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(a) Scrolled barchart. (b) Treemap. (c) Wrapped bars.

(d) Packed bars. (e) Piled bars. (f) Zvinca plot.

Figure 1: Six ranked-list visualizations showing the same dataset of 150 values. Blue values are positive, whereas negative

values are red. In this paper, we begin to quantify the strengths and weaknesses of each variation with a crowdsourced visual

perception study using unlabeled versions of these charts (with no negative values).

ABSTRACT
Visualization of ranked lists is a common occurrence, but

many in-the-wild solutions fly in the face of vision science

and visualization wisdom. For example, treemaps and bubble

charts are commonly used for this purpose, despite the fact

that the data is not hierarchical and that length is easier to
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perceive than area. Furthermore, several new visual represen-

tations have recently been suggested in this area, including

wrapped bars, packed bars, piled bars, and Zvinca plots. To

quantify the differences and trade-offs for these ranked-list

visualizations, we here report on a crowdsourced graphical

perception study involving six such visual representations,

including the ubiquitous scrolled barchart, in three tasks:

ranking (assessing a single item), comparison (two items),

and average (assessing global distribution). Results show that

wrapped bars may be the best choice for visualizing ranked

lists, and that treemaps are surprisingly accurate despite the

use of area rather than length to represent value.

CCS CONCEPTS
• Human-centered computing → Information visual-

ization; Empirical studies in visualization; Visualiza-

tion design and evaluation methods.
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1 INTRODUCTION
William Playfair (1759–1823) invented the barchart in 1786 [25]

to help members of the British parliament—many of them

illiterate—understand political and economic data without

the need for actual numbers and text [12, 13]. Barcharts con-

vey values for items using the length or width of a rectangle

as visual marks, one per item. The barchart has since become

one of the most prolific and familiar types of statistical data

graphics [3], and is a staple in virtually any visualization tool

and toolkit. One common use of the barchart is to visualize

the relative values of specific entities, such as the gross do-

mestic product of countries, the unemployment rate in U.S.

states, or the enrollment in different academic units. Such

lists are often sorted based on values, and we thus refer to

them in this paper as “ranked lists” and their visualization

as “ranked-list visualization.”

Horizontal barcharts are the dominating ranked-list visu-

alization [10, 14], but recent years has seen an increasing

focus on improving the utility of even this basic visual rep-

resentation. The main criticism is that for lists spanning

more than a few dozen items, the entire barchart will not

fit on one screen, and thus the list must be scrolled in order

to view all of the items [10]. As a result, practitioners and

academics alike have proposed alternatives to the scrolled

barchart: Figure 1 gives an overview. Each of these repre-

sentations have their own strengths and weaknesses. For

example, treemaps [20] were originally designed for hierar-

chical data, but has seen common use in practice for ranked

lists even if the representation is arguably not ideal for this

purpose. Packed bubble charts [28] (Figure 2) use circular

marks packed into tight configurations, their area convey-

ing value. The wrapped bars technique [10], proposed by

Stephen Few, addresses the scrolling problem by splitting the

bars into columns on the same screen, but this makes com-

parison harder and reduces the horizontal ‘data resolution.

Even more recent techniques include packed bars [14, 15],

piled bars [30], and Zvinca plots [11]. Given this bewildering

array of ranked-list visualization techniques, the question

for designers is which one is best for which specific task?

In this paper, we begin to answer this question by per-

forming a crowdsourced graphical perception experiment

evaluating the completion time and accuracy of these ranked-

list visualizations for three different tasks: ranking one item,

comparing two items, and averaging all items. We are par-

ticularly curious about the impact of interaction for scrolled

barcharts, as well as the performance of treemaps for flat

ranked lists. While our three tasks are low-level and not fully

representative of the realistic use of these chart types, we

argue that they are fundamental building blocks of higher-

level tasks, such as determining the distribution, finding

the extents and variance, and detecting anomalies, correla-

tions, and trends in the data. Following in the grand tradition

of graphical perception experiments in data visualization

(e.g., [1, 4]), our purpose is thus to provide empirical findings

on low-level perceptual aspects of these chart types.

To this end, we recruited 222 participants on Amazon

Mechanical Turk and tested their performance for these three

tasks and six of the ranked-list visualizations. Our results are

mixed, but they do vindicate the use of treemaps, as that chart

type did not perform consistently worse than some other

chart types. Furthermore, our conclusion is that wrapped

bars provide a familiar, compact, and interaction-friendly

visual representation for ranked-lists that have the most

balanced performance of charts studied in our experiment.

2 BACKGROUND
There is a long history of perceptual experiments in the area

of statistical graphics, dating back to early work by Eells et

al. [8] from 1926, well before computers were able to generate

such graphics. Other early efforts include Croxton et al., who

compared barcharts with circle diagrams and piecharts in

1927 [6], as well as investigated the effectiveness of various

shapes for comparison in 1932 [5]. Peterson et al. [24] in 1954

measured the accuracy for eight different statistical graphs,

providing some guidelines on their relative effectiveness.

Later, Cleveland and McGill [4] collected results from a

large number of studies to rank visual variables in their

order of effectiveness. These so-called graphical perception
studies measure the ability for a person to retrieve the data

presented in the chart by decoding the visual representa-

tion [22]. Representative such studies include work on sim-

ple charts by Simkin and Hastie [27], size and layering in

horizon graphs [17], and perception for a range of time-

series charts [19]. Some efforts have attempted to measure

graphical perception based on a cognitive approach [18, 21].

While graphical perception studies are typically costly

and time-consuming to perform, results have suggested that

such studies can be easily crowdsourced using online market-

places such as Amazon Mechanical Turk [16]. Such crowd-

sourcing methods, while not always ideal for general vi-

sualization evaluation due to the relative low expertise of

typical crowdworkers, have been found to match laboratory



studies for graphical perception tasks, which merely rely on

low-level visual machinery that any person possesses.

3 DESIGN SPACE: RANKED-LIST VISUALIZATION
Here we survey the design space of ranked-list visualization,

first by delineating the basic requirements for what we con-

sider a ranked-list visualization, and then by presenting a

mini-taxonomy of such techniques. We then review each

relevant technique and discuss its properties. This design

space thus serves as a justification for which chart types

were included and excluded, respectively, in this study.

Basic Requirements
Similar to prior work by Yalçin et al. [30], we consider only

ranked-list visualizations that fulfill the following criteria:

• No aggregation: Each individual item in the list must

be distinguishable, and this cannot be grouped together

or summarized; in other words, the visual representa-

tionmust be a unit visualization [23].While aggregated

ranked-list visual representations exist, we consider

them outside the scope of this work since we regard

each individual item as significant.

• Value representation: In addition to the identity (la-

bel) of the data item, the representation must be able

to visually convey a value for each of the items (such

as population, age, or income).

• Overlap avoidance: To enable visibility of all items,

we require that the chart does not allow overdraw.

(While piled bars technically involve overdraw, and

Zvinca plots can yield overdraw in pathological situa-

tions, both charts are designed to minimize overlap.)

Taxonomy of Ranked-List Visualization
We derive the following properties that we can use to classify

a ranked-list visualization:

• Visual mark: Graphical shape representing items.

• Encoding: Visual channel used for value.

• Baseline: Whether the technique has one or more

common baselines for comparing visual marks.

• Layout: Algorithm for determining mark position.

• Space utilization: How well available space is used.

• Resolution: Screen resolution devoted to conveying

item values. Themore chart space is allocated to shapes

for conveying item values, the higher the discriminabil-

ity of values. Inspired by the resolution measure pro-

posed by Heer er al. [17].

See Table 1 for our classification of relevant ranked-list

visualizations. Table 2 covers the labeling strategy for each

technique; while we do not include labels in our graphical

perception study, this is an important consideration for any

realistic use of a ranked-list visualization.

Barcharts
The most straightforward way to represent a ranked list is

through a list of horizontal bars with a common baseline,

where each bar represents an item and its length encodes the

value (Figure 1a). Negative values can either be represented

by bars that go left from a common origin, or communicated

using a divergent color. Labeling is trivial, as the label can

simply be drawn on top of or next to each bar.

Because the number of items to display may be more than

can be contained on the screen, barcharts generally need

to support scrolling, where the viewport can be moved up

and down; hence we use the term scrolled barcharts in this

paper. This is a drawback, as interaction will consume time

and effort. However, since the chart uses the full width of

the available space, its accuracy is high. On the other hand,

skewed data distributions may result in wasted display space.

Treemaps
Treemaps were originally proposed by Johnson and Shnei-

derman [20] in 1991 to represent hierarchical data, such as

a computer file system, ontology, or organizational chart,

using the principle of space enclosure (Figure 1b). Under this
principle, children are entirely enclosed by (and packed into)

their parents, typically represented using rectangular shapes.

Furthermore, the size of each shape is often used to convey

a secondary value, such as a file size, the number of children,

or stock market performance. However, in recent practice,

treemaps are increasingly being used for non-hierarchical

data, where there is no space enclosure and thus only or-

ganized using the packing layout algorithm. For a ranked

list, sophisticated algorithms such as squarified treemap lay-

outs [2] (which are now defaults in visualization software)

yield a deterministic layout that encodes the value ranking

in an accessible pattern.

Treemaps are space-filling, i.e., they use the full 2D space

of the chart with no wasted space. Thus, they are not re-

stricted to horizontal bars, and can therefore generally scale

to a large number of items. However, the drawback is that

the encoded value is conveyed using the area of the rect-

angles representing the items. Seminal results in graphical

perception [4] hold that assessing area is significantly more

difficult than assessing length. For this reason, a treemap

should be less well suited for understanding ranked values

than bars, which use length. However, we also speculate

that a deterministic layout (as mentioned above) may assist

perceptual tasks.

Packed Bubble Chart
Packed bubble charts [28], sometimes just called packed bub-

bles or bubble charts, is similar to treemaps in that they

use the area of their visual marks—circles rather than the



Technique Visual mark Encoding Baseline Layout Space util. Resolution

scrolled barchart horizontal bar length common row-major poor full chart width

treemap [20] rectangle/square area – space-filling optimal full chart area

packed bubbles [28] circle area – packing poor half chart area†

wrapped bars [10] horizontal bar length per column rows + columns suboptimal chart width / #cols

piled bars [30] horizontal bar position common cycling rows suboptimal full chart width

packed bars [14, 15] horizontal bar length varying packing rows optimal* full chart width*

Zvinca plots [11] dot position common cycling rows suboptimal full chart width

∗ = depends on data distribution. † = from numerical approximation.

Table 1: Classification of ranked-list visualizations that we consider in our study.

Technique Labeling strategy Clipped Static visibility

scrolled barchart on axis or left-aligned inside bar no all (subject to scrolling)

treemap [20] inside rectangle yes most

packed bubbles [28] inside bubble or with tag-lines yes most

wrapped bars [10] left-aligned on axis no largest value group, on-demand for others

piled bars [30] right-aligned inside bar yes most

packed bars [14, 15] left-aligned baseline, others centered yes baseline bars and largest others

Zvinca plots [11] left-aligned no smallest value group, on-demand for others

Table 2: Labeling strategies for ranked-list visualizations.

rectangles used in treemaps—to convey the encoded values

(Figure 2). However, unlike treemaps and as the name sug-

gests, packed bubble charts are generated by “packing” the

circles together as closely as possible without overlapping.

Most packed bubble layouts are based on placing each circle

and then using collision detection to shrink the chart.

Not surprisingly, packed bubble charts share many of the

same strengths and weaknesses as treemaps. However, the

actual placement of each bubble on the chart means little.

Wrapped Bars
Proposed by Stephen Few in 2013 [10], the design of wrapped
bars is based on the observation that it is not necessary to

use the full chart width for each bar. Instead, by splitting the

list of N items intoC columns, each with N /C items, we can

organize each column horizontally to fit on screen (Figure 1c),

thus eliminating the need for scrolling. Furthermore, because

the list is sorted, the width of each individual column can

be adapted to fit only the range of values it contains, and

adapted scales can be shown for each column.

In terms of strengths and weaknesses, wrapped bars have

the benefit of still using the length of horizontal bars to con-

vey item values. Furthermore, while there is no longer a

single common baseline for the entire chart, bars in each

column share the same baseline (one per column). This, of

course, makes it more challenging to directly compare items

Figure 2: Packed bubble chart for a software class hierarchy.

Image from D3 implementation by Mike Bostock (https://bl.

ocks.org/mbostock/4063269).

occupying different columns. The upshot is that the intro-

duction of multiple columns means that the chart space can

be better utilized than for single-column barchart lists, as



columns will get narrower as a side effect of the ranked or-

der and the width of each column can be fitted to the size of

the contained items. However, the columns cause the visual

resolution for item values to be reduced since the horizontal

chart space used to convey these values has been subdivided.

This may make it harder to distinguish minute differences.

Packed Bars
The packed bars chart type was proposed by Xan Gregg [14,

15] in 2017, and essentially takes the bars of a scrolling bar-

chart and packs them into a rectangular area (Figure 1d).

In other words, instead of introducing multiple columns to

avoid scrolling, packed bars add items as horizontal bars in

sorted order until they fill the available rows on the screen.

Then the technique uses a greedy layout algorithm to pack

all of the remaining bars by placing them, one at a time, on

the row with the most available horizontal space.

Packing has the benefit of resulting in efficient usage of the

available screen space in most situations (although extremely

skewed value distributionsmay result in lopsided layout with

significant wasted space). However, packing means losing

some of the order information of all bars except the first few

rows that fit on the screen (typically the largest values). These

first few rows will also have a common baseline, whereas

all other bars will have no common baseline by virtue of

being packed next to previously packed bars. While packed

bars may provide high visual accuracy, this depends on the

data distribution; for example, if the distribution causes bar

of the largest item value to span the entire chart width, the

visual accuracy will also be the full chart width. However, the

pathological case here is where all item values are the same

(or almost the same), as this will essentially reduce packed

bars towrapped bars, with its corresponding decreased visual

resolution (but with no common column baselines).

Piled Bars
The piled bars technique [29, 30] builds on wrapped bars by

splitting the items into columns, but instead of organizing the

columns side-by-side in a horizontal layout, each subsequent

column is piled on top of the previous column and thus

uses the same common baseline (Figure 1e). This can be

done without occlusion—i.e. without bars hiding each other—

because items in the ranked list are sorted by the item values,

which means that one column contains item with values that

are guaranteed to be larger or equal than the values in the

following column. To visually convey the piled behavior, the

technique uses color gradients and shadows to suggest that

a bar actually continues “underneath” smaller bars.

This approach combines the advantage of wrapped bars

of fitting all items on a single screen while retaining the

common baseline of standard scrolled barcharts. The chart

can thus also use a common horizontal scale and grid lines,

and tick marks. This makes it easier to compare items, even

across columns, and it also results in higher visual resolution

than for wrapped bars, since bars can use the full chart width.

However, despite the gradients and shadows, the visual en-

coding is not trivial, as viewers may easily believe the bars

are stacked instead of piled, i.e., that bars use the preceding

bar as a baseline. Furthermore, the pathological case for piled

bars is when all values in the list are the same (or almost the

same), resulting in all bars having similar widths and thus

being hard to distinguish. Finally, while we do not particu-

larly focus on labeling in this design space treatment, similar

bar widths will make labeling challenging.

Zvinca Plots
The last chart type we include in this discussion is Zvinca
plots (Figure 1f), which was proposed in 2017 by Stephen

Few based on an idea introduced by Daniel Zvinca (hence

the name). While invented independently from Yalçin’s piled

bars [30], the techniques share the same basic idea: instead

of using spatially separate columns, items are subdivided

into groups to fit on the screen, and then the groups are

drawn using a common baseline. However, rather than using

horizontal bars, Zvinca plots merely use dots to signify the

item values on the provided scale. This means that Zvinca

plots entirely bypass the occlusion concern for piled bars, and

have no need for color gradients or shadows to disambiguate

between stacking and piling.

The relative strengths and weaknesses between Zvinca

plots and piled bars are more or less arguable. Even if posi-

tion is nominally the strongest visual channel [1], there is

generally no significant advantage to using position rather

than length with a common baseline [4], making Zvinca

plots and piled bars approximately equivalent in this regard.

The chart types share the same advantages for visual resolu-

tion, baselines, and space utilization. Zvinca plots manage

occlusion and uniform data slightly more gracefully, and are

easier to decode without the need for color gradients and

shadows. Nevertheless, the two techniques are quite similar.

4 METHOD
To determine the optimal visual representation for ranked

lists, we conducted a crowdsourced graphical perception

study evaluating low-level visual performance involving six

visualizations. We chose three tasks designed to test the

gamut of low-level visual tasks. Finally, as we posit that dif-

ferent visual representations may scale differently depending

on dataset size; for this reason, we also included three repre-

sentative dataset sizes. Here we review our methods, and in

the next section, we present our results.

Tasks and Data
Our focus in this work was to determine the perceptual

characteristics of existing ranked-list visualizations. For this



(a) Rank task (one item). (b) Comp task (two items). (c) Mean task (all items).

Figure 3: Experimental interface for the three tasks Rank (left), Comp (center), andMean (right).

reason, we wanted to choose low-level tasks restricted solely

to visual perception rather than high-level tasks that are

more relevant to data visualization. Our argument is that

such low-level visual tasks are building blocks in higher-level

tasks, which means that they will be reasonable indicators

of the performance of these high-level tasks. This has the

benefit of enabling us to recruit any participant with normal

vision for our experiment. Furthermore, it also means we can

disable labels and scales for our experiment, sidestepping

legibility concerns altogether.
1
Nevertheless, we believe that,

as with any graphical perception experiment, a study of

high-level visualization tasks will eventually be necessary

to provide ecological validity to complement our findings.

That is outside the scope of the present study, however.

In determining representative low-level visual tasks to fo-

cus on, we based our selection on the cardinality of data items

involved in the task: one item, two items, and multiple (or

all) items. Our reasoning is that this data item cardinality

yields qualitatively different low-level tasks. This lead us to

deriving three concrete tasks as follows:

T1 Task 1: Rank (one item): Given one selected item

in a ranked list, determine its rank, i.e., its position in

the full list (Figure 3a). We indicate the item using a

colored icon centered inside the item’s visual mark.

T2 Task 2: Compare (two items): Given two selected

items in a ranked list, determine which item is larger,

and by how much (Figure 3b). We indicate the items

using two colored icons centered inside the marks.

T3 Task 3:Mean (all items):Given a ranked list of items,

determine the average value of all items (Figure 3c).

Participants respond by moving a slider to the ratio of

0% to 100% of the maximum value.

1
Zvinca plots do not have an explicit labeling strategy, and packed bars do

not label all items. Eliminating labels thus avoids ambiguous comparisons.

We generate datasets using a stochastic algorithm that

iteratively perturbs random numbers in the desired direction

using a form of simulated annealing (gradually decreasing

amplitude) until the average, minimum, and maximum val-

ues are within a specific tolerance of the desired values.

Participants
Because this study focused on low-level perceptual tasks that

require no specific training or prior data visualization ex-

pertise, we conducted our study using Amazon Mechanical

Turk. While the use of Mechanical Turk (MTurk) means that

we have little control over participant demographics and

expertise as well as their computer hardware, prior work has

shown that graphical perception tasks such as ours are par-

ticularly amenable to this kind of crowdsourced study [16].

In our experiments, each chart type and task combination

(6 × 3) was answered by 10 participants, resulting in us re-

cruiting a total of 180 crowdsourced participants across the

three tasks. Each participant could only partake in one exper-

iment, and thus a participant responded to only a single chart

type and a single task type. We limited the study to Turkers

with a historical performance of at least 90% approval rat-

ing as well as at least 1,000 HITs completed to ensure that

we recruited only experienced crowdworkers. Furthermore,

we limited participation to the United States due to tax and

compensation restrictions imposed by our IRB. We screened

participants to ensure at least a working knowledge of Eng-

lish; this was required to follow the instructions and task

descriptions in our testing platform.

We intentionally did not collect demographic information

to minimize the time required to complete an experimen-

tal session. The demographics should be consistent with the

overall characteristics of the diverseMechanical Turk worker

pool [26]. All participants were ethically compensated at a

rate consistent with an hourly wage of at least $10/hour (the



U.S. federal minimum wage in 2018 is $7.25). More specifi-

cally, the payout was $2.00 per session, and with a typical

completion time of 10 minutes (no participant exceeded 12

minutes), this yielded an hourly wage of $12/hour.

Apparatus
Because of the crowdsourced setting, we were unable to

control the devices that participants used to complete the

experiment. However, to ensure that participants had a suffi-

ciently large screen to reliably perform the experiment, we

rejected participation using devices with less screen reso-

lution than 1280 × 800 pixels. We maximized the browser

window
2
and fixed the viewport size for the testing platform

to 920 × 540 pixels.

Experimental Factors
In addition to the three tasks outlined above, we included

two experimental factors:

• Chart type (C): The ranked-list visualizations that

we wanted to compare. In reference to Section 3, we

included scrolled barcharts (SB), treemaps [20] (TM),

wrapped bars [10] (WB), packed bars [14, 15] (PaB),

piled bars [30] (PiB), and Zvinca plots [11] (ZP). Fig-

ure 1 provides an overview.

We opted to not include packed bubbles (bubble charts)

because area-size charts are already represented by

treemaps, which also uses a deterministic and sorted

layout (whereas the packed bubbles layout is unpre-

dictable and uses collision detection).

• Dataset Size (D): It is conceivable that different vi-

sual representations will perform differently depend-

ing on the number of items being displayed. For this

reason, we involve an experimental factor for the num-

ber of items to display in the ranked list. Because of

the typical intended use-cases of ranked lists in prac-

tice [10, 11], we opted to include three levels for this

factor: 75 items, 150 items, and 300 items. We also base

this choice on the prior evaluation by Yalçin et al. [30],

who used these sizes, as well as our pilot studies.

We followed the convention that all bars should have equal

height across all chart types (except for treemaps, which do

not use bars). This means that the number of columns for

wrapped and piled bars depends on the dataset size. Since

we do model dataset size in our experiment, the number of

columns is indirectly modeled: as low as 3 columns for 75

items, and as high as 10 columns for 300 items.

2
Unfortunately, this can be blocked by some browsers, and we have no way

of ensuring that the user does not change the window size after the fact.

Experimental Design
We used a mixed factorial design, where each participant

worked on only one task and visualization, but across all

dataset sizes. In other words, the chart C and task T fac-

tors were between-participants (BP), whereas data size and

repetitions were within-participants (WP). The reason for

this was to make each crowdsourced session manageable in

duration—in our experience, keeping sessions less than 10

minutes in duration minimizes fatigue and maximizes atten-

tion for crowdworkers. This yielded the following design:

6 Chart C (SB, TM, WB, PaB, PiB, ZP) [BP]

× 3 Task T (T1 - rank, T2 - comp, T3 - mean) [BP]

× 3 Data Size D (75, 150, 300 items) [WP]

× 10 repetitions [WP]

540 trials (30 per participant)

With 180 participants (10 per each combination of task T
and chart C , i.e., 60 per each chart type C), we planned to

collect a total of 5,400 trials. For each trial, we also collected

the completion time as well as the accuracy. The completion

time was measured from the beginning of a trial until the

participant submitted an answer. The accuracy measure was

defined differently for each task:

• T1 (rank) - accuracy: Normalized and absolute dif-

ference between the actual rank and the participant

response, e.g., |a − b |/n, where a was the correct rank,

b was the participant answer, and n the number of

items in the list (75, 150, or 300).

• T2 (compare) - accuracy: Normalized and absolute

difference between the actual ratio of the larger value

to the smaller value and the participant response, e.g.,

|a − b |, where a was the correct proportion between

bars, and b was the response.

• T3 (mean) - accuracy: Normalized and absolute dif-

ference between the actual average and participant

response, e.g., |a −b |, where a was the correct average,

and b was the response.

Hypotheses
We formulate the following hypotheses for our experiment:

H1 Scrolled barcharts (SB) will perform significantly slower
than all other visualizations. We believe the necessary

interaction to scroll through the list will result in the

scrolled barcharts requiring a longer completion time

than all other visualizations.

H2 Treemaps (TM) will yield significantly less accurate per-
formance than all other visualizations for all tasks. As-
sessing area is significantly less accurate than assess-

ing lengths or position.

These were formulated prior to running the experiment.

They correspond to our motivations for conducting this work



in the first place: our intuition is that (1) the scrolling inter-

action required for a long list of bars will slow down perfor-

mance, and (2) that the use of treemaps to represent flat lists

of ranked items is inefficient.

Figure 4: Overall error and completion time for all charts per

task type. Error bars show 95% confidence intervals.

Figure 5: Overall error and completion time distributions.

5 RESULTS
We ran our crowdsourced graphical perception study on

Amazon Mechanical Turk and collected a total of 6,684 re-

sponses from 222 unique respondents. This was higher than

the 180 that we planned, but software errors with the testing

platform yielded duplicated trials in the data. We eliminated

the extra and incomplete trials. Furthermore, we eliminated

completion time outliers that were four times larger than

the standard deviation for each task. Following current best

practices for fair statistical in HCI, as summarized by Drag-

icevic [7], we eschewed traditional null hypothesis statistical

testing (NHST) in favor of estimation methods to derive 95%

confidence intervals (CIs) for all results datasets. More specif-

ically, we employed non-parametric bootstrapping [9] with

R = 1, 000 iterations.

Figure 4 shows the overall error and completion time for

all tasks and chart types, whereas Figure 5 show data distri-

butions of the same. We will discuss each task in detail in

the following subsections, but we can make a few observa-

tions already from this overview. For example, there is good

evidence to suggest that SB (scrolled barchart) is overall the

most accurate condition, except for the Rank task, where

WB (wrapped bars) is more accurate. On the other hand, the

results suggest little differentiation between PaB and PiB

(packed and piled bars, respectively), except for the Mean

task, where packed bars seem to have the most errors, and

ZP (Zvinca plots) are similarly accurate as SB. Zvinca plots in

general show uneven performance, with seemingly the least

accurate of all charts for Comp, likely comparable to PaB

and PiB for Rank, and likely comparable to SB for Mean, as

mentioned above. Treemaps (TM) did surprisingly well, with

onlyMean exhibiting what seems to be lower accuracy than

all but PaB (packed bars), otherwise yielding good accuracy.

As for completion time, there is evidence that SB (scrolled

barchart) is slower than alternatives for all tasks. It is only

for the Rank task that WB (wrapped bars) somewhat surpris-

ingly seem to perform comparable than SB and slower than

all other charts. Beyond these observations, PaB and PiB

seem to perform comparably well for all tasks. ZP (Zvinca

plots) shows completion times comparable to the other tech-

niques for Comp and Rank, but seem to outperform the oth-

ers for theMean task. Finally, treemaps (TM) do surprisingly

well, particularly for the Rank task.

Task 1: Ranking (Single Item)
The left columns of Figure 6 shows the error for the Rank

task. As observed above, wrapped bars (WB) overall ex-

hibits the most accurate performance, whereas the advanced

techniques—PaB, PiB, and ZP—overall seem to perform poorly.

In particular, PiB has high variance in error for 300 records,

and ZP also shows a similar trend. The most surprising find-

ing here is that TM does not nearly perform the least accu-

rate, and what’s more, there is an inverse linear trend for

increasing number of items in the list.

For completion time in the left part of Figure 7, a point

of note is that SB seems to perform more slowly than other

techniques. Curiously, ZP exhibits an inverse linear comple-

tion time trend for increasing number of items. This is also

the task where WB overall performs relatively poorly.

Task 2: Comparison (Two Items)
The center column of Figure 6 give the error for the Comp

task. Most techniques perform accurately here, with TM even

seeming to outperform PaB and PiB. Evidence suggests that

Zvinca plots had the lowest accuracy for all sizes.



Rank Comp Mean

Figure 6: Error for all charts for all tasks across list sizes. Error bars show 95% confidence intervals.

Rank Comp Mean

Figure 7: Completion time for all charts for all tasks across list sizes. Error bars show 95% confidence intervals.

The Comp task also gave rise to the longest completion

times (Figure 7), particularly for SB (scrolled barchart). All

other charts seem to have comparable performance.

Task 3: Average (All Items)
Finally, the results for theMean task is shown in the right

column of Figure 6. This was overall a difficult task, with

many techniques yielding high error rates—particularly PaB,

TM, and to some extent PiB. These three techniques were

particularly sensitive to increasing sizes, as the error rate

went up significantly for higher list sizes. The findings may

indicate that ZP performed the most accurate here, with SB

as the second most accurate, followed by WB.

This task also yielded the most varied completion times,

as evidenced by Figure 7. Interestingly, ZP here exhibits an

inverse completion time trend; it seems participants were

able to respond faster with increasing list sizes.

6 DISCUSSION
Based on our results, we can make the following conclusions

about our hypotheses (Section 4):

• Scrolled barcharts performed slower for the Comp and

Mean tasks, but evidence suggests it outperformed

wrapped bars for the Rank tasks. This is evidence

partially in favor of H1.



• Surprisingly, our findings suggest that treemaps were

never the least accurate of the chart types, and in fact

outperformed several charts for both the Rank and

Comp tasks. This does not support H2.

In the below sections, we will first attempt to explain these

results, and then we will discuss their generalizations.

Explaining the Results
There are several findings from our study—some surprising,

some not—that require further explanation. First of all, on

the matter of scrolled barcharts, which all of the compet-

ing techniques were designed to beat, the picture is mixed.

While the technique is mostly slower than other charts, it

does provide the highest accuracy. The reason for its slow

speed is obviously that scrolled barcharts—unlike the other

techniques, where the entire dataset is visible on the screen

at the same time—requires scrolling (i.e., user interaction) to

see the full data. Conversely, the highest accuracy is likely

due to its simple, uncluttered, and familiar representation.

On the other hand, our scrolled barchart implementation

saves horizontal space by folding the labels on top of the

bars (Figure 1a), whereas many practical implementations

dedicate horizontal space to the left of the axis for labels.

Treemaps perform surprisingly well, which goes against

visualization wisdom, which tends to promote length over

area judgment [4]. It is also not consistent with recent find-

ings from Yalçin et al. [30]. While treemaps did not ever

perform the best in completion time or accuracy, it also

never performed the worst. In fact, for the mean task, where

it arguably performed the worst, you could argue that the

conversion from an area mark to a slider when answering

the average size question was potentially problematic for

the treemap condition. One potential explanation may be

that the squarified treemap layout [2] organizes rectangles

in a way such that the position is an indicator of rank, which

may be helping the treemap representation. Other layouts

may not exhibit the same helpful property.

Save for wrapped bars, the more advanced techniques that

rely on creative layouts to keep all bars on a single screen

performed relatively poorly. This is surprising, but may par-

tially be explained by unfamiliarity compared to scrolled

barcharts, as well as arguably wrapped bars, which retain

many familiar features of the former. However, that argu-

ment holds less water when considered against treemaps,

which are not known to be familiar to a lay audience. In-

stead, this may stem from the complex layouts of piled bars,

where longer bars are overlapped by shorter bars, as well

as packed bars, where bars are packed in an unpredictable

manner. Finally, Zvinca plots use dot position rather than

bar length, and overplotting may potentially be a factor.

One point about Zvinca plots stand out, however: for the

Mean task, ZP performed both the fastest and had the lowest

error rate. This is remarkable, and could be explained by the

fact that the smaller amount of pixels associated with dots

than with bars simply affords easier visual estimation. An-

other way to look at this task for Zvinca plots is to determine

the geometric center for the plots, which is different from

the other representations and possibly easier. Alternatively,

it may just be an corollary from known graphical perception

results, such as that of Cleveland andMcGill [4], which states

that position is a stronger visual cue than length.

Generalizing the Results
What do these results say about the state of ranked-list vi-

sualization? First of all, we think that our treemap findings

should be seen as a result cautiously in favor of continuing to

use treemaps for flat ranked lists, which is already prevalent

in practice. While this representation was never intended for

flat lists, our study indicates that treemap layouts can also

be utilized to great effect even without a hierarchy.

Having said that, there are better alternatives for ranked

lists than treemaps; for example, wrapped bars seem to have

comparable accuracy to scrolled barcharts for most settings,

and is faster to use in the majority of cases. For this reason,

wrapped bars may be the overall most balanced choice.

There are two potential weaknesses that we have not con-

sidered in this work: scalability and ecological validity. For

the former, it is important to note that we only considered

lists of up to 300 items. While many datasets that are viewed

as ranked lists commonly only have a few hundred items,

these are clearly still small. When looking for a technique

that scales to large datasets, many of the design considera-

tions and results discussed here fade. Instead, a designer may

pick a technique that uses space optimally—e.g., treemaps—

or utilizes less ink—e.g., Zvinca plots. Investigating such

scalability issues is left for future work.

As for the ecological validity concern, our stated goal in

this work has always been to study low-level perceptual as-

pects of ranked list visualization. Our argument is similar

to most perception studies in that performance for these

perceptual aspects will combine into higher-level compound

tasks. Of course, high-level analytical tasks actually used in

practice may look very different compared to the three tasks

studied here. First of all, tasks with completion times on the

order of a few seconds are rarely significant in sensemaking

practice, where other, more intangible factors come into play.

For example, packed bars promote the primary bars (the

first column) over secondary bars, and piled bars optimize

the horizontal resolution and discriminability, both proper-

ties that may be important for a specific task. Second, these

high-level analytical tasks are conducted by experts with

long experience and training in sensemaking, and thus their



needs, requirements, and wishes may be very different from

the casual users we surveyed in our crowdsourced study.

However, just as for matters of scale, studying high-level

analytical practice for ranked-list visualization is a question

we have to leave open for future research.

7 CONCLUSION AND FUTUREWORK
We have presented results from a crowdsourced graphical

perception on low-level tasks for ranked-list visualization:

ranking an item in a list, comparing two items, and esti-

mating the average value of all of the items in the list. In

conducting this work, we involved all of the primary chart

types that are typically used for such data in practice: scrolled

lists of barcharts, treemaps, wrapped bars, piled bars, packed

bars, and Zvinca plots. While no single effect can be found

in our results, we do find evidence that each chart type has

strengths and weaknesses depending on the task, data, and

user. However, our results do indicate that barchart lists pro-

vide high accuracy at the cost of scrolling, that treemaps are

not nearly as inaccurate as their reputation suggests, and

that wrapped bars may provide a powerful middle ground

in mitigating the interaction costs associated with long lists.

Our future work will involve both studying the scalability

aspects of ranked-list visualization, as well as exploring high-

level analytical tasks conducted by data scientists. We are

curious to see if any of our recommendations will change as

an effect of these changing parameters, both in terms of the

number of items in the list, as well as in terms of the skill

level, task type, and unique needs of an expert audience.
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