
Extended Multitouch: Recovering Touch Posture and
Differentiating Users using a Depth Camera

Sundar Murugappan1, Vinayak1, Niklas Elmqvist2, Karthik Ramani1,2

1School of Mechanical Engineering and 2School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907, USA
{smurugap,fvinayak,elm,ramani}@purdue.edu

Figure 1. Extracting finger and hand posture from a Kinect depth camera (left) and integrating with a pen+touch sketch interface (right).

ABSTRACT
Multitouch surfaces are becoming prevalent, but most ex-
isting technologies are only capable of detecting the user’s
actual points of contact on the surface and not the identity,
posture, and handedness of the user. In this paper, we define
the concept of extended multitouch interaction as a richer in-
put modality that includes all of this information. We further
present a practical solution to achieve this on tabletop dis-
plays based on mounting a single commodity depth camera
above a horizontal surface. This will enable us to not only
detect when the surface is being touched, but also recover the
user’s exact finger and hand posture, as well as distinguish
between different users and their handedness. We validate
our approach using two user studies, and deploy the tech-
nique in a scratchpad tool and in a pen + touch sketch tool.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User
Interfaces—Interaction styles; I.3.6 Computer Graphics:
Methodology and Techniques—Interaction techniques

General Terms
Design, Algorithms, Human Factors

Author Keywords
Multitouch, tabletop, depth camera, pen + touch, evaluation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’12, October 7–10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

INTRODUCTION
Multitouch surfaces are quickly becoming ubiquitous: from
wristwatch-sized music players and pocket-sized smart-
phones to tablets, digital tabletops, and wall-sized displays,
virtually every surface in our everyday surroundings may
soon come to life with digital imagery and natural touch in-
put. However, achieving this vision of ubiquitous [27] sur-
face computing requires overcoming several technological
hurdles, key among them being how to augment any physical
surface with touch sensing. Conventional multitouch tech-
nology relies on either capacitive sensors embedded in the
surface itself, or rear-mounted cameras capable of detect-
ing the touch points of the user’s hand on the surface [10].
Both approaches depend on heavily instrumenting the sur-
face, which is not feasible for widespread deployment.

In this context, Wilson’s idea [30] of utilizing a front-
mounted depth camera to sense touch input on any physical
surface is particularly promising for the following reasons:

• Minimal instrumentation: Because they are front-
mounted, depth cameras integrate well with both pro-
jected imagery as well as conventional screens;

• Surface characteristics: Any surface, digital or inani-
mate, flat or non-flat, horizontal or vertical, can be instru-
mented to support touch interaction;

• On and above: Interaction both on as well as above the
surface can be detected and utilized for input;

• Low cost: Depth cameras have recently become com-
modity products with the rise of the Microsoft Kinect,
originally developed for full-body interaction with the
Xbox game console, but usable with any computer.

In this paper, we define a richer touch interaction modality
that we call extended multitouch (EMT) which includes not

only sensing multiple points of touch on and above a sur-
face using a depth camera, but also (1) recovering finger,
wrist and hand posture of the user, as well as (2) differenti-
ating users and (3) their handedness. We have implemented
a Windows utility that interfaces with a Kinect camera, ex-
tracts the above data from the depth image in real-time, and
publishes the information as a global hook to other appli-
cations, or using the TUIO [16] protocol. To validate our
approach, we have also conducted two empirical user stud-
ies: one for measuring the tracking accuracy of the touch
sensing functionality, and the other for measuring the finger
and hand posture accuracy of our utility.

The ability to not only turn any physical surface into a touch-
sensitive one, but also to recover full finger and hand pos-
ture of any interaction performed on the surface, opens up
an entirely new design space of interaction modalities. We
have implemented two separate touch applications for the
purpose of exploring this design space. The first is a proto-
type scratchpad where multiple users can draw simple vector
graphics using their fingers, each finger on each user being
separately identified and drawing a unique color and stroke.
The second application is called USKETCH, and is an ad-
vanced sketching application for creating beautified mechan-
ical engineering sketches that can be used for further finite
element analysis. uSketch integrates pen-based input that we
use for content creation with our touch sensing functionality
that we use for navigation and mode changes.

RELATED WORK
Our work is concerned with touch interaction, natural user
interfaces, and the integration of several input modalities.

Multitouch Technologies
Several different technologies exist for sensing multiple
touches on a surface, including capacitance, RFID, and
vision-based approaches. Vision-based approaches are par-
ticularly interested for our purposes since they are suitable
for surfaces with large form factor, such as tabletops and
walls [10, 19, 29]. These systems rely on the presence of a
dedicated surface for interaction.

Recently, depth-sensing cameras are beginning to be used
in various interactive applications where any surface can be
made interactive. Wilson [30] explored the use of depth
sensing cameras to sense touch on any surface. Omni-
Touch [11] is a wearable depth-sensing and projection sys-
tem that enables interactive multitouch applications on ev-
eryday surfaces. Lightspace [31] is a small room installation
that explores interactions between on, above and between
surfaces combining multiple depth cameras and projectors.

Sensing Touch Properties
Going beyond sensing touch and deriving properties of the
touches requires more advanced approaches. We classify ex-
isting approaches for this into vision-based techniques, in-
strumented glove-based tracking, and specialized hardware.

Vision-based Techniques
Malik et al. [19] used two cameras mounted above the sur-
face to distinguish which finger of which hand touched a

surface, but their system requires a black background for re-
liable recognition. Wang et al. [25] detect the directed fin-
ger orientation vector from contact information in real time
by considering the dynamics of the finger landing process.
Dang et al. [4] mapped fingers to their associated hand by
making use of constraints applied to the touch position with
finger orientation. Freeman et al. [7] captured the user’s
hand image on a Microsoft Surface to distinguish hand pos-
tures through vision techniques. Holz et al. [14] proposed
a generalized perceived input point model in which finger-
prints were extracted and recognized to provide accurate
touch information and user identification. Finally, Zhang et
al. [35] used the orientation of the touching finger for dis-
criminating user touches on a tabletop.

Glove-based Techniques
Gloves are widely popular in virtual and augmented reality
environments [22]. Wang et al. [26] used a single camera to
track a hand wearing an ordinary cloth glove imprinted with
a custom pattern. Marquardt et al. [20] used a fiduciary-
tagged gloves on interactive surfaces to gather input about
many parts of a hand and to discriminate between one per-
son’s or multiple peoples’ hands. Although simple and ro-
bust, these approaches require instrumented gear which is
not always desirable compared to using bare hands.

Specialized Hardware
Specialized hardware is capable of deriving additional touch
properties beyond the mere touch points. Benko et al. [1]
sensed muscle activity through forearm electromyography to
provide additional information about hand and finger move-
ments away from the surface. Lopes et al. [17] integrated
touch with sound to expand the expressiveness of touch in-
terfaces by supporting recognition of different body parts,
such as fingers and knuckles. TapSense [12] is a similar
acoustic sensing system that allows conventional surfaces to
identify the type of object being used for input such as fin-
gertip, pad and nail. The above systems require additional
instrumentation of either the user or the surface and take a
significant amount of time for setup. Background noise is
also a deterrent to use acoustic sensing techniques.

Pen and Touch-based Interaction
A few research efforts have explored the combination of pen
and touch [2, 8, 34, 33]. Hinckley et al. [13] described
techniques for direct pen + touch input for a prototype, cen-
tered on note-taking and scrapbooking of materials. Lopes et
al. [18] assessed the suitability of combining pen and multi
touch interactions for 3D sketching. Through experimen-
tal evidence, they demonstrated that using bimanual inter-
actions simplifies work flows and lowers task times, when
compared to the pen-only interface.

OVERVIEW: EXTENDED MULTITOUCH INTERACTION
Traditional multitouch interaction [5] is generally defined as
the capability to detect multiple points of touch input on a
surface. Here, we enrich this concept into what we call ex-
tended multitouch interaction (EMT), defined as follows:

• Detecting multiple touch points on and above a surface;

• Recovering finger, wrist and hand postures as well as the
handedness (i.e., whether using the left or right hand); and

• Distinguishing between users interacting with the surface.

While previous work has explored various combinations of
the above, we are aware of no single work that has addressed
all three constraints as a unified framework. To this effect,
we propose a two-dimensional hand model that uniquely
maps touch points to fingers, hands, and users using depth
data. In the following text, we describe our approach to sup-
porting extended multitouch using low-cost depth cameras.

TOUCH SENSING USING A DEPTH CAMERA
Inspired by Wilson [30], our approach to sensing touch using
a depth camera simply builds on analyzing the depth image
to detect when objects (i.e., fingers) come in close proximity
with the physical surface. Our implementation uses a depth
camera mounted above a horizontal surface to transform user
gestures on and above the tabletop to multitouch events that
can be used by a client application. Fully emulating existing
multitouch technology using this setup gives rise to several
concrete requirements for our system:

• Determine when the surface is being touched and generate
the corresponding touch points;

• Track touch points over time when the user is dragging
fingers across the surface;

• Map touch points from the physical surface to coordinate
space of the display area; and

• Export multitouch events to clients, either using a global
Windows hook, or using the TUIO protocol [16].

Below we discuss the physical setup and each of the above
components in more detail.

Physical Setup
Our low-cost setup (Figure 2) consists of (1) a horizontal
surface, on and above which interactions take place, (2) a
projector, which projects on to a surface providing visual-
ization and feedback, (3) a depth sensing camera (like Mi-
crosoft Kinect) for capturing touch input, and (4) a computer
for processing the input data from the depth camera and pro-
jecting visual output using the projector. Again, the surface
to be made interactive need not be empty nor flat.

While our focus in this paper is on horizontal (tabletop) se-
tups, there is nothing to prevent the same technique from
being used for vertical (wall-mounted) surfaces. The algo-
rithms described below are independent of the configuration
and the touch results are not affected as long as a clear line
of sight is maintained between the hands and the Kinect.

Basic Touch Sensing
We detect touches by analyzing the image produced by the
depth camera. The pixel intensities in the depth image cor-
responds to the distance from the camera. This allows us
to define a “touch input region” as a virtual volume located
within a lower and upper distance above the surface. This
volume is approximately a cuboid (assuming the surface is

Kinect

Projector

Surface

Pen

Figure 2. The physical setup showing (from top to bottom) depth cam-
era, projector, pen tracker, and physical surface.

(a) Depth Data (b) Binary Image (c) Touch Points

Figure 3. Identifying touch points from the depth data.

flat) offset from the surface with the height equal to the dif-
ference of the bounds. All pixels with distance values be-
tween these bounds correspond to the contact region(s) of
the finger(s) with the surface.

Estimating the underlying surface is important for the pur-
pose of obtaining reliable and robust touches using our
method. We model the surface as a depth image that can
simply be subtracted from the current image to yield the dif-
ference. This difference map is then used to detect whether
any physical objects in the scene fall within the touch in-
put region. We create a binary image such that the pixels
corresponding to these elements are set to white and all the
other pixels to black. Figure 3(a) shows the raw depth image
with two hands touching the surface and Figure 3(b) is the
binary image showing groups of white pixels corresponding
to contacts of fingers with the surface.

We use connected component analysis to identify the clus-
ter of pixels from the touch images, yielding touch “blobs.”
To differentiate between actual touches and noise, we dis-
card the blobs that are below or above a certain area thresh-
old. From experimentation, when the Kinect is at a height
of 1.2m from the surface, for a blob to be a candidate for
a touch point, the area of the blob must be greater than 20
square millimeter and less than 220 square millimeter, ac-
commodating a wide variety of finger sizes. We use the
center of gravity of the white blobs as the location of touch
points. Figure 3(c) shows the result of determining the touch
points from the raw depth data and the binary touch image.

Note that this approach also lends itself to defining addi-
tional volumes at other distances from the surface, allowing
us to detect interaction above the surface as well.

Tracking Touch Points
Tracking touch points over time is critical for developing
interactive applications that make use of dragging gestures.
Without this information, each new depth frame would treat
touch points as being new, and the application would not be
able to support smooth dragging operations.

In our implementation, we associate touch points in consec-
utive depth frames by finding the nearest neighbor between
points in the frames. Since the Kinect can record at a max-
imum rate of thirty frames per second, not all depth frames
are necessarily used in tracking touches. Our system intelli-
gently discards outlier depth frames by considering the touch
points in a sliding window that includes several frames be-
fore the current frame, thereby increasing robustness.

Interactive Surface

Kinect Scene

Y’

X’

Y

X

(a) Calibration. (b) Scratchpad.

Figure 4. Touch sensing mechanism.

Mapping Touches to Display Space
Traditional multitouch surfaces have a one-to-one mapping
between the physical location that is being touched on the
surface and the digital location on the underlying display.
This provides users with the feeling of directly touching and
manipulating the digital content underneath their fingers.

To facilitate a similar interactive experience in our depth
camera-based approach, we need to map the depth camera
scene to the projected display area (Figure 4(a)). We employ
a technique very similar to how regular touch screen sensors
are calibrated with LCD displays using a nine-point calibra-
tion grid. This gives us the coefficients needed to transform
from camera coordinates to display coordinates while taking
scaling, rotation, and translation errors into account.

Generating Multitouch Events
The final step in our implementation is to actually generate
multitouch events that a client application can handle in or-
der to support (extended) multitouch interaction. We provide
two ways to do this: either through a Windows global hook,
or using the TUIO protocol [16]. This enables our imple-
mentation to be entirely standalone, and external client ap-
plications simply need to interface to the system to receive
touch events. Figure 4(b) shows a scratchpad application
that demonstrates multitouch tracking using these events.

BEYOND STANDARD MULTITOUCH INTERACTION
Our work so far has concerned itself with detecting the two-
dimensional (x and y) locations of touch points on as well as
above (i.e., with a z component) the physical surface. How-
ever, fully supporting our extended multitouch (EMT) model
requires being able to recover finger posture, hand posture,
and handedness for all touch points, as well as differentiat-
ing users. More powerful and rich interaction techniques can
be built if such additional information can be leveraged.

Figure 5. Additional touch regions for extended multitouch.

Extracting Palm and Wrist Data
Similar to the touch input region defined earlier for detecting
fingers coming into contact with the physical surface, we can
extract the position of the user’s palm and wrists from the
same depth data. We simply include two additional virtual
volumes: the “fingers-palm region” and the “wrist region”
(Figure 5). Based on the depth camera image, we construct
binary images for each of these regions (Figure 6). These
images are then used to recover the touch posture.

Touch Wrist

Fingers-Palm

Controls to set
bounds

Figure 6. Binary depth images for the three virtual volumes used in our
prototype implementation.

A connected component analysis is then performed on the
binary image corresponding to ‘fingers-palm region’ to ex-

tract the blobs. For each blob, we compute its a) center of
gravity, b) principal directions using principal component
analysis and c) convex hull. The center of the palm is ap-
proximately the center of gravity of the blob, which is suffi-
cient to map fingers and hands to touch points.

The binary image corresponding to the wrist region is pro-
cessed in the same manner as above. For each extracted blob,
we compute its a) center of gravity and b) principal direc-
tions. Wrist orientation can be determined from the principal
directions. Tabletop surfaces can take advantage of this in-
formation to eliminate the inherent problems that arise due
to orientation dependency. Furthermore, this position and
orientation information provides an estimate of the hand oc-
clusion region, which can be used to build occlusion-aware
interfaces that minimize the impact of occlusion [15, 23, 24]

A Two-Dimensional Hand Model
After processing the three binary images, we combine the re-
sults and create a two-dimensional model of the hand. Each
hand now has a wrist, fingers-palm, the touch points, and
their associations. It can also be noted that the distance
value of touches, wrist-center, and palm-center can be ob-
tained from the depth data, which, when added to the two-
dimensional model, gives us a three-dimensional model.

(c)

(b)

(a)

Figure 7. From left to right, each image shows the binary image com-
puted in the touch region, fingers-palm region, and the hand model
with touch points, wrist and palm.

Figure 7 shows results from two-hand touches. The red dots
on the far right correspond to the touch points, the green dot
is the palm center, and the violet dot is the wrist. The blue
closed polygon is the convex hull of the fingers-palm blob
and the green line represents the first principal component
of the wrist showing hand orientation. The principal com-
ponents of the fingers-palm are not shown to avoid clutter.
Figure 1 shows 50 touch points from 10 hands and 5 users.

Modeling Touch Posture
To deduce the mapping between the touch points to the fin-
gers and hand, we take advantage of the geometric proper-
ties that can be computed from the abstract hand model de-
rived above. In Figure 8, the purple dot is the center position
of the wrist and the purple line represents its first principal
component. Similarly, the green dot and green line represent
the center position and the first principal component of the
fingers-palm region. The yellow arrow (V3) represents the
direction of the fingers from the wrist passing through the
palm. For every instance of the 2D model, we compute (a)

the angles subtended by each touch point with respect to V3,
and (b) the distance of each touch point from the wrist.

θ1

θ2

θ4

θ5

Wrist

Palm

Fingers

1st Principal component of Wrist

1st Principal component of Palm

Direction of Palm from Wrist (V3)

θi Angles of fingers with V3

d1

d2

d3

d3

d4

di Distances of fingers from Wrist

Negative Half-Plane

Positive Half-Plane θ3

Figure 8. The angles and distances of the hand geometry.

Wobbrock et al. [32] outlined 27 different gestural com-
mands performed on a tabletop surface. From studying these
hand poses, we collected the following observations:

• The majority of gestures are performed with one, two,
three, or five finger touch points;

• One-finger interactions are always performed using the
fore-finger (100%);

• For two-finger interactions, the fingers used are thumb-
fore finger and fore-middle fingers;

• For three-finger interactions, the finger combinations used
are thumb-fore-middle and fore-middle-ring; and

• For four-finger interactions, the finger combinations are
thumb-fore-middle-ring and fore-middle-ring-and-little.

Based on these observations, we propose 16 different touch
postures (Figure 9) to be recognized by our system. De-
tecting handedness, i.e., if it is a right or left hand, can be
determined from the location of the thumb, i.e., its signed
angle with respect to the orientation vector. If the signed
angle is negative, then the input pattern is a right hand, and
vice versa. The classification for recognizing touch posture
is based on the number of touch points, which is as follows:

• One - Index finger and ambiguous hand.

• Two - We deduce that a thumb is present if the distance be-
tween the two fingers (index and thumb or index and mid-
dle) is greater than smallest distance of the fingers from
the wrist.

One-Finger Two - Fingers

Three - Fingers Four - Fingers

Five - Fingers

No Thumb

No Thumb No Thumb

Thumb

Thumb Thumb

Figure 9. Hand poses during multitouch recognized in our system.

Index

Middle

Thumb

Ring

Little

Left Hand

Right Hand

Ambiguous

Wrist Direction

Figure 10. Results (actual snapshots) after mapping touch points to
fingers and hands for the poses in Figure 9.

• Three - We deduce that a thumb is present if the angle sub-
tended between extreme fingers (thumb and middle or in-
dex and ring) is at least two times greater than the smallest
angle made by the extreme fingers with the finger between
them (i.e., index and middle or middle and ring finger).

• Four - We deduce that a thumb is present if the angle sub-
tended between the extreme fingers (thumb and ring or in-
dex and little) is at least three times greater than the small-
est angle made by the extreme fingers with the finger next
to them (i.e., ring and little or middle and ring finger.

• Five - the angle and distance between thumb and index
fingers is greater than the values between little and ring
fingers. Other fingers can now be labeled logically.

Figure 10 shows a sample of the results generated by our sys-
tem for these 16 different postures. Poses that do not belong
to the above classification (for example, Figure 7a) are am-
biguous and hence our system cannot identify the fingers re-
liably. Furthermore, the presence of the thumb and fore fin-
ger is crucial in our method for the correct mapping between
fingers and touch points, and the thumb is crucial for de-
ducing handedness. Hence, the mapping accuracy decreases
for poses which do not have the thumb. In such cases, the
distance and angular measures alone do not give conclusive
evidence of the correct touch posture and handedness.

Differentiating Users
Finally, being able to match actual touch inputs to individual
users is crucial for more advanced collaborative applications
where multiple participants are interacting with the tabletop.
Our solution builds on the fact that user arms are also par-
tially visible to the depth camera mounted above the table-
top. We use this information to heuristically model user po-
sitions that are off-screen of the depth image. However, this
approach depends on users maintaining their relative posi-
tions around the tabletop surface, as well as not approaching
to closely to each other. Also note that our approach does
not allow for identifying users, only differentiating them.

A future improvement to this solution would integrate a sec-
ond vision-based tracking system that could follow the par-
ticipants themselves instead of merely their touch points.

USER STUDIES
To validate our approach, we conducted two empirical user
studies: one for measuring the tracking accuracy of the touch
sensing functionality, and the other for measuring the finger
and hand posture accuracy of our utility.

Study 1: Touch Sensing Accuracy
The accuracy of touch contacts depends on (a) the parame-
ters computed in calibrating the interactive area (projected
imagery) to the Kinect scene, (b) the algorithm to detect
touch contacts based on depth thresholds, (c) the orienta-
tion and size of the finger(s) making the contact, and (d) the
user’s perception of where they are touching the surface. The
above factors all contribute towards the accuracy of the de-
tected touches and as some of them are not controlled, these
factors model the real-world performance of our system.

Participants: We recruited 14 volunteers (11 males and 3
females) between the ages of 21 and 32 years for the ex-
periment. Among them, 12 were right-handed and 2 were
left-handed.

Task: The task consisted of touching 15 randomly generated
locations that were shown on the touch surface. Each loca-
tion was drawn as a circle with a cross-hair of size 20×20
mm. Each participant was asked to touch every point and
hold for two seconds using their index finger. For every lo-
cation, the system acquired the calibrated touch points re-
peatedly, between a finger-down and a finger-up event. The
system showed one location at a time, and on every finger-up
event, a new point was displayed until the end of the experi-
ment.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 in

 m
m

Users

Spread for Individual Users

0

5

10

15

20

25

1

A
cc

u
ra

cy
 in

 m
m

All users

Spread for All Users

Figure 11. Touch sensing accuracy with average spread for individual
users and all users collectively.

21

14

18

19

15

15

12

15

15

19

18

18

18

12

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
ia

m
et

er
 in

 m
m

Users

Diameter(mm) of Virtual Circular Button

18

0

5

10

15

20

25

0 1 2

D
ia

m
et

er
 in

 m
m

All users

Average Diameter (mm)

Figure 12. Accuracy of hitting a circular virtual button.

Results: In all, 3715 data points were collected from 14 par-
ticipants. We analyzed the targeting performance using two

-5

0

5

10

15

-5 0 5 10

Y
-A

xi
s

in
 m

m

X-Axis in mm

Mean Offset of all Users
User-10 (Farthest)

Origin

User-2 (Nearest)

(a) Mean offsets from target (all users).

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 0 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

User-1 User-2 User-3 User-4 User-5 User-6 User-7

User-8 User-9 User-10 User-11 User-12 User-13 User-14

(b) Distribution of user clicks with compensating mean offsets (mm).

Figure 13. Distribution diagrams.

independent measures: mean offset and spread [11, 14]. Fig-
ure 11 shows the average spread for the data collected. The
average spread in the best case is 4mm and for the worst case
is 13mm. The average spread, taking into account all data
points collectively from all users, is 8mm, which is slightly
better or in accordance with previous findings in the liter-
ature [6, 11]. The mean offset for each user is shown in
Figure 13(a) with User-10 having the farthest (largest) offset
and User-2 being the nearest (small offset) to the target.

Figure 13(b) shows the distribution of user-clicks for all 14
users with compensating offsets. Here, the origin represents
the target locations and the red markers represent the ac-
quired touch points. There were no significant difference
in results between the handedness of the users. We also cal-
culated the accuracy of hitting a circular virtual button by
accommodating 95% of the touches for each user with com-
pensating offsets. Figure 12 shows the minimum button di-
ameter for every user, with lowest (diameter = 12mm) for
User-7 and highest (diameter = 21mm) for User-1. The av-
erage diameter for all users is 18mm, which is better than
a similar experiment (28mm) conducted in [6]. In compar-
ison, the size of a finger pad is between 10 - 14mm; the
fingertip is 8 - 10 mm [3]; the recommended button size for
Microsoft Surface is 12mm and for conventional touch in-
put is 15mm [14]. We posit that the accuracy of the touches
will decrease with increase in height of the Kinect from the
surface. Future studies are needed to study this aspect.

Study 2: Touch Posture and Handedness Accuracy
We conducted a second user study to evaluate the accuracy
of recovering touch posture and handedness from depth data.

Participants: We recruited 9 volunteers (7 males and 2 fe-
males), between the ages of 22 and 34 for this experiment.

Task: Each participant was asked to perform 8 touch-poses
(Figure 9) on the surface with both their left and right hands
one after the other. Each pose was to be held for approxi-
mately 10 seconds. The participants were not restricted to
any position or orientation around the table. No visual feed-
back was provided to the participant during the study.

Results: A total of 4971 data points were collected during
the experiment. The system recognized a hand posture for
4918 of those (approx. 99%). The possible reason for less
than 100% recognition is that the users moved their hands

0

20

40

60

80

100

120

140

A
cc

u
ra

cy
 (

P
er

ce
n

ta
ge

)

Different Poses

Comaprison of Accuracies of Hand and Finger Detection

Hand Finger

Figure 14. Touch posture and handedness accuracy.

either too fast, or that their hands were not in line of sight to
the Kinect depth camera, causing data to be lost.

Figure 14 shows the identification accuracies of touch-
posture and handedness for the 16 (8 poses × 2 hands each)
different touch poses. The overall handedness identification
accuracy is 93.2%. We discarded one-finger index pose, as
our current implementation cannot distinguish the hands for
this particular pose. While the two-finger and three-finger
“no thumb” poses had an accuracy of 77% and 86% respec-
tively, their corresponding “thumb” poses had an accuracy
of 98% and 97% respectively. Thus, the presence of the
thumb is critical in identifying the handedness for two-finger
and three-finger poses using our algorithm. Our hand model
can be improved by reasoning with the contour of the pos-
ture and also convexity defects to better identify the posture.
However, this will involve more computation and it is im-
portant to consider its trade-offs in real-time applications.

The overall finger identification accuracy was 97.7%. At the
end of the user study, each participant was asked to rate their
least favorable touch-poses. Among all, seven participants
voted the four-finger poses (“thumb”, “no-thumb”, left and
right hands) and 5 participants voted the “three-finger-no-
thumb” pose as their least favorites.

DESIGN IMPLICATIONS
Surfaces supporting extended multitouch (EMT) enable a
richer and more diverse interaction design space than those
merely supporting standard multitouch. Here we briefly re-
view some of these designs in more detail.

Interaction above and beyond the surface. Existing research
has already explored interaction on and above a surface, but
we think there is more work to be done here. Touch screens
traditionally do not support hovering, but this is certainly
one of the straightforward ideas to explore. For example,
hovering over a surface could bring up a tool palette, a con-
text menu, or simply a tooltip, similar to how hovering is
handled in current mouse-based interfaces. More complex
modalities are certainly possible, including detecting volu-
metric and 3D gestures, as suggested by Wigdor et al. [28].

Identifying users. The ability to match touches to users
opens the door for personalized touch interaction. For ex-
ample, instead of relying on social protocols [21], an EMT
application can keep track of object ownership and explicitly
prevent users lacking permission from interacting with the
object. In a command and control setting, this could be uti-
lized to assign different roles to different participants, such
as a fire chief having permission to give orders to fire trucks,
whereas a police chief instead may only control squad cars.

However, our extended multitouch implementation currently
only supports user differentiation, and identifying users is a
more challenging proposition. A heuristic solution may sim-
ply assume that particular users reside in different locations
around the tabletop surface, allowing them to be identified
by their physical position around the table alone.

Recognizing posture. Our implementation has proved the va-
lidity of recovering finger and hand posture using a very sim-
ple and low-cost hardware setup. This in turn brings several
of the posture-based ideas devised by other researchers into
the realm of possibility: examples include context-sensitive
touch menus, complex gestures on and above the surface,
and providing explicit gestural feedback during training. We
look forward to seeing what the future will bring in terms of
exciting new applications of this new touch modality.

EXAMPLE: PENS WITH EXTENDED MULTITOUCH
Although natural, touch input is not suited for tasks such as
writing and sketching. These inking tasks are instead partic-
ularly suited for pen-based input, which generally has high
precision, whereas our multitouch accuracy is approximately
8mm. Multitouch input in general on all forms and modal-
ities suffer from low precision and our system is no excep-
tion. Using a pen for input, on the other hand, is a familiar
tool that exploits the users’ experience of being been trained
to use a pen right from their early days.

However, a digital pen realistically allows for only one in-
put point for interaction, constraining the input bandwidth.
Augmenting pen-based input with extended multitouch ca-
pabilities increases the users’ input bandwidth, which can
be leveraged by designers to create rich and actually natu-
ral interactions for a variety of applications. We outline a
division of labor between pen and touch input based on the
theme “the pen writes and touch manipulates” [13]. Building
on the extended multitouch technique proposed in this paper,
we present USKETCH, an advanced sketching application for
creating beautified mechanical engineering sketches that can
be used for further finite element analysis.

Palm Rejection – No Touch Points Pen Rejection (No Touch Point)

Figure 15. Palm (left) and pen (right) rejection during touch capture.

Combining Pen and Touch Input
For enabling bimanual pen and touch interactions, we added
the Mimio

TM
pen to the setup described in Figure 2. Mimio

pen technology tracks the 2D position of a digital stylus us-
ing ultrasound and infrared, and wirelessly transmits the lo-
cation to the computer when the stylus is pressed against
any flat surface. The pen can be calibrated to any surface
size and works both horizontally and vertically. The pen in-
put can then be processed and visually displayed back on the
surface using the projector. This process allows the users to
write and sketch on any surface, thus making it interactive.

Any object that touches the surface is identified as a touch
point by the Kinect sensor. Hence, the system must be able
to negate detecting the contact point of the pen as a touch
input (Figure 15). To achieve this, we take advantage of how
Kinect senses touch. When the pen is in contact with the
surface, it communicates its coordinates to the computer. We
take advantage of this coordinate information to negate any
touch points detected by the system within a small radius
of the pen contact. Similarly, when the whole hand rests
against the surface, the system detects a big white blob from
the palm’s footprint on the surface (Figure 15). The system
discards the input since it does not correspond to a touch
point. Hence, both pen and palm are conveniently discarded
by the design of how the system processes the Kinect data.
uSketch
The right part of Figure 1 shows a snapshot of the uSketch
application on the interactive surface, and Figure 16 shows
the uSketch interface with (a) a freehand sketch of a 2D-
bracket, (b) the beautified sketch with interpreted symbols,
and (c) the deformation results in ANSYS

TM
.

Figure 16. The uSketch interface showing (a) a freehand sketch of a
2D-bracket, (b) the beautified sketch with interpreted symbols, and (c)
the deformation results in ANSYSTM .

Guiard [9], proposed general principles for asymmetric bi-
manual actions comprising of three rules: (a) the dominant
hand (DH) moves within the frame of reference defined by
the non-dominant hand (NDH); (b) the sequence of motion
generally sees the NDH setting the reference frame prior to
actions with the DH being made within that context; and (c)
that the DH works at a higher level of precision than the
NDH in both spatial and temporal terms. Hence, the pen is
preferably held in the DH and both NDH and DH be used
for touch-input with the pen tucked in the DH.

Using bimanual interactions with pen and touch eliminates
the need for constant switching between modes and also the
need for user interface elements for changing visualizations
and other interactions. We posit that using such interactions
simplifies work flows and lowers task times, when compared
to the pen-only or touch-only interface.

uSketch and EMT
The uSketch tool was designed specifically for taking advan-
tage of extended multitouch. Below we outline some of the
supported actions and their motivation:

• Sketching, symbols, and text: Pen input only; pens are
optimal for content creation [13].

• Navigation: One finger from each hand, or one finger and
pen; hand is quick and precise enough for navigation.

• Deletion: Three fingers on NDH and squiggle with pen or
finger on DH; complex gesture to avoid accidental trigger.

• Context menu: Three fingers tap or down on NDH, se-
lection using DH pen or finger; complex gesture as above.

Deploying uSketch
We designed uSketch as a design-analysis tool that intro-
duces new ways for mechanical engineering students to in-
teract, explore, and learn design and analysis in the class-
room and in the laboratory. The tool provides a complete
workflow from early sketching, through beautified imagery,
and finally to finite element analysis, and is designed to
teach a wide variety of mechanical engineering concepts
in courses such as statics, strength of materials, and kine-
matics. We are currently deploying the tool in a toy de-
sign course (Purdue ME 444) where we use it to teach stu-
dents the connections between early design (creativity) and
computer-aided design (final product).

By supporting for hypotheses, calculations, and discussions,
uSketch builds a strong intuition for engineering design deci-
sions among students beyond the static content in textbooks.

CONCLUSIONS AND FUTURE WORK
We have presented a multitouch sensing approach based on
low-cost depth cameras where any physical surface, flat or
non-flat, horizontal or vertical, projected or screen, can be
instrumented with touch sensing. Our contribution goes be-
yond existing depth camera touch sensing approaches into
what we call extended multitouch, which we define as the
ability to not only sense multiple touches, but also detecting
interaction above the touch surface, recovering the user’s fin-
ger and hand posture, and distinguishing between the users
interacting with the surface. We validate the work using

two user studies gauging the accuracy of touch and posture
recognition, as well as using two sketch applications where
we begin to explore the design space of this novel idea.

We have only scratched the surface of this extended multi-
touch interaction approach, and, as discussed in the design
implications above, we can see many opportunities for future
work in this area. In particular, we envision continuing our
investigations into combining multiple interaction modali-
ties for early engineering design and sketching.

ACKNOWLEDGMENTS
This work is partly supported by the National Science Foun-
dation Partnership for Innovation Grant No. 0917959, the
Donald W. Feddersen Chaired Professorship, and the Purdue
School of Mechanical Engineering. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the sponsors.

REFERENCES
1. H. Benko and A. Wilson. DepthTouch: Using

depth-sensing camera to enable freehand interactions
on and above the interactive surface. In Proceedings of
the IEEE Workshop on Tabletops and Interactive
Surfaces, volume 8, 2009.

2. P. Brandl, C. Forlines, D. Wigdor, M. Haller, and
C. Shen. Combining and measuring the benefits of
bimanual pen and direct-touch interaction on horizontal
interfaces. In Proceedings of the ACM Conference on
Advanced Visual Interfaces, 154–161, 2008.

3. K. Dandekar, B. I. Raju, and M. A. Srinivasan. 3-D
finite-element models of human and monkey fingertips
to investigate the mechanics of tactile sense. Journal of
Biomechanical Engineering, 125(5):682–691, 2003.

4. C. T. Dang, M. Straub, and E. André. Hand distinction
for multi-touch tabletop interaction. In Proceedings of
the ACM Conference on Interactive Tabletops and
Surfaces, 101–108, 2009.

5. P. Dietz and D. Leigh. DiamondTouch: a multi-user
touch technology. In Proceedings of the ACM
Symposium on User interface Software and
Technology, 219–226, 2001.

6. A. Dippon and G. Klinker. KinectTouch: accuracy test
for a very low-cost 2.5D multitouch tracking system. In
Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces, 49–52, 2011.

7. D. Freeman, H. Benko, M. R. Morris, and D. Wigdor.
ShadowGuides: visualizations for in-situ learning of
multi-touch and whole-hand gestures. In Proceedings
of the ACM Conference on Interactive Tabletops and
Surfaces, 165–172, 2009.

8. M. Frisch, J. Heydekorn, and R. Dachselt. Investigating
multi-touch and pen gestures for diagram editing on
interactive surfaces. In Proceedings of ACM Conference
on Interactive Tabletops and Surfaces, 149–156, 2009.

9. Y. Guiard. Asymmetric division of labor in human
skilled bimanual action: The kinematic chain as a
model. J Mot Behav, 19(4):486–517, 1987.

10. J. Y. Han. Low-cost multi-touch sensing through
frustrated total internal reflection. In Proceedings of the
ACM Symposium on User Interface Software and
Technology, 115–118, 2005.

11. C. Harrison, H. Benko, and A. D. Wilson. OmniTouch:
wearable multitouch interaction everywhere. In
Proceedings of the ACM Symposium on User Interface
Software and Technology, 441–450, 2011.

12. C. Harrison, J. Schwarz, and S. E. Hudson. TapSense:
enhancing finger interaction on touch surfaces. In
Proceedings of the ACM Symposium on User Interface
Software and Technology, 627–636, 2011.

13. K. Hinckley, K. Yatani, M. Pahud, N. Coddington,
J. Rodenhouse, A. Wilson, H. Benko, and B. Buxton.
Manual deskterity: an exploration of simultaneous pen
+ touch direct input. In Extended Abstracts of the ACM
Conference on Human Factors in Ccomputing Systems,
2793–2802, 2010.

14. C. Holz and P. Baudisch. The generalized perceived
input point model and how to double touch accuracy by
extracting fingerprints. In Proceedings of ACM
Conference on Human Factors in Computing Systems,
581–590, 2010.

15. W. Javed, K. Kim, S. Ghani, and N. Elmqvist.
Evaluating physical/virtual occlusion management
techniques for horizontal displays. In
Human-Computer Interaction - Proceedings of
INTERACT, volume 6948 of Lecture Notes in
Computer Science, 391–408. Springer, 2011.

16. M. Kaltenbrunner. reacTIVision and TUIO: A tangible
tabletop toolkit. In Proceedings of the ACM Conference
on Interactive Tabletops and Surfaces, 9–16, 2009.

17. P. Lopes, R. Jota, and J. A. Jorge. Augmenting touch
interaction through acoustic sensing. In Proceedings of
the ACM International Conference on Interactive
Tabletops and Surfaces, 53–56, 2011.

18. P. Lopes, D. Mendes, B. Araújo, and J. A. Jorge.
Combining bimanual manipulation and pen-based input
for 3D modelling. In Proceedings of the Eurographics
Symposium on Sketch-Based Interfaces and Modeling,
15–22, 2011.

19. S. Malik and J. Laszlo. Visual touchpad: a two-handed
gestural input device. In Proceedings of the ACM
International Conference on Multimodal Interfaces,
289–296, 2004.

20. N. Marquardt, J. Kiemer, D. Ledo, S. Boring, and
S. Greenberg. Designing user-, hand-, and
handpart-aware tabletop interactions with the TouchID
toolkit. In Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces,
21–30, 2011.

21. M. R. Morris, K. Ryall, C. Shen, C. Forlines, and
F. Vernier. Beyond ’social protocols’: multi-user
coordination policies for co-located groupware. In
Proceedings of the ACM Conference on Computer
Supported Cooperative Work, 262–265, 2004.

22. D. J. Sturman and D. Zeltzer. A survey of glove-based
input. IEEE Computer Graphics and Applications,
14(1):30–39, Jan. 1994.

23. D. Vogel and R. Balakrishnan. Occlusion-aware
interfaces. In Proceedings of the ACM Conference on
Human Factors in Computing Systems, 263–272, 2010.

24. D. Vogel and G. Casiez. Hand occlusion on a
multi-touch tabletop. In Proceedings of ACM
Conference on Human Factors in Computing Systems,
2307–2316, 2012.

25. F. Wang, X. Cao, X. Ren, and P. Iran. Detecting and
leveraging finger orientation for interaction with
direct-touch surfaces. In Proceedings of ACM
Symposium on User Interface Software and
Technology, 23–32, 2009.

26. R. Y. Wang and J. Popović. Real-time hand-tracking
with a color glove. ACM Transactions on Graphics,
28(3), 2009.

27. M. Weiser. The computer for the twenty-first century.
Scientific American, 3(265):94–104, Sept. 1991.

28. D. Wigdor, H. Benko, J. Pella, J. Lombardo, and
S. Williams. Rock & rails: extending multi-touch
interactions with shape gestures to enable precise
spatial manipulations. In Proceedings of ACM
Conference on Human Factors in Computing Systems,
1581–1590, 2011.

29. A. D. Wilson. TouchLight: an imaging touch screen
and display for gesture-based interaction. In
Proceedings of the ACM International Conference on
Multimodal interfaces, 69–76, 2004.

30. A. D. Wilson. Using a depth camera as a touch sensor.
In Proceedings of the ACM Conference on Interactive
Tabletops and Surfaces, 69–72, 2010.

31. A. D. Wilson and H. Benko. Combining multiple depth
cameras and projectors for interactions on, above and
between surfaces. In Proceedings of the ACM
Symposium on User Interface Software and
Technology, 273–282, 2010.

32. J. O. Wobbrock, M. R. Morris, and A. D. Wilson.
User-defined gestures for surface computing. In
Proceedings of the ACM Conference on Human Factors
in Computing Systems, 1083–1092, 2009.

33. K.-P. Yee. Two-handed interaction on a tablet display.
In Extended Abstracts of the ACM Conference on
Human Factors in Computing Systems, 1493–1496,
2004.

34. R. Zeleznik, A. Bragdon, F. Adeputra, and H.-S. Ko.
Hands-on math: a page-based multi-touch and pen
desktop for technical work and problem solving. In
Proceedings of the ACM Symposium on User Interface
Software and Technology, 17–26, 2010.

35. H. Zhang, X.-D. Yang, B. Ens, H.-N. Liang,
P. Boulanger, and P. Irani. See me, see you: a
lightweight method for discriminating user touches on
tabletop displays. In Proceedings of the ACM
Conference on Human Factors in Computing Systems,
2327–2336, 2012.

