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Fig. 1. Sketches for visualizing multimodal social networks developed collaboratively by social scientists and visual analytics experts. Early designs
(top) partition graphs, whereas latter ones (bottom left) use vertical bands while maintaining compatibility with node-link diagrams (bottom right).

Abstract—Social network analysis (SNA) is becoming increasingly concerned not only with actors and their relations, but also with
distinguishing between different types of such entities. For example, social scientists may want to investigate asymmetric relations
in organizations with strict chains of command, or incorporate non-actors such as conferences and projects when analyzing co-
authorship patterns. Multimodal social networks are those where actors and relations belong to different types, or modes, and
multimodal social network analysis (mSNA) is accordingly SNA for such networks. In this paper, we present a design study that
we conducted with several social scientist collaborators on how to support mSNA using visual analytics tools. Based on an open-
ended, formative design process, we devised a visual representation called parallel node-link bands (PNLBs) that splits modes into
separate bands and renders connections between adjacent ones, similar to the list view in Jigsaw. We then used the tool in a
qualitative evaluation involving five social scientists whose feedback informed a second design phase that incorporated additional
network metrics. Finally, we conducted a second qualitative evaluation with our social scientist collaborators that provided further
insights on the utility of the PNLBs representation and the potential of visual analytics for mSNA.

Index Terms—Design study, user-centered design, node-link diagrams, multimodal graphs, interaction, qualitative evaluation.

✦

1 INTRODUCTION

Social network analysis (SNA) [43] is the collective name for a family
of methods used to analyze sets of social actors connected by relations.
SNA has become increasingly important due to modern information
technologies that allow humans to connect and relate in entirely new
and easily observable ways. As a case in point, social media websites,
such as Facebook, Twitter, and LinkedIn, include hundreds of mil-
lions of users with various types of relations between them. The scale
and complexity of these massive networks put increasing demands on
software support for computation, statistics, and decision making. Vi-
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sual analytics is increasingly being used for this purpose, and several
new systems have been proposed that merge visual representations and
network statistics to aid social network analysis, including Gephi [3],
NodeXL [27, 47], GraphDice [7], TimeMatrix [54], and GUESS [1].

However, in many real-world settings, the networks consist of not
one but several different types, or modes, of nodes. Examples in-
clude co-authorship networks that contain not just authors, but also
the venues they attend and the journals they publish in; organizational
charts that contain employees as well as the departments they belong
to; and information retrieval processes that involve both databases and
the people who access them. Consequently, these multimodal (cf. uni-
modal) social networks also have multiple types of edges depending on
whether the edge is connecting nodes of the same mode (within-mode,
such as representing friendship among people) or different modes
(between-mode, such as employee affiliations with departments, or
employees accessing databases). However, while unimodal network
visualization is prevalent, as evidenced by the examples above, few
techniques exist for visualizing multimodal graphs. Further, in the
field of social science, a standard theoretical framework for analyzing
multimodal social networks, especially those that involve more than
two modes, has not yet been established.



In this paper, we present a design study on the use of visual analytics
to aid social scientists in conducting multimodal social network anal-
ysis (mSNA). Retrospectively,1 we largely follow the methodological
framework proposed by Sedlmair et al. [44]. As with any design study,
a major obstacle is often to articulate user (social scientists in our case)
needs and requirements (low task clarity [44]). To aid in this process,
we included one of our social scientist collaborators as an active par-
ticipant in the project and a co-author of this paper from its very begin-
ning. Nevertheless, this low task clarity was exacerbated by the fact
that multimodal social networks are not yet a well-established concept
even in social science, so our collaborators had a difficult time defin-
ing requirements and features. We therefore decided to conduct an
iterative design process that included (1) an initial open-ended forma-
tive phase, (2) a visualization design phase, (3) an interim qualitative
evaluation with five social scientists, (4) another design iteration in-
corporating additional analytics support, and (5) a second qualitative
evaluation with our domain experts validating our changes. Due to the
low task clarity of mSNA, our visual analytics tool—MMGRAPH—
played an interesting role throughout this process: it served not only
as a tool for answering questions that our domain experts had about
their data, but it also became a living prototype that helped them see
the potential in visual analytics and aided them in coming up with new
requests for future iterations of the tool.

Our contributions in this paper include the following: (i) charac-
terizing the problems and abstracting some potential tasks for multi-
modal social network analysis (mSNA); (ii) proposing a visual analyt-
ics tool for mSNA (MMGRAPH) refined through multiple iterations
of design and evaluation with social scientists; and (iii) sharing sev-
eral lessons learned through this iterative design process that are spe-
cific to the domain of social science and social network analysis. We
want to emphasize that this research project is a design study, and thus
clearly problem-driven and not technique-driven. Thus, even though
we ended up deriving some unique representation and interaction tech-
niques (e.g., the open-sesame interaction in Section 5.2), demonstrat-
ing the novelty of these techniques is not the emphasis of this paper.

2 BACKGROUND

Social networks are universal to the human condition. They can be
used to model our relations to friends and relatives; our connections
to groups and organizations; and the social structure of our very own
neighborhood, state, or nation. Researchers have long studied these
types of social networks using network theory and techniques through
what is collectively known as social network analysis (SNA) [34].
These techniques enable the examination of social phenomena such
as whether friendship leads to the contagion of obesity (or vice versa),
what causes radicalization and terrorist group formation in extrem-
ist communities, and the nature of user-to-user interactions on social
media platforms. Below we review cross-disciplinary research within
both social science and visualization that this work touches.

2.1 Definitions
We define a multimodal graph G as the traditional ordered pair G =
(V,E) comprised of a set of vertices V and edges E, but where ver-
tices can be partitioned using a modality equivalence relation ∼mod .
This modality relation ∼mod is defined using the notion of vertex type,
and the equivalence classes (partitions) defined by relation are called
modes. We can further define a modality relation for edges based on a
tuple of the modes of the two vertices an edge connects.

For example, consider a simple biological food chain network
where V is the set of all entities in the network, and E are their link-
ages. We can define the equivalence classes (modes), such as “plants”
(green), “prey animals” (red), “predators” (blue), and “habitats” (yel-
low), and define the modality relation ∼mod to organize vertices based
on which category they belong.

While multimodal graphs are prevalent in many domains, this paper
is primarily motivated by SNA [43]. We define multimodal social net-
work analysis (mSNA) as SNA in the presence of multimodal social

1Sedlmair et al. [44] was published after this design study started.

networks, i.e., where the social actors can be partitioned into modes
(not all of them necessarily sentient or even living). Given this def-
inition, the food chain above can be regarded as a multimodal social
network (even if “biological network” is perhaps closer at hand).

This particular example represents one type of multimodal network
where different modes represent the attributes of a single type of en-
tity (e.g., species). The relationships represent species eating other
species. Another major source of multimodal networks is multivariate
tabular data, where there are multiple types of entities that have rela-
tionships with each other, as well as attributes of those entities [39].
As the modes represent different types of entities, the types of links
also vary across different pairs of modes. For instance, in the dataset
we work with in the current paper, PIs “conduct” projects, program
managers “award” projects, and PIs “belong to” institutions.

2.2 Social Network Analysis
With the advent of communication technologies (e.g., social media
websites and collaborative knowledge tools) and large computational
platforms (e.g., sensor networks and data collection tools), a massive
amount of social network data is being collected today. Much effort
has been made to analyze such data, leading to several interesting ap-
plications of network theories to social phenomena (e.g., [25, 37]).

However, to the best of our knowledge, investigation of social net-
works has largely dealt with unimodal social networks (e.g., friendship
relations among friends and co-authorship relations among authors)
and there has been an increasing need to expand our formulation to ad-
dress relations between multiple types of nodes [14]. Such expansion
enables a wide variety of questions to be examined beyond those from
the realm of unimodal networks. For example, dynamics involving
friendship can be better explained by considering the way people par-
ticipate in events or affiliate with social organizations. Co-authorship
among authors can be better understood when looking at the projects
they work on as well as the institutions they are employed by. These
additional types of nodes may have substantial effects on the forma-
tion and dissolution of social ties, and therefore allow us to investigate
more complex social interaction among multiple types of entities.

The simplest configuration of multimodal networks is two-mode
networks that consist of two modes—also called affiliation networks
in the context of groups and members [9, 51]. A large part of exist-
ing literature on two-mode networks has dealt with bipartite graphs,
defined as a graph with nodes in two distinct sets, and links only be-
tween nodes of one set and nodes of the other [36]. These links can be
considered as between-mode ties (as opposed to within-mode ties).

A review of the relevant literature (e.g., [4, 9, 18]) suggests several
representative measures for multimodal networks:

Q1 Measures at the individual node level:

Q1a Centrality: Which nodes are central in terms of between-
mode ties? (e.g., degree centrality: which nodes in mode
A are tied to the most nodes in mode B?; betweenness cen-
trality: which nodes in mode A are most central in terms
of bridging otherwise disconnected nodes in mode B?)

Q1b Positions and roles: Which nodes occupy similar positions
and roles? (e.g., structural equivalence: which nodes in
mode A are similar in terms of their ties to nodes in B?)

Q1c Attributes: Which nodal attributes impact between-mode
ties? (e.g., how does the attribute of nodes in mode A im-
pact their ties to nodes in mode B?)

Q2 Measures at the global network level:

Q2a Density: How dense is the network, between and within
modes? (What is the number of between-mode and within-
mode links divided by the maximum number of possible
links between-mode and within-mode, respectively?)

Q2b Centralization: How centralized is the network in
between-mode ties? (Are nodes in one mode similar in
terms of number of ties they have to another mode, or are
ties unequally distributed with a few dominating nodes?)



Q2c Subgroups: Are there visible substructures in the network?
(Which nodes in mode A can be clustered based on being
connected to the same or similar nodes in mode B?)

Interpretation of these measures vary depending on the source of
multimodal data. In particular, when multimodal networks are derived
from tabular data, the nodes are of different levels or entities, and the
types of links depend on which modes are being examined, therefore
requiring a context-specific application of the measures.

So far, a standard approach to analyzing multimodal networks has
been to transform them into unimodal social networks either through
projection or through separation. For example, the ties between man-
ufacturers and users of a product are transformed (or projected) to ties
among manufacturers established in case of common users [10]. In
other cases, a manufacturer’s network and a user’s network are di-
vided and analyzed separately, or combined into a unimodal network
with the modes treated as node attributes. While these conversions are
done for simplicity as well as for utilizing existing unimodal social
network analysis (uSNA) tools, a rich set of information is lost during
this process [36]. First of all, networks produced through this trans-
formation do not represent a direct relation between actors of different
modes, but an indirect relation induced by their common affiliation to
a set of events [4]. Second, by removing one set of nodes from the data
or combining the nodes, attribute information associated with each of
the modes cannot be simultaneously considered [46].

Given these limitations, we believe that a social network analysis
tool that presents the subtleties and complexities of multimodal social
networks can help social scientists gain useful new insights about what
they would like to learn from such multimodal networks.

2.3 Multimodal Network Visualization
Our review of graph visualization [20, 21, 30] has identified only a few
studies on multimodal networks. We summarize these below:

2.3.1 Compound Network Visualization
A common approach for visualizing a multimodal graph is to treat it
as a unimodal graph, with different colors or shapes distinguishing
between types of modes and links. Such compound network visualiza-
tions are found in several visualization systems (e.g., [3, 8, 46]). How-
ever, this approach confounds all modes within the same view, and the
resulting visual complexity can be high. Many techniques have been
studied to overcome such visual complexity from large graph [50].
Despite such techniques, only certain ties or nodes can be shown at
any point in time, but this naturally results in data being omitted.

2.3.2 Eliminating Modes
Another approach eliminates modes by projecting [39] nodes based on
connections to a particular mode. This retains the connectivity struc-
ture, yet reduces the number of nodes (by mode). For example, if
authors A and B write paper X together, the ties (A-X) and (B-X) can
be merged (projected) into (A-B). While this approach can lower the
overall complexity, it comes at the cost of information loss. For ex-
ample, (A-W), (B-W), and (C-W) will have the same merged network
as (A-X), (B-X), (B-Y), (C-Y), (C-Z), and (A-Z) even though in the
former case, three authors collectively wrote a single paper, while in
the latter case, three pairs of authors wrote three different papers.

2.3.3 Linked Network Visualization
A third approach is to use multiple views, each of which renders a
different mode of the graph separately (linked network visualization).
Between-mode ties are visualized using visual links or brushing (when
nodes are selected in one view, corresponding nodes in another view
are highlighted). VisLink [13], semantic substrates [2, 45], the list
view in Jigsaw [48], and SmallWorlds [24] are examples of this idea.

More specifically, all four of these examples provide distinct planes
that can be used for different mode networks, and then show con-
nections between the planes using graphical links. However, while
VisLink views are often less cluttered than compound network visu-
alizations, the view can still be visually complex due to overlapping

between-mode and within-mode ties. When brushing is used, the clut-
ter is reduced. However, only a partial set of between-mode ties can
be shown in this case. Semantic substrates, the list view in Jigsaw, and
SmallWorlds are less cluttered, but this is mainly because they do not
show within-mode ties. When there are clear hierarchical structures
between the nodes, TreeNetViz [23], which uses a radial space-filling
visual design, is another effective method. However, not all multi-
modal networks have such an existing hierarchical structure. Finally,
the recent GraphTrail [16] tool visualizes and aggregates attributes as-
sociated with nodes and edges. The multimodal networks are called
heterogeneous networks in their work, but involve different types of
nodes and edges. However, their focus is on building visual queries
using these graphs, not on general visual analytics for mSNA.

2.4 Reducing Data and Visual Complexity
The problem of visualizing multimodal social network is similar to
“the curse of dimensionality” [6], which is a problem occurring when
multidimensional (not multimodal) data are projected onto a display.
Such projection easily generates clutter, distortion, and ensuing con-
fusion. To make matters worse, visualizing a unimodal social network
often consumes two spatial dimensions while visualizing unidimen-
sional data consumes only one spatial dimension. Thus, it is not pos-
sible to directly borrow ideas from multidimensional visualization to
address the challenges of multimodal network visualization. However,
we can draw upon lessons learned from previous work for overcoming
the curse of dimensionality. A review reveals the following strategies:

Divide and Conquer. Based on subdividing a problem into
smaller components until each component is small enough to easily
solve, this is one of the core strategies in many sub-disciplines of com-
puter science, and the same principle has been applied to visualize
multidimensional data. However, divide and conquer only visualizes a
subset of data at a time, making the global view difficult to understand.
Examples include scatterplot matrices (SPLOMs) [26], graph explo-
ration with degree-of-interest [49], and Worlds within Worlds [19].

Distortion. In order to show the overall picture more effectively,
some techniques distort the orthogonal relationships between dimen-
sions, thereby gaining compactness by sacrificing familiarity. Exam-
ples include parallel coordinates [31], star coordinates [33], and Flex-
ible LINked Axes (FLINA) [12].

Compression. When the amount of data and the number of di-
mensions surpass a certain level, the information may be drastically
compressed using meta-dimensional information to show the overview
at the cost of information loss. Examples include Principal Component
Analysis [26], multidimensional scaling [15], and Scagnostics [53].

Metaphor. When compression and distortion cause a visualiza-
tion to become difficult to understand, some metaphors that are read-
ily detectable (e.g., human faces) or understandable (e.g., a magnet
metaphor) can help users deal with the complexity. Examples include
Chernoff faces [11] and Dust & Magnet [55].

One interesting pattern common to these strategies is the trade-off
between different elements of the visualization. If one wants to show
more data or attributes either through distortion or compression strate-
gies, the resulting visualization becomes visually complex. If one
would like to lower complexity through the divide and conquer strat-
egy, the amount of data shown in a single view will decrease. The key
issue is striking a balance between these two factors.

3 OVERVIEW: VISUAL ANALYTICS FOR MSNA
The goal of this study was to support our social scientist colleagues
in performing multimodal social network analysis. For this purpose,
we recruited a social scientist with professional interests in mSNA
as an active collaborator and co-author for this project (the third co-
author A3). While existing literature presents theoretical and ana-
lytical frameworks for two-mode networks, those are yet to be fully
expanded to multimodal ones. Therefore, we decided to employ an
exploratory and user-driven design process with the following stages:

I. Early design: formative sketching, brainstorming, prototyping,
and requirements gathering;



II. Iterative tool development: progressively refining our visual
analytics tool based on domain expert feedback;

III. Formative evaluation: qualitative evaluation of our visual ana-
lytics tool with five social scientists;

IV. Iterative tool refinement: creating additional features based on
feedback from the formative evaluation; and

V. Summative evaluation: qualitative evaluation of the current
state of our visual analytics tool using domain experts.

4 PHASE I: EARLY DESIGN

The early design process consisted of brainstorming, sketching (Fig-
ure 1), and reviewing existing work in the domain. We built an early
prototype with a sample data set (NSF funding award data), so that A3
could make sense of the effectiveness of visual analytics. Based on
A3’s input, this low-fidelity prototype was a compound node-link di-
agram with color-coding to convey mode information. The prototype
supported zooming and panning as well as interactive graph layout.
Its introduction helped us derive specific and contextualized questions
that social scientists might want to answer using the tool. Some of
these questions fall within the range of research questions discussed in
Section 2.2; some do not (e.g., q5), yet add utility to the tool:

q1 Who are the most successful investigators? Which institutions
are they from? (Q1a and Q1c)

q2 Who are the collaborators of a particular investigator? Have they
collaborated on multiple projects? (Q1b and Q2c)

q3 What are the overall patterns and trends in collaboration and
funding? (Q2a, Q2b, and Q2c)

q4 Which program manager awarded most projects? (Q1a)
q5 How can I find programs with specific subjects or contents?
These questions helped prioritize features to be implemented and

worked as test cases to verify whether features have a true purpose in
designing the initial prototype. However, at the same time, these tasks
tended to be mere extensions of tasks existing for unimodal social net-
work analysis. We found that it was quite challenging for our domain
experts to come up with such questions this early in the design process.
These difficulties are further discussed in Section 9.4.

Fig. 2. Compound network visualization in MMGraph. This view is used
in parallel with the PNLBs view (Figure 3) on a second monitor.

5 PHASE II: ITERATIVE TOOL DEVELOPMENT (MMGRAPH)
Starting from our low-fidelity prototype from the early design phase
(above), we then built an initial visual analytics tool for mSNA that we
call MMGRAPH. MMGraph is a Java application built using the Pic-
colo library [5]. The tool loads multimodal graphs using the GraphML
format where a specific node attribute type is used to convey the
mode of each vertex. The initial visualization we provided was a stan-
dard compound network visualization (see Section 2.3.1) with color-
coding to visualize mode (Figure 2).

5.1 Parallel Node-Link Bands
One of our earliest findings from the iterative design process was
that the compound network visualization was not appropriate for mul-
timodal social network analysis. While it was familiar to A3, it
also caused high visual complexity and made distinguishing between
within-mode and between-mode ties difficult. Our conclusion was that
a more structured organization of the visual space was necessary.

Based on our design process (above), we therefore added2 parallel
node-link bands (PNLBs) (Figure 3) to MMGraph. PNLBs use visual
node and link marks partitioned into separate bands based on modes
to minimize visual clutter, yet which arranges the bands in parallel
to maintain cohesiveness. This design actively omits all edges except
for those between bands that have been placed adjacent to each other
on the visual space (neighboring between-mode network), which im-
proves scalability without affecting data accuracy. In other words, all
the edges between nodes within a band (within-mode network) and all
the edges between nodes that belong to non-neighboring bands (non-
neighboring between-mode network) are hidden. The bands can be
reordered to expose other between-mode networks. The technique
draws inspiration from the list view in the investigative analytics tool
Jigsaw [48], where entities of a particular type are arranged in separate
lists and relations between entities are drawn as lines connecting them.

The motivation behind this visual design is to impose structure on
the multimodal graph without sacrificing the familiar node-link repre-
sentation while organizing relations between entities in a logical man-
ner. Based on our discussion on strategies for dimensionality reduction
(Section 2.4), our approach uses a combination of divide and conquer
(not showing both within-mode and between-mode network simulta-
neously) and distortion (change the node-link layout to the parallel
node-like layout) to achieve an efficient visual representation.

Given that one of our central design requirements is to maintain fa-
miliarity for social scientists, it is worth taking a step back to evaluate
how PNLBs Correlate to standard node-link diagrams. One important
advantage in this respect is that PNLBs retain the same node-link dia-
gram format, even if the layout is different and no longer as free-form
and organic. On the other hand, this layout still follows the same basic
idea as the conventional visual layout of bipartite graphs familiar to
most social scientists. The remaining hurdle is how to communicate
the fact that PNLBs hide all edges except for those between adjacent
bands as well as those within the same band.

5.2 Design Space
We now explore the free parameters in the PNLBs design space to
fully map out the utility of the technique and support the user tasks.

Node Representation. The node representations in each band
should remain similar to those in a node-link diagram, but can be aug-
mented with additional visual variables. We use the border color for
each band to encode mode and also add the name of the mode to the
header part of the band. In addition, for multimodal graphs where tex-
tual data has been associated with some of the nodes, we provided a
word cloud popup interaction that shows a frequency-based summary
of the keywords associated with the node under the mouse cursor (Fig-
ure 4(a)). We use a simple tf-idf [32] mechanism to extract these key-
words. A related approach is to provide an ego-network popup that
instead shows the direct neighbors of the node under the mouse cur-
sor as a node-link diagram, with the node itself at the center and the
neighbors in a radial layout (Figure 4(b)).

Edge Representation. The display space between adjacent
bands is reserved for rendering the between-mode edges that span the
neighboring node bands. We use a edge representation based on di-
rect lines connecting the two closest parts of the nodes in adjacent
bands. For these between-mode networks, edge representations easily
become cluttered due to many edge crossings. Thus, clutter reduction
techniques [17], such as edge bundling [28] and illustrative parallel
coordinates [41], could be utilized. For within-mode networks, i.e.,

2This means that MMGraph has both the compound network visualization
and PNLBs, which are shown in parallel on dual displays.



Fig. 3. Parallel node-link bands (PNLBs) being used to visualize multimodal NSF funding data consisting of Institutions, PIs (and Co-PIs), Projects,
program managers (Pr-Man), NSF programs (Programs), and NSF directorates (Dir). Color glyphs inside nodes represent degree centrality.

(a) Word cloud of node contents.

(b) An ego-network popup

Fig. 4. Exploring additional visual representations for node attributes.

those that connect nodes within the same band, several design alterna-
tives exist. One approach is to use arcs—similar to arc diagrams [52]
and MatLink [29]—since the nodes reside in the same band. How-
ever, we found that these approaches make a narrow vertical band
too cluttered. Another alternative is to provide an ego-network that
only shows the within-mode network of a particular node (Figure 5),
which we implemented in MMGraph as the “within-network” view.
The within-network view is slightly different from the ego-network
popup, which shows all the neighboring nodes regardless of bands that
it belongs to without showing any edges. Though the within-network
view only shows neighboring nodes in the within-mode network, the
between-mode edges between the neighboring nodes and the nodes in
the adjacent bands are also shown. This provides additional insights,
such as “how are my collaborators associated with other projects and
institutes?” as shown in Figure 7(b).

Within-Mode Sorting. Organizing nodes within a particular band
is akin to graph layout on a single graphical axis (the vertical axis).
The order of nodes inside the stack for each band is a free parameter,

and can be controlled in several different ways (exposed to the user):
• Node attributes: The user may sort nodes based on node at-

tributes such as name, age, or income.

• Edge attributes: Edge attributes, such as time or weight, or the
number of edges to a particular node (i.e., its total degree, or its
degree within a specific mode) can be used for sorting.

• Connectivity: A common ordering is to reorder a band by its
connection to nodes in another band. We support this by a
“bring-to-top” command that reorders all bands to bring all the
neighbors of a particular node to the top of their bands.

Out of these three approaches, sorting by edge attributes, particu-
larly by between-mode centrality (implemented as “connection to the
right” or “connection to the left” in the system) could be relevant to
mSNA. These features can easily answer questions such as “Who is
the most successful grant writer? (Q1a, q1),” because it is equivalent
to finding “Which node in the PI mode has the highest degree central-
ity based on its ties to the projects mode.”

Open Sesame. To close the loop between PNLBs and parallel
coordinate plots, we propose a band extension mode where a selected
band is parted in half using an animation by invoking what we call an
“open-sesame” interaction. The parting animation then exposes a par-
allel coordinate display for multivariate data in the space between the
labels. This display would be used to represent multivariate node data,
such as time stamps, quantities, and ordinal values. Figure 3 shows
a screenshot from our implementation where the mode “Projects” has
been expanded in this way. This combination of PNLBs and parallel
coordinates, where parallel coordinates reveal attribute values inside
bands on user request, is matched with Q1c. This approach is also
more powerful than other encoding approaches because it can present
multiple attributes of nodes in a mode at the same time, and it can be
used in conjunction with existing interaction techniques developed for
parallel coordinates. For example, filtering over multiple dimensions
(e.g., time and grant amounts in Figure 3) turned out to be a powerful
way to select a set of nodes and edges out of the global network.

Additional Interaction and Navigation. Beyond the above in-
teractions, our iterative design process caused us to add several ad-
ditional interaction and navigation techniques to the MMGraph tool:
highlighting (by hovering over a node), brushing (by selecting one or
several nodes), searching (by entering queries in a text box), panning,
and zooming (inspired by TableLens [42] as shown in Figure 6).



6 PHASE III: FORMATIVE QUALITATIVE EVALUATION

As part our iterative design process, we conducted a qualitative study
to evaluate our prototype implementation for mSNA tasks.

6.1 Method
We invited five domain experts (4 graduate students and 1 faculty
member from our university’s school of communication) as study par-
ticipants. All participants had been professionally analyzing social
networks for more than one year (mean = 2.7 years). They reported
that they had experience in network data, such as Facebook friends
networks, terrorist networks, donation networks, and authorship net-
works. All of them had experience with the SNA tool UCINET [8].

An experimenter, the second author of this paper who was not
involved directly in developing the system, administered the experi-
ments for all five participants. At the beginning of each experiment,
the experimenter described the experimental procedure and tool for
ten minutes. For the next forty minutes, each participant was asked to
use the tool to answer four mSNA tasks which are explained in Sec-
tion 6.3. During the task, each participant was encouraged to think
aloud. The experimenter also engaged participants in conversation by
asking questions. After a participant completed all the tasks, the ex-
perimenter interviewed the participant about the experiment and the
tool for ten minutes. We collected audio and screen recordings of the
experiments. Each experiment lasted around one hour.

6.2 Dataset
Because of its general interest to scientists in the United States, we
decided to use a multimodal dataset derived from funding data from
the U.S. National Science Foundation (NSF). NSF provides a publicly
available database of awarded grants that dates back several decades.
The NSF award search3 allows for advanced queries and saving search
results as tabular data. Using this tabular data as source, we built a
multimodal graph using a process similar to Liu et al. [39], and stored
it as GraphML with a node attribute encoding the mode.

Since the entire NSF funding dataset is large in size (some 330,000
awards), we narrowed it down by specifying the awardee organization
as Purdue University and awarded years as 2003 to 2012. Despite only
selecting Purdue, the dataset includes a total of 95 institutions because
many projects have external partners. Our final dataset includes six
modes: 315 projects, 205 programs, 507 PIs and co-PIs (PIs hence-
forth), 95 institutions, 160 program managers (Pr-Man), and 9 direc-
torates (henceforth Dir). We merged PIs and Co-PIs into a single mode
(PI) to avoid duplicating individuals. This also yielded a within-mode
network that connected investigators with their collaborators.

The NSF dataset is organized as follows: A PI is affiliated with one
or more institutions. A PI collaborates with zero or more PIs (this is
the only within-mode network in this NSF dataset). A PI is involved
in one or more projects. Each project is awarded by one program
manager (Pr-Man). Each project belongs to one or more programs.
A program manager belongs to one or more programs. A program
belongs to a directorate (Dir).

3http://www.nsf.gov/awardsearch/

Fig. 5. Within-mode network view for studying relations inside a band.

Fig. 6. Data abstraction mode inspired by the TableLens [42].

6.3 Tasks
The tasks in the experiment included the following questions:

T1 Who is the most successful PI in terms of number of awards?
T2 Are there PIs who have been awarded several grants together?
T3 Do some program managers often award grants to the same PIs?
T4 Which are projects that have been awarded more than $70M, and

what are their commonalities?
While some of these tasks could certainly be solved using compu-

tational means, perhaps even more efficiently than using visual analyt-
ics, we wanted to include a broad spectrum of tasks to reflect how an
mSNA tool is used in realistic settings. Even though we are strong be-
lievers in visual analytics augmenting existing (computational) tools,
it is also true that switching to another application in mid-analysis may
break the user’s flow. For this reason, our tasks were motivated by the
graph task taxonomy proposed by Lee et al [38]. Thus, task T1 could
be answered by analyzing the between-mode network between PI and
Project, whereas T2 required analyzing the within-mode network of
the PI mode. To answer T3, participants would have to connect the in-
direct relationship between Program Manager and PI. Finally, T4 was
an open-ended task that required participants to delve into network
data by formulating their own hypotheses and testing them using the
visual analytics tool. Based on our argument above, we started from
basic tasks (T1 and T2) that could be answered with a simple inter-
action, and gradually exposed participants to more difficult tasks. We
also let participants pursue any interesting serendipitous observations
found throughout the analysis process and report on their findings.

6.4 Results
In general, participants successfully completed all tasks. T1 and
T2 were completed without major problems, and using similar ap-
proaches. To complete T1, participants sorted the PIs mode by connec-
tion to the Projects mode (the degree centrality of the between-mode
network between the PI and Project modes), which shows that Kevin
Webb (a professor of electrical and computer engineering) has seven
projects (Figure 7(a)). T2 does not have a definite answer, but partici-
pants found that they could sort the PIs mode by within-mode connec-
tions (sort by the degree within a specific mode) to find PIs who have
high collaborations with others and check whether some of them were
repeated collaborators using the within-network view (Figure 7(b)).

In contrast, participants’ approaches varied when solving T3. Some
used brushing to see the relationship between PIs, Projects, and Pro-
gram Manager to see if there were any common occurrences over mul-
tiple projects. Others simply used ego-networks to see if the same pair
of PI and program manager appeared at the same time.

Since T4 is a more open-ended task, the usages of PNLBs were
more diverse. Initially, all the participants successfully used the open-
sesame interaction to find the project awarded more than $70M (see
Figure 7(c)). Subsequently, some used word clouds over projects; oth-
ers moved all of the associated PIs and program managers to the top
of the band to see their relationships. Some even investigated beyond
the specific scope of T4 and searched for what other projects the PIs of
the 70 million-dollar project have worked on and explored that data.

All participants stated that they preferred the PNLBs view over the
compound view for virtually all mSNA tasks. In particular, they liked



(a) PIs sorted by projects. (b) The within-network of a PI node. (c) Open-sesame for project amounts.

Fig. 7. Screenshots of the PNLBs view highlighting several user interactions during the user study.

the idea of “dissecting complicated datasets into multiple bimodal
sets,” so that they could focus on two adjacent bands at a time. They
noted that this tool was easy to use for first-time users, and that it took
less than an hour to be proficient at using it. One participant also stated
that “patterns and insights found in this view are more digestible due
to its structure [than the compound network visualization].” However,
several participants stressed that having the mutually interlinked com-
pound and PNLBs views allowed for transferring details from multi-
modal networks to the network overview and vice versa.

Participants also felt that some functions in the PNLBs view were
particularly helpful for mSNA tasks. For example, they all seemed to
enjoy how interactions often brought about new hypotheses and easily
supported exploring them. One participant used the open-sesame in-
teraction to determine the project with the largest grant amount. She
then used the word cloud to view the details of that project. This
made her curious if other projects with similar keywords had been
awarded. She queried the keyword and found another project, and
viewed the ego-network of that project. Several PIs were common to
both projects, and the participant then viewed their within-network.
She wondered if these projects were granted by the same program
manager, and so brought all their program managers within view. Such
long sequences of actions were well-supported by our tool, something
which the participants informed us that they appreciated.

7 PHASE IV: ITERATIVE MMGRAPH REFINEMENT

The purpose of our formative evaluation was to evoke feedback on the
MMGRAPH tool, which to that point had only been guided by A3,
our social scientist co-author. Below we review this feedback and then
discuss the concrete changes we made to MMGraph in response.

7.1 Formative Feedback

All participants expressed a desire to be able to use the tool with their
own social networks, such as authorship networks, donation networks,
terrorist networks, and organizational networks. One participant, who
has an interest in terrorist networks, believed that the tool could be
helpful for finding patterns in terrorist networks by studying the rela-
tionship between sponsors, operators, and cell leaders. Another par-
ticipant, who studies donation networks, stated that the tool could be
used to identify whom she should target for raising certain types of
donations by analyzing previous interactions. She hoped to use open-
sesame interaction to view the key characteristics of potential donors.

A few weaknesses of the PNLBs view were also uncovered. Some
participants disliked the fact that the compound network visualization
was underused, and some wanted to use the view as a canvas where
they could filter out the nodes they did not want to study. Others pro-
posed clustering the nodes in the compound view based on the pro-
jected network or other network metrics. Most participants wanted
to be able to see connections beyond the most adjacent modes in the
PNLBs view. They wanted to have an ego-network starting from a
node in one band to all nodes in all bands, which would provide a
summary for a particular node of interest. They also proposed stream-

lining the interface by replacing menus with toolbars and dialog boxes
to make the exploration faster, more effortless, and more discoverable.

Perhaps the most significant feedback, echoed by several partici-
pants, was requests for integrating traditional network metrics into the
tool. In other words, if MMGraph to that point had emphasized visual
aspects of multimodal graphs, this feedback effectively highlighted the
need for computational metrics and analytics components in the tool.

7.2 MMGraph Refinements
We participant feedback to make additional improvements to MM-
Graph, including several user interface and interaction refinements.
Participants also noted that the node representation could be utilized
to visualize particular network and data attributes. We implemented
this new feature as water-level color glyphs (Figure 8). User-selected
attribute values are normalized and used to fill the node.

Fig. 8. Water-level color glyphs representing a node value.

Beyond such minor changes, the most significant feature we added
during this second development phase was the ability to order, filter,
and visualize nodes based on network metrics. Of course, the fact that
most of these metrics are defined for unimodal and not multimodal
networks meant that we had to derive these definitions ourselves:

• Multimodal degree centrality: the number of edges for a vertex
that connect other vertices either within the same mode (within-
mode degree centrality), or to vertices only in other modes
(between-mode degree centrality). Can also be defined for a spe-
cific mode, i.e., the degree centrality for a vertex to mode A.

This is a measure for how well-connected a vertex is to vertices
in one or more modes in the multimodal network.

• Multimodal betweenness centrality: the multimodal between-
ness centrality of a vertex in one mode is equal to the number of
shortest paths from all vertices to all others in other modes that
pass through that vertex. Can also be defined for specific modes.

The measure captures how important a vertex is in connecting
vertices in other modes. For example, in a co-authorship net-
work, papers with high multimodal betweenness centrality con-
nects many authors who otherwise have not collaborated.

• Multimodal closeness centrality: the sum of the shortest paths
from a certain vertex in one mode to all the other vertices in other
modes. Again, can be similarly defined for specific modes.

This measure should be interpreted as the distance of the vertex
to all other vertices in their modes. For example, in a database-
user network, a database with low closeness centrality would
quickly disseminate information to all users.



8 PHASE V: SUMMATIVE QUALITATIVE EVALUATION

Finally, to validate our improvements and new analytics capabilities
in MMGraph, we conducted a second qualitative evaluation. We used
the same NSF dataset as in the previous evaluation (Section 6.2).

8.1 Method
We recruited three domain experts: one faculty member (P1) and two
graduate students (P2 and P3) from the same school of Communica-
tion to learn how our improved MMGraph supported mSNA. P1 had
also participated in the previous formative qualitative evaluation, but
P2 and P3 had never seen MMGraph before. Instead of providing pre-
created tasks as in Section 6.3, in this phase, we allowed participants
to freely study the NSF network, generate questions, and solve them
using MMGraph. The purpose for this phase was to observe how the
newly added features (the node attribute visualization in Figure 8 and
additional multimodal network metrics) were used and, more impor-
tantly, what kinds of other tasks participants would like to perform.

8.2 Results
Overall, all participants successfully understood how to use the tool,
did not encounter major problems, and were positive about its capabil-
ities. The open-ended evaluation design worked well; all participants
used the tool to come up with interesting network questions. In fact,
this allowed us to both validate MMGraph’s new features introduced
in Phase IV as well as continue to study its general utility for mSNA.

8.2.1 Validation of New Features
The newly added multimodal network metrics (Section 7.2) were ap-
preciated by our participants. For example, P2 wanted to determine
the researcher at Purdue University who had been awarded the most
NSF grants with PIs from other institutions. The participant found the
answer by sorting the PI band by multimodal betweenness centrality.
Similarly, P3 wanted to find program managers who provide grants to
the largest number of PIs, or, in other words, program manager who
accepted a variety of different PIs. Again, sorting program managers
by multimodal betweenness centrality with respect to PI yielded this
information. A participant noted that sorting a band by centrality mea-
sures can show how closeness, betweenness, or degree can impact the
tie density to other bands using MMGraph.

The fact that MMGraph now also encodes other node attributes
(such as funding dates) using color glyphs also helped participants
quickly make sense of the dataset and generate interesting questions
to explore further. Earlier in the session, P1 found that a certain ro-
tating program manager had awarded grants to more than 10 different
projects in the participant’s own research area. This was an entirely
new insight for P1, and the participant was curious about the availabil-
ity of the program manager since such rotating program managers tend
to stay no longer than a few years. Surveying the node attributes, the
participant performed the open- sesame interaction to see which dates
the grants had been awarded by the particular program manager. It
turned out that the program manager had granted all those projects in
2008 and 2009. This led the participant to conclude that the program
manager had finished his or her tenure at the NSF, and was likely not
a good contact for future grant proposals.

8.2.2 Impacts of MMGraph on mSNA
Beyond validating the new features added to MMGraph, we were also
able to more clearly observe how MMGraph impacts mSNA. Our par-
ticipants articulated this more clearly in this phase probably because
we did not give specific tasks here. Particularly, we had an interest-
ing discussion with P1, who mentioned that a social network analyst
often starts his or her investigation with a particular node instead of
the whole network. The node is selected based on various network
metrics, such as centrality. After learning about the node, the analyst
gradually expands the scope of investigation to connected nodes.

In contrast, in our evaluation sessions, participants demonstrated
that they conducted a more structured, step-by-step investigation as
follows: First, participants used using PNLBs to gain an overview
of the between-mode relationships across all modes. The overview

led participants to successfully exclude uninteresting between-mode
networks (e.g., having a low number of edges drawn between the
two modes). Second, after the overview, participants investigated the
mode-to-mode relationships instead of delving into a single node. Us-
ing multimodal social network metrics, participants were able to sort a
band of interest and understand the correlation between the band with
others. Participants were also able to easily investigate the correlation
between the within-mode network of one mode and the between-mode
network with another mode. Third, after finding an interesting phe-
nomenon between modes, participants investigated details of interest-
ing nodes by using the open-sesame interaction and/or the popup view
for word clouds. These three steps were repeated iteratively through-
out the mSNA process.

9 DISCUSSION

Our two qualitative evaluations raised many interesting points and in-
sights; we highlight the important ones below.

9.1 Benefits of PNLBs on mSNA
Throughout the design study, we learned that MMGraph provides sev-
eral benefits over common mSNA approaches (e.g., the compound net-
work visualization and network metrics).

First, MMGraph, especially PNLBs, provides an effective structure
for mSNA, which cannot be supported by compound network visual-
ization. We believe that compound network visualizations contain too
much information in a single view without proper abstraction. This
complexity hampers social scientists from seeing the big picture, and
may lead them to focus on an individual node at the outset of the inves-
tigation. In contrast, the mode-by-mode division provided by PNLBs
seems to be a proper external representation that social scientists can
easily understand and work with. The zoomed-out view of PNLBs
worked as a useful overview of the whole multimodal network data
despite not readily providing within-mode ties. Participants also ef-
fectively focused on mode-to-mode relationships. This finding is con-
sistent with the lesson in our previous study [35], where an explicit
visualization of temporal data changes the investigative analysis pro-
cess to become more of a top-down process rather than bottom-up.

Second, tight integration between network metrics and visual rep-
resentation provides a seamless train of analysis. As shown in the
two evaluation studies, participants appreciated that various network
metrics are used for ordering and encoding through glyphs instead of
being simply presented as a list of numbers. We believe that this tight
integration allowed our participants to iteratively ask questions and an-
swer them immediately, using that insight in their next question. Such
train of analysis could be easily broken if one has to export data in
order to run statistical tests in a separate program.

9.2 Divide-and-Conquer and Details-On-Demand
The design strategy used for PNLBs is based on the divide-and-
conquer approach (see Section 2.4) as well as showing relations on
demand. We intended to minimize visual clutter and complexity, yet it
forced users to perform mSNA tasks more efficiently.

We chose the between-mode network as the dominant visualization
for PNLBs because our investigation revealed that between-mode net-
works tended to be most interesting to social scientists. During the
evaluation sessions (Phase III and V), we learned that research ques-
tions are often related to finding nodes in a mode that play a central
role in certain events (e.g., donations, terrorist plot, and idea genera-
tion), which could be answered by dissecting the multimodal network
into bimodal networks and analyzing them separately.

In addition, to satisfy the needs for further investigation, we de-
signed the PNLBs view to show the within-mode network and other
node attribute information on demand. Since representations for the
between-mode ties and bands already occupy the whole display, we
devised an option to let the user view the within-mode network of each
node as the within-network view (Figure 5). While using the within-
mode network view, users could still preserve the overview of the com-
pound network visualization and PNLBs. Beyond the within-network
popup, we provide multivariate node attributes using a dynamically



activated parallel coordinate view using the open-sesame interaction
only at the explicit request of the user (Figure 7(c)).

Some may argue that such a discontinuous analysis path may harm
users because they cannot see the overall picture all at once. However,
in our evaluations, we found that this step-by-step approach seemed
well-suited to how our users performed the sensemaking task. As par-
ticipants revealed in their comments, the compound network visual-
ization easily became too busy when the number of nodes and edges
increase. PNLBs, on the other hand, force users to view networks par-
titioned into modes by revealing only a limited amount of connectivity
information at a time. Starting from this very structured representa-
tion, users can progressively unlock new information on-demand using
interaction, enabling a progressive refinement of the analysis [22].

9.3 mSNA Tasks

Throughout this design study, we gradually learned more about what
kinds of tasks social scientists would like to perform during mSNA.
Many tasks came from observations of how participants explored and
learned about the provided NSF data using MMGraph. Other tasks
were captured from the discussion regarding their own data and how
they would analyze their data using MMGraph. While the following
list is not exhaustive, it is an initial set of tasks for mSNA, which may
contribute to increase task clarity in mSNA. Note that this list does not
not include common tasks that are also found in unimodal SNA (e.g.,
seeing the distribution of a network metric over a particular mode), and
the design of MMGraph may bias the kinds of tasks that we elicited:

• Identify a node with an extreme network metric w.r.t. another
mode (e.g., in a media network with media, words, and readers
as modes, P3 wanted to find the most central medium, word, and
reader with respect to each other).

• Correlate within-mode and between-mode network (e.g., in the
NSF dataset, participants were curious whether a successful
collaboration (within-mode network) repeated on other projects
(between-mode network)).

• Correlate attributes and between-mode network (e.g., in a
Wikipedia edit network with authors, edits, and discussions as
modes, P2 wanted to view correlation between the edit date (at-
tribute) and the edit counts from a group of authors (between-
mode network)).

• Correlate attributes and within-mode network (e.g., in a univer-
sity student network, P2 wanted to view correlation of cultural
background of students (attribute) with their friendships (within-
mode network)).

Together with unimodal graph tasks [38], these are the types of
tasks that visual analytics tools for mSNA should support.

9.4 Visual Analytics Studies with Social Scientists

We here discuss problems that our social science collaborators encoun-
tered while working with visualization researchers on this project. By
their nature, visualization researchers tend to be technique-driven and
are eager to come up with novel visualizations. This makes it diffi-
cult for domain experts to emphasize the problems to be solved. We
found that some ideas originating from our social scientist collabora-
tors tended to be inadvertently discouraged or downplayed by the vi-
sualization researchers in the team simply because they were not novel
enough (from a visualization viewpoint) or too complex to implement.

Furthermore, the analysis of social network data in social science
fields is usually driven by established theories. In this sense, the
exploratory analysis of data supported by visual analytics yielded a
radically different approach to sensemaking than traditional methods,
which caused some difficulties to bridge. Lastly, initial paper proto-
types may not be sufficient for social scientists to fully understand the
significance and potential of a technique. We found that our social sci-
entist colleagues were best able to understand when confronted by a
concrete visualization (e.g., PNLBs) with a specific context (e.g., the
NSF multimodal dataset) as Lloyd and Dykes [40] suggest.

10 CONCLUSIONS

We have presented a design study on applying visual analytics to mul-
timodal social network analysis (mSNA). Our study, which involves
a social scientist at the outset and was methodically conducted in
five phases that each fed the next, involved initial early design, it-
erative tool development, a formative evaluation, a second iterative
development phase, and a final summative evaluation. The resulting
MMGraph tool combines both a compound network visualization as
well as a view using a visualization technique called parallel node-
link bands (PNLBs). Through the iterative design processes, we not
only refined MMGraph but also learned what kinds of tasks social sci-
entists would like to conduct while analyzing a multimodal network.
We also learned the effectiveness of divide-and-conquer and details-
on-demand in designing an effective tool for social scientists.

10.1 Limitations
Obviously, the PNLBs technique is not universally effective. Even
though our evaluation studies show that the abstraction used in PNLBs
is well accepted by our research participants (see Section 9.2), PNLBs
may not effectively support mSNA in the following conditions: (1)
when multiple combinations of between-mode networks should be
considered (PNLBs basically support multiple bimodal, or pair-wise,
network analysis instead of true multimodal network analysis); (2)
when complex multimodal networks configurations where modes
overlap each other or have hierarchical relationships (TreeNetViz [23]
and its variations would be more effective in this case); and (3) when
the size of a network is too large (an abstraction above individual nodes
and edges should be provided in this case).

In addition, there may some limitations in our evaluation studies,
such as a small number of research participants and a lack of diversity
in used datasets. Further longitudinal studies with more research par-
ticipants and user domain data would be necessary, using the results
from our studies as a starting point and guiding example.

10.2 Future Work
The visual analytics tools and techniques designed in this design study
are only a small group of methods specifically designed for such tasks,
and we think that the space is wide open for further work. For ex-
ample, multimodal networks often represent affiliation ties and social
circles, which provide conditions for future connections. In this sense,
visual analytics of longitudinal multimodal networks can expand our
understanding of network dynamics. In addition, additional user stud-
ies with their own domain datasets would deepen our understanding of
what kinds of tasks that they would like to conduct while dealing with
multimodal network analysis.
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