focus (see §4.2 for details).

who submitted incorrect identification numbers. The dataset consists of
gaze logs from 9,157 correct responses and 3,347 incorrect responses.
Examples of gaze logs collected from our study are shown in Fig. 4.
The success rate of each HIT task was 71.2%. The unsuccessful HITs
are due to (1) incompleted tasks (21.3%) and (2) false answers (7.5%).

4 A SCANNER DEEPLY

We now propose a SCANNER DEEPLY, a virtual eyetracker that utilizes
a deep neural network (DNN) for gaze prediction. Scanner Deeply
takes a visualization image as an input and automatically generates a
gaze heatmap for the image. We first discuss our choice of a DNN: we
employ SimpleNet [58], a compact DNN architecture designed for gaze
prediction. We then describe how we preprocess our dataset to prepare
the training data, i.e., data filtration and saliency map generation. We
finally describe how we train SimpleNet on the preprocessed data.

4.1 SimpleNet: A DNN for Gaze Prediction

We have two criteria for choosing a DNN architecture. First, the ar-
chitecture should be fast and computationally efficient at inference
time. Most DNN architectures that are used in prior work [39, 69]
for gaze prediction are complex, i.e., they contain millions of model
parameters, which increases the operational costs. To run inferences
with those models, we require special hardware (e.g., GPUs or hard-
ware accelerators). Reducing a DNN’s post-training operations thus
allows users and practitioners to deploy the Scanner Deeply to diverse
computing environments, ranging from servers and personal computers
to devices with limited computational resources, e.g., IoT or mobile
devices. Second, while reducing the costs of post-training operations,
we choose the architecture that provides state-of-the-art performance
in gaze prediction tasks. Deep and complex architectures [45] typically
offer better performance. However, we aim to find a shallow, simpler
network that can achieve on-par performance. Considering the criteria,
we employ SimpleNet to implement the Scanner Deeply.

Figure 5 illustrates the SimpleNet architecture adapted for our
pipeline. SimpleNet employs an encoder-decoder architecture. The
encoder extracts latent representations (often referred to as features)
from an input, and the decoder reconstructs the input from the latent
vectors. In the figure, SimpleNet extracts a 2048-dimensional vector
from a visualization image as a latent representation. From this vector,
the decoder architecture generates a gaze map. Multiple image classifi-
cation models, such as VGGNet [65], ResNet [23], and PNASNet [46],
can be used as an encoder; we choose ResNet because it offers the
highest performance. The decoder is composed of two deconvolutional
layers. SimpleNet utilizes the U-Net structure [62], which helps to
improve the performance further by incorporating the information from
earlier layers when the decoder reconstructs a gaze map.
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Fig. 5: Our SimpleNet architecture. The pipeline accepts image
input and produces an output image. In our case, the input is a vi-
sualization and the output is the gaze map. SimpleNet follows an
encoder-decoder structure similar to U-Net [62]. Compared to DNNs
from prior work [29], SimpleNet requires less computation.

4.2 Preprocessing Webcam-based Eyetracking Data
Even with our efforts to maintain a high level of calibration during
gaze collection process, the resulting gaze dots from webcam-based
eyetrackers contain noise. Noise is mainly attributed to the dispersion
of gaze dots. Such dispersion happens as participants make diminutive
movements of their heads, or because poor or shifting light conditions
introduce errors in the eyetracking software. At worst, noisy ones exist
in locations far from where the chart is located within an image, and
they prevent the DNNs from learning patterns in the data. (see Table 3)

To address this issue, we filter out gaze dots not in a saliency zone.
Following the prior work [22, 31, 60], we define the saliency zone as
areas in an image that are highly disparate in RGB values in contrast
to its neighboring pixels. We preprocess gaze dots as follows: At each
pixel location, we first compute color differences between the location
and all the neighboring pixels within a 5-pixel radius. We perform
this step over all the pixels in an image and remove gaze dots at each
pixel location where the sum of the color differences is less than 10
(10 is the threshold we empirically find). We then blur the fixations
by using a Gaussian filter that has a standard deviation of 5 and set
the boundaries of the salient zone. In Fig. 4, we show examples of
our preprocessed gaze dots. We exclude 160 images that this filtration
process removes all the gaze dots from our dataset, leading to 12,344
gaze maps, consisting of 9,040 correct and 3,304 are incorrect ones.
Note that our preprocessing does not change the input resolution.

4.3 Training SimpleNet on Our Crowdsourced Dataset
We implement Scanner Deeply with Python 3.9 and PyTorch v1.10.2
To train our SimpleNet models, we use a machine equipped with Intel
i7-6700K CPU with 32GB RAM and 2 NVIDIA GTX 1080 Ti GPUs.
Note that, once trained, we only use CPUs to offer gaze prediction.

2https://pytorch.org

https://pytorch.org


Datasets. We compose our dataset as follows: Among the 9,040
correctly-responded visualization images, we randomly pick 70% of
them as our training data and use the rest 30% as the testing set. This
split leads to 6,328 training and 2,712 testing images. Next, we pair
each visualization image with a gaze map preprocessed by the method
described in §4.2. Those maps are the oracles the model should gen-
erate. All the visualization images and saliency maps are scaled to
256×256. Our model produces gaze predictions with the same size,
and we re-scale them back to the original resolutions for visualization.

Objective Function. We train SimpleNet to minimize the percep-
tual difference between gaze predictions and the oracle saliency maps.
To measure the difference, we employ the Kullback-Leibler (KL) di-
vergence, an objective function commonly-used in literature [17]. We
also examine other metrics for measuring perceptual differences, e.g.,
`p-distances or normalized scanpath saliency (NSS) [42], proposed
by prior work [61]. While our model minimizes those metrics, we
observe in our manual analysis that gaze predictions generated with KL
divergence are better than the cases of using others.

Hyper-parameters. We use the Adam [36] optimizer to train our
models. We set the batch size to 32 and the learning rate to 10−4. We
also set the weight decay to 10−4. We train our models for 40 epochs;
at each epoch, we compute the KL divergence of our model on the
testing set and store the one that minimizes the metric over the 40.

5 EVALUATION

Here, we evaluate the Scanner Deeply. We first show the prediction
performance of the Scanner Deeply and the baselines (§5.1). We then
compare the gaze predictions qualitatively to illustrate unique charac-
teristics the Scanner Deeply captures (§5.2 and §5.3). We lastly show
the benefit of using webcam-based eyetackers by analyzing temporal
changes in human visual perception with the Scanner Deeply (§5.4).

5.1 Prediction Performance of the Scanner Deeply

We evaluate the performance of the Scanner Deeply. The purpose
of this experiment is to show that for predicting gaze heatmaps for a
specific task, it is desirable to train models on a task-specific dataset.
To this end, we train (1) SimpleNet on Salicon [29], gaze maps for
a set of natural images and (2) use the DVS model [50]3 designed
to perform generally well on predicting gaze maps for visualizations.
We employ five metrics for measuring perceptual similarity between
gaze predictions and gaze maps on our 2,712 testing images: two
location-based metrics, i.e., AUC-Judd (AUC-J) [30] and NSS, and
three similarity-based metrics, i.e., KL-Div, SIM, and CC [9]. Except
for KL-Div, the higher a metric is, the more gaze predictions are similar
to oracles. Table 3 shows our results.

Scanner Deeply shows better performance over the two baselines.
We first observe that the Scanner Deeply exhibits 5–15% higher perfor-
mance than SimpleNet trained on the Salicon dataset. Considering that
the training dataset is the only difference between the two models, it is
important to use the dataset collected from the same domain (i.e., vi-
sualization) for high-quality gaze prediction. Compared with the DVS
model, we find that the Scanner Deeply achieves 8–18% improvements.
This result implies that within the same domain, a model trained on
a task-dependent dataset can perform better on a specific task than a
model built for a general-purpose prediction.

We also assess the impact of the preprocessing step on the perfor-
mance of the Scanner Deeply (Ours vs. Ours†). Across the board, the
similarity metrics from the models trained on preprocessed gaze maps
are better than those trained on un-preprocessed maps. This confirms
our hypothesis that filtering out gaze dots in the image area with no
stimulus helps a model focus more on the important low-level features.
We find that the improvements are larger for the location-based simi-
larity metrics (i.e., AUC-J and NSS), which implies that preprocessing
encourages a model to ignore the unimportant parts in visualization.

3https://github.com/LauraMatzen/DVS

Table 3: Performance evaluation of Scanner Deeply by comparing
it with gaze prediction models proposed by prior work. We show
the performance using five metrics. We report each metric’s mean and
standard deviation over the five runs. The value shown on top is the
mean, and on the bracket below is the standard deviation over the five
runs. We compare with DVS [50] and Salicon [29]. The only difference
between Salicon and the Scanner Deeply is in the dataset. We show that
a model using datasets collected for the specific task and domain on a
specific task can show improved performance over a general-purpose
gaze prediction model. We also compare ours with Scanner Deeply
before pre-processing. This is represented as Ours†.

Metric Ours Ours† DVS Salicon

(↑) AUC-J 0.784 0.751 0.737 0.741

Location-based (0.002) (0.002) (0.005) (0.002)
(↑) NSS 0.716 0.625 0.489 0.537

(0.004) (0.006) (0.005) (0.009)

(↓) KL-Div. 1.283 1.333 1.507 1.443
(0.035) (0.053) (0.022) (0.063)

Distribution-based (↑) CC 0.403 0.373 0.276 0.301
(0.166) (0.186) (0.136) (0.193)

(↑) SIM 0.429 0.388 0.373 0.392
(0.002) (0.014) (0.012) (0.003)

†
SimpleNet trained on the dataset w/o the preprocessing step in §4.2.

Fig. 6: Visualization of gaze predictions. We show the gaze predic-
tions of three charts from ScannerDeeply, DVS, and SimpleNet trained
on the Salicon dataset. DVS and Salicon focus more on text, while our
model focuses more on distinct areas in a chart.

5.2 How Does the Scanner Deeply Perceive Charts?

We now present unique characteristics of how the Scanner Deeply per-
ceives visualization images compared with our baselines. We make this
comparison by analyzing how those three models perceive three differ-
ent stimuli within an image: (1) charts (visualized data information),
(2) textual information, and (3) low-level features [56]. In Fig. 6, we
illustrate gaze predictions generated by three models for four images.

Chart Perception. A predominant characteristic of gaze predic-
tions produced by the Scanner Deeply is that it focuses on the shape
(or structures) of charts within images, while the baseline models focus
more on the texts. Fig. 6 shows that gaze predictions from DVS and
SimpleNet models, trained with Salicon, highlight legends, numbers,
or titles. In contrast, the Scanner Deeply focuses on a slice in the pie
chart (A), peaks in the line chart (B), branching points in the sankey
tree (C), and edges in the geographical maps (D). This means that the

https://github.com/LauraMatzen/DVS


Fig. 7: Gaze predictions from ScannerDeeply for different types of visualizations. We show examples of the six common chart types in our
datasets, i.e., (from the left) a line chart, a bar chart, a population pyramid, a heatmap on a geographic map, a scatterplot on a geographic map,
and a scatterplot. We analyze them in §5.3.

Scanner Deeply has the ability to emphasize different parts of images
depending on the visualization tasks. The task here is to determine the
type of a chart. It also means that in our data collection, participants
have looked at the entire chart to perform the task, not focusing only
on a specific part (see in §5.3 and 5.4 for our detailed analysis).

If we take a closer look at the gaze predictions from the DVS model
(see the figures in the middle column), the model explicitly captures
texts the most. The result implies that DVS is designed to capture both
the low-level features (via the GBVS model) and texts (via text optimiz-
ers), but in fact, the text optimizers seem to be a dominant component.
Surprisingly, from the figures in (B), DVS predicts that humans will
mainly focus on reading the x-/y-axis. However, it is unlikely to be true
as we use charts for reducing the perceptual complexity.

We further show that the model learned from natural image datasets
(e.g., Salicon) focuses on low-level features the most. If the shape of
the chart is easily noticeable with respect to its environment, the model
focuses on the chart (see the figures in rows (A) and (C)); otherwise,
it emphasizes other areas, e.g., texts. Here, being noticeable means
how much contrast the chart is in terms of its color or shapes compared
to the other parts of an image, which accounts for human perception
of natural images. However, our results suggest that it might not be
suitable for understanding human perception for a specific task.

Text Perception. Our findings are in stark contrast to the prior
work [49] showing humans mostly focus on textual information in a
visualization. In Scanner Deeply, the concentration of gaze on text is
somewhat similar to, or sometimes even weaker than that on the shape
of the chart. We hypothesize that the importance of textual information
in visualization may differ by the designated task. If the task is to read
visualization closely and comprehensively, textural information will
carry a lot of importance. But, the overall structure of visualization
becomes more critical if the task is to classify visualization types. This
finding is in line with the results presented by Polatsek et al. [56].

Oftentimes, the model trained on the SALICON dataset also pro-
duces gaze predictions that focus on textual information. However, we
argue that it is because the saliency is largely determined by the level of
contrast in the low-level features (e.g., colors) of the text with respect
to the chart background. Note that we typically use distinct colors in
texts for perceptual clarity. Thus, neural networks—that are good at
capturing such input differences—will learn them during training and
reflect the differences in the gaze predictions.

Perception of Low-level Features. Charts in images are generally
drawn so that they can stand out from the backgrounds visually. As we
discussed above, this is the main reason that all three models capture
low-level features. But, there is a noticeable difference between the
Scanner Deeply and the baseline models. Scanner Deeply utilizes
different levels of prioritization in capturing low-level features.

Suppose our model only emphasizes the low-level features that are
similar to the baselines (see gaze predictions conducted by SimpleNet
with Salicon dataset in Fig. 6). In (A), the prediction should focus on
every component in the image with white color (as it has the highest
contrast to the black background). However, our model focuses on a
specific slide in the pie charts. It does not mean that we de-prioritize
low-level features; the Scanner Deeply does prioritize low-level features
when it is needed. In (C), humans need to focus on the texts at branching
points to understand the sankey tree chart. In this case, our model
emphasizes the texts in black, which contrasts with the yellow-colored
background the most.

5.3 What Structure Does the Scanner Deeply Focus?
We now analyze further the gaze predictions generated by the Scanner
Deeply. We specifically focus on the structures (or shapes) our model
primarily focuses on visualization images. We present examples for five
most popular chart types: line chart, bar chart, pie chart, geographics
map, and scatterplot. We show those examples in Fig. 7.

Bar Charts. For bar charts in Fig. 7 (B), the model mainly focuses
on the bars of the chart, though the gaze is focused on the center of the
chart. This is not an unusual phenomenon, as chart images are generally
located at the center of the image. Variants of bar charts also follow a
similar pattern. For example, in population pyramids (see Fig. 7 (C)),
the gaze covers the entire shape of the chart.

Pie Charts. In Fig. 6 (A), the gaze prediction is on the center of
the chart. It checks the angles of each pie and looks at the boundaries.
Most pie charts have labels next to the pie, attracting the gaze. However,
the concentration of gaze is usually less than that of the chart.

Line Charts. The model reads the line that passes through the
chart for line charts. When the color of the line stands out from its
environment, the saliency follows the line until it ends (see Fig. 6 (B)).
When there are multiple lines in the chart, it follows all of these lines.
However, if the line is similar to the background color, then it often
fails to follow the line. For example, when a line is drawn on a grid
plane with similar color, it confuses distinguishing between the grid
and the line, and it follows both the grid and the line.

Geographic Maps. We have two types of geographic maps: (1)
maps containing textual information and (2) superimposed visual com-
ponents. In the first one (in Fig. 7 (D)), the gaze prediction focuses
on the boundaries and texts with large font. In the second one (in
Fig. 7 (E)), the prediction focuses on parts of the map with more visual
components than parts with fewer components, e.g., if there are dots
on the map, the gaze is focused on where the concentration is high.

Scatterplots. Generally, in scatterplots (see Fig. 7 (F)), our model
focuses on each dot, with the highest concentration of interest in areas
with the highest concentration of dots.

Fig. 8: Temporal eye movements in gaze predictions. By training
SimpleNet on datasets representing different time scale, ScannerDeeply
can predict human visual perception over time. In (A), we train our
model on the gaze maps collected from the first 0.7 seconds, while we
train our models on the gaze maps for the entire 7 seconds. Our model
predicts that human eyes will focus first on the distinct areas in charts
and then focus on text components (e.g., legends) later on.

5.4 Analyzing Temporal Patterns in Human Perception
Our webcam-based data collection offers unique information over other
datasets: we collected eye movements over time. We recorded eye
movements every 0.05 seconds over 7 seconds in total, which allows



us to analyze temporal patterns in human visual perception. Using this
advantage, we evaluate an intriguing hypothesis: It has been known
that humans first scan the overview of a visualization image and then
perceive its details. To this end, we train our neural network on different
datasets containing 0–t seconds, where t ∈ [1,7].

Fig. 8 illustrates the gaze predictions for an image from our model
trained with 0.7s period data (left) and the model trained with the full
7s data (right). We first observe that the Scanner Deeply, trained on the
0.7s data, looks at the center of the charts. We found two reasons: (1)
We made participants reset their eyes at the center; thus, they started by
looking at the center. (2) We also see that to understand the chart type
(i.e., bar), participants do not need to look at other information.

However, when trained with the entire data, the Scanner Deeply starts
focusing on other details, such as legends or texts in the x-axis where the
highest bars are. This confirms our (and also a hypothesis well-known
to the visualization community) that human perceives an overview first,
and then details come. Our findings also raise questions about the
community’s practice in gaze predictions. Most prior work [29, 50]
offers a single gaze map for each image, which may lead to missing
opportunities to understand human perception in more depth.

6 DISCUSSION

In this section, we discuss the implications of our work in two ways:
(1) an assessment of our data collection methodology, (2) two possible
approaches one can consider for gaze estimation. Finally, we conclude
by discussing the limitations and plans for our future work.

6.1 Assessing Crowdsourced, Webcam-based Gaze
We collected a large-scale dataset of gaze fixation points on visualiza-
tion images using a crowdsourced platform through general-purpose
webcams. There is clearly a benefit in terms of time and cost when
using a crowdsourced platform than when conducting a lab study. We
spent approximately $900 to collect around 12,000 gaze logs. This
yielded approximately $0.07 to $0.08 per gaze log. This is about 40%
more expensive than cost expectations using TurkEyes [52]. However,
one must take into account that our payment was based on a targeted
rate of $15 per hour, whereas that of TurkEyes was $10.

There was an obstacle during the experiment—the time it takes to
collect sufficient amount of data. While our initial expectation of col-
lecting period was 30 days, it took more than 50 days to collect 10,000+
gaze logs. We attribute this to the fact that the task of collecting eye
movement data on webcams is a challenge when using general-purpose
webcams. Participants are required to conduct frequent calibrations,
potentially multiple times, if they did not reach a particular threshold.
We struggled to collect large-scale data at a fast, constant pace despite
compensating at the relatively high rate of $15 per hour.

6.2 A Priori or A Posteriori?
A Better Method for Gaze Estimation

Our results show that gaze patterns on visualizations are task-specific
and domain-specific. This goes in line with the experiment conducted
by Polatsek et al. [56]. In developing a gaze prediction model, they
propose a gaze prediction model based on an a priori approach where
the model is made as a combination of an image- and an object-based
saliency model, similar to the DVS model that combines a model for
natural images with a text identifier. In contrast, our work takes a
posteriori approach that trains a neural network on empirical gaze data.
Here, we discuss advantages and disadvantages for both approaches.

Compared to a prior approach, our data-driven, a posteriori approach
requires a large-scale dataset and substantial computing power to train a
sophisticated neural network model. However, there is no guarantee that
a priori-based model will provide solid performance in the general case.
For simple low-level tasks, a priori-based models can predict gaze views
as well as a data-driven a posteriori model without difficulty. Issues
will arise when dealing with tasks that require a priori knowledge about
human perception where no such knowledge exists. This may occur
when the model encounters an entirely new type of chart not covered by
existing perceptual models. It also becomes a problem when balancing
between known factors is required. For example, while conventional

knowledge suggests that people focus on textual information in a chart,
the overview task in our experiment yielded more focus on chart shape
than text. For both of these examples, a data-driven a posteriori model
uses sheer computing power to learn from the large-scale dataset.

On the other hand, an a priori model for gaze prediction is built on
operational and interpretable perceptual knowledge. Such knowledge
can be informed by existing and ongoing research in perceptual psy-
chology [21, 59]. The neural network implementing our a posteriori
model, in contrast, is opaque and not understandable to humans [20].
Furthermore, new training datasets and models may be needed to cover
all conceivable tasks, datasets, charts, and domains to guarantee robust
performance for the deep learning method. Nevertheless, one important
question we raise for future work is whether neural networks, such
as our Scanner Deeply model presented in this paper, can teach us
anything about perceptual psychology in humans.

6.3 Limitations and Future Work

As shown in our qualitative and quantitative experiments, gaze pre-
diction models that are task-specific and domain-specific are desir-
able. Even if several works (e.g., Yarbus’ [72] and Michal and Fran-
coneri’s [51]) suggest that the task guides human attention she is con-
ducting, most of the recent work (shown in §2) on predicting gaze
heatmaps focuses on collecting and developing models generally work-
ing well. That being said, building such models for individual tasks may
require iterative efforts. However, we highlight that our work presented
a method and desirable choices for the crowdsourced data collection
approach in conjunction with the low-technology requirement.

We emphasize that our paper’s datasets and methodology shed some
light on interesting future work directions. As gaze prediction on vi-
sualization is an active area of study, we first envision extending our
approach for various tasks as future work. We also want to highlight
that the scalability issues in building prediction models for different
tasks may inspire interesting future work. For example, one could build
foundational models for gaze predictions, similar to models developed
in computer vision (CLIP [57] or GPT-3 [4]), and then fine-tune those
models for multiple downstream tasks. We further envision that explor-
ing the feasibility of few-shot learning in this context to tackle data
scarcity issues could be promising for future work.

Separately, in contrast to the datasets presented by the prior work,
our dataset contains gaze dots collected over 7 seconds, which may
reflect temporal human eye movements. We further envision future
work using our dataset to conduct in-depth analysis of temporal eye
movements to understand human perception better.

HOMAGE

Once a guy stood all day shaking bugs from his hair.
The doctor told him there were no bugs in his hair.
After he had taken a shower for eight hours, standing
under hot water hour after hour suffering the pain of
the bugs, he got out and dried himself, and he still had
bugs in his hair; in fact, he had bugs all over him. A
month later he had bugs in his lungs.

– A Scanner Darkly (1977), Philip K. Dick
(1928–1982)
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Our crowdsourced dataset and source code for reproducing all of our
experiments can be found in https://osf.io/spw49/?view_only=
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