
Volume xx (200y), Number z, pp. 1–13

Visualization Mosaics for Multivariate Visual Exploration

S. MacNeil1 and N. Elmqvist†2

1Purdue University, USA

Figure 1: MosaicJS—our visualization mosaics implementation—visualizing a dynamic police incident database (left) for the
city of Seattle (data source: http://data.seattle.gov/). The tile hierarchy of the mosaic is given to the right.

Abstract
We present a new model for creating composite visualizations of multidimensional datasets using simple visual
representations such as point charts, scatterplots, and parallel coordinates as components. Each visual represen-
tation is contained in a tile, and the tiles are arranged in a mosaic of views using a space-filling slice-and-dice
layout. Tiles can be created, resized, split, or merged using a versatile set of interaction techniques, and the visual
representation of individual tiles can also be dynamically changed to another representation. Because each tile
is self-contained and independent, it can be implemented in any programming language, on any platform, and
using any visual representation. We also propose a formalism for expressing visualization mosaics. A web-based
implementation called MosaicJS supporting multidimensional visual exploration showcases the versatility of the
concept and illustrates how it can be used to integrate visualization components provided by different toolkits.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Interaction styles I.3.6 [Computer Graphics]: Methodology and Techniques—Interaction techniques

† School of Electrical & Computer Engineering, Purdue University,
465 Northwestern Ave, West Lafayette, IN 47907, USA, E-mail:
elm@purdue.edu.

1. Introduction

The field of visualization is changing. The traditional visual-
ization pipeline [CMS99] is being transformed into a shorter,
more flexible pipeline [McK09] that is driven by the end-
less capabilities of the Web 2.0 ecosystem. Visualization is

submitted to COMPUTER GRAPHICS Forum (11/2012).

2 S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration

becoming an increasingly social activity [HVW07] targeted
towards the masses [VWvH∗07]. Complex visual represen-
tations that encode dozens of individual data dimensions in
a single view (e.g., [Ins85,Kei00]) are making way for com-
posites [JE12] of small and simple views based on clas-
sic statistical graphics [CM84, TU08], such as information
dashboards [Few06], Polaris [STH02], Dashiki [McK09],
ScatterDice [EST08], and Jigsaw [SGL08]. In other words,
monoliths are becoming mosaics: multiple simple views
with mutual coordination [Rob07], instead of heavyweight
monolithic representations.

The key feature in this new generation of visualization
systems is not the ability to represent all data in a single view,
but rather the capability for effortless creation of new views,
and for coordinating all of these views to support compari-
son and correlation. Just like an architect or engineer would
not stop at a single blueprint when designing a building or
a complex piece of machinery, information analysts—causal
or expert alike—need to create several views, each one por-
traying a unique aspect of the data. However, existing in-
formation dashboards [Few06] are typically static and thus
poorly support this quick and fluid [EMJ∗11] visualization
process. Those that do support dynamic exploration and re-
configuration, such as Google’s web-based dashboards, typi-
cally do not make relations between different views explicit,
which is vital for understanding the overall data context.

In this paper, we propose a new theoretical model for co-
ordinated multiple views (CMV) [Rob07] of multidimen-
sional data that builds on this trend and that we therefore call
visualization mosaics. A visualization mosaic is a hierarchi-
cal container structure for visual representations (tiles) that
visualize a particular dataset. Unlike traditional dashboards,
the mosaic is dynamic and allows rearranging, repurposing,
or restructuring the component tiles on the fly. A key aspect
here is that the tiles are treated as black boxes, and can thus
be any external visualization component provided by a third
party. The main features of mosaics are the following:

• Space-filling layout: a slice-and-dice graphical layout
that conveys the hierarchical structure of the mosaic;

• Visual transformations: a grammar for transforming be-
tween different visual representations (equivalent or not);

• Mosaic management: interactions for splitting, merging,
arranging, and transforming tiles on the mosaic; and

• Formal notation: a language for specifying the structure
and contents of a visualization mosaic.

The metaphor employed by the visualization mosaic con-
cept is one of actually building a mosaic of views by split-
ting, merging, +and arranging tiles on the visual canvas us-
ing a pre-defined set of simple visual representations for
multidimensional, temporal, and spatial data. The mosaic,
which is the final product of an analysis session, is essen-
tially an interactive visualization dashboard [Few06] con-
sisting of a collection of information tiles, i.e. mutually
linked and coordinated views. Figure 1 shows an example

mosaic for a real-time crime dataset. The tile layout on the
visual canvas exposes the underlying structure of the dataset.

Our intended use for the visualization mosaic con-
cept is primarily for web-based data analysis, similar
to Dashiki [McK09], ManyEyes [VWvH∗07], and Vis-
Gets [DCCW08]. Towards this end, we have implemented
a prototype implementation of the concept as a JavaScript
framework that can run in any modern web browser. The
framework uses the Google Data Source API for data man-
agement, enabling us to use virtually any web-based visu-
alization toolkit—including the Google Visualization API,
Protovis [BH09], and D3 [BOH11]—as component tiles in
a mosaic. Using this prototype, we give two case studies for
how the mosaic concept could be used in practice.

2. Related Work

This work represents the merging of several different topics
within visualization and visual analytics research:

• Statistical data graphics: the work originates from a
long tradition of graphical representations of data;

• Multidimensional visualization: the emphasis is primar-
ily on multivariate datasets;

• Coordinated multiple views: the approach to visual ex-
ploration [Kei02] is based on multiple linked views;

• Visualization dashboards: the end result is a visualiza-
tion dashboard (but a dynamic one); and

• Web-based visualization: the target audience is the In-
ternet and our target platform is the web browser.

2.1. Statistical Data Graphics

Graphical representations have long helped statisticians
make sense of their data [Fri07]. The Scottish engineer
William Playfair (1759–1823) is hailed as the father of such
statistical graphics [?], and used line, bar, pie, and circle
graphs to communicate political and economical data to his
fellow citizens and policymakers in Georgian era England.
Data graphics have progressed much since then and are used
for many disciplines of mathematics, as well as domains
such as finance, politics, science, engineering, and medicine.

In particular, combining multiple graphs of data to re-
inforce a message dates back more than 25 years [BC87,
BCS96], and has often been combined with linked high-
lighting between the graphs. One of the early examples
was Paul Velleman’s DataDesk software (http://www.
datadesk.com), introduced already in 1985, which sup-
ported a graphical user interface, linked displays, and 3D
plots on a standard personal computer, as well as John
Tukey’s PRIM-9 [TFF88] system for exploratory data anal-
ysis from the late 1980s. Today’s statistical packages such as
SAS, SPSS, and R (http://www.r-project.org) all
support multiple views in various forms.

submitted to COMPUTER GRAPHICS Forum (11/2012).

http://www.datadesk.com
http://www.datadesk.com
http://www.r-project.org

S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration 3

2.2. Multidimensional Visualization

Multidimensional data is one of the classic information visu-
alization datasets [Shn96], and much research has been de-
voted to such data over the years. As opposed to the largely
spatial 2D or 3D data used in scientific visualization, mul-
tidimensional datasets are those that contain more (some-
times many more) dimensions than three. Classic multidi-
mensional visualization techniques include scatterplot ma-
trices [CM84], parallel coordinates [Ins85], dense pixel dis-
plays [KK94], and stacked displays [LWW90].

Many systems for multidimensional visual exploration
have been built, starting with Tukey’s original PRIM-
9 [TFF88] system, Becker and Cleveland’s trellis dis-
plays [BCS96], Ward’s XmdvTool [War94], and the
XGobi/GGobi systems [SLBC03]. Several commercial vi-
sualization systems now also exist, such as Spotfire [Ahl96]
and Tableau (formerly Polaris [STH02]). All of these pro-
mote an open-ended visual process for exploring datasets.

The Hierarchical Visualisation Expression nota-
tion [SDW09] by Slingsby et al. is interesting because
it provides a formal notation for describing hierarchical
layouts of multidimensional datasets, resulting in recon-
figurable space-filling visualizations of small multiples
(conditioned by the layout) of this data. Our mosaic frame-
work and notation is similar, but is designed for interactive
visual exploration and integrates multiple different visu-
alization types into the resulting mosaic instead of small
multiples using the same visual representation.

Several other recent academic offerings also exist. Xmd-
vTool [War94] continues to be developed and now sup-
ports a rich plethora of techniques—recent extensions in-
clude nugget management [YRW07] and data quality sup-
port [CWRY06]. Improvise [Wea04], also discussed below,
promotes a highly extensible and configurable approach to
building multidimensional visualizations consisting of many
cross-linked views. Dust and magnets [YMSJ05] uses in-
teraction and animation to support exploration and insight.
The DataMeadow [EST08] is an interactive environment
with a visual query language. Finally, ScatterDice supports
multidimensional analysis using scatterplot matrix naviga-
tion [EDF08], where users can explore and query data from
different views connected by animated transitions.

2.3. Coordinated Multiple Views

Adding multiple views of data has its roots in linked graphs
from more than 25 years of statistics [BC87, BCS96], and
has often been combined with the notion of linked highlight-
ing. It is also a common strategy in interactive visualiza-
tion for dealing with multidimensional datasets [BWK00];
examples of this practice include Mondrian [TU08], Jig-
saw [SGL08], Dashiki [McK09], Improvise [Wea04], and
Tableau/Polaris [STH02]. This practice is coupled with the

proliferation of multi-monitor setups that increase the avail-
able display space on personal computers and enable space
management to support analysis [AEN10, Gru01].

However, multiple views can be overwhelming without
a clear organizing principle. The most common approach
to organize multiple views is called coordinated multiple
views (CMV) and simply juxtaposes views in the same vi-
sual space with brushing [BC87]—dynamic highlighting
of items selected in one view in all other views—as the
main coordination mechanism. Baldonado et al. [BWK00]
proposed a set of guidelines for designing CMV systems
in 2000; more recent work in this area includes Roberts
state-of-the-art report from 2007 [Rob07], and Javed and
Elmqvist’s more general characterization of the design space
of composite visualizations [JE12]. While there exists many
CMV systems (and, consequently, while many visualization
systems use CMV techniques), Improvise [Wea04] is per-
haps the most well-known of these. Essentially a visualiza-
tion toolkit, Improvise is designed for building multi-view
visualizations that are mutually linked and brushed. How-
ever, to our knowledge, other than the pure toolkits reviewed
below, there currently exists no full-fledged CMV systems
designed for web-based settings.

The prior art most relevant to our work is snap-together
visualizations [NS00,NCIS02], which allow users to rapidly
and dynamically mix visualizations and coordination mech-
anisms using direct manipulation. Coordination builds on
the relational data model, where data tables are loaded into
visualizations and a join relationship is defined between
linked tables. Our approach is similar, but uses a single table
that is partitioned into a tile hierarchy, enabling us to explic-
itly represent relations between visualizations.

2.4. Visualization Dashboards

A visualization (or information) dashboard is a graphical
canvas consisting of multiple visual representations with live
connections to data sources [Few06]. They are typically as-
sembled for a specific purpose. Essentially inspired by phys-
ical in-vehicle dashboards, an information dashboard is de-
signed for quick, almost preattentive, survey of a set of pa-
rameters and data values; in other words, the emphasis is
on quick reference rather than in-depth analysis. Informa-
tion dashboards are becoming popular for domains such as
business intelligence, and some commercial dashboard sys-
tems include SAP Xcelsius and Spotfire Posters.

Despite their popularity, traditional information dash-
boards have been criticized for being static, opaque, and dif-
ficult to build and maintain for all but expert users [Few06,
McK09]. These weaknesses serve as motivating factors for
continued work on more dynamic and configurable infor-
mation dashboards. Perhaps the most recent and relevant of
these systems is Dashiki [McK09] (publicly known as Many
Eyes Wikified), which combines a user-edited Wiki with a

submitted to COMPUTER GRAPHICS Forum (11/2012).

4 S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration

markup syntax that allows the user to lay out visualizations
from the Many Eyes [VWvH∗07] site side-by-side. This sup-
ports a dynamic approach to composing multiple visualiza-
tions that have live connections to their data sources, and
combining them with text and hyperlinks.

The recent WebCharts [FDFR10] framework encapsu-
lates visualization components implemented in different lan-
guages using a common interface that enables these compo-
nents to be dynamically added to any application supporting
the interface. Our visualization mosaics use the same idea,
yet take a dashboard approach to presenting the components.

Finally, in very recent work, Lex et al. [LSS∗11] propose
VisBricks, a framework for constructing what are essentially
dashboards consisting of multiple component visualizations.
The framework is designed for large and inhomogeneous
datasets, similar to our visualization mosaics concept. How-
ever, unlike our work, the VisBricks system is a native ap-
plication based on OpenGL and thus has higher rendering
and data management performace, but requires installation,
specific libraries, and cannot easily integrate visualization
components created by third parties on the Internet.

2.5. Web-based Visualization

The Web is the great enabler for the rise of visualization
for the masses, a trend that was initiated by online visual-
ization websites such as NameVoyager [Wat05] and Many
Eyes [VWvH∗07]. While traditional visualization software
must often be built for a specific operating system and com-
puting platform, the web browser has the lure of a truly
cross-platform target—at least in theory.

VisGets [DCCW08] was one of the first web-based vi-
sualization systems that made use of multiple coordinated
views to show temporal, spatial, and semantic data about a
web-based query. The visualization tiles in our mosaic ap-
proach can be seen as VisGets with automatic mutual link-
ing. Dörk et al. continue on this line of inquiry in a very re-
cent paper on a Visual Backchannel [DGWC10] system for
the Web where multiple coordinated views allow the user
to follow Twitter posts about a specific event in real time.
However, the VisGets and Visual Backchannel systems are
specifically designed for particular applications and are not
easily customizable for general datasets.

Several general APIs have been proposed for web-based
visualization. Protovis [BH09] is a general SVG-based
JavaScript library for building visualizations. The more
D3 [BOH11] uses the actual document object model to
visualize data. The JavaScript InfoVis Toolkit (http://
thejit.org) is another JavaScript-based visualization li-
brary. Finally, the Google Visualization API (http://
code.google.com/apis/chart/) provides a general
data source interface that enables visualization components
to be written in any language while still sharing data. While
all of these APIs are general enough to enable building

mosaics similar to our work, they require programming to
deploy. Visualizations built in Protovis, D3, and Google
Vis can still be used as components in our system, how-
ever. Instead of requiring programming, we are more con-
cerned with merging component visualizations into a coher-
ent whole during interactive exploration.

3. Visualization Mosaics

A visualization mosaic is a composite visualization consist-
ing of multiple visual representations juxtaposed in the same
visual space with each representation visualizing a subset of
a master dataset. Mosaics are examples of coordinated mul-
tiple view (CMV) [Rob07] visualizations, but have stricter
data and layout constraints. These restrictions allows us to
completely specify a mosaic using a formal notation. In the
below section, we first give a model and some basic defini-
tions, present the notation, and show how this gives rise to a
natural hierarchy-preserving slice-and-dice layout.

3.1. Model

Our visualization mosaics build on the data model of Card
et al. [CMS99] where a dataset D is a data table consist-
ing of dimensions and cases. Using the convention set forth
by Fekete [Fek04] as well as Heer and Agrawala [HA06],
we specify the table in terms of a data column C, i.e.,
D= {C1, . . . ,Cn}. A column is an abstraction of a dimension
in a data table and contains one value per item in the table
(accessible using the row number). It also has a collection
of meta-data such as name, type, value range, average, etc.
Retrieving a specific row in the table amounts to retrieving
the value for that row from every column in the table.

Visualization mosaics are defined for a master dataset that
is common among all of the individual visual representa-
tions in the mosaic. We use the row number to uniquely iden-
tify the same item across all parts of the mosaic, such as for
brushing [BC87]. This means that all columns must belong
to the same table. In other words, if we want to visualize
more than one dataset, we must first combine the datasets
into a single dataset, for example using a join operation.

Given the above definitions, a visualization can be seen
as a function V that accepts columns as input and creates
a graphical representation based on visualization technique
as output. For example, Vscatter(C1,C2) would denote a 2D
scatterplot of two columns C1 and C2 from some dataset.

3.2. Notation

We use the following grammar for defining our notation,
where a < mosaic > element is the top-level expression:

< mosaic > ::= < group > |< tile >

< group > ::= G(< mosaic >+)

< tile > ::= T(< type >,Cn +)

< type > ::= /0 | scatter | parcoord | hist ...

submitted to COMPUTER GRAPHICS Forum (11/2012).

http://thejit.org
http://thejit.org
http://code.google.com/apis/chart/
http://code.google.com/apis/chart/

S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration 5

Here, < type > denotes visualization types that a tile can
use, and this element is only limited to the visual represen-
tations supported by the actual mosaic implementation.

Given the above grammar for our mosaic notation, here
is an example mosaic M1 consisting of two scatterplots that
each use two columns of the dataset (Figure 2(a)):

M1 = G(T(scatter,C1,C2),T(scatter,C3,C4))(1)

The real estate mosaic in Figure 2(b) consists of a ge-
ographical map where the houses are plotted using their
longtitude and latitude (with their address as labels). In ad-
dition, we also create a histograms for the price, square
footage, and acreage of the houses in the real estate database.

M2 = G(T(map2d,Clat ,Clong,Caddr),

G(T(hist,Cprice),T(hist,Csq f t),

T(hist,Cacres))) (2)

Each house in the above mosaic is represented by an item in
a dataset Dhouses = {Caddr,Clat ,Clong,Cprice,Csq f t ,Cacres}.
This allows a mosaic implementation to easily support
brushing by simply adding a meta-column [Fek04] C#selected
of booleans that all visualizations access in order to deter-
mine which items to highlight (which has been shown to be
an efficient approach by Fekete and Plaisant [FP02]).

3.3. Constructing Mosaics

To facilitate building mosaic expressions, we organize the
columns in a dataset Cn ∈ D into a column hierarchy using
the above mosaic structure. In other words, the starting point
of a mosaic is a blank visual space, M = T(/0,D), where none
of the columns in the dataset are allocated to a visualization.

Constructing a mosaic from this empty space is primarily
done using two operations: split and merge. These are used
to add or remove tiles or groups from the mosaic hierarchy:

• Split: Split a tile of <type> t into a group of n tiles, each
with their own type ti and subset Di of the dataset D:
T(t,D)⇒ G(T(t1,D1 ⊂ D), ...,T(tn,Dn ⊂ D)).

• Merge: Merge a group containing one or several tiles,
each with their own <type> ti and dataset Di, into a sin-
gle tile with type t and dataset D as the union of all Di:

G(T(t1,D1), ...,T(tn,Dn))⇒ T(t,D) where D =
n⋃

i=1
Di.

Exploratory data analysis [Kei02, Tuk77] using a visu-
alization mosaic is a progressive refinement [GZA06] of a
dataset using a series of split and merge operations as the
user explores the data, studies correlations between dimen-
sions, and creates and destroys tiles. The final mosaic ex-
pression is a representation of the exploration process, but is
still dynamic and can be refined further at a later date. In fact,
by storing the sequence and parameters of split and merge
operations, it is easy to support undo and redo in the explo-
ration(e.g. [KAF∗08]). Furthermore, the mosaic expression
captures its visual layout (see Section 3.5).

3.4. Visual Representations

The initial visual representation of a new tile is the empty
visual representation, i.e., an empty space. To improve on
this, an actual implementation may choose to implement
logic to deduce a suitable visual representation given a set
of columns with their names and data types, similar to the
work by Mackinlay et al. [Mac86, MHS07].

Tiles are containers for both (a) visualizations, which are
given a specific area inside the tile’s layout allocation to ren-
der themselves on, and (b) subsets Di of the columns of the
mosaic’s master dataset D. A visualization maps one or sev-
eral of the data columns in Di to visual variables on the
graphical rendering of the visualization. Thus, changing the
visualization type of a tile means that the visual representa-
tion contained inside the tile is replaced, and the mapping
from data columns to visual variables will also change.

To make the change in representation clearly visible, one
solution may be to use an animated transition where the
transformation from one visual representation to another is
shown using a smooth animation (similar to those of Heer
and Robertson [HVW07]). Item identities are preserved
across all columns in the mosaic, which makes it possible
to morph visual marks in one representation to the marks in
another. However, transitions must still be specifically de-
signed between each pair of visual representations.

3.5. Layout

Our objective with this work is that a mosaic M and an
dataset D should completely describe the appearance of the
mosaic on the screen. To achieve this, we utilize the hierar-
chy of views in a mosaic as input for a space-filling slice-
and-dice layout inspired by treemaps [Shn92], and previ-
ously used for view layout in SimVis [DGH03]. This algo-
rithm recurisvely splits the available space between children
in an internal node (group) depending on their number of
data dimensions. Following treemap convention, the slices
alternate between horizontal and vertical for each step.

There are two benefits of this approach: (1) a mosaic ex-
pression completely encodes specifies the visual appearance
of the resulting mosaic, achieving a compact representation
(which is significant in web-based system); and (2) the lay-
out communicates the structure of the mosaic to the user
(i.e., how the dataset has been subdivided and drilled into).
For example, Figure 2(a) shows the mosaic layout of the two
scatterplots in Equation 1, and Figure 2(b) shows the mosaic
for Equation 2. The nesting gives an indication of the visual
exploration process. However, we also allow the user to drag
tile borders to resize their layout allocations as necessary.

To further improve the layout algorithm, we also intro-
duce the notion of aspect ratio affinity. Different visual rep-
resentations have different optimal aspect ratios: for exam-
ple, a parallel coordinate plot works best for wide aspect ra-

submitted to COMPUTER GRAPHICS Forum (11/2012).

6 S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration

(a) Mosaic with two scatterplots side by side. (b) Mosaic with a geographical map and histograms.

Figure 2: Two example visualization mosaics for Equations 1 and 2, respectively.

tios, whereas a scatterplot yields best results for a square as-
pect ratio. By taking aspect ratio affinity into account when
computing the layout, the dashboard appearance can be opti-
mized depending on the component visualizations. In other
words, instead of blindly alternating between vertical and
horizontal slicing, the layout algorithm chooses which di-
rection to slice depending on available space for each node.

4. Implementation: MosaicJS

To validate our new model for coordinated multiple views,
we built a web-based implementation of visualization mo-
saics in JavaScript called MOSAICJS (Figure 3). By using a
web-based solution, we were able to make our implementa-
tion work across platforms, operating systems, and browsers.
This approach also allows us to harness existing web-based
visualization toolkits such as the Google Visualization API,
RaphaelJS, and Protovis [BH09] in our implementation.

Figure 3: MosaicJS visualizing stock market data from 1986
to 1997. The tiles use Google Visualization API components.
The interface components on the right are used to merge
existing tiles; splitting and subdividing tiles is done in the
“Data” tab of the tile the operation will be performed upon.

The general architecture of MosaicJS is built around a sin-
gle data table that represents the master dataset in the visual-

ization mosaic formalism. The framework also maintains a
mosaic hierarchy where this master table is subdivided into
many smaller tables (data views) that are visualized indepen-
dently as tiles. This mosaic hierarchy is used for organizing,
positioning, and sizing tiles on the display. Each tile is re-
sponsible for only visualizing the data table that it contains,
and its visual representation can be configured by the user.

4.1. Data Access

MosaicJS uses the Google Data Source API for accessing
and reading data from data sources on the web; examples
include spreadsheets, RSS feeds, static webpages, etc. The
core data table structure used in our framework is the one
that is defined by the Google Data Source API. This has the
added benefit of making the data more dynamic by allowing
changes to the data to be reflected in the visualization.

4.2. Layout and Control

Our MosaicJS framework maintains a mosaic hierarchy in
the form of a tree consisting of groups and tiles (similar to
the mosaic grammar in Section 3.2). As before, tiles are leaf
containers that hold visual representations, whereas groups
are internal nodes in the mosaic hierarchy. We use the slice-
and-dice algorithm described in Section 3.5 to organize com-
ponents on the visual space. Our implementation assigns
space to children proportionally to the number of columns
they contain relative to their parents.

The mosaic hierarchy can be changed in two ways: either
by splitting a tile into smaller tiles, which represent a subset
of their parent tile’s data table, or by merging several tiles,
which effectively merges all of their dimensions into one ta-
ble. When merging tiles, first the LCA (Lowest Common
Ancestor) must be found. It is this ancestor in which the two
data tables are merged with the existing table in that tile.

When a tile is created, it is a container for a subset of
its parent’s columns. It has a position and a dimension on
the visual space, but no visual representation that maps its

submitted to COMPUTER GRAPHICS Forum (11/2012).

S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration 7

columns to graphical shapes. MosaicJS renders a tile as a
floating HTML5 element that contains additional elements
for menu bars and tabbed views controlled by the user:

• Vis: The graphical view of the visual representation cho-
sen for the tile (initially empty);

• Data: A list of the columns contained within the tile as
well as the split and subdivide operations;

• Options: Selection and configuration of the tile’s visual
representation and its visual mappings.

4.3. Visual Representations

Because MosaicJS completely insulates the contents of each
tile from global layout and data management, the framework
does not impose any particular requirements on the visual
representations used. Any visual component that can be con-
tained within an HTML floating element can be used inside
MosaicJS, but doing so requires writing a JavaScript wrap-
per between the component and our framework.

Our current implementation supports visual representa-
tions such as point charts, scatter plots, and parallel coor-
dinates. We have also implemented a Google map view that
renders geotagged data, similar to Jusufi et al. [JJKM08] and
Ho et al. [HLAJ11]. Furthermore, we also support visual-
ization examples from D3 [BOH11] as well as a web-based
timeline visualization with stack zooming [JE10].

4.4. Coordination

Because the visual representations in each tile are entirely
independent (they may even be implemented in entirely dif-
ferent programming languages and using different libraries),
coordination between tiles is challenging. Accordingly, Mo-
saicJS contains two basic forms of coordination:

• Data coordination: The MosaicJS framework splits the
master dataset into subtables for each tile. This is the most
basic form of coordination in the framework.

• Selecting and brushing: All tiles that use a Google Visu-
alization API component may optionally implement the
methods getSelection() and setSelection(),
which use an array of indices to communicate which rows
in a table should be selected (and thus highlighted). Mo-
saicJS uses these methods to propagate selections in one
tile to all other tiles, thereby achieving brushing [BC87].
Note that not all visualizations are required to implement
this; certainly not those that are not GVis components. Fu-
ture improvements to MosaicJS would establish a stan-
dardized interface for brushing across all components.

4.5. Interaction

Beyond selecting and brushing, the primary interactions in
MosaicJS are accessed either using the tabbed views on a
particular tile, using the control panel interface (right side of

Figure 3), or by clicking directly on the visual representa-
tion. The following main interactions are supported:

• Subdivide: Split the selected columns in the current tile
into a sibling tile with the same parent as the original.

• Split: Split the selected columns in the current tile into a
child tile with those columns.

• Merge: Merge the selected tiles into a single tile. This re-
quires finding the least common ancestor (LCA) of those
tiles, which will become the new tile.

• Select: Select a single point in a visual representation
in one tile, which will highlight this point in all of
the other visual representations. However, this requires a
shared meta-column between all visualizations that mark
whether a point is highlighted or not, and not all third-
party visual components support this feature.

4.6. Importing and Exporting Data

One of the primary benefits of a web-based visualization
system is that it can be integrated into the overall Web 2.0
ecosystem of data sources, RSS and Atom feeds, and user
contribution mechanisms [McK09]. MosaicJS is based on
the Google Data Source API, which also allows it to leverage
importing data from spreadsheets, CSV files, and Atom and
RSS feeds. Furthermore, we provide data conversion wrap-
pers that accept JSON and JavaScript data structures as in-
put. While a MosaicJS dashboard will not automatically up-
date as dynamic data comes in, it is possible to manually
refresh a dashboard at any time: this will keep the data flow
structure and visual layout of the mosaic unchanged, but will
repopulate the views with the new data.

Exporting the results of an analysis is also an interesting
aspect of web-based visualization. The end result of a visual
exploration session using MosaicJS is a dynamic visualiza-
tion dashboard that should be possible to share with other,
perhaps less knowledgeable, users. While MosaicJS is cur-
rently a prototype, it is easy to envision a production imple-
mentation where the mosaics technique is integrated in a so-
cial data analysis website similar to ManyEyes [VWvH∗07]
that supports comments, annotation, and sharing of mo-
saics. The current implementation only supports exporting
the state of a mosaic by serializing to XML, or by capturing
a bitmap image of its visual appearance.

4.7. Implementation and Performance

Our implementation is built in JavaScript and HTML5, and
uses the Google Data Source API for data access. The key
component is the layout manager, which supports the slice-
and-dice layout and pipes data dimensions to different tiles.
The toolkit currently supports components from the Google
Visualization API and D3 [BOH11]; adding new compo-
nents is simply a matter of writing the appropriate JavaScript
wrapper and transforming data from the Google Data Source
API into a format the component visualization can handle.

submitted to COMPUTER GRAPHICS Forum (11/2012).

8 S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration

Performance is another issue for web-based applications
that rely on the browser as the run-time environment. Visu-
alizations are typically rendering-intensive, which tradition-
ally has been an issue in web browsers (although recent de-
velopments in browser technology indicate that this state of
affairs is improving [BH09, BOH11]). However, since Mo-
saicJS only connects existing visualization components and
does not provide any visual representation on its own, its
performance is largely dependent on the performance of the
external visualization tiles themselves. For this reason, we
have not run performance testing, but our informal observa-
tions is that the mosaics architecture is scalable and efficient.

5. Examples

We present two examples of how to use our MosaicJS imple-
mentation: for 911 police incidents, and for rock climbing.

5.1. Seattle Crime Analysis

Crime is a ubiquitous problem in society. Establishing a safe
environment for a city’s citizens is essential to a city’s de-
velopment. However, controlling crime is a significant chal-
lenge for law enforcement agencies, which are struggling to
manage increasing crime with decreasing money and per-
sonnel. Determining which areas are crime hot spots can
mitigate peoples’ risk of being victimized, especially in un-
familiar areas. Tourism is an important aspect of the econ-
omy of any city and can be endangered by high crime rates.

Our scenario uses police department incident response
data reported at http://data.seattle.gov, which
logs each 911 call to the Seattle Police Department along
with the geographic location, description of the incident,
time of the incident, and various other pertinent informa-
tion related to the call. We used the web service provided
by the Seattle website as a Google Data Source to interface
directly with MosaicJS using an RSS feed importer. In each
entry in the feed, we only used the columns “time”, “block
location”, “event description”, “longitude”, “latitude”, and
“event group.” We also filtered out all records that involved
minor incidents such as parking violations, noise violations,
false alarms, and fraud. Figure 1 shows one example of a
mosaic created based on this data. Note the regular grid pat-
tern of incident locations; we speculate this is an artifact of
a privacy-preserving mechanism where specific street loca-
tions are resolved to the closest grid location.

The most powerful aspect of this MosaicJS setup is that
the feed is live; as the underlying Seattle data updates with
new entries, the mosaic can simply be refreshed in order to
be populated with new data. The Seattle Police Department
data currently updates only every four hours, but other data
feeds (such as fire response) updates every 10 minutes.

Tourists who are new to an area are often worried about
getting lost in a bad neighborhood. Let us follow Tom, a

tourist who is visiting Seattle for the first time. Worried
about straying into the wrong neighborhood, Tom pulls up
MosaicJS on his smartphone. He quickly loads the Seattle
PD 911 incident dataset as a Google Data Source by cutting
and pasting the URL into the data source field on the Mo-
saicJS control panel (right side of Figure 3). This yields a
single tile containing all of the dimensions in the data source.
He can access the data management interface for this tile by
selecting the “Data” tab for the tile at the upper right. This
view lets Tom both split (create children) or subdivide (di-
vide into two siblings) the tile based on the dimensions.

Using the data management interface, Tom splits the
columns into a grouping that makes sense: he assigns “lat-
itude”, “longitude”, and “event group” dimensions to a
Google Map visualization that will plot all crime incidents
as pushpins to a map of Seattle. This quickly gives him an
idea of which parts are safe and which are not. Then he as-
signs the “event description” columns to a tag cloud, allow-
ing him to quickly get an idea of the types of crimes that are
most common in Seattle. He also plots “block location” as a
tag cloud to see which streets the crimes are committed on.
The process of setting up the mosaic is quick and painless.
If Tom gets lost during his sightseeing stroll around Seattle,
this tag cloud would help him know which street names to
potentially avoid. In particular, if a riot would form during
Tom’s visit in the area, the visualization mosaic he just cre-
ated (Figure 5) would provide him with dynamically updated
data that allow him to find a safe way back to his hotel.

Let us consider Paul, a Seattle police officer, who could
also use this application to quickly build visualization mo-
saics of dynamically updating data. He simply uses the built-
in field laptop in his patrol car to connect to the MosaicJS
website without having to install any new software. When
Paul is on patrol, the mosaic serves as an “ear to the ground”
for him to know what is currently going on in the city and
the local neighborhood. When Paul gets a call, he can refresh
the visualization and look up the location and its surround-
ing area to get a better situational awareness of the situation
he is heading into. To avoid having to do this complex data
management while responding to a call, Paul would presum-
ably build the mosaic in beforehand (or have someone else
build it for him), and only periodically refresh the mosaic to
repopulate it with current data.

5.2. Rock Climbing

Rock and alpine climbing is becoming increasingly popular
throughout the world, and many websites have been created
such as rockclimbing.com (15,000 users), 14ers.
com (24,000 users), and summitpost.org (26,000
users). However, these websites currently have no easy way
to allow their users to visually explore which mountains they
would like to climb. Here we show how MosaicJS could be
used to allow climbers to quickly narrow their searches for a

submitted to COMPUTER GRAPHICS Forum (11/2012).

http://data.seattle.gov
rockclimbing.com
14ers.com
14ers.com
summitpost.org

S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration 9

(a) Single tile with Seattle 911 police
dataset. This was created by pasting the
URL to the data feed into MosaicJS.

(b) Subdivide into geographical (left) and
textual data (right) tiles. The right tile can
now be assigned a Google map view, plot-
ting events by name based on their position.

(c) Split textual data into separate tiles for
events and streets. These tiles can now be as-
signed tag clouds as their visualization.

Figure 4: Tile interaction operations used to go from the starting position (a single tile) to the result in Figure 5 through a
subdivision followed by a split operation.

Figure 5: Tom the tourist’s mosaic of Seattle 911 police incidents. Figure 4 shows how this mosaic was created.

mountain that might fit their requirements, such as location,
height, prominence, difficulty, and accessibility.

In our scenario, Chloe—a particularly tech-savvy
climber—has adopted MosaicJS to explore the Himalayas,
a large mountain range directly to the north of India. The

Himalayas is the location of the world’s tallest mountain,
Mount Everest, along with other popular mountains such as
K2. These mountains have seen increasing number of visi-
tors after being featured in numerous movies lately.

Chloe is already on location in Nepal and only has ac-

submitted to COMPUTER GRAPHICS Forum (11/2012).

10 S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration

(a) Single tile with rock climbing data.
This initial tile was created by pasting the
datafeed URL into MosaicJS.

(b) Subdivide into geographical (top) and
non-spatial data (bottom) tiles. The top tile
can now be assigned a Google map view to
plot peaks given their longitude and latitude
and using their name as a label.

(c) Split the bottom tile, saving prominence
and height in the left tile. This tile can now
be assigned to a scatterplot, using index
number of the peaks for the X axis and plot-
ting height and prominence on the Y.

(d) Subdivide the bottom right tile to create
a new sibling tile for first ascent data. This
lower right tile can now be assigned a sim-
ple table that will show the year each peak
(labeled by their index) was first ascended.

(e) Split the bottom center tile to create two
subtiles, one for parent mountains and one
for mountain ranges. Both of these tiles can
now be assigned tag clouds to visualize the
textual data.

Figure 6: Tile interaction operations used to go from the starting position (a single tile) to the result in Figure 7.

cess to her iPad, but still wants to study her climbing plans
in detail. Fortunately, MosaicJS is based on pure HTML5,
JavaScript, and SVG, and thus gives her access to advanced
visualization capabilities even in the field and on a mobile
device. She thus connects to a popular rock climbing web-
site that already provides its users with a mountain dataset
containing Mountain Rank (a number that corresponds to
the mountains height in relation to the other mountains in
this range), Name, Height (in meters), Mountain Range (the
range which the mountain belongs to), Latitude, Longitude,
Prominence (in meters, the elevation between summit and
the lowest point uninterrupted by another summit), Parent
Mountain, and First Ascent (the year in which the first per-
son reached the summit).

Figure 7 shows how Chloe might use MosaicJS to explore
this dataset. She first uses geomaps to plot the location of
these peaks using the Mountain Name, Longitude, and Lat-
itude. She then creates two tiles for the mountain range and
parent mountain to get an idea of where the largest concen-
tration of peaks exist. For smaller mountains, this allows her
to plan climbing multiple mountains in one trip if they are all
concentrated to one range. Chloe can also plot the dates of

first ascent on a table to see how recently the range was first
climbed, or if it remains unclimbed. Finally, she can plot the
height and prominence by rank which allows her to see how
high the summit is as well as how high she would have to
climb to get to the summit. In a fictional social data analysis
website built on MosaicJS, she could even share her findings
to her fellow climbers, allowing them to comment and anno-
tate the tentative plans and make a definite decision on the
next step in their rock climbing adventure.

6. Discussion

The main strengths of our mosaics concept are the following:

• Allows for progressively building interactive web-based
dashboards for heterogeneous datasets using simple and
quick interactions;

• The structure and dataflow in the dashboard is visible
from its hierarchical layout (shown using the space en-
closure in the resulting mosaic); and

• Uses a common data model but places no restrictions on
the visual components used in the individual tiles.

submitted to COMPUTER GRAPHICS Forum (11/2012).

S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration 11

Figure 7: Rock climbing data dynamically visualized using MosaicJS. The user has selected one of the peaks—Namcha Barwa—
in the Tibetan Himalaya. The other views (scatterplot on the lower left and the table on the lower right) have highlighted this
peak, showing that it has a 7,782 meter elevation and was first ascended in 1992 (by a China-Japan expedition). Figure 6
illustrates the procedure to reach this point.

In particular, one of the contributions of our mosaics con-
cept is that it is an alternative to the classic coordinated
multiple view (CMV) [Rob07] methodology, where the user
manually creates (and deletes) views, assigns data dimen-
sions, and arranges them in a 2D layout. The mosaic ap-
proach instead starts with a single view, or tile, that is pro-
gressively split into component tiles in a space-filling layout
while automatically connecting the data dimensions during
this refinement process. While we make no claim to the util-
ity of this approach, it does minimize drag-and-drop, resiz-
ing, and layout interactions, which can be cumbersome and
taxing for complex views. Furthermore, the state of a mo-
saic can be captured in a compact formal notation, which
is suitable for encoding in a URL. This makes mosaics more
suitable for browsers than classic CMV given the constraints
of the web browser for supporting such interactions.

Of course, there are several limitations to our framework
as well. For one thing, given our emphasis on web-based vi-
sualization, MosaicJS has limited scalability, certainly not to
the level of frameworks such as VisBricks [LSS∗11] or We-

bCharts [FDFR10]. Furthermore, even if we target a novice
audience, the user is still expected to understand the Mo-
saicJS data model, and also need to have an idea of which
visual representation to choose for a particular tile.

Extensibility is another limitation. While it is true that
our implementation can encapsulate virtually any existing
web-based visualization component or toolkit, a dedicated
JavaScript stub must be written to handle data conversion for
each new component. In addition, even with this in place, it
is far from certain that a given third-party component can
be configured to understand mosaic-wide operations such as
brushing, selecting, and highlighting. More work on visual-
ization interoperability—particularly in the unifying ecosys-
tem of web software and standards—is needed here.

Finally, visual complexity and clutter [ED07] is an is-
sue with any composite visualization [JE12], and our visu-
alization mosaics technique is no exception. In particular,
while our slice-and-dice layout does convey the structure of
the mosaic, it is also true that this structure can be difficult
to perceive when the number of visualization tiles and the

submitted to COMPUTER GRAPHICS Forum (11/2012).

12 S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration

corresponding visual complexity increases [DGH03,Shn92].
This is the price to pay when combining multiple visual
representations—the resulting composite visualization will
naturally become more complex.

7. Conclusion and Future Work

We have proposed a new component-based approach to
creating interactive information dashboards consisting of
lightweight and easily modifiable visual representations that
fit together as a mosaic of views instead of as a sin-
gle, monolithic visualization application. Our implemen-
tation of visualization mosaics is called MosaicJS, and
is an HTML/JavaScript framework that runs in a web
browser and integrates several external components from the
Google Visualization API, RaphaelJS, Protovis [BH09], and
D3 [BOH11]. We showcased MosaicJS through examples
involving 911 incident analysis and rock climbing.

The future outlook of web-based visualization is very
promising as the transition to browser-based applications
continues. However, the challenge with web-based visual-
ization is to achieve the same interactivity, flexibility, and
performance in the browser as in a standard application,
while leveraging the social, modular, and community-driven
features of the Internet. Our visualization mosaics are one
step in the right direction, but more work is needed to fully
be able to replace traditional visualization applications.

Acknowledgements

This work was partly funded by Google, Inc. under the re-
search project “Visualization Mosaics: Effortless View Cre-
ation for Sensemaking.”

References
[AEN10] ANDREWS C., ENDERT A., NORTH C.: Space to think:

Large, high-resolution displays for sensemaking. In Proceedings
of the ACM CHI Conference on Human Factors in Computing
Systems (2010), pp. 55–64.

[Ahl96] AHLBERG C.: Spotfire: An information exploration en-
vironment. SIGMOD Record 25, 4 (1996), 25–29.

[BC87] BECKER R. A., CLEVELAND W. S.: Brushing scatter-
plots. Technometrics 29, 2 (1987), 127–142.

[BCS96] BECKER R. A., CLEVELAND W. S., SHYU M.-J.: The
visual design and control of trellis display. Journal of Computa-
tional and Graphical Statistics 5, 2 (1996), 123–155.

[BH09] BOSTOCK M., HEER J.: Protovis: A graphical toolkit for
visualization. IEEE Transactions on Visualization and Computer
Graphics 15, 6 (2009), 1121–1128.

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-
driven documents. IEEE Transactions on Visualization and Com-
puter Graphics 17, 6 (2011). to appear.

[BWK00] BALDONADO M. Q. W., WOODRUFF A., KUCHIN-
SKY A.: Guidelines for using multiple views in information vi-
sualization. In Proceedings of the ACM Conference on Advanced
Visual Interfaces (2000), pp. 110–119.

[CM84] CLEVELAND W. S., MCGILL R.: Graphical perception:
Theory, experimentation and application to the development of
graphical methods. Journal of the American Statistical Associa-
tion 79, 387 (Sept. 1984), 531–554.

[CMS99] CARD S. K., MACKINLAY J. D., SHNEIDERMAN B.
(Eds.): Readings in information visualization: Using vision to
think. Morgan Kaufmann Publishers, San Francisco, 1999.

[CWRY06] CUI Q., WARD M., RUNDENSTEINER E., YANG J.:
Measuring data abstraction quality in multiresolution visualiza-
tions. IEEE Transactions on Visualization and Computer Graph-
ics 12, 5 (Sept./Oct. 2006), 709–716.

[DCCW08] DÖRK M., CARPENDALE M. S. T., COLLINS C.,
WILLIAMSON C.: VisGets: Coordinated visualizations for web-
based information exploration and discovery. IEEE Transactions
on Visualization and Computer Graphics 14, 6 (2008), 1205–
1212.

[DGH03] DOLEISCH H., GASSER M., HAUSER H.: Interactive
feature specification for focus+context visualization of complex
simulation data. In Proceedings of the Eurographics/IEEE VGTC
Symposium on Visualization (2003), pp. 239–248.

[DGWC10] DÖRK M., GRUEN D. M., WILLIAMSON C.,
CARPENDALE M. S. T.: A visual backchannel for large-
scale events. IEEE Transactions on Visualization and Computer
Graphics 16, 6 (2010), 1129–1138.

[ED07] ELLIS G., DIX A. J.: A taxonomy of clutter reduction for
information visualisation. IEEE Transactions on Visualization
and Computer Graphics 13, 6 (2007), 1216–1223.

[EDF08] ELMQVIST N., DRAGICEVIC P., FEKETE J.-D.:
Rolling the dice: Multidimensional visual exploration using scat-
terplot matrix navigation. IEEE Transactions on Visualization
and Computer Graphics 14, 6 (2008), 1141–1148.

[EMJ∗11] ELMQVIST N., MOERE A. V., JETTER H.-C.,
CERNEA D., REITERER H., JANKUN-KELLY T.-J.: Fluid inter-
action for information visualization. Information Visualization
10, 4 (2011), 327–340.

[EST08] ELMQVIST N., STASKO J., TSIGAS P.: DataMeadow:
A visual canvas for analysis of large-scale multivariate data. In-
formation Visualization 7 (2008), 18–33.

[FDFR10] FISHER D., DRUCKER S. M., FERNANDEZ R., RU-
BLE S.: Visualizations everywhere: A multiplatform infrastruc-
ture for linked visualizations. IEEE Transactions on Visualiza-
tion and Computer Graphics 16, 6 (2010), 1157–1163.

[Fek04] FEKETE J.-D.: The infovis toolkit. In Proceedings of the
IEEE Symposium on Information Visualization (2004), pp. 167–
174.

[Few06] FEW S.: Information Dashboard Design: The Effective
Visual Communication of Data. O’Reilly, 2006.

[Fit60] FITZPATRICK P. J.: Leading British statisticians of the
Nineteenth Century. Journal of the American Statistical Associ-
ation 55, 289 (Mar. 1960), 38–70.

[FP02] FEKETE J.-D., PLAISANT C.: Interactive information vi-
sualization of a million items. In Proceedings of the IEEE Sym-
posium on Information Visualization (2002), pp. 117–124.

[Fri07] FRIENDLY M.: A brief history of data visualization.
Handbook of Computational Statistics: Data Visualization III
(2007).

[Gru01] GRUDIN J.: Partitioning digital worlds: focal and periph-
eral awareness in multiple monitor use. In Proceedings of the
ACM CHI Conference on Human Factors in Computing Systems
(2001), pp. 458–465.

submitted to COMPUTER GRAPHICS Forum (11/2012).

S. MacNeil & N. Elmqvist / Visualization Mosaics for Multivariate Visual Exploration 13

[GZA06] GOTZ D., ZHOU M. X., AGGARWAL V.: Interactive vi-
sual synthesis of analytic knowledge. In Proceedings of the IEEE
Symposium on Visual Analytics Science & Technology (2006),
pp. 51–58.

[HA06] HEER J., AGRAWALA M.: Software design patterns for
information visualization. IEEE Transactions on Visualization
and Computer Graphics 12, 5 (2006), 853–860.

[HLAJ11] HO Q., LUNDBLAD P., ASTRÖM T., JERN M.: A
web-enabled visualization toolkit for geovisual analytics. In Pro-
ceedings of SPIE-IS&T Electronic Imaging (2011), vol. 7868 of
SPIE.

[HVW07] HEER J., VIÉGAS F. B., WATTENBERG M.: Voyagers
and voyeurs: supporting asynchronous collaborative information
visualization. In Proceedings of ACM CHI Conference on Human
Factors in Computing Systems (2007), pp. 1029–1038.

[Ins85] INSELBERG A.: The plane with parallel coordinates. The
Visual Computer 1, 2 (1985), 69–91.

[JE10] JAVED W., ELMQVIST N.: Stack zooming for multi-focus
interaction in time-series data visualization. In Proceedings of
the IEEE Pacific Symposium on Visualization (2010), pp. 33–40.

[JE12] JAVED W., ELMQVIST N.: Exploring the design space
of composite visualization. In Proceedings of the IEEE Pacific
Symposium on Visualization (2012), pp. 1–8.

[JJKM08] JUSUFI I., JUNUZI L., KERREN A., MILRAD M.: Vi-
sualization of content and semantical relations of geonotes. In
Proceedings of the IASTED International Conference on Visual-
ization, Imaging, and Image Processing (2008), pp. 131–136.

[KAF∗08] KEIM D., ANDRIENKO G., FEKETE J.-D., GÖRG C.,
KOHLHAMMER J., MELANÇON G.: Visual analytics: Definition,
process, and challenges. In Information Visualization – Human-
Centered Issues and Perspectives (2008), Kerren A., Stasko J. T.,
Fekete J.-D., North C., (Eds.), vol. 4950 of LNCS, Springer,
pp. 154–175.

[Kei00] KEIM D. A.: Designing pixel-oriented visualization tech-
niques: Theory and applications. IEEE Transactions on Visual-
ization and Computer Graphics 6 (2000), 59–78.

[Kei02] KEIM D. A.: Information visualization and visual data
mining. IEEE Transactions on Visualization and Computer
Graphics 8, 1 (2002), 1–8.

[KK94] KEIM D. A., KRIEGEL H.-P.: VisDB: Database ex-
ploration using multidimensional visualization. IEEE Computer
Graphics and Applications 14, 5 (Sept. 1994), 40–49.

[LSS∗11] LEX A., SCHULZ H.-J., STREIT M., PARTL C.,
SCHMALSTIEG D.: VisBricks: Multiform visualization of large,
inhomogeneous data. IEEE Transactions on Visualization and
Computer Graphics 17, 12 (2011), 2291–2300.

[LWW90] LEBLANC J., WARD M. O., WITTELS N.: Exploring
N-dimensional databases. In Proceedings of the IEEE Confer-
ence on Visualization (1990), pp. 230–237.

[Mac86] MACKINLAY J.: Automating the design of graphical
presentations of relational information. ACM Transactions on
Graphics 5, 2 (Apr. 1986), 110–141.

[McK09] MCKEON M.: Harnessing the information ecosystem
with wiki-based visualization dashboards. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 1081–1088.

[MHS07] MACKINLAY J. D., HANRAHAN P., STOLTE C.: Show
me: Automatic presentation for visual analysis. IEEE Trans-
actions on Visualization and Computer Graphics 13, 6 (2007),
1137–1144.

[NCIS02] NORTH C., CONKLIN N., INDUKURI K., SAINI V.:
Visualization schemas and a web-based architecture for custom

multiple-view visualization of multiple-table databases. Informa-
tion Visualization 1, 3-4 (2002), 211–228.

[NS00] NORTH C., SHNEIDERMAN B.: Snap-together visualiza-
tion: A user interface for coodinating visualizations via relational
schemata. In Proceedings of the ACM Conference on Advanced
Visual Interfaces (2000), pp. 128–135.

[Rob07] ROBERTS J. C.: State of the art: Coordinated & multiple
views in exploratory visualization. In Proceedings of the Interna-
tional Conference on Coordinated Multiple Views in Exploratory
Visualization (2007).

[SDW09] SLINGSBY A., DYKES J., WOOD J.: Configuring hi-
erarchical layouts to address research questions. IEEE Trans-
actions on Visualization and Computer Graphics 15, 6 (2009),
977–984.

[SGL08] STASKO J. T., GÖRG C., LIU Z.: Jigsaw: supporting
investigative analysis through interactive visualization. In Pro-
ceedings of the IEEE Symposium on Visual Analytics Science and
Technology (2008), pp. 131–138.

[Shn92] SHNEIDERMAN B.: Tree visualization with tree-maps: A
2-D space-filling approach. ACM Transactions on Graphics 11,
1 (Jan. 1992), 92–99.

[Shn96] SHNEIDERMAN B.: The eyes have it: A task by data type
taxonomy for information visualizations. In Proceedings of the
IEEE Symposium on Visual Languages (1996), pp. 336–343.

[SLBC03] SWAYNE D. F., LANG D. T., BUJA A., COOK D.:
GGobi: evolving from XGobi into an extensible framework for
interactive data visualization. Computational Statistics & Data
Analysis 43, 4 (2003), 423–444.

[STH02] STOLTE C., TANG D., HANRAHAN P.: Polaris: A sys-
tem for query, analysis, and visualization of multidimensional re-
lational databases. IEEE Transactions on Visualization and Com-
puter Graphics 8, 1 (2002), 52–65.

[TFF88] TUKEY J. W., FISHERKELLER M. A., FRIEDMAN
J. H.: PRIM-9: An interactive multi-dimensional data display
and analysis system. In Dynamic Graphics for Statistics, Cleve-
land W. S., McGill M. E., (Eds.). Wadsworth & Brooks/Cole,
1988, pp. 111–120.

[TU08] THEUS M., URBANEK S.: Interactive Graphics for Data
Analysis: Principles and Examples (Computer Science and Data
Analysis). Chapman & Hall/CRC, 2008.

[Tuk77] TUKEY J. W.: Exploratory data analysis. Addison-Wes-
ley, 1977.

[VWvH∗07] VIÉGAS F. B., WATTENBERG M., VAN HAM F.,
KRISS J., MCKEON M. M.: ManyEyes: a site for visualiza-
tion at internet scale. IEEE Transactions on Visualization and
Computer Graphics 13, 6 (2007), 1121–1128.

[War94] WARD M. O.: XmdvTool: Integrating multiple methods
for visualizing multivariate data. In Proceedings of the IEEE
Conference on Visualization (1994), pp. 326–333.

[Wat05] WATTENBERG M.: Baby names visualization, and social
data analysis. In Proceedings of the IEEE Symposium on Infor-
mation Visualization (2005), pp. 1–6.

[Wea04] WEAVER C.: Building highly-coordinated visualiza-
tions in Improvise. In Proceedings of the IEEE Symposium on
Information Visualization (2004), pp. 159–166.

[YMSJ05] YI J. S., MELTON R., STASKO J., JACKO J.: Dust &
Magnet: Multivariate information visualization using a magnet
metaphor. Information Visualization 4, 4 (2005), 239–256.

[YRW07] YANG D., RUNDENSTEINER E. A., WARD M. O.:
Analysis guided visual exploration to multivariate data. In Pro-
ceedings of the IEEE Symposium on Visual Analytics Science and
Technology (2007), pp. 83–90.

submitted to COMPUTER GRAPHICS Forum (11/2012).

