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Abstract

In this paper, we propose a novel pipeline for semi-
supervised behavioral coding of videos of users testing a
device or interface, with an eye toward human-computer
interaction evaluation for virtual reality. Our system
applies existing statistical techniques for time-series clas-
sification, including e-divisive change point detection
and “Symbolic Aggregate approXimation” (SAX) with
agglomerative hierarchical clustering, to 3D pose teleme-
try data. These techniques create classes of short seg-
ments of single-person video data–short actions of poten-
tial interest called “micro-gestures.” A long short-term
memory (LSTM) layer then learns these micro-gestures
from pose features generated purely from video via a pre-
trained OpenPose convolutional neural network (CNN)
to predict their occurrence in unlabeled test videos. We
present and discuss the results from testing our system on
the single user pose videos of the CMU Panoptic Dataset.

1. Introduction
With the exception of frameworks such as GOMS [3],

there are few general theoretical models for discover-
ing user-driven actions in human-computer interaction
(HCI) that are applicable to virtual reality (VR) systems
while also being sufficiently sophisticated to enable for-
mal verification. Formal models for evaluating interac-
tion have typically focused on specific classes of actions,
such as steering [31], pointing [19], object pursuit [17],
arm fatigue [11, 18], or some combination of these [5].
Often, these models are intended to highlight features
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of interaction that could have adverse effects on user
experience [11, 18, 27], or are intended to predict pre-
defined actions even when sufficiently sophisticated for
highly accurate gesture prediction and validation (e.g.,
KeyTime [15]).

As a result of this specialization in models, validat-
ing a new technique, innovation, or system in HCI of-
ten leaves empirical evaluation as the only available re-
course. In this context, models for discovering novel
user-driven actions—i.e., interactions not anticipated by
the researcher—are virtually nonexistent. It is not uncom-
mon that such empirical evaluation reduces to system-
atically observing and coding video recordings of users
engaging with the interactive system. This is particularly
true for VR systems, where the interaction to be evalu-
ated may involve the user’s whole body. However, such
coding is generally costly, time-consuming, and prone
to inconsistencies [14]. Furthermore, it often requires
multiple coders agreeing on and calibrating a common
code book. Finally, the very nature of this process in-
jects subjective biases that make the experiment results
difficult to reproduce [23].

To address this issue, we propose a semi-automated
computer vision system for behavioral coding of videos
that will make the process of discovering full-body user
gestures more robust and scalable. Existing systems and
action recognition studies tend to focus on actions that
are familiar and meaningful in a larger range of contexts
such as walking, running, eating, opening the fridge.
These studies are able to take advantage of large amounts
of publicly-available video data, but these datasets are
not typically applicable to usability testing of a novel
VR system. In VR, users perform specialized actions
to interact with objects in the virtual environment using
a custom interface. The actions may take the form of
moving parts of the body in a non-generalizable way
such as swinging arms diagonally, or tilting their head.
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These actions do not necessarily map perfectly to real-
world scenarios that may be assigned semantic labels in
existing video datasets.

In our scenario, researchers might be more interested
in outlier actions and want to manually filter out certain
actions indicative of bugs in the system in unlabeled
videos. In this paper, we propose a semi-automated
pipeline that segments videos into potential actions of
interest (AOI) and indicates these in unlabeled videos to
make full-body gesture discovery faster, more scalable,
and easier to reproduce. We draw from the disciplines
of computational statistics and signal processing, Our
approach makes use of data that is less computationally
costly to evaluate than video data—such as depth, au-
dio, tracked marker positions, and so on—for efficient
identification of AOIs, and synchronizes it with video
data for validation at the end of the pipeline. We believe
that our approach is well-suited to most contemporary
VR devices, which rely on sensors and cameras to detect
the positions of the user’s controllers and head-mounted
display (HMD). In a user study involving the collection
of video data, this ground truth can be used for video
segmentation.

Our pipeline can be used by HCI researchers who can
collect video and telemetry data capturing users during
sessions in which the user explores the virtual environ-
ment. After all user data has been collected, telemetry
data is segmented, and then segments are clustered into
micro-gesture classes, using a set of statistical methods
described in Section 3. Video data is temporally labeled
with gesture codes based on telemetry segmentation, and
predicting these gestures becomes the training/testing
target of our neural network architecture. While our
results leave some room for improvement, we believe
that—given the lack of a semantic ground truth—our
model performs with reasonably high accuracy relative
to the current state of the art in action discovery.

2. Related Work

Our system draws from prior work in behavioral cod-
ing, and action classification from video. Prior research
in behavioral coding illustrates what would need to be
done to approach the envisioned pipeline as in Figure 1
and work on unsupervised action detection and classifi-
cation suggests a method for achieving it.

2.1. Deep Learning Models for Human Poses

Considerable prior research has explored the topic of
human pose estimation using deep learning in single-
person single camera [32], multi-person single cam-
era, and multi-person multi-camera settings [2, 4]. Re-
cent work includes top-down approaches using a 2-stage
pipeline with a CNN for frame-level pose prediction fol-

lowed by a matching algorithm to efficiently link the
predictions to specific people [2, 4, 25, 29]. The CNN
itself can use a 3D mask as in Girdhar et al. [4] to in-
corporate temporal data for more robust prediction. In
our project, we use the pretrained OpenPose model [2]
to jointly detect human body, hand, and facial keypoints
(in total 135 keypoints) on single frames.

Walker et al. tried to address the video forecasting
problem by taking advantage of the strengths of Varia-
tional Autoencoders (VAEs) and GANS [28]. Instead of
solving this forecasting problem directly in the pixel-level
space, this paper projects the problem into the human-
pose space through the human-pose estimation. Our
project is similar to their approach in that we also try to
address the action classification problem in the human-
pose space, instead of classifying actions directly from
videos.

2.2. Behavioral Coding

Coding behavioral events in video is common research
practise in HCI and other fields, often those related to the
social sciences [24]. It is largely performed in three steps.
First, a coding scheme that describes the categories of
actions has to be created via a bottom-up, top-down [30],
or a hybrid approach. In a bottom-up approach the themes
for the actions emerge from the data itself and are agreed
upon by the coders after watching and rewatching of
the videos. In a top-down approach, labels emerge from
the theoretical literature on human gestures. The second
step would be to train some number of coders which
takes an amount of time proportional to the complexity
of the videos. The final step is to actually label the videos
and ensure that the coders are able to label videos in
a consistent way which is measured by an agreement
metric such as Cohen’s Kappa [9]. The codebook might
be rewritten in iterations during this process.

Several existing tools have been built to support the
video coding process, particularly to help with coder
training and video labeling in a systematic way. For ex-
ample, ANVIL, Datavyu [26], VACA [1], and VCode [7].
There have also been systems in the past that have lever-
aged crowdworkers instead in the codebook creation and
video labeling process [14].

In our system, we implement a hybrid approach in
which an unsupervised clustering mechanism groups ac-
tions in the data by a measure of similarity related to
change in pose. A human in the loop can then use knowl-
edge of theory to select potential AOI, either though ex-
pected actions or outlier detection. The action detection
and label assignment process in our pipeline, however, is
completely automated via an action classification model.



2.3. Unsupervised Video Summarization

Summarization models are probably closer to our ob-
jective than any other, but our target is the narrow context
of HCI researchers discovering new actions based on
user interactions in systems using 3-dimensional body
motion and gestures, and reducing the computational cost
of model training is a high priority. Mahasseni et al. [20]
take what might be considered the most contemporary
approach to detecting events in video for summarization
by using generative adversarial networks (GANs) to de-
tect keyframes—frames marking the end or beginning
of transitions in motion—in high-resolution video. In
their model, the generative network (summarizer) cre-
ates a summary of a longer video in order to trick the
discriminator, and the discriminator network is trained
to discriminate between the summarizer and the human-
summarized video. They use the SumMe dataset, which
has short, human-made summaries for a corresponding
set of longer videos (1 to 6 minutes in length) [6].

The use of keyframes itself is not a new idea. In fact,
as an alternative approach to detecting keyframes, the
study that originated the SumMe benchmark dataset used
by Mahasseni et al. [20], Gygli et al. [6] draw from video
editing theory in proposing Superframe segmentation,
a technique that cuts video into arbitrary segments and
then shifts the the cuts to neighboring frames with the
least motion, as part of a video summarization pipeline.
Following segmentation, they evaluate numerous other
features of the video—including attention, color, con-
trast, edge distribution, and object detection (people
and landmarks)—and then calculate an “interestingness”
score. The interestingness of a segment must meet a pre-
defined threshold in order to be cut into the output of the
model, which concatenates the most interesting segments
of the video into a short summary.

3. Methodology
Figure 1 shows the overall pipeline for our system.

The videos in our dataset have synchronized 3D pose
data available that will be used in the training phase. The
output of this part of the pipeline is a list of pseudo-
ground-truth labels for a selection of “micro-gestures”
detected in this 3D data which act as our AOI.

1. Clustering Phase: The synchronized 3D pose data
is converted to features indicating temporal variance
using e-divisive change-point detection followed by
SAX edit distance matrix transformation. A hierar-
chical clustering method is then used to group these
features into clusters that indicate similar video seg-
ments. A researcher can then be presented with a
display of the identified video segment groups to
check for qualitative similarity and a set of potential
AOI.

Figure 1: Our overall pipeline.

Figure 2: Subject joint angles.

2. Training Phase: The AOI video segments act as
training data for the following LSTM network. The
input frames are converted into pose feature vec-
tors using a pre-trained CNN and the output of the
LSTM is an action label for this input frame.

3. Testing Phase: In the testing phase we only use the
unlabeled video to predict an action label for every
frame. The ground truth for these is the output from
the hierarchical clustering.

3.1. Statistical methods

We exploit the spatio-temporal continuity of the hu-
man body by using sensor data tracking human joint
positions to temporally segment full-length video into
short (less than 15 seconds) micro-gestures. Before be-
ginning the process, we select eleven angles (θ ) between
15 joints from the CMU Panoptic dataset (Figure 2).

3.1.1 Joint Angle Segmentation

Matteson and James [21] originate the e-divisive method
for detecting changes in the mean of multivariate time
series: Estimated temporal divergence measure for any
two joints θ X ,θY ε IRd is given by Equation 1,



Figure 3: Example of joint angle time series segmented
based on change point estimates (τ̂k).
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Then the locations of change points (τ) can be esti-
mated as shown in Equation 4.

(τ̂, κ̂) = argmax
τ̂,κ̂

Q̂(θ X
n ,θY

m ;α) (4)

In Figure 3, these change points are shown as red
vertical lines laid over the time series representation of
θ1 from Figure 2. This can be generalized to any number
of variables.

3.1.2 Symbolic Representation

Once the time series representation of the human joint
angles have been segmented based on change points,
we transform the segments into strings to derive an edit
distance matrix of the symbolic representations of each
segment, reduced to a constant number of observations
(or “characters”). Lin et al. [16] introduce this method of
string representation for time series clustering, known as
SAX, as being performed in the following steps:

1. Normalize the segment around a mean of zero.

2. Piecewise Aggregate Approximation (PAA) [13]:
Convert a series x of length n to series x̄ of N dimen-
sions as shown in Equation 5.

x̄i =
N
n

N
n i

∑
j=N

n (i−1)+1

x j (5)

Figure 4: SAX: PAA-converted, z-normalized, character
representation of θ2 for a single segment determined by
change points estimated by e-divisive.

This effectively stretches or squashes all of the
micro-gesture joint angle segments to the same
length.

3. Symbolic representation: Given a series segment
converted to a specified length N with normal dis-
tribution around zero, assign letters to values along
the segment (Figure 4).

4. Derive the edit distance matrix. We use Lev-
enshtein edit distances: The lowest number of
transformations—character insertion, substitution,
or deletion—required to turn one word into another.

We modify this approach somewhat by padding our
segments with their surrounding neighbors: Each micro-
gesture Gt is grouped with the segments Gt−1 and Gt+1
prior to applying the first step of the above process. At the
end of the clustering process described in Section 3.1.3,
the micro-gesture label is only assigned to segment Gt .

3.1.3 Semi-Supervised Clustering

We create clusters from the edit distance matrix created
from the process described in Section 3.1.2 by applying
a fast iterative agglomerative clustering algorithm imple-
mented by Müllner [22]: Individual nodes are grouped
together with their nearest neighbor, values are stored for
the group, and the next nearest neighbors are grouped to-
gether, iterating until all nodes are in one group. For this
paper, the number of clusters is determined by the frame
rate and the length of the video: k = T /fps2, where T
is the total number of frames in the tracking data; in this
case, k̄ = 166.

Figure 5 represents the clusters used in this paper,
given arbitrary labels G1,2,...,166 (not shown). The human-



Figure 5: fastcluster method, with hierarchical tree cut at
depth of k = 166.

in-the-loop comes into play at this stage in two ways:
First, the researcher must determine k; second, the re-
searcher must select a subset of videos to train. In ap-
plication, the HCI researcher could, at this point, view
samples of all micro-gestures by cluster, select the groups
that constitute their AOI to be trained on, and walk away
from the model.

For this paper, we simply select the ten most fre-
quently observed micro-gestures across all videos. Prior
to initiating model training, it is also worth noting that
extra frames are at the end of a segment

Once the researcher chooses a subset of gesture
classes, a randomly selected sample of 70% of all micro-
gesture segments with a label in the set of AOI is marked
for training, the remaining 30% is marked for testing, and
a proportionally equivalent random selection of micro-
gestures without labels in the chosen set are selected for
training and testing as well. We take this approach be-
cause our experiment involves comparing models trained
with a no-gesture class in the target vector (a detector)
against models trained which simply does not count no-
gesture frames in its target vector. This approach is de-
scribed in greater detail in Section 4.

3.2. Deep Learning Network

Given the labels generated by the statistical methods
discussed in Section 3.1, we train a deep learning model
to recognize an action from videos. A naive approach
would be to recognize an action by giving a raw video
directly to the model. This approach, however, would
make this action classification problem intractable, as it
induces huge computations costs to solve the problem in
a pixel-level space. Instead, we first project this classifi-
cation problem into a human-pose-level space by getting
human pose data through a CNN and then use a LSTM
network architecture [8] to recognize an action given
a sequence of human poses, which is similar to prior
work [28]. As noted by Walker et al. [28], projecting this
problem into a human-pose space would reduce the prob-
lem complexity as it reduces the computation costs in the
deep learning model. Our deep learning architecture is
shown in Figure 6.

3.2.1 OpenPose CNN

To obtain human pose data from an image, we utilize
the OpenPose CNN model [2]. In this model, a human

Figure 6: Our deep learning architecture: Input images
are given to the pre-trained OpenPose CNN, the images
and joint positions are given to a LSTM unit trained to
predict the labels assigned (as described in Section 3.1),
and the LSTM remembers and forgets input and output
information from previous frames.

pose is estimated by first finding human joints and part
affinity fields (PAFs) from an image and then combining
the joints using the PAFs information. The PAFs data
consists of vectors that contain the connection informa-
tion between the joints. With PAFs, the CNN model can
correctly estimate an appropriate edge only between rele-
vant joints and thus generate a human pose skeleton data.
This model is publicly available on GitHub 1. As shown
in Figure 6, we first pass an image frame into the Open-
Pose CNN model to collect its human pose data. This
human pose data is then used in the following recurrent
neural network, LSTM, to perform action classification.

3.2.2 LSTM

Based on human pose data generated by the OpenPose
CNN model, our recurrent neural network LSTM [8] is
used to estimate its action label. As the LSTM architec-
ture is used to remember important values over arbitrary
time intervals and forget other values. Since we are fo-
cusing on an action classification problem, we place the
softmax layer on top of the output of the LSTM network
to obtain a label inference. We force the model to learn
only on the features that we believe to be useful for ac-
tion classification during training–namely, a cell’s input
consists of output of the OpenPose CNN at a given time
t, and the inferred labels from the remembered preceding
periods (Figure 6). During training, the cross entropy
loss function (Equation 6) is used to enforce the model
to encode in the hidden states any features relevant to
action estimation.

L =−∑
i

yi log(y′i) (6)

1https://github.com/CMU-Perceptual-Computing-Lab/

openpose

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose


4. Experiments
For our experiments we used the CMU panoptic

dataset [12] consisting of videos collected from sim-
ulated social settings in a massively multiview envi-
ronment. We trained our system using VGA videos
split into 5,603 segments of varying temporal length,
along with the segments’ associated synchronized 3D
pose data for 15 joints, using a single GPU (EVGA
GeForce GTX 1080 SC). The target output is a vec-
tor representing the labels generated by the combined
e−divisive→ SAX → f astcluster technique described
in Section 3.1.

For the deep learning model, we use the OpenPose
CNN model [2] and a single-layer LSTM network [8]
consisting of 256 hidden units. We compare results from
three different approaches:

• A constant detector network that attempts to dis-
cern between no-gesture frames and frames with
any AOI and then classify them using a constant
learning rate of 0.0001.

• An adaptive detector network that, like the previ-
ous network, targets a ground truth that includes
a no-gesture class using a learning rate starting
at 0.001 that linearly decreases each epoch by
0.000018 until it reaches 0.00001.

• An adaptive AOI classification network without
a no-gesture class that uses the same linearly-
decreasing learning rate as the adaptive detector
network.

We use the Adam optimizer to train the LSTM net-
work, taking the two different approaches to learning
rates noted above. As mentioned in the previous section,
the cross entropy loss is used to calculate loss between
the ground-truth labels and the estimated labels during
the LSTM training. As the OpenPose CNN well esti-
mates human poses from videos in the target dataset, we
do not train this CNN model — the performance of the
OpenPose CNN model is evaluated in the next section.
The OpenPose CNN is simply utilized to generate human
pose data during the training and testing phase of the
LSTM network

4.1. Qualitative Results

To evaluate the performance of the OpenPose CNN
model, we first tested the pose model with some of the
action videos. As shown in Figure 7, the model success-
fully estimates human poses from the videos. Based on
this observation, we decided not to train the CNN model,
but simply use it to generate human pose data for the fol-
lowing recurrent neural network to simplify the problem;

Figure 7: Skeleton overlaid onto frames by the pre-
trained OpenPose network within a group clustered by
statistical methods described in Section 3.1.

Figure 8: Constant learning rate detector model output
of predictions for gesture label shown in Figure 7. Ges-
tures have been qualitatively subgrouped and shown in
bounding colors by the authors to highlight apparent sim-
ilarity, with one micro-gesture in the lower left corner
being visually similar to both the green and the purple
subgroups. Conversely, the center micro-gesture shows
little similarity to any other micro-gesture in the class.

in other words, the action classification problem is pro-
jected into the human pose space, which size is smaller
than that of the pixel space.

Our qualitative results intuitively demonstrate both a
shortcoming and a nice feature of our implementation:
Because of our agglomerative hierarchical edit distance
clustering, gestures are grouped together into what may
accurately be described as “like classes,” but there is a
trade-off between the amount of data available within a
class and the similarity any one micro-gesture has across
all of the other micro-gestures it is classed with. As such,
we see what could arguably be defined as multiple classes
that overlap somewhat in both our modeled input and in
our test output (Figure 8).

4.2. Quantitative Results

Our results indicate that the trained model performs
best with a constant learning rate of .0001, and is slightly
better at detection than classification.

Table 1 shows the highest accuracy scores of all ap-
proaches used, that of the detector using a constant learn-
ing rate of 0.0001. The most surprising result of our



Table 1: Constant detector with a “no-gesture class” in-
cluded. For all tables, best-performing accuracy scores
are shown in bold.

Epochs Training Accuracy Training Loss Test Accuracy
1 0.385990 1.969203 0.366118
5 0.391999 1.943364 0.366118

10 0.385557 1.896348 0.355147
15 0.391457 1.831509 0.339201
20 0.418742 1.796008 0.344304
25 0.427891 1.762800 0.339074

Figure 9: Training loss and accuracy for our detector
with constant learning rate .0001.

Table 2: Adaptive detector with a “no-gesture class” in-
cluded.

Epochs Training Accuracy Training Loss Test Accuracy
5 0.505847 1.563875 0.067457

10 0.513859 1.559077 0.067571
15 0.514508 1.560636 0.087170
20 0.515808 1.558239 0.073952
25 0.517757 1.557487 0.326231
30 0.517757 1.557487 0.063241

study is also shown in Table 1: While training accuracy
continues to rise and training loss falls at each epoch
(Figure 9), the test results from our first epoch are greater
than or equal to those of any further training epochs.

The shrinking learning rate detector performs poorly
relative to the previous approach, and quickly overfits
by epoch 30, as demonstrated in Table 2 and Figure 10.
A surprising result is also highlighted in Table 2: Sur-
rounded by poorly-performing epochs at all other tested
stages of training, epoch 25 shows an accuracy score
comparable to those seen in Table 1. Comparable results
were seen with multiple tests of the trained model stored
from epoch 25 of the shrinking-rate detection model. The
most plausible explanation for this jump in test accuracy
is that it may simply be noise, reflecting a need to reorder
the test data; evaluation of this unexpected result may be
an area for future work.

For classification using a shrinking learning rate, the
optimal number of epochs appears to fall in the range

Figure 10: Training loss and accuracy for our detector
with adaptive (linearly diminishing) learning rate.

Table 3: Adaptive classifier model without a “no-gesture”
class.

Epochs Training Accuracy Training Loss Test Accuracy
1 0.575123 0.983921 0.086918

50 0.639233 0.979427 0.147600
105 0.639233 0.979359 0.119579
160 0.641106 0.979615 0.106015

Figure 11: Training loss and accuracy for our classifier
with learning rate starting at 0.001, decreasing linearly
to .00001 over 500 epochs (note: only 160 epochs were
trained during this study).

[2,105)–probably closer to a value in the middle of the
range, if the trend in test accuracy is smooth, or in the
range [2,30), if our adaptive detector’s results can be
generalized. The classification model performed more
poorly than the detector, but due to resource and time con-
straints, a constant classification model was not included
in this study.

5. Discussion
Our results do not appear extremely successful rela-

tive to existing video action classification work using pre-
existing labels. Beyond the reasonable allowances that
may be made for an architecture that creates novel ges-
ture labels as a pseudo-ground-truth, we believe that the
low accuracy score is largely due to three reasons. First,
hyper-parameter configurations have not been fully ex-
plored and optimized. In our deep learning model, there
are various hyper-parameters–epochs, learning rates, and
the hidden state size. Although finding effective hyper-



parameters for a deep learning network is notoriously
difficult, it is essential to try various combinations of
hyper-parameters. We found that our adaptive learning
rate, which we had hoped would improve our test accu-
racy, had the opposite effect, and overfit the model early
in the training process.

Second, the portion of the background class (“NA”)
in the training and testing dataset should be carefully
evaluated. In early stages of our experiments, we used
actions labelled as “NA,” which means that the actions do
not belong to any of our predefined clusters, and classify
them as one of the action classes—a catch-all “no-gesture
class” in our target ground truth. Our expectation was
that the NA label would make training difficult for our
deep learning mode due to the fact that the actions in
the NA class may not have consistent features in the
human pose data. To bypass the effects of having the
NA class in the dataset, we spent most of our training
time on a model that does not consider these actions as
a class; instead, they are simply represented as a non-
clustered action (no class), and the target ground truth
for the associated frame is a zero vector. Our results
show, however, that the detector network has significantly
higher test accuracy–even the adaptive detector has at
least one epoch outperforming any of the observed test
accuracy scores of the classifier network. However, we
trained our classifier network with an adaptive learning
rate, which appears to perform poorly relative to the
constant rate.

Finally, but most importantly, the statistical methods
may not generate what might be considered “valid” action
clusters. After segmenting the videos into action clus-
ters generated by the statistical methods, we manually
reviewed all of the actions within a certain cluster (a cer-
tain class). Throughout this review process, we observed
that segments within the single cluster do not always all
appear to have the same gestures; rather, they may con-
tain dissimilar or semi-similar gesture sub-classes that
are “bridged” by one or two video segments featuring
gestures that are somewhat similar to two or more other
sub-classes in the cluster (Figure 8). Thus, our training
and testing datasets may not be valid. This implies that
our deep learning model may not learn features from
action videos appropriately, so our statistical methods
warrant additional examination in future work.

6. Conclusion

We have presented our pipeline for discovering novel
human actions from video and telemetry data using both
statistical methods for time series analysis and deep learn-
ing networks for video analysis. Using the e-divisive
and SAX methods, we grouped AOI into several classes.
Given these pseudo action classes, we used a sample of

frames from the Panoptic dataset to train a simple LSTM
network. By training the recurrent neural network, we
were expecting the deep learning model to detect and
classify human actions from videos in which a human is
an active agent.

Relative to architecture featuring existing semantic
labels, our model did not perform overwhelmingly well,
with the best observed test accuracy (0.366118) result-
ing from a model used simply to detect whether there
is any AOI in the view that was trained for only one to
five epochs. It is possible that the accuracy of our ap-
proach may be improved in future implementations by
modifying hyper-parameters in the LSTM network: More
epochs, larger or smaller learning rates, and so on. Fur-
thermore, creating additional layers in the LSTM network
has the potential for improving future iterations of this
work; for example, a stacked LSTM network has multi-
ple hidden LSTM layers, which allows for greater model
complexity. Finally, future work should thoroughly re-
view the statistical methods used and their outputs (action
clusters) to ensure that they generate valid datasets.

In spite of somewhat limited results, we believe that
this approach is relevant for HCI researchers as a means
of reducing the time cost of coding user interactions. In
particular, we believe this to be true for HCI research in-
volving implementations within a VR environment. Most
contemporary consumer-ready VR devices feature sen-
sors for detecting object position and orientation. The VR
experience is three-dimensional, and involves full-body
gestures. Our pipeline is applicable for inferring three-
dimensional points on the human body in relatively small
video datasets with telemetry data, but without existing
semantic labels. Video data of this nature could be col-
lected during a user study in a typical academic research
lab environment. Our methods are feasible on hardware
that is a minimum system requirement for most contem-
porary VR HMDs: A single, yet reasonably powerful
GPU. As such, in the context of HCI research, future
implementations of the method we present should focus
more narrowly on the specific problem space of evaluat-
ing novel VR applications.
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