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ABSTRACT

While the use of machine learning and computer vision to classify
human behavior has grown into a large, well-established, interdisci-
plinary area of research, one area that is somewhat overlooked is the
intersection of computer vision as a tool for evaluating user behavior
in Virtual Reality, particularly in the context of immersive analytics
and visualization. We draw on the literature from pattern recogni-
tion, computer vision, and machine learning to compose a simple,
comparatively resource-cheap pipeline for camera-based extraction
of features of professional analyst users and of their sessions in an
existing VR visualization system, ImAxes. Our results show high
accuracy in predicting self-reported features of the users, even as
survey responses about user experience with the immersive interface
are somewhat ambiguous in varying based on these features.

Keywords: Visualization, visual analytics, ubiquitous analytics,
evaluation, video analytics, machine learning, deep learning.

Index Terms: Human-centered computing— Visualization—Visu-
alization techniques; Human-centered computing— Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

The full-body interactions common in many virtual reality (VR) in-
terfaces present a rich opportunity for the use of camera and sensor
data to inform the human-computer interaction (HCI) researcher’s
understanding of participants and their experiences. Research in-
terest at the intersection of machine learning techniques and VR
environments is growing with the development of increasingly af-
fordable consumer VR hardware coinciding with the dramatic im-
provements in prediction accuracy of neural network architectures
and machine learning. This interest is evidenced by the formation of
conferences such as, for example, the IEEE International Conference
on Artificial Intelligence & Virtual Reality (AIVR).

What constitutes an appropriate use of computer vision and ma-
chine learning to a VR visualization problem? We argue that a good
area of application is in classifying the user and evaluating their
experience. Specifically, this application could be used to augment
ambiguous findings and improve the scalability of the costly process
of qualitative evaluation of user sessions.

Our vision for the use of computer vision in HCI research is to
shift away from video input from being an intractable media format,
cheap to capture but expensive to analyze in evaluation studies for
HCI and visualization, toward the use of video data as a revealed
behavior dataset that is time-cost cheap and therefore scalable for the
analysis of large user populations. In such a scenario, a visualization
or HCI researcher can simply add a video recording setup, or turn
on the onboard camera of a test computer and mobile or wearable
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device, to collect additional information about the user’s physical
behavior and actions while participating in the user study. The video
footage can then be easily and quickly analyzed using off-the-shelf
models, as discussed here, resulting in both a time sequence of
actions synchronized to the rest of the study telemetrics, as well as
a summary of the actions performed. Actions include both gross
motor skills, such as movement of the head, arms, and legs, as
well as fine motor skills, such as hands and fingers, as well as even
facial expressions. Even biometric information such as pulse, pupil
dilation, respiration rate, etc, can be deduced using appropriate
models. All these metrics can then be used as complements to task
performance data collected in a user study.

Toward that end, we here demonstrate a specific application of
computer vision and machine learning for low-cost and low-resource
camera-based tracking of human behavior from video footage using
a pre-trained neural network and random forest models. We use this
prototype ad hoc machine learning pipeline to extract participant
behavior from video footage of a user study involving analytical
professionals from the U.S. Department of Commerce interacting
with data in Virtual Reality. We argue that approaches like this could
potentially be fed back into the interactive system to enable it to
react to user behavior extracted from live video footage.

2 RELATED WORK

If our goal is to make better use of video data in evaluating user
behavior, we should consider work that has already been done in
defining and tracking users and their interactions.

2.1 Personas in HCI: A User Classification Technique?

There is good cause to argue that the HCI and visualization communi-
ties should be mindful of the context in which people actually use the
things we build [8,38]. In conducting more applied or “in the wild”
studies, however, we run the risk of encountering the same issues
in replication that plague many other domains [21]. One common
approach to understanding factors influencing users’ needs for infor-
mation visualization involves constructing personas—representational
archetypes of “typical” users and their daily lives [38]. This gen-
erally involves qualitative and ethnographic methods in which the
researcher tracks, records, and interprets the users’ daily activities
in collaboration with the participant, reaching a shared understand-
ing of the user’s thought processes through interview and activ-
ity [38,76]. Alternative persona-based approaches also exist in
which events within the interface, such as mouse activity [3], are
used to develop “data-driven personas” [90] for characterizing types
of users. Access to large-scale, user-generated datasets and plat-
forms for crowdsourcing experiments such as Amazon Mechanical
Turk [45] make the creation of these types of personas more man-
ageable at larger scales. Similarly, data-driven methods in HCI are
increasingly used to classify interactions [53, 63, 68].

2.2 Action Classification: Actions as User Behavior?

The HCI community has scratched the surface of using artificial
neural networks (ANNs), including recurrent and convolutional neu-
ral networks (RNNs and CNNss), in evaluating user behavior. The



tasks of identifying gesture [61,71,82] and gaze [65,91], classify-
ing user emotion and facial expression [34,63,81], and detecting
characteristics of the user, such as gender [83], by constructing and
implementing neural network architecture have been lightly explored
within HClI-related discourse. The visualization community has also
made contributions to the toolkit of methods used in evaluating user
video, logs, transcripts, and other qualitative data [18], as well as
user gesture analysis [40,42].

In the computer vision (CV) and machine learning (ML) com-
munities, however, there have been more than a decade’s worth of
literature evaluating observed behavior via methods for action classi-
fication [51,66], motion and path prediction [58], eye tracking [46],
and gesture detection [64]. While there have been a few position
papers [14] and more serious studies [35] advocating for a closer
relationship between the HCI and machine intelligence communities,
the current body of literature on the subject is surprisingly sparse.
If a trained neural network can identify individuals’ emotions and
expressions [27,55, 89, 92] and can accurately predict whether a
basketball player is good or bad [10], why is there so little work
identifying whether a user’s feelings about implementations are
positive or negative, or their task performance good or bad?

2.3 The Intersections of Visualization and ML

Visualization has contributed to the domains of CV and ML not
only through TensorBoard, the visual tool embedded in the wildly
popular TensorFlow [1], but also in methods and algorithms [25]
and in more recent and nuanced techniques (e.g., dataflow graphs
used to show model structure [87]) and systems (e.g., ActiVis [41],
a system deployed at Facebook to assist in model training and subset
discovery). With that said, there is still much to do in developing
techniques that not only aide CV/ML researchers, but also move
us closer to what is increasingly referred to as “Explainable AI”
(XAI) [12,32] and evoke a sense of trust by the lay person [72].

Conversely, work within the CV and ML communities to augment
information visualization and interactive sensemaking is slightly
sparser [26]. A notable exception to this claim is that computa-
tional models of perception have long been proposed as a means to
make inferences about biological vision [69], and on rare occasion
have been successfully applied to enhance and optimize information
visualization using neural networks [44, 70].

Recent work presenting semantic models for visualizing large
image datasets [88] on the one hand, and visualization models for
classifying semantic datasets [67] on the other, poetically illustrate
the mutual benefit to be had in deepening this relationship for a
closely related set of topics. In the former, a CNN is used to caption
an image, and the caption is then used in determining the layout of
the visualization via a model of semantically associated concepts,
thus presenting a novel pipeline for handling a visualization problem
(graph layout based on conceptual similarity) using CV and natural
language processing (NLP) methods. In the latter, an interactive vi-
sualization system, ConceptVector, is implemented to support users
in building lexicons of related concepts; these lexicons can then be
used to improve recommendations by the visualization system, thus
presenting a novel system for supporting NLP modeling, addressing
the ML issue of semantic lexicon creation. These are both studies
that draw from a heavily overlapping combination of topics in visu-
alization and in ML to present solutions relevant to both fields: a
ML solution to a visualization problem, and a visualization solution
to a ML problem, respectively.

Another case of CV/ML techniques for improving visualization is
represented in models trained to infer 3D scatter points of interest [6,
77]. For the general-purpose computer graphics, neural networks
have also been used to predict incomplete regions of 2D images [56].
In broader interface design, latency reduction is another area that
has been touched upon, but is ripe for further exploration [36].

2.4 Immersive Analytics and Neural Networks

Ubiquitous [24] and immersive analytics [17] are recently-
established sub-domains of visual analysis research, with visualiza-
tion techniques [23] and evaluation methods [5,22] for augmented
reality (AR) and VR emerging with growing frequency. This direc-
tion for research is further validated by recent work indicating that
information recall tasks are improved by working in VR [47].

There are two strong arguments for AR, VR, and mixed reality
(MR) implementations as being more well-suited to DNN architec-
tures for evaluation and for contextual-aware and adaptive design
relative to traditional implementations. First, these environments are
heavily reliant on cameras and sensors, and thus already collect a
wealth of input data that can be used for evaluation. Second, the
wide gestures and movements made by users in these environments
fit well with the fairly saturated domain in CV research of action
classification [15,31,51,66]. A model for detecting hand and foot
gestures on smartphones [57], for example, could trigger events or
inform evaluation for an AR visualization for mobile devices.

The concept and implementation of multimodal interfaces, an-
other form of immersive environment, are not new [75]. Like hu-
mans, neural network architecture may be constructed to interpret
multimodal stimuli [62,92]. Semantic interpretation of chemo-
sensory stimuli—taste and smell—is an open problem, but sound is
increasingly well-explored. Srivastava et al. [79] use audio data to
infer semantic meaning about video data; similarly, in DeepEar [50],
an artificial neural network is trained to make inferences about the
user’s surroundings on mobile devices, and Soundnet is trained to
identify the context of a video by combining video and audio in-
puts [4]. Schissler et al. [74] extend the concept of acoustics in audio
analysis to present a visual-acoustic display system based on aural
signal processing.

Star Trek’s “Holodeck” is a popular metaphor for immersive
storytelling [16,37]; we argue that it implies not just immersion,
but learning and adaptation of the implementation to the user. The
metaphor has been conjured up to describe the potential for scientific
and engineering use [60] and for education [20]. It is a metaphor
that has captured the public eye, and it is not an unreasonable one,
given the emergence of immersive analytics and recent evidence
of its benefits [17,47]. At present, the best path toward this end—
toward creating the adaptive, immersive analytical environment—is
in making strides in combining visualization techniques in immer-
sive environments with CV and ML techniques.

2.5 Datasets and Pre-Trained Weights

The networks discussed thus far have largely been semi-supervised:
They depend on semantic labels created by users of large-scale
platforms (e.g., YouTube’s 8M dataset [2]) or by researchers them-
selves (e.g., the SumMe dataset [33]). A movement toward un-
supervised learning has resulted in the creation of architectures,
techniques [9], and datasets for identifying “atomic actions” (e.g.,
the AVA dataset [31]) or simply predicting future frames in unlabeled
video data [80].

With that said, training the weights of a deep neural network
(DNN)—an ANN featuring a large number of hidden layers, the
approach taken in most contemporary CV research—is still typically
computationally costly, albeit not as costly as human labeling of
interactions by the researcher. For the immediate future, the use of
pre-trained networks to create semantic labels for evaluating user
interactions is an easy point of entry (e.g., the Kinetics Human Ac-
tion Video Dataset [15]).The major benefit of this approach is that
it does not require the researcher to embark on the challenging and
computationally costly journey of constructing and training their
own DNN. In other words, it is labor-cheap and easy to implement,
not just compared to comprehensive large-scale qualitative evalua-
tion studies, but also compared to the approach of constructing and
training one’s own CV pipeline from end to end.
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Figure 1: Ratings from users with prior VR use (a) versus without prior VR use (b), and from users without prior VR use who do not regularly play
computer games (c) versus users without VR experience who regularly play computer games (d).

3 STUuDY METHODS

The purpose of our study was to evaluate the use of the immersive
analytics environment ImAxes [22] by domain experts, and to extend
the implementation.! The data was collected from participants
employed as data scientists, economic analysts, and economists at
the U.S. Bureau of Economic Analysis (BEA), where one of the
authors is embedded as an employee.

3.1

The study had two stages. The first was a “formative stage,” which
included pilot user sessions with a sample drawn from the target
population and “in-the-wild” user sessions that were open-ended
and self-directed following a brief tutorial. The second was a “sum-
mative stage.” During the summative stage, user sessions involved
an exploration phase during which users were asked to freely ex-
plore the data in the environment, and a presentation phase during
which users were asked to prepare and then give a presentation of a
narrative about features of the data to the researcher.

The mixed-methods study was conducted in a small office of
approximately 10 x 10 feet (3 x 3 meters). The computing equip-
ment was a personal computer equipped with a Nvidia GeForce
GTX 1060 (6GB) GPU, Intel Xeon E5-2620 v3 (2.40GHz) CPU,
and 16GB RAM, and running Microsoft Windows 10. The ImAxes
application [22] was built using Unity 5.6.5f1, and was installed
locally on the aforementioned PC. The rig was equipped with an

Procedure and Experimental Design

IThese findings are drawn from posthoc analysis of data collected as
part of a mixed-methods study at IEEE InfoVis 2019 [7]. However, we did
not include any results derived from computer vision or machine learning
methods in that paper. Thus, the data presented here is all unique to this
paper and has not been previously published. However, much of the methods
discussed here are by necessity similar to the InfoVis 2019 paper.

HTC Vive VR system, including a head-mounted display (HMD)
and two base stations.

Two video streams of user interactions were captured using
two Raspberry Pi Zeros with 8MP Pi cameras and with Mo-
tionEyeOS. The cameras served as motion-activated webcams, and
were mounted in different positions in the room. One Raspberry Pi
was positioned at chest height in front of the user’s starting position,
and the other was positioned in a top corner of the room near one of
the Vive’s base stations. Additional evaluation of video and teleme-
try data was conducted using a PC equipped with an EVGA GeForce
GTX 1080 SC (8GB) GPU, Intel Core i7-7700 CPU (3.60GHz, 4
cores), and 24GB RAM, also running Windows 10.

Immediately after the user sessions, participants were asked to
complete a survey with questions related to twenty pre-registered pre-
dictions? about users’ sense of presence, feelings about the control
mechanisms, engagement with the tasks being asked of them, and
other aspects of their sessions both observed and self-reported [7].
Of those twenty predictions, the following three had weak or mixed
results based on evidence from survey responses:

A3.3 Participants will report fatigue from their physical navigation
and interaction. Motivation: The use of gross body motor
controls to navigate in the virtual environment and interact
with its objects will yield significant exertion and fatigue on
the participants.

A4 Participants will encounter significant navigation and interac-
tion hurdles due to a lack of VR expertise. Motivation: Our
participant pool has no specific VR training, and will thus be
challenged by 3D navigation and interaction concerns.

Zhttps://osf.io/phxr2/
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Figure 2: Relative sums of predicted probabilities of semantic labels assigned to all video segments: This may be considered to represent the
comparative frequency of each semantic label for all video segments for all users.

A4.1 Participants with 3D computer gaming experience will be less
hindered by lack of VR training. Motivation: 3D gaming
experience will help people interact more efficiently.

We anticipated users reporting fatigue from their navigation and
interaction (A3.3) without prompting, but this did not occur; our
telemetry logs indicated increased user activity as time went on,
and we did not have other measures for evaluating user fatigue.
Contrary to our prediction, our survey did not indicate that there was
a relationship between prior VR usage and user-reported hurdles
in navigating the environment (A4), and 3D gaming did not have a
substantial positive effect (A4.1) with respect to the users’ perception
of the control mechanisms (Figure 1). The results for hypothesis
A4.1 were mixed, with regular gamers reporting that examining
objects in detail was more difficult, while also reporting that the
control mechanisms were slightly higher quality than participants
who did not regularly game. Because “fatigue” was not explicitly
measured during the study, we used proxy measures of whether or
not the participant experienced nausea and whether or not a given
10-second window was within 2 minutes of deciding to voluntarily
stop the session.

The results for these hypotheses were ambiguous or mixed, and
as such, presented an opportunity for exploiting video data to fill in
some missing pieces. Furthermore, as our user sessions were split
into two activities (explore and present), many of our predictions
were contingent on an assumption that users would behave in differ-
ent ways during the exploration stage relative to how they behaved
during the presentation stage. We see this as another assumption
that can be called into question or confirmed using the technique
described in Section 3.2.

3.2 Data Analysis

We used pre-trained weights from the 3D Convolutional Neural
Network (3DCNN) applied to the Kinetics Human Action Video
Dataset [15] to classify segments of the video captured for users
who consented to be video recorded. Our primary rationale for using
pre-trained weights is that it is labor-cheap and easy to implement,
as noted in Section 2.5; the Kinetics 3DCNN weights, specifically,
were chosen for their relative popularity and accessibility. The
3DCNN assigns semantic action class labels to 10-second windows
of video data for all video captured of users interacting with the
environment. Each window was assigned 400 action class labels,
each label with a prediction probability score; the aggregates of these
probability scores (Figure 2) may be viewed as a pseudo-frequency
for the actions observed during the study.

We checked this method in two ways: a validity check and a
value check. As a measure of action class validity, we captured
video data using the two cameras set up to record the user from
different points of view. We then compared the similarity of the
assigned labels by finding the rank-biased overlap (RBO) of each
temporal segment [86].

To demonstrate the value added by applying this technique, we
used the 3DCNN output as random forest input features to predict
features of the user (e.g., how regularly they play computer games
or if they engage in athletic or sporting activities that involve mov-
ing faster than a running speed), their experience (whether or not
they have used VR before), and the type of activity that they were
engaging in during the sessions (exploration versus presentation).
We then trained a random forest [13] to predict characteristics of
the participants relevant to their activities—namely, whether or not
they had prior experience in VR, how regularly they play computer
games in their free time, and whether or not they engage in any
strenuous sporting or athletic activities.



Figure 3: Probability-weighted rank-biased overlap (RBO) distance scores: A lower RBO distance score indicates a better match between
the two ranked lists of the semantic action labels and probabilities assigned at each ten-second window of time. This can be thought of as
indicating that there was always at least a 85% match between the actions assigned to video from two cameras from different angles of the room.

4 RESULTS

The video data was used as an input for the pre-trained Kinetics
3DCNN [15], which predicted semantic labels to ten-second chunks
of video (Figure 2). The prediction-probability-weighted ranked se-
mantic labels resulting from the pre-trained 3DCNN yielded strong
matches across both cameras (Figure 3), indicating that the network
did a reasonably consistent job of predicting user actions. The ran-
dom forest model was able to predict the participants’ engagement
in fast-motion sporting activities with 97.35% accuracy, their like-
lihood of experiencing some form of VR sickness with 93.63 %
accuracy, whether the user had prior VR experience with 92.74%
accuracy, and their gaming habits with 91.93% accuracy (Table 1).
This relatively high prediction accuracy for prior VR experience
supports our prediction (A4) that users with no VR experience will
have a characteristically different experience than users with VR
experience. The prediction accuracy for regular gaming activities
supports the notion that traditional gaming habits do influence the
user’s VR experience in an analytical setting, albeit in a more nu-

anced fashion than we predicted (A4.1), given that participant survey
responses ran counter to this hypothesis.

To evaluate temporal features of the user session, we applied a
model similar to the one used to predict features of the user to a com-
bination of the video data collected during the formative studies and
the video collected during the exploration phase of the summative
studies. The difference in the models is primarily in the omission of
the time from start feature as an independent variable from the model
predicting temporal features of the session, as this feature shared a
deterministic relationship with the dependent variable. We hoped
a proxy measure of user fatigue could be extracted: i.e. whether or
not the user was nearly ready to stop what they were doing. Users in
the exploration stage of the summative studies and in the formative
studies had control over when they ended the activities they were
engaged in. Under the assumption that user fatigue plays a role in
the user’s decision that they are ready to exit the environment or end
their current activities and that this fatigue will appear within a two
minute window of this decision event, this method was not able to



Model

| Out-of-bag error %

Hold-out error %

Cross-validation error %

CM[0] CM[1] CM][2] CM[3] CM[4]

FMAA*
ranger
randomForest
CM [No/0]
CM [Yes/1]

6.43
6.41

5.48

6.25
6.65

1131
75

105
1629

Gaming
ranger
randomForest
CM [Least/0]
CM [1]

CM [2]

CM [3]

CM [4/Most]

8.91
1.83

7.86
8.07

557

Prior VR
ranger
randomForest
CM [No/0]
CM [Yes/1]

5.0
5.41

4.75

6.65
7.26

1456
88

63
1333

VR sickness
ranger
randomForest
CM [No/0]
CM [Yes/1]

5.78
6.10

4.63

6.37
6.37

1937
130

44
916

Phase

ranger
randomForest
CM [Explore/0]
CM [Present/1]

28.09
24.90

24.25

24.51
23.73

801
258

182
966

Quit in 2 min
ranger
randomForest
CM [No/0]
CM [Yes/1]

10.34
11.45

10.16

11.00
11.20

2501
288

1
24

* User participated in fast-moving athletic activities (FMAA) during their leisure time.
Table 1: Prediction errors and confusion matrices for random forest.

detect approaching fatigue. While results yielded 88.8% accuracy,
92.3% of moments within this 2-minute window were misclassified
as being outside of it (i.e., they were classified as not being in prox-
imity to a quit event). These results bolster our negative findings to
our prediction (A3.3) that users will report fatigue, as we were not
able to find such empirical evidence.

Relative to this approach for picking up on user fatigue, the
model performed slightly better in predicting whether the users
were in the “explore” or “present” phase of the study, or in neither
phase (76.27% accuracy; 81.7% of users preparing to present were
correctly classified, and 73.5% of exploring users were correctly
classified, while video of users engaging in neither activity was
classified correctly only 43.2% of the time). This indicates that
random forest classification of 3DCNN output performs at levels
significantly better than chance in predicting whether the user is
engaged in types of behaviors entirely novel to the environment and
the experiment activities. In general, however, we found that our
approach did not perform as well in temporal segmentation of video
data as it did in picking up on relevant user traits, such as their prior
VR experience.

5 CONCLUSION AND DiscussioN

In using this technique to evaluate user behavior, we have achieved
our goal of implementing a more robust method for testing our
hypotheses than what would have been possible without a computer
vision approach. By finding that the RBO for cameras capturing
user activity from different angles is reasonably low, we have also
contributed additional validation for the pre-trained 3DCNN we

used to derive our semantic label predictions. These methods are
not only robust, but because we are using semantic labels as our
random forest input, they produce results (Figures 4 and 5) that
convey semantic significance the lay reader: Behavior that looks like
beekeeping or slacklining (or doesn’t) is important for predicting
whether a VR user has had prior VR experience (Figure 4). Gestures
that look like extinguishing a fire are a reliable indicator for whether
the user is a regular gamer and also for whether or not the user
should anticipate experiencing VR sickness (Figure 4).

In a result that is specific to both the implementation and the
user study design, actions that look like laughing or throwing an
axe are important for predicting whether a user is exploring the
data or presenting a narrative to an onlooker. This holds semantic
interest in the context of the implementation in particular, because
the gesture for destroying an object in ImAxes is to throw it, and
the Vive controllers may register as looking somewhat like a small
axe: It indicates that the destruction of objects may be an important
indicator for what kind of activity a user is engaged in. Similarly, it
may be that the VR users’ speech during their presentations looks
like laughter when the face is obscured by a VR headset.

Another goal in this essay is to urge HCI researchers to shift in
the direction of setting standards for using models for CV and/or
ML in user evaluation and in visual system architecture. We have
made the argument that this practice has implications that make it
well-suited for VR implementations, but it is also promising in other
applications beyond the desktop (e.g., mobile device augmented
reality implementations).



Random Forest Results: Prior VR Experience
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Figure 4: Relative importance of semantic labels for predicting participants’ involvement in fast-moving sports, the amount of time spent gaming,
prior VR experience, and user’s predisposition to VR sickness. These models included time, to improve the fit in the context of how a user’s
activities may be characterized relative to their time in the session, given features of the user unrelated to time.
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Figure 5: Relative importance of semantic labels for predicting whether participants were engaged in exploration vs. presentation, or if they were
within two minutes of quitting. These models did not include time, because the dependent variables were directly related to their time in session.

5.1 Limitations

This study exploits computer vision and machine learning techniques
to fill in information that is ambiguous and further illuminate patterns
observed during user sessions. The analysis in this paper has been
conducted as an extension of data collected in work that was accepted
at IEEE InfoVis 2019 and publication in TVCG [7]; the scope of
this work is limited to a deeper exploration of hypotheses left partly
answered by more conventional means. As such, it does not take
the next step in analyzing possible interventions to improve user
experience; this remains an open area for future research.

5.2 Future Context-Aware, Adaptive Environments

The concept of the context-aware computing environment is nearly
as old as HCI itself [73]. A typical manifestation of this model is in
the use of sensor and telemetry information for predetermined se-
mantic inference about the user’s environment, but the idea of using
neural networks to aide in achieving this end is not new [11,48, 54].
In fact, work implementing ANN architecture and RGB camera
input for face detection in the context of HCI emerged no later than
the very same year as the concept of context-aware computing [39].
Contemporary work in query prediction [78] combining context-
aware information-seeking techniques and neural networks has seen
some success toward that end, but it is generally an under-explored
area of research. Within the visualization community, the direc-
tion is typically in using visualization to assist CV and ML work
(e.g., ConceptVector [67]), although this is certainly not universally
true [88]. Simple context detection in the CV and ML communities,
however, is a problem space that has seen many achievements within
the past few years [19,28,43, 85].

For an interface to be truly context-aware, we argue that it must

be capable of semantically evaluating users’ behaviors and environ-
ments in real time. Hardware capable of doing this on consumer-
ready electronics, including mobile devices, is a maturing technology
several years old [29]. It is one foundation of AR, which in mobile
devices commonly depend on non-visual sensors (e.g., compass,
GPS, and accelerometer) due to computational costs and perfor-
mance, but mobile AR implementations using RGB cameras and
CV techniques have been around for decades [59]. Interfaces us-
ing specialized sensors and CNN architecture have been capable of
real-time gesture interpretation for years [52].

Semantic segmentation of video and images for task evaluation
is an old [69] and increasingly optimized [49] area of CV research.
Most contemporary architectures for video analysis incorporate long
short term memory (LSTM) autoencoders [80]. Generative adver-
sarial networks (GANS), first proposed by Goodfellow et al. [30]
and first successfully implemented by Vondrick et al. [84], are also
increasingly the state of the art in the use of neural networks for
creating imagery.

Training semantic and generative models, however, is still too
computationally intensive to do in real-time on consumer electronics.
Here, again, the use of pre-trained models shines as an immediate
next step—their potential application in user study evaluation may
be seen as a stepping stone to embedding the evaluation process into
iterations of implementations following initial results. By construct-
ing architecture for change events around subsets of model output
values based on evaluation findings, for example, visualization and
interface design can take the next steps in being context-aware. By
constructing architecture to update the trained model (not necessar-
ily in real-time), visualization and interface design can take its first
steps toward being adaptive.
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