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Figure 1: The Dynamic Insets technique for a map of the Chicago area showing insets for off-screen nodes with their context.

Abstract
Maintaining both overview and detail while navigating in graphs, such as road networks, airline route maps, or
social networks, is difficult, especially when targets of interest are located far apart. We present a navigation
technique called Dynamic Insets that provides context awareness for graph navigation. Dynamic insets utilize the
topological structure of the network to draw a visual inset for off-screen nodes that shows a portion of the sur-
rounding area for links leaving the edge of the screen. We implement dynamic insets for general graph navigation
as well as geographical maps. We also present results from a set of user studies that show that our technique is
more efficient than most of the existing techniques for graph navigation in different networks.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Interaction styles I.3.6 [Computer Graphics]: Methodology and Techniques—Interaction techniques

1. Introduction

Interacting with road networks in a handheld GPS or on map
websites such as Google Maps is just one example of large-
scale networks that lots of people use in their everyday life,
and there exist many other graph applications for social net-
works (such as on Facebook), large hierarchies, and network
topologies. Navigation in these networks is usually done us-

ing a sequence of pan and zoom operations [FB95], some-
times with a bird’s eye view. For example, to move from one
position in a large network to another position far away, the
common approach is to zoom out, pan to that position, and
finally zoom in [vWN03]. However, this can be tedious, in-
effective, and even disorienting [Fur86, FB95].

A recent trend is to utilize the topology of a graph to en-
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hance navigation; examples include Link Sliding and Bring
& Go [MCH∗09]. However, these techniques do not provide
awareness of the context around destination nodes, which is
useful information when deciding where to go next.

In this paper, we present a technique called Dynamic In-
sets that supports multi-focus interaction during navigation
in graphs. Drawing inspiration from cartography, we add dy-
namic map insets that show a small part of the surrounding
area for the destinations of links leaving the boundary of the
screen (Figure 1). Insets can be clicked to automatically an-
imate the user’s viewpoint to that destination. We also intro-
duce interest functions that control which off-screen nodes
should be made visible through insets. By choosing between
different interest functions, the user can opt to show all
neighboring nodes, or filter to show only nearby gas stations
(for a map application), central actors (for a social network),
or wireless access points (for network topology design).

Effective graph navigation techniques are essential for
managing the large graphs that are common to many graph-
ical applications [HMM00]. To validate the new technique,
we also perform a controlled experiment involving human
subjects where we compare it to the Bring & Go technique
of Moscovich et al. [MCH∗09]. Our results show that the
technique significantly helps users in maintaining an aware-
ness of both overview and details of the network. We follow
up with two qualitative studies where we apply dynamic in-
sets to social networks and geographic maps. Our findings
suggest that the technique also scales to larger graphs, and
that it does not interfere with mental map creation.

2. Related Work

Herman et al. [HMM00] emphasize navigation and interac-
tion techniques as essential for understanding large graphs.
Here we review relevant work on navigation, off-screen
awareness, and specific graph navigation techniques.

2.1. Common Navigation Techniques

Pan and zoom are common navigation techniques which
control the position and dimension of the graphical viewport
on the visual space. Since the original infinitely zoomable
canvas proposed in Pad [PF93], there has been a large
amount of work in this area. Furnas and Bederson [FB95]
designed a space-scale formalism for describing and under-
standing pan and zoom interactions. However, pan and zoom
can be tedious when accessing distant objects [Fur86].

Splitting the screen into smaller viewports is another stan-
dard method for large visual spaces, and gives the user
awareness of multiple regions of the space. A special type of
split-screen technique is called overview and detail, where
one of the viewports shows a bird’s eye view of the area sur-
rounding the other viewport (the detail). The overview often
includes a visual cue indicating the current viewport, and can

be used to navigate. Hornbæk and Frøkjær [HF01] showed
that overview and detail techniques can outperform panning
and fisheye views for some tasks. Because overviews often
occupy small screen space, the large scale factor becomes a
hindrance in finding specific landmarks or following a link.

A third approach is to distort the visual space nonlinearly
to ease navigation. For example, fisheye views [Fur86] mag-
nify the focus region while showing the surrounding context
in less detail. Elmqvist et al. [EHRF08] propose a space-
folding technique that combines different parts of the vi-
sual space so that multiple focus points and their surround-
ing context are visible. However, the transition between fo-
cus and context needs to be carefully designed [PA08] and
fisheyes may cause problems for targeting [Gut02].

2.2. Navigation to Off-Screen Targets

Visual Cues. Some techniques have been specifically
designed to provide awareness of off-screen targets.
Halo [BR03], and its descendants Wedge [GBGI08] and
EdgeRadar [GI07], indicate off-screen targets by adding vi-
sual cues to the border of the viewport. While these tech-
niques give users awareness of off-screen targets, they do
not provide a mechanism to reach them.

Proxies. Proxy-based techniques provide local copies of
distant or off-screen targets to ease their selection; examples
include drag-and-pop [BCR∗03] and the Vacuum [BB05].
Because these techniques are primarily designed for selec-
tion rather than navigation, they do not provide the target
context, forcing users to visit each target to see the context.

Proxies+Context. One of the most relevant techniques
to ours is WinHop [PNIG07], which introduces an inset to
let users explore distant regions without leaving the current
location. However, WinHop does not take advantage of the
network topology, so the user must first select the node to ex-
pand. This affects its ability to scale to large spaces. Frisch
and Dachselt [FD10] recently proposed a proxy+context
technique for UML class diagrams where connected classes
outside the current view are projected onto an interactive
border region. However, like WinHop, their technique re-
quires extra interaction to see a preview of off-screen targets.

2.3. Navigation in Networks

Distortion Lenses. Some distortion techniques are specifi-
cally designed for graphs. EdgeLens [WCG03] interactively
distorts links around the focus point to remove clutter. Most
relevant to us is the Bring-Neighbor Lens [TAvHS06], an in-
teractive lens that temporarily modifies the graph layout to
show all neighbors of the node in focus. However, this par-
ticular lens was not designed for navigation: users can gain
awareness of the neighbors by temporarily bringing them
into the viewport, but are still required to use navigation
techniques such as panning and zooming to reach them.
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Figure 2: Dynamic construction of insets for a simple graph consisting of 7 nodes and 8 edges. A is the source node (ns).

Degree-of-Interest Techniques. Furnas [Fur86] showed
that the visibility of graph features can be controlled by the
user through a degree of interest (DOI) function. Nodes are
ranked according to their topological distance to the focus
node in the graph. The graph may then be distorted to show
the most interesting information to the user. This principle
has been employed for hierarchies [PGB02] and in large net-
works [GKN05, vHP09]. However, these techniques deform
the graph, potentially compromising the user’s mental map.

Topology-Aware Navigation. Recent work [MCH∗09]
presented two navigation techniques taking advantage of the
topology of the network to ease navigation. The first tech-
nique, Link Sliding, provides guided panning and zooming
when continuously dragging along a link. The second tech-
nique, Bring & Go, gathers the neighbors of a particular
node and enables the user to navigate to one of these. These
techniques were compared to overview+detail and pan and
zoom techniques. Bring & Go outperformed both of these,
while Link Sliding had mixed results. Regardless, from all
the techniques presented in this section, these are most rel-
evant to ours. We designed dynamic insets to overcome the
principal drawback of Bring & Go: the lack of context for
off-screen targets, requiring the user to visit each node.

3. Dynamic Insets

Dynamic Insets is a topology-aware navigation technique
for providing context awareness while traversing large-scale
networks. It uses the connectivity of the graph to bring off-
screen neighbors of on-screen nodes—and their context—
into the viewport as insets (Figure 1). In this way, multiple
destinations for visual links leaving the edge of the screen
can be explored without actually leaving the current loca-
tion; this is more generally known as multi-focus interac-
tion [EHRF08]. The insets are created by cutting out a re-
gion of the visual space surrounding the off-screen neigh-
boring nodes and bringing these regions into the main view-
port as small, nested viewports. Figure 2 shows the basic

idea, where a simple network with three off-screen nodes
are shown on the screen using dynamically created insets.

While the above description captures the essence of the
dynamic insets technique, there exist several details concern-
ing which off-screen nodes to include, how insets are cre-
ated, how they are laid out, and how to display their distance
from the current focus. We discuss these issues below.

3.1. Degree-of-Interest Function

Instead of trying to visualize all off-screen targets, such
as existing off-screen navigation techniques [PNIG07], dy-
namic insets uses the connectivity of the graph itself to de-
termine which off-screen targets to include. This means that
the technique can handle even large graphs.

To give additional expressive power to the technique,
we use the concept of a degree-of-interest (DOI) func-
tion [Fur86] to rank all off-screen nodes in terms of their
interest for a particular task. The simplest imaginable DOI
function is a binary one that uses a neighbor relation between
the set of visible nodes V and an off-screen node n:

DOI(n,V ) =

{
1 ∃v ∈V : neighbor(n,v)
0 otherwise

In other words, this function will assign 1 to all neighbors
of currently visible nodes, and 0 to all others. An important
special case for this situation is where the user has selected
a particular source node ns to use as a focus point (instead of
all currently visible nodes). The above DOI function can be
trivially adapted for this purpose by passing V = {ns}.

Given any DOI function of the above format, we rank all
off-screen nodes according to their current DOI values. A
certain number of the highest ranked off-screen nodes will
be selected depending on the number of dynamic insets to
create. Ties may be arbitrarily broken, for example using dis-
tance, so that nearby nodes are given precedence over more
distant ones. However, a better approach is to devise a mod-
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ified DOI function that takes distance into account:

DOIdist(n,V ) = DOI(n,V )/dist(n)

where dist(n) is the distance from n to the edge of the screen.

The default setting for our technique is to use the standard
DOI function defined above, but to allow the user to select
a focused source node ns by clicking on it. Clicking outside
any node on the visual space will clear the current source
node and return to the default setting.

In addition, more advanced interest functions are also pos-
sible, including interest functions composed of several sim-
pler interest functions, or which make use of domain-specific
information. Here follows examples of such DOI functions:

• For a GPS, interests could be assigned for nearby gas sta-
tions, shopping malls, or hospitals, weighted by distance;

• For airline route selection (such as the Delta Air Lines
Route Map at http://delta.innosked.com/), destina-
tions could be ranked according to their ticket price, travel
duration, or number of stops; and

• For social network analysis, the interest of off-screen
neighbors could be based on the connection strength.

3.2. Insets

Given that we have derived which off-screen nodes to make
visible on the screen, the next step is to actually create the
insets. Insets are small rectangular regions containing the
target node and its surrounding context in the visual space.
They have a visual border to differentiate them from the
main viewport, and, if possible, they are laid out on the
edge of the screen to coincide where the link they are as-
sociated with leaves the main viewport (see below). Initially,
the zoom factor in the inset is the same as the main view.

Figure 2(c) shows the inset for three off-screen nodes in
a simple graph. Insets are not static, but the viewport in-
side each inset area can be interacted with, such as through
panning or zooming in and out (left-dragging and using the
mouse wheel in our implementation, respectively). Clicking
an inset will animate the position of the user’s viewport to
the location of the node in the inset. This both provides a
quick way of navigating in the graph, and also makes the
path from source to destination clearly visible to the user,
thereby increasing their awareness of the whole visual space.

3.3. Inset Layout

We have designed a simple layout algorithm for positioning
insets along the edge of the screen. It has two constraints:

• Align insets with their links. Insets should be placed so
that their location on the edge of the screen coincides with
the outgoing visual link that it is associated with. Ideally,
the visual link on the main viewport and on the inset view-
port should align perfectly to maximize the visual connec-
tion (all three insets in Figure 2(c) exhibit this property).

• Avoid total occlusion. For situations with many outgoing
links, insets may start to overlap. This is acceptable as
long as no single inset is fully occluded by another.

For overlapped insets, the algorithm accordingly stacks
the insets as shown in Figure 3. We also implement a pag-
ing interaction technique similar to that in the Mélange tech-
nique [EHRF08], where the user can hover the mouse cursor
over an inset to bring it to the top.

Figure 3: Insets that overlap are stacked so that all insets
are visible. This allows them to be paged through by hover-
ing the mouse over the visible part, bringing it to the top.

3.4. Drag-to-Fan

Sometimes paging between insets is not sufficient if the
number of stacked insets is very high, such as for a central
actor in a social network with a degree in the hundreds or
thousands. We propose the drag-to-fan technique (Figure 4)
to support this situation, where the user can separate (fan
out) stacked insets by dragging the mouse on an inset stack.
The mouse cursor then controls the radius of a semi-circle
whose perimeter will be used to space out the stacked insets.
The inset stack essentially becomes a pie menu, and users
can themselves control how far they have to displace insets
to be able to see the desired destination.

Accordingly, selecting an inset using drag-to-fan is done
by “dialing in” the inset, i.e., through the angle between the
pointer and the original click. What happens when releasing
the button is configurable: the straightforward approach is
that this means travel to the inset, just like clicking on an in-
set. However, because this does not allow users to cancel the
travel operation if they do not find the inset they are looking
for in the stack, our implementation just changes the stack-
ing order to bring the selected node to the top of the stack.

Drag-to-fan can also be used for iteratively exploring in-
set neighbors (i.e., neighbors of neighbors) by dragging on
an inset with the right mouse button pressed. This would
cause the neighbors of that inset to expand along the perime-
ter of the circle, thereby matching the iterative navigation
functionality of the Bring & Go technique.

3.5. Distance Awareness

Our new technique does not intrinsically support distance
awareness in its visual representation such as, for instance,
Bring & Go [MCH∗09] does. Nevertheless, we can easily
extend the representation of individual insets to incorporate
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Figure 4: Interaction sequence for the drag-to-fan tech-
nique. The user presses and holds the mouse button on an
inset, then drags to fan the insets along the perimeter of a
semi-circle. Releasing the button over an inset will execute
the configured action (travel to, bring to top, etc).

this information. Here are a few different alternatives (not
implemented or evaluated in this paper):

• Number: The simplest approach is to add a number for
the distance from the edge of the screen to the destination
node shown in the inset (Figure 5(a)).

• Border Color: A color scale (i.e., a heatmap) can be used
for the inset border to convey distance (Figure 5(b)).

• Transparency: Changing the inset transparency: distant
nodes are translucent, nearby ones opaque (Figure 5(c)).

• Size: Scaling the size of the inset so that distant destina-
tions are smaller than nearby ones (Figure 5(d)).

• Overview map: This could show both the extents of the
main viewport as well as the actual position of each inset.

Figure 5: Four distance visualizations: (a) actual number,
(b) border color, (c) inset transparency, and (d) inset size.

3.6. Implementation Notes

We have implemented dynamic insets in a graph visualiza-
tion built using Java and the Piccolo [BGM04] toolkit. Our
algorithm first calculates DOI values for all off-screen nodes
and ranks them using a priority queue. Given a specific bud-
get N of the maximum number of insets to display, the N
most highly-ranked off-screen nodes are selected and cam-
eras are placed at their locations. A layout algorithm tries to
optimize the location of the insets associated with each cam-
era on the screen border. This algorithm will first strive to
preserve link alignment, but, failing that, will stack overlap-
ping insets to ensure that no inset is fully occluded. If there
are two insets for the same node but for different links, the
layout algorithm will combine these insets if they are located
within a specific distance of each other on the canvas.

4. Controlled Experiment

We conducted a study to validate that the dynamic insets
technique does provide efficient graph navigation. Here we
describe our methods, present the results, and discuss them.

4.1. Method

4.1.1. Participants and Apparatus

We recruited 12 participants balanced for age and gender,
and screened to not be color-blind. All participants indicated
that they used computers more than 16 hours/week. The par-
ticipant pool consisted of 6 males and 6 females, with ages
ranging from 22 to 47. Each participant used a 3.00 GHz
dual-core PC with 4 GB of memory, running Microsoft Win-
dows Vista, and equipped with a 21” flat-screen monitor set
to a resolution of 1600×1200 (1000×1000 window size).

4.1.2. Techniques

We used our Dynamic Insets (DI) technique as described in
this paper. Drag-to-fan was disabled to minimize extra inter-
action. Moscovich et al. [MCH∗09] showed that navigation
techniques taking advantage of graph topology outperforms
traditional techniques such as pan and zoom, and bird’s eye
views. In particular, the Bring & Go (BG) technique pre-
sented in that paper outperformed all other techniques. Thus,
we decided to compare our technique to Bring & Go.

We reimplemented Bring & Go, using standard values for
the animation speed for bringing neighbors (500ms) and for
traveling to destinations (600ms).

4.1.3. Tasks

We used the first task used by Moscovich et al. [MCH∗09]
since it captures awareness of direct neighbors. We also in-
cluded two additional tasks to capture context awareness.
The three tasks tested were the following:

CN CountNeighbors. How many neighbors of the node
named “cat” are vegetables?

CC CloseContext. Which neighbor of the “cat” node is
enclosed by a red circle? (The circle diameter is small
enough to be fully visible in the insets.)

DC DistantContext. Which neighbor of the “cat” node is
enclosed by a red circle? (The circle diameter is larger
than the size of the insets.)

We included two context tasks to force participants to
have to zoom and pan the insets in the DI condition. We
wanted to investigate whether this extra interaction would
cause the technique to exhibit worse performance than BG.

4.1.4. Datasets

To measure the performance of the techniques in realis-
tic conditions, we selected two datasets with two densities:
sparse vs. dense. To allow us to strictly control the network
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topology, we did not generate complete graphs, but only a
subset of those nodes and edges involved in a particular task.
This also allows us to keep the experiment to a reasonable
length and limit user fatigue and frustration (potentially in-
duced by visiting a very large number of neighbors).

To achieve this, our graphs had a star structure with the
source node, labeled “cat”, at the center of the star. We then
created 20 potential destination nodes as neighbors to “cat”
(level 1), each in turn having an additional four local neigh-
bors (level 2). Thus, we had a total of 101 nodes and 100
edges. All level 1 neighbors were located at random dis-
tances from the source node, but sufficiently distant to be
outside of the viewport when viewing the source “cat” node
at default magnification level (pan and zoom was disabled).
Level 2 neighbors were arranged equidistantly in a circle
around their level 1 parent—the size of this circle was small
enough to fit inside the insets for the CC task, whereas it was
larger than the insets for the DC task (requiring zooming).

To achieve different graph densities, we varied only the
concentration of the destination nodes (level 1) in space:

• Sparse. Neighbors are equally distributed in a circle
around the source node (Figure 6(a)).

• Dense. Neighbors are placed in a 90◦ arc centered around
the horizontal to the right of the source (Figure 6(b)).

This strategy lets us keep the number of neighbors to visit
stable while reproducing the artifacts induced by both sparse
and dense graphs. More specifically, the dense case causes
high overlap for insets that mimics a large graph without pe-
nalizing the BG technique. For the DI technique, however,
users will be forced to page between insets to find the correct
target. Again, we wanted to investigate whether this extra in-
teraction would impact the performance of the DI technique.

(a) Sparse - CloseContext. (b) Dense - CloseContext.

Figure 6: Social network with the dynamic insets technique.

4.1.5. Experimental Design

Given the above factors, we used a within-subject full-
factorial design: 2 navigation techniques (N) × 2 densities
(D) × 3 tasks (T ) × 3 repetitions = 36 unique conditions.
We counterbalanced the order of the techniques. The order of
tasks was fixed whereas density was randomized and graphs
were randomly generated for each trial, including the num-
ber of targets (for CN), and the position of the red circle (for

CC and DC). With 12 participants, we collected data for a
total of 432 individual trials.

4.1.6. Procedure

Participants received training before each technique and
each task. We ensured they answered correctly before per-
forming the timed tasks. For each trial, participants clicked
on a button to indicate that they had finished reading the de-
scription of the task and were ready to begin, and pressed the
space bar when they were done. The application recorded
accuracy and completion time. The completion timer started
only after each navigation technique had been first activated
(i.e., after the initial BG animation had ended). We did not
enforce any time limit. After the experiment, we collected
user preferences and comments using a questionnaire. The
study lasted approximately one hour, including the initial
training session and the post-experimental questionnaire.

4.1.7. Hypotheses

H1 For CountNeighbors, DI will perform as well as BG for
both correctness and completion time.

H2 For CloseContext, DI will be faster than BG because
there is no need to travel to a neighbor to see its context.

H3 For DistantContext, DI will be faster than BG in the
sparse graph because panning and zooming in each in-
set for DI is easy. However, for dense graphs, BG will be
faster because the insets in DI overlap with each other,
requiring additional interaction.

4.2. Results

We averaged measurements for all repetitions for each con-
dition. Below we discuss these results in more detail.

4.2.1. Correctness

Correctness was high: 97 % across all tasks. Table 1 sum-
marizes the main effects on correctness for all factors, an-
alyzed using logistic regression. As the table shows, only
Task T had a significant effect. We studied this using a
Tukey HSD, and found that the only significant difference
was that the CN task was less accurate than the CC task
(|t| = 2.05, p = .04). For the CN task, the mean correctness
was 93 % for both navigation types with no significant dif-
ference between them (F(1,11) = .08, p = 0.78).

Task Factors df, den F p
All Navigation type (N) 1, 11 0.08

Density (D) 1, 11 0.08
Task (T) 2, 22 3.36 *

* = p≤ 0.05, ** = p≤ 0.001.

Table 1: Effects of factors on errors (logistic regression).
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4.2.2. Completion Time

Table 2 summarizes the significant effects on completion
time using a repeated-measures analysis of variance (RM-
ANOVA). We found that the completion time violated the
normality assumption of the ANOVA, so we analyzed the
logarithm of the times. Other assumptions were met. Fig-
ure 7 shows boxplots for the completion time as a function
of the navigation type N and other factors. In particular, we
analyzed the task factor T using a Tukey HSD and found that
all pairwise differences were significant (p < .001) in the or-
der DC > CN > CC (decreasing time, CC was fastest).

Task Factors df, den F p
All Navigation type (N) 1, 11 205.37 **

Density (D) 1, 11 2.31
Task (T) 2, 22 85.97 **

V * T 2, 22 229.75 **
D * T 2, 22 9.82 **

V * D * T 2, 22 3.46 *
CN Navigation type (N) 1, 11 6.26 **

Density (D) 1, 11 1.92
CC Navigation type (N) 1, 11 559.58 **

Density (D) 1, 11 7.59 *
DC Navigation type (N) 1, 11 34.93 **

Density (D) 1, 11 3.89
* = p≤ 0.05, ** = p≤ 0.001.

Table 2: Effects of factors on time (RM-ANOVA).

4.3. Discussion

We can summarize our findings as follows:

• Bring & Go is faster (by 15% in completion time) than
dynamic insets for CountNeighbors, but not more accu-
rate (partially confirming H1);

• Dynamic insets are faster (89%) than Bring & Go for the
CloseContext task (confirming H2); and

• Dynamic insets are faster (44%) than Bring & Go for the
DistantContext task (partially confirming H3).

4.3.1. Explaining the Results

The results from our study obey our intuition, but there are
some surprises as well. Collectively, as we correctly hypoth-
esized, dynamic insets are faster than the Bring & Go tech-
nique (Figure 7(a)). This is clearly an effect of the user be-
ing able to see the off-screen nodes along with their context
without the need to travel to each node.

However, the fact that dynamic insets were significantly
slower than Bring & Go for the CountNeighbor task is a sur-
prise (Figure 7(b)); we had expected the techniques to be
comparable in time. We think the reason for this effect is that
users had more screen space to cover for DI than for BG: for
Bring & Go, all neighbors are grouped together close to the

center node, whereas for dynamic insets, the neighbors are
spread out in insets placed around the edge of the screen.

As hypothesized, dynamic insets are significantly faster
than Bring & Go for the CC task (Figure 7(b)). According to
the same figure, they are also faster for the DC task, which
we had not anticipated. It seems that the benefit of being
able to see the context surrounding a node without having to
travel there outweighs the extra interaction needed to page
between stacked insets in the dense case. In fact, density
had no significant impact on completion time (Figure 7(c)).
While surprising, this shows that both Bring & Go and dy-
namic insets are robust against locally high node densities.

The post-questionnaire results also showed that all partic-
ipants preferred DI to BG. Most of them explained that BG
required them to travel to the neighbors’ locations to assess
the context, whereas the context was easily accessible on the
viewport using DI. Several participants stated that even with
insets overlapping and the need to use the zoom inside the
inset, DI was still far less tedious to use than BG.

4.3.2. Limitations and Generalizations

To keep the experiment at a reasonable length, we did not
include standard techniques such as pan and zoom, and
bird’s eye views. We based this decision on Moscovich et
al.’s [MCH∗09] study that demonstrated that the Bring & Go
technique outperformed these. From our study results, we
can conclude that dynamic insets outperform Bring & Go for
all context-related tasks. Therefore, we can reasonably argue
that dynamic insets outperform standard techniques such as
pan and zoom or bird’s eye views for these tasks.

However, further research is required to study how these
techniques help users maintain a mental map of the network.
For example, Bring & Go distorts the network (potentially
breaking the users’ mental map) but uses the layout of the
neighbors brought to maintain distance awareness. Dynamic
insets do not distort the network but introduce visual encod-
ings for indicating the distance. It is difficult to evaluate the
impact of these compromises, and techniques such as pan
and zoom may perform better here for mental map building.

We opted to disable drag-to-fan and as well as iterative
neighbor navigation for both techniques to keep the com-
plexity of the experiment and the dataset low. Future studies
are needed to investigate navigation performance for itera-
tive invocations of these two techniques.

Another potential limitation is that our controlled experi-
ment uses a tree instead of a full graph. Our motivation was
that we wanted to study the canonical graph navigation task,
i.e., navigating from one node to another, and in such sit-
uations, there is no need to model the full graph. Also, we
performed our experiment using a small network consist-
ing of only 101 nodes and 100 edges. We argue that dy-
namic insets and Bring & Go only act on local sub-graphs
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(a) All tasks combined. (b) Task T . (c) Density D.

Figure 7: Completion time as function of navigation type N and the other experimental factors.

and thus that the results found in our experiment are gen-
eralizable to larger networks, particularly for small-world
networks [WS98] (such as social networks) that are locally
dense but globally sparse. Finally, in the dense case we do
not increase the number of neighbors but only their spatial
arrangement (all to one side of the starting node). This is so
that the task is equally difficult for BG, but potentially more
difficult for DI due to overlapping insets.

Nevertheless, to address all of these issues, we study dy-
namic inset performance in follow-up experiments involving
larger graphs of a more realistic nature, described next.

5. Examples and Follow-Up User Studies

To showcase the applications of dynamic insets, we designed
examples for two general applications: social networks and
maps. For each application, we conducted follow-up user
studies with 6 new participants recruited from the general
population. We aimed at getting feedback on the usability
and effectiveness of dynamic insets to navigate large visual
spaces. We were also interested in studying if our navigation
technique interfered with the mental map of the participants.

Metric (endpoints) GeoMap SocNet
Efficiency (low/high) 4.00 (0.89) 2.83 (1.17)
Enjoyability (low/high) 4.00 (0.63) 2.83 (0.98)
Ease of use (low/high) 4.50 (0.55) 3.83 (0.98)
Visual clutter (low/high) 3.50 (0.84) 4.00 (0.63)
Aids mental map (no/yes) 4.50 (0.55) 2.67 (1.63)
Context utility (low/high) 4.67 (0.52) 4.00 (0.82)
Use in daily work? (no/yes) 3.83 (0.75) 2.67 (1.03)

Table 3: Subjective ratings for follow-up studies (Likert
scale 1-5 averages, standard deviations in parentheses).

5.1. Geographic Maps

The inspiration for the dynamic insets technique comes from
cartography, and, not surprisingly, there is excellent poten-
tial for using the technique for cartographic applications. To
begin realizing this potential, we implemented a map sce-
nario that uses static (i.e., not live) data from Google Maps.
Figure 1 shows a map of Chicago and its environs. We have
modeled a connectivity graph (invisible) for a few locations
outside of the viewport; insets are automatically created for
these and laid out on the edge of the screen. This example
clearly shows the benefit of contextual information from the
geographical features visible in the insets.

Because we are currently only modeling connectivity, and
not the actual geographical road network, insets are placed
in the direction of the destination, and not on the road. This
is a limitation of our example and not the technique itself.

Our map application is similar to existing work in car-
tography; for example, Karnick et al. [KCJ∗10] present a
method for visualizing route maps with multiple focus points
by showing overview and detail views of the route within a
single visual frame. However, their goal is to provide a static
route map rather than to facilitate navigation.

5.1.1. Follow-up User Study

We engaged 6 new participants (4 male, 2 female, all used
computers more than 16 hours/week) in a follow-up user
study to perform tasks using dynamic insets on a geographic
map of the Chicago area. This scenario lasted around 30
minutes. All 6 participants were excited with the technique
and commented in the first few minutes how useful it would
be in their everyday tasks when navigating geographical
maps. Three of them mentioned that training was not even
needed to use dynamic insets and that navigation was “so
much easier than with traditional zooming and scrolling.”

All participants successfully performed some 20 graph-
related tasks such as finding nodes, counting neighbors,
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identifying clusters, following paths, etc. We also asked
them to revisit previously visited locations at different stages
of the exploration. Geographical features on the map—
labels, roads, cities, parks, and water—provide very rich
context and most participants explained that after 5 min-
utes of exploration, they could quickly assess which part of
the map the insets were from. We were surprised to observe
almost 100% performance in revisitation tasks. One partic-
ipant could exactly remember the inset configurations and
found previously visited locations using long series of inset
revisitation. This participant was also able to revisit different
places using panning when explicitly asked to do so. Over-
all, these findings indicate that the technique did not interfere
with participants building mental maps of the visual space.

The center column in Table 3 shows subjective ratings for
the map scenario. As the numbers show, participants liked
this scenario and thought the technique was easy-to-use and
enjoyable. They did remark on the high visual clutter that
arises in some situations, and asked for a way to control the
creation or filtering of insets. However, all six noted this as
an additional desirable feature, and not a scalability issue.

5.2. Social Networks

Social networks are the canonical application of graph vi-
sualization. Using our Java framework for dynamic insets,
we implemented a simple social network visualization and
utilized our technique to showcase how navigation can be
improved in such networks. The tool reads GraphML files
and renders the graph with icons for each individual node
and colored clusters in the viewport background (Figure 8).

5.2.1. Follow-up User Study

The same 6 participants as in the study above used our
visualization tool to explore a large social network. Our
dataset was the ACM AVI conference co-authorship net-
work: a large graph with 450 authors and approximately
1,000 edges (communicating co-authorship), laid out using
a lin-log graph layout. We added 16 node clusters to provide
some context to the network. To ease the training and tasks,
we told our participants that this network represented friends
grouped by their music preferences. Participants were briefly
instructed in how to use the technique and then followed a
task sheet to perform about 20 graph-related tasks. The sce-
nario lasted approximately 30 minutes.

The rightmost column in Table 3 shows subjective ratings
for the social network study. Ratings are lower than for the
geographical map. We believe this is due to the fact most
of our users were not familiar with social networks; some
stated they did not see why they would perform such tasks at
all. In other words, their motivation to use our technique in
this scenario was low. In addition, the network proposed was
much larger and denser than in the map scenario, making
tasks more difficult to complete, and, despite getting a break,
participants reported fatigue from their previous exploration.

Despite these lower ratings, our participants performed
very well with dynamic insets, indicating that the technique
scales to larger graphs. All participants were able to ac-
curately perform all tasks, including spatial memory tasks
(navigating to specific communities or nodes). We were sur-
prised that users were able to memorize the location of spe-
cific communities after such a short exploration time and the
lack of distinctive spatial features compared to the map sce-
nario. This observation further indicates that dynamic insets
do not interfere with the creation of a mental map. While all
participants were able to perform tasks in very cluttered ar-
eas (up to 25 insets on the screen edge), they suggested again
that filters would allow them to better control which insets to
show. Nevertheless, all participants used either the fanning,
panning or the paging technique in solving tasks.

Figure 8: Social network for the AVI co-authorship dataset.
This application was used in one of the follow-up studies.

6. Conclusion and Future Work

We have presented a context-aware graph navigation tech-
nique that utilizes the topology of a graph to dynamically
create insets for off-screen neighbors of visible nodes. We
give two examples showcasing the utility of the technique
for social networks and geographical maps. We also present
results from a controlled experiment that shows that our
technique outperforms current state-of-the-art graph naviga-
tion techniques, as well as more qualitative findings from
two usability studies with larger and more realistic tasks.

In our future endeavors we want to study the performance
of different distance and degree-of-interest mechanisms. We
also plan to deploy the technique in a real-world online map
website such as Google Maps or Bing Maps.
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