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Abstract—Datasets commonly include multi-value (set-typed) attributes that describe set memberships over elements, such as 
genres per movie or courses taken per student. Set-typed attributes describe rich relations across elements, sets, and the set 
intersections. Increasing the number of sets results in a combinatorial growth of relations and creates scalability challenges. 
Exploratory tasks (e.g. selection, comparison) have commonly been designed in separation for set-typed attributes, which reduces 
interface consistency. To improve on scalability and to support rich, contextual exploration of set-typed data, we present AggreSet. 
AggreSet creates aggregations for each data dimension: sets, set-degrees, set-pair intersections, and other attributes. It visualizes 
the element count per aggregate using a matrix plot for set-pair intersections, and histograms for set lists, set-degrees and other 
attributes. Its non-overlapping visual design is scalable to numerous and large sets. AggreSet supports selection, filtering, and 
comparison as core exploratory tasks. It allows analysis of set relations inluding subsets, disjoint sets and set intersection strength, 
and also features perceptual set ordering for detecting patterns in set matrices. Its interaction is designed for rich and rapid data 
exploration. We demonstrate results on a wide range of datasets from different domains with varying characteristics, and report on 
expert reviews and a case study using student enrollment and degree data with assistant deans at a major public university. 
Index Terms—Multi-valued attributes, sets, visualization, set visualization, data exploration, interaction, design, scalability.

 

1 INTRODUCTION 
Many real-world data collections consist of elements with multiple 
attributes. Some of these attributes may take multiple categorical 
values; for example, movies may have multiple genres, recipes have 
multiple ingredients, students take multiple courses, and publications 
typically have multiple keywords and authors. These multi-valued 
categorical attributes are commonly referred as set-typed since they 
implicitly describe set memberships over elements.  

Set-typed data has recently received considerable attention in the 
field of information visualization, with visual representations based 
on linear lists of set intersections [24], radial node-link diagrams [4], 

and element matrix compositions [32]. However, common between 
these and other visual set exploration approaches in the literature is 
that: (i) they scale to a relatively small number of sets; (ii) they are 
optimized for particular set exploration tasks; and (iii) they either do 
not support other element attributes beyond set membership, or the 
visualization and interaction is designed differently and ad-hoc for 
other attributes, decreasing consistency. 

We present AggreSet, a novel set exploration technique that 
solves these challenges through an integrated design of linked 
visualizations of multiple data dimensions with rapid selection, 
filtering, and comparison (Figure 1). We address the challenges 
above as the following: (i) To improve scalability, AggreSet uses a 
matrix-based visualization for set relations. Scalability in the number 
of sets is achieved by the non-overlapping and zoomable nature of 
the set-matrix. Scalability in the number of elements is achieved by 
aggregation. (ii) Based on our analysis of set-typed data exploration 
and design guidelines, AggreSet is designed to achieve richness of 
supported tasks, design efficiency and consistency. (iii) AggreSet 
embeds the set-matrix in a multi-view layout consisting of 
histogram-based visualizations that are brushed and linked in a 
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Fig. 1. Exploration of a movie dataset with multiple genres (sets) and ratings using AggreSet. Aggregate histograms are used for 
set-list and set-degrees, whereas the aggregate matrix (left) is used for set-pair intersections. The gray distributions visualize the 
number of elements per aggregate. The Action genre is selected by mouse-over . Mouse click will filter. We compare Romance 
(black lines) to Action (orange areas). Most movies (+2k) have one genre. 7 movies have maximum (5) genres. The 
Godfather is the only Action movie in the rating-sorted movie list. Of Thrillers, 133 have Action (orange bar) and few have 
Romance (black line). More than 50% of SciFi and Adventure movies have Action, while very few have Romance. Thriller is 
more common with Action than with Children movies (circle size). There is no Children movie with Crime (empty intersection).  



design that does not differentiate between set-typed and multivariate 
attributes. Specifically, AggreSet achieves: 

Scalability: AggreSet supports concurrent analysis on numerous 
sets (50+) and many aggregated elements (100,000+) across multiple 
dimensions. Its scalability comes from non-overlapping visual-
izations of aggregations over elements, and a scrollable and 
zoomable matrix view for visualizing relations between sets. 

Richness: AggreSet supports a plethora of tasks for exploring 
relations in set-typed attributes and elements with minimal visual 
and interaction components. Its multi-view and linked design enables 
higher-order analysis (e.g. intersection of three or more sets), 
surpassing the limitations of static 2D set-matrix layouts. 

Consistency: The visual and interaction design of AggreSet is 
consistent across all attribute types; i.e. it does not differentiate 
between aggregates for sets, set-degrees, set-intersections and other 
attributes, when applicable. 

Rapid exploration: The user can observe many relations on 
tightly coupled visualizations without performing explicit state 
changes that slow down interaction. Our visual and interaction 
design encourages an overview-to-detail exploration. 

Matrix design for set relations: AggreSet’s set-matrix 
visualizes set-specific relations: empty, identical and sub-sets. It also 
presents a new set similarity metric, and a new method for set 
ordering to perceptually emphasize intersections of set groups. 

Using our web-based implementation of AggreSet technique, we 
present screen-captured results using datasets from different domains 
with various characteristics in data size and relations through this 
paper: movies (genres) [24], character co-occurrences per chapter in 
Les Misérables [22], recipes (ingredients) [2], data breaches (record 
types) [35], border countries (neighbors) [10], and undergraduate 
student records (course enrollments). To evaluate our technique with 
external participants, we conducted an expert review with three 
visualization experts, and a case study with undergraduate assistant 
deans at a major university using student enrollment data. 

2 RELATED WORK 
We review the related work on set visualization based on a 
categorical approach of visualization types from a recent survey [5]. 
We refer the reader to this survey for a more thorough analysis. We 
present a focused comparison and discussion of selected recent 
techniques in Section 8 after presenting AggreSet in full. 

Euler Diagrams: Sets can be drawn as enclosing boundaries 
around elements, generating Euler diagrams. Given few set and 
element counts, Euler diagrams are powerful and can intuitively 
demonstrate set concepts. However, scalability is an issue. Proposed 
improvements, such as untangling [29], cannot avoid the inherent 
visual complexity beyond a few hundred elements and only a few 
sets, especially when the sets are densely intersecting. An extensive 
survey of Euler diagrams is presented by Rodgers [31]. 

Overlays: Sets can also be overlaid on existing visualizations 
that define element positions (layout) by other attributes [3], [12], 
[13], [27]. Isocontours are commonly used to enclose elements 
within sets. Their scale is limited by the element count when 
elements are not aggregated. Elements appearing in many sets also 
increase visual overlaps and complexity as in Euler diagrams. 

Node-Link and Chord Diagrams: Node-link diagrams visualize 
set relationships by mapping sets to nodes and set-pair (second 
degree) intersections to edges. Visual scalability is primarily 
influenced by the set (node) count and link sparseness (edge count). 
Circular layouts (chord diagrams) position set nodes along a circle to 
bring a spatial structure visually. To allow for richer set exploration 
on such diagrams, RadialSets [4] is based on an interactive circular 
layout with degree histograms on the set nodes, and uses edges to 
represent intersections of two or more sets. It is included in our 
focused comparison. AggreSet’s design follows previous studies that 
have shown that when graphs (connected entities) are bigger than 
twenty nodes, matrix-based visualization performs better than node-
link diagrams on many tasks [17]. 

Matrix-Based Diagrams: A matrix layout is made of rows and 
columns that list values of a data type. Co-occurrence matrices use 
the set list on both axes, and cells show set pair intersections. 
Intersections metrics, such as element count, are commonly 
visualized using color (heatmaps). The resulting visualizations are 
non-intersecting and easy to read. However, such matrices hide 
information about higher-order set intersections [23]. AggreSet 
improves on the set-matrix design with its interactive, multi-
dimensional approach. Matrix-based diagrams can also be built using 
different data dimensions for rows and columns. ConSet [21] uses a 
matrix with rows from elements and columns from sets. Since 
elements are not aggregated, its matrix view is not scalable by 
element count. Among the other approaches, UpSet [24] and OnSet 
[32] are discussed in our focused comparison.  

3 SET EXPLORATION MODELING 
Set exploration is conceptually non-trivial; there are many tasks that 
involve intersections and relations between multiple sets and other 
element attributes [5]. To support a rich and comprehensive ability to 
explore set-typed data, we present a new modeling for data 
representations, low-level actions, and high-level tasks. Our data and 
low-level action model is shown in Figure 2. Higher-level tasks, such 
as comparing across element selections and exploring set relations 
based on shared elements, are discussed below. 

To exemplify the execution of our model, let us consider a movie 
dataset where each movie (element) has multiple genres (sets), an 
average rating, and a country of origin. What are the genres, the 
countries, and the range of ratings in the dataset (Analyze within 
aggregates)? What are the genres and the rating of the movie Wall-E 
(Retrieve)? What are the two most common genres (Analyze within 
genres, Find)? How many genres does a movie have at most (the 
maximum genre degree) and what is the degree distribution? 
(Analyze within genre degrees). Such overview reveals basic 
patterns. Then, exploration expands through selections. What are the 
drama movies? Movies that have at least three genres? Movies with 
highest ratings? Such exploration commonly starts with a Select, is 
followed by Sync that retrieves and aggregates selected element 
attributes, in order to Analyze data characteristics in multiple data 

Fig. 2. Our set exploration model for data and low-level actions. 
Elements are mapped to aggregates, and actions are defined across 
data types. A set-typed attribute is decomposed into three forms of 
element aggregates: set-list, set-degree, and set-intersection. This 
model distinguishes the explicit set-list from set-intersections, and 
allows for exploration using set-degrees directly. Given a group of 
elements/ aggregates, you can Find an element/ set with some 
characteristic, or Analyze the group overview to detect the range of 
values and patterns. Given an element, you can Retrieve the 
aggregates that include the element. Given a selection of one or more 
aggregates, you can Select the elements that satisfy the selection. We 
do not differentiate how selection is actualized (i.e. highlighting or 
filtering). Lastly, given a selected element group, Sync is a global 
action from all elements to all aggregates to reflect underlying element 
characteristics. Sync action generalizes Retrieve for selected 
elements to enable Analysis within all aggregates. Sequencing these 
low-level actions on set list, degree and intersections allows 
expression of complex queries by creating flexible type-agnostic paths. 



dimensions. What is the rating distribution of children’s movies 
(genre to rating)? What are the common genres of high-rated movies 
(rating to genres)? What other genres do documentary movies have 
(genre to genres - set relation)? Which genres have more multi-genre 
movies (genre degree to genres)? Which genre pairs are more 
common, which genre pairs include no movies (empty intersections), 
and which genres always appear together (are subsets) (Analyze 
within set intersections)? We can then compare different selections. 
How do ratings compare across horror vs. documentary movies 
(Select horror à Sync, repeat for documentary and Analyze for 
comparison within rating)? We can expand our inquiry by looking at 
intersections of multiple genres. AggreSet supports all such queries 
through its single aggregate-based exploration modelling. 

Many exploratory questions depend on the Select action based on 
some criteria. Rich data exploration is only possible through flexible 
selection models, ideally with ease of expression. Selection for set-
typed data can include multiple attributes (high-rated drama movies) 
and multiple set values can be selected using different modalities 
(family and comedy movies without action), representing 
intersection (∩ - and), union (∪ - or), and complement (\ - not). 

Comparison of data characteristics under different selections is a 
more complex form of exploration. To support comparisons across 
different element selections, SelectàSyncàAnalyze pipeline needs 
to be executed under each selection, and the resulting distributions 
need to be saved and visualized. Exploratory comparison then 
follows visualizations of multiple distributions. 

Set-typed data also implicitly define relations between sets (A, 
B) based on their intersection (Q=A∩B), ordered by increasing 
strength in Figure 3: disjoint sets, partial sets, proper subsets and 
identical sets. Revealing these relations are among set visualization 
goals. Disjoint relation (Q=∅) represents empty intersection. It is 
very common in sparsely connected sets. Identity relation (A=B=Q) 
represents the strongest connection. It requires both sets to contain 
the same elements. Proper subset relation is the strongest relation 
when sets have different number of elements. One set subsumes the 
other, i.e. all elements that appear in the smaller set are also in the 
larger set (A⊂B, Q=A or B⊂A, Q=B). Many set-pairs are in partial 
relation. The sets have some shared items, and each set has some 
unique element compared to the other (Q≠∅, A\B≠∅, B\A≠∅). 

To model relations between sets, we define the strength of a set 
pair {A,B} on a continuous scale from disjoint (0) to subset (1), 
computed as |A∩B|/min(|A|,|B|). The set-pair intersection gets 
stronger as the sets share more elements, and the strength reaches 1 
when the sets share all the elements they can share. This metric 
presents a normalized context to set-pair relations, a form of 
similarity, and is an alternative to characterisation by element count, 
an absolute value on an unbounded scale. 

In contrast, the Jaccard Index, a common set-relation metric, 
normalizes the intersection size of two sets with their union size 
(|A∩B|/|A∪B|), also ranging from 0 (disjoint) to 1 (identical). 
However, this metric produces an unbalanced distribution since high 
values (toward equity) are much less likely to occur than strength 
metric (toward subset-ness) given varying set sizes. There are also 
other similarity metrics representing deviation from expected values 
using statistical inference assuming a marginal independence 
between sets [4], [24]. Such metrics return positive or negative 
values depending on whether the observed element count is higher or 
lower than expected. Deviation results can be compared relatively 
across sets and their intersections, while the strength metric is 
meaningful in absolute form (subset-ness) as well as for comparison.  

4 DESIGN GUIDELINES FOR AGGRESET 
We present a selection of our design guidelines to discuss how 
AggreSet addresses set exploration challenges in scalability and 
usability through design. The included references present extended 
analyses and supporting guidelines and discussions. 

Aggregate. Aggregated visualizations scale to larger data than 
non-aggregated ones, i.e. screen space limits visualizations of 
individual data points. Filtering is commonly used to decrease data 
volumes to manageable sizes, yet overviews are still required at the 
beginning. We also use aggregation to reduce overlaps and clutter. 

Be consistent [33], visually and interactively, across similar 
tasks and representations of different data types. For example, 
clicking on an aggregate is filtering, and it applies for all aggregate 
representations. Likewise, the selection highlight color applies to all 
affected components in our design. 

Have a tightly connected interactive design. AggreSet reflects 
changes in one data dimension to all related visible components. This 
guideline relates to the Sync action in our modelling, and it is 
applied automatically. Multiple connected views have become a 
common design pattern applied over many domains and applications 
[30]. Our tightly connected design also reveals how interface 
components work as well as the relations in data. 

Avoid overlapping. Overlap introduces clutter, limits scalability, 
and makes it harder to observe values and relations [14]. While there 
are techniques that bring more structure in case of overlaps, 
improvement in scalability is limited even with advanced methods. 
We therefore chose non-overlapping matrices for set exploration. 

Avoid duplication. Having multiple visual representations of a 
single item uses more screen space, limits scalability, and requires 
the viewer to encode relations between multiple representations of 
the same data. While there are methods proposed to reduce overlaps 
by introducing duplications [20], such methods have not yet received 
wide adoption or support. 

Have fluid interaction. How fast can the user express 
exploratory or targeted queries? Fluid design makes information 
available rapidly and smoothly upon interaction and avoids 
substantial transformations and explicit mode changes [15]. This 
guideline influenced our aggregate selection interaction design. In 
AggreSet, visual changes are animated [19], and visual 
cues/previews are used to improve the flow of interaction. 

Among more generic guidelines, Dieter Rams states, “Good 
design is as little design as possible” [36]. The rule of simplicity in 
UNIX philosophy emphasises decomposing problems into small, 
straightforward pieces [28]. The reflection of such guidelines on 
AggreSet is the explicit separation of set-typed data components, and 
the minimalist design with few key configurations. 

5 AGGRESET 
We designed AggreSet based on our set exploration modelling and 
design guidelines. We first present how this technique enables 
exploration of set, set-pair, and higher order set relations through 
interaction. Then, we present its features for exploring comparison of 
selections, relative distributions, disjoint and sub-set relations, 
relation strength, and set ordering for improved matrix layout. 

Exploration with AggreSet encourages the overview-to-detail 
flow of the information seeking mantra [1]. Its approach can be 
explained in four levels with increasing depth and richness. (i) 
AggreSet displays sets as a linear list, aggregates elements within 
sets, and visualizes the distribution of elements. It orders sets with 
larger element counts first by default (Figure 4 and 8-a). By selecting 
a specific set, the user can interactively explore (highlight, filter, 
compare) distributions of elements of the selected set, also revealing 
its intersections. (ii) AggreSet summarises the set-degree of 
elements. Selections on this dimension can be used to reveal higher-
order set relationships (e.g. intersections of >3 sets) (Figure 4). (iii) 
AggreSet introduces the set matrix to visualize the distributions in 
set-pair intersections and set relations (strength) using circle glyphs. 
The interaction design (highlight, filter, compare) seamlessly extends 

Fig. 3. Relations between two sets based on shared elements. 
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to this matrix. (iv) Intersections beyond second degree (set-pairs) are 
explored through selections. At all levels, the result list can show all, 
or filtered, elements (Figure 1), and other categorical and numeric 
attributes are presented with the same core design as set dimensions. 

AggreSet uses element aggregation to scale on element count by 
design. Element are aggregated per set, per set-degree and per set-
pair intersection, as modelled in Figure 2. Since set-pair aggregation 
is independent of the set order, the set matrix uses half of the matrix 
and avoids visual duplication. The intersections of a set are captured 
along two set-lines, one vertical and one horizontal. For example, in 
Figure 1, action movies are selected and two orange lines in matrix 
pass through the intersections of this set. The empty half of the 
matrix displays set labels (for easy identification of sets involved in 
intersection circles) and visual legend for matrix. 

AggreSet visualizes the aggregate distributions as summary 
statistics using non-overlapping glyphs per each aggregate, using 
bars for set-list  and set-degree , and circles for set-pair 
intersections . This visual design builds on studies on human 
perception [11], [18], [26] to achieve an effective language for 
exploratory analytical tasks. The length encoding on a shared 
baseline, which ranks as one of the perceptually strongest visual 
variables, is used for the primary characteristic where possible: the 
element count within aggregates. The 2D basis of the matrix view 
limits the applicability of a length-encoding scheme on a single 
shared baseline, thus our design uses a circular area mapping for 
intersection glyphs. In contrast, heat-map designs primarily use the 
color encoding that is perceptually more limited than the length or 
size encoding. AggreSet uses color consistently across the interface: 
to highlight selected element distributions (orange-fill ), to allow 
comparison (black-line ), and to show subset relations (blue-
border ), disjoint sets (grey background ) and set intersection 
strength (purple shades, ). Following interaction, visualizations 
are animated to reflect new distributions, and length and area scales 
are adjusted to fit the ranges of the filtered data. 

To explore a high number of sets that cannot fit within the linear 
and matrix view on a limited screen size, AggreSet matrix supports 
scrolling and panning, as applied in Figure 1 and 4. Scrolling is a 
more fluid action to observe limited parts of the dataset compared to 

explicitly selecting active sets one-by-one such as applied in Upset 
[24] and Onset [32]. When the set-list is scrolled, the set matrix 
follows along its diagonal line so that for all the sets visible on the 
list, their intersections are also visible on the set-matrix. The 
intersections involving sets that do not appear in the set-list are 
outside the diagonal. AggreSet allows these intersections to be 
explored by panning the matrix view by mouse drag. Notice that sets 
below the view cannot have any intersections within the matrix view 
by design. Also, panning reduces the unused portion of the set-
matrix view. AggreSet also supports adjusting the matrix cell size 
(zooming -  button) to make the circles easier to read, or to show 
more set-pair intersections in a single view (Figure 8).  

5.1 Search and Analysis through Aggregate Selections 
Understanding characteristics of selected elements is fundamental in 
data exploration. To enable this goal rapidly, AggreSet features a 
two-step hover-and-click interaction that applies across all aggregate 
types. When the mouse hovers on an aggregate glyph, AggreSet 
highlights the characteristics of elements within that aggregate 
visually across all other aggregates (Figures 1, 5). We call this linked 
brushing feature the result-preview. After previewing an aggregate 
selection by hovering, click action filters into the selected elements 
and exploration continues on the filtered data. Clicking on  of the 
aggregate sets it for comparison across other selections. 

Result-Preview: The result-preview visualizes the attribute 
characteristics of elements within a hovered aggregate. Given a set-
typed (multi-valued) attribute, by hovering on a specific set, the 
result preview visualizes its relations to other sets (Figure 1, movie 
genres), a simple, interactive design alternative to set-o-grams [16]. 
The result-preview is activated on hover, a precursor to filtering on 
clicking. This interaction is immediate and fluid; sweeping the 
mouse over aggregates visualizes distributions of aggregated 
elements rapidly. On bar charts, the result-preview is visualized with 
orange bars along the shared linear scale . In the set-matrix, the 
result-preview is visualized with a sweeping arc on circles with 12 
o’clock alignment, producing a pie chart with single pie . Our 
design uses a sweeping arc (instead of radius mapping) to emphasize 
part-of relations within intersections.  (¼),  (½), and  (¾) 

Fig. 5. 313 ingredients (sets) in 5,000 recipes (elements). The relative-mode is active; each aggregate glyph is scaled to its maximum size 
(length or radius), creating a shared percent scale. The orange result-preview shows the distribution of selected  corn among all aggregations 
in percentage. Corn is rarely used with soybean; 2% of recipes with soybean have corn. Corn is popular in recipes with high number of 
ingredients. At the peak, 44% of recipes with 20 to 25 ingredients have corn. In the matrix, recipes with the second rightmost ingredient 
(positioned above the view, tomato) frequently have corn, such as half of vinegar-tomato, and  half of soybean-tomato recipes. 

Fig. 4. Character co-occurrences in Les Miserables, with 80 characters (sets) in 356 book chapters (elements). Data is filtered to chapters 
that have at least 4 characters. The related 64 characters are reordered by the number of book chapters they occur. Thénardier and 
Cosette, have ghost-bars (gray extensions), showing that these characters also appeared in chapters with <4 characters while Joly and 
Bahorel appear only in the chapters with ≥4 characters. Thénardier is one of the common characters, yet he does not appear with Bahorel, 
Feuilly, and some other characters outside of the view (disjoint set pairs). The legend shows circle size mapping. 



serve as easily recognizable visual anchors for comparison of 
previews to (filtered) element count. If radius mapping by area is 
used to reflect selection areas, such ratios are harder to perceive, 
such as  (¼),  (½), and  (¾). We notice that the visual distance 
between circles and the lack of a shared basis can be limiting factors 
for effective comparisons across set intersections within the matrix. 

Filter: Elements in a selected aggregate can be filtered by 
clicking. The visual distributions follow the result-preview in an 
animated transition. Ghost-bars  are used to show the original 
distributions and provide a visual cue for the effect of filtering 
(Figure 4 and 9). The filtering interaction (mouse click) is explicit 
and view transforming. Filtering can be removed per selected 
aggregate (click on set), per-summary ( ), or per all ( ). Three 
filtering modes are supported in the set-list: and (∩ - click on set), or 
(∪ - click on ) and not (\ - click on ). The or/not buttons are 
shown on mouse-over only. Figure 9 shows multiple selection modes 
applied to courses (sets) taken by students (elements). Clicking on a 
set-matrix cell (set-pair glyph) enables ∩ filtering with two sets. 

Compare: AggreSet enables comparison across selections using 
an interactive one-vs.-many design. When the user clicks on  to 
select the compared aggregate, the black compare-lines ( , ) are 
inserted (Figure 1). By moving the mouse over different 
aggregations, the user can visually compare distributions of the 
compare-lines vs. the result-preview (of other selected aggregate). 
Once the compare-lines are shown, the comparisons are fluid with 
the rapid result-preview. Thus, AggreSet encourages one-vs.-many 
exploration using simple mouse movement. The compare-lines 
support exploration as both targeted and serendipitous activity. Since 
the compare-lines are inserted on top of the result-preview, the 
design has a natural flow. The black lines are the only visual addition 
that enables richer comparative goals; avoiding visual clutter while 
preserving the design minimalism. The compare-lines are removed 
when the compared aggregate is unlocked . 

AggreSet enables exploration beyond set-pair relations by 
selection across set dimensions. Figure 7 shows that the result-
preview selection on a set-pair enables analysis of intersections of 
three and four sets visually. Set-degree selection also enables higher 
order analysis. For example, to analyze intersections that involve 4 
or more sets, one can filter to elements with degree 4+, as shown in 
Figure 4. Likewise, selection by an exact set degree will show set 
relations unique to intersections that only involve as many sets. 
Quickly iterating through different set-degrees by result-preview can 
provide a quick overview of higher order relations within the data. 

5.2 Exploration of Relative Distributions 
AggreSet visualizations are based on the absolute value of element 
count per each aggregate by default. Alternative insightful analysis 
can focus on the relative frequencies within aggregates. For example, 
how common (by ratio) are action movies across all movies in 2012, 

and what is the trend of this ratio over years? Another form of 
relative distribution analysis is set-pair relation strength (Figure 3), 
describing the ratio of elements shared between sets rather than the 
absolute element count of their intersection. 

To enable observations of relative frequencies, AggreSet features 
the relative-mode (Figure 5). This mode enables exploration of the 
percentage distributions with respect to the total number of (filtered) 
elements per each aggregate under preview/compare selections, and 
also visualizes set-pair relation strength in matrix view. In this mode, 
the scale range of bar and circle glyphs are maximized. This also 
allows observing aggregates with fewer elements in larger detail, 
both for bar and circle glyphs. 

The strength of the relation, as defined in Section 3, is mapped to 
the circle color and border (Figure 6). Lighter color visualizes a 
weaker relation than darker color (  vs. ). The circle border 
visualizes subset relations. A full border ( ) shows the identity 
relation, while a half-border ( , ) shows the proper subset relation. 
The edge connecting the half-circle (upper or right) directs to the 
larger set. When the sets are ordered by element count, the 
containing set always appears above since it is larger. Yet, this 
property may not hold for other ordering approaches and the visual 
state encodes the direction. The total number of subset relations is 
also shown below the set-matrix, next to the total number of 
intersecting set pairs. To maintain design consistency, AggreSet re-
computes the set strength metric after filtering. The relative-mode is 
engaged by clicking the bar chart scale axes, designed as a direct 
interaction with the conceptual change in bar charts, or by clicking 

Fig. 6. Character co-occurrences in Les Miserables. This dataset has 82 subset relations. Left: The circle area maps the number of chapters 
both characters occurs in. Intersections with few chapters appear small and are hard to observe. Right: The circles are full and color denotes 
the character relation strength by the chapters they occur in together. The border is shown when one character always appears with the other 
character. For example, all of Feuilly’s chapters (7) also include Bossuet, who appears in 16 chapters. This suggests a proper-subset 
relationship, and the border is half. When two characters always appear together, their border is full (not visible in this cross section). We can 
also observe that while intersection of Madame Thenardier was one of the largest in number of chapters , it is not one of the strongest . 

Fig. 7. Record types (sets) compromised in 284 large-scale data 
breaches (elements).  11 Breaches with log and password record 
types are selected using result-preview. The large circle size shows 
these two record types were commonly compromised together. 3rd 
order intersections (∩’s of 3 sets) are shown on the set-list histogram. 
For example, email is commonly associated with the selected 
breaches (9 out of the 11 with password and log), and  neither 
medical nor financial records were stolen with passwords and logs. 
We can also observe intersections of 4 record types. About 35% of 
email and address breaches also had password and log leaks . 



the  button. The strength button changes to  
when relative-mode is enabled, describing the visualization of the 
strength relation with its gradient, and the blue border at the strong 
end. This design is limited for analysis of hierarchies of subsets, 
although hierarchies can be traced using the set matrix step by step. 

When all circles (non-empty intersections) are scaled to full-size 
in the relative-mode, the disjoint-sets (of empty space) become 
visually more distinctive. The matrix layout creates a spatial context 
for observing sparseness of set intersections. In the absolute mode 
with varying circle size, AggreSet uses the grey cell background to 
help the viewer distinguish the small circles (few elements) from 
empty intersections (cells). Some sets may also be disjoint from all 
others (like disconnected network nodes). To distinguish such 
isolated sets, AggreSet removes their grid-lines, suggesting that there 
is no line to follow to uncover set-relations. This design reduces 

chart ink and makes existing lines easier to perceive. 

5.3 Perceptual Set Ordering for Set Matrix 
The Gestalt principles state that our perception is influenced by 
similarity, continuation, closure, and proximity. Jacques Bertin says 
“simplification is no more than regrouping similar things” [8]. 
Characteristics of set visualizations and visually emphasized patterns 
therefore depend on the set order. To reveal patterns among sets that 
are closely related, AggreSet includes a perceptual set ordering 
method aimed for the set-matrix layout. Figure 8 shows that ordering 
sets on element count may create salt and pepper pattern within the 
set matrix, and perceptual ordering can improve visual structure by 
placing connected sets along the diagonal. 

Matrix reordering methods have been long studied [25]. Greedy 
heuristics and clustering are commonly used approximate solutions 
since ordering optimization is NP-complete in the general case given 
#sets! combinations. In AggreSet, set ordering is solved once as an 
approximate global layout optimization, since both matrix axes use 
the same order. We translate set ordering to the Minimum Spanning 
Tree (MST) problem by using sets as nodes, and set-pair 
intersections as undirected edges. The edge weight between two sets 
for MST is the total dissimilarity in their relation to all sets, such that            
ΑΒ = Α ∩ Χ − B ∩ Χ! , where Α,Β, Χ ∈ 𝕌. The intersection 

size 𝛼 ∩ 𝛽  is used as the visual characteristic of the set-pair, i.e. the 
metric to optimize the matrix layout. To reduce the number of edges 
to be processed, we consider only intersecting set-pairs, such that 
Α ∩ Β ≠ ∅. This edge weight is defined for the MST algorithm to 
optimize the layout globally, and is not exposed visually otherwise. 

To generate MST(s) of the set-intersection graph, we use 
Kruskal’s algorithm, which greedily inserts edges with smaller 
weight (higher set similarity) to MST(s). We generate the linearized 
set ordering by a breadth-first traversal of MST(s), starting with the 
largest tree in terms of the number of nodes (sets). To have a 
consistent linearization with larger sets within a tree appearing 
before smaller ones, larger nodes need to be traversed first. To 
achieve this, we modify Kruskal’s algorithm such that when two 
nodes are connected, the node (set) with more elements becomes the 
new root. Our open-source implementation provides more details. 

6 IMPLEMENTATION NOTES 
Our implementation runs on modern web browsers based on 
HTML5, CSS3, SVG, and JS. We used D3 [9] to link data to 
interface. Datasets are fully loaded, indexed, and filtered in memory. 
To enable fast selections, aggregates index their elements, and 
elements links to their aggregates. Elements are incrementally added 
and removed upon selection. Our implementation, source code, and 
20 datasets are publicly available at www.keshif.me/AggreSet. 

In this paper, our scalability discussions are based on the visual 
scalability of the design. The rendering and selection speed of web 
browsers, which our implementation is based on, is a limiting factor 
on scalability of our implementation. On a Macbook Pro laptop with 
2.3GHz Intel Core i7 processor and 8GB DDR3 RAM using the 
Safari browser, 175,000 elements spread across 131 sets with 2,300 
pairwise intersections can be interactively explored. The 
performance, however, varies between browsers and data 
characteristics, such as set-relation sparseness. To improve the 
performance, future implementations can use higher performance 
graphics APIs, e.g. OpenGL, and distributions based on aggregate 
selections can be computed by server-side implementations. 

7 EVALUATION 
To evaluate our design, we conducted user studies with two 
complementary approaches. First, we conducted expert reviews to 
identify strengths and weaknesses of AggreSet as observed by 
visualization experts using multiple datasets. Expert reviews in 
visualization have been shown to help detect usability and design 
issues, and yield qualitative results [34]. Second, we conducted a 

Fig. 8. Exploring country neighborhood relations. The list aggregate 
number shows the number of neighbors per each country (set). 

(a) A zoomed-out view sorted by decreasing element (neighbor 
country) count. This view emphasizes countries with more 
neighbors. Pair-wise relations between 25 countries are visible. 
Notice the salt-pepper pattern in the set-matrix. 

(b) Countries are reordered using a perceptual set ordering 
approach. The new ordering follows their geographical closeness, 
for many countries, and forms visual clusters along the diagonal.  

(c) A group of 13 countries is focused by adjusting the matrix 
zoom. In this group, Serbia has the most neighbors, and is 
selected by mouse-hover. This selects the neighbors of Serbia, 
and the preview shows the neighbors of those countries. 



case study where domain experts analyzed complex data, with the 
aim of uncovering the usability and usefulness of AggreSet and 
analysis strategies. In both evaluations, we collected qualitative 
feedback on usability and design features during the studies and in 
semi-structured post-study interviews. We used the feedback to 
improve AggreSet design and to identify future work. 

7.1 Expert Review 
We recruited three visualization experts (senior researcher P., 
graduate student D., and industry professional F.) and asked for their 
honest feedback in 1.5-hour sessions. We first used the movie dataset 
to demonstrate set exploration in multiple dimensions and set-pair 
strength. We followed with the Les Miserables characters dataset to 
demonstrate subset relationships and perceptual set ordering. We 
encouraged the participants to think aloud, and interrupt at any point 
to ask questions, make, and share observations. The following 
summarizes some of their comments and observations. 

Before introducing the matrix view, we asked D. which movie 
pair would have the biggest intersection, to which he replied “I 
cannot tell, I don’t have the overview. If I knew which ones to 
compare, I’ll use (selection), but I don’t know. You need other ways 
to see which pairs are most interesting”. With genre matrix enabled 
and high-rated movies previewed, he said, “The drama and war 
(movies) seems to be very good… I immediately found 
(the intersection). Now I want to see the release date of war and 
drama, and 4-star rating”. By filtering and selection, he found some 
movies he liked. This exemplifies the utility of set-matrix view. 

The participants also developed strategies to effectively explore 
data using AggreSet. F. noted, “The bar chart serves as a key to the 
matrix.” He continued “For navigation, you have the matrix,… the 
2D space you are maneuvering in… For interpretation, it is good to 
look back at the bar chart… That is two of them complementing each 
other”. Upon selecting a genre-pair intersection and analyzing the 
selections for a while, F. said, “You are actually showing, out of the 
intersection of 2 things, multiple set of intersections… It is a little bit 
of a mind-bender”. D. commented likewise upon selecting comedy, 
“In other views, it tells me the percentage of comedy in those 
overlaps of the other movies… I am comparing three basically”.  

When explaining the potential complexity of the interface, F. 
said, “It is a lot of information. Once the person masters it, and then 
they have at their fingertips a lot of information in a very little space. 
It is just that getting there takes some effort. I understand you are 
trying to minimize that effort so that the user can quickly master the 
way to interpret this chart”. This follows our suggestion that 
intersection characteristics should be queried after the set-list and 
set-degree, as part of overview-to-detail exploration. As F. notes, 
“When you hover with your mouse on top of the matrix, showing 
(previewing) those intersections is when it is a little overwhelming”. 
Commenting on matrix readability, F. also said, “Interacting with the 
matrix on the horizontal level and on the vertical level (for a single 
set), that takes some time. It is not something that comes to you 
immediately, like differences in (strength) colors do”. 

The participants found the zoomed-out matrices dense overall; 
visualizations on small circles were not easy to observe. However, D. 
added, “This makes sense. I start with the overview, and then I drill 
down to the area… It helps me… because I have made some 
observation based on the high-level small pie chart. I want to 
confirm, so I will drill down and see exactly how it looks like.”  

The relative mode with percentage distributions was favored 
among all participants; P said, “I like this (percentage) view better 
for doing… complex queries”. Subset relations were found the most 
complex concept, although the participants could understand the 
relation and encoding through some exploration. At the start, F. 
noted, “I am trying to understand why (circles) have outline… Three 
states: Total outline, half outline, and no outline.” After exploration, 

F said, “This is one that I think some teaching aid would be great.” 
And P. said, “I like that I was able to do it, but it was hard.” 

We implemented several changes to our design following the 
expert reviews: (i) An earlier design visualized set similarity 
(strength) by mapping to circle size. This made understanding circle-
size mapping harder as it overloaded the element-count mapping. We 
updated our design to use color-coding for strength metric as 
suggested, and to use circle size for element count only. (ii) We 
noted that color-coding was ineffective with varying and small circle 
sizes with the cell background. Thus, in relative-mode (strength), we 
chose to use full-size circles and remove cell-background. (iii) We 
linked relative-mode and strength metric, effectively encoding 
strength as a relative set-pair metric. This simplified AggreSet while 
making it easier to understand and use. (iv) Our earlier design used a 
3-second mouse point-wait to select an aggregate for comparison. D. 
stated,  “Hovering means I am thinking, it doesn’t mean I want to 
compare”, and P. said, “I’d like to turn it off when I don’t want it.” 
Users converted to using their hands to point things instead of using 
mouse, changing their behavior to overcome the issues with the 
specific design. We then designed an explicit control using , which 
also visually reveals the selected aggregate. (v) Our earlier visual 
design for comparing distributions (black lines) was an enclosing 
section ( ), which suggested stacked-charts semantics for some 
users when previews were enabled ( ), thus complicating the 
visual language of AggreSet. We changed the bordered design in 
favor of a simple bar extending from the baseline ( ). 

7.2 Case Study 
We conducted a case study with two assistant deans of the 
undergraduate studies department of a large public university 
analysing student degree and course enrollment data. First, the 
participants had access for a few months to a version of the 
visualization without the set matrix, but with histograms and the data 
preview and selection. This allowed them to look at categorical and 
numerical aspects of the multivariate student records, including set-
typed data using set-lists and set-degrees. They used the tool a few 
times on their own during this period. After we developed the set 
matrix, we performed data exploration including the matrix view in a 
1.5hr session with the two participants together. Our aim was to 
capture the cognitive and reasoning processes of novice visualization 
users with rich data in a limited time using AggreSet. Thus, we used 
pair analytics [6]. The participants collaboratively formed questions, 
observed data, and generated insight. One of the authors of the paper 
acted as “driver”, demonstrating features (from set-list overview to 
set-matrix detail) and expressing their queries. 

First, the participants analyzed 175,000 students and the degrees 
they received, along with their birth year and gender to provide 
context. 131 most common majors with at least 100 students were 
the sets over students (elements). (i) Early in the exploration, the 
participants wondered why there were multiple majors on “Math”. 
The driver performed a search within the degree-list to select all 
majors with “Math” (a ∪ query by text input). The resulting 
visualizations supported their hypothesis that one of the “Math” sets 
was “Applied Math”. (ii) When the driver previewed the Economics 
selection, they observed the other degrees received by students in 
Economics. (iii) They wanted to explore students who did not receive 
a degree. First, they tried to generate hypotheses about their 
distribution trends and what the data represents, such as whether the 
declared yet unfinished degrees were included in the reported 
numbers. Upon selecting 0-degree students, they noticed these 
students were younger, suggesting many were possibly still taking 
courses. To improve their outlier analysis, they wished for more data 
context in the browser, such as entry term and majors declared. Upon 
selecting students with 1-degree, they noted, “Those (selected) are all 
the people that earned 1 degree… (The rest) are the ones with double 
majors”. (iv) The driver then enabled relative mode. Upon selecting 
females, they noted “67% of the sociology students are female. It 



makes more sense this way”. Upon selecting 1-degree students again, 
they noted some majors had very few students with multiple majors, 
enriching their knowledge of the more demanding majors. 

Next, the driver showed the major (set) matrix. One participant 
immediately pointed out “this means there are more people that have 
accounting and finance. The bigger gray circle means there is more 
people”. When the driver asked about any trends they detected, one 
said “All those double majors with X… Department of X would be 
very interested to see this”. Since only a limited number of majors 
could be shown at once, one asked, “Does it ever get wider this 
way?”, suggesting outside the triangle, at which point the driver 
panned the set-matrix. They explored various departments and their 
intersections through rapid result previews. Then, the driver enabled 
major-pair strength visualization. First, enlarged circles made it 
easier for them to see intersecting majors, as it was a stronger cue 
than the gray cell background in the default view. One noted, 
“Darker color means a higher percentage than the one next to it 
(lighter)”, while the other complimented this statement by saying, 
“When we looked at that gray view, it was actual numbers.” After 
further discussion, they concluded, “While there are a lot of 
marketing and finance (students), there is more accounting in 
finance, of the total numbers.” Few students received three or more 
degrees, limiting exploration of higher-order intersections in this 
dataset. 

Next, they analyzed 4,300 students and the 83 most-registered 
courses (Figure 9). They noticed that few students took 50 or more 
courses. Note that the sets (courses) are densely connected, and the 
set-degree distribution has a wide range. By selecting those students, 
they explored their majors and courses, and generated insights 
regarding degree programs, and potential effects of course count on 
student success. They also noted “This isn’t showing courses they 
are taking above what they would have needed”. They needed a new 
form of set-summary that would show the additional courses the 
student is taking compared to declared major requirements, a more 
complex data setup. When the matrix view was shown, they noted 
large pair intersections of some common core courses (such as 
English), as well as courses that are prerequisites to others. Noting of 
their previous experience analyzing this data without the matrix 
view, one said, “This view would have allowed us to do what we 
wanted to do more easily than what we did. What courses they take, 
and what they take together”. When the strength metric was enabled, 
they noticed courses that had consistent colors among all its 
intersections, which meant that they had no strong relationships with 
others. They went on to analyze common properties among students 
that did not take some specific courses. 

8 COMPARISON AND DISCUSSIONS 
In this section, we present a focused comparison of recent set 
exploration techniques, including AggreSet. Table 1 summarises the 

results under data, task, set-relation, design, and scalability 
questions. We discuss each technique separately below. 

UpSet [24] uses a combination matrix and table layout. In the 
matrix view, columns are (active) sets, rows are all possible 
intersections of these sets, and cells show the intersecting sets per 
row. Per each row (intersection), the tabular view shows the 
cardinality, deviation, and summary attribute statistics using sortable 
columns. Since UpSet explicitly shows all set intersections, it is 
effective for analysis of high-degree intersections as well as attribute 
characteristics per each intersection. UpSet answers ∩-∪-/ set 
queries by selecting and grouping intersections that satisfy the query. 
Grouping and sorting features for intersections extend its linear basis 
of design, yet these features apply view transformations that may not 
be intuitive on first use. As the active set count increases (more sets 
are inserted to the view), the combinatorial growth in number of 
rows and the widened matrix view reduces its visual scalability. 
Targeting sparsely connected sets, UpSet can reduce the number of 
rows by removing empty intersections. Set-attribute filtering is 
visually separated from filtering other attributes, while AggreSet 
uses the same selection modalities across data dimensions. UpSet 
does not visualize element degrees explicitly, although it offers a 
range filter and grouping by degree. In its element view, it also does 
not explicitly show, or link to, set memberships. Overall, when set 
exploration needs to focus on all possible set intersections and their 
characteristics given some chosen sets, the interactive tabular view 
of UpSet provides a rich visual exploratory space. 

RadialSets [4] is based on the circular layout node-link diagram 
design, thus has the scalability limitations by intersecting edges. The 
distribution of element degrees is explicitly visualized by length 
encoding for each set (node), and revealed upon selection for set 
intersections (links). RadialSets can also visualize intersections of 
three or more sets using circular glyphs as hyper-edges. The 
positions of these glyphs are optimized to visually reduce overlaps, 
or placed in layers sorted by glyph sizes. Thus, understanding higher 
degree set relations relies either on tracing overlapping edges, or on 
selecting glyphs to see contributing sets. RadialSets also supports 
mapping other attribute characteristics to the color of set-intersection 
glyphs, allowing high-level overviews of differing characteristics of 
set intersections. 

OnSet [32] visualizes elements as cells within set matrices. A 
matrix can represent a single set, or a set combination. Elements are 
located at the same cell positions across matrices, and can be 
spatially grouped by bounding boxes. OnSet matrices should be large 
enough to hold all elements, limiting scalability on element count. 
Sets can be dropped and merged with direct manipulation. Merge 
queries support ∩-∪-\ modalities with hierarchical compositions. 
When a matrix represents a set combination, cell (element) 
opacity/color shows the number of sets, of the combination, that the 
element appears under. Yet, the sets of the elements are not directly 

Fig. 9. 83 courses taken by 4,300 students. Students who took ECON200&201, but not MATH140&141 are selected. Updated distributions 
show the other courses taken, the total number of courses, gender, entry term, and the majors of these students.  Most of these students are  
in LTSC (undecided), or in ECON,  as well as with a male majority. We can notice emerging patterns in the top courses after filtering.  In 
this filtered selection, CMSC courses are less common than other ECON and core courses. 



available. To visualize similarity across set matrices, OnSet supports 
a node-link diagram. This layer is visually limited in the number of 
(large) matrices because of occlusions. OnSet relies on pan-and-
zoom interaction on a 2D zoomable canvas to explore non-trivial 
number of sets and relations. However, element context can be lost 
when zoomed out, and controlling the canvas can make the canvas 
space more complex to navigate and understand [7]. Its matrix 
design depends on the viewer’s ability to understand which elements 
are located at which cells across matrices. Yet, element ordering and 
grouping structure is not explicit, and finding a specific element 
across multiple matrices with many rows and columns is a non-
trivial task. 

AggreSet supports a high number of sets, visualizes all set 
dimensions explicitly, enables the tasks consistently across data 
dimensions and attributes, supports rich, high-level exploratory 
goals, and avoids major design problems that may affect scalability 
and usability. It can be used to express the set exploration tasks 
proposed by Alsallakh et al. [5] through selections of five data 
dimensions (elements, set-list, set-degree, set-intersection and other 
attributes), except the three tasks relating to creating new sets from 
specific element selections, and analysis of inclusion (subset) 
hierarchies. AggreSet is also different from other multi-view 
visualization systems [30] with its novel combination of set-matrix 
view with element aggregations, set-exploration specific features 
(such as set-pair strength and perceptual set ordering), and 
interaction design with preview, filter, and compare models. The 
limitations of AggreSet can be discussed as the following: 

(i) Higher-order relations: Exploring relations beyond set-pair 
are not immediately visualized and such exploration requires 
selection. In our overview-to-detail approach, this is presented as the 
final (fourth) level. Since explicitly visualizing higher-order relations 
increases the number of visualized data items, placing this 
information on demand through interaction allows our design to 
visually and seamlessly scale to overviews of more sets.  

(ii) Set intersection: Element attribute characteristics cannot be 
shown within the set visualizations directly, while UpSet and 
RadialSets support such cases. Relations between sets and other 
attributes are explored through explicit selections in the minimalist 
design that consistently applies in both directions (set ó attribute). 

(iii) Data density: When aggregation glyphs are small, the visual 
mappings (size and color) can be hard to distinguish, especially for 
circles in the matrix view. To mitigate this problem, matrix zooming 
can be used to enlarge the glyphs, a tradeoff between space and 
number of data points. In addition, result-preview and set-pair 
strength uses the same visual channel (color) in matrix view, with the 
dominant being orange preview. While the strength is occluded on 
the circle, it is still available in the set-list view, right side of the 
matrix, in % value. This also highlights how set-list and set-matrix 
support one another. 

(iv) Scalability: Given a laptop/desktop display (1280×800 pixels 
or more), AggreSet can accommodate on the order of 50 sets. 
Zooming out shrinks set and cell visualizations, and allows showing 
more data in a fixed display size. Panning allows exploring areas 
outside the visible matrix viewport. Perceptual ordering can improve 
the visual structure along the diagonal for some set relations and 
reduce information outside of the visible matrix area. Scaling to 
hundreds of sets with dense relations is still not practical, which 
would require techniques for aggregating sets and their intersections. 

9 CONCLUSION AND FUTURE WORK 
We have presented AggreSet, an interactive visualization technique 
for exploring relations in set-typed and other attributes of 
multivariate datasets using a rich, scalable, clutter-free visual 
interface. AggreSet improves upon existing set visualization 
approaches using data aggregation that gracefully scales to larger set 
counts. These aggregations are displayed as a collection of linked 
data summaries that are synchronized on interaction. The set-matrix 
improves the non-overlapping co-occurrence matrix design with 
advanced visual encodings for set-typed data, and with interactions 
that reveal higher order relationships. Our user evaluations include 
both an expert review as well as extended case studies with domain 
experts trying to understand complex multivariate datasets. 

In the future, our data model and design can be extended to 
support set-dependent attributes by storing extra information along 
with the set membership relation. For example, the simple set-typed 
data model can encode the club memberships of a person, yet cannot 
encode the join-date and cost of each membership. Set memberships 
can also change in time, requiring focused, topological analysis 
through time dimension. Representing fuzzy set memberships is also 
another challenge. Finally, we are also interested in exploring how 
our mouse-based interaction model can be extended to other types of 
interaction, particularly multi-touch. 
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