
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 1

Munin: A Peer-to-Peer Middleware for
Ubiquitous Analytics and Visualization Spaces
Sriram Karthik Badam, Student Member, IEEE , Eli Fisher, and Niklas Elmqvist, Senior Member, IEEE

Abstract—We present Munin, a software framework for building ubiquitous analytics environments consisting of multiple input
and output surfaces, such as tabletop displays, wall-mounted displays, and mobile devices. Munin utilizes a service-based model
where each device provides one or more dynamically loaded services for input, display, or computation. Using a peer-to-peer
model for communication, it leverages IP multicast to replicate the shared state among the peers. Input is handled through a
shared event channel that lets input and output devices be fully decoupled. It also provides a data-driven scene graph to delegate
rendering to peers, thus creating a robust, fault-tolerant, decentralized system. In this paper, we describe Munin’s general design
and architecture, provide several examples of how we are using the framework for ubiquitous analytics and visualization, and
present a case study on building a Munin assembly for multidimensional visualization. We also present performance results and
anecdotal user feedback for the framework that suggests that combining a service-oriented, data-driven model with middleware
support for data sharing and event handling eases the design and execution of high performance distributed visualizations.

Index Terms—Ubiquitous analytics, high-resolution displays, multi-display environments, distributed visualization, framework.

F

1 INTRODUCTION

V ISUALIZATION has long relied on computing devices
equipped with mice, keyboards and monitors for

virtually all applications [1]. However, this state of affairs is
changing as problems and datasets grow in size, complexity
and time sensitivity. Today’s big data analytics problems
often require more than a single mind or a single device
to solve, and, as a result, parallelism for both users and
computing resources is becoming necessary. In addition,
computer hardware is evolving, and now encompasses de-
vices such as large wall displays [2], tabletops displays [3],
and tablets. This potential can be harnessed into building
ubiquitous analytics spaces for sensemaking.

We present MUNIN, a peer-to-peer distributed middle-
ware for building such multi-device ubiquitous visualization
and analytics environments (Figure 1). These environments
require managing distribution of data, computation, visual
representations, and interaction between participating de-
vices. For example, an input gesture made on one device
should be communicated to a computational unit, and the
updated visual representation should then be immediately
rendered by the connected displays. To achieve this, the
Munin framework transforms all networked devices in the
same physical environment into Munin peers that communi-
cate using a multicast mechanism on the peer-to-peer setup
instead of depending on a dedicated server. This increases
the robustness and fault-tolerance of the system, decreases
its coupling, and improves its ease and convenience of use.
The framework has a three-tier layered architecture:

• Shared State Layer: Shared and replicated associa-
tive memory that contains shared objects to which

• All three authors are with the School of Electrical & Computer
Engineering, Purdue University, West Lafayette, IN.
E-mail: sbadam@purdue.edu, fisher55@purdue.edu, elm@purdue.edu

peers can subscribe and publish, as well as a shared
event channel where peers can produce and consume
real-time events for input and coordination.

• Service Layer: Mechanism for extending the frame-
work’s run-time capabilities through dynamically-
loaded (potentially third-party) services for input, ren-
dering, and computation that are implemented by
specific devices given their individual capabilities.

• Visualization Layer: High-level components for ubiq-
uitous visualization, including shared database used for
replicating data across peers, and a data-driven scene
graph with device-dependent implementations.

The Munin1 framework is similar in scope and goals
to many existing middleware solutions for ubiquitous and
distributed user interfaces (DUIs), such as ZOIL [4], i-
LAND [5], and Shared Substance [6]. However, Munin
is tailored specifically for high-performance data visualiza-
tion: (1) it has a shared table for managing and replicating
datasets; (2) its distributed scene graph delegates rendering
to visualization services that may choose visual representa-
tions depending on device capabilities; and (3) it eschews
a traditional application-oriented model in favor of a data-
driven model where cross-cutting instruments and renderers
(implemented as services) operate on the data.

Building distributed software in general is a difficult
venture, so another focus of the Munin project is to derive a
programming model for ubiquitous analytics and visualiza-
tion development that makes the process as painless as pos-
sible. We believe that Munin’s service-oriented and data-
driven architecture is key in achieving this goal, and facil-
itates building robust, fault-tolerant, and reusable software

1. Munin is one of the Norse god Odin’s twin ravens (Hugin is the
other); serving as Odin’s eyes and ears, they fly out into Midgard every
morning and return at night with tidings about the world.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 2

Fig. 1. A ubiquitous analytics space for a shared bulletin board built using the Munin toolkit and running on a
tiled-LCD display wall, a digital tabletop display, and a smartphone. Touch input on the phone is used to create,
move, and delete panels. The system consists of device-specific services that communicate over the network.

components that are loosely coupled yet combine to form
a powerful system as a whole. Towards this end, we have
implemented Munin in Java to facilitate easy deployment
across different devices, and the networking support in the
framework relies only on the JGroups P2P multicast library,
which can be used even on mobile operating systems that
support Java (now including iOS with the recently released
Oracle ADF Mobile). This enables Munin to run on a range
of devices such as smartphones, tablets, laptops, desktops,
and all the way up to large tabletop displays as well as
individual computers powering tiled-LCD display walls.

To validate Munin, we give three concrete examples of
using the framework to build ubiquitous visualization soft-
ware: a collaborative visual search environment combining
mobile and tabletop devices, a geospatial visualization, and
a distributed media player. We also give an in-depth exam-
ple of how to build a Munin assembly using a multidimen-
sional visualization for a large-scale display environment
where multiple users can upload datasets, visualize them,
and add scribbled annotations. In addition, we present the
results of performance tests for the network and service
layers of Munin. Finally, we present informal qualitative
feedback from new end-user programmers adopting Munin
for building new ubiquitous analytics (ublityics) spaces.

2 BACKGROUND
Visual computing is broadly defined as the intersection of
fields such as computer graphics, computer vision, visual-
ization, and human-computer interaction, and is character-
ized by its emphasis on interactive visual representations. In
this paper, we are particularly concerned with visualization,
which is the graphical representation of data to aid cogni-
tion. As observed above, visual computing and visualiza-
tion are changing. While historically confined to standard
hardware such as a monitor, mouse, and keyboard [1], the
scope is now widening for three main reasons:

(a) The problems that visual computing manages are
growing in scale, complexity, and time-sensitivity;

(b) The need for collaboration is drastically increasing [7],
as is the need to parallelize computation and rendering
across multiple computers and devices; and

(c) Advances in computing technology has given rise to
a new generation of post-WIMP interfaces [8] that
significantly extend interaction capabilities past the
traditional window, icon, menu, and pointer paradigm,
as well as to pervasive and ubiquitous computing [9]
where the computer is disappearing into the very fabric
of our physical surroundings and everyday life.

Inspired by these challenges and novel computing
paradigms, we here define the concept of ubiquitous visual
computing as the integration of visualization and analytics
capabilities into our physical environments and activities,
also known as ubiquitous visualization and analytics [10]. A
ubiquitous visual computing space, therefore, is a physical
environment, either mobile (for nomadic use) or static (in
a dedicated place), that supports ubiquitous visual com-
puting through one or several networked devices that have
been embedded into the environment. While this definition
also encompasses standard personal computers, the spirit
of these ubiquitous analytics spaces refer to post-WIMP
devices of varying input and output modalities that are all
networked to form a unified space for visual reasoning,
analysis, and sensemaking. We formally characterize a
ubiquitous visual computing space as follows:
C1 Networked devices. A ubiquitous visual computing

space consists of one or several devices that are
networked for cross-device analytics.

C2 Collaboration support. The canonical usage scenario
for a ubiquitous visual computing space is for collab-
orative work involving multiple analysts [11].

C3 Post-WIMP interaction. Beyond traditional personal



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 3

computers into novel modalities such as touch, pen-
based, gestural, and tangible interaction [8], [12].

C4 Visualization and analytics support. Visualiza-
tion gives rise to unique challenges not commonly
addressed in computer-supported cooperative work
(CSCW) and ubiquitous computing (ubicomp) [11],
including a data-driven model, multiple visual repre-
sentations and views, and high-performance graphics.

To the best of our knowledge, this paper is the first to for-
mally propose the idea of ubiquitous visualization spaces.
However, our work builds on a plethora of existing research
in the fields of computer graphics, visualization, human-
computer interaction (HCI), ubicomp, and CSCW. Here we
review this extensive literature; Table 1 summarizes relevant
topics in context of our four criteria outlined above.

TABLE 1
Existing work relevant to ubiquitous visual computing.

Approach C1 C2 C3 C4 Examples
parallel rendering X – – – [13], [14]
co-located groupware X X X – [6], [15], [16]
co-located visualization – X X X [11], [17], [18]
ubicomp toolkits X X X – [4], [19], [20]
visualization toolkits – – – X [21], [22]
novel vis. platforms – X X X [23], [24], [25]

2.1 Parallel and Distributed Rendering

Parallelizing rendering has long been a focus in the com-
puter graphics community due to the fact that achieving
photorealistic (or near-photorealistic) graphics quality used
to be beyond the reach of individual computers (or, very ex-
pensive), while also being an “embarrassingly parallel” [26]
problem that easily lends itself to partitioning subproblems
to different renderers across the network.

Now that major technical advances in commodity 3D
graphics cards have brought photorealistic graphics within
the grasp of consumer the computer, the research focus of
parallel and distributed rendering is instead to support very
large and very high-resolution displays, often consisting
of multiple tiled LCD monitors or projectors powered by
computer clusters [27]. Current software that support this
type of functionality include WireGL, Chromium [14], and
Equalizer [13], but these distribute rendering at a very low
abstraction level, typically within the graphics library. Even
higher-level scene graph libraries such as SGI’s Performer2,
VR Juggler [28], OpenSG3, and OpenSceneGraph 4 provide
little ubiquitous visualization support.

Beyond computer graphics, visualization was one of
the early targets for research on parallel rendering, and
much work has been done here, particularly for scien-
tific visualization [29], [30]. Several of these projects go
further by utilizing the networked rendering to distribute
users as well [31]; we focus exclusively on co-located

2. http://oss.sgi.com/projects/performer/
3. http://www.opensg.org/
4. http://www.openscenegraph.org/

settings in this work, so such extensions are outside the
scope of this paper. Nevertheless, the recent decrease in
cost of high-resolution LCD displays has made creating
large-scale display environments of such screens popular,
resulting in several multi-display visualization frameworks
being proposed [27]. Examples include Tiled++ [32], which
eliminates distracting bezels by rendering content on them
using a projector, and the Scalable Adaptive Graphics
Environment (SAGE) [33], which is based on streaming
dynamic graphics from different computers over the net-
work to independent windows on a tiled display setup.

For virtual reality, Myriad [34] utilizes a peer-to-peer
design to manage the individual scene-graphs in a cluster of
displays. The scene graph nodes store the geometry, specify
3D transformations, textual maps, and OpenGL materials. It
also provides a fine-grained sharing model through message
filtering, reality mapping, and node locking. Shen et al. [35]
investigate the peer-to-peer infrastructure for virtual world
software to counter the architectural issues caused by clien-
t/server systems such as limited number of players in each
server, single point of failure risk, and unbalanced compu-
tation resource. They survey the requirements of peer-to-
peer virtual world design by discussing the various issues
in those environments such as consistency, responsiveness,
scalability, persistency, reliability, and security, along with
existing work solving these issues through state manage-
ment, overlay management, and content management.

2.2 Co-located Groupware

Groupware is the CSCW term for software designed for
multiple users, and our focus in this paper is on group-
ware for co-located (same space) and synchronous (same
time) settings. The branch of CSCW concerned with this
kind of groupware is called multi-display environments
(MDEs) [16], with several MDEs having been proposed
through the years. Some early examples of MDEs were
the Spatial Data Management System [15], Feiner’s hybrid
real/virtual interfaces [36], and the DigitalDesk tabletop [3].

Some MDEs inhabit entire rooms; examples include
the CoLab meeting room [16], the i-LAND roomware
system [5], and the Stanford Interactive Workspaces
project [37]. The office of the future [38] project attempts to
augment a room using geometrically-corrected projectors,
structured light, and camera-based tracking.

One of the most closely related systems to Munin is
the Shared Substance framework [6], which serves as
the inspiration for the data-driven distribution model in
our framework. However, Munin goes significantly beyond
Substance’s functionality with several mechanisms to sup-
port visual computing, including a shared data table, a
dynamic service framework, and a distributed scene graph.

2.3 Co-located Collaborative Visualization

Collaborative visualization has many parallels to CSCW
research, but also some important differences [11], includ-
ing a data-driven and less document-oriented sensemaking



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 4

process as well as a need for multiple views and multiple vi-
sual representations. Disregarding the distributed and asyn-
chronous branch of collaborative visualization [31], there
are many interesting problems and tremendous potential in
adopting CSCW methods and techniques to visualization.

More specifically, while large displays have seen increas-
ing use in collaborative visualization [11], it is only recently
that novel devices such as tabletop displays were adopted
for visualization; examples include tree comparison appli-
cations [17], multiple coordinated views [25], and mixed-
presence visual analytics [18]. However, these systems are
often one-off implementations, and not general toolkits.

2.4 Distributed and Ubiquitous User Interfaces

Distributed user interfaces (DUIs) distribute interface com-
ponents across one or several of the dimensions input,
output, platform, space, or time [39]. As we draw nearer
to a vision of truly ubiquitous computing (ubicomp) [9],
where information processing has been seamlessly and
transparently integrated into everyday objects and activities,
such interfaces are becoming increasingly important.

Several models for DUI and ubicomp interfaces exist,
such as the CAMELEON-RT middleware [40], distributed
versions of the model-view-controller (MVC) paradigm,
and the recent VIGO model [19] for building distributed
ubiquitous instrumental interaction applications. In terms
of toolkits and frameworks, examples include BEACH [41],
MediaBroker [42], and the Proximity toolkit [43]. Again,
none of these are targeted at visual computing, and provide
little support for high-performance rendering and computa-
tion. A recent toolkit for distributed user interfaces called
ZOIL [4] may be an exception, but uses a client/server
architecture, builds on Microsoft SDKs such as WPF and
the MS Surface SDK, thereby restricting its portability, and
has a fairly strict scene graph model based on semantic
zooming. jBricks [44] is a Java toolkit for rapid develop-
ment of applications on cluster-driven wall displays, but
relies on a specific structured 2D graphics engine and does
not provide the shared state, service-based architecture, and
visualization constructs that Munin does.

Existing work by Bi and Balakrishnan [45] and Endert
et al. [46] investigate the use of large displays and multi-
screen environments in personal computing and standard
office environments respectively. Bi and Balakrishanan [45]
found that the usage patterns for large displays indicate
that the users spend more time organizing the contents into
focal and peripheral regions, thus establishing the need for
automated/semi-automated layout management, legibility,
and window management operations to save time. Endert et
al. [46] discuss the various ways in which large displays can
be used as extended memory. They also provide suggestions
regarding the display configuration, keyboard placement,
mouse placement, and user stance for different scenarios
of large display use. Moreland [47] present various lessons
learnt in using large-format displays and try to extend their
use as a visualization space. We believe that these works
provide the guidelines for developers building ubiquitous

analytics applications through frameworks such as Munin
that allow the management of display, input, and data in
the ubiquitous analytics environments.

2.5 Visualization Toolkits and Novel Platforms
The visualization community has a long history of building
toolkits and libraries to speed up development; examples
include VTK, the InfoVis Toolkit [22], and D3 [21]. How-
ever, these are all targeted at the desktop platform with little
support for ubiquitous visualization and novel devices.

In general, while these traditional platforms for visual-
ization are now being challenged, there still exists very
little prior art in this area. The most relevant work on post-
WIMP interfaces [8] for visualization include data sonifi-
cation [48], haptic and force-feedback visualization [24],
and tangible interaction for visualization [49]. Bowman
et al. [50] propose the notion of information-rich virtual
environments (IRVEs) as the intersection of information
visualization and virtual reality, but limit its scope to virtual
3D worlds, and not the real world itself. Perhaps the most
active research topic here is the collaborative visualization
on tabletop and wall-sized displays reviewed above. Finally,
mobile visualization [51], [52], [53] translates visual repre-
sentations to a mobile form factor to allow nomadic viewing
and sensemaking of data. However, research here has
mostly been focused on the limited size and computational
power of the mobile device, and not on connecting multiple
such devices for data analytics.

3 DESIGN SPACE: UBIQUITOUS ANALYTICS
Display space is quickly becoming a prime commodity
as our datasets and applications become more complex,
and this is doubly true for analysis and sensemaking
settings [54]. Large displays have been shown to yield
significant productivity increases even for standard office
tasks [55], and as a result, multi-monitor setups are now
common in the workplace. For more complex sensemaking
processes, it may be as straightforward as more display
area simply giving us more “space to think” [54]. However,
when combining these large displays with multiple collab-
orators [11] and post-WIMP user interfaces that go beyond
the traditional desktop [8], it is clear that we are entering
an entirely new paradigm of ubiquitous visual computing
where visual representations, analytics, and sensemaking
are embedded in our physical surroundings and activities.

Such physical spaces are amenable to modeling using the
new post-cognitivist theories that go beyond the traditional
cognitive science view of the human brain as a pure
information-processing entity where the surrounding world
serves merely as a source for sensory input and a place for
performing actions [56]. In a ubiquitous analytics space, it
is easy to see how cognition is distributed [57] across mul-
tiple agents, display surfaces, and physical artifacts; how
it is extended [58] by the social and material environment;
and how it is embodied [59] in how we perceive and interact
with these physical surroundings.

These criteria yield nine design requirements (R1-R9) for
a software framework for ubiquitous visual computing.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 5

3.1 Multiple and Networked Devices (C1)
A ubiquitous visualization space will consist of an ensem-
ble of heterogeneous devices, ranging from personal com-
puters to mobile devices. This yields several requirements:
R1 Cross-platform, to support heterogeneous devices.
R2 Peer-to-peer, to avoid servers and increase robustness.
R3 Graphics-agnostic, since devices have varying APIs.

3.2 Supporting Collaboration (C2)
Collaborative work is a canonical use-case for a ubiquitous
visual computing space. This yields several requirements:
R4 Multiple concurrent users with concurrent interactions.
R5 Co-located and synchronous collaboration support.

3.3 Post-WIMP Interaction (C3)
Using multiple networked devices for both solo and collab-
orative work requires new interaction models beyond the
mouse and keyboard. We derive additional requirements:
R6 Multiple input sources, such as touch, gestural, pen-

based, tangible, and full-body interaction.
R7 Multiple output sources, such as wall-mounted, table-

top, mobile, volumetric, and tangible displays.

3.4 Supporting Visualization (C4)
Unlike current MDEs/DUIs, we target high-performance
visualization with several unique requirements:
R8 Visualization mechanisms and patterns (e.g., [60]).
R9 Multiple visual representations and views [11].

3.5 Additional Design Considerations
The intended user for Munin is the application program-
mer (i.e., an “end-user” programmer) who is using the
framework to build ubiquitous visualizations. However,
distributed programming is inherently difficult, and so we
also want to design the framework in such a way that it
makes this process as painless as possible. Furthermore, the
framework must be extensible to support multiple device
modalities with different interaction types, to accommo-
date future new technology and to allow third parties to
contribute new functionality, services, and visualizations.
Munin’s service layer resembles the tool layer of Vrui [61],
a virtual reality toolkit that maps high-level semantic events
such as navigation and menu selection to the input devices,
thus making applications platform independent. Similar to
IVTK [22], we adopt Alan Kay’s philosophy for designing
a framework so that simple things become simple to do,
and so that complicated things become possible.

4 MUNIN: OVERVIEW

Munin is a software framework for building ubiquitous
visual computing spaces. It is implemented in Java to
facilitate running on different platforms (R1) and uses
peer-to-peer (P2P) distribution for replicating state across
connected peers (R2). Figure 2 depicts the Munin network
architecture. The framework uses a distributed scene graph

Fig. 2. Example Munin network architecture.

that is not tied to any graphics library (R3). Because of its
networked architecture, Munin supports multiple concurrent
users (R4) in a co-located and synchronous setting (R5).

Munin is a layered system (Figure 3(a)) with three
primary layers: a Shared State layer (Section 5) for repli-
cating data across peers, a Service layer (Section 6) for
extending the framework’s support for novel input (R6)
and output (R7), and a Visualization layer (Section 7)
for managing a distributed scene graph and high-level
constructs for visualization (R8), including multiple views
and visualizations (R9). The Munin design philosophy is
to delegate the data management and rendering to the
peers themselves. For this reason, the framework does
not support any form of streamed graphics; all peers are
provided with the data and scene graph to draw, and are
expected to render their own visual representations. This
minimizes coupling between devices and enables a robust,
fault-tolerant, and truly decentralized architecture. Peers
therefore run services optimized for the rendering, input,
and computational capabilities of each particular device.

A collection of Munin peers in a specific physical
environment (either a mobile or static setting) is called
a Munin space and is a pure peer-to-peer system with
no dedicated server. However, each Munin space has a
global space configuration that maps out all peers, their
capabilities, and their physical arrangements as well as the
input and output surfaces they constitute. This configuration
also maintains the peer-specific services necessary for a
particular device to render, manage input, handle events,
and perform computation. Since there is no central server
for coordination, the space configuration is global and
known by all peers so that each peer’s own area of concern
(in visual and data space) can be reliably determined.

Applications in Munin are called assemblies because they
bring together a multitude of services running on different
peers in the Munin space (Figure 3(b)). Some of these ser-
vices are peer-owned in that they are launched in response
to each peer’s hardware configuration, whereas others are
assembly-owned in that they contain the application and
rendering logic of the assembly. This way, Munin eschews
a traditional application model for a service-oriented one
where data and services combine to form emergent behav-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 6

(a) Layered system architecture. (b) Assembly architecture.

Fig. 3. Munin system and assembly architecture.

ior. This also promotes building generic and flexible ser-
vices that can be reused in other assemblies. The example
in Figure 3(b) portrays a simple Munin space consisting
of three peers—a desktop, a laptop, and a smartphone—
where the space configuration of each peer governs the
peer-owned services (for example, both laptop and desktop
use the same display service, whereas the smartphone uses
a custom one), and the assembly has launched specific
services for rendering, simulation, and computation. The
Munin LaunchPad (Section 7) handles the details of launch-
ing services associated with an assembly.

5 MUNIN: SHARED STATE LAYER
The Shared State layer provides the basic network commu-
nication for replicating state and events across all peers.

Shared Associative State. Inspired by prior work on
tuple spaces [62] and event heaps [63], Munin uses a
shared associative memory that contains shared objects to
which peers can subscribe. Subscribers will automatically
be notified of changes to a shared object. This enables peers
to create, modify, and update shared state that is replicated
across all of the devices that constitute the Munin space.

In our implementation, the shared state consists of a
single namespace addressed using UUIDs. Shared objects
consist of dynamically typed properties, and can be created,
read, modified, and deleted by any peer. Supported data
types include any Java data type that can be serialized. In
particular, properties can contain UUID references to other
shared objects, allowing for complex data structures.

Shared objects are the main form of communication
and synchronization for services in other layers of the
framework. The fact that our shared objects are dynamically
typed is both a strength and a weakness. Dynamic typing
makes for more flexible data modeling and means that
the developer does not have to define interfaces for all
data exchanges. However, the disadvantage is that all data
exchanged between services must be manually checked.

Shared Event Channel. Munin incorporates a shared
event channel where peers can distribute real-time events.
Exposing the event system in shared state allows for easily
decoupling input and output subsystems, which is common
in ubiquitous computing environments—consider, for ex-
ample, a tiled display wall consisting of multiple computers
responsible for output, but only a single computer managing
gestural input from a Vicon motion-capture system.

In practice, shared events are similar in implementation
to our shared objects with the exception that events are not

persistent. Furthermore, because of the framework’s peer-
to-peer architecture, there is no deterministic event propa-
gation order, and there is no way for a peer to consume an
event (i.e., remove it from further propagation). Peers use
the space configuration to independently determine whether
a particular event falls within their area of interest.

Persistence. Since Munin lacks a central server, the
shared state and event channel is replicated on all peers.
This means that the space itself, including all state, dis-
appears when the the last peer in a Munin space is shut
down. However, the fact that the shared state is fully
replicated across all peers means that it is straightforward to
persistently store a snapshot of the shared state. All shared
objects are already required to support serialization, so this
is simply a matter of iterating through all shared objects
and serializing them (including their UUIDs). The reverse
process can then be performed by that peer when restoring
persistent state on startup of the Munin space.

6 MUNIN: SERVICE LAYER

The Service layer provides a mechanism for dynamically-
loaded services that extend the Munin framework in several
different ways. In fact, without core services from the
Service layer, a Munin peer is simply an empty service
platform with no functionality beyond the shared state and
event channel. While it is possible to develop ubiquitous
visual computing spaces based only on this core, Munin
provides a foundational set of services for input, output,
computation, and event management.

Service Management. Munin services are implemented
as Java plugins using JSPF (Java Simple Plugin Framework)
that are dynamically loaded at run-time as JAR files from
a local directory or over the network. This mechanism can
also be used to download and upgrade service implemen-
tations. While JSPF does not support unloading plugins
at run-time, it does allow for adding new plugins at any
time, so that services can be hot-swapped while the system
is running by simply creating a new version of a service.
JSPF uses Java annotations to minimize the boilerplate code
needed to write new plugins; creating a new Munin service
thus takes a minimum of such boilerplate, allowing the
programmer to focus on the business logic.

Service Types. The Munin Service layer defines the
following service types (new types may be added later):

• Display: Display services are responsible for creat-
ing a graphics context on the peer so that visual output
can be generated. Thus, most peers only have one ac-
tive display service. Display service implementations
are thus tied to a given graphics API.

• Renderer: Renderer services transform an abstract
node in the distributed scene graph (Section 7) into
graphical output on the peer’s display. Renderers
are therefore heavily reliant on the display service.
Borrowing from the flexible rendering pipelines of
IVTK [22], we allow several renderers to be active,
each capable of interpreting particular scene graph
nodes. This design also supports monolithic scene



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 7

graph nodes that can contain an entire visual repre-
sentation, for example a single node representing a
treemap. Such monolithic nodes are sometimes neces-
sary for high-performance rendering.

• Input: Input services create the connection between
input devices and the system. This involves transform-
ing from the device’s coordinate space into the global
coordinate space based on the space configuration.

• App: Application services tie together a collection of
services using business logic for a particular task.

• Simulation: Whereas other services are event-
driven, simulation services have an active thread of
execution for online processes such as animation.

• Computation: A computation service is one that
operates on shared data to produce new data. This
can be used to control how potentially expensive
algorithms are distributed in the Munin space, e.g.,
to avoid overloading mobile devices.

Space Configuration. Munin maintains a global space
configuration that lists all peers, their hardware capabilities
(number of screens, resolution, input devices, etc), and their
physical arrangements. This configuration is used when
writing assembly specifications that map necessary services
for an assembly onto actual peers in the Munin space. An
assembly is thus tailored to a configuration.

The space configuration also contains definitions for
one or several (2D) surfaces, each of which will hold a
distributed scene graph in the Visualization layer. Peers
select parts of surfaces for their own displays, which will
control what is shown on that peer’s screen. Since Munin is
a pure peer-to-peer system, the space configuration is global
to all peers. This is necessary to allow peers to define their
own area of interest and determine whether any events or
object updates will affect them (and therefore should be
handled by them). While this design is somewhat limited
in how display space can be stitched together, it is a simple
model that can be easily configured by the user.

7 MUNIN: VISUALIZATION LAYER

The top Munin layer is the Visualization layer, which brings
together the lower layers to explicitly support building
assemblies for ubiquitous visualization and analytics.

Shared Data Table. The relational data model has been
shown to be a common data model for visualization [60],
and many existing toolkits are based around this con-
struct [22]. Munin accordingly defines a shared relational
data table using the functionality of the Shared State layer.
Tables can be published and subscribed to like normal
objects, but they enforce a column-centric data model with
a common schema. Table state is represented by rows in the
table, with each column having the same data type. Shared
tables can be queried (for searching for specific entries in
the data), cascaded (for creating views of the data), and
linked (for combining several tables).

Distributed Scene Graph. Each surface in the space
configuration generates a scene graph that is distributed
across the Munin space. Similar to most scene graphs, the

Munin scene graph model is an instance of the Composite
software design pattern, and is realized by Munin’s shared
objects. Taken in conjunction with the dynamic rendering
service mechanism, this enables us to build component-
based and truly reusable visual computing systems that
separate the underlying data from the visual representation.

Furthermore, the fact that the scene graph is available
to all services makes it possible to define cross-data in-
struments capable of manipulating all objects regardless
of type. For example, similar to the VIGO model for
multisurface computing [19], this allows us to define a
pen instrument that can be used to scribble annotations
on any visual representation. The renderer responsible for
drawing the visual representation will automatically invoke
the scribble renderer when it comes across a scribble node
in the distributed scene graph.

Executing Assemblies. Finally, since Munin spaces gen-
erally consist of multiple networked devices, it can be
painful to separately manage all of the services, configura-
tions, and run scripts associated with each peer, one at a
time. Instead, we provide the Munin LaunchPad as a peer-
to-peer application frontend that runs on all connected peers
and makes it simple to execute a Munin assembly. Execut-
ing an assembly will resolve all dependencies, download
and upgrade all required services, and launch services in
the correct order (for example, the display service must
always be started before rendering services). The launcher
also supports swapping plugins as well as shutting down
and restarting the space.

8 IMPLEMENTATION

We have implemented Munin as a Java service platform
that uses JGroups5 for peer-to-peer multicast and the Java
Simple Plugin Framework6 for supporting dynamically-
loaded services. The basic Munin distribution, including
core services, is approximately 10,000 lines of Java code
and can be distributed as a JAR file for easy use in a project.
We enumerate the core services in the distribution below.

Display and Rendering Services. We have implemented
display services for both computers and mobile devices:

• A Java2D display service using the Piccolo2D7 vector
graphics toolkit (reference implementation);

• A JavaFX8 experimental display service that integrates
Munin with web-based visualizations; and

• A basic Android display service that uses the Android
SDK Canvas and Drawable APIs for mobile graphics.

Unfortunately, because no port of JGroups to iOS cur-
rently exists, we have not yet created display service imple-
mentations for Apple iPhone and iPad devices. Now that the
Oracle ADF mobile framework allows Java development on
iOS, this is a high priority item for the future.

Rendering services transform abstract scene graph nodes
into graphical output using the display service. This means

5. http://www.jgroups.org/
6. http://code.google.com/p/jspf/
7. http://www.piccolo2d.org/
8. http://www.javafx.com/



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 8

that rendering services are closely coupled with display
services in the current design. Munin puts no restrictions
on the scene graph representation; in our reference display
and rendering service implementations, we therefore use
the SVG 1.1 (Scalable Vector Graphics) W3C standard.9

In other words, SVG elements are implemented as Munin
shared objects that maintain geometry, visual appearance,
and hierarchy as properties. For SVG groups (<svg:g>)
and other SVG elements that maintain references to other
parts of the scene graph, we store the UUIDs of those
objects as property values. To avoid dependency problems
due to asynchronous updates of the Munin shared space,
each element stores its parent (instead of vice versa).

Finally, the flexible Munin rendering service architecture
means that an assembly can define new types of scene graph
nodes and provide renderer implementations capable of
interpreting them. We have used this in one of our examples
(Section 9.2) to encapsulate Google Maps objects inside a
Munin scene graph. Our reference SVG renderer serves as
the fallback (an empty bounding box) for scene graph nodes
that no other rendering service is capable of drawing.

Input Services. We have built some simple input services
that an assembly can use to take advantage of the various
input devices that a Munin space can be expected to have.
For example, we provide both a mouse and a keyboard
input service that listens for input on the local peer and
distributes that input data to the shared event channel.
Mouse coordinates are normalized based on the input area
on the peer, allowing a pointer to traverse an entire surface.
Managing keyboard focus is left to the assembly since we
do not want to impose restrictions on the design; all peers
will receive all keyboard events, and will have to determine
which peer should handle them. There is also no restriction
on the number of active services, allowing multiple mice
or keyboards to active simultaneously.

Of course, one of the goals of Munin is to go beyond
just mouse and keyboard input, and we provide several
input services for this. First and foremost, we have a
simple TUIO input service based on the reacTIVIsion
Java client reference implementation which connects to
a running TUIO server and listens to input events. We
currently handle TUIO cursors, which typically arise from
fingertop touches on multitouch surfaces, and actually store
them not as events but as shared objects because they are
persistent throughout the duration of a touch. Similarly, we
also handle Kinect input through the TUIO interface, and
we plan to support full skeletal input using OpenNI.

9 APPLICATION EXAMPLES

We here describe three visual applications we built using
Munin. Other examples include a collaborative vector edi-
tor, a mobile sketch system for early design, and a simple
multiplayer Tetris game.

9. http://www.w3.org/TR/SVG/

9.1 Multi-Device Collaborative Visual Search
One of our most sophisticated Munin assemblies to date
is a collaborative visual search system designed for use in
a ubiquitous visual computing space consisting of both a
tabletop display serving as a shared and public view, and a
set of mobile tablets serving as personal and private views
(Figure 4). The idea behind this setup is that large tabletop
displays are natural places for coupled work where partic-
ipants are working in synchrony, whereas a mobile tablet
has a more private form factor that suggests independent
and uncoupled work. The product being refined by the
collaborators is a query string used to filter search results,
and we provide ways for participants to branch off from the
shared view, explore data on their own using their tablet,
and then merge back changes to the shared visual query on
the tabletop.

Fig. 4. Collaborative visual search for real estate.

This visual search assembly has been implemented as
a set of services running on the tabletop, and a dedicated
app on the Android tablets. The tabletop runs the Java2D
display service, the default SVG renderer for general
shapes, and an OpenStreetMap renderer that implements
the zoomable and pannable map in the center of the shared
view. The tabletop also handles TUIO events internally. The
geospatial dataset is distributed using Munin’s shared table
construct, whereas the query string is a shared object that
is modified by both the tabletop as well as the tablets when
users change filter settings.

Fig. 5. PolyZoom [64] running on a 3×2 LCD display
wall. Android devices are used to interact with the map.

9.2 Distributed PolyZoom
PolyZoom [64] lets users create hierarchies of zoom regions
in 2D spaces, which is particularly useful for navigating



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 9

in geographic maps. Instead of replacing a view of, say,
France with a zoomed-in view of Paris, the Paris view
becomes a child to the France view. However, the technique
has so far only been deployed on single-user personal
computers. We were interested in applying the technique
to large-scale display environments, and to utilize its mul-
tifocus nature to allow collaborators to navigate in a map
without interfering with each other.

Figure 5 shows a photograph of our Distributed Poly-
Zoom assembly that we implemented using Munin. The
three computers running the LCD display wall utilize the
experimental JavaFX display service in order to natively
access the Google Maps JavaScript API in Munin itself.
The PolyZoom hierarchy is represented in the Munin scene
graph with each Google Maps view becoming a special
node type. A special JavaFX renderering service interprets
the map parameters (longitude, latitude, and dimensions)
embedded in these special nodes and fetches the corre-
sponding graphics using the Google Maps API. Similarly,
the Android app uses the Munin for Android SDK to
connect to the Munin space and access the scene graph.

This application was built by a single programmer over
a period of one month, during which he was first trained to
use Munin framework through the documentation and demo
applications that showed how to create and manage shared
objects, events, and services. After this, the programmer
created a display service using JavaFX to render the Poly-
Zoom tree and a data structure for storing the tree data on
the shared memory. This also demonstrates the flexibility
of the Munin system; Munin does not require a specific
graphics library, but instead the programmer could pick
JavaFX for rendering because it was most suitable.

The map parameters for each map node in the PolyZoom
tree are maintained in a shared data object that is created
when an application user clicks on its parent node to zoom.
The Android application displays all the selected regions
on a root map of PolyZoom tree created using the Android
maps API, thus giving an overview of the PolyZoom tree.
The Android application also provides selection tools to
select rectangular regions in the map, in order to create
new nodes in the map hierarchy. The application user can
also use the pinch-to-zoom feature provided by Android
Google maps API to select small regions in the map. The
application allows concurrent use by multiple users and
handles their requests by their temporal order.

9.3 Shard: A Distributed Media Player

Shard is a distributed media player designed for decoupling
media and playback as well as supporting multiple output
and input surfaces (Figure 6). The player uses Munin as a
backend and runs as a single service on all connected de-
vices to enable high-performance rendering of HD-quality
digital media. Each peer creates a player object in the
Munin shared memory that all other peers automatically
subscribe to, causing them to be notified when its state
changes. All player objects contain the same data: the state
of the player, the media URL, and the current position in

Fig. 6. The Shard distributed media player displaying
the Creative Commons movie Sintel (http://www.sintel.
org/) on a tiled-LCD display wall (three computers).

the media being played back. Peers are only responsible
for modifying their own object state, but will automatically
respond to changes in other player objects (by matching
state changes). This means that any participating device can
change its own state, e.g., from playing to stopped, causing
a cascade of changes in other peers.

Our implementation uses the vlcj10 bindings for digital
media decoding and playback. For situations when media
is limited to a single device (such as a DVD or Bluray
disc), Shard transparently creates an ad hoc RTP (Real-time
Transport Protocol) server that streams the media from the
source to all other peers using Munin for synchronization.

An Android remote was also built for Shard to control the
playback. It maintains all the shared player objects created
by the participating devices and gives the user options to
pause, play, forward, and rewind the playback. If the media
is present on the device, the app is also capable of playing
the media locally (our device does not support RTP).

Shard can handle display surfaces built with many in-
dividual displays. Since Munin can handle creation and
updation of player objects at real-time (discussed in Section
11.1), the bottleneck for this application lies at the stream-
ing capabilities of the RTP server, which depends on video
quality and network traffic, not in Munin itself.

10 DEVELOPING USING MUNIN

To demonstrate how to build a ubiquitous analytics space
using Munin, we here discuss the steps involved in creating
MULTIDIM, the multidimensional visualization assembly
shown in Figure 1. The purpose of MultiDim is to allow
multiple collaborators, each equipped with a personal mo-
bile phone or tablet, to use a large display environment
for social data analysis by uploading datasets, creating
multidimensional visualizations, and annotating them.

Building a new assembly is done as follows:
• Defining the physical setup: even if Munin spaces

are designed to work on any hardware ensemble, the
physical setup is an important aspect of designing the
visualization and interaction;

10. http://www.capricasoftware.co.uk/vlcj/



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 10

• Selecting existing services: Munin provides a rich
(and growing) ecology of reusable services, and thus
selecting which existing service to use is a vital step
in building an assembly;

• Creating new services: this is the coding part of
creating a new Munin assembly—at the very least,
new assemblies tend to create an App service, and
may need to define additional services;

• Assembly specification: the assembly XML specifi-
cation determines which services will run on which
peers in the Munin space; and finally

• Launching the assembly: we use the Munin Launch-
pad to run the assembly in the distributed environment.

In the following subsections, we go into full detail on
how to perform each of these steps for MultiDim.

10.1 Step 1: Physical Setup
We will construct an assembly that will use a single 2D
surface that is realized by several wall-mounted displays
for output (Figure 7). The surface will also comprise a
tabletop display that resides in the lower part of the surface
(consistent with its physical placement in front of the
wall-mounted displays). Android devices will allow for
uploading datasets as well as moving a cursor (one per
device) anywhere on the surface displayed using the display
environment, but will render no output. This is to ensure
that all visuals are drawn on shared displays.

Fig. 7. Physical setup for the multidimensional visual-
ization assembly. The vertical surface on the wall dis-
play and the horizontal on the tabletop form one single
virtual 2D surface on which panels can be displayed.

10.2 Step 2: Selecting Existing Services
All Munin assemblies consist of an ensemble of interdepen-
dent services that use the Munin shared space and event
channel to communicate. Many services provide general
functionality that many different assemblies can reuse and
are therefore part of the Munin standard distribution. There-
fore, it often makes sense to select among existing services
to save time and effort in implementing a new assembly.

For MultiDim, we choose to use the standard Java2D dis-
play service and the SVG renderer. These services provide
basic vector graphics specified using the SVG 1.1 standard
that we will use to create our visualizations. We will also
use the ZoomPanner, an app service that transforms cursor

events into transformations applied to the root scene graph
node. This allows any cursor input service (such as a mouse
or Kinect gesture detector) to zoom and pan the scene.

10.3 Step 3: Creating New Services
Several new services must be created for this assembly.
Because Munin services can be reused in other assemblies,
it often makes sense to define each service to be very
focused instead of performing multiple different services.
For MultiDim, we create three separate services:

• MultiDim: The main app service that loads data from
a local data source and creates the corresponding SVG
visualizations. The service will listen to cursor events
for specifying the position and dimensions of new
visualization panels, and will then create the selected
visualization in that space. Listing 1 shows a Java
snippet adding the marks for a scatterplot visualization
to the scene graph. Note that changes to shared objects
only take effect (i.e., update the local space as well as
transmitted across the P2P channel) after they have
been committed (pt.commit()).

• Scribble: A handwriting app service that allows users
to annotate the shared space. The service simply
creates an SVG polyline based on cursor input using
a chosen color and stroke width.

• ZoomPanner: A service that allows the users to zoom
or pan a display surface. The service changes the world
transform for the surface based on cursor input.

When several app services that all listen to event input
are running in the same Munin space, arbitration is needed
to prevent several services from acting on the same event.
This is because Munin due to its distributed nature does not
have a way to consume an event and stop its propagation.
For example, if MultiDim, Scribble, and ZoomPanner all
handled the same cursor input event, the user would be
defining a visualization panel, scribbling, and panning using
the same action. Munin currently has no standardized way
to support arbitration, so we use function keys (F1-F12) to
swap between active app services.

for (int i = 0; i < table.getRowCount(); i++) {
float x = (xCol.getVal(i) - xCol.getMin())/xd;
float y = (yCol.getVal(i) - yCol.getMin())/yd;
float c = (cCol.getVal(i) - cCol.getMin())/cd;
Color color = new Color(c, 0.0f, 0.0f, 0.2f);
SharedObject pt = getSpace().createObject();
SceneGraph.createCircle(pt, x * w, y * h, 5);
SceneGraph.setFillColor(pt, color);
SceneGraph.setStrokeColor(pt, Color.lightGray);
SceneGraph.addChild(panel, pt);
pt.commit();

}

Listing 1. Adding marks (SVG circles) to a scatterplot
based on data columns for X, Y, and color coordinates.

Mobile devices do not run services, but are instead im-
plemented as Android apps. Each Android device will run
a MULTIDIM app built using the Munin for Android API.
This app is very simple: it will use the space configuration
to render the virtual surface on the mobile device’s screen
with labeled rectangles to show the individual displays and



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 11

their positions. Whenever the user interacts with the screen,
the touch events will be translated into shared events that
are then propagated in the Munin event channel. Listing 2
shows a code snippet from the app’s touch event handler.

public boolean onTouchEvent(MotionEvent e) {
SharedEvent touch = getSpace().createEvent();
touch.putString("input", "cursor");
touch.putString("peer", peer.getId());
touch.putDouble("x", convertToWorldX(e.getX());
touch.putDouble("y", convertToWorldY(e.getY());
if (e.getAction()==MotionEvent.ACTION_DOWN)

touch.putBoolean("down", true);
else if (e.getAction()==MotionEvent.ACTION_MOVE)

touch.putBoolean("move", true);
else if (e.getAction()==MotionEvent.ACTION_UP)

touch.putBoolean("up", true);
touch.send();
return true;

}

Listing 2. Converting touch into Munin cursor events.

Finally, the tabletop device is special because it also
supports input from multitouch interaction, unlike the wall-
mounted displays. We use our TUIO service to handle input
events from tabletop interaction.

10.4 Step 4: Assembly Specification
The assembly specification is an XML file that describes
which peers in a Munin space will execute which services
(and in which order). Each peer has a copy of this file. It is
intimately tied to a specific space configuration, and thus
to a physical Munin space, and must therefore be modified
if the assembly is to run in a different physical space.

For the MultiDim assembly, we configure each of the
four computers involved in the physical setup to run two
copies of the reference Java2D display service (one for
each screen). Furthermore, each computer will run a single
SVG renderer; the renderer is not tied to a specific display
service, so it can render scene graphs for both display
services running on each computer. Since both ZoomPanner
and Scribble are app services that use the shared event
channel, we only need to run one instance of each on
one of the four computers. Similarly, the MultiDim service
itself really only needs one instance, but can be run on any
computer from where to find the dataset to visualize.

Note that Android devices are not part of the assembly
because they are not launched together with the rest of the
space; instead, they launch when the user starts the app.
Also, Android devices are not part of the virtual 2D surface
specified by the space configuration.

10.5 Step 5: Executing the Assembly
Assemblies are executed using the Munin LaunchPad.
First, instances of the LaunchPad must be started on all
participating peers, and the assembly specification must
be replicated (we achieve this with a shared file system,
but a better approach would be to automatically distribute
these XML files using Munin). Executing the “Launch”
command on one of the instances will launch the assembly
on all participating peers.

Fig. 8. Android tablet interacting with MULTIDIM.

Figure 8 shows the MultiDim assembly being used with
a tablet, and Figure 1 shows the entire board. The entire
Java source code required for building this assembly is less
than 500 lines (mostly programmatic SVG generation), plus
an additional 50 lines of XML.

11 EVALUATION

Beyond our example applications above, we also validate
Munin using performance testing as well as an informal
questionnaire distributed to Munin end-user programmers.
This section summarizes our findings.

11.1 Performance Results
A peer-to-peer architecture such as Munin typically benefits
from better performance than client/server architectures
due to the removal of the central server as a bottleneck
for all communication. We refer to existing performance
tests conducted for the JGroups library for raw network
performance.11 Instead, the purpose of our performance
testing for Munin was to give insight into its efficiency for
a typical visualization setting, including both data transfer
and rendering. We therefore chose to measure the delays
involved in following Stefik et al.’s design guideline “What
you see is what I see” [16] for multiuser interfaces.

Table 2 shows performance results for a simple Munin
setup consisting of two desktop computers connected using
a gigabit Ethernet connection (same switch, same subnet).
The stimulus was adding a number of SVG rectangles at
random locations to the Munin scene graph, simulating the
creation of a large-scale 2D scatterplot. Our test measured
the time for data transfer as well as rendering from the
moment the originating peer sent the first update to the
time the destination peer received and rendered the last. The
measured time is in the order of milliseconds for 50 entities,
which was a typical number for our application examples.
These informal findings indicate that Munin scales well
to most standard visualization tasks. Note that the results
presented here correspond to creation of all shared objects
at once but in case of our application examples the pro-
grammers observed that they never had to create or update

11. http://www.jgroups.org/performance.html



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 12

more than 10 shared objects at once. This led to a real-time
performance of the distributed system. In the case of Shard,
RTP streaming seemed to cause a barely perceivable delay
for high definition (1900×1080 HD) media.

TABLE 2
Performance data for replicating and rendering SVG

rectangles in the Munin distributed scene graph.

Entities Total Size (Mb) Transfer + Rendering (sec)
1,000 0.24 2.05

25,000 6.1 3.37
50,000 12.2 8.83

100,000 24.4 15.98
200,000 48.4 35.02

11.2 End-User Feedback
Munin is currently publicly available as Open Source on
GitHub12, and there is a small number of end-user program-
mers that have used the framework to build visualization
assemblies. For example, both the Shard and Distributed
PolyZoom examples were built by end-user programmers.
To collect informal feedback on the framework, we admin-
istered a questionnaire asking them about their experience.

All respondents were competent Java programmers (3.5
mean on a 5-point Likert scale), and the results were
uniformly positive. The participants felt that they were able
to become proficient with the framework (defined as being
able to build assemblies on their own) in as little as a
few days and up to a week or two. While all respondents
conceded that distributed programming was difficult, they
felt that Munin’s conceptual model made the task easier in
understanding how events and data are replicated across the
space. They thought that once they had grasped the idea,
Munin provided some very challenging functionality “for
free,” including sharing and stitching screens, drawing from
existing services, and distributing events across the space.

12 DESIGN IMPLICATIONS

We believe that ubiquitous analytics, an exciting new area
of research, is currently hindered by the lack of standard
frameworks for building visual computing software that
scale seamlessly to multiple devices, displays, and surfaces.
Munin is one such framework that can be used to build
distributed visual computing enviroments, but it is impor-
tant to emphasize that there is significant opportunity for
developing other toolkits with differing design rationale
and architecture. In this section, we discuss some of the
strengths and weaknesses of the Munin toolkit.

We chose Java as the programming language for Munin
to achieve some of our design goals, and we utilize
existing communication modules such as JGroups, and
graphics modules such as Piccolo2D, JavaFX, and native
Android graphics APIs for achieving the envisioned shared
state, shared service, and visualization layer objectives.
The choice of programming language should ideally make

12. https://github.com/karthikbadam/Munin

it out-of-box compatible with a wide range of desktop
platforms and also mobile platforms such as Android and
iOS. However, some of the dependencies of Munin are
yet to be ported to the iOS platform and this remains to
be corrected in near future. Munin can also be integrated
with software toolkits written in general-purpose languages
such as C and C++ through standard interfacing options
such as Java Native Interface (JNI). This does require
rewriting the target software toolkits to utilize Munin’s
service-oriented model. It is also worth mentioning that
while Java is platform independent and does not require
rebuilding the code to every platform, mobile platforms
do not provide complete support to typical Java rendering
libraries. Therefore, we have created a separate rendering
service for Android, and the same is required for iOS.

We opted for a peer-to-peer architecture over a more
traditional client/server one, and this had significant reper-
cussions on our design. Based on our previous experience
building client/server systems, they are typically relatively
simple to implement, provide a straightforward location for
arbitrating between clients and executing exclusive logic,
and are easy to understand and learn for the application
programmer. For example, most current web-based collab-
orative applications (WebEx, Adobe Connect, etc) use a
client/server architecture where the server handles events
and tasks. On the other hand, P2P systems require event and
task management models that work with distributed logic
and are capable of managing conflicts, synchronization,
and scalability issues in each individual peer. In our P2P
design, each peer must independently determine whether a
particular event or object falls in their area of concern, and
the distribution of services across peers is asymmetric to
take advantage of device-specific hardware capabilities.

On the other hand, the centralization in a client/server
system may cause issues for scalability, robustness, security,
and trust. In contrast, the Munin P2P architecture is more
robust, more fault-tolerant, and more loosely coupled than
a client/server design. Furthermore, even if peer-to-peer
architectures can be difficult to understand and learn, we
are convinced that the data-driven and service-oriented
programming model we use reduces much of this com-
plexity. At the same time, it is clear that a distributed vi-
sualization executing on several computers simultaneously
will be more complex to develop than a single-computer
one. Infact, typical issues such as display synchronization
that can be easily handled or even eliminated through
client/server model may need additional program logic
in P2P architecture through acknowledgement procedures.
Our anecdotal findings point in the right direction, but more
evaluation with end-user programmers is needed.

Munin is designed for co-located synchronous settings,
but there are many situations where users in one ubiquitous
visual computing space will want to connect to users in
another location to collaborate remotely on a particular
problem. Our implementation currently does not support
this scenario, but one approach may be to integrate Munin
with the Hugin [18] framework for remote visual computing
by simply integrating Hugin clients (Hugin uses a clien-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 13

t/server architecture) as Munin peers. Munin objects that
should be exported remotely could be tagged with reserved
Hugin properties for permissions and ownership.

Our shared data model in Munin has no encapsulation,
access control, or type checking. This makes for rapid and
effortless development, but may cause bugs that are difficult
to track down if a service changes a shared object in an
erratic way. One approach may be to adopt the Governor
pattern proposed by Klokmose and Beaudouin-Lafon in
the VIGO model [19], where all shared objects may be
associated with an entity that can determine whether a state
change is legal, and also execute logic associated with the
object if it changes. However, this is left for future work.

13 CONCLUSION AND FUTURE WORK

We have presented the Munin framework for building
distributed software in special-purpose multi-surface envi-
ronments that we call ubiquitous analytics and visualization
spaces. Beyond the basic functionality of existing middle-
wares for multi-surface environments, Munin is particularly
suitable for high-performance visual computing due to (1)
a structured data table for shared state; (2) a distributed
scene graph that delegates rendering to each device; and
(3) a data-driven programming model where cross-cutting
services manage input, output, and computation. We val-
idated Munin using several applications built using the
framework, an in-depth example describing its use, and
both performance results as well as qualitative feedback.

In the future, we plan on extending the collection of
display, rendering, input management, and computation
services, as well as adapt the framework to additional
platforms. We also envision adding significantly to the
vocabulary of visualization techniques that Munin supports.

REFERENCES

[1] B. Lee, P. Isenberg, N. H. Riche, and S. Carpendale, “Beyond mouse
and keyboard: Expanding design considerations for information
visualization interactions,” IEEE Transactions of Visualization and
Computer Graphics, vol. 18, no. 12, pp. 2689–2698, 2012.

[2] F. Guimbretière, M. C. Stone, and T. Winograd, “Fluid interaction
with high-resolution wall-size displays,” in Proceedings ACM Sym-
posium on User Interface Software & Technology, 2001, pp. 21–30.

[3] P. Wellner, “Interacting with paper on the DigitalDesk,” Communi-
cations of the ACM, vol. 36, no. 7, pp. 86–96, Jul. 1993.

[4] H.-C. Jetter, M. Zöllner, J. Gerken, and H. Reiterer, “Design and im-
plementation of post-WIMP distributed user interfaces with ZOIL,”
International Journal of Human-Computer Interaction, vol. 28,
no. 11, pp. 737–747, 2012.

[5] N. A. Streitz, J. Geissler, T. Holmer, S. Konomi, C. Müller-Tomfelde,
W. Reischl, P. Rexroth, P. Seitz, and R. Steinmetz, “i-LAND: An
interactive landscape for creativity and innovation,” in Proc. ACM
Conference on Human Factors in Computing Systems, 1999, pp.
120–127.

[6] T. Gjerlufsen, C. N. Klokmose, J. Eagan, C. Pillias, and
M. Beaudouin-Lafon, “Shared substance: developing flexible multi-
surface applications,” in Proceedings of the ACM Conference on
Human Factors in Computing Systems, 2011, pp. 3383–3392.

[7] P. Isenberg, A. Tang, and M. S. T. Carpendale, “An exploratory
study of visual information analysis,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems, 2008, pp.
1217–1226.

[8] A. van Dam, “Post-WIMP user interfaces,” Communications of the
ACM, vol. 40, no. 2, pp. 63–67, Feb. 1997.

[9] M. Weiser, “The computer for the twenty-first century,” Scientific
American, vol. 3, no. 265, pp. 94–104, Sep. 1991.

[10] N. Elmqvist and P. Irani, “Ubiquitous analytics: Interacting with big
data anywhere, anytime,” IEEE Computer, vol. 46, no. 4, pp. 86–89,
2013.

[11] P. Isenberg, N. Elmqvist, J. Scholtz, D. Cernea, K.-L. Ma, and
H. Hagen, “Collaborative visualization: definition, challenges, and
research agenda,” Information Visualization, vol. 10, no. 4, pp. 310–
326, 2011.

[12] R. J. K. Jacob, A. Girouard, L. M. Hirshfield, M. S. Horn, O. Shaer,
E. T. Solovey, and J. Zigelbaum, “Reality-based interaction: a frame-
work for post-WIMP interfaces,” in Proceedings ACM Conference
on Human Factors in Computing Systems, 2008, pp. 201–210.

[13] S. Eilemann, M. Makhinya, and R. Pajarola, “Equalizer: A scalable
parallel rendering framework,” IEEE Transactions on Visualization
and Computer Graphics, vol. 15, no. 3, pp. 436–452, 2009.

[14] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D.
Kirchner, and J. T. Klosowski, “Chromium: a stream-processing
framework for interactive rendering on clusters,” ACM Transactions
on Graphics, vol. 21, no. 3, pp. 693–702, Jul. 2002.

[15] R. A. Bolt, ““Put-That-There”: voice and gesture at the graphics
interface,” Computer Graphics, vol. 14, no. 3, pp. 262–270, 1980.

[16] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. G. Tatar,
“WYSIWIS revised: Early experiences with multiuser interfaces,”
ACM Transactions on Office Information Systems, vol. 5, no. 2, pp.
147–167, 1987.

[17] P. Isenberg and S. Carpendale, “Interactive tree comparison for co-
located collaborative information visualization,” IEEE Transactions
on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1232–
1239, 2007.

[18] K. Kim, W. Javed, C. Williams, N. Elmqvist, and P. Irani, “Hugin: A
framework for awareness and coordination in mixed-presence collab-
orative information visualization,” in Proceedings ACM Conference
on Interactive Tabletops and Surfaces, 2010, pp. 231–240.

[19] C. N. Klokmose and M. Beaudouin-Lafon, “VIGO: instrumental
interaction in multi-surface environments,” in Proceedings of the
ACM Conference on Human Factors in Computing Systems, 2009,
pp. 869–878.

[20] J. Melchior, D. Grolaux, J. Vanderdonckt, and P. V. Roy, “A toolkit
for peer-to-peer distributed user interfaces: concepts, implementa-
tion, and applications,” in Proceedings of the ACM Symposium on
Engineering Interactive Computing System, 2009, pp. 69–78.

[21] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven docu-
ments,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 6, pp. 2301–2309, 2011.

[22] J.-D. Fekete, “The InfoVis Toolkit,” in Proceedings of the IEEE
Symposium on Information Visualization, 2004, pp. 167–174.

[23] P. Isenberg and D. Fisher, “Collaborative brushing and linking
for co-located visual analytics of document collections,” Computer
Graphics Forum, vol. 28, no. 3, pp. 1031–1038, 2009.

[24] S. Panëels and J. C. Roberts, “Review of designs for haptic data
visualization,” IEEE Transactions on Haptics, vol. 3, no. 2, pp. 119–
137, 2010.

[25] M. Tobiasz, P. Isenberg, and S. Carpendale, “Lark: Coordinating co-
located collaboration with information visualization,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 15, no. 6, pp.
1065–1072, 2009.

[26] C. Hansen, T. Crockett, and S. Whitman, “Guest Editor’s introduc-
tion: Parallel rendering,” IEEE Parallel and Distributed Technology:
Systems and Applications, vol. 2, no. 2, pp. 7–7, 1994.

[27] T. Ni, G. S. Schmidt, O. G. Staadt, M. A. Livingston, R. Ball, and
R. May, “A survey of large high-resolution display technologies,
techniques, and applications,” in Proceedings of the IEEE Confer-
ence on Virtual Reality, 2006, pp. 223–236.

[28] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-
Neira, “VR Juggler: A virtual platform for virtual reality application
development,” in Proceedings of the IEEE Conference on Virtual
Reality, 2001, pp. 89–96.

[29] V. Anupam, C. Bajaj, D. Schikore, and M. Schikore, “Distributed
and collaborative visualization,” Computer, vol. 27, no. 7, pp. 37–43,
1994.

[30] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh, “Parallel
volume rendering using binary-swap compositing,” IEEE Computer
Graphics and Applications, vol. 14, no. 4, Jul. 1994.

[31] K. W. Brodlie, D. A. Duce, J. R. Gallop, J. P. R. B. Walton, and
J. D. Wood, “Distributed and collaborative visualization,” Computer
Graphics Forum, vol. 23, no. 2, pp. 223–251, 2004.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MONTH 2014 14

[32] A. Ebert, S. Thelen, P.-S. Olech, J. Meyer, and H. Hagen, “Tiled++:
An enhanced tiled hi-res display wall,” IEEE Trans. on Visualization
and Computer Graphics, vol. 16, no. 1, pp. 120–132, 2010.

[33] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. John-
son, and J. Leigh, “High-performance dynamic graphics streaming
for scalable adaptive graphics environment,” in Proceedings of the
ACM/IEEE Supercomputing Conference, 2006, pp. 24–33.

[34] B. Schaeffer, P. Brinkmann, G. Francis, C. Goudeseune, J. Crowell,
and H. Kaczmarski, “Myriad: scalable vr via peer-to-peer connectiv-
ity, pc clustering, and transient inconsistency,” Computer Animation
and Virtual Worlds, vol. 18, no. 1, pp. 1–17, 2007.

[35] B. Shen, J. Guo, and P. Chen, “A survey of P2P virtual world
infrastructure,” in Proceedings of IEEE Conference on e-Business
Engineering, 2012, pp. 296–303.

[36] S. Feiner and A. Shamash, “Hybrid user interfaces: Breeding virtu-
ally bigger interfaces for physically smaller computers,” in Proceed-
ings ACM Symposium on User Interface Software & Technology,
1991, pp. 9–17.

[37] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd, “Integrating in-
formation appliances into an interactive workspace,” IEEE Computer
Graphics and Applications, vol. 20, no. 3, pp. 54–65, 2000.

[38] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs,
“The office of the future: A unified approach to image-based
modeling and spatially immersive displays,” Computer Graphics,
vol. 32, pp. 179–188, Aug. 1998.

[39] N. Elmqvist, “Distributed user interfaces: State of the art,” in
Distributed User Interfaces: Designing Interfaces for the Distributed
Ecosystem, J. A. Gallud, R. Tesoriero, and V. M. R. Penichet, Eds.
Springer, 2011.

[40] J. Coutaz, L. Balme, C. Lachenal, and N. Barralon, “Software infras-
tructure for distributed migratable user interfaces,” in Proceedings of
the UbiHCISys Workshop on UbiComp, 2003.

[41] P. Tandler, “Software infrastructure for ubiquitous computing envi-
ronments: Supporting synchronous collaboration with heterogeneous
devices,” LNCS, vol. 2201, pp. 96–115, 2001.

[42] M. Modahl, I. Bagrak, M. Wolenetz, P. W. Hutto, and U. Ramachan-
dran, “MediaBroker: An architecture for pervasive computing,” in
Proceedings of the IEEE Conference on Pervasive Computing, 2004,
pp. 253–262.

[43] N. Marquardt, R. Diaz-Marino, S. Boring, and S. Greenberg, “The
proximity toolkit: prototyping proxemic interactions in ubiquitous
computing ecologies,” in Proceedings of the ACM Symposium on
User Interface Software and Technology, 2011, pp. 315–326.

[44] E. Pietriga, S. Huot, M. Nancel, and R. Primet, “Rapid development
of user interfaces on cluster-driven wall displays with jBricks,” in
Proceedings of the ACM Symposium on Engineering Interactive
Computing System, 2011, pp. 185–190.

[45] X. Bi and R. Balakrishnan, “Comparing usage of a large high-
resolution display to single or dual desktop displays for daily
work,” in Proceedings of the ACM Conference on Human Factors
in Computing Systems, 2009, pp. 1005–1014.

[46] A. Endert, L. Bradel, J. Zeitz, C. Andrews, and C. North, “Designing
large high-resolution display workspaces,” in Proceedings of the
ACM Conference on Advanced Visual Interfaces, 2012, pp. 58–65.

[47] K. Moreland, “Redirecting research in large-format displays for
visualization,” in Proceedings of IEEE Symposium on Large Data
Analysis and Visualization (LDAV), 2012, pp. 91–95.

[48] H. Zhao, C. Plaisant, B. Shneiderman, and J. Lazar, “Data sonifi-
cation for users with visual impairment: A case study with georef-
erenced data,” ACM Transactions on Computer-Human Interaction,
vol. 15, no. 1, 2008.

[49] A. Wu, “Tangible visualization,” in Proceedings of the Conference
on Tangible and Embedded Interaction, 2010, pp. 317–318.

[50] D. A. Bowman, C. North, J. Chen, N. F. Polys, P. S. Pyla, and
U. Yilmaz, “Information-rich virtual environments: theory, tools, and
research agenda,” in Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, 2003, pp. 81–90.

[51] L. Chittaro, “Visualizing information on mobile devices,” IEEE
Computer, vol. 39, no. 3, pp. 40–45, 2006.

[52] S. Kim, Y. Jang, A. Mellema, D. S. Ebert, and T. W. Collins, “Visual
analytics on mobile devices for emergency response,” in Proceedings
of the IEEE Symposium on Visual Analytics Science and Technology,
2007, pp. 35–42.

[53] P. Pombinho, “Information visualization on mobile environments,”
in Proceedings of the ACM Conference on Human-Computer Inter-
action with Mobile Devices and Services, 2010, pp. 493–494.

[54] C. Andrews, A. Endert, and C. North, “Space to think: Large, high-
resolution displays for sensemaking,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems, 2010, pp. 55–
64.

[55] M. Czerwinski, G. Smith, T. Regan, B. Meyers, G. Robertson, and
G. Starkweather, “Toward characterizing the productivity benefits of
very large displays,” in Proceedings of INTERACT, 2003, pp. 9–16.

[56] Z. Liu, N. J. Nersessian, and J. T. Stasko, “Distributed cognition
as a theoretical framework for information visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 14, no. 6,
pp. 1173–1180, 2008.

[57] E. Hutchins, Cognition in the Wild. MIT Press, 1995.
[58] A. Clark and D. Chalmers, “The extended mind,” Analysis, vol. 58,

no. 1, pp. 7–19, 1998.
[59] L. Shapiro, Embodied Cognition. New York, NY: Routledge, 2011.
[60] J. Heer and M. Agrawala, “Software design patterns for information

visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 853–860, 2006.

[61] O. Kreylos, “Environment-independent VR development,” in Ad-
vances in Visual Computing. Springer, 2008, pp. 901–912.

[62] D. Gelernter, “Generative communication in Linda,” ACM Transac-
tions on Programming Languages and Systems, vol. 7, no. 1, pp.
80–112, Jan. 1985.

[63] B. Johanson and A. Fox, “Extending tuplespaces for coordination
in interactive workspaces,” Journal Systems and Software, vol. 69,
no. 3, pp. 243–266, 2004.

[64] W. Javed, S. Ghani, and N. Elmqvist, “PolyZoom: multiscale and
multifocus exploration in 2D visual spaces,” in Proceedings of the
ACM Conference on Human Factors in Computing Systems, 2012,
pp. 287–296.

Sriram Karthik Badam received his Bache-
lor of Technology in Computer Science and
Engineering in 2012 from Indian Institute
of Technology Hyderabad in India. He is a
Ph.D. student in the School of Electrical and
Computer Engineering at Purdue University
in West Lafayette, IN, USA. His research in-
terests include human-computer interaction,
information visualization, and visual analyt-
ics. He is a student member of the IEEE.

Eli Fisher received the bachelor of computer
engineering degree from Purdue University
in Spring 2014. He now works for Microsoft
Corporation.

Niklas Elmqvist received his Ph.D. in 2006
from Chalmers University of Technology in
Göteborg, Sweden. He is an assistant pro-
fessor in the School of Electrical and Com-
puter Engineering at Purdue University in
West Lafayette, IN, USA. He was previously
a postdoctoral researcher at INRIA Saclay -
Île-de-France located at Université Paris-Sud
in Paris, France. He is a senior member of the
IEEE and the IEEE Computer Society.


