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ABSTRACT

Supporting visual analytics of multiple large-scale multidimen-
sional datasets requires a high degree of interactivity and user
control beyond the conventional challenges of visualizing such
datasets. We present the DataMeadow, a visual canvas provid-
ing rich interaction for constructing visual queries using graphical
set representations called DataRoses. A DataRose is essentially
a starplot of selected columns in a dataset displayed as multivari-
ate visualizations with dynamic query sliders integrated into each
axis. The purpose of the DataMeadow is to allow users to cre-
ate advanced visual queries by iteratively selecting and filtering
into the multidimensional data. Furthermore, the canvas provides
a clear history of the analysis that can be annotated to facilitate dis-
semination of analytical results to outsiders. Towards this end, the
DataMeadow has a direct manipulation interface for selection, fil-
tering, and creation of sets, subsets, and data dependencies using
both simple and complex mouse gestures. We have evaluated our
system using a qualitative expert review involving two researchers
working in the area. Results from this review are favorable for our
new method.

Keywords: Multivariate data, visual analytics, parallel coordi-
nates, dynamic queries, iterative analysis, starplot, small multiples.

1 INTRODUCTION

Managing and presenting large, high-dimensional datasets is one of
the core problems in information visualization, and the vast number
of different approaches to solving this problem attests to its diffi-
culty [16]. However, to be able to support efficient visual analyt-
ics for such datasets we must also provide smooth and meaning-
ful interaction techniques for selecting, filtering and combining the
data. Furthermore, these techniques must be capable of operating
on multiple large-scale datasets instead of just one, and must allow
for communicating the results of the analysis to an outside audience
at a later stage [30].

The method presented in this paper is called the DataMeadow (see
Figure 1), and it provides users with a canvas for exploring mul-
tidimensional data sets using advanced visual queries. The data
itself is represented by a DataRose, a color-coded, parallel coordi-
nate starplot displaying selected variables of the set. Each displayed
variable can be filtered using dynamic query bars [25, 34] present
on each rose axis. Individual DataRoses are connected in a data
flow fashion; these connections are illustrated by arrows exiting the
center of one DataRose and entering the center of another, as illus-
trated in the figure. In this way, the user can progressively build
more and more complex queries with varying subsets of the data
being passed along.
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Figure 1: Sample house value and acreage versus number of rooms
and owner income query in the DataMeadow.

Furthermore, the incrementally-refined queries can be annotated
with various visual representations in order to communicate the
results to stakeholders (i.e. communication-minded visualization
[30]). For added flexibility, the roses can be freely moved around,
resized, and manipulated on the meadow canvas to allow for easy
comparison to other datasets. To provide for more complex com-
parisons, DataRoses come in different types, either representing a
data source or a specific set operation such as union, intersection,
or uniqueness. This allows roses to be connected to other roses
using dependencies, forming visual query chains. In essence, the
DataMeadow provides a form of “visual pivot table”, allowing the
user to refine and examine selected portions of a large multivariate
data set in parallel.

In order to assess the utility and interaction efficiency of the
method, we performed an expert review using a think-aloud proto-
col involving two visualization researchers. Our observations from
this study indicate that the DataMeadow is a useful way of think-
ing and interacting with multivariate data. The participants both
remarked on the ease of creating queries and the power of being
able to “play” with the data and getting immediate feedback.

The rest of this paper is organized as follows: We begin with a tour
of the existing work on visualization and visual analytics of mul-
tivariate data. We then formulate the requirements for an analysis
tool intended for such data, including identifying the user group and
the main user tasks. We describe the DataMeadow visual canvas in
detail and describe a typical scenario using the tool. This is fol-
lowed by our user evaluation and the results we gained from it. We
finish the paper with a discussion and our conclusions.

2 RELATED WORK

The work presented in this paper builds on ideas and inspiration
both from techniques for visualizing multivariate data, as well as
the application of these techniques to highly interactive interfaces
for visual analytics. We describe both of these areas in turn in the
following sections.

2.1 Multivariate Visualization

Much work has been conducted on visually presenting hypervari-
ate data in a form suitable for understanding; Keim [16] presents



an overview and taxonomy of such techniques. For large sets of
multidimensional data, standard 2D or 3D symbolic displays such
as plots, diagrams, and charts are generally insufficient due to scal-
ability reasons, and more advanced methods are needed. Examples
of such methods include geometrically-transformed displays [8],
iconic displays [7], dense pixel displays [15, 17, 18], and stacked
displays [14, 20, 24].

One prolific geometrically-transformed display technique is paral-
lel coordinates [12, 13], which abandons the standard practice of
orthogonal dimension axes, and instead stacks up the axes in paral-
lel, tracing a line instead of a point through the axes for each data
case. The diagram is then easily extended with just another parallel
axis for each new dimension that is to be visualized. To avoid a
linear extension of the diagram ad infinitum, a so-called starplot is
constructed where the diagram is folded into polar space, mapping
each axis on the radius of a circle. The DataRose presented in this
work is a direct descendant of the starplot and has indeed a parallel
coordinate mode, but also other visual representations showing data
distribution.

Fua et al. [10] introduce hierarchical parallel coordinates that are
rendered in clusters using opacity bands instead of drawing each
individual data point, just like in the DataRose. The approach was
later extended to starplot displays. However, DataRoses are man-
ually clustered by the analyst and also allow the use of histogram
bands, thus providing a more faithful rendition of the underlying
data than the mean and extreme values shown by the opacity bands.

The parallel sets technique [4] is another approach to representing
distribution for categorical data in a parallel coordinate diagram. It
uses proportional scales and color paths to show how different cat-
egories divide among adjacent dimensions. Sifer [27] extends the
idea by removing the color paths and instead relies on implict color
coding. The DataRose also makes data distribution in the parallel
coordinate display explicit, but our approach does not require cate-
gorical or hierarchical data.

The DataMeadow presented here can support a very large number
of data cases, but if the number of variables to visualize grows too
large, the scalability of the technique is affected. In such cases, we
must employ techniques for very high dimensional representation,
such as the dense pixel displays and stacked displays mentioned
earlier. Our datasets are not of this magnitude, but we can easily
foresee integrating visual elements based on these visualizations
onto our canvas as well.

2.2 Multivariate Visual Exploration

Interaction is a powerful means for multivariate data exploration.
The Dust & Magnets [37] technique is an example of this, and
shows how a simple interaction can provide important insights into
a complex dataset through animation. Another example is the par-
allel coordinate tree [6] introduced by Brodbeck and Girardin for
presenting hierarchical and multidimensional data using a tree rep-
resentation. Their use of focus+context distortion for interacting
with the visualization fulfills an integral role in the exploration of
the data.

The Sandbox [35] system is a platform for visual analysis of inte-
grated information in a semi-structured fashion. The tool empha-
sizes fluid interaction on a 2D canvas using direct manipulation in
order to promote visual thinking, much like the DataMeadow can-
vas presented in this work. Towards this end, the Sandbox even
supports a gesture detection component, just like our method. How-
ever, where the Sandbox uses unstructured or semi-structured vi-
sual elements, we impose a multivariate data model on our visual
elements in order to allow for faithful visualization of the data.

Theron presents the concept of interactive parallel coordinate plots
(IPCPs) [29] as an interactive tool for analysis, providing interac-
tion techniques such as brushing [2] and axis filtering [23] similar
to the DataRose approach in this paper. However, the DataMeadow
allows for linking several DataRoses together to construct compos-
ite queries that are dynamically updated as the analyst interacts with
the visual elements.

Finally, other work on visual analytics has tackled the problem of
multivariate data: Brennan et al. [5] present a framework for ex-
ploration of multidimensional data and employ a visual canvas, but
they focus on collaborative aspects of the platform. Xie et al. [36]
consider two approaches to incorporating quality information in
multivariate visualization. Trellis displays [3] combine several vi-
sualizations into one panel. Polaris [28] (and Tableau) provides for
a more structured analysis process than the DataMeadow.

3 REQUIREMENTS

This section contains a listing of both functional (task-centered)
and non-functional (general) requirements for a visual analytics ap-
plication designed for multivariate data. These requirements have
been derived from treatments on visual exploration [16] and the
analysis process [30], as well as the cognitive task analysis in [35].

The primary users of the DataMeadow tool are experts familiar with
multidimensional data manipulation and representation. Some of
the operations, such as filter and set operations, are too complex
for a novice user to easily grasp, yet are necessary to satisfy the
requirements of the target user group.

3.1 General

One of the main distinguishing features of visual analytics is the
need for powerful and effortless interaction across several visual-
izations. This goes beyond individual graphical representations—
analysts must be able to combine several visualizations in order to
correlate findings and insights. Below are the main non-functional
requirements of our method necessary to fulfill analyst goals:

(R1) interaction — interaction must be smooth and effortless;

(R2) exploration — encourage data exploration by providing easy
access to analysis tools such as filtering, sorting, correlation,
etc [26];

(R3) iterative refinement — the approach should lend itself to pro-
gressive analysis [11] of the data in small multiples [31]; and

(R4) communication — the system should support the production,
presentation and dissemination of analytical results [30, 32].

3.2 User Tasks

Visual exploration [16, 19] often follows the “information-seeking
mantra” [26]: overview first, zoom and filter, and provide details
on demand. Any visual analytics application should support these
basic tasks.

More specifically, in this work we are targeting simultaneous vi-
sualization of multiple large-scale data sets. The main user task
the application needs to support is comparison; either comparison
between different datasets, such as data for different states in the
United States, or between subsets of the same or different sets, such
as data for different cities or counties in the same state.

In the task taxonomy of Amar et al. [1], comparison is classified as
a higher-level meta-operation. In our model of the DataMeadow,



this is certainly true: in order to support this broad comparison op-
eration, we must provide for a wide range of lower-level user tasks
such as (using the terminology of Amar et al.) retrieve value, filter,
correlate, characterize distribution, etc. Wehrend and Lewis [33] re-
fer to this operation as compare within and between relations—this
also applies to the DataMeadow, where we support both compar-
ison between datasets as well as between subsets within the same
dataset.

4 THE DATAMEADOW METHOD

The DataMeadow method is designed for visual analytics of mul-
tiple high-dimensional datasets. The main driving user task behind
the design of the technique is comparison between different sets
or subsets of data. In this section, we describe the visualization
method, including the user tasks supported, the visual mappings,
and the interaction techniques.

4.1 DataMeadow

The DataMeadow is an infinite 2D canvas and a collection of visual
analysis elements used for multivariate visual exploration. A visual
element is a graphical entity with an appearance, a number of user
controls, and input and output dependencies. Elements can be cre-
ated, modified, and destroyed as needed. Individual elements can
be chained together using dependencies and then compared to each
other. Dependencies and different analysis operations and interac-
tion techniques can also be used to construct more complex visual
queries.

More specifically, the DataMeadow consists of the following com-
ponents:

• Visual analysis elements. A graphical entity used for data
analysis. Different element types perform different opera-
tions. Example types include DataRoses, textual annotations,
data viewers, etc.

• Dependencies. Directed connections linking one visual ele-
ment to another. Data cases pass through the dependencies
from the source to the destination element.

• Canvas. Infinite 2D plane on which all components are an-
chored. Supports sort and layout operations of elements. Has
an associated data format that describes the meta information
about the available dimensions and their data type.

Each DataMeadow conforms to a specific data format that de-
scribes the format of the datasets, i.e. the columns and their meta-
data (column name, data type, etc). The data format specifies what
information is stored in the visual elements and is passed through
the dependencies connecting them. The meadow can contain sev-
eral different datasets as long as they all conform to the data format,
allowing for comparison of multiple related datasets (such as base-
ball statistics for different seasons or US Census data from different
years).

4.2 Visual Analysis Elements

The basic building block of the DataMeadow method is the visual
analysis element, a component consisting of a visual appearance,
a variable number of user controls (none for some elements), and
input and output dependencies. Each element follows a strict multi-
variate data model based on the currently active data format for the
canvas. This data model governs how information flows through the
system through the dependencies and how it can be transformed by
the elements.

There are three types of visual elements in the DataMeadow method
(examples of each type are given in brackets):

• Sources. Producer elements from where data originates and
is passed through outgoing dependencies. [database readers,
noise generators, number generators, etc]

• Sinks. Consumer elements that accept incoming data and
consume it, potentially changing its visual appearance to re-
flect the nature of the data. [viewers, labels, flags]

• Transformers. Input/output elements who transform incom-
ing data using some operation and outputs it to outgoing de-
pendencies. [DataRoses]

In the following sections we will be describing some of the ele-
ments in greater detail.

4.3 Dependencies

A dependency is a directed connection between two visual elements
on the same DataMeadow. This is the basic principle supporting the
iterative refinement requirement from Section 3.1. Data cases from
the source flows along the dependency to the destination element
using the data format of the meadow.

Dependencies are never filtered or constrained; all filtering is per-
formed in the visual elements. Mutual or circular dependencies are
not possible on the DataMeadow canvas due to the flow-directed
nature of the underlying data model.

Dependencies will ensure that changes in source data are properly
propagated to all dependees. Thus, when an analyst changes the
parameters of a visual element in a chain, all elements further down
in the chain are immediately updated to provide feedback to the
user. This way, the user can directly see the effect of a parameter
change to the visual query.

4.4 DataRose

The core visual elements in the DataMeadow method are called
DataRoses: 2D starplots displaying multivariate data of the cur-
rently selected dimensions of the dataset. The data can have differ-
ent visual representations depending on the task; examples include
color histogram mode, opacity band mode [10], and standard par-
allel coordinates mode. The design intention of the DataRose is to
provide a self-contained visual entity that lends itself to side-by-
side comparison to other datasets.

A DataRose represents one specific dataset, and can be derived ei-
ther from a database source or be the result of a set operation (see
below for more on this). More specifically, a DataRose is a mathe-
matical set, i.e. all entities contained in a rose appear only once.

4.4.1 Visual Representation

Figure 2 shows the three visual rose representations for a fictitious
university student database. The database records 500 students and
maintains five dimensions: the age (quantitative), major (nominal),
gender (nominal), GPA (quantitative), and graduation year (ordinal)
of each student. For all three visual representations, a single black
polyline is used to show the average for each dimension. Low val-
ues are close to the origin, high values reside on the outer radius.

In color histogram mode, the data distribution for each dimension
is shown on the surface of the rose using a continuous color scale.
The color transitions between color values of adjacent axes are ren-
dered using smooth interpolation.



(a) (b) (c)

Figure 2: Sample DataRose visualization for a university student database of a computer science department. (a) Color histogram mode (high
brightness equals high density). (b) Opacity bands mode. (c) Parallel coordinate mode.

Figure 2a shows a color histogram using the OCS [21] color scale.
High brightness indicates high density in the underlying distribu-
tion, so it appears that age (the 12 o’clock dimension) is fairly
evenly distributed across the dataset. Going clock-wise around the
rose, for major there is a concentration of data around the mid-term
mark of the dimension. As it turns out, this is a database of students
attending courses in a computer science department, and looking at
the value legend reveals that this particular value is for students who
have computer science as their major. The gender dimension rein-
forces this fact, as there appears to be a skewed gender balance in
the dataset. The students have an above-average GPA, and most of
them seem to be freshmen or sophomores.

In opacity band mode, the underlying data is abstracted using
opacity bands that smoothly go from full opacity at the average to
full transparency at the extremes (minima and maxima). Transitions
between adjacent axes are again rendered using smooth interpola-
tion. Figure 2b shows an opacity band where the amount of purple
color indicates the data density. The same trends we noted from
the color histogram representation are visible here as well, albeit
at a higher abstraction level. Furthermore, the density of the data
for different values is less obvious, and the observation about most
students being computer science majors is hard to make here.

Finally, the parallel coordinate mode uses traditional parallel co-
ordinate rendering, where all cases of the underlying dataset are
rendered using polylines that connect the values for each dimen-
sion. However, the downside is that data distribution is more diffi-
cult to see in this visual representation.

Accordingly, different representations are suitable for different
tasks; while parallel coordinates certainly display the most informa-
tion, it is sometimes useful to be able to abstract away some of the
details when trying to get an overview of the dataset. Opacity bands
are suitable for getting an idea of the average and extreme values
of the underlying dataset. For some analysis tasks, it is important
to be able to see the data distribution, something which can be very
difficult in parallel coordinate mode where a lot of data cases might
map to the same position on the axis (especially for nominal dimen-
sions). Color histogram mode shows a detailed breakdown of how
the data cases divide among the values along each dimension.

4.4.2 Starplot Layout

DataRoses are constructed by splitting a full 360◦ circle into n parts,
one for each of the data fields F = { f1, f2, . . . , fn} to be visualized.
This will assign each field 360◦/n of the circle. For each data field,

an axis is drawn radially from the center of the circle to its perime-
ter. The center part of the rose is reserved for interaction, such as
dragging the rose and creating dependencies, and this part is also
used for the visual icon for the specific rose type. The remaining
part of the axis is normalized to the range of the associated data
field and is used for plotting individual data cases.

Note that in all visual modes, we use the starplot axes as continuous
dimensions even for nominal data. This is perhaps counter-intuitive
and imposes an artificial ordering between these values. For fu-
ture iterations of the technique, it would be useful to employ the
DQC [22] reordering approach to impose an optimal ordering of
coordinate mappings of nominal variables.

4.4.3 Axis Filtering

In the DataMeadow, as shown in Figure 1, each DataRose starplot
axis also has a dynamic query slider to allow for axis filtering [23].
The handles for each slider are shown as small circles on the axis
plotted at the extremes of the current filter selection. In addition,
a semi-transparent area is drawn over the areas of the DataRose
falling outside of the current filter selection. The user can grab
the query handles and move them, dynamically changing the filter
selection and causing the visual elements further down in the chain
of connected elements to be updated. This allows the analyst to go
back and make upstream filter changes that affect a whole query.

This iterative refinement using dynamic queries is an important dis-
tinction to software systems that are based on dynamic queries,
such as Spotfire. In these systems, the DQ sliders are typically
global in scope, whereas they are local for the data flow chain in
the DataMeadow.

Figure 3 shows an example of axis filtering where the analyst has
filtered the student database example from above to only include
students of 25 or above with a certain range of graduation year,
major, and GPA. Any outgoing dependencies from this rose will
only propagate the filtered data. Furthermore, the data flow model
shows interactive feedback at all times as the analyst is changing
the dynamic queries, promoting visual exploration of the data.

In Figure 1, the analyst has constructed a complete visual query
from a house database for the state of Vermont. By changing the
DQ filter settings in the middle rose, the analyst is able to study
the correlation of high value and acreage on the number of rooms
and bedrooms of a house by looking at the average and extreme
values in the result rose to the right. The leftmost database rose and



Figure 3: Dynamic query axis filtering for the student database.

(a) (b) (c) (d)

Figure 4: DataRose type icons. (a) Database (source). (b) Union. (c)
Intersection. (d) Uniqueness.

the result rose have also been connected to a barchart viewer (see
Section 4.5) to show the relative sizes of the two roses.

4.4.4 Rose Types

In order to support complex user tasks such as correlation and char-
acterization, we introduce additional DataRose types other than the
standard source, which represents an external database loaded from
a file. We define the rose types as set operations, allowing us to
construct advanced visual queries through constrained and uncon-
strained dependencies. All rose types accept variable input depen-
dencies, i.e. they have been generalized from standard set theory
operations.

• Source. External database loaded from a file (see Figure 4a).

• Union. Set representing the union of all input dependencies,
i.e. the combination of all input cases (see Figure 4b).

• Intersection. Set representing the intersection of all input
cases, i.e. only cases that are present in all input dependencies
(see Figure 4c).

• Uniqueness. Set representing unique inputs, i.e. only cases
that exist in only one input dependency (see Figure 4d).

Set operation rose types are useful for advanced correlations, such
as between different visual query branches. For example, in the
case study below, the analyst uses an intersection rose to see
whether any of the high value houses he has identified in one vi-
sual query also are present in the high acreage subset he derives in
another (see Figure 6).

Additional rose types representing other, more complex multi-set
operations can easily be added.

4.5 Viewer Elements

Viewers are sinks that accept input and have no output dependen-
cies, typically changing their visual representation to reflect the in-
coming data. They are useful for studying the results of more com-

plex queries involving DataRoses. The following viewer elements
are supported by the DataMeadow canvas:

• Quantity barchart. Shows the relative amount of cases com-
ing in from the different dependencies as a barchart.

• Quantity piechart. Same as the above, but using a piechart
representation.

• Linear histogram. Data distribution of each dimension
shown as a standard linear histogram.

Examples of viewer elements can be seen in Figures 5 (barchart and
piechart).

4.6 Annotation Elements

Annotations are sink elements whose primary purpose is to sup-
port the communication requirement by providing a way for the an-
alyst to incrementally annotate findings using free-text messages
and media. Because they are sinks, an annotation object typi-
cally has inbound dependencies, and can thus present reports on
the data. The following annotation element types are supported in
the DataMeadow:

• Labels. Names and labels to denote a specific element or
analysis result.

• Notes. Longer textual descriptions (more than a single line).

• Images. Bitmap images to illustrate particular elements or
analysis results.

• Reports. Textual reports of the incoming data, such as aver-
age, minima and maxima, etc. Automatically updated as the
data changes.

4.7 Interaction Techniques

The DATAMEADOW implementation provides a number of inter-
action techniques (supporting the interaction requirement of Sec-
tion 3.1):

• Mouse navigation. The viewport can be panned by pressing
the center mouse button and dragging, or zoomed in or out by
pressing the right mouse button and dragging.

• Brushing. Selecting a data case in one DataRose will high-
light the case in all of its appearances in other DataRoses (par-
allel coordinates only).

• Mouse gesture detection. The user can perform complex
mouse gestures on the canvas to create new set operation
DataRoses.

The mouse gesture support allows the analyst to easily construct
visual queries without having to leave the visualization window to
access menu options or even having to use the keyboard. For exam-
ple, drawing a U-shaped pattern on the canvas will create a union
rose, and an upside-down U will create an intersection rose.

4.8 Layout Mechanisms

The DataMeadow canvas lends itself nicely to employing a number
of layout mechanisms for arranging the roses and their dependen-
cies. A number of simple layouts such as circle, grid, and depen-
dency depth order are supported. A more complex physically-based
layout scheme using springs and dampers can also be employed to
provide a more visually interesting and dynamic layout that encour-
ages exploration. The ambition is to provide semi-automatic layout
(akin to [35]) to aid the user in organizing the visual elements.



Figure 5: The DataMeadow prototype implementation. The main panel shows the visualization canvas and the smaller panels to the right show
the available and currently visualized dimensions in the data.

4.9 Prototype Application

As can be seen from Figure 5, the prototype implementation has
three distinct interface parts: (i) a main visualization window, (ii) a
dimension selection part (upper right), and (iii) a currently visible
dimension part (lower right). The main visualization window is a
continuously zoomable viewport into the infinite 2D canvas repre-
senting the DataMeadow. Users can easily zoom and pan across
the whole canvas using simple mouse interactions. The dimension
selection interface boxes allow the user to easily select which di-
mensions in the data format to visualize—this can be dynamically
changed, so that dimensions can be added or hidden as necessary.

4.10 Implementation

The DATAMEADOW application was implemented using the C#
programming language and the Microsoft .NET framework. The
application uses the Tao bindings for OpenGL to get access to both
2D and 3D accelerated graphics functionality but no special visu-
alization toolkit was used. The interface components were realized
using the Windows Forms toolkit.

The prototype implementation has been optimized to deliver inter-
active framerates even for very large datasets (more than 500,000
data cases). This is primarily possible through the use of the dis-
crete polygon rendering approach for the color histogram and opac-
ity bands modes of the DataRose; parallel coordinate rendering has
a much larger performance overhead and is discouraged for datasets
of this size (more than 100,000 entities).

5 CASE STUDY: US CENSUS DATA

Let us follow a fictitious analyst (Alan) who is using the
DataMeadow to study the Public Use Microdata Sample (PUMS
1%) of the US Census data from 2000. The prototype implementa-
tion has support for loading data formats based on either the person
or housing records of the PUMS dataset. This allows Alan to easily
select and load the database file for a specific state into the appli-
cation. Alan is interested in studying the PUMS housing records,
so he first loads the housing data format. He then decides to start
his analysis in the state of Vermont, so he loads this dataset into the
application.

Upon finishing loading, Alan is presented with an empty DataRose
representing the Vermont dataset, containing 3151 entries. First, he
selects which of the 18 dimensions in the database he wants to dis-
play, opting for build year, number of rooms, number of bedrooms,
acreage, value, and owner income. He quickly creates a data flow
chain by right-clicking and dragging on the Vermont rose to create
a first derived rose, and then again on the first derived rose to create
a second. He will use the first derived rose for filtering, and the
second to view the results, so he labels them accordingly. Finally,
he creates a barchart viewer and connects the Vermont rose to the
result rose so that he can easily observe size ratios as he explores
the data. See Figure 1 for his starting setup.

Now Alan is free to get a feeling for the data by changing the filter
selection on the filter rose. He does this by clicking and dragging
on the DQ handles on this rose and observing the visual results in
the results rose as well as the barchart. He is able to quickly confirm
some things that he already knows: for instance, that high value and



high acreage implies many rooms and bedrooms.

Next, Alan wants to start a new line of reasoning, so he creates
a second two-element chain of derived roses from the Vermont
database. He is free to leave his first query undisturbed. He de-
cides to remove the number of bedrooms dimension and instead
look at the number of persons in the household. Feeling that he
may be on to something, he decides to cross the results of the first
query with the results of the second. In order to do so, he creates an
intersection rose and connect the two queries to it. This rose will
now show the houses from the original dataset that are part of both
results from the two separate queries. See Figure 6 for the state of
his DataMeadow canvas.

Figure 6: Two visual query branches (value and acreage) crossed
using an intersection rose (brown).

Alan decides to bring the state of New York into the picture to con-
trast against Vermont. He gets rid of the second query branch and
loads the New York dataset, resulting in a second blue database
rose. All dimension axes are automatically rescaled by the applica-
tion to use the same scaling factor so that it is possible to directly
compare roses from two different datasets against each other. Alan
builds up a new query chain for New York and starts exploring the
data using axis filtering. By imposing the same constraints on the
chains of both states, he can see differences in the datasets. At one
point, he notices that in Vermont state, a high number of persons
in a household often implies a large acreage, but that this is not at
all the case for New York state. See Figure 7 for his final analysis
result.

6 USER STUDY

We conducted a qualitative expert review on our prototype imple-
mentation. Our goal was to explore the capabilities of the method
and gain an idea of its utility. The study involved two visualization
researchers from the field. Neither of the two had prior knowledge
of the tool.

6.1 Procedure

We structured our expert review based on the US Census 2000
PUMS dataset and a number of questions to drive the visual ex-
ploration. In total, there were nine open-ended questions divided
into three different groups (inspired by the conceptual levels for sit-
uation awareness [9]): direct facts (what is the average house value
in Georgia?), comprehension (which state has the highest ratio of
small and expensive houses?), and extrapolation (is there a relation

Figure 7: Comparing person data for houses of Vermont (upper
branch) and New York (lower branch).

between fuel type and building size in Alaska?). In this way, we
hoped to be able to evaluate all aspects of our method.

Our two experts were introduced to the DataMeadow using a tour
of the system in which the experimenter showed its main features
and analysis methods. This tour lasted ten minutes. After that, the
participants were allowed to familiarize themselves with the appli-
cation. This session typically lasted ten minutes as well.

During the solving of the nine questions on the US Census dataset,
the participants were instructed to follow a think-aloud protocol.
Only four out of fifty available states in the PUMS dataset were
included in the study. Each evaluation session lasted around one
hour in total. At the end, we conducted a short free-form interview
about their experience using the tool.

6.2 Results

We intentionally designed our nine questions to be of an open-
ended nature—we were not interested in quantitatively recording
the performance of our experts, but rather to have them exercise all
parts of the system and get their feedback on its utility. Still, both
participants were able to arrive at answers to all questions.

The participants liked the free-form type of interaction and both
remarked it was a good match to how one might think about the
analysis process. Being able to filter in situ on the dimension axes
themselves seemed a good match to how one might think about
multidimensional filtering. The ability to “play” with the filter set-
tings at different levels in a dependency chain was often used to
both form hypotheses and to inform the next line of reasoning.

Both participants thought that the opacity bands representation was
the most efficient for general analysis. In some cases involving
the distribution of mostly nominal data (e.g. fuel type), the color
histogram was used. Participants remarked that this representation
was often too dark because the data was often distributed rather
evenly across the dimensions, resulting in only the lower half of
most color scales to be used. None of the participants really liked
the parallel coordinate representation, remarking that it “showed
too much” for the analysis task they were doing.

Some improvements that were pointed out were to include viewers
with logarithmic scales to avoid one dataset dwarfing another, to be



able to copy query filter settings from one rose to another, and to be
able to set color scales for individual data roses.

7 CONCLUSIONS AND FUTURE WORK

This paper presents a visual analytics method called the
DataMeadow for reasoning about multiple large-scale sets of mul-
tidimensional data. The primary user task supported by the method
is comparison, a high-level meta-task that requires a considerable
number of low-level user tasks such as retrieve value, correlation,
and filtering. The method consists of an exploratory 2D canvas
and individual datasets called DataRoses. DataRoses are variable-
dimension starplots that employ a visual multivariate data represen-
tations to visualize the data distribution along the coordinate axes
being displayed. To summarize, the contributions of this paper are
the following:

• a highly interactive canvas (the DataMeadow) for multivariate
data analysis;

• a visual representation (the DataRose) based on axis-filtered
parallel coordinate starplots that can be linked together to
form complex and dynamically-updated visual queries; and

• results from a user study indicating that our method is a useful
way to reason about and query multivariate data.

In the future, we expect to integrate additional visual representa-
tions into the DataMeadow. Another interesting approach would be
the use of both non-standard input devices (e.g. stylii and pen-based
interfaces) and output devices (large displays) for the application.
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