
Computers & Graphics 98 (2021) 322–343

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

The Stellar decomposition: A compact representation for simplicial

complexes and beyond

�

Riccardo Fellegara

a , ∗, Kenneth Weiss b , Leila De Floriani c

a German Aerospace Center (DLR), Braunschweig, Germany
b Lawrence Livermore National Laboratory, Livermore, CA, USA
c University of Maryland at College Park, College Park, MD, USA

a r t i c l e i n f o

Article history:

Received 24 August 2020

Revised 26 April 2021

Accepted 3 May 2021

Available online 8 May 2021

Keywords:

Mesh data structure

Scalable representations

Vietoris-Rips complex

High dimensional simplicial complexes

a b s t r a c t

We introduce the Stellar decomposition , a model for efficient topological data structures over a broad

range of simplicial and cell complexes. A Stellar decomposition of a complex is a collection of regions

indexing the complex’s vertices and cells such that each region has sufficient information to locally re-

construct the star of its vertices, i.e., the cells incident in the region’s vertices. Stellar decompositions are

general in that they can compactly represent and efficiently traverse arbitrary complexes with a mani-

fold or non-manifold domain. They are scalable to complexes in high dimension and of large size, and

they enable users to easily construct tailored application-dependent data structures using a fraction of

the memory required by a corresponding global topological data structure on the complex.

As a concrete realization of this model for spatially embedded complexes, we introduce the Stellar

tree , which combines a nested spatial tree with a simple tuning parameter to control the number of

vertices in a region. Stellar trees exploit the complex’s spatial locality by reordering vertex and cell indices

according to the spatial decomposition and by compressing sequential ranges of indices. Stellar trees are

competitive with state-of-the-art topological data structures for manifold simplicial complexes and offer

significant improvements for cell complexes and non-manifold simplicial complexes. We conclude with

a high-level description of several mesh processing and analysis applications that utilize Stellar trees to

process large datasets.

© 2021 Elsevier Ltd. All rights reserved.

1

b

i

s

c

n

i

w

i

t

a

i

e

S

W

a

t

m

c

a

f

t

c

p

o

d

i

e

c

t

h

0

. Introduction

Efficient mesh data structures play a fundamental role in a

road range of mesh processing applications in computer graph-

cs, geometric modeling, scientific visualization, geospatial data

cience and finite element analysis. Although simple problems

an be easily modeled on small low dimensional meshes, phe-

omena of interest might occur only on much larger meshes and

n higher dimensions. Thus, we often require flexibility to deal

ith increasingly complex meshes including those defined by

rregularly connected heterogeneous and/or multidimensional cell

ypes discretizing spaces with complicated topology. Moreover,

s advances in computing capabilities continue to outpace those

n memory, it becomes increasingly important to optimize and

xploit locality within the mesh as we process and locally query it.

uch queries are the primary means of interacting with the mesh
� This paper was recommended for publication by Rüdiger Westermann.
∗ Corresponding author.

E-mail addresses: riccardo.fellegara@dlr.de (R. Fellegara), kweiss@llnl.gov (K.

eiss), deflo@umiacs.umd.edu (L. De Floriani).

a

i

n

d

ttps://doi.org/10.1016/j.cag.2021.05.002

097-8493/© 2021 Elsevier Ltd. All rights reserved.
nd have traditionally been posed in terms of a few spatial and

opological primitives. However, while there are simple, intuitive

odels for representing polygonal surfaces, there are numerous

hallenges in generalizing these structures to higher dimensions

nd in scaling to very large meshes.

In this paper, we introduce the Stellar decomposition , a model

or topological data structures that supports efficient navigation of

he topological connectivity of simplicial complexes and of certain

lasses of cell complexes, e.g., those composed of quadrilaterals,

olygons, hexahedra, prisms and pyramids. We refer to this class

f complexes as Canonical Polytope complexes (CP complexes) . The

efining property of a Stellar decomposition is that the complex

s broken up into regions indexing a collection of vertices such that

ach vertex within a region has sufficient information to locally re-

onstruct its star , i.e., the set of cells from the complex incident in

hat vertex.

A Stellar decomposition is general , in that it can easily represent

rbitrary complexes with a manifold or non-manifold domain, it

s scalable to complexes both in high dimensions and with a large

umber of cells, and it is flexible , in that it enables users to defer

ecisions about which topological connectivity relations to encode.

https://doi.org/10.1016/j.cag.2021.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.05.002&domain=pdf
mailto:riccardo.fellegara@dlr.de
mailto:kweiss@llnl.gov
mailto:deflo@umiacs.umd.edu
https://doi.org/10.1016/j.cag.2021.05.002

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

I

d

o

c

a

r

c

b

q

a

o

e

t

n

c

f

s

i

o

a

c

c

p

p

l

I

w

d

t

S

i

a

a

e

t

i

s

S

t

a

p

S

i

2

c

s

n

e

d

a

{

s

t

o

t

o

w

t

c

(

o

s

c

a

p

f

a

e

e

a

m

r

c

a

t

s

h

i

e

t

C

i

F

s

s

t

a

C

C

o

i

a

k

k

A

h

m

m

b

p

t

t, therefore, supports the generation of optimal application-

ependent local data structures at runtime. Due to the locality

f successive queries in typical mesh processing applications, the

onstruction costs of these local topological data structures are

mortized over multiple mesh operations while processing a local

egion.

We also formally define and analyze the Stellar tree as a con-

rete instance of the Stellar decomposition model for spatially em-

edded complexes. Stellar trees utilize a hierarchical n -dimensional

uadtree, or kD-tree, as vertex decomposition, and are easily tun-

ble using a single parameter that defines the maximum number

f vertices allowed in each local region.

While Stellar trees have been previously utilized in sev-

ral mesh processing applications ranging from mesh simplifica-

ion [90] to morphological feature extraction [38,68] , they have

ot been formally defined and their performance has not yet been

haracterized in relation to existing topological data structures

or simplicial and cell complexes. This paper presents a careful

tudy of the storage requirements, generation algorithms and tim-

ngs and query performance for Stellar trees over a wide range

f CP complexes. As we demonstrate in Section 8 , Stellar trees

re competitive with dimension-specific state-of-the-art topologi-

al data structures for (pseudo)-manifold triangle and tetrahedral

omplexes and offer significant improvements for other CP com-

lexes, especially over data structures for general simplicial com-

lexes in 3D and higher dimensions. The source code for our Stel-

ar tree implementation will be released in the public domain.

Contributions The contributions of this work include:

• The formal theoretical definition of a Stellar decomposition

over Canonical Polytope (CP) complexes , a class of cell complexes

that includes simplicial and cubical complexes of arbitrary di-

mension, as well as cells in the finite element ‘zoo’, such as

polygons, pyramids and prisms.
• The definition of the Stellar tree as a concrete realization of the

Stellar decomposition for spatially embedded complexes. The

decomposition in a Stellar tree is based on a hierarchical spa-

tial index with a simple tuning parameter to facilitate balancing

storage and performance needs.
• The definition of Sequential Range Encoding (SRE) , a compact

encoding for the entities indexed by each region of the de-

composition. When applied to CP complexes reindexed by the

spatial decomposition of a Stellar tree, SRE yields compressed

Stellar trees with only a small overhead relative to the original

CP complex’s cells.

Outline The remainder of this paper is organized as follows.

n Sections 2 and 3 , we review background notions and related

ork, respectively. In Section 4 , we define Stellar decompositions,

escribe our compact encoding, and provide a high-level descrip-

ion of the procedure for generating a Stellar decomposition. In

ection 5 , we define the Stellar tree, a spatio-topological real-

zation of the Stellar decomposition. In Section 6 , we describe

 general mesh processing paradigm that can be followed by

pplications defined on a Stellar tree. In Section 7 , we discuss our

xperimental setup and evaluate how our tuning parameter affects

he quality of a Stellar tree’s decomposition and its performance

n extracting topological features. We then compare Stellar trees to

everal state-of-the-art topological data structures in Section 8 . In

ection 9 , we describe how to extract local connectivity informa-

ion from the Stellar tree and evaluate the performance of these

lgorithms. We provide a high-level overview of several mesh

rocessing and analysis applications that have benefited from

tellar trees to process large datasets in Section 10 and conclude

n Section 11 with some remarks and directions for future work.
323
. Background notions

In this section, we review notions related to cell and simplicial

omplexes, which are the basic combinatorial structures for repre-

enting discretized shapes. Throughout the paper, we use n to de-

ote the dimension of the ambient space in which the complex is

mbedded, d to represent the dimension of the complex and k to

enote the dimension of a cell from the complex, where 0 ≤ k ≤ d.

A k -dimensional cell in the n -dimensional Euclidean space E

n is

 subset of E

n homeomorphic to a closed k -dimensional ball B k =

 x ∈ E

k : ‖ x ‖ ≤ 1 } . A d-dimensional cell complex � in E

n is a finite

et of cells with disjoint interiors and of dimension at most d such

hat the boundary of each k -cell γ in � consists of the union of

ther cells of � with dimension less than k . Such cells are referred

o as the faces of γ . A cell which does not belong to the boundary

f any other cell in � is called a top cell . � is a pure cell complex

hen all top cells have dimension d. The subset of E

n spanned by

he cells of � is called the domain of �. An example of a pure

ell 3-complex is shown in Fig. 1 (a): all its top cells are 3-cells

tetrahedra).

Throughout this paper, we are concerned with a restricted class

f cell complexes whose cells can be fully reconstructed by their

et of vertices, e.g., via a canonical ordering [1–5] . We refer to this

lass of complexes as Canonical Polytope complexes (CP complexes) ,

nd note that it includes simplicial complexes, cubical complexes,

olygonal cell complexes and heterogeneous meshes with cells

rom the finite element ‘zoo’ (e.g., simplices, hexahedra, pyramids,

nd prisms). In what follows, we denote a CP complex as �. An

xample of a CP complex is shown in Fig. 1 (b), which contains top

dges, triangles, quadrilaterals, and tetrahedra.

A pair of cells in a CP complex � are mutually incident if one is

 face of the other. They are h -adjacent if they have the same di-

ension k > h and are incident in a common h -face. We informally

efer to vertices (0-cells) as adjacent if they are both incident in a

ommon edge (1-cell) and, similarly, for k -cells that are incident in

 common (k −1) -cell (i.e., they are (k −1)-adjacent). The (combina-

orial) boundary of a CP cell σ is defined by the set of its faces. The

tar of a CP cell σ is the set of its co-faces , i.e., CP cells in � that

ave σ as a face. An example of star for a 0-cell (vertex) is shown

n Fig. 2 (a). In this example, the star of vertex v 0 is formed by five

dges, four triangles, a quad, and a tetrahedron. Of these CP cells,

etrahedron σ5 , quad σ1 and triangle σ4 are top cells. The link of a

P cell σ is the set of all the faces of cells in the star that are not

ncident in σ . An example of link for a 0-cell (vertex) is shown in

ig. 2 (b). In this example, the link of v 0 is composed of six vertices,

ix edges, and a triangle.

Two h -cells σ and σ ′ in � are (h −1) -connected if there is a

equence, called an h -path , of (h −1) -adjacent h -cells in � from σ
o σ ′ . A complex � is h -connected , if for every pair of h -cells σ1

nd σ2 , there is an h -path in � joining σ1 and σ2 .

We can now define a d-dimensional CP complex � as a set of

P-cells in E

n of dimension at most d such that: (1) � contains all

P-cells in the boundary of the CP-cells in �; (2) the intersection

f any two CP-cells in � is conforming , i.e., it is either empty, or

t consists of faces shared by both CP-cells. Simplicial complexes are

n important subset of CP complexes whose cells are simplices . Let

 be a non-negative integer. A k -simplex σ is the convex hull of

 + 1 independent points in E

n (with k ≤ n), called vertices of σ .

 face of a k -simplex σ is an h -simplex (0 ≤ h ≤ k) generated by

 + 1 vertices of σ .

Other important notions are those of manifolds and pseudo-

anifolds . A subset M of the Euclidean space E

n is called a d-

anifold , with d ≤ n , if and only if every point of M has a neigh-

orhood homeomorphic to the open d-dimensional ball. A more

ractical concept for the purpose of representing CP complexes is

hat of pseudo-manifold. A pure d-dimensional CP complex � is

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Fig. 1. Examples of CP complexes. (a) A pure simplicial 3-complex with four tetrahedra. (b) A CP complex with three top edges, three top triangles, two top quads and a top

tetrahedron. (c) A 2-dimensional pseudo-manifold with eleven triangles.

Fig. 2. The star and the link of 0-cell (vertex) v 0 from the complex in Fig. 1 (b).

Cells belonging to either the star (a) or link (b) of v 0 are highlighted in red. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

s

(

f

m

i

o

k

c

t

b

(

r

R

3

m

d

3

m

A

a

s

s

d

t

i

i

l

s

c

l

a

d

c

w

R

t

r

b

n

c

c

d

p

R

e

c

s

f

e

s

b

e

w

d

b

r

c

t

b

a

(

p

a

s

aid to be a pseudo-manifold when it is (d −1) -connected and its

d −1) -cells are incident in at most two d-cells. Informally, we re-

er to the connected and compact subspace of E

n not satisfying the

anifold conditions as non-manifold .

Queries on a cell complex are often posed in terms of topolog-

cal relations , which are defined by the adjacencies and incidences

f its cells. Let us consider a d-dimensional CP complex � and a

 -cell σ ∈ �, with 0 ≤ k ≤ d:

• a boundary relation R k,p (σ) , with 0 ≤ p < k , consists of the p-

cells of � in the boundary of σ ;
• a co-boundary relation R k,q (σ) , with k < q ≤ d, consists of the

q -cells of � in the star of σ ;
• an adjacency relation R k,k (σ) consists of the set of k -cells of �

that are (k −1)-adjacent to σ .

For some examples of topological relations, consider the CP

omplex in Fig. 1 (b): Boundary relation R 3 , 0 for tetrahedron σ 5 is

he list of its boundary vertices, i.e., R 3 , 0 (σ 5) = { v 0 , v 2 , v 4 , v 5 } . Co-

oundary relation R 0 , 2 for vertex v 3 is the list of its incident 2-cells

triangles and quads), i.e., R 0 , 2 (v 3) = { σ0 , σ1 , σ2 , σ3 , σ4 } . Adjacency

elation R 0 , 0 for vertex v 0 is the list of its adjacent vertices, i.e.,

 0 , 0 (v 0) = { v 1 , v 2 , v 3 , v 4 , v 5 } .

. Related work

In this section, we review the state of the art on topological

esh data structures, hierarchical spatial indexes, data layouts and

istributed mesh data structures.

.1. Topological mesh data structures

There has been much research on efficient representations for

anifold cell and simplicial complexes, especially for the 2D case.

 comprehensive survey of topological data structures for manifold

nd non-manifold shapes can be found in [6] .
324
A topological data structure over a cell complex encodes a

ubset of its topological relations and supports the efficient recon-

truction of local topological connectivity over its cells. Topological

ata structures can be classified according to: (i) the dimension of

he cell complex, (ii) the domain to be approximated, i.e., man-

folds versus non-manifold shapes, (iii) the subset of topological

nformation directly encoded, and (iv) the organization of topo-

ogical information directly encoded, i.e., explicit or implicit data

tructures.

The explicit cells and topological relations can either be allo-

ated on demand using small local data structures, such as linked

ists, or contiguously, e.g. using arrays. In the former case, pointers

re used to reference the elements, which can be useful when the

ata structure needs to support frequent updates to the underlying

ells or their connectivity. In the latter case, indexes of the cells

ithin the array can be used to efficiently reference the elements.

ecently, an approach has been proposed in [7] to reconstruct

opological relations on demand and to cache them for later reuse.

Broadly speaking, topological data structures can be catego-

ized as incidence-based or adjacency-based . Whereas incidence-

ased data structures primarily encode their topological con-

ectivity through incidence relations over all the complex’s

ells, adjacency-based data structures primarily encode their

onnectivity through adjacency relations over its top cells.

The Incidence Graph (IG) [8] is the prototypical incidence-based

ata structure for cell complexes in arbitrary dimension. The IG ex-

licitly encodes all cells of a given cell complex �, and for each

p-cell γ , its immediate boundary and co-boundary relations (i.e.,

 p,p −1 and R p,p + 1). Several compact representations with the same

xpressive power as the IG have been developed for simplicial

omplexes [9,10] , which typically require less than half the storage

pace as the IG [11] .

Several incidence-based data structures have been developed

or manifold 2-complexes, which encode the incidences among

dges. The half-edge data structure [12] is the most widely data

tructure of this type [13,14] . Design tradeoffs for data structures

ased on half-edges are discussed in [15] . Half-faces [16] gen-

ralize the notion of a half-edge to polyhedral complexes,

hile combinatorial maps [17,18] generalize this notion to higher

imensions.

Indexed data structures [19] provide a more compact alternative

y explicitly encoding only vertices, top cells and the boundary

elations from top cells to their vertices. Since the cells of a CP

omplex are entirely determined by their ordered list of ver-

ices, this provides sufficient information to efficiently extract all

oundary relations among the cells, but not the co-boundary or

djacency relations. The Indexed data structure with Adjacencies

 IA) [20,21] extends the indexed representation to manifold sim-

licial complexes of arbitrary dimension by explicitly encoding

djacency relation R d,d , giving rise to an adjacency-based repre-

entation. All remaining topological relations can be efficiently

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

r

v

b

r

c

a

v

T

m

d

t

N

f

r

b

n

r

d

d

s

s

m

m

t

m

c

o

c

s

a

t

p

p

i

c

r

i

a

i

i

d

d

t

i

c

w

t

h

o

s

p

p

a

a

d

3

f

S

r

c

o

e

b

t

t

b

s

t

t

c

b

t

R

t

p

T

b

P

n

i

g

s

W

i

a

t

o

P

p

h

m

a

r

e

l

t

s

p

e

t

h

o

b

t

a

m

l

y

(

b

a

a

m

3

t

s

ecovered if we also encode a top simplex in the star of each

ertex (i.e., a subset of relation R 0 ,d).

The Corner-Table (CoT) data structure [22] is also adjacency-

ased. It is defined only for triangle meshes, where it has the same

epresentational power as the IA data structure. It uses corners as a

onceptual abstraction to represent individual vertices of a triangle

nd encodes topological relations among corners and their incident

ertices and triangles. Several efficient extensions of the Corner-

able data structure have been proposed that exploit properties of

anifold triangle meshes [23,24] . The Sorted Opposite Table (SOT)

ata structure [25] extends the Corner-Table data structure to

etrahedral meshes and introduces several storage optimizations.

otably, it supports the reconstruction of boundary relation R d, 0

rom co-boundary relations R 0 ,d (implicitly encoded) and R d,d

elations (explicitly encoded), reducing its topological overhead

y nearly a factor of two. Since modifications to the mesh require

on-local reconstructions of the associated data structures, this

epresentation is suitable for applications on static meshes.

The Generalized Indexed data structure with Adjacencies (IA

∗

ata structure) [26] extends the representational domain of the IA

ata structure to arbitrary non-manifold and mixed dimensional

implicial complexes. The IA

∗ data structure is compact, in the

ense that it gracefully degrades to the IA data structure in locally

anifold neighborhoods of the mesh, and has been shown to be

ore compact than incidence-based data structures, especially as

he dimension increases [11] . A similar data structure for non-

anifold complexes was presented in [27] . A detailed description

an be found in Section 8.2 .

The Simplex tree [28] also encodes general simplicial complexes

f arbitrary dimension. It explicitly stores all simplices of the

omplex within a trie [29] whose nodes are in bijection with the

implices of the complex. A public domain implementation is

vailable in the GUDHI library [30] . We provide a detailed descrip-

ion of this data structure in Section 8.2 . Boissonnat et al. [31] also

ropose two top-based data structures targeting a compact Sim-

lex tree representation. The Maximal Simplex Tree (MST) is an

nduced subgraph of the Simplex tree, in which only the paths

orresponding to top simplices are encoded, but most operations

equire processing the entire complex. The Simplex Array List (SAL)

s a hybrid data structure computed from the top simplices of

 simplicial complex � that improves processing efficiency by

ncreasing the storage overhead. Both the MST and the SAL are

nteresting structures from a theoretical point-of-view, but, as

escribed in [31] , the model does not currently scale to large

atasets and results are limited to complexes with only a few

housand vertices. Moreover, to the best of our knowledge, there

s no public domain implementation currently available.

The Skeleton-Blocker data structure [32] encodes simplicial

omplexes that are close to flag complexes , simplicial complexes

hose top simplices are entirely determined from the structure of

heir 1-skeleton, i.e., the vertices and edges of the complex, and

as been successfully employed for executing edge contractions

n such complexes. It encodes the 1-skeleton and the blockers ,

implices that are not in �, but whose faces are. Its generation

rocedure is computationally intensive for general simplicial com-

lexes since identifying the blockers requires inserting simplices of

ll dimensions.

We compare the Stellar tree representation with the IA, CoT,

nd SOT data structures as well as with the Simplex tree, and IA

∗

ata structure in Section 8.2 .

.2. Hierarchical spatial indexes

A spatial index is a data structure used for indexing spatial in-

ormation, such as points, lines or surfaces in the Euclidean space.

patial indexes form a decomposition of the embedding space into
325
egions . This can be driven by: (i) an object-based or a space-based

riterion for generating the decomposition; and (ii) a hierarchical

r a non-hierarchical (flat) organization of the regions. These prop-

rties are independent, and, thus, we can have hierarchical object-

ased decompositions as well as flat space-based ones.

We now consider how the regions of a decomposition can in-

ersect. In an overlapping decomposition the intersection between

he regions can be non-empty on both the interiors and on the

oundary of their domain, while, in a non-overlapping decompo-

ition, intersections can only occur on region boundaries. We say

hat a region is nested within another region if it is entirely con-

ained within that region. In the remainder of this section, we fo-

us primarily on hierarchical spatial indexes , which can be classified

y the dimensionality of the underlying ambient space and by the

ypes of entities indexed.

Hierarchical spatial indexes for point data are provided by Point

egion (PR) quadtrees/octrees and kD-trees [33] . In these indexes,

he shape of the tree is independent of the order in which the

oints are inserted, and the points are only indexed by leaf blocks.

he storage requirements of these data structures can be reduced

y allowing leaf blocks to index multiple points, as in the bucket

R quadtree/octree [33] , whose bucketing threshold determines the

umber of points that a leaf block can index before it is refined.

Several data structures have been proposed for spatial index-

ng of polygonal maps (PM) , including graphs and planar trian-

le meshes. PM quadtrees [34] extend the PR quadtrees to repre-

ent polygonal maps considered as a structured collection of edges.

hile there are several variants (PM 1 , PM 2 , PM 3 and the random-

zed PMR) , which differ in the criterion used to refine leaf blocks,

ll maintain within the leaf blocks a list of intersecting edges from

he mesh. The PM 2 -Triangle quadtree [35] specializes PM quadtrees

ver triangle meshes and has been applied to terrain models. The

M index family has also been extended to PM-octrees encoding

olyhedral objects in 3D [33,36,37] , where the subdivision rules

ave been adjusted to handle edges and polygonal faces of the

esh elements. Another proposal for triangulated terrain models

re Terrain trees [38] , that are a spatial index family for the efficient

epresentation and analysis of large-scale triangulated terrains gen-

rated from LiDAR (Light Detection and Ranging) point clouds. A col-

ection of spatial indexes for tetrahedral meshes called Tetrahedral

rees was developed in [39,40] .

We note that data structures in the PM family are spatial data

tructures optimized for efficient spatial queries on a complex (e.g.,

oint location, containment and proximity queries) and are not

quipped to reconstruct the connectivity of the complex. In con-

rast, the PR-star octree [41] is a topological data structure for tetra-

edral meshes embedded in 3D space. It augments the bucket PR

ctree with a list of tetrahedra incident in the vertices of its leaf

locks, i.e., those in the star of its vertices.

In this paper, we have generalized the PR-star data struc-

ure to handle a broader class of complexes (CP complexes) in

rbitrary dimensions and with an arbitrary domain (i.e., non-

anifold and non-pure complexes). At the same time, our new

eaf block encoding exploits the spatial coherence of the mesh,

ielding a significant storage saving compared to PR-star trees

see Section 8.1). As we discuss in Section 10 , Stellar trees have

een shown to be effective in several geometrical and topological

pplications including local curvature estimation, mesh validation

nd simplification [41] , morphological feature extraction [68] and

orphological simplification [91] , among others.

.3. Optimized data layouts

Considerable effort has been devoted to reindexing meshes

o better exploit their underlying spatial locality, for example, to

upport streamed processing [42] , better cache locality [43] or

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

c

o

W

o

o

o

d

e

t

a

r

c

v

a

m

t

3

d

m

n

d

a

p

a

s

l

t

s

i

p

c

d

fi

m

4

s

a

W

a

4

c

t

s

a

c

t

�

fi

t

a

Fig. 3. Example mapping function �V ERT in 2D. An initial set of points (a) is asso-

ciated with the regions of a decomposition � (b).

P
∀
F

w

�

a

i

a

I

o

t

∀

s

t

A

m

n

b

D

s

g

∀

i

t

n

v

a

t

t

D

p

F

χ

4

p

s

(

t

c

r

ompression [44] . Cignoni et al. [45] introduce an external mem-

ry spatial data structure for triangle meshes embedded in E

3 .

hereas our aim is to enable efficient topological operations

n the elements of general simplicial and CP complexes, the

bjective of [45] is to support compact out-of-core processing

f massive triangle meshes. Since the data structure in [45] is

imension-specific, by exploiting geometric and topological prop-

rties of triangle meshes in E

3 , it would be difficult to generalize

o CP complexes or to higher dimensions. Dey et al. [46] use

n octree to index a large triangle mesh for localized Delaunay

emeshing. Due to the significant overhead associated with their

omputations, the octrees in [46] are typically shallow, containing

ery few octree blocks. In the context of interactive rendering

nd visualization of large triangulated terrains and polygonal

odels, Cignoni et al. [47,48] associate patches of triangles with

he simplices of a multiresolution diamond hierarchy [49] .

.4. Distributed mesh data structures

Stellar decompositions and Stellar trees are also related to

istributed mesh data structures [50,51] , which partition large

eshes across multiple processors for parallel processing e.g. in

umerical simulations [52–54] . In the latter, each computational

omain maintains a mapping between its boundary elements

nd their counterparts on neighboring domains. To reduce inter-

rocess communication during computation, each domain might

lso include one or more layers of elements from other domains

urrounding its elements, typically referred to as ghost , rind or halo

ayers [55–57] . Although each region of a Stellar decomposition (or

ree) can be seen as a computational domain in a distributed data

tructure with a single ghost layer (i.e., the elements in the star of

ts boundary vertices), Stellar trees are aimed at providing efficient

rocessing on coherent subsets of the mesh (regions), where users

an generate optimized local topological data structures. In a

istributed regime, we envision Stellar trees helping more with

ne-grained (intra-domain) parallelism than with coarse-grained

ulti-domain partitions.

. Stellar decomposition

The Stellar decomposition is a model for data structures repre-

enting Canonical Polytope (CP) complexes . We denote a CP complex

s �, its ordered lists of vertices as �V and of top CP cells as �T .

e provide a definition of the Stellar decomposition in Section 4.1 ,

nd describe its encoding in Section 4.2 .

.1. Definition

Given a CP complex �, a decomposition � of its vertices �V is a

ollection of subsets of �V such that every vertex v ∈ �V belongs

o one of these subsets. We will refer to the elements of decompo-

ition � as regions , which we will denote as r .

A Stellar decomposition S D defines a map from the regions of

 decomposition � of its vertex set �V to the vertices and top CP

ells of complex �. Formally, a Stellar decomposition is defined by

hree components:

1. a CP complex �;

2. a decomposition � whose regions cover the vertices of �;

3. a map � from regions of � to entities of �.

Thus, a Stellar decomposition is a triple S D = (�, �, �) . Since

is entirely characterized by its vertices, and top CP cells, we de-

ne map � in terms of the two components: �V ERT , the mapping

o vertices and �T OP , the mapping to top CP cells.

For the vertices, we have a map from � to �V based on an

pplication-dependent ‘belongs to’ property. Formally, � : � →
V ERT

326
(�V) is a map from � to the powerset of �V where

 r ∈ �, �V ERT (r) = { v ∈ �V : v ‘belongs to’ r } .
ig. 3 illustrates an example decomposition � over a point set

here mapping function �V ERT associates points with regions of

. In this paper, we will assume that each vertex in �V is uniquely

ssociated with a single region r in �.

The Stellar decomposition gets its name from the properties of

ts top cell map �T OP . For each region r of �, �T OP (r) is the set of

ll top CP cells of �T incident in one or more vertices of �V ERT (r).

n other words, �T OP (r) is defined by the union of cells in the star

f the vertices in �V ERT (r). Formally, �T OP : � → P(�T) is a func-

ion from � to the powerset of �T , where

 r ∈ �, �T OP (r) = { σ ∈ �T |∃ v ∈ R k, 0 (σ) : v ∈ �V ERT (r) } . (1)

Fig. 4 illustrates mapping �T OP for two regions of the decompo-

ition of Fig. 3 (b) on a triangle mesh defined over its vertices. Note

hat �T OP is based on a topological rather than a spatial property:

 top CP cell σ is only associated with a region r when one (or

ore) of its vertices is associated with r under �V ERT .

To characterize this representation, we define the spanning

umber χσ of a top CP cell in a Stellar decomposition as the num-

er of regions to which it is associated.

efinition 4.1. Given Stellar decomposition S D = (�, �, �) , the

panning number χσ of a top CP cell σ ∈ �T is the number of re-

ions in � that map to σ . Formally,

 σ ∈ �T , χσ = |{ r ∈ �| σ ∈ �T OP (r) }| . (2)

A consequence of the unique mapping of each vertex in �V ERT

s that it provides an upper bound on the spanning number of a

op CP cell in a Stellar decomposition. Specifically, the spanning

umber χσ of a top CP cell σ is bounded by the cardinality of its

ertex incidence relation R k, 0 : 1 ≤ χσ ≤ | R k, 0 (σ) | .
It is also interesting to consider the average spanning number χ

s a global characteristic of the efficiency of a Stellar decomposi-

ion over a complex, measuring the average number of times each

op CP cell is represented.

efinition 4.2. The average spanning number χ of a Stellar decom-

osition S D is the average number of regions indexing its top cells.

ormally,

=

(∑

σ∈ �T

χσ

)

/ | �T | =

(∑

r ∈ �
| �T OP (r) |

)

/ | �T | . (3)

.2. Encoding

In this section, we describe how we represent the two com-

onents of a Stellar decomposition, providing a detailed de-

cription of the data structures for representing a CP complex

 subsection 4.2.1), and a compressed encoding for the regions of

he partitioning (subsection 4.2.2). We do not describe how the de-

omposition � is represented, as this is specific to each concrete

ealization of the Stellar decomposition model.

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Fig. 4. Mapping function �TOP for the decomposition � from Fig. 3 . Given a triangle mesh (a) and a vertex map �V ERT on �, �TOP associates the triangles in the star of the

vertices in �V ERT (r) to �TOP (r). (b) and (c) highlight the triangles (green) associated with two different regions (blue) of �. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

4

p

b

w

t

v

d

i

�

c

t

v

f

r

∑

W

s

o

r

4

d

p

C

p

r

t

i

c

d

t

d

b

m

a

e

t

d

m

a

i

Fig. 5. explicit encoding for triangles within a region (dotted square). The arrays

explicitly encode the 6 vertices and 20 triangles in the region.

Fig. 6. Compressed arrays of non-negative integers using (a) Run Length Encoding

(RLE) and (b) Sequential Range Encoding (SRE).

g

p

a

i

i

c

a

n

a

n

n

r

{

r

s

S

o

m

r

s

i

i

t

.2.1. Indexed representation of the CP complex

We represent the underlying CP complex as an indexed com-

lex [19] , which encodes the vertices, top CP k -cells and the

oundary relation R k, 0 of each top k -cell in �. In the following,

e assume a d-dimensional CP complex � embedded in E

n .

We use an array-based representation for the vertices and for

he top cells of �. Since the arrays are stored contiguously, each

ertex v has a unique position index i v in the vertex array, that we

enote as �V . Similarly, each top CP cell σ has a unique position

ndex i σ . The top CP cells of � are encoded using separate arrays

T k
for each dimension k ≤ d that has top CP cells in �. �T k

en-

odes the boundary connectivity from the top CP k -cells of � to

heir vertices, i.e., relation R k, 0 in terms of the indices i v of the

ertices of its cells within �V . This requires | R k, 0 (σ) | references

or a top k -cell σ , e.g., k +1 vertex indices for a k -simplex and 2 k

eferences for a k -cube. Thus, the total storage cost of �T is:

d

k =1

∑

σ∈ �T k

| R k, 0 (σ) | . (4)

e note that when � is pure (i.e., its top CP cells all have the

ame dimension d), the encoding of � requires only two arrays:

ne for the vertices and one for the top cells. For simplicity, we

efer to the top cell arrays collectively as �T .

.2.2. A compressed region representation

In this subsection, we discuss two encoding strategies for the

ata maps in each region of the partition �. We begin with a sim-

le strategy that explicitly encodes the arrays of vertices and top

P cells associated with each region and work our way to a com-

ressed representation of these arrays. Coupling this compressed

epresentation with a reorganization of the vertices and cells of

he CP complex (as we will describe in Section 4.3) yields a signif-

cant reduction in storage requirements. We will demonstrate this

laim in Section 8.1 on a data structure instantiating the Stellar

ecomposition.

Recall that under �, each region r in � maps to an array of ver-

ices and an array of top CP cells from the complex � which we

enote as r V and r T , respectively. A straightforward strategy would

e to encode arrays of vertices and top CP cells that explicitly enu-

erate the associated elements for each region r . We refer to this

s the explicit Stellar decomposition encoding. An example of this

ncoding for a single region with six vertices in r V and twenty

riangles in r T is shown in Fig. 5 .

It is apparent that the above encoding can be very expensive

ue to the redundant encoding of top CP cells with vertices in

ultiple regions. A less obvious redundancy is that it does not

ccount for the ordering of the elements.

We now consider a compressed Stellar decomposition encod-

ng that compacts the vertex and top CP cells arrays in each re-
327
ion r by exploiting the locality of the elements within r . The com-

ressed encoding reduces the storage requirements within region

rrays by replacing runs of incrementing consecutive sequences of

ndices using a generalization of run-length encoding (RLE) [58] . RLE

s a form of data compression in which runs of consecutive identi-

al values are encoded as pairs of integers representing the value

nd repetition count, rather than as multiple copies of the origi-

al value. For example, in Fig. 6 (a), the four entries with value ‘2’

re compacted into a pair of entries [- 2 , 3] , where a negative first

umber indicates the start of a run and its value, while the second

umber indicates the remaining elements of the run in the range.

While we do not have such duplicated runs in our indexed rep-

esentation, we often have increasing sequences of indexes, such as

40,41,42,43,44}, within a local vertex array r V or top CP cells array

 T . We therefore use a generalized RLE scheme to compress such

equences, which we refer to as Sequential Range Encoding (SRE) .

RE encodes a run of consecutive non-negative indexes using a pair

f integers, representing the starting index, and the number of re-

aining elements in the range. As with RLE, we can intersperse

uns (sequences) with non-runs in the same array by negating the

tarting index of a run (e.g. [- 40 , 4] for the above example). Thus,

t is easy to determine whether or not we are in a run while we

terate through a sequential range encoded array. A nice feature of

his scheme is that it allows us to dynamically append individual

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Fig. 7. compressed encoding within a region (dotted square) after reindexing the

vertices and triangles of the mesh from Fig. 5 .

e

(

p

p

u

p

r

[

r

c

r

D

p

t

μ

w

e

p

r

a

t

p

c

e

f

(

r

r

4

p

o

t

t

d

s

t

(

�

b

a

o

l

r

m

r

t

t

i

o

t

a

s

i

a

5

a

w

fi

n

I

c

c

a

a

e

b

f

k

a

[

f

u

l

o

d

d

f

t

b

|

i

b

w

a

t

u

A

�

d

m

u

lements or runs to an SRE array without any storage overhead

other than occasional array reallocations).

Furthermore, we can easily expand a compacted range by re-

lacing its entries with the first two values of the range and ap-

ending the remaining values to the end of the array. After the

pdates are finished, we can sort the array and reapply SRE com-

action to recover space. Fig. 6 (b) shows an example SRE ar-

ay over an array, where, e.g., sequence {1,2,3,4} is represented as

 - 1 , 3] .

To facilitate comparisons between the explicit and compressed

epresentations of a Stellar decomposition, we introduce a global

haracteristic that measures the average storage requirements to

epresent a top CP cell.

efinition 4.3. The average reference number μ of a Stellar decom-

osition is the average number of references required to encode a

op CP cell in the r T arrays of the regions in �. Formally:

=

(∑

r ∈ �
| r T |

)

/ | �T | (5)

here | r T | is the size of the top CP cells array in a region r .

In contrast to the average spanning number χ , which is a prop-

rty of the decomposition, the average reference number μ is a

roperty of how the decomposition is encoded. An explicit rep-

esentation is equivalent to a compressed representation without

ny compressed runs, and, thus, it is always the case that μ ≤ χ . In

he explicit representation (i.e., without any sequence-based com-

ression), μ = χ , while in the compressed representation, μ de-

reases as the compression of the r V and r T arrays becomes more

ffective. Fig. 7 illustrates a compressed representation of the mesh

rom Fig. 5 after its vertex and triangle arrays have been reordered

in an external process) and highlights its sequential ranges, where

 V is encoded by a single run and r T is encoded by four sequential

uns as well as several non-run indices.

.3. Generating a stellar decomposition

We now describe how to generate a compressed Stellar decom-

osition from an indexed CP complex � and a given partition �

n its vertices �V . This process consists of three phases:

1. reindex the vertices of � following a traversal of the regions of

� and SRE-compress the r V arrays;

2. insert the top CP cells of � into �;

3. reindex the top CP cells of � based on locality within common

regions of � and SRE-compress the regions r T arrays.

As it can be noted, the generation process ignores how the par-

itioning on the vertices is obtained, since this step is defined by

he data structure instantiating a Stellar decomposition. The rein-

exing of the vertices follows a traversal of the regions of � in
328
uch a way that all vertices associated with a region have a con-

iguous range of indices in the reindexed global vertex array �V

as detailed in the Supplementary material).

The second phase inserts each top CP k -cell σ , with index i σ in

T k
, into all the regions of � that index its vertices. This is done

y iterating through the vertices of σ and inserting i σ into the r T
rray of each region r whose vertex map �V ERT (r) contains at least

ne of these vertices. As such, each top CP k -cell σ appears in at

east one and at most | R k, 0 (σ) | regions of �. Due to the vertex

eindexing of step 1, this operation is extremely efficient. Deter-

ining if a vertex of a given cell lies in a block requires only a

ange comparison on its index i v .

Finally, we reindex the top CP cell arrays �T to better exploit

he locality induced by the vertex-based partitioning and compress

he local r T arrays using a sequential range encoding over this new

ndex. The reindexing and the compression of the top CP cells is

btained following a traversal of the regions of � in such a way

hat all top CP cells associated with the same set of regions have

 contiguous range of indices in the reindexed arrays �T . This last

tep is detailed in the Supplementary material. As we demonstrate

n Section 8 , this compression yields significant storage savings in

 wide range of mesh datasets.

. Stellar trees

The Stellar decomposition is a general model that is agnostic

bout how the partitioning is attained and about its relationship

ith the underlying CP complex. Thus, for example, we can de-

ne a Stellar decomposition using Voronoi diagrams, or based on a

earest neighbor clustering of the vertices of a given CP complex.

n this section, we introduce Stellar trees as a class of Stellar de-

ompositions defined over nested spatial decompositions of the CP

omplex and discuss some of our design decisions. Before defining

 Stellar tree (Section 5.1), its encoding (Section 5.2) and its gener-

tion procedure (Section 5.3), we review some underlying notions.

The ambient space A is the subset of E

n in which the data is

mbedded. We consider the region bounding the ambient space to

e a hyper-rectangular axis-aligned bounding block , which we re-

er to simply as a block . A k -dimensional closed block r in E

n , with

 ≤ n , is the Cartesian product of closed intervals [l i , u i] where ex-

ctly k of them are non-degenerate, i.e., r = { (x 1 , . . . , x n) ∈ E

n | x i ∈
 l i , u i] } and |{ i | l i < u i }| = k .

Given two blocks r := [l i , u i] and r ′ := [l ′
i
, u ′

i
] , r ′ is a face of r if,

or each dimension i , either their intervals overlap (i.e., l ′
i
= l i and

′
i
= u i) or the i -th interval of r ′ is degenerate (i.e., l ′

i
= u ′

i
= l i , or

′
i
= u ′

i
= u i). Given a block r , we refer to its 0-dimensional face

f degenerate intervals x i = l i as its lower corner and to its 0-

imensional face where x i = u i as its upper corner . The above block

efinition describes closed blocks. It can be useful to allow some

aces of r to be open , especially on faces of neighboring blocks

hat overlap only on their boundaries. A k -dimensional half-open

lock r in E

n is defined as r = { (x 1 , . . . , x n) ∈ E

n | x i ∈ [l i , u i) } and

{ i | l i < u i }| = k . Note that the faces of a half-open block r incident

n its lower corner are closed , while all other faces of r are open .

We now focus on nested decompositions , hierarchical space-

ased decompositions whose overlapping blocks are nested and

hose leaf blocks �L (i.e., those without any nested blocks) form

 non-overlapping cover of the ambient space A . The nesting rela-

ionship defines a containment hierarchy H , which can be described

sing a rooted tree . The tree’s root H ROOT covers the ambient space

 ; the tree’s leaves H L encode the regions of the decomposition

; and its internal nodes H I provide access to the regions of the

ecomposition.

Nested decompositions can adopt different hierarchical refine-

ent strategies. Among the most popular are those based on reg-

lar refinement and bisection refinement of simple primitives (e.g.,

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Fig. 8. A mapping function �V ERT over a nested spatial decomposition �. The ver-

tices (a) are partitioned into regions by �’s leaf blocks (b) using a bucketing thresh-

old, k V = 4 , i.e. at most 4 vertices can be in a region.

Fig. 9. Top cell mapping function �TOP for two blocks (blue) of the nested decom-

position from Fig. 8 on the triangle mesh from Fig. 4 . �TOP (r) maps the triangles in

the star of the vertices in �V ERT (r). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

s

b

r

a

a

k

5

c

a

d

T

H

c

e

s

m

t

c

∀

p

t

F

t

H

b

p

t

g

f

|

b

c

p

y

t

h

c

a

b

m

2

t

s

c

s

5

p

o

d

c

o

n

u

t

l

l

b

t

t

f

a

t

C

S

C

w

f

t

e

r

p

o

v

t

t

e

t

l

c

i

p

r

c

r

implices and cubes). An n -dimensional block r is regularly refined

y adding vertices at all edge and face midpoints of r and replacing

 with 2 n disjoint blocks covering r . This generates quadtrees in 2D,

nd octrees in 3D [33] . In bisection refinement, a block is bisected

long an axis-aligned hyperplane into two blocks, generating

D-trees [59] .

.1. Definition

Since a Stellar tree S T is a type of Stellar decomposition, it

onsists of three components: (1) a CP complex � embedded in

n ambient space A ; (2) a nested decomposition � covering the

omain of �; and (3) a map � from blocks of � to entities of �.

he nested decomposition is described by a containment hierarchy

 , represented by a tree whose blocks use the half-open boundary

onvention to ensure that every point in the domain is covered by

xactly one leaf block.

Since Stellar trees are defined over nested spatial decompo-

itions that cover the ambient space, we customize the vertex

apping function �V ERT to partition the vertices of � according

o spatial containment: each vertex is associated with its single

ontaining leaf block. Formally,

 r ∈ �L , �V ERT (r) = { v ∈ �V : v ∩ r � = ∅} . (6)

A two-dimensional example is shown in Fig. 8 , where a set of

oints are associated with the leaf blocks of � through �V ERT .

The top CP cells mapping function �T OP for a Stellar tree has

he same definition as for the Stellar decomposition (see Eq. 1).

ig. 9 shows the mapping �T OP for two blocks of the nested kD-

ree decomposition of Fig. 8 (b) over the triangle mesh from Fig. 4 .

Since the nested decomposition �, and, consequently, the tree

 describing it, are determined by the number of vertices indexed

y a block, we utilize a bucket PR tree [33] to drive our decom-

osition. This provides a single tuning parameter, the bucketing

hreshold k V , that uniquely determines the decomposition for a

iven complex �.
329
Recall that a (leaf) block r in a bucket PR-tree is considered

ull when it indexes more than k V vertices (in our case, when

 �V ERT (r) | > k V). Insertion of a vertex into a full block causes the

lock to refine and to redistribute its indexed vertices among its

hildren. As such, the domain decomposition of a Stellar tree de-

ends only on the bucketing threshold k V . Smaller values of k V
ield deeper hierarchies whose leaf blocks index relatively few ver-

ices and top CP cells, while larger values of k V yield shallower

ierarchies with leaf blocks that index more vertices and top CP

ells. Thus, k V and the average spanning number χ of a Stellar tree

re inversely correlated.

In practice, we use different spatial indexes to represent H

ased on the dimension n of the ambient space A . In lower di-

ensions, we use a quadtree-like subdivision, i.e., a quadtree in

D, and an octree in 3D, while in higher-dimensions, we switch

o a kD-tree subdivision. As discussed in [33] , while quadtree-like

ubdivisions are quite efficient in low dimensions, the data be-

omes sparser in higher dimensions (due to the curse of dimen-

ionality [60]), and tends to be better encoded by kD-trees.

.2. Encoding

We represent the containment hierarchy H using an explicit

ointer-based data structure, in which the blocks of H use a type

f Node structure that changes state from leaf to internal block

uring the generation process of a Stellar tree.

We use a brood-based encoding [61] , where each block in H en-

odes a pointer to its parent block and a single pointer to its brood

f children. This reduces the overall storage since leaves do not

eed to encode pointers to their children, and also allows us to

se the same representation for n-dimensional quadtrees and kD-

rees. We explicitly encode all internal blocks, but only represent

eaf blocks r in H with non-empty maps �(r).

The mapped entities of the CP complex � are encoded in the

eaf blocks H L using the mapping arrays �. Note that each leaf

lock r encodes the arrays of vertices r V and of top CP cells r T in

erms of the indices i v and i σ , respectively, that identify v and σ in

he �V and �T arrays. For each block r , we have: (1) three pointers

or the hierarchy: one to its parent, another to its list of children

nd it is pointed to by one parent; (2) a pointer to an array of ver-

ices r V and the size of this array; (3) a pointer to an array of top

P cells r T and the size of this array. Thus, the hierarchy H of a

tellar tree requires 7 | H | storage.

By considering the encodings, defined in Section 4.2.2 , for the

P complex �, and for the vertices and top cp-cells associated

ith the regions of H , we can estimate the storage requirements

or the explicit and compressed Stellar trees. An explicit Stellar

ree requires a total of | �V | references for its vertex arrays, since

ach vertex is indexed by a single leaf block, and a total of χ | �T |
eferences for all top CP cells arrays. Thus, the total cost of the ex-

licit Stellar tree, including the hierarchy (but excluding the cost

f the indexed mesh) is: 7 | H | + | �V | + χ | �T | .
Conversely, in a compressed Stellar tree, we can reindex the

ertex array �V in such a way that all vertices associated with

he same leaf block are indexed consecutively (see Section A.1 in

he Supplementary materials for additional details). Thus, we can

ncode the r V arrays using only two integers per leaf block for a

otal cost of 2 | H L | rather than | �V | . Moreover, since leaf blocks no

onger need to reference an arbitrary array, these two references

an be folded into the block’s hierarchical representation for r V :

nstead of a pointer to a array and a size of the array, we sim-

ly encode the range of vertices in the same space. As the cost of

epresenting the r T arrays is μ| �T | , the total cost for encoding a

ompressed Stellar tree (excluding the cost of the indexed mesh

epresentation) is: 7 | H | + μ| � | .
T

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Fig. 10. Generating a nested hierarchy H with k V = 4 over vertices. After inserting

the vertices (a), we reindex �V according to H L (b).

5

l

t

a

i

g

t

a

i

g

u

i

i

c

p

e

m

t

t

f

l

t

i

i

a

v

e

6

e

o

a

a

p

p

c

i

t

S

c

e

t

d

Algorithm 1 stellar _ tree _ processing _ paradigm (r , c) .

Input: r is a block in H

Input: c is a fixed-size LRU-cache

1: if r is an internal block in H then

2: for all blocks r C in children (r) do

3: stellar_tree_processing_paradigm (r C , c)

4: else // r is a leaf block in H

5: if r is in c then

6: r E ← get (c, r)

7: else

8: r E ← expand (r) // expand r into r E

9: execute application algorithm using r E
10: if max_size (c) > 0 then // we are using a cache

11: save r E in c

12: else

13: discard r E

r

O

p

c

R

t

i

t

s

l

a

c

l

t

d

f

a

p

t

b

e

o

t

e

c

e

s

t

p

a

b

c

p

p

r

d

m

a

h

p

p

m

t

.3. Generating a stellar tree

In this section, we describe how to generate a compressed Stel-

ar tree from an indexed CP complex � and a given bucketing

hreshold k V . We can also deal with input complexes that are not

lready indexed. For example, if our input is a “soup” of CP cells

n which each CP cell is specified by a list of coordinates, we can

enerate an indexed representation of the complex as we insert

he vertices and generate the decomposition.

First, given a user-defined bucketing threshold k V , we generate

 bucket PR-tree over the vertices of �. The procedure for insert-

ng a vertex v with index i v in �V into H is recursive. We use the

eometric position of v to traverse the internal blocks to reach the

nique leaf block r containing v . After adding v to r (i.e., append-

ng i v into the r V array of r), we check if this causes an overflow

n r . If it does, we refine r and reinsert its indexed vertices into its

hildren. Once all the vertices in � have been inserted, the decom-

osition is fixed.

The rest of the Stellar tree generation process follows the strat-

gy described in Section 4.3 and detailed in the supplementary

aterials. One key optimization between a generic partitioning on

he vertices and a nested hierarchical decomposition relates to ex-

racting the vertex index ranges. In a Stellar tree, this step is per-

ormed through a depth-first traversal of the tree, which, for each

eaf block r , generates a contiguous range of indices for the ver-

ices in r , and, for each internal block, provides a single contiguous

ndex range for the vertices in all descendant blocks. For example,

n Fig. 10 , after executing this step on leaf block b , we have v s = 4

nd v e = 7 . Similarly, at the end of this step the root H ROOT has

 s = 1 and v e = 13 .

We provide an experimental evaluation of the timings for gen-

rating a Stellar tree in Section 8.3 .

. Processing paradigm for stellar trees

Mesh processing applications rarely process individual mesh el-

ments. Rather, they typically operate on the entire complex, or

n large regions of interest within the complex. The structure of

 Stellar tree naturally supports a batched processing strategy, i.e.,

 strategy in which portions of the complex are reconstructed and

rocessed within each block of the tree. As these local blocks are

rocessed, their representation and extracted topological relations

an be customized to suit the needs of the application. This helps

n amortizing the reconstruction costs and, thus, processing the en-

ire complex efficiently.

The general paradigm for executing application algorithms on a

tellar tree is to iterate through the leaf blocks of hierarchy H , lo-

ally processing the encoded complex in a streaming manner. For

ach leaf block r in H , a local topological data structure catered to

he application’s needs is constructed and used to process the in-

exed subcomplex. We refer to this local data structure in a block
330
 as an expanded leaf-block representation , and we denote it as r E .

nce we finish processing leaf block r , we discard r E and begin

rocessing the next block.

For efficiency and at relatively low storage overhead, we can

ache the expanded leaf block representation r E , using a Least-

ecent-Used (LRU) cache. This is especially advantageous in applica-

ions that require processing portions of the complex in neighbor-

ng leaf blocks. Adopting a fixed-size cache allows us to amortize

he extraction costs of the local data structures, with a controllable

torage overhead.

Algorithm 1 outlines the general strategy for processing a Stel-

ar tree. The algorithm recursively visits all the blocks of the hier-

rchy H . For each leaf block r , we either recover r E from the LRU

ache (rows 5–8), or construct the desired application-dependent

ocal topological data structure r E . After using this local data struc-

ure to process the local geometry in r (row 9), we either cache or

iscard r E (rows 10–13).

Within this general processing paradigm, we can have two dif-

erent approaches, that we call local and global , depending on how

uxiliary data structures are encoded and maintained. In a local ap-

roach, the scope of these auxiliary data structures is limited to

hat of a single leaf block r , or to a restricted subset of its neigh-

ors. In general, a local approach is preferred for applications that

xtract, or analyze local features, such as those that depend only

n the link or star of cells. These includes, for instance, the extrac-

ion of geometric features, like the curvature at a vertex, or the

xtraction of morphological features, like critical points, when the

omplex is a discretization of the domain of a scalar field. In these

xamples, the auxiliary data structures are just needed within the

cope of a leaf block r , and thus, immediately discarded after ex-

racting the corresponding feature in r . Conversely, in a global ap-

roach, data structures are maintained over the entire complex

nd updated during the visit of the tree. A global approach can

e preferable for applications that require the analysis or the pro-

essing of the entire complex, like geometric simplification, mor-

hological segmentation, or validation of geometric and topological

roperties. In these examples, auxiliary data structures are used to

epresent partial results over the complex.

The decision between using a local and global approach can be

riven by the needs of the application or as a tradeoff balancing

emory usage and execution times. Due to the limited scope of

uxiliary data structures in the local approach, the storage over-

ead is typically proportional to the complexity of the local com-

lex but requires an increased number of memory allocations com-

ared to a global approach since each leaf block expansion requires

emory allocations. Conversely, while auxiliary data structures in

he global approach are allocated only once, these structures can

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Table 1

Overview of experimental datasets. For each CP complex �, we list the number of vertices | �V | and of top CP-cells | �T | .
triangular quadrilateral tetrahedral hexahedral probabilistic v-rips

neptune statuette lucy neptune statuette lucy bonsai vismale foot f16 san

fern

vismale 5D 7D 40D vismale

7D

foot

10D

lucy

34D

| �V | 2.00M 5.00M 14.0M 12.0M 30.0M 84.1M 4.25M 4.65M 5.02M 27.9M 61.3M 136M 385K 239K 204K 4.65M 5.02M 14.0M

| �T | 4.01M 10.0M 28.1M 12.0M 30.0M 84.2M 24.4M 26.5M 29.5M 25.4M 55.9M 125M 26.5M 258M 16.5M 6.39M 63.9M 41.1M

r

p

a

h

7

t

a

t

q

7

c

m

i

c

u

c

f

d

d

h

m

g

e

p

t

c

m

t

r

p

e

u

6

m

h

R

A

a

p

ε
c

t

F

t

m

o

d

c

f

t

t

g

c

7

g

t

t

t

t

t

d

f

t

i

f

1

t

a

e

d

w

t

t

o

t

t

o

w

i

a

t

t

n

k

u

i

l

fi

d

s

f

l

i

v

i

v

t

i

equire significantly more storage space compared to the local ap-

roach.

In Section 10 , we present applications on mesh processing and

nalysis, based on Stellar trees, on which these two paradigms

ave been extensively applied.

. Experimental setup

In this section, we describe our experimental setup, including

he datasets used in our evaluation (Section 7.1). We also evalu-

te how the bucketing threshold k V affects the quality of a Stellar

ree’s decomposition and its performance in extracting topological

ueries (Section 7.2).

.1. Experimental datasets

We have performed experiments on a range of CP complexes

onsisting of triangle, quadrilateral, tetrahedral and hexahedral

eshes in E

3 as well as pure non-manifold simplicial complexes

n higher dimensions and higher dimensional non-manifold simpli-

ial complexes (embedded in E

3). Table 1 summarizes the datasets

sed in our experiments and their numbers of vertices and top

ells.

Our triangle and tetrahedral meshes are native models ranging

rom 4 to 28 million triangles and from 24 to 29 million tetrahe-

ra, where we use the term native to refer to models from public

omain repositories discretizing objects in space. Since we only

ad access to relatively small native quadrilateral and hexahedral

eshes (with tens to hundreds of thousand elements), we have

enerated some larger models ranging from 12 to 125 million

lements from our triangle and tetrahedral models. The generation

rocedure refines each triangle into three quadrilaterals and each

etrahedron into four hexahedra by adding vertices at the face

entroids.

To experiment with pure non-manifold models in higher di-

ensions, we have generated some models based on a process

hat we call probabilistic Sierpinski filtering , where we regularly

efine all simplices in the complex and randomly remove a fixed

roportion of the generated simplices in each iteration. For our

xperiments, we have created 5-, 7- and 40-dimensional models

sing different levels of refinement and a filtering threshold of

5%, yielding pure simplicial complexes with 16.5 million to 258

illion top simplices.

Finally, to experiment with general simplicial complexes in

igher dimensions, we have generated several (non-pure) Vietoris-

ips complexes, which we embed in a lower dimensional space.

 Vietoris-Rips (V-Rips) complex is the flag complex defined by

 neighborhood graph over a point cloud whose arcs connect

airs of points with distance less than a user-provided parameter

. Given the neighborhood graph, the simplices of the V-Rips

omplexes are defined by its cliques , subsets of the graph vertices

hat form a complete subgraph. We refer to [62] for further details.

or our experiments, we have generated V-Rips complexes over

he vertices of a triangle model (lucy) and of two tetrahedral

odels (vismale and foot) from our manifold datasets and set

ur distance threshold ε to { 0 . 1% , 0 . 5% , 0 . 4% } of the bounding box

iagonal, respectively. The range of top simplices in the generated
331
omplexes goes from 6.4 million to 64 million and their dimension

rom 7 to 34. Although the generated complexes are synthetic,

hey provide a good starting point to demonstrate the efficiency of

he Stellar tree in higher dimensions.

All tests have been performed on a PC equipped with a 3.2 gi-

ahertz Intel i7-3930K CPU with 64 gigabytes of RAM. The source

ode will be made available at [87] .

.2. Calibrating stellar tree bucket thresholds

Spatial indexes typically involve a careful balance among index

eneration times, storage costs and query performances. Stellar

rees provide users with a single tuning parameter k V to control

he maximum number of vertices indexed by each block of the

ree. In the following, we calibrate k V on a characteristic subset of

hree of our experimental datasets: neptune triangle mesh, bonsai

etrahedral mesh, and vismale Vietoris-Rips complex. For each

ataset, we generated 195 Stellar trees using k V values ranging

rom 1 to 1500 and compared Stellar tree generation and query

imes as well as the number of blocks as a proxy for the complex-

ty of the generated tree. Within this range, we increment k V by 1

or values between 1 and 50, and by 10 for values between 60 and

500. This allows us to evaluate the decomposition quality and

he extraction performance for a fundamental topological query

t different scales. For the latter, we use the vertex co-boundary

xtraction, i.e., the top cells incident in each vertex (which we

escribe in Section 9.2).

The results are summarized in the charts of Figs. 11 and 12 ,

hich compare the complexity of the generated Stellar tree (in

erms of number of blocks), its generation and query times, and

he average spanning (χ) and reference (μ) numbers as a function

f the threshold value k V .

To better compare different units (i.e., number of blocks and

imings), each chart in Fig. 11 has two logarithmic y-axes, showing

he time scale (blue curves using the left y-axes) and the number

f blocks (red curves using the right y-axes), respectively. In this

ay, we can directly compare, for each dataset, how the k V value

nfluences the decomposition and the timing performances. After

n initial rapid decrease in the generation time and block number,

he curves begin to level off for increasingly large k V values. While

here are more than a million blocks when k V is less than 10, the

umber of blocks rapidly decreases to hundreds of thousands for

 V ’s between 50 and 200, and grows even smaller for large k V val-

es (e.g., above 500), where the number of blocks remains steadily

n the thousands to tens of thousands. This trend appears to be re-

ated to the point distribution within each dataset, which induces

ner decompositions for k V values between 1 and 50, and coarser

ecompositions for larger k V values. This trend can also be ob-

erved for the generation times, which reduce by a factor of two

or k V values between 1 and 100, and by another factor of two for

arge bucketing thresholds. While the topological extraction query

s largely unaffected by k V size, it gets slightly faster for larger k V
alues. When comparing the influence of k V on χ and μ (shown

n Fig. 12), we observe that the behavior of these two variables is

ery similar to that of the number of blocks. This is expected, since

he top cells distribution is directly linked to the number of blocks

n the tree. As mentioned in Section 4.1 , the number of leaf blocks

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Fig. 11. Bucketing threshold calibration experiments comparing the number of Stellar tree blocks (red, right y-axis) and generation and top-coboundary extraction times

(blue, left y-axis) against bucket threshold values (k V). The vertical bars (gray) represent the k V values selected for our experiments. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Bucketing threshold calibration experiments comparing the evolution of the average spanning number χ and of the average reference number μ against bucket

threshold values (k V) for three datasets. The vertical bars (gray) represent the k V values we selected for our experiments on these datasets.

i

v

t

s

e

d

r

o

s

m

o

r

i

t

T

d

m

c

f

l

p

i

r

s

k

4

Fig. 13. Leaf blocks for a Stellar tree decompositions over neptune triangle mesh.

Each leaf block indexes up to k V = 100 mesh vertices.

8

t

l

a

ndexing a top cell is bounded from above by the number of its

ertices, and this defines a topological upper bound that reduces

he overall storage requirements. We note that the SRE compres-

ion is able to reduce the number of references per top cell (μ),

ven for very small k V values.

Our calibration experiments indicate that, while there are slight

ifferences in timing and storage costs, Stellar tree performance is

elatively stable over a wide range of k V values. However, thresh-

ld values that are either too small or too large should be avoided,

ince in the first case the storage requirements and time perfor-

ances are heavily affected, while in the latter case the benefit

f having a hierarchical decomposition is limited, as both storage

equirements and time performance are not clearly influenced by

t. In the rest of this paper, for every model, we build two Stellar

rees to compare how their performances depend on parameter k V .

hese two k V values are chosen in order to: (i) have a hierarchical

ecomposition that still plays a critical role in the storage require-

ents and time performances; and (ii) obtain trees with different

haracteristics: one deeper and another relatively shallower. In the

ollowing, we use k S to refer to the smaller k V value and k L to the

arger one. Since there is a direct correlation between the decom-

osition quality and χ , these calibration choices are also reflected

n the χ values across our experimental datasets. Table 2 summa-

izes statistics on the Stellar trees obtained from each input data

et by considering two values of the vertex threshold k V , namely

 S and k L . Fig. 13 illustrates the k S octree decomposition for the

M triangle Neptune dataset.

(

S

332
. Evaluation of storage costs and generation times

In this section, we evaluate the storage costs and generation

imes of Stellar trees. First, we compare the cost of different Stel-

ar tree encodings (Section 8.1), then we compare the Stellar tree

gainst several state-of-the-art topological mesh data structures

 Section 8.2), and, finally, we evaluate the generation times of the

tellar tree (Section 8.3).

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Table 2

Overview of our generated Stellar trees for each dataset. For each Stellar tree, we

list the thresholds k V , the number of blocks in the index (total | H | and leaf | H L |)
and the average spanning number χ .

Data k V | H | | H L | χ

triangular

neptune k S 100 73.7K 58.8K 1.37

k L 500 15.0K 12.2K 1.17

statuette k S 100 182K 147K 1.36

k L 500 39.8K 32.7K 1.17

lucy k S 100 464K 374K 1.35

k L 500 88.8K 70.3K 1.16

quadrilateral

neptune k S 100 407K 322K 1.47

k L 800 55.0K 44.3K 1.17

statuette k S 100 1.10M 883K 1.47

k L 800 146K 120K 1.17

lucy k S 100 3.53M 2.85M 1.54

k L 800 329K 265K 1.17

tetrahedral

bonsai k S 400 45.2K 39.5K 1.58

k L 800 17.9K 15.7K 1.44

vismale k S 400 32.8K 28.7K 1.52

k L 800 17.7K 15.5K 1.45

foot k S 400 88.8K 77.7K 1.75

k L 800 17.1K 15.0K 1.43

hexahedral

f16 k S 100 1.11M 972K 3.08

k L 1000 113K 99.0K 1.90

san fern k S 100 2.02M 1.77M 3.15

k L 1000 247K 216K 1.88

vismale k S 100 7.39M 6.46M 2.80

k L 1000 800K 700K 1.72

probabilistic

5D k S 100 37.4K 36.1K 4.39

k L 500 2.79K 2.68K 2.55

7D k S 100 10.8K 4.87K 4.98

k L 500 2.02K 1.00K 3.78

40D k S 100 15.2K 4.32K 36.2

k L 1000 1.56K 550 34.0

v-rips

vismale 7D k S 400 32.8K 28.7K 1.44

k L 800 17.7K 15.5K 1.37

foot 10D k S 400 88.8K 77.7K 2.02

k L 800 17.1K 15.0K 1.56

lucy 34D k S 100 464K 374K 2.47

k L 500 88.8K 70.3K 1.73

8

t

l

p

t

(

t

f

b

l

c

s

t

q

c

c

5

t

t

d

f

t

1

i

t

p

c

r

a

t

i

b

w

H

l

s

o

S

p

a

a

s

w

m

S

8

i

d

c

d

t

o

g

d

m

t

(

a

(

s

l

t

i

h

p

a

.1. Storage comparison among stellar tree encodings

We begin by comparing the explicit and compressed Stellar

ree encodings as well as a vertex-compressed encoding, simi-

ar to the PR-star encoding for tetrahedral meshes [41] , that com-

resses the vertex array but not the top cells arrays. Table 3 lists

he storage costs for the indexed representation of the complex

‘Base Complex’) as well as the additional costs required for the

hree Stellar tree encodings, in terms of megabytes (MBs). In the

ollowing, we assume that pointers require 64 bits and indices 32

its, the de-facto standard in modern computing hardware. Stel-

ar trees based on the compressed encoding are always the most

ompact.
333
We first consider the storage requirements of the hierarchical

tructures with respect to our tuning parameter k V and observe

hat higher values of k V always yield reductions in memory re-

uirements. As expected, this effect is more pronounced for the

ompressed encoding than for the other two encodings. Specifi-

ally, the explicit and vertex-compressed k L trees achieve a 20–

0% reduction in storage requirements compared to their k S coun-

erparts, while the compressed k L trees are a factor of 3–10 smaller

han their k S counterparts. For example, on the triangular neptune

ataset, storage requirements for the explicit Stellar tree reduces

rom 32.0 MB (k S) to 26.2 MB (k L), while the compressed Stellar

rees reduces by more than a factor of 4 from 5.76 MB (k S) to

.24 MB (k L).

When comparing the three encodings, we see that compress-

ng the vertices alone, as in the vertex-compressed representa-

ion, achieves only 10–20% reduction in storage requirements com-

ared to the explicit representation, in most cases. In contrast,

ompressing the vertices and top cells, as in our compressed rep-

esentation, yields an order of magnitude improvement, requiring

 factor of 10–20 less storage than their explicit counterparts. This

rend is nicely tracked for each dataset by the differences between

ts average references number μ and its average spanning num-

er χ . This is particularly evident on our probabilistic datasets, for

hich it is difficult to calibrate k V in order to reduce χ values.

owever, after SRE compression, μ values are always very small,

eading to significant storage reductions in the compressed repre-

entation.

Considering the hierarchical storage requirements against those

f the original indexed base complex, we observe that explicit

tellar trees require about 50% to 80% the storage of the base com-

lex, while compressed Stellar trees require only around 10% (k S)

nd 1% (k L) the storage of the base complex. Thus, for reason-

ble k V values, compressed Stellar trees impose only a negligible

torage overhead with respect to the underlying indexed complex,

hich the Stellar tree representation does not modify. In the re-

ainder of this paper, we restrict our attention to the compressed

tellar Tree, which we refer to as the Stellar tree, for simplicity.

.2. Storage comparison with respect to other data structures

We compare the Stellar tree with several dimension-

ndependent topological data structures as well as dimension-

ependent topological data structures for 2D and 3D simplicial

omplexes. Figs. 14–16 compare the storage requirements for the

ifferent data structures normalized against the storage costs of

he indexed base complex. The analysis compares the topological

verhead of the data structures, and thus, we omit the cost of the

eometry of the underlying complex, which is common to all the

ata structures.

Based on our analysis of the literature (see Section 3.1), the

ost relevant dimension-independent topological data structures

hat scale to our experimental datasets are: the Incidence Graph

IG) [8] , the Incidence Simplicial (IS) [10] , the Simplex tree [28] ,

nd the Generalized Indexed data structure with Adjacencies

IA

∗) [26] . Since Canino et al. [11] demonstrated that the IA

∗ data

tructure is more compact than the IG and IS data structures for

ow and high-dimensional datasets, we restrict our comparisons to

he IA

∗ and Simplex tree data structures.

The IA

∗ data structure has been defined for dimension-

ndependent simplicial complexes, and for our experiments, we

ave extended it to dimension-independent CP complexes. It ex-

licitly encodes all vertices and top CP k -cells in �, with 0 < k ≤ d,

s well as the following topological relations:

(i) boundary relation R k, 0 (σ) , for each top CP k -cell σ ;

(ii) adjacency relation R k,k (σ) , for each top CP k -cell σ ;

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Table 3

Storage costs (in MB s) and average spanning (χ) and reference (μ) numbers for different Stellar tree encodings.

Data Base Stellar tree

Complex explicit v_compr. compr.

cost χ cost χ cost μ

triangular

neptune k S 45.9 32.0 1.37 24.3 1.37 5.76 0.16

k L 26.2 1.17 18.6 1.17 1.24 0.04

statuette k S 114 79.2 1.36 60.2 1.36 14.6 0.17

k L 65.6 1.17 46.6 1.17 3.41 0.04

lucy k S 321 220 1.35 166 1.35 34.5 0.12

k L 181 1.16 128 1.16 6.18 0.02

quadrilateral

neptune k S 183 132 1.47 86.0 1.47 28.0 0.20

k L 102 1.17 56.3 1.17 3.86 0.03

statuette k S 458 333 1.47 219 1.47 76.0 0.22

k L 255 1.17 141 1.17 10.4 0.03

lucy k S 1.3K 976 1.54 656 1.54 245 0.26

k L 710 1.17 389 1.17 23.1 0.03

tetrahedral

bonsai k S 373 166 1.58 150 1.58 6.55 0.05

k L 151 1.44 135 1.44 2.65 0.02

vismale k S 405 173 1.52 156 1.52 4.87 0.03

k L 165 1.45 147 1.45 2.69 0.02

foot k S 450 220 1.75 201 1.75 13.0 0.08

k L 181 1.43 161 1.43 2.60 0.02

hexahedral

f16 k S 775 456 3.08 349 3.08 151 1.03

k L 296 1.90 189 1.90 18.0 0.13

san fern k S 1.7K 999 3.15 765 3.15 275 0.86

k L 646 1.88 412 1.88 33.1 0.10

vismale k S 3.8K 2.2K 2.89 1.7K 2.89 887 1.15

k L 1.4K 1.72 858 1.72 106 0.15

probabilistic

5D k S 607 448 4.39 446 4.39 63.7 0.61

k L 259 2.55 258 2.55 3.57 0.03

7D k S 7.9K 4.9K 4.98 4.9K 4.98 101 0.10

k L 3.7K 3.78 3.7K 3.78 12.2 0.01

40D k S 2.6K 2.3K 36.2 2.3K 36.2 55.7 0.87

k L 2.1K 34.0 2.1K 34.0 0.45 0.01

v-rips

vismale 7D k S 134 56.2 1.44 37.0 1.44 7.38 0.26

k L 53.7 1.37 34.6 1.37 4.54 0.18

foot 10D k S 2.1K 604 2.02 586 2.02 65.1 0.33

k L 431 1.56 413 1.56 11.5 0.12

lucy 34D k S 2.0K 416 2.47 363 2.47 86.2 0.92

k L 292 1.73 238 1.73 19.0 0.53

r

t

t

l

c

o

s

b

s

p

n

b

t

e

v

p

t

(iii) co-boundary relation R k −1 ,k (τ) , for each non-manifold

(k −1)-cell τ bounding a top CP k -cell;

(iv) partial co-boundary relation R ∗
0 ,k

(v) , for each vertex v , con-

sisting of an arbitrary top CP k -cell σ from each k -cluster in

the star of v . A k -cluster is a (k −1)-connected component of

the star of v restricted to its top CP k -cells.

Note that for pure CP complexes, the non-manifold co-boundary

elation R k −1 ,k is empty. Further, for pseudo-manifold complexes,

he partial vertex co-boundary relation R ∗
0 ,k

has cardinality 1, and

he IA

∗ is identical to the IA data structure [20] .

The Simplex tree encodes all j-simplices in �, with 0 ≤ j ≤ d,

ike the IG, while storing a subset of the incidence relations en-
334
oded by the IG. The Simplex tree is defined over a total order

n the vertices of �, and thus, each simplex σ is uniquely repre-

ented as an ordered path in a trie whose nodes correspond to the

oundary vertices of σ . Thus, the nodes are in bijection with the

implices of the complex, and a Simplex tree over a simplicial com-

lex with | �| simplices (of any dimension) contains exactly | �|
odes. This provides an efficient representation for extracting all

oundary relations of simplices in �. We compare the Stellar tree

o the implementation of the Simplex tree provided in [30] , where

ach node of a Simplex tree requires a reference to the label of the

ertex and three references to the tree structure (pointers to the

arent node, to the first child and to the next sibling node) for a

otal of 4 | �| references.

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Fig. 14. Storage costs for high dimensional probabilistic-refinement simplicial com-

plexes (prob.5D , prob.7D and prob.40D) and V-Rips simplicial complexes (vis-

male7D , foot10D and lucy34D). Costs (labels to right of each bar) are normalized

to the indexed mesh representation (listed along y-axis). Note that: (1) the x-axis

is truncated to a factor of 3; (2) datasets marked with � or � could not be directly

generated on our test machine for the Simplex tree or IA ∗ (respectively); and (3)

the Simplex tree results for the Prob.40D and Lucy34D dataset are partial (>).

Fig. 15. Storage costs for manifold quadrilateral (neptune , statuette and lucy) and

hexahedral (bonsai , vismale and foot) complexes. Costs (labels to right of each bar)

are normalized to the indexed mesh representation (listed along y-axis). Datasets

marked with � could not be directly generated on our test machine using the stan-

dalone IA ∗ .

c

h

r

t

w

r

r

g

Fig. 16. Storage costs for manifold triangle (neptune , statuette and lucy) and

tetrahedral (bonsai , vismale and foot) complexes. Costs (labels to right of each bar)

are normalized to the indexed mesh representation (listed along y-axis).

c

o

r

t

t

d

s

s

h

s

d

d

w

m

w

o

t

a

S

b

fi

c

t

o

s

b

Note that the Stellar tree and our extended IA

∗ data structure

an both represent CP complexes in arbitrary dimension and, thus,

ave the same expressive power, while the Simplex tree can rep-

esent only simplicial complexes. Another difference is that Stellar

rees require the complex to be embedded in an ambient space A ,

hile the other data structures are purely topological and do not

equire a spatial embedding. We note, however, that while this is a

equirement for Stellar trees, it is not a requirement for the more

eneral Stellar decomposition.
335
In terms of storage requirements, the Stellar tree is always more

ompact than the IA

∗ data structure, requiring approximately half

f the storage, nearly all of which is used for encoding boundary

elation R k, 0 for the top cells (i.e., the indexed representation that

hey share in common). It is worth noting that we were unable

o directly generate the IA

∗ data structure for several of our larger

atasets on our 64 GB test machine. We generated the IA

∗ data

tructure on these datasets indirectly using our Stellar tree repre-

entation (see Section A.3 in the Supplementary materials) and we

ave marked these datasets with an � in Figs. 14 and 15 .

When comparing the Stellar tree to the Simplex tree, we ob-

erve that the Stellar tree is significantly more compact: by an or-

er of magnitude on manifold and pure models, and by two or-

ers of magnitude or more on non-manifold models. Here too, we

ere unable to generate Simplex trees for several of the higher di-

ensional models on our test machine. For these datasets (marked

ith � in Fig. 14), we estimated the storage requirements based

n the number of simplices of each dimension in the model. On

wo of these datasets, prob 40D and lucy 34D , we were un-

ble to extract all simplices in all dimensions (even indirectly, see

ection 9.1), and thus, the storage shown in Fig. 14 is a lower

ound of the real storage requirements. In contrast, we had no dif-

culty generating Stellar Trees for any of our test datasets.

For our dimension-dependent comparisons on manifold simpli-

ial complexes, we also considered the Corner Table (CoT) [22] and

he Sorted Opposite Table (SOT) [25] data structures, both defined

nly for manifold triangle and tetrahedral complexes. The CoT data

tructure is similar to the IA data structure and explicitly encodes

oundary relation R d, 0 (σ) and adjacency relation R d,d (σ) of each

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

t

b

l

t

r

t

t

o

F

f

(

t

t

i

b

a

l

e

t

t

s

s

i

t

8

t

t

f

t

w

c

p

1

c

e

p

R

T

o

e

t

t

o

i

l

u

a

9

o

a

c

p

d

b

Table 4

Generation timings (in seconds) for the Stellar tree.

Timings

Data k V vertices top CP cells total

insert reindex insert reindex

triangular

neptune k S 4.52 0.68 1.64 3.23 10.1

k L 3.83 0.67 1.24 2.77 8.51

statuette k S 11.6 1.77 3.42 7.99 24.8

k L 10.1 1.74 2.74 6.70 21.3

lucy k S 34.6 1.32 8.85 21.9 66.7

k L 30.3 0.48 7.45 18.1 56.3

quadrilateral

neptune k S 32.2 4.39 6.64 11.3 54.5

k L 27.5 4.36 4.63 8.58 45.1

statuette k S 82.7 12.3 14.0 29.1 138

k L 73.8 12.2 10.7 22.7 119

lucy k S 263 2.17 37.0 61.8 364

k L 223 2.02 29.5 35.5 290

tetrahedral

bonsai k S 6.69 1.66 7.99 20.8 37.2

k L 6.25 1.65 7.12 19.3 34.3

vismale k S 7.25 1.82 8.35 22.1 39.6

k L 6.96 1.81 7.88 21.2 37.8

foot k S 8.55 2.00 10.8 27.9 49.2

k L 7.34 1.97 8.52 23.4 41.2

hexahedral

f16 k S 103 14.2 77.7 53.9 249

k L 94.1 13.9 46.7 35.1 190

san fern k S 154 27.6 52.1 102 336

k L 140 27.5 37.1 67.8 273

vismale k S 337 72.8 118 222 751

k L 324 71.8 85.3 147 628

probabilistic

5D k S 0.50 0.58 40.9 53.0 95.0

k L 0.37 0.58 20.9 32.7 54.5

7D k S 0.55 5.98 332 612 950

k L 0.45 5.97 203 471 681

40D k S 1.32 1.73 972 769 1.7K

k L 1.02 1.73 529 448 980

v-rips

vismale 7D k S 7.20 1.80 2.65 3.04 13.0

k L 6.94 1.81 2.50 2.75 12.3

foot 10D k S 9.01 1.99 41.0 57.1 108

k L 7.91 1.98 30.6 35.9 75.2

lucy 34D k S 35.9 1.63 36.8 42.2 117

k L 30.7 0.81 28.7 24.3 84.5

(

b

t

w

t

9

c

o

q

i

op d-simplex σ . The SOT extends the CoT by implicitly encoding

oundary relation R d, 0 (σ) . It only explicitly encodes adjacency re-

ation R d,d (σ) .

When comparing the Stellar tree to corner-based data struc-

ures, we observe that the CoT data structure has similar storage

equirements as the IA and is roughly twice as large as the Stellar

ree, while the SOT has similar storage requirements as the Stellar

ree, requiring about 1% to 10% less space.

Finally, we consider the effect of different bucketing thresh-

ld on the size and efficiency of the Stellar tree representation.

or our experimental datasets, there was only about a 10% dif-

erence in storage requirements between the large (k L) and small

 k S) bucketing factors. Clearly, this is not always true, especially in

he limit cases, i.e., with k V = 1 and k V = ∞ . Very low bucketing

hresholds (with k V near 1) yield deeper trees whose leaf blocks

ndex only a few entities, leading to a high topological overhead

ut more efficient execution for individual mesh processing oper-

tions. Conversely, really large bucketing threshold values lead to

ower storage overhead at the expense of increased query and ex-

cution times for individual operations. At the limit, when k V = ∞ ,

he Stellar tree is effectively identical to the indexed representa-

ion.

These results confirm that the Stellar tree can efficiently repre-

ent both low- and high-dimensional complexes with only a slight

torage overhead relative to that of the indexed base complex. This

s largely due to the Stellar tree’s exploitation of the complex’s spa-

ial locality via SRE compression.

.3. Evaluation of stellar tree generation times

In this section, we evaluate the generation times for the Stellar

ree. Table 4 shows the timings of the four generation phases and

he overall total timings. The two insert columns show the time

or creating the base indexing structure H over the vertices �V of

he complex �, or the time for inserting the top cells �T into H ,

hile reindex columns show the timings for reordering and SRE

ompressing the indexed lists and arrays in H and �.

We first consider the relative cost of each of the generation

hases. In general, the vertex reindexing phase consumes less than

0% of the overall timings. For the triangle , quadrilateral , hexahedral

omplexes, and the lower dimensional Vietoris-Rips complex, gen-

rating H is the most expensive phase, while for the tetrahedral ,

robabilistic-refinement and the two higher dimensional Vietoris-

ips models, reindexing the top cells is the most expensive phase.

hese results can be understood by considering the relative sizes

f �V and �T . When the number of vertices is greater than or

qual to the number of top cells, it is more expensive to generate

he spatial hierarchy H . Otherwise, reindexing and compressing the

op cells arrays dominates.

Finally, considering the effect of the bucketing thresholds (k V)

n generation times, we find that Stellar trees with higher bucket-

ng thresholds (k L) can be generated in less time than those with

ower bucketing thresholds (k S). This is expected since high val-

es of k V tend to produce coarser spatial subdivisions with lower

verage spanning numbers χ .

. Topological queries on a stellar tree

In this section, we describe how to perform topological queries

n a CP complex � in the Stellar tree representation. These queries

re the fundamental building blocks for locally traversing and pro-

essing the underlying complex.

Since these queries often depend on all cells in the com-

lex, rather than just the explicitly represented top cells, we first

escribe how we obtain and represent the implicitly encoded

oundary cells of the complex from the Stellar tree representation
336
 Section 9.1). We then present algorithms for extracting the co-

oundary (Section 9.2). For brevity, we omit a description of how

o extract adjacency relations, but in the Supplementary materials,

e describe how to extract the R d,d adjacency relations to generate

he IA

∗ data structure from a Stellar tree.

.1. Extracting boundary relations

The Stellar tree’s underlying indexed representation of a CP

omplex � explicitly encodes only the vertices and top CP k -cells

f � for k ≤ d (see Section 4.2.1). However, many applications re-

uire access to non-top cells within the complex. Since they are

mplicitly encoded within the Stellar tree representation, we must

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Algorithm 2 extract _ p _ cells (p, r , �) .

Input: p is the cell dimension to extract

Input: r is a leaf block in H

Input: � is the CP complex indexed by H

Variable: m _ p maps a p-cell vertex tuple to its local index

Require: Extract boundary p-cells of top k -cells, 0 < p≤k ≤d

1: for all top CP k -cells σ in �T OP (r) (with index i σ in �T) do

2: for all p-faces τ in R k,p (σ) (with face index i τ in σ) do

// Rearrange τ ’s vertices into a canonical order

3: v _ tuple ← canonical_tuple (R p, 0 (τ))

// If τ is indexed by r , add it to the local p-faces map

4: if there exists v ∈ R p, 0 (τ) such that v ∈ �V ERT (r) then

// Insert τ as a new p-cell, if not already present

5: if v _ tuple is not in m _ p then

6: id τ ← size (m _ p) // id τ is τ ’s local index in r

7: m _ p[v _ tuple] ← id τ

c

p

t

t

a

c

t

s

c

t

c

T

o

s

s

s

o

m

t

s

c

fi

d

S

o

(

a

t

c

3

u

S

e

o

t

p

l

t

l

a

N

Table 5

Summed timings (seconds) and additional storage requirements (number of refer-

ences) to extract boundary p-cells from Stellar tree, IA ∗ and Simplex tree data struc-

tures. Datasets marked with an � could not be directly generated on our test ma-

chine by the IA ∗ .

Time Storage

Data k V IA ∗ Simplex Stellar IA ∗ / Stellar

tree tree Simplex tree

triangular

neptune k S 4.93 1.82 1.90 12.0M 0.70K

k L 2.20 3.24K

statuette k S 9.21 3.73 4.90 30.0M 0.72K

k L 5.55 3.22K

lucy k S 25.3 9.94 13.8 84.1M 0.82K

k L 16.2 3.28K

quadrilateral

neptune k S 40.8 n/a 6.61 96.2M 0.52K

k L 7.43 3.37K

statuette k S 91.3 n/a 15.9 240M 0.50K

k L 19.0 3.38K

lucy k S 251 n/a 43.2 673M 0.53K

k L 53.4 3.41K

tetrahedral

bonsai k S 49.6 22.7 45.6 204M 20.9K

k L 47.8 42.5K

vismale k S 54.5 25.1 52.2 222M 21.4K

k L 53.7 36.5K

foot k S 59.5 29.7 50.9 246M 21.2K

k L 57.5 43.3K

hexahedral

f16 k S OOM n/a 49.6 OOM 2.64K

k L 71.1 18.9K

san fern k S OOM n/a 109 OOM 2.89K

k L 143 21.1K

vismale
� k S OOM n/a 263 OOM 1.77K

k L 340 17.4K

prob.

5D k S 456 123 316 970M 152K

k L 425 1.94M

7D
� k S OOM OOM 21.2K OOM 51.3M

k L 24.6K 167M

v-rips

vismale 7D k S 179 149 156 1.43B 267K

k L 162 318K

foot 10D k S OOM OOM 16.6K OOM 12.0M

k L 21.4K 15.9M

t

h

t

o

a

a

t

c

s

a

I

t

p

reate a local (explicit) representation to support algorithms for

rocessing and attaching data to such cells.

Our strategy for extracting all p-cells is to iterate through the

op k -cells of a leaf block for each dimension k , 0 < p ≤ k ≤ d and

o extract an ordered set of p-cells (see Algorithm 2). We use an

ssociative array m _ p to track the unique set of encountered p-

ells with at least one vertex indexed by r (row 4). Array m _ p maps

he tuple of vertices for a p-cell τ to an integer index id τ in the

et, accounting for changes in ordering and orientation through the

anonical _ tuple routine (row 3). In some applications, it is useful

o also explicitly maintain the boundary relation R p, 0 for the p-

ells and/or the incidence relations R k,p or R p,k for the top k -cells.

hese are encoded using the local indices within the ordered set

f extracted p-cells.

We note that, for truly high-dimensional datasets, it is not fea-

ible to extract p-cells in all cases. For example, there are
(

41
21

)
20-

implices within a single 40-simplex. Encoding these 269 billion

implices would require more than 40TB of storage. However, even

n these datasets, we can still extract the lowest and highest di-

ensional p-cells. This highlights an advantage of only encoding

he top cells of the complex (as in the Stellar tree and IA

∗ data

tructure) compared to representations that encode all cells of the

omplex (as in the IG or Simplex tree). Stellar trees have no dif-

culty encoding and processing such high-dimensional complexes,

espite the combinatorial explosion in the number of overall cells.

Experimental results. We now analyze the effectiveness of the

tellar tree representation for (batched) p-cell extractions against

ur implementation of the IA

∗ data structure and the Simplex tree

as implemented in the GUDHI framework [30]). Table 5 lists the

ggregate times and storage requirements for extracting all non-

op p-cells from our experimental datasets. Notice that we do not

onsider the higher dimensional probabilistic dataset and the lucy

4D V-Rips complex, as extracting all p-cells on these datasets is

nfeasible due to its computational and storage requirements.

First, we analyze the influence of the bucketing threshold k V for

tellar trees. Smaller k V values lead to faster extractions on all our

xperimental datasets. This speedup increases with the dimension

f the complex since the auxiliary data structure encoding a p-face

ype becomes smaller, and thus, checking for the presence of du-

licates has a lower computational cost.

The IA

∗ data structure follows a similar strategy as the Stel-

ar trees for extracting its implicit p-cells since both data struc-

ures use an indexed representation for encoding the boundary re-

ations of a CP complex. Table 5 demonstrates the computational

nd storage advantages of the Stellar tree over the IA

∗ for this task.

amely, Stellar trees require from 20% to 55% less time for the
337
wo-dimensional datasets and approximately 10% less time on the

igher dimensional ones. Notice, however, that the IA

∗ data struc-

ure is a global data structure over the entire complex and runs out

f memory (OOM) on our hexahedral datasets and on the 7D prob-

bilistic and foot 10D V-Rips datasets. In addition, the Stellar tree’s

uxiliary storage requirements are negligible compared to those of

he IA

∗ data structure.

The Simplex tree explicitly encodes all simplices of a simpli-

ial complex, thus, its p-cells can be enumerated by traversing all

implices at the p-th level of the tree. Explicitly encoding bound-

ry relation R p, 0 would require the same auxiliary storage as the

A

∗ data structure, since both data structures require global struc-

ures. Table 5 demonstrates that Stellar trees are slower than Sim-

lex trees at boundary cell extraction, but, still, competitive with

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Algorithm 3 extract _ restricted _ vertex _ cbdry (r , �) .

Input: r is a leaf block in H

Input: � is the mesh indexed by H

Variable: r _ 0 _ k encodes R 0 ,k relation for the vertices in r

Ensure: Relation R 0 ,k is locally reconstructed ∀ σ ∈ �V ERT (r)

1: for all top k -simplex σ in �T OP (r) (with index i σ in �T) do

2: for all vertices v in σ (with index i v in �V) do

3: if v ∈ �V ERT (r) then

4: add i σ to r _ 0 _ k [i v]

r

p

b

(

f

s

a

9

p

fi

c

t

c

r

b

w

d

R

w

i

c

c

[

|

v

d

b

F

i

c

t

f

s

i

r

o

e

r

i

c

p

t

1

e

t

Table 6

Times (seconds) and additional storage requirements (number of references) for re-

stricted co-boundary relations R 0 ,k extractions from Stellar tree and IA ∗ represen-

tations. Datasets marked with an � could not be directly generated on our test

machine by the IA ∗ .

Data k V Time Storage

IA ∗ Stellar Stellar

triangular

neptune k S 5.02 0.66 0.61K

k L 0.64 3.00K

statuette k S 10.2 1.66 0.61K

k L 1.58 3.01K

lucy k S 24.8 4.20 0.61K

k L 4.17 3.01K

quadrilateral

neptune k S 27.5 2.86 0.41K

k L 2.65 3.21K

statuette k S 63.6 7.04 0.41K

k L 7.22 3.22K

lucy k S 156 20.4 0.42K

k L 19.3 3.22K

tetrahedral

bonsai k S 14.5 3.10 9.58K

k L 2.81 18.5K

vismale k S 16.1 3.38 9.57K

k L 3.07 18.2K

foot k S 17.3 3.83 9.62K

k L 3.32 18.6K

hexahedral

f16 k S 145 11.8 0.83K

k L 10.8 7.51K

san fern k S 157 26.9 0.93K

k L 22.0 8.51K

vismale
� k S 254 44.5 0.75K

k L 47.7 7.54K

hexahedral

probabilistic k S 17.9 4.88 33.0K

k L 2.73 243K

7D
� k S 415 46.1 1.62M

k L 35.7 9.01M

40D
� k S 206 56.1 2.64M

k L 51.4 14.3M

v-rips

vismale 7D k S 25.8 2.22 3.20K

k L 2.16 5.04K

foot 10D k S 376 19.0 55.7K

k L 16.0 72.6K

lucy 34D
� k S 334 22.9 13.0K

k L 23.2 43.8K

i

r

S

s

S

o

t

l

t

espect to a representation that explicitly encodes all cells. This is

ossible thanks to the smaller local auxiliary data structures used

y Stellar trees. Note that the Simplex tree runs out of memory

OOM) on our workstation for the 7D probabilistic dataset and the

oot 10D V-Rips complex. Since a Simplex tree can only represent

implicial complexes, it does not support p-cell extraction on quad

nd hexahedral datasets.

.2. Extracting co-boundary relations

Co-boundary queries arise in a variety of mesh processing ap-

lications, including those requiring mesh simplification and re-

nement [63–65] , or the dual of a complex [66–68] .

Co-boundary queries are naturally supported by the Stellar de-

omposition model. By definition, all regions of the decomposition

hat contain at least one vertex of a CP cell τ must index all CP

ells in the star of τ (see Eq. 1). Since the top cells are explicitly

epresented in �, we first describe how to extract the vertex co-

oundary relation R 0 ,k restricted to the top k -cells of �, which we

ill refer to as the restricted co-boundary relation R 0 ,k . We will then

iscuss how to extend this to extract vertex co-boundary relation

 0 ,p over all p-cells in �, and the general co-boundary relation R p,q

ith 0 ≤ p < q ≤ d.

The restricted vertex co-boundary relation R 0 ,k in a leaf block r

s generated by inverting boundary relation R k, 0 on the top CP k -

ells in �T OP (r). Since the indexed vertices in the leaf blocks of a

ompressed Stellar tree are contiguous, with indices in the range

 v s , v e) , we encode our local data structure using an array of size

 �V ERT (r) | = v e − v s . Each position in the array corresponds to a

ertex indexed by r and points to an (initially empty) list of in-

exes from �T . As shown in Algorithm 3 , we populate these arrays

y iterating through relation R k, 0 of the top CP k -cells in �T OP (r).

or each cell σ such that relation R k, 0 (σ) contains a vertex v with

ndex i v ∈ [v s , v e) , the index of σ is added to vertex v ’s list.

Extending the vertex co-boundary relation to all p-cells in r is

omplicated by the fact that we only have an explicit representa-

ion for the top cells in �. A simple strategy we have developed

or extracting R 0 ,p on all p-cells in r is to first extract the explicit

et of all p-cells in r , as in Algorithm 2 (see Section 9.1). We then

nvert R p. 0 to obtain the complete relation R 0 ,p for the vertices in

 .

In some applications, we prefer to express R 0 ,p entirely in terms

f top cells from �. Thus, another strategy we have developed is to

xtract the restricted co-boundary relation R 0 ,k for all top k -cells in

 , with p ≤ k ≤ d. This redundant representation is thus used as an

ntermediate representation for R 0 ,p (v) since each k -cell in R 0 ,k (v)
ontains one (or more) p-face in the co-boundary of v . For exam-

le, this provides a convenient representation for the star of a ver-

ex v as a union of restricted co-boundary relations R 0 ,k (v) , where

 ≤ k ≤ d.

Similarly, we have defined and implemented a strategy for gen-

rating the general co-boundary relation R p,q , where p < q . First,

he sets of all q -cells, which is expressed as R q, 0 , is extracted. This
338
mplicitly provides also boundary relation R q,p . Then, co-boundary

elation R p,q is extracted by inverting R q,p .

Experimental results. We now analyze the effectiveness of the

tellar tree representation for co-boundary extractions. Specifically,

ince the main co-boundary extraction in our applications (see

ection 10) is the restricted vertex co-boundary relation and most

f the other co-boundary extractions can be posed in terms of

his primitive extraction, we compare the performance of the Stel-

ar tree against our implementation of the IA

∗ data structure for

his query and against the Simplex tree. Table 6 lists the extraction

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

t

t

p

t

k

f

t

f

i

a

T

a

k

t

R

b

s

t

f

c

i

t

b

b

t

e

i

f

c

a

d

I

c

t

o

s

p

c

o

n

i

d

t

r

t

l

v

1

a

w

l

b

t

u

d

s

b

p

Fig. 17. Extraction times (in seconds) for the restricted vertex co-boundary rela-

tions. The top dataset is the triangle mesh used in our main comparison, the sec-

ond is a tetrahedral mesh with 256 thousand vertices and 1.4 million tetrahedra,

and the last dataset is a probabilistic-refinement CP complex with 7-dimensional

top simplices.

1

f

p

r

a

C

c

c

b

o

h

d

p

r

l

t

u

c

e

p

a

U

o

o

u

i

(

t

(

1

i

s

l

t

t

t

t

t

t

imes and storage requirements for the vertex co-boundary rela-

ion R 0 ,d on our manifold (triangular , quad , tetrahedral and hex) and

ure (probabilistic) complexes and the sum of extraction times for

he restricted vertex co-boundary relations R 0 ,k for each dimension

 with top cells on our non-manifold (V-rips) complexes.

We first consider the influence of the bucketing threshold k V
or Stellar trees. While there is not much difference in extraction

imes for the two-dimensional complexes, larger k V values lead to

aster extractions for three-dimensional and non-manifold datasets

n most cases. While this comes with a slight increase in stor-

ge requirements for encoding the relation (see right column in

able 6), the overall storage cost per block is pretty low, requiring

t most a few megabytes for the probabilistic models, and a few

ilobytes in all other cases.

The IA

∗ data structure extracts co-boundary relations through a

raversal along the face adjacencies of its top cells (encoded in the

 k,k adjacency relation). The traversal for a given vertex v is seeded

y one top k -cell per k -cluster (encoded by partial relation R ∗
0 ,k

(v) ,
ee Section 8.2 ; we refer to [26] for more details). Since each such

raversal is run on demand, there is a negligible memory impact

or this query. Table 6 demonstrates that Stellar trees are signifi-

antly faster at extracting R 0 ,k relations, which can be performed

n about one tenth of the time in most cases. However, it is impor-

ant to note that the Stellar tree extraction is batch-based (by leaf

locks of H), and individual co-boundary extractions would likely

e faster on the IA

∗ data structure.

The Simplex tree extracts co-boundary relations through a

raversal of the underlying trie. Given a vertex v , the procedure for

xtracting its restricted co-boundary first identifies the simplices

ncident in v (i.e., its star), and then extracts just the top simplices

rom the star. The former requires a trie traversal, with a worst-

ase complexity linear in the number of nodes in the trie, since,

s stated in the GUDHI documentation [30] , this corresponds to a

epth-first search of the trie starting from the node with value v .

dentifying the top simplices in the star of a vertex has a negligible

ost on low dimensional meshes, while it becomes a costly opera-

ion on higher-dimensional ones, where it accounts for nearly 50%

f the overall extraction time. As with the IA

∗, since this traver-

al is done on demand, this query imposes negligible memory im-

act. On our experimental datasets, the Simplex tree was able to

omplete the extraction of restricted vertex co-boundary relations

nly on the smaller triangle mesh neptune , for which it requires

early 72 hours. To provide a comprehensive performance compar-

son against the Stellar tree, we consider two additional smaller

atasets for this query: a tetrahedral mesh (fighter2) with 256

housand vertices and 1.4 million tetrahedra, and a probabilistic-

efinement CP complex with six thousand vertices and two million

op 7-simplices. The results, shown in Fig. 17 , highlight the Stel-

ar tree’s significant advantage over the Simplex tree for restricted

ertex co-boundary extraction (i.e., less than a second vs hours).

0. A brief tour of applications in the stellar universe

Stellar decompositions and Stellar trees have been successfully

pplied in several mesh processing applications. In this section,

e provide a high-level overview of several such applications over

arge CP complexes with a focus on how Stellar trees uniquely

enefit the application. As we will describe, each such applica-

ion utilizes local topological data structures designed for the

nderlying application. Due to the streamed processing approach

iscussed in Section 6 , the storage requirements for these data

tructures are proportional to the geometry indexed within a leaf

lock of the tree and the generation costs are amortized over all

rocessed cells in the block.
339
0.1. Validation of geometric and topological properties

Many popular topological mesh data structures are valid only

or a restricted class of complexes due to assumptions they ex-

loit in their encodings, such as the cardinality of the adjacency

elation among top cells. For example, popular edge-based and

djacency-based data structures, such as the half-edge [12–14] ,

orner-Table [22] , SOT [25] and IA [20,21] , require the underlying

omplex to be pseudo-manifold.

While one can verify such topological conditions using local

hecks on the star or link of the vertices of the complex, it can

e infeasible to reconstruct such relations on large meshes with-

ut the aid of an efficient topological data structure. On the other

and, global approaches that directly build the required relations

o not scale to larger complexes.

In contrast, Stellar trees are ideally suited to verify topological

roperties of large CP complexes, even in memory-limited envi-

onments, since each leaf block of the Stellar tree only requires a

ist of vertices and their incident top cells (i.e., those in the star of

he vertices). A simple local topological verification operation was

tilized in [41] to mark boundary vertices of a tetrahedral mesh by

hecking properties of its link, such as its Euler number. This was

xtended in [88] to a full suite of topological checks on a CP com-

lex, implemented using global Stellar tree traversals. In particular,

 graph traversal of the 1-skeleton was used, in conjunction with a

nion-Find data structure [69] , to count the connected components

f a pure simplicial complex. A similar traversal of the 1-skeleton

f its dual complex (i.e., the graph of the d-adjacency relation) was

sed to verify the d-connectedness of the complex and whether it

s pseudo-manifold. Simplified checks for combinatorial manifolds

when applicable) were then performed on the links of each vertex

o check that they were locally homeomorphic to (d −1)-spheres

for internal vertices) or to (d −1)-balls (for boundary vertices).

0.2. Topology-preserving simplification

One of the earliest applications of the Stellar tree (actually,

ts predecessor, the PR-star octree [41]) was to accelerate a mesh

implification algorithm for tetrahedral meshes based on edge col-

apses . An edge collapse is a local topological operation defined in

erms of the stars of an edge’s two vertices. This operation iden-

ifies the pair of vertices along an edge, removes all tetrahedra in

he star of that edge and updates the mesh connectivity within

his local region [70] . Edge collapses are valid when they satisfy

he so-called link condition [71] , which consists of local checks on

he links of the edge and its vertices.

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

Fig. 18. Homology-preserving edge-contractions retain topological invariants of a complex, such as its number of loops, even after extreme simplification. (a)-(d) Genus-3

neptune complex at various simplification percentages. Triangles within the same octree block of the Stellar tree have the same color.

i

t

(

I

o

fi

t

r

t

m

m

h

c

a

d

e

r

t

l

a

u

p

t

t

f

c

c

t

a

t

h

t

t

a

o

I

c

1

b

v

s

r

w

t

Fig. 19. Manifolds of a Morse complex can span vast regions of the domain. This

subset of the 4M triangle Maui terrain dataset highlights the 73K triangles of a

single 2-manifold of the Morse complex (shown in red on top) along with the Stel-

lar tree blocks indexing these triangles (rectangles on bottom, colored by quadtree

depth). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

M

c

v

(

c

d

p

o

u

I

M

a

i

i

S

i

c

d

g

k

c

d

t

The simplification procedure in [41] was implemented as an

terative process that alternated between: (i) streaming through

he Stellar tree blocks, where it collapsed eligible candidates, and

ii) rebuilding the Stellar tree’s index over the simplified mesh.

t used discrete distortion [72] and a quadric error metric [63] to

rganize eligible edges into a priority queue. Applying this simpli-

cation algorithm to the leaf blocks of a Stellar tree rather than

o the entire mesh provides a significant space savings due to the

educed sizes of the edge queues. In many cases, the simplifica-

ion was 10–50% faster and required only 0.1% of the additional

emory for auxiliary data structures. Moreover, this speedup was

ore pronounced as the mesh size increased.

More recently, Stellar trees have been used to perform

omology-preserving edge-contractions on general simplicial

omplexes of arbitrary dimension [90] . The core edge contraction

lgorithm was implemented using a custom local topological

ata structure over the top star of the vertices and edges within

ach leaf block of the tree, similar to the restricted co-boundary

elations R 0 ,k and R 1 ,k (c.f. Section 9.2). To avoid regenerating these

opological relations, it utilized an LRU cache for the expanded

eaf blocks as it traversed the tree. In this mesh simplification

pplication, Stellar trees were applied to datasets with dimensions

p to 70 and were able to remove more than 90% of the sim-

lices of the mesh, significantly reducing the dimensionality of

he complex while preserving important topological invariants of

he dataset. Compared to existing state-of-the-art data structures

or edge contractions [32] , Stellar trees were able to simplify

omplexes using comparable or less runtime and memory in all

ases, and requiring significantly less memory and/or processing

ime in several cases. Notably, in one case, the Stellar tree was

ble to successfully complete the simplification process in less

han 30 minutes, while [32] did not complete after more than 24

ours. Fig. 18 shows simplified versions of the genus-3 neptune

riangle mesh. Each simplified mesh preserves the homology of

he complex, such as its number of connected components, loops

nd cavities. We note that the above application incorporates

nly topological considerations into its simplification error metric.

ncorporating mesh quality considerations into the error metric

ould significantly improve the mesh quality [63] .

0.3. Shape analysis and morphological feature extraction

While topological validation and simplification operations can

e implemented in terms of local operations on the star of a

ertex, shape analysis applications, such as watershed analy-

is [73] and visibility queries on terrain datasets [74,75] often

equire algorithms that are seeded locally and span vast inter-

oven regions of the complex. This section discusses how Stellar

rees have aided in the generation and simplification of the discrete
340
orse gradient field and of the associated Morse and Morse-Smale

omplexes of triangulated terrains [91] and of tetrahedralized

olumetric data [68] .

The discrete Morse gradient field [76] is composed of arrows

ordered pairs) between incident cells of the complex and can be

omputed locally using scalar values associated with cells inci-

ent in the star of a vertex [77] . Since the encoding of [68] com-

actly encodes the discrete Morse gradient field as a scalar field

n the top simplices of the complex, the latter can be computed

sing a local traversal of a Stellar tree’s blocks. Compared to an

A implementation, Stellar trees were able to extract the discrete

orse gradient of scalar fields defined over tetrahedral meshes in

bout half the time (see [68] for details). While the experiments

n [68] were performed on vertex-compressed Stellar trees, yield-

ng a 30% storage savings over the IA data structure, a compressed

tellar tree encoding would likely provide a 50% total memory sav-

ngs while maintaining similar performance improvements.

Extracting the Morse complex from a Stellar tree-based en-

oding is more complicated since it involves traversing the

irected acyclic graphs (DAGs) induced by the discrete Morse

radient field’s arrows. Specifically, in the encoding of [68] , each

 -dimensional critical point of the discrete Morse gradient field

orresponds to a k -cell of the d-dimensional Morse complex. The

isjoint regions of influence of each such critical point, referred

o as the k -manifolds of the Morse complex, are extracted by

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

t

M

b

i

o

m

M

g

p

r

m

r

a

n

2

r

t

t

m

t

e

t

1

t

a

t

m

i

s

d

h

d

S

p

p

t

c

a

q

b

t

a

w

a

l

w

t

o

c

V

f

s

s

t

a

i

S

i

t

a

t

c

a

r

t

o

S

i

t

u

f

t

s

i

m

r

l

F

p

b

l

g

w

c

l

e

t

r

O

b

a

b

d

p

r

p

s

d

l

n

c

u

a

w

c

s

b

o

c

s

D

c

i

raversing the DAG rooted at a given critical point of the discrete

orse gradient field. Since each such graph traversal can visit the

locks of a Stellar tree multiple times, an LRU cache was used

n [68] to support global extraction algorithms for each k -manifold

f the Morse complex.

Further, since the extraction algorithm for each dimension’s

anifolds depends on different topological connectivity relations,

orse complex extraction benefits from the Stellar tree’s ability to

enerate customized local topological data structures. For exam-

le, since extracting the 2-manifolds from a tetrahedral complex

equires only the R 2 , 2 adjacency relation, its extraction was opti-

ized by directly starting from R 2 , 2 , rather than the R 3 , 3 adjacency

elation, as in the IA data structure.

This approach was extended to terrain datasets in [91] , which

lso introduced a persistence-based simplification algorithm for

oise removal. Fig. 19 highlights the 73K triangles in the largest

-manifold of the Morse complex for the Maui terrain dataset (in

ed) and the blocks of the Stellar tree that were visited when ex-

racting this region (blue-green squares). While manifold extrac-

ion and persistence-based simplification operations were slightly

ore expensive than their IA counterparts for volumetric [68] and

errain [91] datasets, the Stellar tree’s vast memory savings and hi-

rarchical encoding open the door to efficient parallel implementa-

ions on huge datasets, which we hope to explore in future work.

1. Concluding remarks

We have introduced the Stellar decomposition as a model for

opological data structures over Canonical-Polytope (CP) complexes,

 class of complexes that includes simplicial complexes and cer-

ain classes of cell complexes, like quadrilateral and hexahedral

eshes. Stellar decompositions cluster the vertices of a complex

nto regions that contain sufficient information to locally recon-

truct the star of their vertices. The model is agnostic about the

omain of the complex (e.g., manifold, pure, non-manifold) and we

ave demonstrated the scalability of this model to large mixed-

imensional datasets in high dimension.

We introduced the Stellar tree as a concrete realization of the

tellar decomposition model over spatially embedded CP com-

lexes. Stellar trees couple a spatial index H decomposing the com-

lex’s embedding space with a simple tuning parameter that limits

he number of vertices indexed by a leaf block.

Stellar trees effectively exploit the spatial coherence of a CP

omplex � by using the clustering structure of H to reorder the

rrays of top cells of � and to compress the resulting ranges of se-

uential indexes within the lists of vertices and top cells in the leaf

locks of H . We have demonstrated over a wide range of datasets

hat this process typically produces compressed Stellar trees that

re only 1–10% larger than the original indexed base mesh for �

hile still retaining sufficient information to efficiently reconstruct

ll topological connectivity relations. The source code for our Stel-

ar tree implementation will be released in the public domain.

In terms of storage size, Stellar trees compare quite favorably

ith state-of-the-art topological data structures. They are consis-

ently half the size of their IA

∗ data structure counterparts [26] and

ne to two orders of magnitude smaller than their Simplex tree

ounterparts [28] . This is especially notable for high dimensional

ietoris-Rips complexes, a target application for the Simplex tree,

or which Stellar trees have very low overhead. While Stellar trees

upport a much broader class of complexes, they have similar

torage requirements as the dimension-specific SOT data struc-

ure [25,78] , which supports only static pseudo-manifold triangle

nd tetrahedral complexes. In future work, it would be interest-

ng to compare the Stellar tree against top-based extensions of the
341
implex tree, such as the MST and the SAL [31] , if public-domain

mplementations become available.

Despite the simplicity of their leaf block representation, Stellar

rees provide a great deal of flexibility to customize the structure

nd layout of their expanded topological data structures to meet

he needs of a given application. Such data structures are typically

onstructed by composing several local topological incidence

nd adjacency relations. We described efficient algorithms for

econstructing these relations within the subcomplex indexed by

he leaf blocks of a Stellar tree and demonstrated the advantages

f this approach compared to similar algorithms on the IA

∗ and

implex tree data structures. Stellar trees can also be used as an

ntermediary representation to generate topological data struc-

ures in a memory-constrained environment. For example, we

sed Stellar trees to generate IA

∗ and Simplex tree representations

or several of our larger complexes in Section 8 (as we discuss in

he Supplementary materials). We also provided an overview of

everal mesh processing applications, ranging from mesh val-

dation, to topology and shape preserving simplification and

orphological analysis that have benefited from the Stellar trees

epresentation.

One direction of future work would involve extending the Stel-

ar tree representation to support a broader class of cell complexes.

or example, it would not be difficult to extend support to indexed

olyhedral cell complexes which define their cells in terms of their

oundary polyhedral faces which are, in turn, defined by oriented

ists of vertex indices [79] .

Another avenue for investigation is to extend our processing al-

orithms for parallel, distributed and/or out-of-core environments,

hich could be used for applications like multicore homology

omputation [80] on point cloud data. The Stellar tree’s compact

eaf block representation is already geared towards a parallel

xecution pattern since each block already has sufficient resources

o query the connectivity of its local subcomplex. Preliminary

esults along this line look promising. A simple unoptimized

penMP [81] adaptation of boundary and restricted vertex co-

oundary queries yielded a 3-4x speedup compared to our serial

pproach on our 6 core machine.

Finally, while Stellar trees require their underlying complex to

e spatially embedded, there is no such restriction on the Stellar

ecomposition model. Thus, we plan to investigate Stellar decom-

ositions for abstract CP complexes, such as simplicial complexes

epresenting social networks. Social network representation and

rocessing poses new challenges in the social big data domain,

uch as the identification of key-players and communities in the

ataset, as well as extracting topological properties of the network,

ike its homology or k -connectivity. Due to the irregularities of

on-spatial datasets, one key challenge would be to define effi-

ient decompositions (i.e., with a low average spanning number χ)

sing only the complex’s connectivity information. A preliminary

ttempt for geolocalized social networks can be found in [92] ,

here the social network was represented in terms of its maximal

liques , i.e., sets of mutually related entities, corresponding to top

implices over the network’s flag complex. The Stellar tree was

uilt over the 2D embedding provided by the geospatial locations

f the entities and simplified using homology-preserving edge-

ontractions [90] , enabling a study of the network’s topological

tructure on a significantly reduced dataset.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

C

v

C

o

S

d

A

t

b

M

p

I

2

p

b

A

d

r

m

A

T

S

f

R

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

RediT authorship contribution statement

Riccardo Fellegara: Conceptualization, Software, Validation, In-

estigation, Writing – original draft, Visualization. Kenneth Weiss:

onceptualization, Software, Validation, Investigation, Writing –

riginal draft, Visualization. Leila De Floriani: Conceptualization,

upervision, Funding acquisition, Methodology, Writing – original

raft.

cknowledgments

We thank the reviewers for their thoughtful comments and

horough review which have improved the paper. This work has

een developed while Riccardo Fellegara was with University of

aryland at College Park, USA. This work has been partially sup-

orted by the US National Science Foundation under grant number

IS-1910766 and by the University of Maryland under the 2017-

018 BSOS Dean Research Initiative Program. It has also been

erformed under the auspices of the U.S. Department of Energy

y Lawrence Livermore National Laboratory under Contract DE-

C52-07NA27344, and of the German Aerospace Center (DLR) un-

er Grant DLR-SC-2467209. Datasets are courtesy of the Volvis

epository (bonsai , f16 and foot) [82] , the Volume Library (vis-

ale) [83] , CMU Unstructured Mesh Suite (san fernando) [84] ,

im@Shape repository (lucy , statuette and neptune) [85] , Virtual

errain Project (V T P) (maui) [86] , and Claudio Silva (fighter2).

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cag.2021.05.002 .

eferences

[1] Schoof LA , Yarberry VR . EXODUS II: A finite element data model. Tech. Rep..

Albuquerque, NM: Sandia National Laboratories; 1994 .
[2] Poirier D, Allmaras S, McCarthy D, Smith M, Enomoto F. The CGNS system.

AIAA Fluid Dynamics Conference 1998. doi: 10.2514/6.1998-3007 .
[3] Remacle JF, Shephard MS. An algorithm oriented mesh database. Int J Numer

Methods Eng 2003;58(2):349–74. doi: 10.1002/nme.774 .
[4] Celes W , Paulino GH , Espinha R . Efficient handling of implicit entities in re-

duced mesh representations. J Comput Inf Sci Eng 2005;5(4):348–59 .

[5] Tautges TJ. Canonical numbering systems for finite-element codes. Int J Numer
Method Biomed Eng 2010;26(12):1559–72. doi: 10.1002/cnm.1237 .

[6] De Floriani L , Hui A . Data structures for simplicial complexes: An analysis and
a comparison. In: Proceedings of the third Eurographics symposium on Geom-

etry processing. Eurographics Association; 2005. 119–es .
[7] Nguyen TT, Dahl VA, Bærentzen JA. Cache-mesh, a dynamics data structure

for performance optimization. Procedia Eng 2017;203:193–205. doi: 10.1016/j.

proeng.2017.09.807 .
[8] Edelsbrunner H . Algorithms in combinatorial geometry, vol 10. Springer Ver-

lag; 1987 .
[9] De Floriani L , Greenfieldboyce D , Hui A . A data structure for non-manifold sim-

plicial d-complexes. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH

symposium on Geometry processing. ACM; 2004. p. 83–92 .

[10] De Floriani L , Hui A , Panozzo D , Canino D . A dimension-independent data

structure for simplicial complexes. Proceedings of the 19th International Mesh-
ing Roundtable 2010a:403–20 .

[11] Canino D , De Floriani L . Representing simplicial complexes with mangroves.
In: Proceedings of the 22nd International Meshing Roundtable. Springer; 2014.

p. 465–83 .
[12] Mantyla M . An introduction to solid modeling. Computer Science Press; 1988 .

[13] CGAL. Computational Geometry Algorithms Library (CGAL). 2020. https://www.

cgal.org/ [Accessed on August 2020].
[14] OML. Openmesh library. 2015. http://www.openmesh.org [Accessed on March

2015].
[15] Sieger D, Botsch M. Design, implementation, and evaluation of the sur-

face_mesh data structure. In: Quadros WR, editor. Proceedings of the 20th
International Meshing Roundtable. Springer; 2011. p. 533–50. doi: 10.1007/

978- 3- 642- 24734- 7 _ 29 .
[16] Kremer M, Bommes D, Kobbelt L. OpenVolumeMesh–a versatile index-based

data structure for 3d polytopal complexes. In: Jiao X, Weill JC, editors. Proceed-

ings of the 21st International Meshing Roundtable. Springer; 2013. p. 531–48.
doi: 10.1007/978- 3- 642- 33573-0 _ 31 .

[17] Lienhardt P . N-dimensional generalized combinatorial maps and cellular
quasi-manifolds. Int’l Journal of Computational Geometry and Applications

1994;4(3):275–324 .
342
[18] Damiand G , Lienhardt P . Combinatorial maps: efficient data structures
for computer graphics and image processing. CRC Press; 2014. ISBN

978-1482206524 .
[19] Lawson CL . Software for C 1 surface interpolation. In: Rice JR, editor. Mathemat-

ical Software III. Academic Press; 1977. p. 161–94 .
20] Paoluzzi A , Bernardini F , Cattani C , Ferrucci V . Dimension-independent

modeling with simplicial complexes. ACM Transactions on Graphics (TOG)
1993;12(1):56–102 .

[21] Nielson GM . Tools for triangulations and tetrahedralizations and constructing

functions defined over them. In: Nielson GM, Hagen H, Müller H, editors. Sci-
entific Visualization: Overviews, Methodologies and Techniques. Silver Spring,

MD: IEEE Computer Society; 1997. p. 429–525 .
22] Rossignac J , Safonova A , Szymczak A . 3D compression made simple:

Edge-Breaker on a Corner Table. In: Proceedings Shape Modeling International
2001. Genova, Italy: IEEE Computer Society; 2001 .

23] Gurung T, Laney D, Lindstrom P, Rossignac J. SQuad: Compact representation

for triangle meshes. In: Computer Graphics Forum, vol. 30. Wiley Online Li-
brary; 2011. p. 355–64. doi: 10.1111/j.1467-8659.2011.01866.x .

24] Luffel M, Gurung T, Lindstrom P, Rossignac J. Grouper: a compact, streamable
triangle mesh data structure. IEEE Trans Vis Comput Graph 2014;20(1):84–98.

doi: 10.1109/TVCG.2013.81 .
25] Gurung T, Rossignac J. SOT: A compact representation for tetrahedral meshes.

In: Proceedings SIAM/ACM Geometric and Physical Modeling. San Francisco,

USA; 2009. p. 79–88. doi: 10.1145/1629255.1629266 .
26] Canino D , De Floriani L , Weiss K . IA ∗: An adjacency-based representation for

non-manifold simplicial shapes in arbitrary dimensions. Computers & Graphics
2011;35(3):747–53 .

27] Dyedov V, Ray N, Einstein D, Jiao X, Tautges TJ. AHF: Array-based half-facet
data structure for mixed-dimensional and non-manifold meshes. Eng Comput

2015;31(3):389–404. doi: 10.10 07/s0 0366- 014- 0378- 6 .

28] Boissonnat J-D , Maria C . The simplex tree: an efficient data structure for gen-
eral simplicial complexes. Algorithmica 2014;70(3):406–27 .

29] Fredkin E . Trie memory. Commun ACM 1960;3(9):490–9 .
30] GUDHI. Geometric understanding in higher dimensions (GUDHI). 2018. http:

//gudhi.gforge.inria.fr/ .
[31] Boissonnat J-D, Karthik CS, Tavenas S. Building efficient and compact data

structures for simplicial complexes. Algorithmica 2017;79(2):530–67. doi: 10.

10 07/s0 0453- 016- 0207- y .
32] Attali D , Lieutier A , Salinas D . Efficient data structure for representing and

simplifying simplicial complexes in high dimensions. International Journal of
Computational Geometry & Applications 2012;22(04):279–303 .

33] Samet H . Foundations of multidimensional and metric data structures. Morgan
Kaufmann; 2006. ISBN 978-0-12-369446-1 .

34] Samet H , Webber RE . Storing a collection of polygons using quadtrees. ACM

Transactions on Graphics (TOG) 1985;4(3):182–222 .
35] De Floriani L , Facinoli M , Magillo P , Dimitri D . A hierarchical spatial index for

triangulated surfaces. In: Proceedings of the Third International Conference on
Computer Graphics Theory and Applications (GRAPP 2008); 2008. p. 86–91 .

36] Carlbom I , Chakravarty I , Vanderschel D . A hierarchical data structure for rep-
resenting the spatial decomposition of 3d objects. IEEE Comput Graph Appl

1985;5(4):24–31 .
37] Navazo I . Extended octree representation of general solids with plane faces:

model structure and algorithms. Computer & Graphics 1989;13(1):5–16 .

38] Fellegara R , Iuricich F , Floriani D . Efficient representation and analysis of tri-
angulated terrains. In: Proceedings of the 25th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems. ACM; 2017 .
39] De Floriani L , Fellegara R , Magillo P . Spatial indexing on tetrahedral meshes.

In: Proceedings of the 18th SIGSPATIAL International Conference on Advances
in Geographic Information Systems. ACM; 2010b. p. 506–9 .

40] Fellegara R, De Floriani L, Magillo P, Weiss K. Tetrahedral trees: a family of hi-

erarchical spatial indexes for tetrahedral meshes. ACM Transactions on Spatial
Algorithms and Systems 2020;6(4) 23:1–23:34. doi: 10.1145/3385851 .

[41] Weiss K , Fellegara R , De Floriani L , Velloso M . The PR-star octree: A spatio–
topological data structure for tetrahedral meshes. In: Proceedings of the 19th

ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems. ACM; 2011. p. 92–101 .

42] Isenburg M, Lindstrom P. Streaming meshes. In: Proceedings IEEE Visualiza-

tion. IEEE; 2005. p. 231–8. doi: 10.1109/VISUAL.2005.1532800 .
43] Yoon SE, Lindstrom P, Pascucci V, Manocha D. Cache-oblivious mesh layouts.

In: ACM Transactions on Graphics (TOG). In: Siggraph, vol. 24. ACM; 2005.
p. 886–93. doi: 10.1145/1073204.1073278 .

44] Yoon SE, Lindstrom P. Random-accessible compressed triangle meshes. IEEE
Trans Vis Comput Graph 2007;13(6):1536–43. doi: 10.1109/TVCG.2007.70585 .

45] Cignoni P, Montani C, Rocchini C, Scopigno R. External memory manage-

ment and simplification of huge meshes. IEEE Trans Vis Comput Graph
2003a;9(4):525–37. doi: 10.1109/TVCG.2003.1260746 .

46] Dey TK, Levine JA, Slatton A. Localized delaunay refinement for sampling
and meshing. Comput Graphics Forum 2010;29(5):1723–32. doi: 10.1111/j.

1467-8659.2010.01781.x .
[47] Cignoni P , Ganovelli F , Gobbetti E , Marton F , Ponchio F , Scopigno R ,

et al. BDAM – Batched Dynamic Adaptive Meshes for high performance ter-

rain visualization. Comput Graphics Forum 2003b;22(3):505–14 .
48] Cignoni P, Ganovelli F, Gobbetti E, Marton F, Ponchio F, Scopigno R. Adap-

tive tetrapuzzles: efficient out-of-core construction and visualization of gigan-
tic multiresolution polygonal models. ACM Trans Graph 2004a;23(3):796–803.

doi: 10.1145/1015706.1015802 .

https://doi.org/10.1016/j.cag.2021.05.002
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0001
https://doi.org/10.2514/6.1998-3007
https://doi.org/10.1002/nme.774
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0004
https://doi.org/10.1002/cnm.1237
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0006
https://doi.org/10.1016/j.proeng.2017.09.807
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0012
https://www.cgal.org/
http://www.openmesh.org
https://doi.org/10.1007/978-3-642-24734-7_29
https://doi.org/10.1007/978-3-642-33573-0_31
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0022
https://doi.org/10.1111/j.1467-8659.2011.01866.x
https://doi.org/10.1109/TVCG.2013.81
https://doi.org/10.1145/1629255.1629266
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0026
https://doi.org/10.1007/s00366-014-0378-6
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0028
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0028
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0028
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029
http://gudhi.gforge.inria.fr/
https://doi.org/10.1007/s00453-016-0207-y
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0037
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0037
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0039
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0039
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0039
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0039
https://doi.org/10.1145/3385851
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0041
https://doi.org/10.1109/VISUAL.2005.1532800
https://doi.org/10.1145/1073204.1073278
https://doi.org/10.1109/TVCG.2007.70585
https://doi.org/10.1109/TVCG.2003.1260746
https://doi.org/10.1111/j.1467-8659.2010.01781.x
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0047
https://doi.org/10.1145/1015706.1015802

R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
49] Weiss K, De Floriani L. Simplex and diamond hierarchies: models and appli-
cations. Comput Graphics Forum 2011;30(8):2127–55. doi: 10.1111/j.1467-8659.

2011.01853.x .
50] Devine K, Diachin L, Kraftcheck J, Jansen KE, Leung V, Luo X, Miller M, Ollivier-

Gooch C, Ovcharenko A, Sahni O, Shephard MS, Tautges T, Xie T, Zhou M. In-
teroperable mesh components for large-scale, distributed-memory simulations.

In: Journal of Physics: Conference Series, vol. 180. IOP Publishing; 2009 .
[51] Ibanez DA, Seol ES, Smith CW, Shephard MS. PUMI: parallel unstructured mesh

infrastructure. ACM Transactions on Mathematical Software (TOMS) 2016;42(3)

17:1–17:28. doi: 10.1145/2814935 .
52] Anderson R, Andrej J, Barker A, Bramwell J, Camier J-S, Cerveny J, Dobrev V,

Dudouit Y, Fisher A, Kolev T, et al. MFEM: A modular finite element methods
library. Computers & Mathematics with Applications 2021;81(1):42–74. doi: 10.

1016/j.camwa.2020.06.009 .
53] Kirk BS, Peterson JW, Stogner RH, Carey GF. LibMesh: a C++ library for paral-

lel adaptive mesh refinement/coarsening simulations. Eng Comput 2006;22(3–

4):237–54. doi: 10.10 07/s0 0366-0 06-0 049-3 .
54] Edwards HC , Williams AB , Sjaardema GD , Baur DG , Cochran WK . SIERRA toolkit

computational mesh conceptual model. Tech. Rep.. Sandia National Laborato-
ries; 2010 .

55] Poirier D , Bush R , Cosner R , Rumsey C , McCarthy D . Advances in the CGNS
database standard for aerodynamics and CFD. In: 38th Aerospace Sciences

Meeting and Exhibit; 20 0 0. p. 681 .

56] Lawlor OS, Chakravorty S, Wilmarth TL, Choudhury N, Dooley I, Zheng G,
Kalé LV. ParFUM: a parallel framework for unstructured meshes for scalable

dynamic physics applications. Eng Comput 2006;22(3–4):215–35. doi: 10.1007/
s0 0366-0 06-0 039-5 .

57] Ollivier-Gooch C, Diachin L, Shephard MS, Tautges T, Kraftcheck J, Leung V,
Luo X, Miller M. An interoperable, data-structure-neutral component for mesh

query and manipulation. ACM Transactions on Mathematical Software (TOMS)

2010;37(3) 29:1–29:28. doi: 10.1145/1824801.1864430 .
58] Held G , Marshall T . Data compression; techniques and applications: hardware

and software considerations. John Wiley & Sons; 1991 .
59] Bentley JL . Multidimensional binary search trees used for associative searching.

Commun ACM 1975;18(9):509–17 .
60] Bellman R . Dynamic programming. Science 1966;153(3731):34–7 .

61] Hunter A, Willis P. Classification of quad-encoding techniques. In: Computer

Graphics Forum, vol. 10; 1991. p. 97–112. doi: 10.1111/1467-8659.1020097 .
62] Zomorodian A. Fast construction of the vietoris-rips complex. Computers &

Graphics 2010;34(3):263–71. doi: 10.1016/j.cag.2010.03.007 .
63] Garland M , Heckbert PS . Surface simplification using quadric error metrics. In:

Proceedings of the 24th annual conference on Computer graphics and interac-
tive techniques. ACM Press/Addison-Wesley Publishing Co.; 1997. p. 209–16 .

64] Natarajan V , Edelsbrunner H . Simplification of three-dimensional den-

sity maps. Visualization and Computer Graphics, IEEE Transactions on
2004;10(5):587–97 .

65] Zorin D . Subdivision zoo. Subdivision for Modeling and Animation (ACM SIG-
GRAPH 20 0 0 Conference Course Notes) 20 0 0:65–102 .

66] Hirani AN . Discrete exterior calculus. California Institute of Technology; 2003 .
67] Mullen P, Memari P, de Goes F, Desbrun M. HOT: Hodge-optimized triangu-

lations. In: ACM Transactions on Graphics (TOG), vol. 30. ACM; 2011. 103:1–
103:12 .

68] Weiss K , Iuricich F , Fellegara R , De Floriani L . A primal/dual representation for

discrete Morse complexes on tetrahedral meshes. In: Computer Graphics Fo-
rum, vol. 32; 2013. p. 361–70 .

69] Tarjan RE. Efficiency of a good but not linear set union algorithm. J ACM

1975;22(2):215–25. doi: 10.1145/321879.321884 .

70] Cignoni P , De Floriani L , Magillo P , Puppo E , Scopigno R . Selective refine-
ment queries for volume visualization of unstructured tetrahedral meshes.

IEEE Trans Vis Comput Graph 2004b;10(1):29–45 .
343
[71] Dey T , Edelsbrunner H , Guha S , Nekhayev D . Topology preserving edge contrac-
tion. Publications de l’Institut Mathematique (Beograd) 1999;60(80):23–45 .

72] Mesmoudi MM, De Floriani L, Port U. Discrete distortion in triangu-
lated 3-manifolds. Comput Graphics Forum 2008;27(5):1333–40. doi: 10.1111/

j.1467-8659.2008.01272.x .
73] Roerdink J , Meijster A . The watershed transform: definitions, algorithms, and

parallelization strategies. Fundamental Informaticae 20 0 0;41:187–228 .
[74] Bittner J , Wonka P . Visibility in computer graphics. Environment and Planning

B: Planning and Design 2003;30(5):729–55 .

75] De Floriani L , Magillo P . Algorithms for visibility computation on terrains: a
survey. Environment and Planning B 2003;30(5):709–28 .

[76] Forman R . Morse theory for cell complexes. Adv Math (N Y) 1998;134:90–145 .
77] Robins V, Wood PJ, Sheppard AP. Theory and algorithms for constructing dis-

crete Morse complexes from grayscale digital images. IEEE Trans Pattern Anal
Mach Intell 2011;33(8):1646–58. doi: 10.1109/TPAMI.2011.95 .

78] Gurung T , Rossignac J . SOT: Compact representation for triangle and tetrahe-

dral meshes. Tech. Rep.. College of Computing, Georgia Institute of Technology,
Atlanta, GA, USA; 2010 .

79] Muigg P, Hadwiger M, Doleisch H, Groller E. Interactive volume visualization
of general polyhedral grids. IEEE Trans Vis Comput Graph 2011;17(12):2115–

24. doi: 10.1109/TVCG.2011.216 .
80] Lewis RH , Zomorodian A . Multicore homology via Mayer Vietoris. arXiv

preprint arXiv:14072275 2014 .

81] OpenMP. OpenMP API for parallel programming, version 4.5. 2015. http://
openmp.org/wp/ .

82] Avila R., He T., Hong L., Kaufman A., Pfister H., Silva C., Sobierajski L., Wang S..
Volvis library. http://www.volvis.org [Accessed on June 2015]; 2015.

83] Roettger S.. The Volume Library. http://www9.informatik.uni-erlangen.de/
External/vollib [Accessed on June 2015]; 2015.

84] CMUMeshSuite. CMU Unstructured Mesh Suite. http://www.cs.cmu.edu/
∼quake/meshsuite.html [Accessed on August 2020]; 1996.

85] AIM@shape. Aim @ shape repository. http://visionair.ge.imati.cnr.it/ontologies/

shapes [Accessed on August 2020]; 2015.
86] VTerrain. Virtual terrain project. http://vterrain.org/BT [Accessed on August

2020]; 2015.
87] Fellegara R. Stellar tree code repository. GitHub repository, GitHub. 2021. https:

//github.com/UMDGeoVis/Stellar _ tree .

88] Fellegara, R. and Weiss, K. and De Floriani, L. An efficient approach for ver-
ifying manifold properties of simplicial complexes. In: Canann S. editor. Pro-

ceedings of the 25th International Meshing Roundtable. Washington, D.C. 2016,
http://imr.sandia.gov/papers/abstracts/Fe830.html .

89] Fellegara R . Spatial Indexes for Simplicial and Cellular Meshes. New Trends in
Databases and Information Systems. Springer International Publishing; 2014.

p. 373–82 .

90] Fellegara R , Iuricich F , De Floriani L , Fugacci U . Efficient homology-preserving
simplification of high-dimensional simplicial shapes. Computer Graphics Fo-

rum 2020;39:244–59, Wiley Online Library .
91] Fellegara R , Iuricich F , De Floriani L , Weiss K . Efficient computation and sim-

plification of discrete Morse decompositions on triangulated terrains. In: Pro-
ceedings of the 22th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems. ACM; 2014 .
92] Fellegara R , Fugacci U , Iuricich F , De Floriani L . Proceedings of the 9th ACM

sigspatial workshop on location-based social networks. In: Analysis of Geolo-

calized Social Networks Based on Simplicial Complexes. New York, NY, USA:
ACM; 2016. 5:1–5:8 .

https://doi.org/10.1111/j.1467-8659.2011.01853.x
https://doi.org/10.1145/2814935
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1007/s00366-006-0049-3
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0055
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0055
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0055
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0055
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0055
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0055
https://doi.org/10.1007/s00366-006-0039-5
https://doi.org/10.1145/1824801.1864430
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0058
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0058
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0058
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0059
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0059
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0060
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0060
https://doi.org/10.1111/1467-8659.1020097
https://doi.org/10.1016/j.cag.2010.03.007
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0063
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0063
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0063
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0064
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0064
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0064
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0065
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0065
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0066
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0066
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0068
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0068
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0068
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0068
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0068
https://doi.org/10.1145/321879.321884
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0070
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0070
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0070
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0070
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0070
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0070
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0071
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0071
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0071
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0071
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0071
https://doi.org/10.1111/j.1467-8659.2008.01272.x
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0073
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0073
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0073
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0074
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0074
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0074
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0075
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0075
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0075
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0076
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0076
https://doi.org/10.1109/TPAMI.2011.95
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0078
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0078
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0078
https://doi.org/10.1109/TVCG.2011.216
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0080
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0080
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0080
http://openmp.org/wp/
http://www.volvis.org
http://www9.informatik.uni-erlangen.de/External/vollib
http://www.cs.cmu.edu/~quake/meshsuite.html
http://visionair.ge.imati.cnr.it/ontologies/shapes
http://vterrain.org/BT
https://github.com/UMDGeoVis/Stellar_tree
http://imr.sandia.gov/papers/abstracts/Fe830.html
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0032a
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0032a
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0018c
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0018c
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0018c
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0018c
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0018c
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029a
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029a
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029a
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029a
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029a
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029al
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029al
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029al
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029al
http://refhub.elsevier.com/S0097-8493(21)00081-9/sbref0029al

	The Stellar decomposition: A compact representation for simplicial complexes and beyond
	1 Introduction
	2 Background notions
	3 Related work
	3.1 Topological mesh data structures
	3.2 Hierarchical spatial indexes
	3.3 Optimized data layouts
	3.4 Distributed mesh data structures

	4 Stellar decomposition
	4.1 Definition
	4.2 Encoding
	4.2.1 Indexed representation of the CP complex
	4.2.2 A compressed region representation

	4.3 Generating a stellar decomposition

	5 Stellar trees
	5.1 Definition
	5.2 Encoding
	5.3 Generating a stellar tree

	6 Processing paradigm for stellar trees
	7 Experimental setup
	7.1 Experimental datasets
	7.2 Calibrating stellar tree bucket thresholds

	8 Evaluation of storage costs and generation times
	8.1 Storage comparison among stellar tree encodings
	8.2 Storage comparison with respect to other data structures
	8.3 Evaluation of stellar tree generation times

	9 Topological queries on a stellar tree
	9.1 Extracting boundary relations
	9.2 Extracting co-boundary relations

	10 A brief tour of applications in the stellar universe
	10.1 Validation of geometric and topological properties
	10.2 Topology-preserving simplification
	10.3 Shape analysis and morphological feature extraction

	11 Concluding remarks
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary material
	References

