
PolyChrome: A Cross-Device Framework for
Collaborative Web Visualization

Sriram Karthik Badam1 and Niklas Elmqvist2

1Department of Computer Science and 2College of Information Studies
University of Maryland, College Park, MD, USA

{sbadam, elm}@umd.edu

Client-Server Peer-to-Peer (P2P)

Tablet Tablet

Server Side - Event log

Device 1:
{touchstart, 628, 145},
{touchmove, 629, 147},
{touchmove, 630, 150},
{touchend, 634, 154}

Device 2:
{touchstart, 636, 157},
{touchmove, 640, 159},
{touchmove, 642, 160},
{touchend, 649, 166}

{touchstart, 636, 157},
{touchmove, 640, 159},
{touchmove, 642, 160},
{touchend, 649, 166}

Display Wall
Interaction events

Figure 1. A web-based collaborative visualization of a scatterplot matrix of Anderson’s Iris dataset with brush and link interaction enabled. Using
PolyChrome, the brushes created on the tablets are represented on the display wall through operation distribution, and are also stored on a server.

ABSTRACT
We present PolyChrome, an application framework for creat-
ing web-based collaborative visualizations that can span mul-
tiple devices. The framework supports (1) co-browsing new
web applications as well as legacy websites with no migration
costs (i.e., a distributed web browser); (2) an API to develop
new web applications that can synchronize the UI state on
multiple devices to support synchronous and asynchronous
collaboration; and (3) maintenance of state and input events
on a server to handle common issues with distributed ap-
plications such as consistency management, conflict resolu-
tion, and undo operations. We describe PolyChrome’s gen-
eral design, architecture, and implementation followed by ap-
plication examples showcasing collaborative web visualiza-
tions created using the framework. Finally, we present per-
formance results that suggest that PolyChrome adds minimal
overhead compared to single-device applications.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User
Interfaces—Interaction styles; I.3.6 Computer Graphics:
Methodology and Techniques—Interaction techniques

Author Keywords
Co-browsing; cross-device interaction; multi-display
environments; distributed visualization;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ITS ’14, November 16 - 19 2014, Dresden, Germany.
Copyright c© 2014 ACM 978-1-4503-2587-5/14/11...$15.00.
http://dx.doi.org/10.1145/2669485.2669518

INTRODUCTION
Given today’s relentless advancements in display technology,
mobile devices, and wireless connectivity, the concept of col-
laborative visualization on multiple devices such as large dis-
plays, tabletops, tablets, and smartphones is becoming in-
creasingly prominent [23]. In parallel development, the web
is quickly turning into a prime platform for managing and
analyzing large amounts of data using visualization [7] and
visual analytics [33]. Collaborative web browsing [9, 14] (co-
browsing), where browsers on multiple different devices are
connected, is one paradigm that allow us to combine both
of these trends to enable cross-device interaction [42]. So
far mostly restricted to applications within human-computer
interaction, co-browsing synchronizes browsers by sharing
both current browser state and interaction events, including
navigation through scrolling, selection through mouse clicks,
and input from keyboard and touch displays. Applying this
idea to visualization and visual analytics would turn the web
browser into an environment for cross-device visualization.

The concept of harnessing multiple networked devices for
deep data analytics anywhere and anytime is called ubiq-
uitious analytics (ubilytics) [12], and draws upon a signifi-
cant body of existing work that supports synchronous and co-
located collaboration using distributed user interfaces [30],
distributed visualization [18], and post-WIMP interaction
models [16]. Ubiquitous analytics is inspired from Mark
Weiser’s vision (ubiquitous computing [42]) of seamless in-
teraction with everyday objects and activities for information
processing. Utilizing the web as a medium for collaboration
can easily be the most platform-independent way to make
further progress towards these common visions of ubiquitous
computing and analytics. However, to build ubilytics environ-
ments using multi-device ecosystems over the web, we need

1

a unified framework to replicate shared state and manage the
shared visual space of multiple devices.

In this paper, we address this need by presenting POLY-
CHROME, a web application framework for exploring the de-
sign choices in sharing and synchronizing web applications in
collaborative settings. Because the framework is built entirely
in JavaScript, participating devices need no special software
beyond a modern web browser. Interaction sharing and syn-
chronization among devices using PolyChrome is performed
through a secure peer-to-peer (P2P) network, while persistent
data such as login details, display configuration preferences,
shared state, and consistency management is managed by a
dedicated server. PolyChrome provides three contributions to
the visualization on interactive surfaces community:

• Augmented legacy websites: Augmenting standard web
browsers to distribute legacy websites and visualizations
across multiple devices and synchronize interaction be-
tween them. We target both dynamic websites for visu-
alization created using toolkits such as D3 [7], as well as
static websites such as Wikipedia.

• Collaborative web visualizations: Providing the interac-
tion and display space distribution mechanisms to create
new collaborative web visualizations that utilize multiple
devices. This is widely useful in all types of collaboration,
including the four combinations of synchronous vs. asyn-
chronous and co-located vs. distributed collaboration [3].

• Consistency and synchronization management: Providing
framework modules to store the user interaction (repre-
sented as operations). Combined with the initial state of
a website, the interaction logs are useful for synchronizing
devices within the collaborative environment, consistency
management, and interaction replay [27].

The remainder of this paper is structured as follows: we first
review existing research on web-based visualizations, collab-
orative visualizations, collaborative web browsing, and oper-
ation transformation algorithms for groupware. We then de-
rive and motivate design considerations for our framework.
We present the PolyChrome architecture and give several ap-
plication examples of using PolyChrome for both new and
legacy web-based visualization. We close the paper by dis-
cussing advantages and disadvantages of PolyChrome along
with a preliminary evaluation.

BACKGROUND
In this section, we review existing research in the related ar-
eas in visualization, cross-device interaction, and operation
transformation for groupware.

Web-based and Collaborative Visualizations
Rohrer and Swing [35] more than a decade ago discussed
the possiblity of utilizing the web as a visualization platform,
citing its inherent device and platform independence as well
as its pervasiveness, but it is only recently that the web be-
came both the source of information as well as the underly-
ing delivery mechanism for interactive visualization. Many
Eyes [41] was among the first to allow a visualization of ar-
bitrary datasets over the web. By doing so, they opened up a

new opportunity for social analysis and enhanced collabora-
tion in analytics by acting as a space to share visualizations,
opinions, and conjectures.

In the past decade, toolkits designed for supporting web visu-
alization such as Protovis [6], JavaScript InfoVis toolkit [5],
and D3 [7] have come into prominent use. Protovis [6] aimed
at making visualizations more accessible to the web and inter-
action designers by using a declarative specification of visual-
ization as consisting of graphical primitivates called “marks”,
such as bars (for bar charts), lines (for line charts), and labels.
In contrast, D3 [7], created by Bostock et al., supports web vi-
sualization through direct manipulation of the document ob-
ject model (DOM) of a webpage without any intermediate
representations. D3 uses the document as the scene graph
and performs at least twice as fast as Protovis [6]. While these
toolkits are oriented towards building visualizations over the
web, they have not yet attempted to support features for col-
laboration between multiple users.

Collaboration in the analytics process has been shown to in-
crease sensemaking performance: Mark et al. [28] showed
significant benefits in using collaborative visualizations in
both distributed and co-located settings, and Balakrishnan et
al. [4] found better performance for analysts using shared vi-
sualization compared to single-user ones. Drawing on this
body of work, Isenberg et al. [23] define the research area of
collaborative visualization and derive its unique challenges.
Collaborative visualizations in co-located settings often uti-
lize large wall displays, floor displays, tabletops and tablets.
Accordingly, several visualizations have been adapted to such
settings [22, 25, 40]. Some approaches exist to facilitate
the collaborative sensemaking itself; for example, Branch-
Explore-Merge [29] supports the whole spectrum of coupled
and decoupled collaboration when analyzing datasets.

Collaborative Browsing and Cross-Device Interaction
Collaborative web browsing [9, 14] involves multiple users
viewing a single webpage collaboratively using their individ-
ual devices through synchronous or asynchronous coupling of
their browser interfaces. Traditionally, this is accomplished
either by replicating the content of one browser over the con-
nected browsers in distributed collaboration or by allowing
virtual avatars to operate on a single web browser in case of
co-located collaboration. GroupWeb [15, 17] presents one of
the earliest groupware adaptations of a web browser. It al-
lows (1) document slaving for synchronized pages by making
sure that the browsers display the same webpage, (2) relaxed
“what you see is what I see” by keeping the visuals similar
across devices, (3) view slaving for synchronous scrolling,
gestures through telepointers, and (4) group annotations.

Another way to look at co-browsing is to see it as a medium
for cross-device interaction [42]: interaction that spans two
or more devices. Accordingly, over the past decade and half,
collaborative browsing has evolved from simplistic meth-
ods to chain multiple displays into full multi-device envi-
ronments. Websplitter [20] targets web-based presentations
involving multiple displays and hand-held devices. Instead
of mirroring webpages across devices, they provide the abil-
ity to orchestrate a composite presentation, including audio

2

and video, across multiple devices according to their capa-
bilities. PlayByPlay [43] supports synchronous and asyn-
chronous collaborative browsing and allows the user to tog-
gle options for receiving actions of other users, sending their
own actions, and resyncing with a previously synchronized
user. Synchronite [39] works with more dynamic webpages
by capturing the mousing events and replicates them among
connected devices, thus creating low latency collaboration
and reduced data traffic.

Hydrascope [21], a framework for adapting existing web ap-
plications (legacy) to multi-surface environments, faces is-
sues with its approach for reverse-engineering these applica-
tions, and they counter this by providing some general design
guidelines for web applications. Calderon et al. [8] mention
the general requirements for going beyond common browser
interactions and coupling mobile displays as lessons learned
while developing the RED framework for multi-display appli-
cations. More recently, Panelrama [44] allows development
of web-based collaborative applications through custom pan-
els, but this work does not fully support legacy applications or
dynamic web visualizations. Other research work in develop-
ment of cross-device web interfaces includes XDStudio [31].
In contrast to these frameworks, PolyChrome utilizes existing
HTML elements, supports legacy applications while provid-
ing a developer API for designing cross-device applications,
couples any two devices with a web broswer, and synchro-
nizes using interaction events.

Operation Transformation
Real-time collaborative applications often require manage-
ment of consistency and conflicts inherently caused by simul-
taneous collaborative use. In the quest to allow concurrent use
in distributed environments, operation transformation (OT)
has become an established method compared to the alterna-
tives such as turn-taking, locking, and serialization [10, 11].

The early approaches GROVE [10] and REDUCE [37, 38]
both adopt fully distributed architectures and maintain a
buffer of executed operations on each device. In particular,
the REDUCE approach promises intention preservation—the
final state on all devices being what the user intended—along
with convergence and causality preservation. REDUCE in-
troduces two kinds of operation transformations: inclusion
transformations (IT) that transforms an operation Oa against
operation Ob such that the impact of Ob is included, and ex-
clusion transformation (ET) that transforms an operation Oa
against operation Ob such that the impact of Ob is excluded.

The JUPITER approach [32] serves as an inspiration for re-
cent OT algorithms used in Google Docs. Kumawat and
Khunteta [26] review OT algorithms along with the chal-
lenges faced in the field and recent achievements. Current
frameworks designed with built-in mechanisms for consis-
tency management include Apache Wave [1] and ShareJS [2]
that work with a centralized server, linear history buffer, and
operation transformation for managing the global state. In
PolyChrome, we draw upon this work to achieve consistency
in collaborative visualizations by utilizing operation transfor-
mation algorithms through a framework that sees user interac-
tion on the web as a series of native browser-level operations.

DESIGN: CROSS-DEVICE VISUALIZATION TOOLKITS
Multi-device ecosystems are becoming increasingly popular
in office and academic settings [13, 34]. The presence of
large screens, tabletops, and tablets not only increases the
screen space but also the interaction space to utilize the vari-
ous unique abilities of each device. Many existing platforms
utilize the idea of connecting the devices in the ecosystem
with a client-server or a peer-to-peer architecture [25, 29], to
allow for ubiquitous analytics [12]. With the increasing use of
the web as a platform for visualization and visual analytics,
we believe that it is time to augment toolkits for web visu-
alizations with the ability to allow collaboration at a device
level. Here we describe the design choices involved in build-
ing ubiquitous visual analytics applications over the web and
how these choices can be supported through a software frame-
work for binding web browsers on separate devices together.

Operation Distribution
At a software level, interaction events or operations, a com-
mon term in Operation Transformation, form the building
blocks for any interaction with a visualization. For example,
brush-and-link coordination is one of the common interaction
techniques used in multi-view visualizations, and it is per-
formed through one or more selection operations. In multi-
device ecosystems for ubiquitous analytics, these operations
need to be captured and shared with other devices to propa-
gate the effects of an interaction on the display space. While
a simple model for operation distribution would involve send-
ing every operation to all the devices in the network, this may
not turn out to be useful in some collaborative scenarios. We
have identified various styles (design patterns) of operation
distribution or replication (Figure 2).

P1 Explicit Sharing: Here the visualization user explicitly
decides when the operation sharing should happen, which
operations to share and whom to share them with. This is
helpful in building private and public workspaces that can
allow for branch and merge style collaboration [29]. While
an operation that happens on the private workspace is not
shared with others, the operation that happens on a public
space is passed on to all the devices with user intervention.

P2 Implicit Sharing: Here the operations are automatically
shared with the connected devices without the need for ad-
ditional application logic. This creates a fully-aware en-
vironment where each device knows the interaction hap-
pening on others. This method requires additional appli-
cation logic for consistency management since interaction
can happen at the same time on multiple devices. Typical
usage scenarios include distributed user collaboration sce-
narios that provide the visual feedback of a user interaction
to all the other users.

The explicit and implicit sharing models form the two ex-
tremes of a hypothetical operation sharing scale (Figure 2). In
a typical collaboration, some of the devices may use explicit
sharing through user intervention, while others may prefer
implicit sharing. Another sharing model on this hypotheti-
cal scale, is the unilateral sharing model where one device
(leader) always shares its operations automatically, while the
other devices (lagger) only listen to the operations shared by

3

Sharing Models

Fully Implicit Unilateral Fully Explicit

Implicit Sharing by PolyChrome

Explicit Sharing by application logic

Figure 2. A hypothetical sharing scale ranging from fully implicit to fully
explicit sharing. During implicit sharing, the operations are automati-
cally shared with all connected devices. On the other end, explicit shar-
ing allows the developer of the collaborative visualization to define ex-
plicit application logic for sharing interaction. Unilateral sharing model
is a real-world example that can be applied during presentations.

the leader. This model is useful during presentations and
many other guided collaboration scenarios.

To achieve the various design choices in operation distribu-
tion especially in concurrent use, transformation of these op-
erations (OT) to the context also needs to be taken into ac-
count. Previous research in OT mostly deals with collabora-
tive text editors and document editors where the operations
are clearly defined (for example, insert and delete) and the
applications allow undo/redo by default. In contrast, typi-
cal web visualizations directly deal with the document object
model (DOM), thus providing different ways to realize oper-
ations. The definition of operation guides the operation trans-
formation algorithms [26, 37, 38] for concurrent use of web
applications. Some example operation definitions include,

P3 Data-centric operation: Here an operation can be defined
on the data structures guiding the visualizations. Any in-
teraction performed in this approach needs to be translated
into a change in the data variables (operation) that is shared
with other devices in the network.

P4 Interaction-centric operation: Here an operation can
be defined as an interaction event that is handled by the
web browser. This includes different types of browser-
level events such as scroll, mouse events such as mouse
click, move and mouse up, touch events such as touch
start, touch move, and touch end, and key presses. These
events/operations can be captured, shared, and then per-
formed on the DOM of the webpage on each device.

As most OT algorithms dictate, collaborative visualizations
also require a way to save operations on a server (i.e., an inter-
action log) to maintain the global state and resynchronize de-
vices that are out-of-sync using context-specific algorithms.

Display Space Management
Multi-device environments often consist of devices of differ-
ent resolutions, aspect ratios, and screen sizes. This causes
a distribution of the unified display space, i.e., the rendering
of the web visualization in the browser between multiple de-
vices in the ecosystem. The distribution of the display space
leads to different renderings on the devices that may cover

A B BA A A B
(a) Stitching (b) Replication (c) Nesting (d) Overloading

B

Figure 3. Various display space configurations for a two-device environ-
ment. (a) Splitting the display space between the two devices is useful
for multi-screen displays, (b) replicating (mirroring) the display space
among the two devices is useful during distributed collaboration, and (c,
d) nesting and overloading are useful for small-screen mobile devices.

whole or part of the global display space, or the unified dis-
play space covering all the devices. Figure 3 shows several
local display configurations for a two-display environment.
Considering these aspects, one of the design considerations
here is to support the following patterns for distributing the
display space between multiple devices (inspired by Javed
and Elmqvist [24]).

P5 Replicating: This strategy shows the exact same view on
all devices. The global display space of the ecosystem is,
therefore, a superimposition of the individual screens. This
pattern typically occurs during webpage mirroring in co-
browsing, and is widely useful in distributed collaboration
where the users work from different locations.

Usage scenarios: Public presentations where the view of
the presentor can be mirrored on the displays held by
the audience, or distributed collaboration between multi-
ple users to perform document analysis through tools such
as Jigsaw [36] that require building synchronized views.

P6 Stitching: Here the entire display space is split between
devices, with no two devices sharing any part of the dis-
play. The global display space is now formed by juxtapos-
ing, or stitching, the individual displays.

Usage scenarios: Multi-display visual analytics.

P7 Nesting: Here one or more devices hold the entire dis-
play space, while others show bits and pieces of the display
space relevant to the device or the user.

Usage scenarios: Co-located settings with mobile devices
alongside large displays and desktop computers.

Javed et al. [24] also discuss overloading, where a view uti-
lizes the space allocated for another view, and this is cov-
ered by nesting in the context of web visualizations. Figure 3
shows the design patterns in display space configuration.

Supporting Legacy Applications
While supporting development of new web-based collabora-
tive visualizations, it is equally important to provide as much
backward compatibility to the numerous existing web-based
visualizations. For example, there are web visualizations built
using D3, Protovis, and the JavaScript InfoVis Toolkit. These
generally depend on the native browser events for the event
handling, and SVG, CSS, and HTML5 for graphical render-
ing. To support these legacy applications, we propose to use
a proxy module that augments a standard web visualization
or web application with additional support for event sharing
and display configuration between the involved devices.

4

Additional Design Considerations
The intended user of this design treatment for cross-device
visualization toolkits is an application programmer (i.e., an
“end-user” programmer), who is building ubiquitous web
visualizations. Thus, we must consider the above design
choices for operation management, display space configura-
tion, conflict resolution, consistency management, and syn-
chronization among devices. In addition to these, we must
also support multiple device modalities for both input and
output including tabletops, multi-screen displays, desktop
computers, and mobile devices. Finally, a software frame-
work for this should also accommodate future technologies
and allow third parties to contribute new functionality.

THE POLYCHROME FRAMEWORK
PolyChrome is a generic software framework for building
web-based cross-device visualizations. It is implemented us-
ing HTML, JavaScript, and CSS. Due to this strict reliance
on standard web technology, it is entirely cross-platform and
works on any device with a modern web browser. Poly-
Chrome consists of both client and server-side modules. The
server modules of PolyChrome have been built using Node.js,
as the event-driven nature and non-blocking I/O of Node.js
helps in efficiently managing interaction logs of multiple
users over time. The client-side modules of PolyChrome con-
tain the PolyChrome API that supports operation distribution
and display space configuration. Figure 4 depicts the Poly-
Chrome architecture, including the proxy server that converts
legacy web applications into collaborative applications, oper-
ation distribution, input, and rendering (visual representation)
layers. The framework interacts directly with the document
object model (DOM) structure within the browser for display
space configuration and also capturing browser events as op-
erations (design pattern P4). PolyChrome framework uses
PeerJS1 for P2P communication (using WebRTC2) between
the devices such as tabletops, tablets, and multi-screen dis-
plays, and communication via sockets from a client to server.

PolyChrome consists of four modules: (1) operation (event)
sharing; (2) display space configuration; (3) conflict, con-
currency, and synchronization management; and (4) a proxy
server for serving legacy applications. The design philosophy
of PolyChrome is to treat the view of a web visualization at
any time instance as a state that changes with user interac-
tion (as in Figure 5). In essence, browser-level DOM events
are the operations in PolyChrome applications. By capturing
the user operations at the most atomic level on the browser
in the form of DOM events, we can reconstruct the state of
the visualization from the original rendering. For this rea-
son, the communication between clients of PolyChrome only
happens in the form of event sharing, thus leaving the job
of rendering to the clients (a philosophy inspired by Syn-
chronite [39]). Browser-level events can be recreated using
the event details such as event type, coordinates with respect
to the page and client, and the target element in the DOM,
but interaction over time with continuous movement of the

1http://peerjs.com/
2http://www.w3.org/TR/webrtc/

Visualization

Client

Input

VisualPRepresentations

EventPHandlingP

EventPSharing DisplayPConfiguration

CommunicationPModulesP

InteractionPLog

ProxyPServer

ExternalPResourcesP-PWeb

PolyChromePServerP

CommunicationP

Modules

PolyChromePAPI

Figure 4. Architecture: The visualization client is connected to the Poly-
Chrome API modules for event sharing and display configuration. The
PolyChrome API automatically connects all the devices over a peer-to-
peer network for event sharing. Every client is also connected to the
PolyChrome server to store the interaction. This framework also pro-
vides proxy server modules for using legacy applications collaboratively.

mouse can lead to conflicts and consistency issues when con-
currently performed on multiple devices. For example, in a
two-device environment, if the mouse movement is attached
to an event handler, sharing the mouse movement with other
devices can lead to conflicts in terms of both events and order
of the events, and this can propagate into a consistency issue
if the handling sequence and context are different. In fact, the
effects can be fatal if the application logic for handling such
scenarios through OT logic is not encoded into the system.

The PolyChrome clients are connected over a peer-to-peer
channel for event sharing, and they can also choose to con-
nect to the server to store their interaction logs. This counters
the major setback of using client-level web technologies, i.e.,
the lack of proper persistent storage of the interaction of a
user when the webpage is closed. For example, when a client
drops out of the network, the interaction made on the client
is lost if it is not stored on some other host. Unless there is a
common global state maintained by all devices, this leads to
data loss and consistency issues. To counter this, PolyChrome
maintains the state of all devices on a server in the form of an
event log that contains the information and order of all events
generated on all connected devices in a session over time.

The PolyChrome framework currently allows space configu-
ration, i.e., the choice of rendering part or whole of the web
application based on the design pattens (P5 to P7) in the De-
sign section by assuming the global space to be the default
state of a webpage rendered in a normal browser. The global
space configuration is therefore device and webpage indepen-
dent, and is encoded into each PolyChrome client to facili-
tate seemless conversion from the local to the global config-
urations. Every PolyChrome client transforms events to the
global space configuration, and these events are interpreted
accordingly on other clients by an inverse transformation.

The concurrency and synchronization modules of Poly-
Chrome can be used for handling (1) newly joined clients
that require the previous user interactions to work in collabo-
ration or interaction replay, (2) multiple collaboration scenar-
ios including co-located collaboration on a display wall in-
volving multiple mobile devices, and unilateral collaboration
during presentations involving a presentor and audience with
their own personal devices, and (3) synchronization of clients
that are out-of-sync with interaction on other devices. This

5

http://peerjs.com/
http://www.w3.org/TR/webrtc/

mousedown at (1181, 772)

mousemove*

mouseup at (862, 536)

mousedown at (111, 22)

mousemove*

mouseup at (512, 357)

mousedown at (627, 156)

mousemove*

mouseup at (823, 407)

multiple events generated*
Figure 5. An example interaction with a Choropleth map of unemployment rates in U.S from 2008, created using D3. Upon user interaction (by
drawing a rectangular shape on the map), the counties within a selected region are highlighted. PolyChrome provides API-level support for capturing
and sharing the browser events that are triggered during this interaction with other connected devices, thus supporting collaborative visualization.

happens when the users work on their private space without
sharing or receiving interaction events [29]. The PolyChrome
server modules also provide the ability to load collaborative
versions of legacy applications with the help of a proxy server
that attaches PolyChrome client software to the web source of
legacy websites. In the next few subsections we will elaborate
on PolyChrome’s modules in more detail.

Event Sharing Modules
The event sharing modules provide the basic network-level
communication support to share and synchronize the user op-
erations on different devices. PolyChrome achieves this by
capturing browser events, communicating these events in a
serialized form through a shared peer-to-peer channel created
using PeerJS, and then triggering DOM events encapsulated
in a PolyChrome Event class on each client. PolyChrome al-
lows two types of event capture mechanisms:

1. Explicit capture: An application developer using Poly-
Chrome API can choose to handle event sharing explicitly.
By verifying whether an event is generated PolyChrome
(encapsulated in a PolyChrome event class) or otherwise,
the users can recycle native DOM events, which involves
sharing the event with all devices in the P2P network (de-
sign pattern P1). The recycled DOM event is then triggered
by PolyChrome. The event is at the same time shared with
the server by the PolyChrome client (on which the event
was created). The events are stored on the server asyn-
chronously on an interaction/operation log in the filesystem
with details such as the client identifier, timestamp, event
type, spatial co-ordinates and target DOM element details.

2. Implicit capture: PolyChrome also allows the users to
choose an implicit capture style in which all the events gen-
erated on a client are automatically captured at the docu-
ment level irrespective of their targets. The events captured
are analyzed to find their actual targets and are automati-
cally shared with other clients without explicit application
logic (design pattern P2). The events are then handled by
the original client (on which they were created) through the
application logic created for handling the respective event.

These methods for event capture allow for different styles of
collaboration as discussed in the Design section. These cap-
ture methods can also be applied to settings such as collabo-
rative search, team analytics [25], and general brainstorming
processes involving divergence and convergence [19], where
the users enjoy the private space on their tablets and merge
their ideas with the common displays after a significant break-
through. PolyChrome can also be used to emulate a unilateral
sharing model, as defined previously in the Design section,

during presentations (for example) where the presentor per-
forms the interaction which is shared with the audience, with
no communication in the opposite direction.

Display Space Configuration Modules
Webpage rendering on a standard browser is defined through
the HTML for the static elements, JavaScript for the dynamic
structure, and CSS for the style elements for managing align-
ment, colors, transforms, and effects such as shadows. For
PolyChrome, the rendering of a webpage or a dynamic vi-
sualization depends on the device type on which it is ren-
dered. For example, rendering on a multi-screen display re-
quires splitting and stitching the webpage across the multiple
screens. PolyChrome allows individual devices to manage the
local configuration while keeping them informed of the global
space. The global space configuration is the DOM rendering
of the webpage on a standard web browser. Events gener-
ated on each device are scaled to this global space, and then
sent to other devices by the PolyChrome API, where they are
transformed to the corresponding local configuration. For ex-
ample, in a multiple monitor setup, the webpage rendering is
split and stitched from multiple parts, and PolyChrome main-
tains the local transforms of each monitor to convert the spa-
tial coordinates of an event into the local space using an affine
2D transform that can take the local translation, scaling, and
rotation of each display into account. Events generated on a
device can accordingly be converted to the global space using
the inverse transform.

This method applies to any screen configuration through
CSS-level element transformations that are graphics acceler-
ated on modern browsers, such as Google Chrome. An al-
ternative mechanism would require device-dependent display
states that are prone to complex operation distribution logic.

Persistence, Consistency, and Synchronization
Persistence in PolyChrome is achieved by clients sharing
their events with a server, which stores the timestamped
events in an interaction log. Since the Node.js server is asyn-
chronous in nature, the clients can continue their workflow
once the events are sent to the server. This event log can act
as an history buffer that is typically used in some modern OT
algorithms [26, 32] for consistency management. Further-
more, the PolyChrome framework creates an opportunity to
fully allow collaborative use of web visualizations by embed-
ding a concurrency management model. This event log on the
server can also be used to update newly joined devices with
past interaction events, and also opens up the design space
for event caching and chunking on the server to distinguish
the semantic importance of various events. For example, in a

6

visual exploration scenario, while all the events are recorded,
only a few might be responsible for the detection of a trend
or an anomaly during the sensemaking process. Tagging and
caching these events can help during (for e.g.) report genera-
tion when these events can be replayed to recreate the process
by which the corresponding trend or the anomaly was found.

Proxy Server
To support legacy applications currently available on the web,
PolyChrome also contains a proxy server built using Node.js
that automatically injects the PolyChrome client modules into
legacy websites and web applications. PolyChrome uses an
invisible HTML div element spanning the entire webpage to
capture an event and then identify the target behind this in-
visible element. The events captured are automatically syn-
chronized, thus allowing collaborative use of legacy applica-
tions. This automatic sharing approach for legacy applica-
tions can face issues in the presence of custom application-
specific events (such as D3’s brush events). Although these
modules are currently experimental, they allow for running
a wide range of sample visualizations created with D33 in a
multi-device environment.

IMPLEMENTATION
We have implemented PolyChrome as a heterogeneous
JavaScript framework that uses PeerJS for peer-to-peer event
sharing and a Node.js server application with modules for
proxy server, interaction log management, and server-based
consistency and synchronization. The basic PolyChrome
client consists of approximately 1,500 lines of JavaScript
code and works with the most popular D3 visualization
toolkit for both computers and mobile devices.

To avoid dependency problems of asynchronous updates,
PolyChrome events maintain the ID of the target element in
the DOM. Based on the target ID, the corresponding element
in the DOM becomes the target on the connected devices.
Since one cannot be sure whether every element in the DOM
has an ID, the deterministic structure of a DOM tree is utilized
to assign an ID to each element during PolyChrome initial-
ization. Newly created DOM elements are also assigned with
an ID by the PolyChrome API when needed, thus account-
ing for the dynamic nature of modern websites. PolyChrome
also provides modules to generate pseudo-random values to
achieve similar DOM trees even for webpages with random
alignment. This mechanism can also be used to distribute
identical random numbers across the lightly-connected com-
ponents in the network. For example, since a force-directed
layout starts with random spatial positions, distributing them
on multiple devices can lead to inconsistencies.

The PolyChrome framework contains modules for a control
panel that is automatically attached to each client. This panel
is opened through a toggle button and provides additional
controls for event sharing and display configuration to the
user, including shortcut methods for some display configu-
rations. It also shows a list of connected devices along with
the events generated by each device. Users can also use the
control panel to toggle event sharing for specific event types.
3https://github.com/mbostock/d3/wiki/Gallery

APPLICATION EXAMPLES
We describe two collaborative visual applications for interac-
tive surfaces built using PolyChrome as well as one example
of a legacy visualization. The PolyChrome source, along with
several examples, are publicly available on GitHub.4

Scatterplot Matrix Exploration
Scatterplot matrices (SPLOMs) allow exploration of the re-
lationship between groups of every two variables in a multi-
variate dataset, and expands in size for every new dimension
added to the dataset. For example, Anderson’s Iris dataset
consists of four variables: sepal width, sepal length, petal
width, and petal lengths of three species of flowers. The
SPLOM in Figure 6 contains sixteen scatterplots. With in-
creasing dataset size, screen space becomes an increasingly
valuable commodity for visual exploration. To facilitate col-
laborative analysis of SPLOMs, we have created a web appli-
cation using PolyChrome and D3 that visualizes a given mul-
tivariate dataset. Brush-and-link interaction is enabled on the
visualization to allow the user to see patterns of data points
selected on one scatterplot (using brushing) on other scatter-
plots in the tabular view (linking) through highlighting. Using
the PolyChrome API, a device-specific interaction handling
is embedded within the code by identifying mobile devices.
The brushes created on the mobile devices are shared with a
display wall and are highlighed as rectangles on the display
wall. The event sharing in this example only happens from
mobile devices to the display wall (unilateral sharing model),
thus creating an interaction overview on the shared space.

Interaction through
brushing and linking

Representation of brushes
created on mobile devices

Figure 6. A collaborative web for exploring a scatterplot matrix using
brush-and-link interaction on multiple devices.

The application allows users to work on their tablets using
brush and link interaction to explore the dataset, while visu-
alizing the brushes on an overview visualization on the dis-
play wall. The visualizations and the interaction are created
using D3, and the entire application is written using HTML,
JavaScriptS, and CSS with less than 30 lines of code to initi-
ate PolyChrome, configure the display, and share events. This
example is currently available with the PolyChrome source.

Geographical Map Exploration
The second example uses Google Maps for map exploration
using pan and zooming on a web-based multi-display en-
vironment (Figure 7). Instead of using the native mouse
4https://github.com/karthikbadam/PolyChrome

7

https://github.com/mbostock/d3/wiki/Gallery
https://github.com/karthikbadam/PolyChrome

movement events to share the pan interactions, we detect the
change in the center of the Google Map (supported by Google
Maps API) and share this visual event as a PolyChrome cus-
tom application-specific event. These type of events are more
meaningful as they represent a visual change, and therefore,
they can be semantically tagged for consistency management
and synchronization.

PolyChrome example:
Mirrored display setup

for sharing pan interaction
on a

mobile device
with a

42'' display.

User Interaction

Figure 7. Cross-device Google Maps example where PolyChrome cus-
tom event modules are triggered when the map is panned on a device.

This example was created using HTML, JavaScript, and CSS
using the Google Maps JavaScript API for the map view, and
D3 to show some targets on the map to guide exploration.
This example uses less than 20 lines of code using the Poly-
Chrome client API modules, which includes creating an event
handler, capturing, and sharing navigation events.

Legacy Application
PolyChrome supports legacy visualizations built using visu-
alization toolkits such as D3. Figure 8 shows an example of a
web-based ScatterDice tool applied to box office data.5 Poly-
Chrome fetches the legacy application using the proxy server
and attaches the PolyChrome client modules to it, thus allow-
ing for collaborative exploration of the movie data. The inter-
action events that happen on one device are shared implicitly
with others by the PolyChrome client. This includes the click
events, mouse events for drawing shapes, and selection events
supported by the legacy application.

PolyChrome also works with the examples provided as part
of the D3 toolkit, as well as other toolkits that enable ex-
ploration of SVG visualizations, such as VisDock.6 How-
ever, running some of these legacy applications depends on
the security configuration, event handling mechanisms in the
source webpage, and the capabilities of the proxy server.

Figure 8. ScatterDice project attached with PolyChrome client modules
to synchronize interaction among the devices.

EVALUATION
We performed a preliminary analysis to see the impact of the
number of clients using PolyChrome on the time delay be-
tween the creation of an event and the execution of the event
5http://tiny.cc/scatterdice
6https://github.com/VisDockHub/NewVisDock

Mousebmove Mousebup

0

10

20

30

40

E
xe

cu
tio

n
bd

el
ay

b(
in

bm
ill

is
e

co
nd

s)

MousebdownClick
1 3 5 1 3 5 1 3 5 1 3 5

NumberbofbPolyChromebclientsbgroupedbbybeventbtype

Figure 9. A preliminary performance evaluation of PolyChrome: Three
different setups were tested for delays caused by the PolyChrome client
in executing various events.

on all connected devices (execution delay) during the implicit
sharing model (used in legacy applications). We used a ba-
sic drawing application as a surrogate for the legacy visual-
izations with options to add strokes and also perform mouse
clicks. Ten strokes spanning a diagonal of the displays were
drawn (> 100 mousemove events per stroke) and ten mouse
clicks were performed on each client for one, three, and five
PolyChrome client setups. These interactions were handled
through click, mousedown, mousemove, and mouseup events.
When the execution delays were analyzed, we found that for
the three setups (one, three, and five clients), execution delays
increased as the number of clients increased, but they were
still in the order of milliseconds (Figure 9). Furthermore, we
also found out that the operation of identifying the target el-
ement is the root cause of the these delays as it requires a
traversal of the DOM tree. The delay was minimal for mouse-
move events, because when this event follows a mousedown
the targets of both are the same and therefore, PolyChrome
skips the target identification step in this case. This analysis
helped us identify the potential aspects for further analysis,
and also the median increase in delay (< 10 ms from three to
five clients) with more clients in the environment.

This suggests that we should strive to achieve better target
identification with lower delays. Furthermore, it guides our
future evaluation efforts for PolyChrome in terms of the over-
all performance by profiling event distribution process, devel-
oper adoption, and even the mechanics of multi-device visu-
alization and display space configuration strategies.

IMPLICATIONS
The definition of operation as discussed in the design patterns
P3 and P4 opens a new space in the field of collaborative vi-
sualization for Operation Transformation. This leads to the
concurrent use of collaborative web visualization without the
need for locking and turn-taking methods to restrict concur-
rency. The operations in PolyChrome are browser events, and
this design choice may lack support for “undo” in some cases.
On the other hand, using a data-centric operation that essen-
tially works with the data variables guiding the visualization
lacks the ability to support legacy applications and custom
data structures. Further evaluation of this is needed.

8

http://tiny.cc/scatterdice
https://github.com/VisDockHub/NewVisDock

The choice of hybrid communication modules with peer-to-
peer (P2P) and client/server for operation distribution and in-
teraction log respectively leads to fault tolerant yet real-time
system. The hybrid system has the ability to surpass the lia-
bilities of both communication types. P2P-based distributed
systems face consistency issues in regards to display synchro-
nization and event sharing, while client-server systems face
scalability, robustness, security, and trust issues. By combin-
ing both and using client/server only for operation/interaction
log (for conflict management) the PolyChrome framework
gains the advantages of both communication methods.

In the end, no single toolkit works for all situations, and Poly-
Chrome is just the first offering of many potential toolkits for
cross-device visualization. We look forward to seeing other
toolkits that take different design approaches than us.

CONCLUSION AND FUTURE WORK
We have presented the PolyChrome framework for building
web-based collaborative visualizations for multi-surface en-
vironments. Beyond the basic functionality to utilize im-
plicit, explicit sharing models, and display space configura-
tion through transformation to the global shared space, Poly-
Chrome comes with a proxy server that supports collabora-
tive use of legacy websites. Due to the presence of a server,
operations on various devices can be stored, utilized, and an-
alyzed for many purposes. These interaction logs can be used
to serve newly joined devices with previous interaction, re-
play events during asynchronous collaboration, and maintain
synchronization among devices. We validated PolyChrome
using several applications built using the framework as well
as with some informal performance testing.

In the future, we plan on extending the framework to pro-
vide ways to support standard collaboration styles out of
the box, embed operation transformation strategies into the
framework, allow interpretion through tagging event logs on
the devices, adapt the framework to additional hardware and
software platforms, and perform an in-depth evaluation.

ACKNOWLEDGMENTS
This work was partially supported by U.S. National Science
Foundation award IIS-1253863. Any opinions, findings, and
conclusions or recommendations expressed in this article are
those of the authors and do not necessarily reflect the views
of the funding agency.

REFERENCES
1. Apache Wave. http://incubator.apache.org/wave/,

accessed June 2014.

2. ShareJS. http://sharejs.org/, accessed June 2014.

3. Baecker, R. M. Readings in Groupware and
Computer-Supported Cooperative Work. Morgan
Kaufmann Publishers, San Francisco, 1993.

4. Balakrishnan, A. D., Fussell, S. R., and Kiesler, S. Do
visualizations improve synchronous remote
collaboration? In Proceedings of the ACM Conference
on Human Factors in Computing Systems (2008),
1227–1236.

5. Belmonte, N. G. The JavaScript InfoVis Toolkit.
http://philogb.github.io/jit/, accessed March
2014.

6. Bostock, M., and Heer, J. Protovis: A graphical toolkit
for visualization. IEEE Transactions on Visualization
and Computer Graphics 15, 6 (2009), 1121–1128.

7. Bostock, M., Ogievetsky, V., and Heer, J. D3:
Data-driven documents. IEEE Transactions on
Visualization and Computer Graphics 17, 12 (2011),
2301–2309.

8. Calderon, R., Blackstock, M., Lea, R., Fels, S.,
de Oliveira Bueno, A., and Anacleto, J. Red: a
framework for prototyping multi-display applications
using web technologies. In Proceedings of the ACM
International Symposium on Pervasive Displays (2014).

9. Domingue, J., Dzbor, M., and Motta, E. Collaborative
semantic web browsing with magpie. In The Semantic
Web: Research and Applications. 2004, 388–401.

10. Ellis, C. A., and Gibbs, S. J. Concurrency control in
groupware systems. In Proceedings of the ACM
SIGMOD Record (1989), 399–407.

11. Ellis, C. A., Gibbs, S. J., and Rein, G. Groupware: some
issues and experiences. Communications of the ACM 34,
1 (1991), 39–58.

12. Elmqvist, N., and Irani, P. Ubiquitous analytics:
Interacting with big data anywhere, anytime. IEEE
Computer 46, 4 (2013), 86–89.

13. Endert, A., Bradel, L., Zeitz, J., Andrews, C., and North,
C. Designing large high-resolution display workspaces.
In Proceedings of the ACM Conference on Advanced
Visual Interfaces (2012), 58–65.

14. Esenther, A. W. Instant co-browsing: Lightweight
real-time collaborative web browsing. In Proceedings of
the World Wide Web Conference (2002), 107–114.

15. Greenberg, S. Collaborative interfaces for the Web. In
Human Factors and Web Development (1997), 241–254.

16. Greenberg, S., Marquardt, N., Ballendat, T.,
Diaz-Marino, R., and Wang, M. Proxemic interactions:
the new ubicomp? Interactions 18, 1 (2011), 42–50.

17. Greenberg, S., and Roseman, M. GroupWeb: A WWW
browser as real time groupware. In Extended Abstracts
of the ACM Conference on Human Factors in
Computing Systems, ACM (1996), 271–272.

18. Grimstead, I. J., Walker, D. W., and Avis, N. J.
Collaborative visualization: A review and taxonomy. In
Proceedings of the Symposium on Distributed
Simulation and Real-Time Applications (2005), 61–69.

19. Hailpern, J., Hinterbichler, E., Leppert, C., Cook, D.,
and Bailey, B. P. TEAM STORM: demonstrating an
interaction model for working with multiple ideas
during creative group work. In Proceedings of the ACM
Conference on Creativity & Cognition (2007), 193–202.

9

http://incubator.apache.org/wave/
http://sharejs.org/
http://philogb.github.io/jit/

20. Han, R., Perret, V., and Naghshineh, M. WebSplitter: a
unified XML framework for multi-device collaborative
web browsing. In Proc. ACM Conference on Computer
Supported Cooperative Work (2000), 221–230.

21. Hartmann, B., Beaudouin-Lafon, M., and Mackay, W. E.
Hydrascope: creating multi-surface meta-applications
through view synchronization and input multiplexing. In
Proceedings of the ACM International Symposium on
Pervasive Displays (2013), 43–48.

22. Isenberg, P., and Carpendale, S. Interactive tree
comparison for co-located collaborative information
visualization. IEEE Transactions on Visualization and
Computer Graphics 13, 6 (2007), 1232–1239.

23. Isenberg, P., Elmqvist, N., Scholtz, J., Cernea, D., Ma,
K.-L., and Hagen, H. Collaborative visualization:
definition, challenges, and research agenda. Information
Visualization 10, 4 (2011), 310–326.

24. Javed, W., and Elmqvist, N. Exploring the design space
of composite visualization. In Proceedings of the IEEE
Pacific Symposium on Visualization (2012), 1–8.

25. Kim, K., Javed, W., Williams, C., Elmqvist, N., and
Irani, P. Hugin: A framework for awareness and
coordination in mixed-presence collaborative
information visualization. In Proceedings of the ACM
Conference on Interactive Tabletops and Surfaces
(2010), 231–240.

26. Kumawat, S., and Khunteta, A. A survey on operational
transformation algorithms: Challenges, issues and
achievements. International Journal of Computer
Applications 3, 12 (2010), 3038.

27. Manohar, N. R., and Prakash, A. The session capture
and replay paradigm for asynchronous collaboration. In
Proceedings of the European Conference on
Computer-Supported Cooperative Work (1995),
149–164.

28. Mark, G., Kobsa, A., and Gonzalez, V. Do four eyes see
better than two? collaborative versus individual
discovery in data visualization systems. In Proceedings
of the International Conference on Information
Visualisation (2002), 249–255.

29. McGrath, W., Bowman, B., McCallum, D.,
Hincapie-Ramos, J.-D., Elmqvist, N., and Irani, P.
Branch-explore-merge: Facilitating real-time revision
control in collaborative visual exploration. In
Proceedings of the ACM Conference on Interactive
Tabletops and Surfaces (2012), 235–244.

30. Modahl, M., Bagrak, I., Wolenetz, M., Hutto, P., and
Ramachandran, U. Mediabroker: An architecture for
pervasive computing. In Proceedings of the IEEE
Conference on Pervasive Computing and
Communications (2004), 253–262.

31. Nebeling, M., Mintsi, T., Husmann, M., and Norrie, M.
Interactive development of cross-device user interfaces.
In Proceedings of the ACM Conference on Human
Factors in Computing Systems (2014).

32. Nichols, D. A., Curtis, P., Dixon, M., and Lamping, J.
High-latency, low-bandwidth windowing in the jupiter
collaboration system. In Proceedings of the ACM
Symposium on User Interface and Software Technology
(1995), 111–120.

33. Payne, J., Solomon, J., Sankar, R., and McGrew, B.
Grand challenge award: Interactive visual analytics
palantir: The future of analysis. In Proceedings of the
IEEE Symposium on Visual Analytics Science and
Technology (2008), 201–202.

34. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L.,
and Fuchs, H. The office of the future: A unified
approach to image-based modeling and spatially
immersive displays. Computer Graphics 32 (1998),
179–188.

35. Rohrer, R. M., and Swing, E. Web-based information
visualization. IEEE Computer Graphics & Applications
17, 4 (1997), 52–59.

36. Stasko, J., Görg, C., and Liu, Z. Jigsaw: Supporting
investigative analysis through interactive visualization.
Information visualization 7, 2 (2008), 118–132.

37. Sun, C., and Ellis, C. Operational transformation in
real-time group editors: issues, algorithms, and
achievements. In Proceedings of the ACM conference on
Computer supported cooperative work (1998), 59–68.

38. Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D.
Achieving convergence, causality preservation, and
intention preservation in real-time cooperative editing
systems. ACM Transactions on Computer-Human
Interaction 5, 1 (1998), 63–108.

39. Thum, C., and Schwind, M. Synchronite – a service for
real-time lightweight collaboration. In Proceedings of
the International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (2010), 215–221.

40. Tobiasz, M., Isenberg, P., and Carpendale, S. Lark:
Coordinating co-located collaboration with information
visualization. IEEE Transactions on Visualization and
Computer Graphics 15, 6 (2009), 1065–1072.

41. Viégas, F. B., Wattenberg, M., Van Ham, F., Kriss, J.,
and McKeon, M. ManyEyes: A site for visualization at
internet scale. IEEE Transactions on Visualization and
Computer Graphics 13, 6 (2007), 1121–1128.

42. Weiser, M. The computer for the 21st Century. Scientific
American 265, 3 (1991), 94–104.

43. Wiltse, H., and Nichols, J. PlayByPlay: collaborative
web browsing for desktop and mobile devices. In
Proceedings of the ACM Conference on Human Factors
in Computing Systems (2009), 1781–1790.

44. Yang, J., and Wigdor, D. Panelrama: enabling easy
specification of cross-device web applications. In
Proceedings of the ACM conference on Human factors

in computing systems (2014), 2783–2792.

10

	Introduction
	Background
	Web-based and Collaborative Visualizations
	Collaborative Browsing and Cross-Device Interaction
	Operation Transformation

	Design: Cross-Device Visualization Toolkits
	Operation Distribution
	Display Space Management
	Supporting Legacy Applications
	Additional Design Considerations

	The PolyChrome Framework
	Event Sharing Modules
	Display Space Configuration Modules
	Persistence, Consistency, and Synchronization
	Proxy Server

	Implementation
	Application Examples
	Scatterplot Matrix Exploration
	Geographical Map Exploration
	Legacy Application

	Evaluation
	Implications
	Conclusion and Future Work
	Acknowledgments
	REFERENCES

