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a b s t r a c t 

We introduce the Stellar decomposition , a model for efficient topological data structures over a broad 

range of simplicial and cell complexes. A Stellar decomposition of a complex is a collection of regions 

indexing the complex’s vertices and cells such that each region has sufficient information to locally re- 

construct the star of its vertices, i.e., the cells incident in the region’s vertices. Stellar decompositions are 

general in that they can compactly represent and efficiently traverse arbitrary complexes with a mani- 

fold or non-manifold domain. They are scalable to complexes in high dimension and of large size, and 

they enable users to easily construct tailored application-dependent data structures using a fraction of 

the memory required by a corresponding global topological data structure on the complex. 

As a concrete realization of this model for spatially embedded complexes, we introduce the Stellar 

tree , which combines a nested spatial tree with a simple tuning parameter to control the number of 

vertices in a region. Stellar trees exploit the complex’s spatial locality by reordering vertex and cell indices 

according to the spatial decomposition and by compressing sequential ranges of indices. Stellar trees are 

competitive with state-of-the-art topological data structures for manifold simplicial complexes and offer 

significant improvements for cell complexes and non-manifold simplicial complexes. We conclude with 

a high-level description of several mesh processing and analysis applications that utilize Stellar trees to 

process large datasets. 

© 2021 Elsevier Ltd. All rights reserved. 

1

b

i

s

c

n

i

w

i

t

a

i

e

S

W

a

t

m

c

a

f

t

c

p

o

d

i

e

c

t

h

0

. Introduction 

Efficient mesh data structures play a fundamental role in a 

road range of mesh processing applications in computer graph- 

cs, geometric modeling, scientific visualization, geospatial data 

cience and finite element analysis. Although simple problems 

an be easily modeled on small low dimensional meshes, phe- 

omena of interest might occur only on much larger meshes and 

n higher dimensions. Thus, we often require flexibility to deal 

ith increasingly complex meshes including those defined by 

rregularly connected heterogeneous and/or multidimensional cell 

ypes discretizing spaces with complicated topology. Moreover, 

s advances in computing capabilities continue to outpace those 

n memory, it becomes increasingly important to optimize and 

xploit locality within the mesh as we process and locally query it. 

uch queries are the primary means of interacting with the mesh 
� This paper was recommended for publication by Rüdiger Westermann. 
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nd have traditionally been posed in terms of a few spatial and 

opological primitives. However, while there are simple, intuitive 

odels for representing polygonal surfaces, there are numerous 

hallenges in generalizing these structures to higher dimensions 

nd in scaling to very large meshes. 

In this paper, we introduce the Stellar decomposition , a model 

or topological data structures that supports efficient navigation of 

he topological connectivity of simplicial complexes and of certain 

lasses of cell complexes, e.g., those composed of quadrilaterals, 

olygons, hexahedra, prisms and pyramids. We refer to this class 

f complexes as Canonical Polytope complexes (CP complexes) . The 

efining property of a Stellar decomposition is that the complex 

s broken up into regions indexing a collection of vertices such that 

ach vertex within a region has sufficient information to locally re- 

onstruct its star , i.e., the set of cells from the complex incident in 

hat vertex. 

A Stellar decomposition is general , in that it can easily represent 

rbitrary complexes with a manifold or non-manifold domain, it 

s scalable to complexes both in high dimensions and with a large 

umber of cells, and it is flexible , in that it enables users to defer

ecisions about which topological connectivity relations to encode. 

https://doi.org/10.1016/j.cag.2021.05.002
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t, therefore, supports the generation of optimal application- 

ependent local data structures at runtime. Due to the locality 

f successive queries in typical mesh processing applications, the 

onstruction costs of these local topological data structures are 

mortized over multiple mesh operations while processing a local 

egion. 

We also formally define and analyze the Stellar tree as a con- 

rete instance of the Stellar decomposition model for spatially em- 

edded complexes. Stellar trees utilize a hierarchical n -dimensional 

uadtree, or kD-tree, as vertex decomposition, and are easily tun- 

ble using a single parameter that defines the maximum number 

f vertices allowed in each local region. 

While Stellar trees have been previously utilized in sev- 

ral mesh processing applications ranging from mesh simplifica- 

ion [90] to morphological feature extraction [38,68] , they have 

ot been formally defined and their performance has not yet been 

haracterized in relation to existing topological data structures 

or simplicial and cell complexes. This paper presents a careful 

tudy of the storage requirements, generation algorithms and tim- 

ngs and query performance for Stellar trees over a wide range 

f CP complexes. As we demonstrate in Section 8 , Stellar trees 

re competitive with dimension-specific state-of-the-art topologi- 

al data structures for (pseudo)-manifold triangle and tetrahedral 

omplexes and offer significant improvements for other CP com- 

lexes, especially over data structures for general simplicial com- 

lexes in 3D and higher dimensions. The source code for our Stel- 

ar tree implementation will be released in the public domain. 

Contributions The contributions of this work include: 

• The formal theoretical definition of a Stellar decomposition 

over Canonical Polytope (CP) complexes , a class of cell complexes 

that includes simplicial and cubical complexes of arbitrary di- 

mension, as well as cells in the finite element ‘zoo’, such as 

polygons, pyramids and prisms. 
• The definition of the Stellar tree as a concrete realization of the 

Stellar decomposition for spatially embedded complexes. The 

decomposition in a Stellar tree is based on a hierarchical spa- 

tial index with a simple tuning parameter to facilitate balancing 

storage and performance needs. 
• The definition of Sequential Range Encoding (SRE) , a compact 

encoding for the entities indexed by each region of the de- 

composition. When applied to CP complexes reindexed by the 

spatial decomposition of a Stellar tree, SRE yields compressed 

Stellar trees with only a small overhead relative to the original 

CP complex’s cells. 

Outline The remainder of this paper is organized as follows. 

n Sections 2 and 3 , we review background notions and related 

ork, respectively. In Section 4 , we define Stellar decompositions, 

escribe our compact encoding, and provide a high-level descrip- 

ion of the procedure for generating a Stellar decomposition. In 

ection 5 , we define the Stellar tree, a spatio-topological real- 

zation of the Stellar decomposition. In Section 6 , we describe 

 general mesh processing paradigm that can be followed by 

pplications defined on a Stellar tree. In Section 7 , we discuss our 

xperimental setup and evaluate how our tuning parameter affects 

he quality of a Stellar tree’s decomposition and its performance 

n extracting topological features. We then compare Stellar trees to 

everal state-of-the-art topological data structures in Section 8 . In 

ection 9 , we describe how to extract local connectivity informa- 

ion from the Stellar tree and evaluate the performance of these 

lgorithms. We provide a high-level overview of several mesh 

rocessing and analysis applications that have benefited from 

tellar trees to process large datasets in Section 10 and conclude 

n Section 11 with some remarks and directions for future work. 
323 
. Background notions 

In this section, we review notions related to cell and simplicial 

omplexes, which are the basic combinatorial structures for repre- 

enting discretized shapes. Throughout the paper, we use n to de- 

ote the dimension of the ambient space in which the complex is 

mbedded, d to represent the dimension of the complex and k to 

enote the dimension of a cell from the complex, where 0 ≤ k ≤ d. 

A k -dimensional cell in the n -dimensional Euclidean space E 

n is 

 subset of E 

n homeomorphic to a closed k -dimensional ball B k = 

 x ∈ E 

k : ‖ x ‖ ≤ 1 } . A d-dimensional cell complex � in E 

n is a finite

et of cells with disjoint interiors and of dimension at most d such 

hat the boundary of each k -cell γ in � consists of the union of 

ther cells of � with dimension less than k . Such cells are referred 

o as the faces of γ . A cell which does not belong to the boundary

f any other cell in � is called a top cell . � is a pure cell complex

hen all top cells have dimension d. The subset of E 

n spanned by 

he cells of � is called the domain of �. An example of a pure 

ell 3-complex is shown in Fig. 1 (a): all its top cells are 3-cells

tetrahedra). 

Throughout this paper, we are concerned with a restricted class 

f cell complexes whose cells can be fully reconstructed by their 

et of vertices, e.g., via a canonical ordering [1–5] . We refer to this 

lass of complexes as Canonical Polytope complexes (CP complexes) , 

nd note that it includes simplicial complexes, cubical complexes, 

olygonal cell complexes and heterogeneous meshes with cells 

rom the finite element ‘zoo’ (e.g., simplices, hexahedra, pyramids, 

nd prisms). In what follows, we denote a CP complex as �. An 

xample of a CP complex is shown in Fig. 1 (b), which contains top 

dges, triangles, quadrilaterals, and tetrahedra. 

A pair of cells in a CP complex � are mutually incident if one is 

 face of the other. They are h -adjacent if they have the same di-

ension k > h and are incident in a common h -face. We informally 

efer to vertices (0-cells) as adjacent if they are both incident in a 

ommon edge (1-cell) and, similarly, for k -cells that are incident in 

 common (k −1) -cell (i.e., they are ( k −1 )-adjacent). The (combina- 

orial) boundary of a CP cell σ is defined by the set of its faces. The

tar of a CP cell σ is the set of its co-faces , i.e., CP cells in � that

ave σ as a face. An example of star for a 0-cell (vertex) is shown 

n Fig. 2 (a). In this example, the star of vertex v 0 is formed by five

dges, four triangles, a quad, and a tetrahedron. Of these CP cells, 

etrahedron σ5 , quad σ1 and triangle σ4 are top cells. The link of a 

P cell σ is the set of all the faces of cells in the star that are not

ncident in σ . An example of link for a 0-cell (vertex) is shown in 

ig. 2 (b). In this example, the link of v 0 is composed of six vertices,

ix edges, and a triangle. 

Two h -cells σ and σ ′ in � are (h −1) -connected if there is a 

equence, called an h -path , of (h −1) -adjacent h -cells in � from σ
o σ ′ . A complex � is h -connected , if for every pair of h -cells σ1 

nd σ2 , there is an h -path in � joining σ1 and σ2 . 

We can now define a d-dimensional CP complex � as a set of 

P-cells in E 

n of dimension at most d such that: (1) � contains all 

P-cells in the boundary of the CP-cells in �; (2) the intersection 

f any two CP-cells in � is conforming , i.e., it is either empty, or 

t consists of faces shared by both CP-cells. Simplicial complexes are 

n important subset of CP complexes whose cells are simplices . Let 

 be a non-negative integer. A k -simplex σ is the convex hull of 

 + 1 independent points in E 

n (with k ≤ n ), called vertices of σ .

 face of a k -simplex σ is an h -simplex ( 0 ≤ h ≤ k ) generated by

 + 1 vertices of σ . 

Other important notions are those of manifolds and pseudo- 

anifolds . A subset M of the Euclidean space E 

n is called a d- 

anifold , with d ≤ n , if and only if every point of M has a neigh-

orhood homeomorphic to the open d-dimensional ball. A more 

ractical concept for the purpose of representing CP complexes is 

hat of pseudo-manifold. A pure d-dimensional CP complex � is 
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Fig. 1. Examples of CP complexes. (a) A pure simplicial 3-complex with four tetrahedra. (b) A CP complex with three top edges, three top triangles, two top quads and a top 

tetrahedron. (c) A 2-dimensional pseudo-manifold with eleven triangles. 

Fig. 2. The star and the link of 0-cell (vertex) v 0 from the complex in Fig. 1 (b). 

Cells belonging to either the star (a) or link (b) of v 0 are highlighted in red. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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aid to be a pseudo-manifold when it is (d −1) -connected and its 

d −1) -cells are incident in at most two d-cells. Informally, we re- 

er to the connected and compact subspace of E 

n not satisfying the 

anifold conditions as non-manifold . 

Queries on a cell complex are often posed in terms of topolog- 

cal relations , which are defined by the adjacencies and incidences 

f its cells. Let us consider a d-dimensional CP complex � and a 

 -cell σ ∈ �, with 0 ≤ k ≤ d: 

• a boundary relation R k,p (σ ) , with 0 ≤ p < k , consists of the p-

cells of � in the boundary of σ ; 
• a co-boundary relation R k,q (σ ) , with k < q ≤ d, consists of the

q -cells of � in the star of σ ; 
• an adjacency relation R k,k (σ ) consists of the set of k -cells of �

that are ( k −1 )-adjacent to σ . 

For some examples of topological relations, consider the CP 

omplex in Fig. 1 (b): Boundary relation R 3 , 0 for tetrahedron σ 5 is 

he list of its boundary vertices, i.e., R 3 , 0 ( σ 5 ) = { v 0 , v 2 , v 4 , v 5 } . Co-

oundary relation R 0 , 2 for vertex v 3 is the list of its incident 2-cells 

triangles and quads), i.e., R 0 , 2 ( v 3 ) = { σ0 , σ1 , σ2 , σ3 , σ4 } . Adjacency

elation R 0 , 0 for vertex v 0 is the list of its adjacent vertices, i.e., 

 0 , 0 ( v 0 ) = { v 1 , v 2 , v 3 , v 4 , v 5 } . 

. Related work 

In this section, we review the state of the art on topological 

esh data structures, hierarchical spatial indexes, data layouts and 

istributed mesh data structures. 

.1. Topological mesh data structures 

There has been much research on efficient representations for 

anifold cell and simplicial complexes, especially for the 2D case. 

 comprehensive survey of topological data structures for manifold 

nd non-manifold shapes can be found in [6] . 
324 
A topological data structure over a cell complex encodes a 

ubset of its topological relations and supports the efficient recon- 

truction of local topological connectivity over its cells. Topological 

ata structures can be classified according to: (i) the dimension of 

he cell complex, (ii) the domain to be approximated, i.e., man- 

folds versus non-manifold shapes, (iii) the subset of topological 

nformation directly encoded, and (iv) the organization of topo- 

ogical information directly encoded, i.e., explicit or implicit data 

tructures. 

The explicit cells and topological relations can either be allo- 

ated on demand using small local data structures, such as linked 

ists, or contiguously, e.g. using arrays. In the former case, pointers 

re used to reference the elements, which can be useful when the 

ata structure needs to support frequent updates to the underlying 

ells or their connectivity. In the latter case, indexes of the cells 

ithin the array can be used to efficiently reference the elements. 

ecently, an approach has been proposed in [7] to reconstruct 

opological relations on demand and to cache them for later reuse. 

Broadly speaking, topological data structures can be catego- 

ized as incidence-based or adjacency-based . Whereas incidence- 

ased data structures primarily encode their topological con- 

ectivity through incidence relations over all the complex’s 

ells, adjacency-based data structures primarily encode their 

onnectivity through adjacency relations over its top cells. 

The Incidence Graph ( IG ) [8] is the prototypical incidence-based 

ata structure for cell complexes in arbitrary dimension. The IG ex- 

licitly encodes all cells of a given cell complex �, and for each 

p-cell γ , its immediate boundary and co-boundary relations (i.e., 

 p,p −1 and R p,p + 1 ). Several compact representations with the same 

xpressive power as the IG have been developed for simplicial 

omplexes [9,10] , which typically require less than half the storage 

pace as the IG [11] . 

Several incidence-based data structures have been developed 

or manifold 2-complexes, which encode the incidences among 

dges. The half-edge data structure [12] is the most widely data 

tructure of this type [13,14] . Design tradeoffs for data structures 

ased on half-edges are discussed in [15] . Half-faces [16] gen- 

ralize the notion of a half-edge to polyhedral complexes, 

hile combinatorial maps [17,18] generalize this notion to higher 

imensions. 

Indexed data structures [19] provide a more compact alternative 

y explicitly encoding only vertices, top cells and the boundary 

elations from top cells to their vertices. Since the cells of a CP 

omplex are entirely determined by their ordered list of ver- 

ices, this provides sufficient information to efficiently extract all 

oundary relations among the cells, but not the co-boundary or 

djacency relations. The Indexed data structure with Adjacencies 

 IA ) [20,21] extends the indexed representation to manifold sim- 

licial complexes of arbitrary dimension by explicitly encoding 

djacency relation R d,d , giving rise to an adjacency-based repre- 

entation. All remaining topological relations can be efficiently 
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ecovered if we also encode a top simplex in the star of each 

ertex (i.e., a subset of relation R 0 ,d ). 

The Corner-Table (CoT) data structure [22] is also adjacency- 

ased. It is defined only for triangle meshes, where it has the same 

epresentational power as the IA data structure. It uses corners as a 

onceptual abstraction to represent individual vertices of a triangle 

nd encodes topological relations among corners and their incident 

ertices and triangles. Several efficient extensions of the Corner- 

able data structure have been proposed that exploit properties of 

anifold triangle meshes [23,24] . The Sorted Opposite Table (SOT) 

ata structure [25] extends the Corner-Table data structure to 

etrahedral meshes and introduces several storage optimizations. 

otably, it supports the reconstruction of boundary relation R d, 0 

rom co-boundary relations R 0 ,d (implicitly encoded) and R d,d 

elations (explicitly encoded), reducing its topological overhead 

y nearly a factor of two. Since modifications to the mesh require 

on-local reconstructions of the associated data structures, this 

epresentation is suitable for applications on static meshes. 

The Generalized Indexed data structure with Adjacencies (IA 

∗

ata structure) [26] extends the representational domain of the IA 

ata structure to arbitrary non-manifold and mixed dimensional 

implicial complexes. The IA 

∗ data structure is compact, in the 

ense that it gracefully degrades to the IA data structure in locally 

anifold neighborhoods of the mesh, and has been shown to be 

ore compact than incidence-based data structures, especially as 

he dimension increases [11] . A similar data structure for non- 

anifold complexes was presented in [27] . A detailed description 

an be found in Section 8.2 . 

The Simplex tree [28] also encodes general simplicial complexes 

f arbitrary dimension. It explicitly stores all simplices of the 

omplex within a trie [29] whose nodes are in bijection with the 

implices of the complex. A public domain implementation is 

vailable in the GUDHI library [30] . We provide a detailed descrip- 

ion of this data structure in Section 8.2 . Boissonnat et al. [31] also

ropose two top-based data structures targeting a compact Sim- 

lex tree representation. The Maximal Simplex Tree ( MST ) is an 

nduced subgraph of the Simplex tree, in which only the paths 

orresponding to top simplices are encoded, but most operations 

equire processing the entire complex. The Simplex Array List ( SAL ) 

s a hybrid data structure computed from the top simplices of 

 simplicial complex � that improves processing efficiency by 

ncreasing the storage overhead. Both the MST and the SAL are 

nteresting structures from a theoretical point-of-view, but, as 

escribed in [31] , the model does not currently scale to large 

atasets and results are limited to complexes with only a few 

housand vertices. Moreover, to the best of our knowledge, there 

s no public domain implementation currently available. 

The Skeleton-Blocker data structure [32] encodes simplicial 

omplexes that are close to flag complexes , simplicial complexes 

hose top simplices are entirely determined from the structure of 

heir 1-skeleton, i.e., the vertices and edges of the complex, and 

as been successfully employed for executing edge contractions 

n such complexes. It encodes the 1-skeleton and the blockers , 

implices that are not in �, but whose faces are. Its generation 

rocedure is computationally intensive for general simplicial com- 

lexes since identifying the blockers requires inserting simplices of 

ll dimensions. 

We compare the Stellar tree representation with the IA, CoT, 

nd SOT data structures as well as with the Simplex tree, and IA 

∗

ata structure in Section 8.2 . 

.2. Hierarchical spatial indexes 

A spatial index is a data structure used for indexing spatial in- 

ormation, such as points, lines or surfaces in the Euclidean space. 

patial indexes form a decomposition of the embedding space into 
325 
egions . This can be driven by: (i) an object-based or a space-based 

riterion for generating the decomposition; and (ii) a hierarchical 

r a non-hierarchical ( flat ) organization of the regions. These prop- 

rties are independent, and, thus, we can have hierarchical object- 

ased decompositions as well as flat space-based ones. 

We now consider how the regions of a decomposition can in- 

ersect. In an overlapping decomposition the intersection between 

he regions can be non-empty on both the interiors and on the 

oundary of their domain, while, in a non-overlapping decompo- 

ition, intersections can only occur on region boundaries. We say 

hat a region is nested within another region if it is entirely con- 

ained within that region. In the remainder of this section, we fo- 

us primarily on hierarchical spatial indexes , which can be classified 

y the dimensionality of the underlying ambient space and by the 

ypes of entities indexed. 

Hierarchical spatial indexes for point data are provided by Point 

egion (PR) quadtrees/octrees and kD-trees [33] . In these indexes, 

he shape of the tree is independent of the order in which the 

oints are inserted, and the points are only indexed by leaf blocks. 

he storage requirements of these data structures can be reduced 

y allowing leaf blocks to index multiple points, as in the bucket 

R quadtree/octree [33] , whose bucketing threshold determines the 

umber of points that a leaf block can index before it is refined. 

Several data structures have been proposed for spatial index- 

ng of polygonal maps (PM) , including graphs and planar trian- 

le meshes. PM quadtrees [34] extend the PR quadtrees to repre- 

ent polygonal maps considered as a structured collection of edges. 

hile there are several variants ( PM 1 , PM 2 , PM 3 and the random-

zed PMR) , which differ in the criterion used to refine leaf blocks, 

ll maintain within the leaf blocks a list of intersecting edges from 

he mesh. The PM 2 -Triangle quadtree [35] specializes PM quadtrees 

ver triangle meshes and has been applied to terrain models. The 

M index family has also been extended to PM-octrees encoding 

olyhedral objects in 3D [33,36,37] , where the subdivision rules 

ave been adjusted to handle edges and polygonal faces of the 

esh elements. Another proposal for triangulated terrain models 

re Terrain trees [38] , that are a spatial index family for the efficient 

epresentation and analysis of large-scale triangulated terrains gen- 

rated from LiDAR ( Light Detection and Ranging ) point clouds. A col- 

ection of spatial indexes for tetrahedral meshes called Tetrahedral 

rees was developed in [39,40] . 

We note that data structures in the PM family are spatial data 

tructures optimized for efficient spatial queries on a complex (e.g., 

oint location, containment and proximity queries) and are not 

quipped to reconstruct the connectivity of the complex. In con- 

rast, the PR-star octree [41] is a topological data structure for tetra- 

edral meshes embedded in 3D space. It augments the bucket PR 

ctree with a list of tetrahedra incident in the vertices of its leaf 

locks, i.e., those in the star of its vertices. 

In this paper, we have generalized the PR-star data struc- 

ure to handle a broader class of complexes (CP complexes) in 

rbitrary dimensions and with an arbitrary domain (i.e., non- 

anifold and non-pure complexes). At the same time, our new 

eaf block encoding exploits the spatial coherence of the mesh, 

ielding a significant storage saving compared to PR-star trees 

see Section 8.1 ). As we discuss in Section 10 , Stellar trees have

een shown to be effective in several geometrical and topological 

pplications including local curvature estimation, mesh validation 

nd simplification [41] , morphological feature extraction [68] and 

orphological simplification [91] , among others. 

.3. Optimized data layouts 

Considerable effort has been devoted to reindexing meshes 

o better exploit their underlying spatial locality, for example, to 

upport streamed processing [42] , better cache locality [43] or 
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ompression [44] . Cignoni et al. [45] introduce an external mem- 

ry spatial data structure for triangle meshes embedded in E 

3 . 

hereas our aim is to enable efficient topological operations 

n the elements of general simplicial and CP complexes, the 

bjective of [45] is to support compact out-of-core processing 

f massive triangle meshes. Since the data structure in [45] is 

imension-specific, by exploiting geometric and topological prop- 

rties of triangle meshes in E 

3 , it would be difficult to generalize 

o CP complexes or to higher dimensions. Dey et al. [46] use 

n octree to index a large triangle mesh for localized Delaunay 

emeshing. Due to the significant overhead associated with their 

omputations, the octrees in [46] are typically shallow, containing 

ery few octree blocks. In the context of interactive rendering 

nd visualization of large triangulated terrains and polygonal 

odels, Cignoni et al. [47,48] associate patches of triangles with 

he simplices of a multiresolution diamond hierarchy [49] . 

.4. Distributed mesh data structures 

Stellar decompositions and Stellar trees are also related to 

istributed mesh data structures [50,51] , which partition large 

eshes across multiple processors for parallel processing e.g. in 

umerical simulations [52–54] . In the latter, each computational 

omain maintains a mapping between its boundary elements 

nd their counterparts on neighboring domains. To reduce inter- 

rocess communication during computation, each domain might 

lso include one or more layers of elements from other domains 

urrounding its elements, typically referred to as ghost , rind or halo 

ayers [55–57] . Although each region of a Stellar decomposition (or 

ree) can be seen as a computational domain in a distributed data 

tructure with a single ghost layer (i.e., the elements in the star of 

ts boundary vertices), Stellar trees are aimed at providing efficient 

rocessing on coherent subsets of the mesh (regions), where users 

an generate optimized local topological data structures. In a 

istributed regime, we envision Stellar trees helping more with 

ne-grained (intra-domain) parallelism than with coarse-grained 

ulti-domain partitions. 

. Stellar decomposition 

The Stellar decomposition is a model for data structures repre- 

enting Canonical Polytope (CP) complexes . We denote a CP complex 

s �, its ordered lists of vertices as �V and of top CP cells as �T .

e provide a definition of the Stellar decomposition in Section 4.1 , 

nd describe its encoding in Section 4.2 . 

.1. Definition 

Given a CP complex �, a decomposition � of its vertices �V is a 

ollection of subsets of �V such that every vertex v ∈ �V belongs 

o one of these subsets. We will refer to the elements of decompo- 

ition � as regions , which we will denote as r . 

A Stellar decomposition S D defines a map from the regions of 

 decomposition � of its vertex set �V to the vertices and top CP 

ells of complex �. Formally, a Stellar decomposition is defined by 

hree components: 

1. a CP complex �; 

2. a decomposition � whose regions cover the vertices of �; 

3. a map � from regions of � to entities of �. 

Thus, a Stellar decomposition is a triple S D = (�, �, �) . Since 

is entirely characterized by its vertices, and top CP cells, we de- 

ne map � in terms of the two components: �V ERT , the mapping 

o vertices and �T OP , the mapping to top CP cells. 

For the vertices, we have a map from � to �V based on an 

pplication-dependent ‘belongs to’ property. Formally, � : � → 
V ERT 
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(�V ) is a map from � to the powerset of �V where 

 r ∈ �, �V ERT ( r ) = { v ∈ �V : v ‘belongs to’ r } . 
ig. 3 illustrates an example decomposition � over a point set 

here mapping function �V ERT associates points with regions of 

. In this paper, we will assume that each vertex in �V is uniquely 

ssociated with a single region r in �. 

The Stellar decomposition gets its name from the properties of 

ts top cell map �T OP . For each region r of �, �T OP ( r ) is the set of

ll top CP cells of �T incident in one or more vertices of �V ERT ( r ).

n other words, �T OP ( r ) is defined by the union of cells in the star

f the vertices in �V ERT ( r ). Formally, �T OP : � → P(�T ) is a func-

ion from � to the powerset of �T , where 

 r ∈ �, �T OP ( r ) = { σ ∈ �T |∃ v ∈ R k, 0 ( σ ) : v ∈ �V ERT ( r ) } . (1)

Fig. 4 illustrates mapping �T OP for two regions of the decompo- 

ition of Fig. 3 (b) on a triangle mesh defined over its vertices. Note 

hat �T OP is based on a topological rather than a spatial property: 

 top CP cell σ is only associated with a region r when one (or 

ore) of its vertices is associated with r under �V ERT . 

To characterize this representation, we define the spanning 

umber χσ of a top CP cell in a Stellar decomposition as the num- 

er of regions to which it is associated. 

efinition 4.1. Given Stellar decomposition S D = (�, �, �) , the 

panning number χσ of a top CP cell σ ∈ �T is the number of re- 

ions in � that map to σ . Formally, 

 σ ∈ �T , χσ = |{ r ∈ �| σ ∈ �T OP ( r ) }| . (2) 

A consequence of the unique mapping of each vertex in �V ERT 

s that it provides an upper bound on the spanning number of a 

op CP cell in a Stellar decomposition. Specifically, the spanning 

umber χσ of a top CP cell σ is bounded by the cardinality of its 

ertex incidence relation R k, 0 : 1 ≤ χσ ≤ | R k, 0 (σ ) | . 
It is also interesting to consider the average spanning number χ

s a global characteristic of the efficiency of a Stellar decomposi- 

ion over a complex, measuring the average number of times each 

op CP cell is represented. 

efinition 4.2. The average spanning number χ of a Stellar decom- 

osition S D is the average number of regions indexing its top cells. 

ormally, 

= 

( ∑ 

σ∈ �T 

χσ

) 

/ | �T | = 

( ∑ 

r ∈ �
| �T OP ( r ) | 

) 

/ | �T | . (3) 

.2. Encoding 

In this section, we describe how we represent the two com- 

onents of a Stellar decomposition, providing a detailed de- 

cription of the data structures for representing a CP complex 

 subsection 4.2.1 ), and a compressed encoding for the regions of 

he partitioning ( subsection 4.2.2 ). We do not describe how the de- 

omposition � is represented, as this is specific to each concrete 

ealization of the Stellar decomposition model. 
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Fig. 4. Mapping function �TOP for the decomposition � from Fig. 3 . Given a triangle mesh (a) and a vertex map �V ERT on �, �TOP associates the triangles in the star of the 

vertices in �V ERT ( r ) to �TOP ( r ). (b) and (c) highlight the triangles (green) associated with two different regions (blue) of �. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. explicit encoding for triangles within a region (dotted square). The arrays 

explicitly encode the 6 vertices and 20 triangles in the region. 

Fig. 6. Compressed arrays of non-negative integers using (a) Run Length Encoding 

(RLE) and (b) Sequential Range Encoding (SRE). 
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.2.1. Indexed representation of the CP complex 

We represent the underlying CP complex as an indexed com- 

lex [19] , which encodes the vertices, top CP k -cells and the 

oundary relation R k, 0 of each top k -cell in �. In the following, 

e assume a d-dimensional CP complex � embedded in E 

n . 

We use an array-based representation for the vertices and for 

he top cells of �. Since the arrays are stored contiguously, each 

ertex v has a unique position index i v in the vertex array, that we

enote as �V . Similarly, each top CP cell σ has a unique position 

ndex i σ . The top CP cells of � are encoded using separate arrays 

T k 
for each dimension k ≤ d that has top CP cells in �. �T k 

en- 

odes the boundary connectivity from the top CP k -cells of � to 

heir vertices, i.e., relation R k, 0 in terms of the indices i v of the 

ertices of its cells within �V . This requires | R k, 0 (σ ) | references 

or a top k -cell σ , e.g., k +1 vertex indices for a k -simplex and 2 k 

eferences for a k -cube. Thus, the total storage cost of �T is: 

d 
 

k =1 

∑ 

σ∈ �T k 

| R k, 0 (σ ) | . (4) 

e note that when � is pure (i.e., its top CP cells all have the 

ame dimension d), the encoding of � requires only two arrays: 

ne for the vertices and one for the top cells. For simplicity, we 

efer to the top cell arrays collectively as �T . 

.2.2. A compressed region representation 

In this subsection, we discuss two encoding strategies for the 

ata maps in each region of the partition �. We begin with a sim- 

le strategy that explicitly encodes the arrays of vertices and top 

P cells associated with each region and work our way to a com- 

ressed representation of these arrays. Coupling this compressed 

epresentation with a reorganization of the vertices and cells of 

he CP complex (as we will describe in Section 4.3 ) yields a signif-

cant reduction in storage requirements. We will demonstrate this 

laim in Section 8.1 on a data structure instantiating the Stellar 

ecomposition. 

Recall that under �, each region r in � maps to an array of ver-

ices and an array of top CP cells from the complex � which we 

enote as r V and r T , respectively. A straightforward strategy would 

e to encode arrays of vertices and top CP cells that explicitly enu- 

erate the associated elements for each region r . We refer to this 

s the explicit Stellar decomposition encoding. An example of this 

ncoding for a single region with six vertices in r V and twenty 

riangles in r T is shown in Fig. 5 . 

It is apparent that the above encoding can be very expensive 

ue to the redundant encoding of top CP cells with vertices in 

ultiple regions. A less obvious redundancy is that it does not 

ccount for the ordering of the elements. 

We now consider a compressed Stellar decomposition encod- 

ng that compacts the vertex and top CP cells arrays in each re- 
327 
ion r by exploiting the locality of the elements within r . The com- 

ressed encoding reduces the storage requirements within region 

rrays by replacing runs of incrementing consecutive sequences of 

ndices using a generalization of run-length encoding (RLE) [58] . RLE 

s a form of data compression in which runs of consecutive identi- 

al values are encoded as pairs of integers representing the value 

nd repetition count, rather than as multiple copies of the origi- 

al value. For example, in Fig. 6 (a), the four entries with value ‘2’ 

re compacted into a pair of entries [ - 2 , 3] , where a negative first

umber indicates the start of a run and its value, while the second 

umber indicates the remaining elements of the run in the range. 

While we do not have such duplicated runs in our indexed rep- 

esentation, we often have increasing sequences of indexes, such as 

40,41,42,43,44}, within a local vertex array r V or top CP cells array 

 T . We therefore use a generalized RLE scheme to compress such 

equences, which we refer to as Sequential Range Encoding (SRE) . 

RE encodes a run of consecutive non-negative indexes using a pair 

f integers, representing the starting index, and the number of re- 

aining elements in the range. As with RLE, we can intersperse 

uns (sequences) with non-runs in the same array by negating the 

tarting index of a run (e.g. [ - 40 , 4] for the above example). Thus,

t is easy to determine whether or not we are in a run while we

terate through a sequential range encoded array. A nice feature of 

his scheme is that it allows us to dynamically append individual 
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Fig. 7. compressed encoding within a region (dotted square) after reindexing the 

vertices and triangles of the mesh from Fig. 5 . 
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lements or runs to an SRE array without any storage overhead 

other than occasional array reallocations). 

Furthermore, we can easily expand a compacted range by re- 

lacing its entries with the first two values of the range and ap- 

ending the remaining values to the end of the array. After the 

pdates are finished, we can sort the array and reapply SRE com- 

action to recover space. Fig. 6 (b) shows an example SRE ar- 

ay over an array, where, e.g., sequence {1,2,3,4} is represented as 

 - 1 , 3] . 

To facilitate comparisons between the explicit and compressed 

epresentations of a Stellar decomposition, we introduce a global 

haracteristic that measures the average storage requirements to 

epresent a top CP cell. 

efinition 4.3. The average reference number μ of a Stellar decom- 

osition is the average number of references required to encode a 

op CP cell in the r T arrays of the regions in �. Formally: 

= 

( ∑ 

r ∈ �
| r T | 

) 

/ | �T | (5) 

here | r T | is the size of the top CP cells array in a region r . 

In contrast to the average spanning number χ , which is a prop- 

rty of the decomposition, the average reference number μ is a 

roperty of how the decomposition is encoded. An explicit rep- 

esentation is equivalent to a compressed representation without 

ny compressed runs, and, thus, it is always the case that μ ≤ χ . In 

he explicit representation (i.e., without any sequence-based com- 

ression), μ = χ , while in the compressed representation, μ de- 

reases as the compression of the r V and r T arrays becomes more 

ffective. Fig. 7 illustrates a compressed representation of the mesh 

rom Fig. 5 after its vertex and triangle arrays have been reordered 

in an external process) and highlights its sequential ranges, where 

 V is encoded by a single run and r T is encoded by four sequential 

uns as well as several non-run indices. 

.3. Generating a stellar decomposition 

We now describe how to generate a compressed Stellar decom- 

osition from an indexed CP complex � and a given partition �

n its vertices �V . This process consists of three phases: 

1. reindex the vertices of � following a traversal of the regions of 

� and SRE-compress the r V arrays; 

2. insert the top CP cells of � into �; 

3. reindex the top CP cells of � based on locality within common 

regions of � and SRE-compress the regions r T arrays. 

As it can be noted, the generation process ignores how the par- 

itioning on the vertices is obtained, since this step is defined by 

he data structure instantiating a Stellar decomposition. The rein- 

exing of the vertices follows a traversal of the regions of � in 
328 
uch a way that all vertices associated with a region have a con- 

iguous range of indices in the reindexed global vertex array �V 

as detailed in the Supplementary material). 

The second phase inserts each top CP k -cell σ , with index i σ in

T k 
, into all the regions of � that index its vertices. This is done 

y iterating through the vertices of σ and inserting i σ into the r T 
rray of each region r whose vertex map �V ERT ( r ) contains at least 

ne of these vertices. As such, each top CP k -cell σ appears in at 

east one and at most | R k, 0 (σ ) | regions of �. Due to the vertex

eindexing of step 1, this operation is extremely efficient. Deter- 

ining if a vertex of a given cell lies in a block requires only a

ange comparison on its index i v . 

Finally, we reindex the top CP cell arrays �T to better exploit 

he locality induced by the vertex-based partitioning and compress 

he local r T arrays using a sequential range encoding over this new 

ndex. The reindexing and the compression of the top CP cells is 

btained following a traversal of the regions of � in such a way 

hat all top CP cells associated with the same set of regions have 

 contiguous range of indices in the reindexed arrays �T . This last 

tep is detailed in the Supplementary material. As we demonstrate 

n Section 8 , this compression yields significant storage savings in 

 wide range of mesh datasets. 

. Stellar trees 

The Stellar decomposition is a general model that is agnostic 

bout how the partitioning is attained and about its relationship 

ith the underlying CP complex. Thus, for example, we can de- 

ne a Stellar decomposition using Voronoi diagrams, or based on a 

earest neighbor clustering of the vertices of a given CP complex. 

n this section, we introduce Stellar trees as a class of Stellar de- 

ompositions defined over nested spatial decompositions of the CP 

omplex and discuss some of our design decisions. Before defining 

 Stellar tree ( Section 5.1 ), its encoding ( Section 5.2 ) and its gener-

tion procedure ( Section 5.3 ), we review some underlying notions. 

The ambient space A is the subset of E 

n in which the data is 

mbedded. We consider the region bounding the ambient space to 

e a hyper-rectangular axis-aligned bounding block , which we re- 

er to simply as a block . A k -dimensional closed block r in E 

n , with

 ≤ n , is the Cartesian product of closed intervals [ l i , u i ] where ex-

ctly k of them are non-degenerate, i.e., r = { (x 1 , . . . , x n ) ∈ E 

n | x i ∈
 l i , u i ] } and |{ i | l i < u i }| = k . 

Given two blocks r := [ l i , u i ] and r ′ := [ l ′ 
i 
, u ′ 

i 
] , r ′ is a face of r if,

or each dimension i , either their intervals overlap (i.e., l ′ 
i 
= l i and

 

′ 
i 
= u i ) or the i -th interval of r ′ is degenerate (i.e., l ′ 

i 
= u ′ 

i 
= l i , or

 

′ 
i 
= u ′ 

i 
= u i ). Given a block r , we refer to its 0-dimensional face

f degenerate intervals x i = l i as its lower corner and to its 0- 

imensional face where x i = u i as its upper corner . The above block 

efinition describes closed blocks. It can be useful to allow some 

aces of r to be open , especially on faces of neighboring blocks 

hat overlap only on their boundaries. A k -dimensional half-open 

lock r in E 

n is defined as r = { (x 1 , . . . , x n ) ∈ E 

n | x i ∈ [ l i , u i ) } and

{ i | l i < u i }| = k . Note that the faces of a half-open block r incident

n its lower corner are closed , while all other faces of r are open . 

We now focus on nested decompositions , hierarchical space- 

ased decompositions whose overlapping blocks are nested and 

hose leaf blocks �L (i.e., those without any nested blocks) form 

 non-overlapping cover of the ambient space A . The nesting rela- 

ionship defines a containment hierarchy H , which can be described 

sing a rooted tree . The tree’s root H ROOT covers the ambient space 

 ; the tree’s leaves H L encode the regions of the decomposition 

; and its internal nodes H I provide access to the regions of the 

ecomposition. 

Nested decompositions can adopt different hierarchical refine- 

ent strategies. Among the most popular are those based on reg- 

lar refinement and bisection refinement of simple primitives (e.g., 
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Fig. 8. A mapping function �V ERT over a nested spatial decomposition �. The ver- 

tices (a) are partitioned into regions by �’s leaf blocks (b) using a bucketing thresh- 

old, k V = 4 , i.e. at most 4 vertices can be in a region. 

Fig. 9. Top cell mapping function �TOP for two blocks (blue) of the nested decom- 

position from Fig. 8 on the triangle mesh from Fig. 4 . �TOP ( r ) maps the triangles in 

the star of the vertices in �V ERT ( r ). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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implices and cubes). An n -dimensional block r is regularly refined 

y adding vertices at all edge and face midpoints of r and replacing 

 with 2 n disjoint blocks covering r . This generates quadtrees in 2D, 

nd octrees in 3D [33] . In bisection refinement, a block is bisected 

long an axis-aligned hyperplane into two blocks, generating 

D-trees [59] . 

.1. Definition 

Since a Stellar tree S T is a type of Stellar decomposition, it 

onsists of three components: (1) a CP complex � embedded in 

n ambient space A ; (2) a nested decomposition � covering the 

omain of �; and (3) a map � from blocks of � to entities of �. 

he nested decomposition is described by a containment hierarchy 

 , represented by a tree whose blocks use the half-open boundary 

onvention to ensure that every point in the domain is covered by 

xactly one leaf block. 

Since Stellar trees are defined over nested spatial decompo- 

itions that cover the ambient space, we customize the vertex 

apping function �V ERT to partition the vertices of � according 

o spatial containment: each vertex is associated with its single 

ontaining leaf block. Formally, 

 r ∈ �L , �V ERT ( r ) = { v ∈ �V : v ∩ r � = ∅} . (6)

A two-dimensional example is shown in Fig. 8 , where a set of 

oints are associated with the leaf blocks of � through �V ERT . 

The top CP cells mapping function �T OP for a Stellar tree has 

he same definition as for the Stellar decomposition (see Eq. 1 ). 

ig. 9 shows the mapping �T OP for two blocks of the nested kD- 

ree decomposition of Fig. 8 (b) over the triangle mesh from Fig. 4 . 

Since the nested decomposition �, and, consequently, the tree 

 describing it, are determined by the number of vertices indexed 

y a block, we utilize a bucket PR tree [33] to drive our decom-

osition. This provides a single tuning parameter, the bucketing 

hreshold k V , that uniquely determines the decomposition for a 

iven complex �. 
329 
Recall that a (leaf) block r in a bucket PR-tree is considered 

ull when it indexes more than k V vertices (in our case, when 

 �V ERT ( r ) | > k V ). Insertion of a vertex into a full block causes the

lock to refine and to redistribute its indexed vertices among its 

hildren. As such, the domain decomposition of a Stellar tree de- 

ends only on the bucketing threshold k V . Smaller values of k V 
ield deeper hierarchies whose leaf blocks index relatively few ver- 

ices and top CP cells, while larger values of k V yield shallower 

ierarchies with leaf blocks that index more vertices and top CP 

ells. Thus, k V and the average spanning number χ of a Stellar tree 

re inversely correlated. 

In practice, we use different spatial indexes to represent H 

ased on the dimension n of the ambient space A . In lower di- 

ensions, we use a quadtree-like subdivision, i.e., a quadtree in 

D, and an octree in 3D, while in higher-dimensions, we switch 

o a kD-tree subdivision. As discussed in [33] , while quadtree-like 

ubdivisions are quite efficient in low dimensions, the data be- 

omes sparser in higher dimensions (due to the curse of dimen- 

ionality [60] ), and tends to be better encoded by kD-trees. 

.2. Encoding 

We represent the containment hierarchy H using an explicit 

ointer-based data structure, in which the blocks of H use a type 

f Node structure that changes state from leaf to internal block 

uring the generation process of a Stellar tree. 

We use a brood-based encoding [61] , where each block in H en- 

odes a pointer to its parent block and a single pointer to its brood 

f children. This reduces the overall storage since leaves do not 

eed to encode pointers to their children, and also allows us to 

se the same representation for n-dimensional quadtrees and kD- 

rees. We explicitly encode all internal blocks, but only represent 

eaf blocks r in H with non-empty maps �( r ). 

The mapped entities of the CP complex � are encoded in the 

eaf blocks H L using the mapping arrays �. Note that each leaf 

lock r encodes the arrays of vertices r V and of top CP cells r T in

erms of the indices i v and i σ , respectively, that identify v and σ in

he �V and �T arrays. For each block r , we have: (1) three pointers 

or the hierarchy: one to its parent, another to its list of children 

nd it is pointed to by one parent; (2) a pointer to an array of ver-

ices r V and the size of this array; (3) a pointer to an array of top

P cells r T and the size of this array. Thus, the hierarchy H of a

tellar tree requires 7 | H | storage. 

By considering the encodings, defined in Section 4.2.2 , for the 

P complex �, and for the vertices and top cp-cells associated 

ith the regions of H , we can estimate the storage requirements 

or the explicit and compressed Stellar trees. An explicit Stellar 

ree requires a total of | �V | references for its vertex arrays, since 

ach vertex is indexed by a single leaf block, and a total of χ | �T |
eferences for all top CP cells arrays. Thus, the total cost of the ex- 

licit Stellar tree, including the hierarchy (but excluding the cost 

f the indexed mesh) is: 7 | H | + | �V | + χ | �T | . 
Conversely, in a compressed Stellar tree, we can reindex the 

ertex array �V in such a way that all vertices associated with 

he same leaf block are indexed consecutively (see Section A.1 in 

he Supplementary materials for additional details). Thus, we can 

ncode the r V arrays using only two integers per leaf block for a 

otal cost of 2 | H L | rather than | �V | . Moreover, since leaf blocks no

onger need to reference an arbitrary array, these two references 

an be folded into the block’s hierarchical representation for r V : 

nstead of a pointer to a array and a size of the array, we sim-

ly encode the range of vertices in the same space. As the cost of 

epresenting the r T arrays is μ| �T | , the total cost for encoding a 

ompressed Stellar tree (excluding the cost of the indexed mesh 

epresentation) is: 7 | H | + μ| � | . 
T 
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Fig. 10. Generating a nested hierarchy H with k V = 4 over vertices. After inserting 

the vertices (a), we reindex �V according to H L (b). 
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Algorithm 1 stellar _ tree _ processing _ paradigm ( r , c ) . 

Input: r is a block in H 

Input: c is a fixed-size LRU-cache 

1: if r is an internal block in H then 

2: for all blocks r C in children ( r) do 

3: stellar_tree_processing_paradigm ( r C , c) 

4: else // r is a leaf block in H 

5: if r is in c then 

6: r E ← get ( c, r) 

7: else 

8: r E ← expand ( r) // expand r into r E 

9: execute application algorithm using r E 
10: if max_size ( c) > 0 then // we are using a cache 

11: save r E in c 

12: else 

13: discard r E 
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.3. Generating a stellar tree 

In this section, we describe how to generate a compressed Stel- 

ar tree from an indexed CP complex � and a given bucketing 

hreshold k V . We can also deal with input complexes that are not 

lready indexed. For example, if our input is a “soup” of CP cells 

n which each CP cell is specified by a list of coordinates, we can 

enerate an indexed representation of the complex as we insert 

he vertices and generate the decomposition. 

First, given a user-defined bucketing threshold k V , we generate 

 bucket PR-tree over the vertices of �. The procedure for insert- 

ng a vertex v with index i v in �V into H is recursive. We use the

eometric position of v to traverse the internal blocks to reach the 

nique leaf block r containing v . After adding v to r (i.e., append-

ng i v into the r V array of r ), we check if this causes an overflow

n r . If it does, we refine r and reinsert its indexed vertices into its

hildren. Once all the vertices in � have been inserted, the decom- 

osition is fixed. 

The rest of the Stellar tree generation process follows the strat- 

gy described in Section 4.3 and detailed in the supplementary 

aterials. One key optimization between a generic partitioning on 

he vertices and a nested hierarchical decomposition relates to ex- 

racting the vertex index ranges. In a Stellar tree, this step is per- 

ormed through a depth-first traversal of the tree, which, for each 

eaf block r , generates a contiguous range of indices for the ver- 

ices in r , and, for each internal block, provides a single contiguous 

ndex range for the vertices in all descendant blocks. For example, 

n Fig. 10 , after executing this step on leaf block b , we have v s = 4

nd v e = 7 . Similarly, at the end of this step the root H ROOT has

 s = 1 and v e = 13 . 

We provide an experimental evaluation of the timings for gen- 

rating a Stellar tree in Section 8.3 . 

. Processing paradigm for stellar trees 

Mesh processing applications rarely process individual mesh el- 

ments. Rather, they typically operate on the entire complex, or 

n large regions of interest within the complex. The structure of 

 Stellar tree naturally supports a batched processing strategy, i.e., 

 strategy in which portions of the complex are reconstructed and 

rocessed within each block of the tree. As these local blocks are 

rocessed, their representation and extracted topological relations 

an be customized to suit the needs of the application. This helps 

n amortizing the reconstruction costs and, thus, processing the en- 

ire complex efficiently. 

The general paradigm for executing application algorithms on a 

tellar tree is to iterate through the leaf blocks of hierarchy H , lo- 

ally processing the encoded complex in a streaming manner. For 

ach leaf block r in H , a local topological data structure catered to 

he application’s needs is constructed and used to process the in- 

exed subcomplex. We refer to this local data structure in a block 
330 
 as an expanded leaf-block representation , and we denote it as r E .

nce we finish processing leaf block r , we discard r E and begin 

rocessing the next block. 

For efficiency and at relatively low storage overhead, we can 

ache the expanded leaf block representation r E , using a Least- 

ecent-Used (LRU) cache. This is especially advantageous in applica- 

ions that require processing portions of the complex in neighbor- 

ng leaf blocks. Adopting a fixed-size cache allows us to amortize 

he extraction costs of the local data structures, with a controllable 

torage overhead. 

Algorithm 1 outlines the general strategy for processing a Stel- 

ar tree. The algorithm recursively visits all the blocks of the hier- 

rchy H . For each leaf block r , we either recover r E from the LRU

ache (rows 5–8), or construct the desired application-dependent 

ocal topological data structure r E . After using this local data struc- 

ure to process the local geometry in r (row 9), we either cache or 

iscard r E (rows 10–13). 

Within this general processing paradigm, we can have two dif- 

erent approaches, that we call local and global , depending on how 

uxiliary data structures are encoded and maintained. In a local ap- 

roach, the scope of these auxiliary data structures is limited to 

hat of a single leaf block r , or to a restricted subset of its neigh-

ors. In general, a local approach is preferred for applications that 

xtract, or analyze local features, such as those that depend only 

n the link or star of cells. These includes, for instance, the extrac- 

ion of geometric features, like the curvature at a vertex, or the 

xtraction of morphological features, like critical points, when the 

omplex is a discretization of the domain of a scalar field. In these 

xamples, the auxiliary data structures are just needed within the 

cope of a leaf block r , and thus, immediately discarded after ex- 

racting the corresponding feature in r . Conversely, in a global ap- 

roach, data structures are maintained over the entire complex 

nd updated during the visit of the tree. A global approach can 

e preferable for applications that require the analysis or the pro- 

essing of the entire complex, like geometric simplification, mor- 

hological segmentation, or validation of geometric and topological 

roperties. In these examples, auxiliary data structures are used to 

epresent partial results over the complex. 

The decision between using a local and global approach can be 

riven by the needs of the application or as a tradeoff balancing 

emory usage and execution times. Due to the limited scope of 

uxiliary data structures in the local approach, the storage over- 

ead is typically proportional to the complexity of the local com- 

lex but requires an increased number of memory allocations com- 

ared to a global approach since each leaf block expansion requires 

emory allocations. Conversely, while auxiliary data structures in 

he global approach are allocated only once, these structures can 
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Table 1 

Overview of experimental datasets. For each CP complex �, we list the number of vertices | �V | and of top CP-cells | �T | . 
triangular quadrilateral tetrahedral hexahedral probabilistic v-rips 

neptune statuette lucy neptune statuette lucy bonsai vismale foot f16 san 

fern 

vismale 5D 7D 40D vismale 

7D 

foot 

10D 

lucy 

34D 

| �V | 2.00M 5.00M 14.0M 12.0M 30.0M 84.1M 4.25M 4.65M 5.02M 27.9M 61.3M 136M 385K 239K 204K 4.65M 5.02M 14.0M 

| �T | 4.01M 10.0M 28.1M 12.0M 30.0M 84.2M 24.4M 26.5M 29.5M 25.4M 55.9M 125M 26.5M 258M 16.5M 6.39M 63.9M 41.1M 
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equire significantly more storage space compared to the local ap- 

roach. 

In Section 10 , we present applications on mesh processing and 

nalysis, based on Stellar trees, on which these two paradigms 

ave been extensively applied. 

. Experimental setup 

In this section, we describe our experimental setup, including 

he datasets used in our evaluation ( Section 7.1 ). We also evalu- 

te how the bucketing threshold k V affects the quality of a Stellar 

ree’s decomposition and its performance in extracting topological 

ueries ( Section 7.2 ). 

.1. Experimental datasets 

We have performed experiments on a range of CP complexes 

onsisting of triangle, quadrilateral, tetrahedral and hexahedral 

eshes in E 

3 as well as pure non-manifold simplicial complexes 

n higher dimensions and higher dimensional non-manifold simpli- 

ial complexes (embedded in E 

3 ). Table 1 summarizes the datasets 

sed in our experiments and their numbers of vertices and top 

ells. 

Our triangle and tetrahedral meshes are native models ranging 

rom 4 to 28 million triangles and from 24 to 29 million tetrahe- 

ra, where we use the term native to refer to models from public 

omain repositories discretizing objects in space. Since we only 

ad access to relatively small native quadrilateral and hexahedral 

eshes (with tens to hundreds of thousand elements), we have 

enerated some larger models ranging from 12 to 125 million 

lements from our triangle and tetrahedral models. The generation 

rocedure refines each triangle into three quadrilaterals and each 

etrahedron into four hexahedra by adding vertices at the face 

entroids. 

To experiment with pure non-manifold models in higher di- 

ensions, we have generated some models based on a process 

hat we call probabilistic Sierpinski filtering , where we regularly 

efine all simplices in the complex and randomly remove a fixed 

roportion of the generated simplices in each iteration. For our 

xperiments, we have created 5-, 7- and 40-dimensional models 

sing different levels of refinement and a filtering threshold of 

5%, yielding pure simplicial complexes with 16.5 million to 258 

illion top simplices. 

Finally, to experiment with general simplicial complexes in 

igher dimensions, we have generated several (non-pure) Vietoris- 

ips complexes, which we embed in a lower dimensional space. 

 Vietoris-Rips (V-Rips) complex is the flag complex defined by 

 neighborhood graph over a point cloud whose arcs connect 

airs of points with distance less than a user-provided parameter 

. Given the neighborhood graph, the simplices of the V-Rips 

omplexes are defined by its cliques , subsets of the graph vertices 

hat form a complete subgraph. We refer to [62] for further details. 

or our experiments, we have generated V-Rips complexes over 

he vertices of a triangle model ( lucy ) and of two tetrahedral 

odels ( vismale and foot ) from our manifold datasets and set 

ur distance threshold ε to { 0 . 1% , 0 . 5% , 0 . 4% } of the bounding box

iagonal, respectively. The range of top simplices in the generated 
331 
omplexes goes from 6.4 million to 64 million and their dimension 

rom 7 to 34. Although the generated complexes are synthetic, 

hey provide a good starting point to demonstrate the efficiency of 

he Stellar tree in higher dimensions. 

All tests have been performed on a PC equipped with a 3.2 gi- 

ahertz Intel i7-3930K CPU with 64 gigabytes of RAM. The source 

ode will be made available at [87] . 

.2. Calibrating stellar tree bucket thresholds 

Spatial indexes typically involve a careful balance among index 

eneration times, storage costs and query performances. Stellar 

rees provide users with a single tuning parameter k V to control 

he maximum number of vertices indexed by each block of the 

ree. In the following, we calibrate k V on a characteristic subset of 

hree of our experimental datasets: neptune triangle mesh, bonsai 

etrahedral mesh, and vismale Vietoris-Rips complex. For each 

ataset, we generated 195 Stellar trees using k V values ranging 

rom 1 to 1500 and compared Stellar tree generation and query 

imes as well as the number of blocks as a proxy for the complex- 

ty of the generated tree. Within this range, we increment k V by 1 

or values between 1 and 50, and by 10 for values between 60 and 

500. This allows us to evaluate the decomposition quality and 

he extraction performance for a fundamental topological query 

t different scales. For the latter, we use the vertex co-boundary 

xtraction, i.e., the top cells incident in each vertex (which we 

escribe in Section 9.2 ). 

The results are summarized in the charts of Figs. 11 and 12 , 

hich compare the complexity of the generated Stellar tree (in 

erms of number of blocks), its generation and query times, and 

he average spanning ( χ ) and reference ( μ) numbers as a function 

f the threshold value k V . 

To better compare different units (i.e., number of blocks and 

imings), each chart in Fig. 11 has two logarithmic y-axes, showing 

he time scale (blue curves using the left y-axes) and the number 

f blocks (red curves using the right y-axes), respectively. In this 

ay, we can directly compare, for each dataset, how the k V value 

nfluences the decomposition and the timing performances. After 

n initial rapid decrease in the generation time and block number, 

he curves begin to level off for increasingly large k V values. While 

here are more than a million blocks when k V is less than 10, the 

umber of blocks rapidly decreases to hundreds of thousands for 

 V ’s between 50 and 200, and grows even smaller for large k V val-

es (e.g., above 500), where the number of blocks remains steadily 

n the thousands to tens of thousands. This trend appears to be re- 

ated to the point distribution within each dataset, which induces 

ner decompositions for k V values between 1 and 50, and coarser 

ecompositions for larger k V values. This trend can also be ob- 

erved for the generation times, which reduce by a factor of two 

or k V values between 1 and 100, and by another factor of two for 

arge bucketing thresholds. While the topological extraction query 

s largely unaffected by k V size, it gets slightly faster for larger k V 
alues. When comparing the influence of k V on χ and μ (shown 

n Fig. 12 ), we observe that the behavior of these two variables is 

ery similar to that of the number of blocks. This is expected, since 

he top cells distribution is directly linked to the number of blocks 

n the tree. As mentioned in Section 4.1 , the number of leaf blocks 
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Fig. 11. Bucketing threshold calibration experiments comparing the number of Stellar tree blocks (red, right y-axis) and generation and top-coboundary extraction times 

(blue, left y-axis) against bucket threshold values ( k V ). The vertical bars (gray) represent the k V values selected for our experiments. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Bucketing threshold calibration experiments comparing the evolution of the average spanning number χ and of the average reference number μ against bucket 

threshold values ( k V ) for three datasets. The vertical bars (gray) represent the k V values we selected for our experiments on these datasets. 
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Fig. 13. Leaf blocks for a Stellar tree decompositions over neptune triangle mesh. 

Each leaf block indexes up to k V = 100 mesh vertices. 
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t

l

a

ndexing a top cell is bounded from above by the number of its 

ertices, and this defines a topological upper bound that reduces 

he overall storage requirements. We note that the SRE compres- 

ion is able to reduce the number of references per top cell ( μ),

ven for very small k V values. 

Our calibration experiments indicate that, while there are slight 

ifferences in timing and storage costs, Stellar tree performance is 

elatively stable over a wide range of k V values. However, thresh- 

ld values that are either too small or too large should be avoided, 

ince in the first case the storage requirements and time perfor- 

ances are heavily affected, while in the latter case the benefit 

f having a hierarchical decomposition is limited, as both storage 

equirements and time performance are not clearly influenced by 

t. In the rest of this paper, for every model, we build two Stellar

rees to compare how their performances depend on parameter k V . 

hese two k V values are chosen in order to: (i) have a hierarchical 

ecomposition that still plays a critical role in the storage require- 

ents and time performances; and (ii) obtain trees with different 

haracteristics: one deeper and another relatively shallower. In the 

ollowing, we use k S to refer to the smaller k V value and k L to the

arger one. Since there is a direct correlation between the decom- 

osition quality and χ , these calibration choices are also reflected 

n the χ values across our experimental datasets. Table 2 summa- 

izes statistics on the Stellar trees obtained from each input data 

et by considering two values of the vertex threshold k V , namely 

 S and k L . Fig. 13 illustrates the k S octree decomposition for the 

M triangle Neptune dataset. 

(

S

332 
. Evaluation of storage costs and generation times 

In this section, we evaluate the storage costs and generation 

imes of Stellar trees. First, we compare the cost of different Stel- 

ar tree encodings ( Section 8.1 ), then we compare the Stellar tree 

gainst several state-of-the-art topological mesh data structures 

 Section 8.2 ), and, finally, we evaluate the generation times of the 

tellar tree ( Section 8.3 ). 



R. Fellegara, K. Weiss and L. De Floriani Computers & Graphics 98 (2021) 322–343 

Table 2 

Overview of our generated Stellar trees for each dataset. For each Stellar tree, we 

list the thresholds k V , the number of blocks in the index (total | H | and leaf | H L | ) 
and the average spanning number χ . 

Data k V | H | | H L | χ

triangular 

neptune k S 100 73.7K 58.8K 1.37 

k L 500 15.0K 12.2K 1.17 

statuette k S 100 182K 147K 1.36 

k L 500 39.8K 32.7K 1.17 

lucy k S 100 464K 374K 1.35 

k L 500 88.8K 70.3K 1.16 

quadrilateral 

neptune k S 100 407K 322K 1.47 

k L 800 55.0K 44.3K 1.17 

statuette k S 100 1.10M 883K 1.47 

k L 800 146K 120K 1.17 

lucy k S 100 3.53M 2.85M 1.54 

k L 800 329K 265K 1.17 

tetrahedral 

bonsai k S 400 45.2K 39.5K 1.58 

k L 800 17.9K 15.7K 1.44 

vismale k S 400 32.8K 28.7K 1.52 

k L 800 17.7K 15.5K 1.45 

foot k S 400 88.8K 77.7K 1.75 

k L 800 17.1K 15.0K 1.43 

hexahedral 

f16 k S 100 1.11M 972K 3.08 

k L 1000 113K 99.0K 1.90 

san fern k S 100 2.02M 1.77M 3.15 

k L 1000 247K 216K 1.88 

vismale k S 100 7.39M 6.46M 2.80 

k L 1000 800K 700K 1.72 

probabilistic 

5D k S 100 37.4K 36.1K 4.39 

k L 500 2.79K 2.68K 2.55 

7D k S 100 10.8K 4.87K 4.98 

k L 500 2.02K 1.00K 3.78 

40D k S 100 15.2K 4.32K 36.2 

k L 1000 1.56K 550 34.0 

v-rips 

vismale 7D k S 400 32.8K 28.7K 1.44 

k L 800 17.7K 15.5K 1.37 

foot 10D k S 400 88.8K 77.7K 2.02 

k L 800 17.1K 15.0K 1.56 

lucy 34D k S 100 464K 374K 2.47 

k L 500 88.8K 70.3K 1.73 

8

t

l

p

t

(

t

f

b

l

c

s

t

q

c

c

5

t

t

d

f  

t  

1

i

t

p

c

r

a

t

i

b

w

H

l

s

o

S

p

a  

a

s

w

m

S

8

i

d

c

d

t

o

g

d

m

t

(  

a

(  

s

l

t

i

h

p  

a

.1. Storage comparison among stellar tree encodings 

We begin by comparing the explicit and compressed Stellar 

ree encodings as well as a vertex-compressed encoding, simi- 

ar to the PR-star encoding for tetrahedral meshes [41] , that com- 

resses the vertex array but not the top cells arrays. Table 3 lists 

he storage costs for the indexed representation of the complex 

‘Base Complex’) as well as the additional costs required for the 

hree Stellar tree encodings, in terms of megabytes ( MBs ). In the 

ollowing, we assume that pointers require 64 bits and indices 32 

its, the de-facto standard in modern computing hardware. Stel- 

ar trees based on the compressed encoding are always the most 

ompact. 
333 
We first consider the storage requirements of the hierarchical 

tructures with respect to our tuning parameter k V and observe 

hat higher values of k V always yield reductions in memory re- 

uirements. As expected, this effect is more pronounced for the 

ompressed encoding than for the other two encodings. Specifi- 

ally, the explicit and vertex-compressed k L trees achieve a 20–

0% reduction in storage requirements compared to their k S coun- 

erparts, while the compressed k L trees are a factor of 3–10 smaller 

han their k S counterparts. For example, on the triangular neptune 

ataset, storage requirements for the explicit Stellar tree reduces 

rom 32.0 MB ( k S ) to 26.2 MB ( k L ), while the compressed Stellar

rees reduces by more than a factor of 4 from 5.76 MB ( k S ) to

.24 MB ( k L ). 

When comparing the three encodings, we see that compress- 

ng the vertices alone, as in the vertex-compressed representa- 

ion, achieves only 10–20% reduction in storage requirements com- 

ared to the explicit representation, in most cases. In contrast, 

ompressing the vertices and top cells, as in our compressed rep- 

esentation, yields an order of magnitude improvement, requiring 

 factor of 10–20 less storage than their explicit counterparts. This 

rend is nicely tracked for each dataset by the differences between 

ts average references number μ and its average spanning num- 

er χ . This is particularly evident on our probabilistic datasets, for 

hich it is difficult to calibrate k V in order to reduce χ values. 

owever, after SRE compression, μ values are always very small, 

eading to significant storage reductions in the compressed repre- 

entation. 

Considering the hierarchical storage requirements against those 

f the original indexed base complex, we observe that explicit 

tellar trees require about 50% to 80% the storage of the base com- 

lex, while compressed Stellar trees require only around 10% ( k S ) 

nd 1% ( k L ) the storage of the base complex. Thus, for reason-

ble k V values, compressed Stellar trees impose only a negligible 

torage overhead with respect to the underlying indexed complex, 

hich the Stellar tree representation does not modify. In the re- 

ainder of this paper, we restrict our attention to the compressed 

tellar Tree, which we refer to as the Stellar tree, for simplicity. 

.2. Storage comparison with respect to other data structures 

We compare the Stellar tree with several dimension- 

ndependent topological data structures as well as dimension- 

ependent topological data structures for 2D and 3D simplicial 

omplexes. Figs. 14–16 compare the storage requirements for the 

ifferent data structures normalized against the storage costs of 

he indexed base complex. The analysis compares the topological 

verhead of the data structures, and thus, we omit the cost of the 

eometry of the underlying complex, which is common to all the 

ata structures. 

Based on our analysis of the literature (see Section 3.1 ), the 

ost relevant dimension-independent topological data structures 

hat scale to our experimental datasets are: the Incidence Graph 

IG) [8] , the Incidence Simplicial (IS) [10] , the Simplex tree [28] ,

nd the Generalized Indexed data structure with Adjacencies 

IA 

∗) [26] . Since Canino et al. [11] demonstrated that the IA 

∗ data

tructure is more compact than the IG and IS data structures for 

ow and high-dimensional datasets, we restrict our comparisons to 

he IA 

∗ and Simplex tree data structures. 

The IA 

∗ data structure has been defined for dimension- 

ndependent simplicial complexes, and for our experiments, we 

ave extended it to dimension-independent CP complexes. It ex- 

licitly encodes all vertices and top CP k -cells in �, with 0 < k ≤ d,

s well as the following topological relations: 

(i) boundary relation R k, 0 (σ ) , for each top CP k -cell σ ; 

(ii) adjacency relation R k,k (σ ) , for each top CP k -cell σ ; 
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Table 3 

Storage costs (in MB s) and average spanning ( χ ) and reference ( μ) numbers for different Stellar tree encodings. 

Data Base Stellar tree 

Complex explicit v_compr. compr. 

cost χ cost χ cost μ

triangular 

neptune k S 45.9 32.0 1.37 24.3 1.37 5.76 0.16 

k L 26.2 1.17 18.6 1.17 1.24 0.04 

statuette k S 114 79.2 1.36 60.2 1.36 14.6 0.17 

k L 65.6 1.17 46.6 1.17 3.41 0.04 

lucy k S 321 220 1.35 166 1.35 34.5 0.12 

k L 181 1.16 128 1.16 6.18 0.02 

quadrilateral 

neptune k S 183 132 1.47 86.0 1.47 28.0 0.20 

k L 102 1.17 56.3 1.17 3.86 0.03 

statuette k S 458 333 1.47 219 1.47 76.0 0.22 

k L 255 1.17 141 1.17 10.4 0.03 

lucy k S 1.3K 976 1.54 656 1.54 245 0.26 

k L 710 1.17 389 1.17 23.1 0.03 

tetrahedral 

bonsai k S 373 166 1.58 150 1.58 6.55 0.05 

k L 151 1.44 135 1.44 2.65 0.02 

vismale k S 405 173 1.52 156 1.52 4.87 0.03 

k L 165 1.45 147 1.45 2.69 0.02 

foot k S 450 220 1.75 201 1.75 13.0 0.08 

k L 181 1.43 161 1.43 2.60 0.02 

hexahedral 

f16 k S 775 456 3.08 349 3.08 151 1.03 

k L 296 1.90 189 1.90 18.0 0.13 

san fern k S 1.7K 999 3.15 765 3.15 275 0.86 

k L 646 1.88 412 1.88 33.1 0.10 

vismale k S 3.8K 2.2K 2.89 1.7K 2.89 887 1.15 

k L 1.4K 1.72 858 1.72 106 0.15 

probabilistic 

5D k S 607 448 4.39 446 4.39 63.7 0.61 

k L 259 2.55 258 2.55 3.57 0.03 

7D k S 7.9K 4.9K 4.98 4.9K 4.98 101 0.10 

k L 3.7K 3.78 3.7K 3.78 12.2 0.01 

40D k S 2.6K 2.3K 36.2 2.3K 36.2 55.7 0.87 

k L 2.1K 34.0 2.1K 34.0 0.45 0.01 

v-rips 

vismale 7D k S 134 56.2 1.44 37.0 1.44 7.38 0.26 

k L 53.7 1.37 34.6 1.37 4.54 0.18 

foot 10D k S 2.1K 604 2.02 586 2.02 65.1 0.33 

k L 431 1.56 413 1.56 11.5 0.12 

lucy 34D k S 2.0K 416 2.47 363 2.47 86.2 0.92 

k L 292 1.73 238 1.73 19.0 0.53 
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(iii) co-boundary relation R k −1 ,k (τ ) , for each non-manifold 

( k −1 )-cell τ bounding a top CP k -cell; 

(iv) partial co-boundary relation R ∗
0 ,k 

( v ) , for each vertex v , con- 

sisting of an arbitrary top CP k -cell σ from each k -cluster in 

the star of v . A k -cluster is a ( k −1 )-connected component of

the star of v restricted to its top CP k -cells. 

Note that for pure CP complexes, the non-manifold co-boundary 

elation R k −1 ,k is empty. Further, for pseudo-manifold complexes, 

he partial vertex co-boundary relation R ∗
0 ,k 

has cardinality 1, and 

he IA 

∗ is identical to the IA data structure [20] . 

The Simplex tree encodes all j-simplices in �, with 0 ≤ j ≤ d, 

ike the IG, while storing a subset of the incidence relations en- 
334 
oded by the IG. The Simplex tree is defined over a total order 

n the vertices of �, and thus, each simplex σ is uniquely repre- 

ented as an ordered path in a trie whose nodes correspond to the 

oundary vertices of σ . Thus, the nodes are in bijection with the 

implices of the complex, and a Simplex tree over a simplicial com- 

lex with | �| simplices (of any dimension) contains exactly | �| 
odes. This provides an efficient representation for extracting all 

oundary relations of simplices in �. We compare the Stellar tree 

o the implementation of the Simplex tree provided in [30] , where 

ach node of a Simplex tree requires a reference to the label of the 

ertex and three references to the tree structure (pointers to the 

arent node, to the first child and to the next sibling node) for a 

otal of 4 | �| references. 
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Fig. 14. Storage costs for high dimensional probabilistic-refinement simplicial com- 

plexes ( prob.5D , prob.7D and prob.40D ) and V-Rips simplicial complexes ( vis- 

male7D , foot10D and lucy34D ). Costs (labels to right of each bar) are normalized 

to the indexed mesh representation (listed along y-axis). Note that: (1) the x-axis 

is truncated to a factor of 3; (2) datasets marked with � or � could not be directly 

generated on our test machine for the Simplex tree or IA ∗ (respectively); and (3) 

the Simplex tree results for the Prob.40D and Lucy34D dataset are partial ( > ). 

Fig. 15. Storage costs for manifold quadrilateral ( neptune , statuette and lucy ) and 

hexahedral ( bonsai , vismale and foot ) complexes. Costs (labels to right of each bar) 

are normalized to the indexed mesh representation (listed along y-axis). Datasets 

marked with � could not be directly generated on our test machine using the stan- 

dalone IA ∗ . 
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Fig. 16. Storage costs for manifold triangle ( neptune , statuette and lucy ) and 

tetrahedral ( bonsai , vismale and foot ) complexes. Costs (labels to right of each bar) 

are normalized to the indexed mesh representation (listed along y-axis). 
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Note that the Stellar tree and our extended IA 

∗ data structure 

an both represent CP complexes in arbitrary dimension and, thus, 

ave the same expressive power, while the Simplex tree can rep- 

esent only simplicial complexes. Another difference is that Stellar 

rees require the complex to be embedded in an ambient space A , 

hile the other data structures are purely topological and do not 

equire a spatial embedding. We note, however, that while this is a 

equirement for Stellar trees, it is not a requirement for the more 

eneral Stellar decomposition. 
335 
In terms of storage requirements, the Stellar tree is always more 

ompact than the IA 

∗ data structure, requiring approximately half 

f the storage, nearly all of which is used for encoding boundary 

elation R k, 0 for the top cells (i.e., the indexed representation that 

hey share in common). It is worth noting that we were unable 

o directly generate the IA 

∗ data structure for several of our larger 

atasets on our 64 GB test machine. We generated the IA 

∗ data 

tructure on these datasets indirectly using our Stellar tree repre- 

entation (see Section A.3 in the Supplementary materials) and we 

ave marked these datasets with an � in Figs. 14 and 15 . 

When comparing the Stellar tree to the Simplex tree, we ob- 

erve that the Stellar tree is significantly more compact: by an or- 

er of magnitude on manifold and pure models, and by two or- 

ers of magnitude or more on non-manifold models. Here too, we 

ere unable to generate Simplex trees for several of the higher di- 

ensional models on our test machine. For these datasets (marked 

ith � in Fig. 14 ), we estimated the storage requirements based 

n the number of simplices of each dimension in the model. On 

wo of these datasets, prob 40D and lucy 34D , we were un- 

ble to extract all simplices in all dimensions (even indirectly, see 

ection 9.1 ), and thus, the storage shown in Fig. 14 is a lower

ound of the real storage requirements. In contrast, we had no dif- 

culty generating Stellar Trees for any of our test datasets. 

For our dimension-dependent comparisons on manifold simpli- 

ial complexes, we also considered the Corner Table ( CoT ) [22] and 

he Sorted Opposite Table ( SOT ) [25] data structures, both defined 

nly for manifold triangle and tetrahedral complexes. The CoT data 

tructure is similar to the IA data structure and explicitly encodes 

oundary relation R d, 0 (σ ) and adjacency relation R d,d (σ ) of each 
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Table 4 

Generation timings (in seconds) for the Stellar tree. 

Timings 

Data k V vertices top CP cells total 

insert reindex insert reindex 

triangular 

neptune k S 4.52 0.68 1.64 3.23 10.1 

k L 3.83 0.67 1.24 2.77 8.51 

statuette k S 11.6 1.77 3.42 7.99 24.8 

k L 10.1 1.74 2.74 6.70 21.3 

lucy k S 34.6 1.32 8.85 21.9 66.7 

k L 30.3 0.48 7.45 18.1 56.3 

quadrilateral 

neptune k S 32.2 4.39 6.64 11.3 54.5 

k L 27.5 4.36 4.63 8.58 45.1 

statuette k S 82.7 12.3 14.0 29.1 138 

k L 73.8 12.2 10.7 22.7 119 

lucy k S 263 2.17 37.0 61.8 364 

k L 223 2.02 29.5 35.5 290 

tetrahedral 

bonsai k S 6.69 1.66 7.99 20.8 37.2 

k L 6.25 1.65 7.12 19.3 34.3 

vismale k S 7.25 1.82 8.35 22.1 39.6 

k L 6.96 1.81 7.88 21.2 37.8 

foot k S 8.55 2.00 10.8 27.9 49.2 

k L 7.34 1.97 8.52 23.4 41.2 

hexahedral 

f16 k S 103 14.2 77.7 53.9 249 

k L 94.1 13.9 46.7 35.1 190 

san fern k S 154 27.6 52.1 102 336 

k L 140 27.5 37.1 67.8 273 

vismale k S 337 72.8 118 222 751 

k L 324 71.8 85.3 147 628 

probabilistic 

5D k S 0.50 0.58 40.9 53.0 95.0 

k L 0.37 0.58 20.9 32.7 54.5 

7D k S 0.55 5.98 332 612 950 

k L 0.45 5.97 203 471 681 

40D k S 1.32 1.73 972 769 1.7K 

k L 1.02 1.73 529 448 980 

v-rips 

vismale 7D k S 7.20 1.80 2.65 3.04 13.0 

k L 6.94 1.81 2.50 2.75 12.3 

foot 10D k S 9.01 1.99 41.0 57.1 108 

k L 7.91 1.98 30.6 35.9 75.2 

lucy 34D k S 35.9 1.63 36.8 42.2 117 

k L 30.7 0.81 28.7 24.3 84.5 
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op d-simplex σ . The SOT extends the CoT by implicitly encoding 

oundary relation R d, 0 (σ ) . It only explicitly encodes adjacency re- 

ation R d,d (σ ) . 

When comparing the Stellar tree to corner-based data struc- 

ures, we observe that the CoT data structure has similar storage 

equirements as the IA and is roughly twice as large as the Stellar 

ree, while the SOT has similar storage requirements as the Stellar 

ree, requiring about 1% to 10% less space. 

Finally, we consider the effect of different bucketing thresh- 

ld on the size and efficiency of the Stellar tree representation. 

or our experimental datasets, there was only about a 10% dif- 

erence in storage requirements between the large ( k L ) and small 

 k S ) bucketing factors. Clearly, this is not always true, especially in 

he limit cases, i.e., with k V = 1 and k V = ∞ . Very low bucketing

hresholds (with k V near 1) yield deeper trees whose leaf blocks 

ndex only a few entities, leading to a high topological overhead 

ut more efficient execution for individual mesh processing oper- 

tions. Conversely, really large bucketing threshold values lead to 

ower storage overhead at the expense of increased query and ex- 

cution times for individual operations. At the limit, when k V = ∞ , 

he Stellar tree is effectively identical to the indexed representa- 

ion. 

These results confirm that the Stellar tree can efficiently repre- 

ent both low- and high-dimensional complexes with only a slight 

torage overhead relative to that of the indexed base complex. This 

s largely due to the Stellar tree’s exploitation of the complex’s spa- 

ial locality via SRE compression. 

.3. Evaluation of stellar tree generation times 

In this section, we evaluate the generation times for the Stellar 

ree. Table 4 shows the timings of the four generation phases and 

he overall total timings. The two insert columns show the time 

or creating the base indexing structure H over the vertices �V of 

he complex �, or the time for inserting the top cells �T into H ,

hile reindex columns show the timings for reordering and SRE 

ompressing the indexed lists and arrays in H and �. 

We first consider the relative cost of each of the generation 

hases. In general, the vertex reindexing phase consumes less than 

0% of the overall timings. For the triangle , quadrilateral , hexahedral 

omplexes, and the lower dimensional Vietoris-Rips complex, gen- 

rating H is the most expensive phase, while for the tetrahedral , 

robabilistic-refinement and the two higher dimensional Vietoris- 

ips models, reindexing the top cells is the most expensive phase. 

hese results can be understood by considering the relative sizes 

f �V and �T . When the number of vertices is greater than or 

qual to the number of top cells, it is more expensive to generate 

he spatial hierarchy H . Otherwise, reindexing and compressing the 

op cells arrays dominates. 

Finally, considering the effect of the bucketing thresholds ( k V ) 

n generation times, we find that Stellar trees with higher bucket- 

ng thresholds ( k L ) can be generated in less time than those with

ower bucketing thresholds ( k S ). This is expected since high val- 

es of k V tend to produce coarser spatial subdivisions with lower 

verage spanning numbers χ . 

. Topological queries on a stellar tree 

In this section, we describe how to perform topological queries 

n a CP complex � in the Stellar tree representation. These queries 

re the fundamental building blocks for locally traversing and pro- 

essing the underlying complex. 

Since these queries often depend on all cells in the com- 

lex, rather than just the explicitly represented top cells, we first 

escribe how we obtain and represent the implicitly encoded 

oundary cells of the complex from the Stellar tree representation 
336 
 Section 9.1 ). We then present algorithms for extracting the co- 

oundary ( Section 9.2 ). For brevity, we omit a description of how 

o extract adjacency relations, but in the Supplementary materials, 

e describe how to extract the R d,d adjacency relations to generate 

he IA 

∗ data structure from a Stellar tree. 

.1. Extracting boundary relations 

The Stellar tree’s underlying indexed representation of a CP 

omplex � explicitly encodes only the vertices and top CP k -cells 

f � for k ≤ d (see Section 4.2.1 ). However, many applications re- 

uire access to non-top cells within the complex. Since they are 

mplicitly encoded within the Stellar tree representation, we must 
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Algorithm 2 extract _ p _ cells ( p, r , �) . 

Input: p is the cell dimension to extract 

Input: r is a leaf block in H 

Input: � is the CP complex indexed by H 

Variable: m _ p maps a p-cell vertex tuple to its local index 

Require: Extract boundary p-cells of top k -cells, 0 < p≤k ≤d 

1: for all top CP k -cells σ in �T OP ( r ) (with index i σ in �T ) do 

2: for all p-faces τ in R k,p ( σ ) (with face index i τ in σ ) do 

// Rearrange τ ’s vertices into a canonical order 

3: v _ tuple ← canonical_tuple ( R p, 0 (τ ) ) 

// If τ is indexed by r , add it to the local p-faces map 

4: if there exists v ∈ R p, 0 (τ ) such that v ∈ �V ERT ( r ) then 

// Insert τ as a new p-cell, if not already present 

5: if v _ tuple is not in m _ p then 

6: id τ ← size ( m _ p) // id τ is τ ’s local index in r 

7: m _ p[ v _ tuple ] ← id τ
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Table 5 

Summed timings (seconds) and additional storage requirements (number of refer- 

ences) to extract boundary p-cells from Stellar tree, IA ∗ and Simplex tree data struc- 

tures. Datasets marked with an � could not be directly generated on our test ma- 

chine by the IA ∗ . 

Time Storage 

Data k V IA ∗ Simplex Stellar IA ∗ / Stellar 

tree tree Simplex tree 

triangular 

neptune k S 4.93 1.82 1.90 12.0M 0.70K 

k L 2.20 3.24K 

statuette k S 9.21 3.73 4.90 30.0M 0.72K 

k L 5.55 3.22K 

lucy k S 25.3 9.94 13.8 84.1M 0.82K 

k L 16.2 3.28K 

quadrilateral 

neptune k S 40.8 n/a 6.61 96.2M 0.52K 

k L 7.43 3.37K 

statuette k S 91.3 n/a 15.9 240M 0.50K 

k L 19.0 3.38K 

lucy k S 251 n/a 43.2 673M 0.53K 

k L 53.4 3.41K 

tetrahedral 

bonsai k S 49.6 22.7 45.6 204M 20.9K 

k L 47.8 42.5K 

vismale k S 54.5 25.1 52.2 222M 21.4K 

k L 53.7 36.5K 

foot k S 59.5 29.7 50.9 246M 21.2K 

k L 57.5 43.3K 

hexahedral 

f16 k S OOM n/a 49.6 OOM 2.64K 

k L 71.1 18.9K 

san fern k S OOM n/a 109 OOM 2.89K 

k L 143 21.1K 

vismale 
� k S OOM n/a 263 OOM 1.77K 

k L 340 17.4K 

prob. 

5D k S 456 123 316 970M 152K 

k L 425 1.94M 

7D 
� k S OOM OOM 21.2K OOM 51.3M 

k L 24.6K 167M 

v-rips 

vismale 7D k S 179 149 156 1.43B 267K 

k L 162 318K 

foot 10D k S OOM OOM 16.6K OOM 12.0M 

k L 21.4K 15.9M 
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reate a local (explicit) representation to support algorithms for 

rocessing and attaching data to such cells. 

Our strategy for extracting all p-cells is to iterate through the 

op k -cells of a leaf block for each dimension k , 0 < p ≤ k ≤ d and

o extract an ordered set of p-cells (see Algorithm 2 ). We use an

ssociative array m _ p to track the unique set of encountered p- 

ells with at least one vertex indexed by r (row 4). Array m _ p maps

he tuple of vertices for a p-cell τ to an integer index id τ in the

et, accounting for changes in ordering and orientation through the 

anonical _ tuple routine (row 3). In some applications, it is useful 

o also explicitly maintain the boundary relation R p, 0 for the p- 

ells and/or the incidence relations R k,p or R p,k for the top k -cells. 

hese are encoded using the local indices within the ordered set 

f extracted p-cells. 

We note that, for truly high-dimensional datasets, it is not fea- 

ible to extract p-cells in all cases. For example, there are 
(

41 
21 

)
20- 

implices within a single 40-simplex. Encoding these 269 billion 

implices would require more than 40TB of storage. However, even 

n these datasets, we can still extract the lowest and highest di- 

ensional p-cells. This highlights an advantage of only encoding 

he top cells of the complex (as in the Stellar tree and IA 

∗ data

tructure) compared to representations that encode all cells of the 

omplex (as in the IG or Simplex tree). Stellar trees have no dif- 

culty encoding and processing such high-dimensional complexes, 

espite the combinatorial explosion in the number of overall cells. 

Experimental results. We now analyze the effectiveness of the 

tellar tree representation for (batched) p-cell extractions against 

ur implementation of the IA 

∗ data structure and the Simplex tree 

as implemented in the GUDHI framework [30] ). Table 5 lists the 

ggregate times and storage requirements for extracting all non- 

op p-cells from our experimental datasets. Notice that we do not 

onsider the higher dimensional probabilistic dataset and the lucy 

4D V-Rips complex, as extracting all p-cells on these datasets is 

nfeasible due to its computational and storage requirements. 

First, we analyze the influence of the bucketing threshold k V for 

tellar trees. Smaller k V values lead to faster extractions on all our 

xperimental datasets. This speedup increases with the dimension 

f the complex since the auxiliary data structure encoding a p-face 

ype becomes smaller, and thus, checking for the presence of du- 

licates has a lower computational cost. 

The IA 

∗ data structure follows a similar strategy as the Stel- 

ar trees for extracting its implicit p-cells since both data struc- 

ures use an indexed representation for encoding the boundary re- 

ations of a CP complex. Table 5 demonstrates the computational 

nd storage advantages of the Stellar tree over the IA 

∗ for this task. 

amely, Stellar trees require from 20% to 55% less time for the 
337 
wo-dimensional datasets and approximately 10% less time on the 

igher dimensional ones. Notice, however, that the IA 

∗ data struc- 

ure is a global data structure over the entire complex and runs out 

f memory (OOM) on our hexahedral datasets and on the 7D prob- 

bilistic and foot 10D V-Rips datasets. In addition, the Stellar tree’s 

uxiliary storage requirements are negligible compared to those of 

he IA 

∗ data structure. 

The Simplex tree explicitly encodes all simplices of a simpli- 

ial complex, thus, its p-cells can be enumerated by traversing all 

implices at the p-th level of the tree. Explicitly encoding bound- 

ry relation R p, 0 would require the same auxiliary storage as the 

A 

∗ data structure, since both data structures require global struc- 

ures. Table 5 demonstrates that Stellar trees are slower than Sim- 

lex trees at boundary cell extraction, but, still, competitive with 
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Algorithm 3 extract _ restricted _ vertex _ cbdry ( r , �) . 

Input: r is a leaf block in H 

Input: � is the mesh indexed by H 

Variable: r _ 0 _ k encodes R 0 ,k relation for the vertices in r 

Ensure: Relation R 0 ,k is locally reconstructed ∀ σ ∈ �V ERT ( r ) 

1: for all top k -simplex σ in �T OP ( r ) (with index i σ in �T ) do 

2: for all vertices v in σ (with index i v in �V ) do 

3: if v ∈ �V ERT ( r ) then 

4: add i σ to r _ 0 _ k [ i v ] 
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Table 6 

Times (seconds) and additional storage requirements (number of references) for re- 

stricted co-boundary relations R 0 ,k extractions from Stellar tree and IA ∗ represen- 

tations. Datasets marked with an � could not be directly generated on our test 

machine by the IA ∗ . 

Data k V Time Storage 

IA ∗ Stellar Stellar 

triangular 

neptune k S 5.02 0.66 0.61K 

k L 0.64 3.00K 

statuette k S 10.2 1.66 0.61K 

k L 1.58 3.01K 

lucy k S 24.8 4.20 0.61K 

k L 4.17 3.01K 

quadrilateral 

neptune k S 27.5 2.86 0.41K 

k L 2.65 3.21K 

statuette k S 63.6 7.04 0.41K 

k L 7.22 3.22K 

lucy k S 156 20.4 0.42K 

k L 19.3 3.22K 

tetrahedral 

bonsai k S 14.5 3.10 9.58K 

k L 2.81 18.5K 

vismale k S 16.1 3.38 9.57K 

k L 3.07 18.2K 

foot k S 17.3 3.83 9.62K 

k L 3.32 18.6K 

hexahedral 

f16 k S 145 11.8 0.83K 

k L 10.8 7.51K 

san fern k S 157 26.9 0.93K 

k L 22.0 8.51K 

vismale 
� k S 254 44.5 0.75K 

k L 47.7 7.54K 

hexahedral 

probabilistic k S 17.9 4.88 33.0K 

k L 2.73 243K 

7D 
� k S 415 46.1 1.62M 

k L 35.7 9.01M 

40D 
� k S 206 56.1 2.64M 

k L 51.4 14.3M 

v-rips 

vismale 7D k S 25.8 2.22 3.20K 

k L 2.16 5.04K 

foot 10D k S 376 19.0 55.7K 

k L 16.0 72.6K 

lucy 34D 
� k S 334 22.9 13.0K 

k L 23.2 43.8K 

i

r

S

s

S

o

t

l

t

espect to a representation that explicitly encodes all cells. This is 

ossible thanks to the smaller local auxiliary data structures used 

y Stellar trees. Note that the Simplex tree runs out of memory 

OOM) on our workstation for the 7D probabilistic dataset and the 

oot 10D V-Rips complex. Since a Simplex tree can only represent 

implicial complexes, it does not support p-cell extraction on quad 

nd hexahedral datasets. 

.2. Extracting co-boundary relations 

Co-boundary queries arise in a variety of mesh processing ap- 

lications, including those requiring mesh simplification and re- 

nement [63–65] , or the dual of a complex [66–68] . 

Co-boundary queries are naturally supported by the Stellar de- 

omposition model. By definition, all regions of the decomposition 

hat contain at least one vertex of a CP cell τ must index all CP 

ells in the star of τ (see Eq. 1 ). Since the top cells are explicitly

epresented in �, we first describe how to extract the vertex co- 

oundary relation R 0 ,k restricted to the top k -cells of �, which we 

ill refer to as the restricted co-boundary relation R 0 ,k . We will then 

iscuss how to extend this to extract vertex co-boundary relation 

 0 ,p over all p-cells in �, and the general co-boundary relation R p,q 

ith 0 ≤ p < q ≤ d. 

The restricted vertex co-boundary relation R 0 ,k in a leaf block r 

s generated by inverting boundary relation R k, 0 on the top CP k - 

ells in �T OP ( r ). Since the indexed vertices in the leaf blocks of a

ompressed Stellar tree are contiguous, with indices in the range 

 v s , v e ) , we encode our local data structure using an array of size

 �V ERT ( r ) | = v e − v s . Each position in the array corresponds to a

ertex indexed by r and points to an (initially empty) list of in- 

exes from �T . As shown in Algorithm 3 , we populate these arrays 

y iterating through relation R k, 0 of the top CP k -cells in �T OP ( r ).

or each cell σ such that relation R k, 0 (σ ) contains a vertex v with 

ndex i v ∈ [ v s , v e ) , the index of σ is added to vertex v ’s list. 

Extending the vertex co-boundary relation to all p-cells in r is 

omplicated by the fact that we only have an explicit representa- 

ion for the top cells in �. A simple strategy we have developed 

or extracting R 0 ,p on all p-cells in r is to first extract the explicit

et of all p-cells in r , as in Algorithm 2 (see Section 9.1 ). We then

nvert R p. 0 to obtain the complete relation R 0 ,p for the vertices in 

 . 

In some applications, we prefer to express R 0 ,p entirely in terms 

f top cells from �. Thus, another strategy we have developed is to 

xtract the restricted co-boundary relation R 0 ,k for all top k -cells in 

 , with p ≤ k ≤ d. This redundant representation is thus used as an

ntermediate representation for R 0 ,p (v ) since each k -cell in R 0 ,k (v )
ontains one (or more) p-face in the co-boundary of v . For exam- 

le, this provides a convenient representation for the star of a ver- 

ex v as a union of restricted co-boundary relations R 0 ,k (v ) , where

 ≤ k ≤ d. 

Similarly, we have defined and implemented a strategy for gen- 

rating the general co-boundary relation R p,q , where p < q . First, 

he sets of all q -cells, which is expressed as R q, 0 , is extracted. This
338 
mplicitly provides also boundary relation R q,p . Then, co-boundary 

elation R p,q is extracted by inverting R q,p . 

Experimental results. We now analyze the effectiveness of the 

tellar tree representation for co-boundary extractions. Specifically, 

ince the main co-boundary extraction in our applications (see 

ection 10 ) is the restricted vertex co-boundary relation and most 

f the other co-boundary extractions can be posed in terms of 

his primitive extraction, we compare the performance of the Stel- 

ar tree against our implementation of the IA 

∗ data structure for 

his query and against the Simplex tree. Table 6 lists the extraction 
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Fig. 17. Extraction times (in seconds) for the restricted vertex co-boundary rela- 

tions. The top dataset is the triangle mesh used in our main comparison, the sec- 

ond is a tetrahedral mesh with 256 thousand vertices and 1.4 million tetrahedra, 

and the last dataset is a probabilistic-refinement CP complex with 7-dimensional 

top simplices. 
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imes and storage requirements for the vertex co-boundary rela- 

ion R 0 ,d on our manifold ( triangular , quad , tetrahedral and hex ) and

ure ( probabilistic ) complexes and the sum of extraction times for 

he restricted vertex co-boundary relations R 0 ,k for each dimension 

 with top cells on our non-manifold ( V-rips ) complexes. 

We first consider the influence of the bucketing threshold k V 
or Stellar trees. While there is not much difference in extraction 

imes for the two-dimensional complexes, larger k V values lead to 

aster extractions for three-dimensional and non-manifold datasets 

n most cases. While this comes with a slight increase in stor- 

ge requirements for encoding the relation (see right column in 

able 6 ), the overall storage cost per block is pretty low, requiring 

t most a few megabytes for the probabilistic models, and a few 

ilobytes in all other cases. 

The IA 

∗ data structure extracts co-boundary relations through a 

raversal along the face adjacencies of its top cells (encoded in the 

 k,k adjacency relation). The traversal for a given vertex v is seeded 

y one top k -cell per k -cluster (encoded by partial relation R ∗
0 ,k 

(v ) ,
ee Section 8.2 ; we refer to [26] for more details). Since each such

raversal is run on demand, there is a negligible memory impact 

or this query. Table 6 demonstrates that Stellar trees are signifi- 

antly faster at extracting R 0 ,k relations, which can be performed 

n about one tenth of the time in most cases. However, it is impor-

ant to note that the Stellar tree extraction is batch-based (by leaf 

locks of H ), and individual co-boundary extractions would likely 

e faster on the IA 

∗ data structure. 

The Simplex tree extracts co-boundary relations through a 

raversal of the underlying trie. Given a vertex v , the procedure for 

xtracting its restricted co-boundary first identifies the simplices 

ncident in v (i.e., its star), and then extracts just the top simplices 

rom the star. The former requires a trie traversal, with a worst- 

ase complexity linear in the number of nodes in the trie, since, 

s stated in the GUDHI documentation [30] , this corresponds to a 

epth-first search of the trie starting from the node with value v . 

dentifying the top simplices in the star of a vertex has a negligible 

ost on low dimensional meshes, while it becomes a costly opera- 

ion on higher-dimensional ones, where it accounts for nearly 50% 

f the overall extraction time. As with the IA 

∗, since this traver- 

al is done on demand, this query imposes negligible memory im- 

act. On our experimental datasets, the Simplex tree was able to 

omplete the extraction of restricted vertex co-boundary relations 

nly on the smaller triangle mesh neptune , for which it requires 

early 72 hours. To provide a comprehensive performance compar- 

son against the Stellar tree, we consider two additional smaller 

atasets for this query: a tetrahedral mesh ( fighter2 ) with 256 

housand vertices and 1.4 million tetrahedra, and a probabilistic- 

efinement CP complex with six thousand vertices and two million 

op 7-simplices. The results, shown in Fig. 17 , highlight the Stel- 

ar tree’s significant advantage over the Simplex tree for restricted 

ertex co-boundary extraction (i.e., less than a second vs hours). 

0. A brief tour of applications in the stellar universe 

Stellar decompositions and Stellar trees have been successfully 

pplied in several mesh processing applications. In this section, 

e provide a high-level overview of several such applications over 

arge CP complexes with a focus on how Stellar trees uniquely 

enefit the application. As we will describe, each such applica- 

ion utilizes local topological data structures designed for the 

nderlying application. Due to the streamed processing approach 

iscussed in Section 6 , the storage requirements for these data 

tructures are proportional to the geometry indexed within a leaf 

lock of the tree and the generation costs are amortized over all 

rocessed cells in the block. 
339 
0.1. Validation of geometric and topological properties 

Many popular topological mesh data structures are valid only 

or a restricted class of complexes due to assumptions they ex- 

loit in their encodings, such as the cardinality of the adjacency 

elation among top cells. For example, popular edge-based and 

djacency-based data structures, such as the half-edge [12–14] , 

orner-Table [22] , SOT [25] and IA [20,21] , require the underlying 

omplex to be pseudo-manifold. 

While one can verify such topological conditions using local 

hecks on the star or link of the vertices of the complex, it can 

e infeasible to reconstruct such relations on large meshes with- 

ut the aid of an efficient topological data structure. On the other 

and, global approaches that directly build the required relations 

o not scale to larger complexes. 

In contrast, Stellar trees are ideally suited to verify topological 

roperties of large CP complexes, even in memory-limited envi- 

onments, since each leaf block of the Stellar tree only requires a 

ist of vertices and their incident top cells (i.e., those in the star of 

he vertices). A simple local topological verification operation was 

tilized in [41] to mark boundary vertices of a tetrahedral mesh by 

hecking properties of its link, such as its Euler number. This was 

xtended in [88] to a full suite of topological checks on a CP com- 

lex, implemented using global Stellar tree traversals. In particular, 

 graph traversal of the 1-skeleton was used, in conjunction with a 

nion-Find data structure [69] , to count the connected components 

f a pure simplicial complex. A similar traversal of the 1-skeleton 

f its dual complex (i.e., the graph of the d-adjacency relation) was 

sed to verify the d-connectedness of the complex and whether it 

s pseudo-manifold. Simplified checks for combinatorial manifolds 

when applicable) were then performed on the links of each vertex 

o check that they were locally homeomorphic to ( d −1 )-spheres 

for internal vertices) or to ( d −1 )-balls (for boundary vertices). 

0.2. Topology-preserving simplification 

One of the earliest applications of the Stellar tree (actually, 

ts predecessor, the PR-star octree [41] ) was to accelerate a mesh 

implification algorithm for tetrahedral meshes based on edge col- 

apses . An edge collapse is a local topological operation defined in 

erms of the stars of an edge’s two vertices. This operation iden- 

ifies the pair of vertices along an edge, removes all tetrahedra in 

he star of that edge and updates the mesh connectivity within 

his local region [70] . Edge collapses are valid when they satisfy 

he so-called link condition [71] , which consists of local checks on 

he links of the edge and its vertices. 
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Fig. 18. Homology-preserving edge-contractions retain topological invariants of a complex, such as its number of loops, even after extreme simplification. (a)-(d) Genus-3 

neptune complex at various simplification percentages. Triangles within the same octree block of the Stellar tree have the same color. 
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The simplification procedure in [41] was implemented as an 

terative process that alternated between: (i) streaming through 

he Stellar tree blocks, where it collapsed eligible candidates, and 

ii) rebuilding the Stellar tree’s index over the simplified mesh. 

t used discrete distortion [72] and a quadric error metric [63] to 

rganize eligible edges into a priority queue. Applying this simpli- 

cation algorithm to the leaf blocks of a Stellar tree rather than 

o the entire mesh provides a significant space savings due to the 

educed sizes of the edge queues. In many cases, the simplifica- 

ion was 10–50% faster and required only 0.1% of the additional 

emory for auxiliary data structures. Moreover, this speedup was 

ore pronounced as the mesh size increased. 

More recently, Stellar trees have been used to perform 

omology-preserving edge-contractions on general simplicial 

omplexes of arbitrary dimension [90] . The core edge contraction 

lgorithm was implemented using a custom local topological 

ata structure over the top star of the vertices and edges within 

ach leaf block of the tree, similar to the restricted co-boundary 

elations R 0 ,k and R 1 ,k (c.f. Section 9.2 ). To avoid regenerating these 

opological relations, it utilized an LRU cache for the expanded 

eaf blocks as it traversed the tree. In this mesh simplification 

pplication, Stellar trees were applied to datasets with dimensions 

p to 70 and were able to remove more than 90% of the sim- 

lices of the mesh, significantly reducing the dimensionality of 

he complex while preserving important topological invariants of 

he dataset. Compared to existing state-of-the-art data structures 

or edge contractions [32] , Stellar trees were able to simplify 

omplexes using comparable or less runtime and memory in all 

ases, and requiring significantly less memory and/or processing 

ime in several cases. Notably, in one case, the Stellar tree was 

ble to successfully complete the simplification process in less 

han 30 minutes, while [32] did not complete after more than 24 

ours. Fig. 18 shows simplified versions of the genus-3 neptune 

riangle mesh. Each simplified mesh preserves the homology of 

he complex, such as its number of connected components, loops 

nd cavities. We note that the above application incorporates 

nly topological considerations into its simplification error metric. 

ncorporating mesh quality considerations into the error metric 

ould significantly improve the mesh quality [63] . 

0.3. Shape analysis and morphological feature extraction 

While topological validation and simplification operations can 

e implemented in terms of local operations on the star of a 

ertex, shape analysis applications, such as watershed analy- 

is [73] and visibility queries on terrain datasets [74,75] often 

equire algorithms that are seeded locally and span vast inter- 

oven regions of the complex. This section discusses how Stellar 

rees have aided in the generation and simplification of the discrete 
340 
orse gradient field and of the associated Morse and Morse-Smale 

omplexes of triangulated terrains [91] and of tetrahedralized 

olumetric data [68] . 

The discrete Morse gradient field [76] is composed of arrows 

ordered pairs) between incident cells of the complex and can be 

omputed locally using scalar values associated with cells inci- 

ent in the star of a vertex [77] . Since the encoding of [68] com-

actly encodes the discrete Morse gradient field as a scalar field 

n the top simplices of the complex, the latter can be computed 

sing a local traversal of a Stellar tree’s blocks. Compared to an 

A implementation, Stellar trees were able to extract the discrete 

orse gradient of scalar fields defined over tetrahedral meshes in 

bout half the time (see [68] for details). While the experiments 

n [68] were performed on vertex-compressed Stellar trees, yield- 

ng a 30% storage savings over the IA data structure, a compressed 

tellar tree encoding would likely provide a 50% total memory sav- 

ngs while maintaining similar performance improvements. 

Extracting the Morse complex from a Stellar tree-based en- 

oding is more complicated since it involves traversing the 

irected acyclic graphs (DAGs) induced by the discrete Morse 

radient field’s arrows. Specifically, in the encoding of [68] , each 

 -dimensional critical point of the discrete Morse gradient field 

orresponds to a k -cell of the d-dimensional Morse complex. The 

isjoint regions of influence of each such critical point, referred 

o as the k -manifolds of the Morse complex, are extracted by 
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raversing the DAG rooted at a given critical point of the discrete 

orse gradient field. Since each such graph traversal can visit the 

locks of a Stellar tree multiple times, an LRU cache was used 

n [68] to support global extraction algorithms for each k -manifold 

f the Morse complex. 

Further, since the extraction algorithm for each dimension’s 

anifolds depends on different topological connectivity relations, 

orse complex extraction benefits from the Stellar tree’s ability to 

enerate customized local topological data structures. For exam- 

le, since extracting the 2-manifolds from a tetrahedral complex 

equires only the R 2 , 2 adjacency relation, its extraction was opti- 

ized by directly starting from R 2 , 2 , rather than the R 3 , 3 adjacency 

elation, as in the IA data structure. 

This approach was extended to terrain datasets in [91] , which 

lso introduced a persistence-based simplification algorithm for 

oise removal. Fig. 19 highlights the 73K triangles in the largest 

-manifold of the Morse complex for the Maui terrain dataset (in 

ed) and the blocks of the Stellar tree that were visited when ex- 

racting this region (blue-green squares). While manifold extrac- 

ion and persistence-based simplification operations were slightly 

ore expensive than their IA counterparts for volumetric [68] and 

errain [91] datasets, the Stellar tree’s vast memory savings and hi- 

rarchical encoding open the door to efficient parallel implementa- 

ions on huge datasets, which we hope to explore in future work. 

1. Concluding remarks 

We have introduced the Stellar decomposition as a model for 

opological data structures over Canonical-Polytope (CP) complexes, 

 class of complexes that includes simplicial complexes and cer- 

ain classes of cell complexes, like quadrilateral and hexahedral 

eshes. Stellar decompositions cluster the vertices of a complex 

nto regions that contain sufficient information to locally recon- 

truct the star of their vertices. The model is agnostic about the 

omain of the complex (e.g., manifold, pure, non-manifold) and we 

ave demonstrated the scalability of this model to large mixed- 

imensional datasets in high dimension. 

We introduced the Stellar tree as a concrete realization of the 

tellar decomposition model over spatially embedded CP com- 

lexes. Stellar trees couple a spatial index H decomposing the com- 

lex’s embedding space with a simple tuning parameter that limits 

he number of vertices indexed by a leaf block. 

Stellar trees effectively exploit the spatial coherence of a CP 

omplex � by using the clustering structure of H to reorder the 

rrays of top cells of � and to compress the resulting ranges of se- 

uential indexes within the lists of vertices and top cells in the leaf 

locks of H . We have demonstrated over a wide range of datasets 

hat this process typically produces compressed Stellar trees that 

re only 1–10% larger than the original indexed base mesh for �

hile still retaining sufficient information to efficiently reconstruct 

ll topological connectivity relations. The source code for our Stel- 

ar tree implementation will be released in the public domain. 

In terms of storage size, Stellar trees compare quite favorably 

ith state-of-the-art topological data structures. They are consis- 

ently half the size of their IA 

∗ data structure counterparts [26] and 

ne to two orders of magnitude smaller than their Simplex tree 

ounterparts [28] . This is especially notable for high dimensional 

ietoris-Rips complexes, a target application for the Simplex tree, 

or which Stellar trees have very low overhead. While Stellar trees 

upport a much broader class of complexes, they have similar 

torage requirements as the dimension-specific SOT data struc- 

ure [25,78] , which supports only static pseudo-manifold triangle 

nd tetrahedral complexes. In future work, it would be interest- 

ng to compare the Stellar tree against top-based extensions of the 
341 
implex tree, such as the MST and the SAL [31] , if public-domain 

mplementations become available. 

Despite the simplicity of their leaf block representation, Stellar 

rees provide a great deal of flexibility to customize the structure 

nd layout of their expanded topological data structures to meet 

he needs of a given application. Such data structures are typically 

onstructed by composing several local topological incidence 

nd adjacency relations. We described efficient algorithms for 

econstructing these relations within the subcomplex indexed by 

he leaf blocks of a Stellar tree and demonstrated the advantages 

f this approach compared to similar algorithms on the IA 

∗ and 

implex tree data structures. Stellar trees can also be used as an 

ntermediary representation to generate topological data struc- 

ures in a memory-constrained environment. For example, we 

sed Stellar trees to generate IA 

∗ and Simplex tree representations 

or several of our larger complexes in Section 8 (as we discuss in 

he Supplementary materials). We also provided an overview of 

everal mesh processing applications, ranging from mesh val- 

dation, to topology and shape preserving simplification and 

orphological analysis that have benefited from the Stellar trees 

epresentation. 

One direction of future work would involve extending the Stel- 

ar tree representation to support a broader class of cell complexes. 

or example, it would not be difficult to extend support to indexed 

olyhedral cell complexes which define their cells in terms of their 

oundary polyhedral faces which are, in turn, defined by oriented 

ists of vertex indices [79] . 

Another avenue for investigation is to extend our processing al- 

orithms for parallel, distributed and/or out-of-core environments, 

hich could be used for applications like multicore homology 

omputation [80] on point cloud data. The Stellar tree’s compact 

eaf block representation is already geared towards a parallel 

xecution pattern since each block already has sufficient resources 

o query the connectivity of its local subcomplex. Preliminary 

esults along this line look promising. A simple unoptimized 

penMP [81] adaptation of boundary and restricted vertex co- 

oundary queries yielded a 3-4x speedup compared to our serial 

pproach on our 6 core machine. 

Finally, while Stellar trees require their underlying complex to 

e spatially embedded, there is no such restriction on the Stellar 

ecomposition model. Thus, we plan to investigate Stellar decom- 

ositions for abstract CP complexes, such as simplicial complexes 

epresenting social networks. Social network representation and 

rocessing poses new challenges in the social big data domain, 

uch as the identification of key-players and communities in the 

ataset, as well as extracting topological properties of the network, 

ike its homology or k -connectivity. Due to the irregularities of 

on-spatial datasets, one key challenge would be to define effi- 

ient decompositions (i.e., with a low average spanning number χ ) 

sing only the complex’s connectivity information. A preliminary 

ttempt for geolocalized social networks can be found in [92] , 

here the social network was represented in terms of its maximal 

liques , i.e., sets of mutually related entities, corresponding to top 

implices over the network’s flag complex. The Stellar tree was 

uilt over the 2D embedding provided by the geospatial locations 

f the entities and simplified using homology-preserving edge- 

ontractions [90] , enabling a study of the network’s topological 

tructure on a significantly reduced dataset. 
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