
Designing Peer-to-Peer Distributed User Interfaces:
Case Studies on Building Distributed Applications

Eli Raymond Fisher, Sriram Karthik Badam, Niklas Elmqvist∗

School of Electrical & Computer Engineering, Purdue University, West Lafayette, IN, USA

Abstract

Building a distributed user interface (DUI) application should ideally not require
any additional effort beyond that necessary to build a non-distributed interface. In
practice, however, DUI development is fraught with several technical challenges
such as synchronization, resource management, and data transfer. In this paper,
we present three case studies on building distributed user interface applications: a
distributed media player for multiple displays and controls, a collaborative search
system integrating a tabletop and mobile devices, and a multiplayer Tetris game
for multi-surface use. While there exist several possible network architectures for
such applications, our particular approach focuses on peer-to-peer (P2P) architec-
tures. This focus leads to a number of challenges and opportunities. Drawing from
these studies, we derive general challenges for P2P DUI development in terms of
design, architecture, and implementation. We conclude with some general guide-
lines for practical DUI application development using peer-to-peer architectures.

Keywords: distributed user interfaces, case studies, design principles, lessons
learned, implementation, DUI toolkits

1. Introduction

Parallelism—both on the local computer using multiple cores [1], as well as
distributed across multiple virtual machines in the cloud [2]—has become the de
facto solution to today’s computational problems when Moore’s law no longer is

∗Corresponding author. Purdue University, 465 Northwestern Avenue, West Lafayette, IN
47907-2035, USA. Phone: +1 (765) 494-0364, Fax: +1 (765) 494-6951.

Email addresses: fisher55@purdue.edu (Eli Raymond Fisher),
sbadam@purdue.edu (Sriram Karthik Badam), elm@purdue.edu (Niklas Elmqvist)

Preprint submitted to International Journal of Human-Computer Interaction August 6, 2013



able to help us stay abreast of the current data deluge facing society. However,
the same limitations are also now starting to be felt in the user interface aspect
of computer systems: while displays grow in size and shrink in price, the stan-
dard computers managing all these pixels are unable to cope. Furthermore, even
as the number of mobile, embedded, and ubiquitous devices in our physical sur-
roundings increases, we still do not have standard and widespread software infras-
tructures for binding all of these devices together into single, coherent interfaces
where devices can reinforce instead of compete with each other.

Distributed user interfaces (DUIs) is an emerging research field studying this
type of user interface architecture where components are distributed across dif-
ferent hardware devices in space and in time [3, 4]. Unfortunately, designing a
distributed user interface is an order of magnitude more difficult than designing
a standard single-device user interface due to issues such as synchronization, re-
source management, and data transfer. In practice, even if the literature of DUI
systems is already rich with prime examples of distributed and situated interac-
tion (e.g. [5, 6, 7]), there still exists very few concrete guidelines on how to design
and build a distributed user interface application from the ground up. Beginning
DUI designers are essentially left only with the alternative of trying to apply their
knowledge from traditional user interfaces to the distributed setting.

In this paper, we address this shortcoming by deriving challenges, solutions,
and design guidelines for developing DUI systems. While this treatment is in-
spired by the literature on distributed applications, we draw specifically from three
in-depth case studies of DUI applications that we have built recently:

• SHARD: A distributed user interface media player designed for playing
back media across multiple surfaces, speakers, and playback controls;

• MP-TETRIS: A multiplayer Tetris game designed for collaborative play
across multiple input and output surfaces; and

• BEMVIEWER: A collaborative search system for multivariate data inte-
grating both a digital tabletop and several mobile devices.

Informed by these three case studies, we discuss many of the common prob-
lems as well as their solutions encountered when designing DUI systems. Fur-
thermore, we also enumerate general guidelines for designing, implementing, and
evaluating DUI systems. All three of these case studies are based on a peer-
to-peer (P2P) network architecture. Other network architectures have also been
successfully applied to DUI development, particularly based on a client/server

2



model (e.g. [8, 9, 10, 11, 12]). We delimit our treatment in this work to the unique
challenges and opportunities afforded by a P2P architecture.

The remainder of this paper is structured as follows: We first introduce the
three case studies and motivating examples for this paper. We then review the
related work in distributed user interfaces, content redirection, and collaborative
spaces. This literature review sets the stage for discussing the challenges for our
case studies in particular, and distributed user interface applications in general.
We describe the solutions we derived for our example applications, and how these
were implemented. Finally, we draw upon the three case studies as well as the
literature to discuss and formalize a set of design guidelines for building DUIs.
We close the paper with our conclusions and ideas for future work.

2. Case Studies

Here we introduce each of the three motivating case studies that inspired this
work. We also discuss the common usage scenarios, requirements, and design
parameters for all three case studies. Following this section, we describe in more
detail the challenges (Section 4) associated with DUI applications, as well as the
concrete solutions (Section 5) we derived in meeting these challenges. We then
generalize these ideas into guidelines and implications for design (Section 6).

2.1. Shard: A Distributed Media Player
Rich device ecosystems are becoming increasingly common as mobile and

ubiquitous computing are being embedded in our physical surroundings [4, 13].
An initial case study might focus on harnessing these device ecosystems for sim-
ple media playback. SHARD1 is a truly distributed media player where digital
media such as video, audio, and images would be entirely decoupled from its
playback, allowing for highly flexible playback and control configurations.

2.2. MP-Tetris: A Multi-Player/Multi-Surface Game
While the Shard case study above showcases many basic requirements of a

distributed user application, it naturally does not cover the whole spectrum of
possible applications. In particular, like many user applications, Shard is user-
driven, which means that it merely responds to user input events such as button
presses and menu selections. With the MP-TETRIS case study, our intent was to

1The name communicates our conceptual model of each display surface representing one of
multiple shards of glass that all reflect the same digital media being played.

3



capture active simulation logic (a game engine automatically moving falling Tetris
pieces) that is asymmetrically distributed in the system (only one participating
peer will run the game engine). This gives rise to the challenge of transfering
logic to other participants if the original peer disconnects or crashes.

Thus, MP-Tetris is a collaborative multiplayer Tetris game designed to be run
on any configuration of display surfaces using any combination of input surfaces.
It is cooperative in the sense that players must work together to eliminate lines
on the playing field according to the classic Tetris, i.e., by filling lines completely
with blocks. This task is made more challenging by the fact that pieces fall in
real-time from the top of the screen towards its bottom, and that player pieces can
optionally be subject to collisions.

Figure 1: Public and private views in the BEMViewer system.

2.3. BEMViewer: Collaborative Search on Heterogeneous Devices
MP-Tetris is a cooperative game, but collaboration is nevertheless not its main

focus. In order to also capture any unique challenges and solutions generated by
collaborative settings, we included the BEMVIEWER system as a case study as
well. BEM is short for Branch-Explore-Merge [14] and is a protocol for collab-
orative search in multivariate datasets inspired by asynchronous revision control
systems such as CVS, git, and Subversion. The protocol allows users to branch
off from the current public query shared between all participants, explore data
privately, and then merge back any new findings to the public state.

In validating the BEM protocol, we implemented a DUI system called BE-
MViewer (Figure 1). BEMViewer allocates the public shared state to a common
display, such as a digital tabletop device, and uses mobile devices for the private
state of each participating user. While we have presented the BEM protocol in a

4



previous paper [14], our focus in the present paper is on the software engineering
aspects of the BEMViewer, which have not been previously published.

(a) Tiled-LCD displays. (b) Tiled mobile displays.

Figure 2: Example scenarios for the a distribured user interface application.

2.4. Common Usage Scenarios
Some usage scenarios we envisioned for the case studies include the following:

• A display wall consisting of multiple tiled LCDs (Figure 2(a)) and multiple
computers interacting with digital media that spans all of the displays;

• An output device displaying content located on another computer on the
network without the need for a preconfigured server setup; and

• Two or more mobile devices rendering the same content that are placed side
by side to form a larger picture spanning all of the displays (Figure 2(b)).

For example, two friends may want to place their tablets side by side to create
a larger combined screen when playing MP-Tetris together. The playing field will
now be split to span both screens instead of being replicated across both. A user
may want to snuggle up in his bed with a tablet to watch an old DVD movie
that he has loaded into his home desktop computer. Shard will now seamlessly
stream the movie from the desktop computer to the user’s tablet using the wireless
network. Finally, a family may want to gather around their digital kitchen table
to plan a trip by collaboratively searching for destinations, hotels, and restaurants
that fit everyone’s preferences. Here, the BEMViewer tool will allow the family
members to work both independently on their personal mobile devices, as well as

5



collectively on the multitouch kitchen table, to find an optimal destination in an
efficient and timely manner.

The common theme for all of these scenarios is that they involve multiple
(more than one) devices. More specifically, interaction in these use cases is
distributed across different combinations of input, output, platform, space, and
time [3]. Managing individual devices in such setups becomes increasingly te-
dious and error-prone as the number of devices increases. Therefore, a common
goal for all these scenarios is to minimize the setup and initialization overhead
involved in launching and controlling these device environments.

2.5. Common Requirements
To maximize the value of the case studies in this paper, our goal is to be very

explicit about the requirements, challenges, and solutions we faced during the
design and development process. Based on the above usage scenarios, we were
able to extract a number of design requirements that capture these scenarios:

R1 Independent Storage and Computation. One of the main common re-
quirements for all three case studies is that there should be no dependency
between the physical location of storage media, computation, and any input
and output devices (besides a network connection).

R2 Independent Output. A key requirement is that distributed user interfaces
should support output on multiple surfaces, potentially each showing only a
portion of the visual output to support imagery spanning multiple displays.
This requirement is of particular importance for collaboration where multi-
ple individuals may need to view the output of the distributed user interface
application on their own display.

R3 Independent Input. In the spirit of distributed interfaces, user input should
also be decentralized so that any device can control an application, such as
play, stop, or rewind, change collaborative queries, or move a Tetris piece.
Again, this is particularly important for collaborative settings, where not
only a single user but multiples ones may be interacting with the data using
multiple devices simultaneously and independently.

Beyond the above design requirements, we also enumerate a set of non-
functional requirements such as high rendering performance, platform indepen-
dence, robustness, and broad support for multiple data and media formats.

6



2.6. Common Design Parameters
All three case studies will be implemented as distributed applications running

on multiple devices connected using the network (typically a TCP/IP network,
although Bluetooth and other local networks are possible). Because the basic
technical approach for all three applications will be the same, one goal of this
work is to derive a common network infrastructure for DUIs that we can reuse
for all three. Each participating device runs software that communicates using the
network. Any device can choose to render all or part of the output (R2) as well
as control the application (R3). Furthermore, to enable independent storage and
computation (R1), the applications distribute content, media, and data from one
source to multiple recipients in the local display environment.

3. Related Work

This paper spans topics in multi-display environments, distributed user inter-
faces, and output redirection. Below we review the literature in these fields.

3.1. Multi-Display Environments
The notion of a distributed user interface can be traced back to early paradigms

of multi-display (and multi-device) environments (MDEs) from fields such as
CSCW, HCI, and computer graphics. An early example was the Spatial Data
Management System (SDMS) [15] for multimodal interaction with a wall-sized
projection display and a small touch display. Another seminal project, the Co-
Lab meeting room [16], introduced fundamental concepts in collaborative inter-
faces, multi-display environments, and WYSIWIS (What You See Is What I See).
Similarly, the DigitalDesk [17] combined an augmented desk, a camera, a tablet,
and a projector. The i-LAND [18] system integrated several computational re-
sources in the same physical space into what became known as a “roomware”
system [19, 20]. Another example of such a roomware system was the office
of the future project [21], which used the intrinsic geometry of an office to turn
all surfaces into projected displays. In the same vein, the Stanford Interactive
Workspaces project [22, 23, 24] focused on collaboration in technology-rich phys-
ical spaces; the implementation was called the iRoom.

3.2. Distributed User Interfaces
Distributed user interfaces are those that distribute components across one or

several of the dimensions input, output, platform, space, or time [3]. Several
conceptual models exist for DUIs; examples include the CAMELEON-RT [25,

7



26], 4C [27], and the distributed model-view-controller (MVC) [28] models. The
VIGO model [29], which lies at the core of the Shared Substance toolkit [5], is a
clear influence to the DUI framework described in this paper.

While DUI applications can be built from the ground up, researchers have re-
cently proposed various DUI toolkits intended to make this endeavor easier. The
BEACH system [30] and Aura [31] frameworks were designed for managing dy-
namic resources in ubiquitous computing environments. Similarly, the Gaia [32]
middleware infrastructure supports resource management in physical and inter-
active computing spaces (called Active Spaces). Additional frameworks include
MediaBroker [33, 34], a recent toolkit for building peer-to-peer DUIs [35], and a
visualization toolkit for distributed collaboration [36].

Some of the key observations we draw from these existing toolkits include
transparent mechanisms for shared memory, peer-to-peer architectures to mini-
mize setup and configuration, and the idea to replicate logic between peers.

3.3. Output Redirection
Output or content redirection is the concept of decoupling the source and the

display of digital imagery [37, 38, 39]; essentially, an application can execute on
one device, yet display parts or all of its visual output on one or several other
devices. Toolkits that support output redirection typically also support input redi-
rection, where input events from one device can be handled by another device.

Several notable output redirection efforts exist. WinCuts [38] allow for rear-
ranging screen regions, essentially providing same-computer output redirection.
IMPROMPTU [37] shares applications across multiple displays using off-the-
shelf computers and software to facilitate collaborative software development. In
computer graphics, the notion of output redirection has been adapted to rendering
clusters (or farms): early examples include the WireGL [40] and Chromium [10]
toolkits that distribute OpenGL rendering on a command level, and recent parallel
rendering frameworks include Equalizer [9], and OpenSG [41].

4. Challenges

Realizing the design for all three case studies requires overcoming several
challenges. Many of these challenges apply generally to any DUI application.
In this section, we review these concrete problems and derive the generalized
challenges from them.

8



4.1. Consistency
A key aspect for running multiple DUI instances on different devices is to

maintain consistency between each instance. For a distributed media player, play-
back state must be consistently shared between instances, including the media file
(or URL), the state of the player (stopped, playing, rewinding, etc), and the cur-
rent location in the media. In the context of a real-time games such as Tetris, there
are high consistency demands on the state of the playing field, the position of each
player’s piece, and player input. Similarly, for a collaborative search system, the
shared query must be consistent across all peers to support effective search.

C1 Each software instance running on a device involved in a DUI application
must maintain a shared and consistent state using the network.

4.2. Synchronization
Synchronization is a mechanism for maintaining consistency, which has al-

ready been listed as a challenge (C1), but it is a detail that is worth recognizing as
a challenge of its own. For Shard, playing back media on multiple devices requires
that the individual devices are on the exact same position in the media file to avoid
inconsistencies across individual displays. The same is true for a real-time game
such as MP-Tetris. Even minor latency, i.e., on the order of a few milliseconds,
are easily detected by a user for both video (spanning imagery across multiple
screens) as well as audio (handling different audio channels on different devices,
e.g., left and right audio for stereo). Similarly, for BEMViewer, synchronization
is required when merging the private state of one peer to the public state on the
tabletop device, and vice versa.

C2 Synchronizing the actions of software components on different hosts is a
core concern for general distributed systems, and DUIs are no different.

4.3. Heterogeneous Hardware
None of the case studies discussed above impose restrictions on the hardware

devices connecting to the shared environment: the peers can be both mobile de-
vices as well as personal computers. This is a challenge because it requires a
platform-independent network protocol that can be implemented on each plat-
form. For standard personal computers, this is not a major problem for standard
personal computers given technologies such as Java. However, on the mobile
phone market, the two main platforms—Apple’s iOS and Google’s Android—are
largely incompatible and require very different implementations.

9



A corollary to this statement is that differing hardware will also have different
capabilities and available resources. For example, one device may have a large
screen, whereas another has no screen and only loudspeakers. Perhaps the user
chooses not to use the screen on a mobile phone because of its small size, but still
uses the device to connect headphones and as a glorified remote control.

C3 DUI applications must run on multiple different hardware platforms, yet
leverage the unique capabilities of each platform and device.

4.4. Volatile Device Ecosystem
Distributed user interface environments are inherently volatile—while a tiled-

display wall (Figure 2(a)) is stable, mobile devices or laptops participating in the
environment may join or leave the networked space at any point. For example, a
person may temporarily connect their smartphone to Shard to use it as a remote
control, but could then shut it down when it is no longer needed. Similarly, a per-
son may want to leave a three-person MP-Tetris session at any time, and the user
experience of the remaining two players should not be affected. This means that
the DUI environment cannot depend on individual devices to function properly.

C4 DUI applications must be robust against devices joining or leaving the
shared environment at any point (sometimes not gracefully).

4.5. Limited Resources
Some storage, computational, or hardware resources are limited and cannot be

easily distributed. This challenge is best illustrated for the Shard media player. In
Shard, the user may only possess a single copy of a DVD or Bluray movie, yet
may still want to run the movie on multiple devices, such as several computers
collectively driving a display wall. In fact, even when the media is digital and
easily transferable using shared drives, e-mailing, or downloading from a public
website, Shard should not require the user to manually perform such actions.

In other words, the physical media is a limited resource that only one of several
devices has access to, yet which must clearly be shared with the other devices to
enable the player to function properly. Of course, if the device holding the media
abruptly leaves the shared environment, the playback should gracefully stop.

The limited resources challenge also applies to the BEMViewer case study.
Perhaps the dataset being visualized only exists on the file system of one of the
participating devices, such as the tabletop computer. One solution may be to ei-
ther manually copy the file to all participating devices, or to use a shared filesys-
tem connecting them. However, these approaches both require additional work to

10



achieve, and a better alternative would be that the DUI framework directly sup-
ported data and resource sharing.

C5 The storage, computational, or physical resources available for each device
in a DUI application may be different, causing that resource to be limited to
one or a few devices.

4.6. Data Transfer
Given a limited resource (C5) such as a file, DVD, or Bluray disc, the contents

must clearly be transferred over the network from one source device to multiple
destination devices in the DUI environment. This data transfer challenge is differ-
ent than state for supporting consistency (C1); instead of the bookkeeping used to
synchronize devices (C2), this requires a high-capacity transfer mechanism.

C6 DUI applications need support for transferring binary large objects (blobs)–
such as media, images, files, databases, documents etc—between devices.

4.7. Physical Space
Since a DUI environment is highly volatile (C4), with devices joining and

leaving at any time, a distributed application cannot depend on any particular
device. As a result, each individual device must be autonomous, being able to
decide for itself how to render visual output, handle events, and react to input.
Physical space is therefore a key aspect to DUI applications: the physical location
of a particular device in relation to other devices will help the device in making
these decisions. For example, a computer that forms part of a tiled-LCD display
needs to know its tile position to decide which region of the visual output to render.

C7 Physical space must be managed on a global level for a DUI application so
that individual participating devices can make autonomous decisions.

4.8. Asymmetric Functionality
The components of DUI applications are not necessarily uniform. While it is

often desirable that different peers in a DUI space share as much code as possible
from a pure software engineering and maintenance point of view, it is also true that
certain aspects of a software system require asymmetric functionality. Resources
differ and are limited between different peers (as already captured in C5), and
even for otherwise uniform devices, there may be a need for one or several of the
individual peers to have certain roles. For example, in the MP-Tetris game, there

11



is a need for maintaining a single simulation engine responsible for enforcing the
falling motion of the player pieces as well as for detecting collisions between these
pieces and the current playing field. If this were not the case, maintaining con-
sistency between multiple competing simulation engines would be challenging.
Similarly, for the BEMViewer case study, there is a very clear division of labor
between the device managing the public state (often a digital tabletop device) and
the devices managing the private state of individual users (a smartphone or tablet).

Of course, asymmetric functionality gives rise to issues for fault-tolerance and
robustness. What happens if a peer with unique logic crashes or shuts down? How
can the system recover and which peer should take over after the missing peer?

C8 Distributed applications often contain unique components that are asym-
metrically divided between participating devices.

Figure 3: Shard running on a 3×2 tiled LCD display wall where each column of displays is driven
by a separate computer. Image credits from the Creative Commons movie Sintel.

12



5. Solutions

We implemented all three DUI applications above as peer-to-peer distributed
applications implemented in Java where each participating device runs peer soft-
ware and are connected over the network in a common shared space. The envi-
ronment contains both a shared and replicated associative memory for maintaining
state, as well as a shared event channel for exchanging real-time information. Fig-
ure 4 shows the architecture of a DUI space designed in this fashion.

Naturally, each case study needed slightly different solutions for their task:

• Shard: Media decoding and playback is performed using the vlcj2 Java
bindings for the VideoLAN3 vlc media player. Android peers use the stan-
dard Android SDK, including its video playback functionality.

• MP-Tetris: 2D vector graphics and animation is implemented using the the
Piccolo2D [42] library. Android peers use the standard Android SDK.

• BEMViewer: The tabletop peer software uses the Piccolo2D [42] struc-
tured vector graphics library as well as the OpenStreetMap API. The An-
droid peers use the Google Maps API.

5.1. Common Network Infrastructure
In realizing the three DUI case studies discussed in this paper, we found our-

selves reusing essentially the same network infrastructure for all implementations.
The participating devices were connected over LAN or Wifi (for mobile devices).
The core functionality of this infrastructure is replicating state across all partici-
pating peers, thus meeting the basic consistency (C1) challenge. The shared mem-
ory is a variant of an event heap [43, 44], which in turn is an adaptation of tuple
spaces [45] and T-Spaces [46] for ubiquitous computing applications. It contains
of shared objects of standard or user defined data structures. We implemented
methods to create and update these objects in the shared memory, along with
event handlers to inform other DUI peers when a shared object is created or up-
dated. Each DUI peer has its own rendering engiene over this shared memory that
handles the user interface.

2http://www.capricasoftware.co.uk/vlcj/
3http://www.videolan.org/

13



Figure 4: Example of the peer-to-peer network architecture common to all our case studies. This
example shows three computers driving a tiled-LCD display and a mobile device connected to the
shared display environment.

All the three case studies were implemented in Java with JGroups toolkit [47]
for communication and various graphics libraries such as Piccolo2D, Java2D, and
vlcj Java bindings for rendering. JGroups offers reliable multicast using a flexible
protocol stack that supports different transport layer protocols like UDP (IP multi-
cast), TCP, JMS. We used UDP for communication between peers connected over
a local area network. In non-multicast environments, we used the TCP daisy-
chain protocol to perform multicast through multiple (n − 1) unicast messages.
The choice of the rendering engiene was based on the case study. For Shard, vlcj
Java bindings provide the ability to play a wide range of media types in a GUI
window created using Java Swing. The vlcj bindings also allow creation of a
server that streams the media from a source URL. The reason and implications of
using this functionality have been discussed in section 5.3. As mentioned earlier,
we used Piccolo2D and Android Java2D libraries for the rendering engienes in the
other two case studies.

5.2. System Architectures
For Shard (Figure 3), each new peer creates a player object in the shared mem-

ory that all other peers automatically subscribe to, causing them to be notified
when its state changes. All player objects contain the same data: the state of the
player, the media URL, and the current position in the media being played back
(if any). Peers are only responsible for modifying their own object state, but will
automatically respond to changes in other player objects (by matching player state

14



changes). This means that any participating device can change its own state, e.g.,
from playing to stopped, causing a cascade of changes in other player objects.

For MP-Tetris (Figure 5), the shared memory is used to store the playing field
as a singleton shared object (created by the first peer to establish the DUI space),
as well as player objects (similar to Shard) for each individual peer. The playing
field object captures the current positions and colors of static blocks. Player ob-
jects, on the other hand, maintain the shape, color, position, and rotation of the
player’s currently controlled piece. Finally, a unique simulation engine compo-
nent (discussed below) runs on one of the participating peers.

Figure 5: MP-Tetris played on a dual-display setup with two players. Colors are used to differen-
tiate player blocks instead of block type.

Finally, for BEMViewer (Figure 6) the key data structures include the search
query term that the collaborating users are progressively building, as well as the
dataset being analyzed. Furthermore, there are two distinct and asymmetric types
of peers in the BEMViewer system: the public peer, which has a large public
display and is used for coupled work, and private peers that are restricted to indi-
vidual users.

5.3. Replicating State
Transfering state and data across different peers (C6) takes slightly different

forms depending on the particular application. For example, the BEMViewer ap-
plication makes use of the shared associative memory for its dataset, which causes
the data to be automatically replicated to all participating peers. MP-Tetris uses
shared memory in the same way for its playing field and player objects. This

15



Figure 6: Two participants using an Android tablet and digital tabletop display to interact with
BEMViewer for a real estate collaborative search task.

approach may not be scalable for large data volumes, however, because our peer-
to-peer network infrastructure is not optimized for high-performance data transfer.

Shard is particularly interesting due to the large volume of data associated with
digital media playback. Using the vlcj bindings, Shard can play back any form
of media, including DVD, Bluray, local files, and remote URLs (even Youtube
videos). However, as described above (C5), many times a particular media only
exists on one of the devices connected to the Shard space. Even if the media is
available on the network as a URL, it would be wasteful for each individual device
to stream the media from that URL.

Instead, Shard replicates media by creating an ad hoc RTP (Real-time Trans-
port Protocol) [48] server that streams the media from the source URL, and then
in turn locally streams the media to the other peers in the Shard space. This media
replication is asymmetric, since one of the devices becomes an ad hoc server, and
the others become clients. All peers contain the functionality to either run as a
client or as a server; the determination is done at run-time by whichever device
a user launches the media from (in fact, for the server case, the peer still opens
a client that connects to the local server). If the media is a DVD or Bluray disc
local to the computer, the media is replicated from that single disc to all connected
peers. Roles can also change if a user launches media on another device.

Beyond solving the limited resource challenge (C5), this functionality also
highlights the Shard solution to the data transfer challenge (C6). The ad hoc RTP
server is an out-of-band data channel that does not use the shared memory de-
scribed above. Instead, the shared memory is used to communicate the IP address

16



and port of the newly launched server, but the heavy-duty data transfer happens
using the RTP protocol through separate TCP/IP ports.

5.4. Synchronization
While the notification mechanism in the common network infrastructure en-

sures synchronization between different player peers on a high level, it is not suf-
ficient for the fine-grained synchronization necessary for media playback in Shard
(C2). The RTP client and server logic used for streaming media inside the Shard
space does contain synchronization mechanisms that corrects for minor lag, but
this is not always sufficient for large differences in media position.

To remedy this, each Shard peer monitors the media position of all other play-
ers. If the difference between the position of the leading player (i.e., the player
that is furthest along in playing back the media) and its own position becomes
too large, the player will attempt to jump ahead to catch up. This can be diffi-
cult since the player must take into account network latency as well as the impact
of potentially trashing and rebuilding the stream buffer. Jumping too short may
mean that the player does not catch up, whereas jumping too far will overshoot
the media position and may cause leapfrogging behavior as other players now try
to catch up to the new leader. Our solution is to maintain latency statistics and
jump moderately to within the tolerance where the RTP functionality provided by
vlcj can correct for the difference in media position.

5.5. Space Management
Our DUI network environment maintains a global configuration for the physi-

cal space in which the distributed application is being executed (C7). This config-
uration includes the physical location, size, and orientation of each fixed display
that may potentially participate in the environment. Individual devices are thus
aware of the entire display environment as well as their own properties. This
knowledge is necessary for peers to independently determine which 2D region of
the visual representation to render. Without a global space configuration, each
device will have to be manually configured every time it is launched.

Figure 3 shows a screenshot of Shard running on a 3×2 tiled LCD display
wall. In this example, taking both the geometry of the entire surface as well as the
dimensions and aspect ratio of the media into account allows each Shard peer to
determine exactly the coordinates of the region to render on its own display.

17



(a) Two tiled Android tablets. (b) Shard on laptop with Android remote.

Figure 7: Shard running on Android. Image credits from the movie Sintel (Creative Commons).

5.6. Mobile Devices
Space management is important for fixed displays, but is less useful for mobile

devices that have no predefined position in a physical space. Instead, we let the
user configure the display layout. Because JGroups currently has no iOS port, our
peer-to-peer network infrastructure currently only supports Android devices. Fig-
ure 6 showcases the BEMViewer system spanning both a digital tabletop device
powered by a personal computer running Java, as well as an Acer Iconia tablet
running our Android software. Two additional examples are given in Figure 7.
Figure 7(a) depicts a Shard playback spanning two Samsung Galaxy Tab tablets,
whereas Figure 7(b) shows an Android tablet being used as a Shard remote.

Including mobile devices in our case studies is a useful exercise due to their
volatile nature (C4): a mobile device could easily join or leave a DUI space at any
time. However, the use of multiple shared objects (associated to specific devices)
in shared memory means that even if a device disappears without cleaning up, the
operation of the remaining DUI space will not be affected. The individual shared
objects associated with the lost device will no longer be updated, but this has no
bearing on any of the other devices and their objects (even if the device rejoins the
space, causing it to create new shared objects).

5.7. Managing Asymmetric Functionality
For the Shard media player, if the peer playing back a limited media resource

leaves, there is not much the system can do besides freeze the playback. In other
words, while this is an example of an asymmetric (C8) and limited (C5) resource,
the system cannot easily recover from this situation.

18



For the MP-Tetris game, on the other hand, it should certainly be possible to
recover from the peer controlling the simulation logic disconnecting or crashing.
Controlled exits are easiest to deal with: when a normal peer leaves a running
game, the peer will first remove its own player object, thereby causing that piece
to disappear from the playing field on all other peers. For a simulation peer,
the only additional step is to automatically appoint a new simulation peer before
leaving. This can be done randomly or using an ordered list.

Recovering from crashed nodes is more challenging, however. While our im-
plementation currently has no optimal solution, one approach is to detect when the
simulation logic is no longer being regularly updated. This would be an indication
that the simulation peer has crashed, and the next peer in the list can self-appoint
itself. A similar scheme can be used to detect crashed nodes and automatically
clean up the corresponding player objects in response.

6. Implications for Design

The three case studies presented in this paper are instructive because their
designs illustrate many of the key challenges inherent in DUI application design
for peer-to-peer architectures. In this section, we generalize our implementations
into design guidelines, discuss the limitations of our work, and discuss future
extensions to the framework.

6.1. Design Guidelines
Generalizing from our implementation in Section 5, we derive the following

basic design guidelines on DUI application design based on peer-to-peer network
architectures:

D1 Prefer P2P. It is often not practical for a distributed user interface to re-
quire the user to first configure and run a dedicated server. Client-server
based frameworks for distributed systems face issues with scalability, ro-
bustness, security, and trust [49, 35]. Furthermore, multicast communica-
tion is known to decrease the bandwidth requirements for parallel render-
ing [50]. We observed that our shared memory based approach, handled by
P2P IP multicast, provided flexible ways to overcome challenges (discussed
in Section 4) in building distributed user interfaces. Several successful DUI
systems [5, 35, 51, 52, 53] have used P2P framework (IP Multicast) for
communication after considering the advantages it provides, thus making it

19



a design decision that influences the architecture rather than just an imple-
mentation decision.

It should be noted that peer-to-peer is by no means a requirement for suc-
cessful DUI development, and several excellent approaches based on client-
server architectures exist [8, 9, 10, 11, 12]. Our focus in this paper is merely
on peer-to-peer approaches for the above-mentioned reasons.

D2 Replicate memory. Given the use of a peer-to-peer architecture, message
passing and more complex synchronization methods to maintain consis-
tency (C1) is not always practical. Using a shared associative memory
(event heap) inspired by tuple spaces [45] has been shown to be particularly
powerful and flexible for ubiquitous computing environments [43, 44].

D3 Replicate behavior. While previous multi-target rendering systems such as
Chromium [10], WireGL [40], and Equalizer [9] use centralized architec-
tures that distribute commands to clients, today’s device ecologies are easily
powerful enough that virtually all of the application logic can be replicated
on each individual device [5, 54]. This means that each device will run
symmetric peer software in a flat peer-to-peer configuration and only re-
quire minimal state synchronization instead of command messages.

D4 Focus on the network protocol. The flexibility and robustness of any DUI
application is largely dependent on its network protocol. A well-designed
peer-to-peer network protocol provides high performance in support of con-
sistency (C1) and synchronization (C2), platform-independence to allow for
heterogeneous devices connecting to the environment (C3), and robustness
against peers joining and leaving the environment at any time (C4).

D5 Allow out-of-band communication. Virtually all DUI applications need a
mechanism to transfer binary large objects such as raw data, media, docu-
ments, and other files between devices (C6). While it is often possible to
use the shared memory to transfer such data, this may become inefficient
if the media size is large. For example, a distributed web browser needs
to transfer images between peers, and a distributed media player, indeed,
must stream media from one source peer to all of the others. This means
that DUI frameworks should provide an out-of-band communication mech-
anism, such as a shared file system (easiest), cloud storage, or a dedicated
out-of-band protocol (such as the RTP client/server solution used in Shard).

20



D6 Manage physical space. DUI applications should provide a space man-
agement mechanism to enable individual peers to utilize knowledge of their
own location in physical space in relation to the rest of the environment. For
example, in the context of Shard, allowing a particular computer to know
the physical location of its output display makes deciding which parts of the
media playback to render a trivial issue. Sensing the location of a mobile
device in physical space [55] is key to realizing interaction techniques such
as peephole displays [56, 57] and imaginary interfaces [58, 59].

6.2. Generalizations and Limitations
The challenges, solutions, and design guidelines presented in this paper are

essentially a synthesis of our previous experience building DUI toolkits and appli-
cations (e.g., [3, 54, 36]). The case studies here were chosen because they exhibit
most of the common pitfalls, design dilemmas, and technical challenges encoun-
tered in general DUI design (although not necessarily at once). We believe that
these challenges are unique to DUIs, yet very common whenever designing and
building a DUI application. For example, any productivity DUI application will
have to solve the issue of replicating binary data—such as images, documents,
or general files—across hosts, either using a shared file system or a dedicated
out-of-band data transfer channel.

Having said that, while our argument above is that the findings in this work go
beyond the illustrative case studies presented here, we do not claim that this is an
exhaustive review of challenges and design guidelines for distributed user inter-
faces. We are prepared to say that this paper reviews some of the most important
of these challenges and guidelines, but the field of distributed user interfaces is
still new and much more work remains to be done. Furthermore, we have gone to
some lengths to cite and discuss related work from the DUI and related research
areas that demonstrate much of the same challenges and successful solutions to
addressing them. Additional technical challenges will no doubt emerge as tradi-
tional single-computer user applications increasingly begin to become distributed
in scope. Several issues that we have not studied include migratory and migrat-
able interfaces [8, 60], asymmetric application logic (see below), standardized
infrastructures, security, privacy, etc.

6.3. Supporting Asymmetric Functionality
The single significant challenge not fully addressed by our network infras-

tructure is managing asymmetric application logic (C8). A complex multi-device

21



environment may include input devices that are decoupled from their event han-
dlers, for example, a Microsoft Kinect depth camera detecting a user’s full body
interaction anywhere in a physical space. While the methodology for handling this
type of events is similar to the event handling in our current framework, determin-
ing which peer should handle an individual event is not. This calls for asymmetric
peer software, where certain devices run special-purpose software for simulation
and event management.

However, asymmetric functionality gives rise to a new array of problems in
terms of fault-tolerance and robustness. Some of this is already manifest in our
case studies: for example, shutting down the peer controlling the simulation logic
in MP-Tetris means that the simulation must now migrate to another peer. While
MP-Tetris has some support for this by appointing the next peer in line to run
the simulation, a more general approach is needed. Similarly, shutting down the
Shard peer that temporarily is hosting the media (a limited resource—C5) will
immediately halt playback on all the other devices. This is a direct effect of Shard
peers not being fully symmetric across all devices at all times.

One approach to support asymmetric functionality is through the use of loosely
coupled services that are specific to individual devices, yet which are launched as
part of an assembly of services and communicate using shared memory. Exploring
these concepts is left for future work.

6.4. Network Architectures: Peer-to-Peer vs. Client-Server
Our focus in this work has been to study DUI software development through

the lens of peer-to-peer network architectures. P2P architectures are attractive
because they decrease centralization and thus increase scalability and robustness
in a distributed system. However, they are often more difficult to implement and
raise challenges for central tasks such as synchronization and consistency. Our
intention with this work is not to promote one approach over the other, but rather
to focus on DUI software development within a peer-to-peer network architecture.
Nevertheless, in this subsection, we will discuss some of the pros and cons of
choosing P2P over a client-server scheme.

Efficiency is one of the first advantages listed by P2P proponents due to elim-
inating a common potential bottleneck in the architecture. The shared memory in
our case studies consisted of about 50 shared entities and we found that it typically
took less than one second to create, share, and render them (in case of MP-Tetris)
on two peers connected using a Gigabit Ethernet connection. Our solutions for
state replication, synchronization, and space management take advantage of di-
rect communication between devices in contrast to a client-server model. How-

22



ever, since this comparison was not a goal of our work, we did not conduct any
performance measurements comparing P2P and CS implementations. We rely on
ample existing work (e.g. [49, 35]) for such performance comparisons.

Asymmetric functionality such as handling exiting peers, maintaining consis-
tency, and resolving conflicts is likely easier to perform with client-server model
due to the centralization in this model. In our case studies, the frequency of han-
dling asymmetric tasks was lower than synchronizing peer or maintaining consis-
tency, so the overhead in performing the asymmetric functions at specific peers
was outshadowed by the reliable and faster communication provided by JGroups
IP multicast.

Communication within DUI systems corresponds to either data transfer or
state management. Data transfer typically involves sending a dataset to one or
more peers when needed, while state management ensures synchronization and
consistency. As discussed before, sometimes the data to be transfered can be so
large (e.g., streaming digital media) that it cannot be efficiently replicated over the
peer-to-peer network. In the Shard case study, where high quality media present
on one peer can be played on a display wall with multiple screens, our solution
was to handle such media transfers by running a RTP server and streaming the
videos to all the peers through an URL. This represents a hybrid model that in-
corporates a client-server model when necessary, and uses our peer-to-peer model
otherwise. We think this is a good indication of how future DUI architectures
and frameworks may be designed; selecting the optimal features from different
models and combining them into hybrids as necessary.

7. Conclusion and Future Work

We have presented three case studies of distributed user interface applications,
including a distributed media player, a real-time multiplayer game, and a collabo-
rative search system for hybrid devices. Instead of focusing on specific aspects of
DUIs such as visual representations, interaction, or collaboration, our emphasis in
this paper has been on the practical software engineering challenges inherent with
building DUI applications. Summarizing across all three case studies, we first
derived challenges that apply widely across distributed user interfaces in general.
We then presented the common solutions we found to address them. Finally, we
took a step backward by deriving general design implications and guidelines that
apply broadly to any DUI project, academic or commercial alike.

Our future work will entail further exploring the design space of distributed
user interface applications using the network infrastructure developed here. In

23



particular, whereas these case studies are standalone applications designed to run
in exclusive mode, we are planning to introduce higher software layers to enable
multiple distributed applications to run in parallel. Distributed applications are
clearly integral to a ubiquitous computing future, and much additional develop-
ment is required on infrastructures capable of enabling such a vision.

Acknowledgments

This material is based upon work supported by the U.S. Department of Home-
land Security’s VACCINE Center under award no. 2009-ST-061-CI0001, as well
as by the U.S. National Science Foundation under awards IIS-1249229 and IIS-
1227639. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of
the sponsors.

We thank the Purdue University Summer Undergraduate Research Fellowship
(SURF) program and the Semiconductor Research Corporation (SRC) for sup-
porting the first author’s internship during summer 2012. The movie images used
in this paper are released under a Creative Commons license, copyright c© Blender
Foundation (http://www.sintel.org/).

References

[1] G. Blake, R. G. Dreslinski, T. Mudge, A survey of multicore processors,
IEEE Signal Processing Magazine 26 (6) (2009) 26–37.

[2] R. L. Grossman, The case for cloud computing, IT Professional 11 (2) (2009)
23–27.

[3] N. Elmqvist, Distributed user interfaces: State of the art, in: Distributed User
Interfaces: Designing Interfaces for the Distributed Ecosystem, Springer,
2011, Ch. 1, pp. 1–12.

[4] J. A. Gallud, R. Tesoriero, V. M. R. Penichet (Eds.), Distributed User Inter-
faces: Designing Interfaces for the Distributed Ecosystem, Springer, 2011.

[5] T. Gjerlufsen, C. N. Klokmose, J. Eagan, C. Pillias, M. Beaudouin-Lafon,
Shared substance: developing flexible multi-surface applications, in: Pro-
ceedings of the ACM Conference on Human Factors in Computing Systems,
2011, pp. 3383–3392.

24



[6] N. Marquardt, R. Diaz-Marino, S. Boring, S. Greenberg, The proximity
toolkit: prototyping proxemic interactions in ubiquitous computing ecolo-
gies, in: Proceedings of the ACM Symposium on User Interface Software
and Technology, 2011, pp. 315–326.

[7] H.-C. Jetter, J. Gerken, M. Zöllner, H. Reiterer, N. Milic-Frayling, Material-
izing the query with facet-streams – a hybrid surface for collaborative search
on tabletops, in: Proceedings of the ACM Conference on Human Factors in
Computing Systems, 2011, pp. 3013–3022.

[8] K. A. Bharat, L. Cardelli, Migratory applications, in: Proceedings of the
ACM Symposium on User Interface Software and Technology, 1995, pp.
133–142.

[9] Equalizer, http://www.equalizergraphics.com/.

[10] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner,
J. T. Klosowski, Chromium: a stream-processing framework for interactive
rendering on clusters, ACM Transactions on Graphics 21 (3) (2002) 693–
702.

[11] H.-C. Jetter, M. Zöllner, J. Gerken, H. Reiterer, Design and implementation
of post-WIMP distributed user interfaces with ZOIL, International Journal
of Human-Computer InteractionTo appear.

[12] M. A. Nacenta, S. Sakurai, T. Yamaguchi, Y. Miki, Y. Itoh, Y. Kitamura,
S. Subramanian, C. Gutwin, E-conic: a perspective-aware interface for
multi-display environments, in: Proceedings of the ACM Symposium on
User Interface Software and Technology, 2007, pp. 279–288.

[13] M. Weiser, The computer for the twenty-first century, Scientific American
3 (265) (1991) 94–104.

[14] W. McGrath, B. Bowman, D. McCallum, J.-D. Hincapie-Ramos,
N. Elmqvist, P. Irani, Branch-explore-merge: Facilitating real-time revision
control in collaborative visual exploration, in: Proceedings of the ACM Con-
ference on Interactive Tabletops and Surfaces, 2012, pp. 235–244.

[15] R. A. Bolt, “Put-That-There”: voice and gesture at the graphics interface,
Computer Graphics (SIGGRAPH ’80 Proceedings) 14 (3) (1980) 262–270.

25



[16] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, D. G. Tatar, WYSIWIS
revised: Early experiences with multiuser interfaces, ACM Transactions on
Office Information Systems 5 (2) (1987) 147–167.

[17] P. Wellner, Interacting with paper on the DigitalDesk, Communications of
the ACM 36 (7) (1993) 86–96.

[18] N. A. Streitz, J. Geissler, T. Holmer, S. Konomi, C. Müller-Tomfelde,
W. Reischl, P. Rexroth, P. Seitz, R. Steinmetz, i-LAND: An interactive land-
scape for creativity and innovation, in: Proceedings of the ACM Conference
on Human Factors in Computing Systems, 1999, pp. 120–127.

[19] N. A. Streitz, P. Rexroth, T. Holmer, Does ‘roomware’ matter? investigating
the role of personal and public information devices and their combination in
meeting room collaboration, in: Proceedings of the European Conference on
Computer-Supported Cooperative Work, 1997, pp. 297–312.

[20] N. A. Streitz, P. Tandler, C. Müller-Tomfelde, Human-Computer Interaction
in the New Millenium, Addison Wesley, 2001, Ch. Roomware: Towards
the Next Generation of Human-Computer Interaction based on an Integrated
Design of Real and Virtual Worlds, pp. 553–578.

[21] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, H. Fuchs, The office
of the future: A unified approach to image-based modeling and spatially
immersive displays, Computer Graphics (SIGGRAPH ’98 Proceedings) 32
(1998) 179–188.

[22] A. Fox, B. Johanson, P. Hanrahan, T. Winograd, Integrating information ap-
pliances into an interactive workspace, IEEE Computer Graphics and Appli-
cations 20 (3) (2000) 54–65.

[23] B. Johanson, T. Winograd, A. Fox, Interactive workspaces, IEEE Computer
36 (4) (2003) 99–101.

[24] B. Johanson, T. Winograd, A. Fox, Invisible computing: Interactive
workspaces, IEEE Computer 36 (4) (2003) 99–103.

[25] L. Balme, A. Demeure, N. Barralon, J. Coutaz, G. Calvary, CAMELEON-
RT: A software architecture reference model for distributed, migratable, and

26



plastic user interfaces, in: Proceedings of the Symposium on Ambient Intel-
ligence, Vol. 3295 of Lecture Notes in Computer Science, Springer, 2004,
pp. 291–302.

[26] J. Coutaz, L. Balme, C. Lachenal, N. Barralon, Software infrastructure for
distributed migratable user interfaces, in: Proceedings of the UbiHCISys
Workshop on UbiComp, 2003.

[27] A. Demeure, J.-S. Sottet, G. Calvary, J. Coutaz, V. Ganneau, J. Vanderdon-
ckt, The 4C reference model for distributed user interfaces, in: Proceedings
of the International Conference on Autonomic and Autonomous Systems,
2008, pp. 61–69.

[28] T. C. N. Graham, T. Urnes, R. Nejabi, Efficient distributed implementation of
semi-replicated synchronous groupware, in: Proceedings of the ACM Sym-
posium on User Interface Software and Technology, 1996, pp. 1–10.

[29] C. N. Klokmose, M. Beaudouin-Lafon, VIGO: instrumental interaction in
multi-surface environments, in: Proceedings of the ACM Conference on Hu-
man Factors in Computing Systems, 2009, pp. 869–878.

[30] P. Tandler, Software infrastructure for ubiquitous computing environments:
Supporting synchronous collaboration with heterogeneous devices, Lecture
Notes in Computer Science 2201 (2001) 96–115.

[31] J. P. Sousa, D. Garlan, Aura: an architectural framework for user mobility
in ubiquitous computing environments, in: Proceedings of the IEEE/IFIP
Conference on Software Architecture, 2002, pp. 29–43.

[32] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
K. Nahrstedt, Gaia: A middleware infrastructure for active spaces, IEEE
Pervasive Computing 1 (4) (2002) 74–83.

[33] M. Modahl, B. Agarwalla, G. D. Abowd, U. Ramachandran, T. S. Saponas,
Toward a standard ubiquitous computing framework, in: Proceedings of the
Workshop on Middleware for Pervasive and Ad-hoc Computing, 2004, pp.
135–139.

[34] M. Modahl, I. Bagrak, M. Wolenetz, P. W. Hutto, U. Ramachandran, Me-
diaBroker: An architecture for pervasive computing, in: Proceedings of the
IEEE Conference on Pervasive Computing, 2004, pp. 253–262.

27



[35] J. Melchior, D. Grolaux, J. Vanderdonckt, P. V. Roy, A toolkit for peer-to-
peer distributed user interfaces: concepts, implementation, and applications,
in: Proceedings of the ACM Symposium on Engineering Interactive Com-
puting System, 2009, pp. 69–78.

[36] K. Kim, W. Javed, C. Williams, N. Elmqvist, P. Irani, Hugin: A framework
for awareness and coordination in mixed-presence collaborative information
visualization, in: Proceedings of the ACM Conference on Interactive Table-
tops and Surfaces, 2010, pp. 231–240.

[37] J. T. Biehl, W. T. Baker, B. P. Bailey, D. S. Tan, K. M. Inkpen, M. Czerwin-
ski, IMPROMPTU: a new interaction framework for supporting collabora-
tion in multiple display environments and its field evaluation for co-located
software development, in: Proceedings of the ACM Conference on Human
Factors in Computing Systems, 2008, pp. 939–948.

[38] D. S. Tan, B. Meyers, M. Czerwinski, WinCuts: manipulating arbitrary win-
dow regions for more effective use of screen space, in: Extended Abstracts
of the ACM Conference on Human Factors in Computing Systems, 2004,
pp. 1525–1528.

[39] J. R. Wallace, R. L. Mandryk, K. M. Inkpen, Comparing content and input
redirection in MDEs, in: Proceedings of the ACM Conference on Computer
Supported Cooperative Work, 2008, pp. 157–166.

[40] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, P. Hanrahan,
WireGL: A scalable graphics system for clusters, in: Computer Graphics
(Proceedings of ACM SIGGRAPH), 2001, pp. 129–140.

[41] OpenSG, http://www.opensg.org/.

[42] B. B. Bederson, J. Grosjean, J. Meyer, Toolkit design for interactive struc-
tured graphics, IEEE Transactions on Software Engineering 30 (8) (2004)
535–546.

[43] B. Johanson, A. Fox, The event heap: A coordination infrastructure for inter-
active workspaces, in: Proceedings of the IEEE Workshop on Mobile Com-
puter Systems and Applications, 2002, pp. 83–93.

[44] B. Johanson, A. Fox, Extending tuplespaces for coordination in interactive
workspaces, The Journal of Systems and Software 69 (3) (2004) 243–266.

28



[45] D. Gelernter, Generative communication in Linda, ACM Transactions on
Programming Languages and Systems 7 (1) (1985) 80–112.

[46] T. J. Lehman, S. W. McLaughry, P. Wyckoff, T spaces: The next wave, in:
Proceedings of the Hawaii International Conference on System Sciences,
1999.

[47] JGroups, http://www.jgroups.org/.

[48] The Internet Engineering Task Force (IETF), RTP: A transport protocol for
real-time applications, Tech. Rep. RFC 1889, Audio-Video Transport Work-
ing Group (Jan. 1996).

[49] A. Datta, S. Buchegger, L.-H. Vu, T. Strufe, K. Rzadca, Decentralized online
social networks, in: Handbook of Social Network Technologies and Appli-
cations, Springer, 2010, pp. 349–378.

[50] M. Lorenz, G. Brunnett, M. Heinz, Driving tiled displays with an extended
Chromium system based on stream cached multicast communication, Paral-
lel Computing 33 (6) (2007) 438–466.

[51] E. Pietriga, S. Huot, M. Nancel, R. Primet, Rapid development of user in-
terfaces on cluster-driven wall displays with jBricks, in: Proceedings of the
ACM Symposium on Engineering Interactive Computing Systems, 2011, pp.
185–190.

[52] Y. Shinjo, F. Guo, N. Kaneko, T. Matsuyama, T. Taniuchi, A. Sato, A dis-
tributed web browser as a platform for running collaborative applications,
in: Proceedings of the IEEE Conference on Collaborative Computing, 2011,
pp. 278–286.

[53] C. von der Weth, A. Datta, COBS: Realizing decentralized infrastructure for
collaborative browsing and search, in: Proceedings of the IEEE Conference
on Advanced Information Networking and Applications, 2011, pp. 617–624.

[54] N. Elmqvist, Munin: A peer-to-peer middleware for ubiquitous visualiza-
tion spaces, in: Proceedings of the ACM Workshop on Distributed User
Interfaces, 2011.

[55] K. Hinckley, J. Pierce, M. Sinclair, E. Horvitz, Sensing techniques for mo-
bile interaction, in: Proceedings of the ACM Symposium on User Interface
Software and Technology, 2000, pp. 91–100.

29



[56] K.-P. Yee, Peephole displays: pen interaction on spatially aware handheld
computers, in: Proceedings of the ACM Conference on Human Factors in
Computing Systems, 2003, pp. 1–8.

[57] E. Eriksson, T. R. Hansen, A. Lykke-Olesen, Movement-based interaction in
camera spaces: a conceptual framework, Personal and Ubiquitous Comput-
ing 11 (8) (2007) 621–632.

[58] S. Gustafson, D. Bierwirth, P. Baudisch, Imaginary interfaces: spatial inter-
action with empty hands and without visual feedback, in: Proceedings of
the ACM Symposium on User Interface Software and Technology, 2010, pp.
3–12.

[59] S. Gustafson, C. Holz, P. Baudisch, Imaginary phone: learning imaginary in-
terfaces by transferring spatial memory from a familiar device, in: Proceed-
ings of the ACM Symposium on User Interface Software and Technology,
2011, pp. 283–292.

[60] R. Bandelloni, F. Paterno, Flexible interface migration, in: Proceedings of
the ACM Conference on Intelligent User Interfaces, 2004, pp. 148–155.

30


